ELF>@@43 *+AWAVAUATUSHdH%(H$1HHt$PHD$XHFHD$dD$`tAH|$P1H$dH+%(Hĸ[]A\A]A^A_fLd$HHl$PL-LHL|$HItLLH|$HItLHtLl$pHLfL$HLFf(L$pLLL$D$HL$fL$($$)L$|$8T$ \$d$0f(L$f.L$pzu}t$(f.t$xzoum|$8f.$z\uZl$f.$zquoD$ f.$z^u\t$0f.$zKuIHfHc[fDHuLHHuLHfUHAWAVAUATS1HdH%(HE1HHHHFHDžHHHxHP4AHcLPEtIcIHx4H}AHcHDžpL}EtIcIHp+ttHxE1H}HEH9t HtHPHtHXH9tHEdH+%(HeL[A\A]A^A_]fHxHtHxDLqHHxHHhGHxH,HxDLHHxHH`HxHHHxHHXE~eIFH9^AD$PDHx1HfA  HH9uDHxAt Afofofo) )0)@E~mAEHpIGH9DHx1HffAHH9uDHxAtAHpHXML(HL`8Hh0P@$HxX1ZIcE7fDHH9Af.ztHxH f.(f.0f.8f.{@f.e_f.HICIc1E~FHpHxDHH9 Af.ztHxHHf. (f.8f.Pf.zLuJ0f.z8u6@f.z$u"HHc$I HuHXHxHx!Hx HHhHxH#H`HxHpHxD1AHH9uHxHxD1AHH9uHxHxDL5HxDLHHAWAVAUATUS1HXdH%(H$H1HHl$PHt$PHD$XHFHHD$dD$`H$4AHcL$EtIcI\D$`+D$dtjHE1H$H$H9t HtH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLtHt$LHzDLHdL$HLDH$HHH$ T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0l$f.l$pD$8t$f.t$x|$f.$Ic1E (HH9tADf.ztH$f.$ $f.$$f.$$f.$$f.$$f.$z~u||$ f.$zIuGt$(f.$z6u4T$0f.$z#u!HD$8IHuH$HHvLH\HnL1HWD1ADHH9ujDLHMHDAWAVAUATUS1HXdH%(H$H1HHl$PHt$PHD$XHFHHD$dD$`H$4AHcL$EtIcI\D$`+D$dtjHE1H$H$H9t HtH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLtHt$LHzDLHdL$HLDH$HHH$ T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0l$f.l$pD$<t$f.t$x|$f.$Ic1E*HH9tADf.ztH$f.$ $f.$$f.$$f.$$f.$$f.$z}u{|$ f.$zHuFt$(f.$z5u3T$0f.$z"u HHc|$<IHuH$HHwLH]HmL1HVD1ADHH9urDLHUHff.fAVAUATUHxdH%(HD$h1HHt$0HD$8HFHD$DD$@t:H|$01HT$hdH+%(Hx]A\A]A^@Ld$/Ll$0LH5L|$/HtLH5L|$/ItLt$PLL{f(D$PLLHT$`fD$)$T$f($f.D$PzJuHL$f.L$Xz:u8T$f.T$`z*u(HHHf.HuιLLf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tHH=tHSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDHHuӐt1HuHcfDHHhH;tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDHHuӐt1HuHcfDHHH;tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐ$tHuHcH$HH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐtHu뵐HHH;tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ueH0[fDHHuӐt,HG8H@0HH?HHHuHcHHH;tЉfATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;uHuLf.t$ HIff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.HHuϐH5HT$H|$|$HtHHuHcff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$1HT$8dH+%(H@]ÐHHuԐHt$H|$tD$$t$t8@8tHE@HHuHH@HEHH;u$@8t@HfH@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;H=tLH=u-HaHcVf.LLH=tLH=tLfDHЉfAWAVAUATUSH(fnFdH%(H$1HH$H$HGfnȉ$fbfք$uaHo(Ht*$+$tUH$1H$dH+%(H([]A\A]A^A_HHuÐL$L$LLtL$LLtLt$pLLjH$LHJLL$xLLLL$-H$LHHD$$HL$$LI$$T$HLH$\$pLL$$d$`$$l$ $$t$h$|$8T$(\$Xd$Pl$0t$@D$t$AXZD$f.$NHd$@f.$3-l$hf.$|$f.$mgt$Xf.$RL|$`f.$71HKT$ f.$d$0f.$l$Pf.$H\$(f.$zhuft$Hf.$zUuS|$8f.$zBu@HIcHL1LHuHT$LHHHھL.HLLD$pLD$xLff.ATL%H |HH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\AWAVAUATUHSHfnFdH%(H$1HHt$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@LH$4AHcH$H$Et IcHH$L4H$AHcHD$L$Et IcIHD$H,D$P+D$TLL$E1MtH$I9tLH$HtH$H9tH$dH+%(vHL[]A\A]A^A_fHHf.Ht$8LRHD$`LHHD$0DHLHt$ int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkQuadraticPolygon C++: static vtkQuadraticPolygon *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticPolygon C++: vtkQuadraticPolygon *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; Return the topological dimensional of the cell (0,1,2, or 3). V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Return the number of edges in the cell. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Return the number of faces in the cell. