ELF>X3@@98 "#/0AWAVAUATUSHdH%(H$1HHt$@HD$HHFHD$TD$PtAH|$@1H$dH+%(H[]A\A]A^A_fLd$`Hl$@LHtL$HLtL$HLyL$HLY$T$`$L$p$f.l$h$$D$$fH~$D$$D$f(D$`fX$fX$f^)$f(XX^$f.f.f.$fD.$f.$f.$}fD.$mgf.$XRfHnf.$$f.$t$f.$HHHd$8\$0DL$(|$ DD$t$t$DD$H|$ DL$(\$0d$8L1Hd$8\$0DL$(|$ DD$t$d$8\$0DL$(|$ DD$t$VHLHHLH\$ |$DD$DD$|$H\$ LH\$ |$DD$\$ |$DD$ff.AWAVAUATUSHdH%(H$1HHt$PHD$XHFHD$dD$`tAH|$P1H$dH+%(sH[]A\A]A^A_fLd$pHl$PLHtL$HLtL$HLyHT$OH5H|$OHWf(D$pLLL$$$fD$$$\$8$$)$fH~L$fI~\$0d$ t$(f($f.D$pT$f.T$x\$8f.$fHnf.$d$f.$t$0f.$fInf.$zkuil$ f.$zXuV|$(f.$zEuCHHHHLL1H5HuLHHVLH<ff.AWAVAUATUSHdH%(H$1HHt$@HD$HHFHD$TD$PtAH|$@1H$dH+%("H[]A\A]A^A_fLd$`Hl$@LHtL$HLtL$HLyL$H HLRL$hT$`\$pL$$$$$$\$8$$d$ l$fH~t$0|$T$(~HH$@LHLLLL$f.\$`~xt$f.t$hf`|$8f.|$pNHd$f.$ |$ f.$L$0f.$fHnf.$t$f.$|uzT$(f.$ziug  1H$@Hcх)HH9tAf.ztHHgHHYHuLHuH#LH HL1HLHLPff.fAWAVAUATUSH(dH%(H$1HH$H$HFHDŽ$$tEH$1H$dH+%(JH([]A\A]A^A_L$H$LHtL$HLtL$HLrL$HLRHt$xH=$LL$$LLf($$\$h$$T$@$$\$$$D$0D$xfL$8)L$ d$`l$Ht$|$XT$\$Pf(L$ f.$2,|$8f.$\$hf.$d$f.$OID$@f.$4.d$`f.$l$f.$|$Hf.$l$Xf.$t$f.$zhufT$0f.$zUuSt$Pf.$zBu@H@Hc5HL1HHuLHHXLH>HLHfDAWAVAUATUSHdH%(H$1HH$H$HFHDŽ$$tEH$1H$dH+%(HĘ[]A\A]A^A_L$H$LHtL$HLtL$HLrL$0HLRH$PHH2H$pHHHD$ $IL$$LL$$T$L$ $8d$Pf($$@l$@$P$`|$H$p$$$$XL$p$0$$xfD$h)D$0L$$\$Xd$ $t$`|$(LL$$L$xf(D$0f.$$|$hf.$$f.$T$f.$TN|$pf.$93$f.$\$@f.$T$Pf.$$f.$ d$f.$0\V\$Hf.$8A;$f.$@#l$ f.$Pd$Xf.$X$f.$`t$(f.$pzmukl$`f.$xzZuXT$xf.$zGuEHHc$HIL1H2HuHT$HHQHھH7HLHHYLH?HLHff.AWAVAUATUSHdH%(H$1HHt$pHD$xHFHDŽ$$tCH|$p1H$dH+%(H[]A\A]A^A_@L$Hl$pLHtL$HLtL$HLtL$HLT$$f$fD$f$ff$fD$D$fD\$fD(fD\$$fD\DD$D$$f$$$D$$f\fA(fL~D$D$fA(fED$fAYDD$$$fYfEYDYf\E\f()$ffD(f(fE(D$YEYEYAXAXfEfD.QfA.fD(fEztfA^fA(^)$$f.f.$f.f.$fD.$fD.$f.$~fD.$nhf.$YSfHnf.$\$f.$l$f.$HHHD\$@l$0DT$(t$ DL$$$$$DL$Ht$ DT$(l$0D\$@L1HD\$@l$0DT$(t$ DL$$$l$0$$D\$@DT$(t$ DL$THLHHLHt$ DL$$$$$DL$Ht$ LHt$ DL$$$t$ $$DL$|$hD\$`l$XDT$Pt$HDt$@)T$0DL$(d$ \$|$hD\$`fEl$XDT$Pt$HDt$@f(T$0DL$(d$ \$ff.AWAVAUATUS1HdH%(H$1HHl$0Ht$0HD$8HFHHD$DD$@H|$p4AHcLl$pEtIcI\D$@+D$Dt`HE1H|$pHtHD$xH9tH$dH+%(HĸL[]A\A]A^A_fDHT$+H5H|$+ItHt$,HtDLHmL|$PHLPE~RIEH9AD$D1HAoDHH9uDAt ITHL$Xt$,LLT$P\$`LL$T$\$Ic1E'DHH9tH I9LtHd$f.d$PzAu?l$f.l$Xz1u/t$f.t$`z!uHRL%I$DHu׹LHD1fITHHH9uDLHSHAWAVAUATUSHHdH%(H$81HH$H$HFHDŽ$$tEH$1H$8dH+%(aHH[]A\A]A^A_L$H$LHtL$HLtL$ HLrL$HLRH$HH2H$HHH$$L $IL$LL$$L$($$ L$Xf($$0T$($$\$x$$d$`$l$ $fD$h)D$0t$p|$L$PT$\$Hd$l$@f(D$0f.$$d$hf.$xr$f.$ZTt$(f.$t$Xf.$L$xf.$|$ f.$ |$`f.$(jdT$pf.$0OIL$f.$ d$Pf.$T$f.$t$Hf.$\$f.$zZuX|$@f.$zGuEHHc$oHL1HHuH$HHeHھHKHLHHLHH0LHff.@AWAVAUATUSHdH%(H$1HHt$`HD$hHFHD$tD$ptAH|$`1H$dH+%(XH[]A\A]A^A_fL$Hl$`LHtL$HLtL$HLvL$HLVH$HH6$IL$$LL$$|$HL$$L$$$T$8$$D$ \$d$0,$t$(|$@L$T$PD$ f.