ELF>(~@@"!  UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fHGI~H)ǃuHH=LHH51HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tHH=tHH=tHH=tHff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;H=tLH=u-HaHcVf.LLH=tLH=tLH=tLH=tLxDHЉgH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuHHff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHuHHff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(uyHH]A\fDHHuѐLd$Ht$LtH5HT$L|$HtD$HHuHcwAVAUATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$1HT$8dH+%(HH]A\A]A^f.HHuŐLt$Ll$LH5L|$ItLLtHT$HLHoHcdfAVAUATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$1HT$8dH+%(HH]A\A]A^f.HHuŐLt$Ll$LH5L|$ItLLtHT$HLHoHcdfAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uXHD$Ho(Ht!D$ +D$$tIH|$1HT$8dH+%(H@]A\A]DHHu̐Ll$HT$H5L|$ItHt$LtHT$HLHwHclf.AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uXHD$Ho(Ht!D$ +D$$tIH|$1HT$8dH+%(H@]A\A]DHHu̐Ll$HT$H5L|$ItHt$LtHT$HLHwHclf.AVAUATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t;H|$1HT$8dH+%(H@[]A\A]A^@Lt$Ll$LH5L|$ItLH5L|$HtLHHuHcuf.HH.SDAVAUATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t;H|$1HT$8dH+%(H@[]A\A]A^@Lt$Ll$LH5L|$ItLH5L|$HtLHHuHcuf.HH.SDATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATUHhfnFdH%(HD$X1HHt$0HD$8HGfn؉D$HfbfD$@uJHo(Ht!D$@+D$DtDH|$01HT$XdH+%(Hh]A\fHHuѐLd$0HLtHt$LtHt$LtHt$LtHt$ LtHt$(L_T$(HL$ HL$HT$D$H4$H'HcDATUHxfnFdH%(HD$h1HHt$@HD$HHGfnD$XfbfD$PuJHo(Ht!D$P+D$TtDH|$@1HT$hdH+%(Hx]A\fHHuѐLd$@HLtHt$LtHt$LtHt$LtHt$ LtHt$(L_Ht$0LJHt$8L5\$8LD$0HT$(HL$ L$HT$D$H4$HHcAVH #HAUH5ATL%ULSt[L]A\A]A^HL5HLk0Hc{HHtH3HLHmt$HL9uL[L]A\A]A^HfDATIUHHt HH5LHtHmtH]A\HH]A\UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHuHH@HSafeDownCastvtkObjectBasevtkReebGraphBuildIsTypeOfIsACloseStreamGetDataObjectTypeSetSimplifyvtkPolyDatavtkUnstructuredGridvtkDataArrayNewInstanceStreamTriangleStreamTetrahedronDeepCopyERR_INCORRECT_FIELDERR_NO_SUCH_FIELDERR_NOT_A_SIMPLICIAL_MESH@Vk *vtkPolyData@Vk *vtkUnstructuredGrid@Vz *vtkPolyData@Vz *vtkUnstructuredGridvtkMutableDirectedGraphvtkDirectedGraphvtkGraphvtkDataObjectvtkObjectUH=Hu]ÐHH=tHH=tHH=tHH=tHH=tH]vtkReebGraphSimplificationMetricvtkReebGraph - Reeb graph computation for PL scalar fields. Superclass: vtkMutableDirectedGraph vtkReebGraph is a class that computes a Reeb graph given a PL scalar field (vtkDataArray) defined on a simplicial mesh. A Reeb graph is a concise representation of the connectivity evolution of the level sets of a scalar function. It is particularly useful in visualization (optimal seed set computation, fast flexible isosurface extraction, automated transfer function design, feature-driven visualization, etc.) and computer graphics (shape deformation, shape matching, shape compression, etc.). Reference: "Sur les points singuliers d'une forme de Pfaff completement integrable ou d'une fonction numerique", G. Reeb, Comptes-rendus de l'Academie des Sciences, 222:847-849, 1946. vtkReebGraph implements one of the latest and most robust Reeb graph computation algorithms. Reference: "Robust on-line computation of Reeb graphs: simplicity and speed", V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, ACM Transactions on Graphics, Proc. of SIGGRAPH 2007. vtkReebGraph provides methods for computing multi-resolution topological hierarchies through topological simplification. Topoligical simplification can be either driven by persistence homology concepts (default behavior) or by application specific metrics (see vtkReebGraphSimplificationMetric). In the latter case, designing customized simplification metric evaluation algorithms enables the user to control the definition of what should be considered as noise or signal in the topological filtering process. References: "Topological persistence and simplification", H. Edelsbrunner, D. Letscher, and A. Zomorodian, Discrete Computational Geometry, 28:511-533, 2002. "Extreme elevation on a 2-manifold", P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, ACM Symposium on Computational Geometry, pp. 357-365, 2004. "Simplifying flexible isosurfaces using local geometric measures", H. Carr, J. Snoeyink, M van de Panne, IEEE Visualization, 497-504, 2004 "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees", J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184, 2009. Reeb graphs can be computed from 2D data (vtkPolyData, with triangles only) or 3D data (vtkUnstructuredGrid, with tetrahedra only), sequentially (see the "Build" calls) or in streaming (see the "StreamTriangle" and "StreamTetrahedron" calls). vtkReebGraph inherits from vtkMutableDirectedGraph. Each vertex of a vtkReebGraph object represents a critical point of the scalar field where the connectivity of the related level set changes (creation, deletion, split or merge of connected components). A vtkIdTypeArray (called "Vertex Ids") is associated with the VertexData of a vtkReebGraph object, in order to retrieve if necessary the exact Ids of the corresponding vertices in the input mesh. The edges of a vtkReebGraph object represent the regions of the input mesh separated by the critical contours of the field, and where the connectivity of the input field does not change. A vtkVariantArray is associated with the EdgeDta of a vtkReebGraph object and each entry of this array is a vtkAbstractArray containing the Ids of the vertices of those regions, sorted by function value (useful for flexible isosurface extraction or level set signature computation, for instance). See Graphics/Testing/Cxx/TestReebGraph.cxx for examples of traversals and typical usages (customized simplification, skeletonization, contour spectra, etc.) of a vtkReebGraph object. @sa vtkReebGraphSimplificationMetric vtkPolyDataToReebGraphFilter vtkUnstructuredGridToReebGraphFilter vtkReebGraphSimplificationFilter vtkReebGraphSurfaceSkeletonFilter vtkReebGraphVolumeSkeletonFilter vtkAreaContourSpectrumFilter vtkVolumeContourSpectrumFilter @par Tests: Graphics/Testing/Cxx/TestReebGraph.cxx vtkCommonDataModelPython.vtkReebGraphV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkReebGraph C++: static vtkReebGraph *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkReebGraph C++: vtkReebGraph *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return class name of data type. This is one of VTK_STRUCTURED_GRID, VTK_STRUCTURED_POINTS, VTK_UNSTRUCTURED_GRID, VTK_POLY_DATA, or VTK_RECTILINEAR_GRID (see vtkSetGet.h for definitions). THIS METHOD IS THREAD SAFE V.Build(vtkPolyData, vtkDataArray) -> int C++: int Build(vtkPolyData *mesh, vtkDataArray *scalarField) V.Build(vtkUnstructuredGrid, vtkDataArray) -> int C++: int Build(vtkUnstructuredGrid *mesh, vtkDataArray *scalarField) V.Build(vtkPolyData, int) -> int C++: int Build(vtkPolyData *mesh, vtkIdType scalarFieldId) V.Build(vtkUnstructuredGrid, int) -> int C++: int Build(vtkUnstructuredGrid *mesh, vtkIdType scalarFieldId) V.Build(vtkPolyData, string) -> int C++: int Build(vtkPolyData *mesh, const char *scalarFieldName) V.Build(vtkUnstructuredGrid, string) -> int C++: int Build(vtkUnstructuredGrid *mesh, const char *scalarFieldName) Build the Reeb graph of the field 'scalarField' defined on the surface mesh 'mesh'. * Returned values: * vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many * tuples as 'mesh' has vertices. * vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a * simplicial mesh (for example, the surface mesh contains quads instead of * triangles). V.StreamTriangle(int, float, int, float, int, float) -> int