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; Return the edge cell from the edgeId of the cell. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; Return the face cell from the faceId of the cell. V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells). V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *weights) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.ComputeCentroid(vtkIdTypeArray, vtkPoints, [float, float, float]) C++: static void ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts, double centroid[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.ParameterizePolygon([float, float, float], [float, float, float], float, [float, float, float], float, [float, float, float]) -> int C++: int ParameterizePolygon(double p0[3], double p10[3], double &l10, double p20[3], double &l20, double n[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.PointInPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> int C++: static int PointInPolygon(double x[3], int numPts, double *pts, double bounds[6], double n[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Triangulate(vtkIdList) -> int C++: int Triangulate(vtkIdList *outTris) V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.NonDegenerateTriangulate(vtkIdList) -> int C++: int NonDegenerateTriangulate(vtkIdList *outTris) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.DistanceToPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> float C++: static double DistanceToPolygon(double x[3], int numPts, double *pts, double bounds[6], double closest[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.IntersectPolygonWithPolygon(int, [float, ...], [float, float, float, float, float, float], int, [float, ...], [float, float, float], float, [float, float, float]) -> int C++: static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6], int npts2, double *pts2, double bounds2[3], double tol, double x[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.IntersectConvex2DCells(vtkCell, vtkCell, float, [float, float, float], [float, float, float]) -> int C++: static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2, double tol, double p0[3], double p1[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). V.GetUseMVCInterpolation() -> bool C++: virtual bool GetUseMVCInterpolation() Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to true by default. V.SetUseMVCInterpolation(bool) C++: virtual void SetUseMVCInterpolation(bool _arg) Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to true by default. HHHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 DXl !  H^FBB B(A0A8Gn 8A0A(B BBBC zPLRx 8$PEC IL C .I. `< LFBB B(A0A8I 8D0A(B BBBK 'LFBB B(A0A8I 8D0A(B BBBK H'8FBB A(De (A BBBE EDPa AE bEY B }(EAD`n AAF DED@ AG hED@ AG ED@ AG ED@ AG ED@ AG ED@ AG (FAD` ABG HEDP AK lLEDP AB gFD@ EE 0FAA D`  AABH \FBB B(A0A8G 8A0A(B BBBD IAHMFF0dOFDD n ABA DDBPFBB B(A0D8Gq 8D0A(B BBBJ F8$FDB A(Dpr (A BBBF L4cFBB B(A0A8G 8D0A(B BBBA !l$FBB B(A0A8G 8A0A(B BBBD GUArJTALFBB B(A0A8G 8D0A(B BBBE h'@DEC P G e...R. < t FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@ FBB A(A0D 0A(A BBBI $d EDP AK Y  ' ^e pP< )<'g c' ` C s    K  ` P p0 pLn g 0! "&'(!"J"w (F 0- /cQ! 03$ `8'@ =Dx< pD 0G6 pJD PL &(sx};M\l{!)BLc o s    & , 2 8 > D J "P /V ;\ Cb Ph !n " " " " "@ "j " "!  " E q      5 F !*b     M   Y l   J"bkr6Ug} p'M!=J 'OkTZy 5Mbw_ZL31PyvtkQuadraticPolygon_StaticNewv_ZL44PyvtkQuadraticPolygon_IntersectConvex2DCellsP7_objectS0__ZL49PyvtkQuadraticPolygon_IntersectPolygonWithPolygonP7_objectS0__ZL49PyvtkQuadraticPolygon_IntersectPolygonWithPolygonP7_objectS0_.cold_ZL39PyvtkQuadraticPolygon_DistanceToPolygonP7_objectS0__ZL39PyvtkQuadraticPolygon_DistanceToPolygonP7_objectS0_.cold_ZL36PyvtkQuadraticPolygon_PointInPolygonP7_objectS0__ZL36PyvtkQuadraticPolygon_PointInPolygonP7_objectS0_.cold_ZL37PyvtkQuadraticPolygon_ComputeCentroidP7_objectS0__ZL34PyvtkQuadraticPolygon_SafeDownCastP7_objectS0__ZL30PyvtkQuadraticPolygon_IsTypeOfP7_objectS0__ZL35PyvtkQuadraticPolygon_IsPrimaryCellP7_objectS0__ZL38PyvtkQuadraticPolygon_GetNumberOfFacesP7_objectS0__ZL38PyvtkQuadraticPolygon_GetCellDimensionP7_objectS0__ZL33PyvtkQuadraticPolygon_GetCellTypeP7_objectS0__ZL44PyvtkQuadraticPolygon_GetUseMVCInterpolationP7_objectS0__ZL38PyvtkQuadraticPolygon_GetNumberOfEdgesP7_objectS0__ZL29PyvtkQuadraticPolygon_GetFaceP7_objectS0__ZL46PyvtkQuadraticPolygon_NonDegenerateTriangulateP7_objectS0__ZL44PyvtkQuadraticPolygon_SetUseMVCInterpolationP7_objectS0__ZL33PyvtkQuadraticPolygon_NewInstanceP7_objectS0__ZL25PyvtkQuadraticPolygon_IsAP7_objectS0__ZL41PyvtkQuadraticPolygon_ParameterizePolygonP7_objectS0__ZL26PyvtkQuadraticPolygon_Type_ZL29PyvtkQuadraticPolygon_Methods_GLOBAL__sub_I_vtkQuadraticPolygonPython.cxx_ZL33PyvtkQuadraticPolygon_DerivativesP7_objectS0__ZL33PyvtkQuadraticPolygon_DerivativesP7_objectS0_.cold_ZL33PyvtkQuadraticPolygon_TriangulateP7_objectS0__ZL42PyvtkQuadraticPolygon_InterpolateFunctionsP7_objectS0__ZL42PyvtkQuadraticPolygon_InterpolateFunctionsP7_objectS0_.cold_ZL39PyvtkQuadraticPolygon_IntersectWithLineP7_objectS0__ZL38PyvtkQuadraticPolygon_EvaluateLocationP7_objectS0__ZL38PyvtkQuadraticPolygon_EvaluateLocationP7_objectS0_.cold_ZL38PyvtkQuadraticPolygon_EvaluatePositionP7_objectS0__ZL38PyvtkQuadraticPolygon_EvaluatePositionP7_objectS0_.cold_ZL26PyvtkQuadraticPolygon_ClipP7_objectS0__ZL29PyvtkQuadraticPolygon_ContourP7_objectS0__ZL34PyvtkQuadraticPolygon_CellBoundaryP7_objectS0__ZL29PyvtkQuadraticPolygon_GetEdgeP7_objectS0_.LC0.LC1.LC2.LC4.LC6.LC8.LC9.LC10.LC11.LC12.LC13.LC16.LC14.LC15.LC17.LC18.LC19.LC20.LC21.LC22.LC23.LC24.LC25.LC26.LC27.LC28.LC29.LC31.LC33.LC34.LC36.LC37.LC39.LC41.LC42.LC43.LC44.LC45.LC46.LC47.LC48.LC49.LC30_ZN19vtkQuadraticPolygon11GetCellTypeEv_ZN19vtkQuadraticPolygon16GetCellDimensionEv_ZN19vtkQuadraticPolygon16GetNumberOfEdgesEv_ZN19vtkQuadraticPolygon16GetNumberOfFacesEv_ZN19vtkQuadraticPolygon7GetFaceEi_ZN19vtkQuadraticPolygon13IsPrimaryCellEv_ZN19vtkQuadraticPolygon22GetUseMVCInterpolationEv_ZN19vtkQuadraticPolygon22SetUseMVCInterpolationEb_ZN19vtkQuadraticPolygon3NewEv_ZNK19vtkQuadraticPolygon19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN13vtkPythonArgs8GetValueERd_ZN13vtkPythonArgs8GetArrayEPdi_ZN19vtkQuadraticPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2_PyErr_OccurredPyLong_FromLong_ZN13vtkPythonArgs8SetArrayEiPKdi__stack_chk_failDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN13vtkPythonArgs8GetValueERi_ZN19vtkQuadraticPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0__Unwind_Resume_ZN19vtkQuadraticPolygon17DistanceToPolygonEPdiS0_S0_S0_PyFloat_FromDouble_ZN19vtkQuadraticPolygon14PointInPolygonEPdiS0_S0_S0__ZN19vtkQuadraticPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPd_GLOBAL_OFFSET_TABLE__Py_NoneStruct_