C++: int StreamTriangle(vtkIdType vertex0Id, double scalar0, vtkIdType vertex1Id, double scalar1, vtkIdType vertex2Id, double scalar2) Streaming Reeb graph computation. Add to the streaming computation the triangle of the vtkPolyData surface mesh described by vertex0Id, scalar0 vertex1Id, scalar1 vertex2Id, scalar2 * where vertexId is the Id of the vertex in the vtkPolyData structure * and scalaris the corresponding scalar field value. * IMPORTANT: The stream _must_ be finalized with the "CloseStream" call. V.StreamTetrahedron(int, float, int, float, int, float, int, float) -> int C++: int StreamTetrahedron(vtkIdType vertex0Id, double scalar0, vtkIdType vertex1Id, double scalar1, vtkIdType vertex2Id, double scalar2, vtkIdType vertex3Id, double scalar3) Streaming Reeb graph computation. Add to the streaming computation the tetrahedra of the vtkUnstructuredGrid volume mesh described by vertex0Id, scalar0 vertex1Id, scalar1 vertex2Id, scalar2 vertex3Id, scalar3 * where vertexId is the Id of the vertex in the vtkUnstructuredGrid * structure and scalaris the corresponding scalar field value. * IMPORTANT: The stream _must_ be finalized with the "CloseStream" call. V.CloseStream() C++: void CloseStream() Finalize internal data structures, in the case of streaming computations (with StreamTriangle or StreamTetrahedron). After this call, no more triangle or tetrahedron can be inserted via StreamTriangle or StreamTetrahedron. IMPORTANT: This method _must_ be called when the input stream is finished. If you need to get a snapshot of the Reeb graph during the streaming process (to parse or simplify it), do a DeepCopy followed by a CloseStream on the copy. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Deep copies the data object into this graph. If it is an incompatible graph, reports an error. V.Simplify(float, vtkReebGraphSimplificationMetric) -> int C++: int Simplify(double simplificationThreshold, vtkReebGraphSimplificationMetric *simplificationMetric) Simplify the Reeb graph given a threshold 'simplificationThreshold' (between 0 and 1). * This method is the core feature for Reeb graph multi-resolution hierarchy * construction. * Return the number of arcs that have been removed through the simplification * process. * 'simplificationThreshold' represents a "scale", under which each Reeb graph * feature is considered as noise. 'simplificationThreshold' is expressed as a * fraction of the scalar field overall span. It can vary from 0 * (no simplification) to 1 (maximal simplification). * 'simplificationMetric' is an object in charge of evaluating the importance * of a Reeb graph arc at each step of the simplification process. * if 'simplificationMetric' is nullptr, the default strategy (persitence of the * scalar field) is used. * Customized simplification metric evaluation algorithm can be designed (see * vtkReebGraphSimplificationMetric), enabling the user to control the * definition of what should be considered as noise or signal. * References: * "Topological persistence and simplification", * H. Edelsbrunner, D. Letscher, and A. Zomorodian, * Discrete Computational Geometry, 28:511-533, 2002. * "Extreme elevation on a 2-manifold", * P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, * ACM Symposium on Computational Geometry, pp. 357-365, 2004. * "Simplifying flexible isosurfaces using local geometric measures", * H. Carr, J. Snoeyink, M van de Panne, * IEEE Visualization, 497-504, 2004 * "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees", * J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, * IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184,2009. V.Set(vtkMutableDirectedGraph) C++: void Set(vtkMutableDirectedGraph *g) Use a pre-defined Reeb graph (post-processing). Use with caution! @VV *vtkPolyData *vtkDataArray@VV *vtkUnstructuredGrid *vtkDataArrayHHHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D XEDPa AE |O|REY B c(5EAD`n AAF 0FAA D`  AABH H@ I 0ED@ AG TEDP AK (xFAD` ABG 8'FBB A(Dp (A BBBK 8'FBB A(Dp (A BBBK 0&FBA D`  ABBF 0P&FBA D`  ABBF @;FBB A(A0Dp 0A(A BBBE @;FBB A(A0Dp 0A(A BBBE gFD@ EE (0kFAD ABC (\FAD ABC LFPI H(D0O (D BBBD V (D BBBH 0OFDD n ABA DDB  EDP AK |   MOs @5@@d'@ 'p & &1 ;Z;Pgk0,E0m    ( .   ) 2 @ 7 ; G Y ]  f r $ * 0 6 <(B" i"  EV" ,aw7V~ @~ ) 8 [ p }  O      * B W l   _ZL24PyvtkReebGraph_StaticNewv_ZL27PyvtkReebGraph_SafeDownCastP7_objectS0__ZL20PyvtkReebGraph_BuildP7_objectS0__ZL28PyvtkReebGraph_Build_Methods_ZL23PyvtkReebGraph_IsTypeOfP7_objectS0__ZL18PyvtkReebGraph_IsAP7_objectS0__ZL26PyvtkReebGraph_CloseStreamP7_objectS0__ZL32PyvtkReebGraph_GetDataObjectTypeP7_objectS0__ZL18PyvtkReebGraph_SetP7_objectS0__ZL23PyvtkReebGraph_SimplifyP7_objectS0__ZL23PyvtkReebGraph_Build_s3P7_objectS0__ZL23PyvtkReebGraph_Build_s4P7_objectS0__ZL23PyvtkReebGraph_Build_s5P7_objectS0__ZL23PyvtkReebGraph_Build_s6P7_objectS0__ZL23PyvtkReebGraph_Build_s1P7_objectS0__ZL23PyvtkReebGraph_Build_s2P7_objectS0__ZL26PyvtkReebGraph_NewInstanceP7_objectS0__ZL29PyvtkReebGraph_StreamTriangleP7_objectS0__ZL32PyvtkReebGraph_StreamTetrahedronP7_objectS0__ZL22PyvtkReebGraph_Methods_ZL19PyvtkReebGraph_Type_ZZ23PyvtkReebGraph_ClassNewE9constants_GLOBAL__sub_I_vtkReebGraphPython.cxx_ZL23PyvtkReebGraph_DeepCopyP7_objectS0_.LC0.LC1.LC2.LC3.LC9.LC4.LC5.LC6.LC7.LC8.LC10.LC11.LC12.LC13.LC14.LC15.LC16.LC17.LC18.LC19.LC20.LC21.LC23.LC22_ZN12vtkReebGraph17GetDataObjectTypeEv_ZN12vtkReebGraph3NewEv_ZNK12vtkReebGraph19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN12vtkReebGraph3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__GLOBAL_OFFSET_TABLE__ZN12vtkReebGraph11CloseStreamEv_Py_NoneStruct_ZN12vtkReebGraph3SetEP23vtkMutableDirectedGraph_ZN13vtkPythonArgs8GetValueERd_ZN12vtkReebGraph8SimplifyEdP32vtkReebGraphSimplificationMetric_ZN13vtkPythonArgs8GetValueERx_ZN12vtkReebGraph5BuildEP11vtkPolyDatax_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridx_ZN12vtkReebGraph5BuildEP11vtkPolyDataPKc_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridPKc_ZN12vtkReebGraph5BuildEP11vtkPolyDataP12vtkDataArray_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridP12vtkDataArrayPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZN12vtkReebGraph14StreamTriangleExdxdxd_ZN12vtkReebGraph17StreamTetrahedronExdxdxdxdPyvtkReebGraph_ClassNewPyVTKClass_AddPyvtkMutableDirectedGraph_ClassNewPyDict_SetItemStringPyType_Ready_Py_DeallocPyVTKAddFile_vtkReebGraph_ZN12vtkReebGraph8DeepCopyEP13vtkDataObjectPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del,$`?%@&ABAC#/'4E](?I&G)GAJ*#G1+6GD,IGW-\GhHqC.?1KKIn*F{&G)GAJ*G+G,G- GH5C`/?KMA*NC10~?KAJ*<C!1z?K)@OA*NC#2|?KP3@QAJ C7'?K4@R S A) J3 Cg ' ? K 5 @- RA TH AY Jc C ' ?! K= 4E @\ Ip Uw A J C '' ?Q Km 5u @ I V A J C 'U ? 4 @ 6 @ W A J KC8'?5@6@ XAJ1KGCr7?K *>=(&7ADBXYhZ[AC8<?aK|RPRPRP\ AJ'CS9?KRPRP0REPZRoP]AJC&#"_"` !'".";JQaibc^&a:Z?K,@A*NeC=Dc=&G&)+G9*>GL+QG_,dGr-wGH;" f0gXhijklmn8o@p.@ 7(8@HX`hPx@G(0;@ (8@]HXX`Yhx& 8'X' @ (p 83H XD 4H\ @@4X|@ p T  P4`0$.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN12vtkReebGraph17GetDataObjectTypeEv.rela.text._ZNK12vtkReebGraph19NewInstanceInternalEv.rodata.str1.1.rodata._ZN12vtkReebGraph3IsAEPKc.str1.1.rela.text._ZN12vtkReebGraph3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.ro.local.rela.data.rel.rela.data.rel.local.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@<H >T F `@h^@&O,O1P c` ^@r 2i]2J@r8 2' @@s08@@(t(@@0 #@@tH@@ ;@t O B J@u_0D,hDxD D@@(zX0I < S |