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN19vtkQuadraticPolygon3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPc_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_PyBool_FromLong_ZN19vtkQuadraticPolygon24NonDegenerateTriangulateEP9vtkIdList_ZN13vtkPythonArgs8GetValueERbPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZN19vtkQuadraticPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0__ZN13vtkPythonArgs11SetArgValueEidPyvtkQuadraticPolygon_ClassNewPyVTKClass_AddPyvtkNonLinearCell_ClassNewPyType_ReadyPyVTKAddFile_vtkQuadraticPolygonPyDict_SetItemString_Py_Dealloc_ZN19vtkQuadraticPolygon11DerivativesEiPdS0_iS0__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN19vtkQuadraticPolygon11TriangulateEP9vtkIdList_ZN19vtkQuadraticPolygon11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkQuadraticPolygon20InterpolateFunctionsEPdS0__ZN19vtkQuadraticPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEii_ZN19vtkQuadraticPolygon16EvaluateLocationERiPdS1_S1__ZN19vtkQuadraticPolygon16EvaluatePositionEPdS0_RiS0_RdS0__ZN13vtkPythonArgs8GetValueERx_ZN19vtkQuadraticPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkQuadraticPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkQuadraticPolygon12CellBoundaryEiPdP9vtkIdList_ZN19vtkQuadraticPolygon7GetEdgeEiPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del;<oq=rrst!tuvw!v;xIvcxjy>{|{%|nq}}~tt:~Tt~tstkvvJv_wlvxvxv xl y x x ? {0 |d q } t ~ t t< t>  v v  v x vxv3xqx{y@{|4qV}t~tt tv}vwvxvxvx9xCyAqBr Cr3tev*vxy D@qmErrFvvyG*q]mFuHvw=IyJNqqvw*lyK.qQgvtw*jyLq1JvWwr*hyMq!:vGwb*goyNq,v9M*mZyOqv'w=*iJysPq ~,*k3v@_yQq#R2rDKvXw_ySq+^vj**nyT/ qY z *p o F v    !v#!yT!U!q!!"*+"F0">"HC"L"v]"w~"=""I"""y"V^#q##t#t#s $t)$sN$t+%%v6&v}&v&w&v&x&v&x&v&x'v&'x>'V'`'yy':'F';'':'':'''F'C(W({(|({(|3)qX)}w)}))~)t*t&*~<*t+v ,v,v2,*W,a,v,x,x,x -y-X--X .q.Xf.q{.R.r..v.w.~.R.r /C/rG/va////y/Y;0{N0|0q0}00{1|A1tW1tj2vt2v2*2x2v2x23y`3Z3q4,4tH4t\4sw4s4t4t4~6v!7v/7v@7wc77v7x7v7x7v7x7v8x08F8P8y8[8{8|*9qL9}99{9|9~:tB:tX:t<;v<v <v;<*c<m<v<x<v<x<=x=yV=\={=|={>|g>q>}>}> ?t ?tA?~g?t?s?tAvAvBBvBvBvBwBvBxCv7CxmCCC&Dx>DxHDyD]Dq.Es>E^IEr]E_eEryE`ErEaErErEbErFFbDFr~F~FvF*FG*Gy]GcGqGsH^Hr7H_?HrYH`gHrHrHrHaHrHr!IbCIrIIbIrIv J*!JWJbJyJdJq!K>K~WKtgKRoKrKvLwL&Lv@LxGLyqLeLqL M~0Mv=MLMVMyo  8O_ (-!-3=TD+`Do}0}8W}_~}}}} }+}H}PF&H+9=>LIQ^f:*)0X8@ )H  o(0!8)P@ HX)H` chx) ) ) `)0 ) PPL)  !(P8)@ HX) ` ChpJx)`  ;0G)  pD)X  =) `8) 03)  (/8)@ \H`X)`` sh"x) M) 0-)x )p) ; )H p) !  (8)H#@ H(X)$` hx)( Lp)0* 4H\p   ?zTp] < ,(14xcC`Hl` PLppp0!"Lp'h'*(K k(0-d/ms03H`8Q = $pD0G$ pJh PL.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN19vtkQuadraticPolygon11GetCellTypeEv.text._ZN19vtkQuadraticPolygon16GetCellDimensionEv.text._ZN19vtkQuadraticPolygon16GetNumberOfEdgesEv.text._ZN19vtkQuadraticPolygon16GetNumberOfFacesEv.text._ZN19vtkQuadraticPolygon7GetFaceEi.text._ZN19vtkQuadraticPolygon13IsPrimaryCellEv.text._ZN19vtkQuadraticPolygon22GetUseMVCInterpolationEv.text._ZN19vtkQuadraticPolygon22SetUseMVCInterpolationEb.rela.text._ZNK19vtkQuadraticPolygon19NewInstanceInternalEv.rodata.str1.1.rela.text.unlikely.gcc_except_table.rodata._ZN19vtkQuadraticPolygon3IsAEPKc.str1.1.rela.text._ZN19vtkQuadraticPolygon3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.groupS@1gSH1hSP1iSX1jS`1kSh1lSp1mSx1nS 1pS 1S 1z ZM@`-1 & N, N1N _ N 0NPN`N!pNQN N!N @12NX!QT@1"uR42USipSbd@12S+@01"@1$ @ 1&@ @(1(@1*0,!418 IX D@01/2g HZ