$D$\|$Hf.$\$f.$xrD$8f.$]Wd$f.$L$0f.$,$f.$T$(f.$t$f.$zjuh\$@f.$zWuUd$Pf.$zDuBH\Hc|$\OHL1HHuHھHHVLH<HLHHLHAWAVAUATUSHdH%(H$1HHt$@HD$HHFHD$TD$PtAH|$@1H$dH+%(vHĸ[]A\A]A^A_fLd$`Hl$@LHtLl$pHLtL$HLtL$HL`l$hLLLL$`T$pL\$xl$0$$L$$$T$\$(fH~$$l$ |$L$f.L$`D$8l$0f.l$hT$f.T$pt$(f.t$x$f.$|$ f.$fHnf.$zXuVt$f.$zEuCHD$8 HJL1H3HuLHHiLHOH LHfAUATUHdH%(H$1HHt$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(H]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@l$PLLfoL$`foT$pfo$fD$)$l$)$)$)$f($f.D$@d$f.d$Hl$f.l$PD$`f.$$f.D$h$f.D$pD$xf.$z|uz$f.$zfud$f.$zPuNHfHHXH<L1H%HuLHfAWAVAUATUSHdH%(HD$x1HHt$ HD$(HFHD$4D$0tDH|$ 1HT$xdH+%([HĈ[]A\A]A^A_Ld$@Hl$ LHtLl$`HLtf(D$@t$PLLL$hT$`\$pfD$)$fI~fH~t$fI~f($f.D$@zturl$f.l$Hzdubt$f.t$PzTuRfHnf.d$`zeucfInf.|$hzVuTfInf.l$pzGuEHHHHuL1HfHuLHf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fHFuHHH=HH51HHFuHHH=HH51HUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tH@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uHc3HEHXH;tT$HLD$L$T$D$L$qHuL1Luf.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH=tLH=u)HeHcZfDLLH=tL븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfAWAVAUATUSHdH%(H$1HHt$@HD$HHFHD$TD$PtAH|$@1H$dH+%(BH[]A\A]A^A_fLd$`Hl$@LHtL$HLtL$HLyL$HLYT$`fL$hD$\$`f|$hf$f(fD$p$fD$f\f.DD$pfD$f$fA\D$D$fA\fD\$D$D$D<$D$$fD(f$fEYfD(ffDYfL~D$YAYD|$fE\\D)$$f.fE.f.$fD.$fD.$f.$fD.$qkf.$\VfHnf.$$f.$d$f.$H:HH,DT$8l$0DL$(D\$ t$d$d$t$HD\$ DL$(l$0DT$8L1HDT$8l$0DL$(D\$ t$d$DT$8l$0DL$(D\$ t$d$QHLHHLHl$ DL$t$t$DL$Hl$ LHl$ DL$t$l$ DL$t$ff.fAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(6H[]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$PLLtT$8\$@fod$Pfol$`fot$pD$$fH~fI~D$0)$)$)$uHEHH;SLLD$D$f.D$0fHnf.|$8fInf.|$@D$Pf.$$f.D$X$f.D$`D$hf.$zrupD$pf.$z_u]D$xf.$zLuJH1HH#@HFL1L/HuLLD$LLHD$ff.@AWAVAUATUSHfnFdH%(HD$x1HHt$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ 1HT$xdH+%(HĈ[]A\A]A^A_fDHHufLd$@Hl$ LHtLl$`HLtT$H\$Pd$hl$`t$pD$4fI~\$D$@$$fH~t$uIHxH;LLD$D$f.D$@zturfInf.T$Hzeucd$f.d$PzUuSfHnf.|$`znul$f.\$hz_u]l$f.l$pzOuMHHHHuL1Hf.HuLHD$LLLD$ATL%H LHH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\AVAUATUSHPfnFdH%(HD$H1HHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LLt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHnHLL$L$fH~fHuL1Lff.fAWAVAUATUSH8fnFdH%(H$(1HH$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LLtL$LLtH$LjL$LLOH$LHHD$*H$LH HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH HIcHLILRLD$LHAXZT$h\$`L$mHuHھLyH*HT$LHLLH(L1L$LUT$|Lff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5LL|$8ItLH5L|$8ItLH5L|$8kHLLH$H|$8GLHLHD$|$8)LLLHD$L|$8HLLH $LD$LLL$L\$,LLLL$LLD$HL$L$|$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!HHfDHHf.RLLHAVPSH fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐu int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkTriangle C++: static vtkTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTriangle C++: vtkTriangle *NewInstance() V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Get the edge specified by edgeId (range 0 to 2) and return that edge's coordinates. V.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; See the vtkCell API for descriptions of these methods. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; See the vtkCell API for descriptions of these methods. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; See the vtkCell API for descriptions of these methods. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; See the vtkCell API for descriptions of these methods. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; See the vtkCell API for descriptions of these methods. V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; See the vtkCell API for descriptions of these methods. V.ComputeArea() -> float C++: double ComputeArea() A convenience function to compute the area of a vtkTriangle. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this triangle using scalar value provided. Like contouring, except that it cuts the triangle to produce other triangles. V.InterpolationFunctions([float, float, float], [float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double sf[3]) @deprecated Replaced by vtkTriangle::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[6]) @deprecated Replaced by vtkTriangle::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double sf[3]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[6]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.GetEdgeArray(int) -> (int, ...) C++: int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge (`edgeId`). Ids are related to the cell, not to the dataset. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Plane intersection plus in/out test on triangle. The in/out test is performed using tol as the tolerance. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the triangle in parametric coordinates. V.GetParametricDistance([float, float, float]) -> float C++: double GetParametricDistance(double pcoords[3]) override; Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. V.TriangleCenter([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void TriangleCenter(double p1[3], double p2[3], double p3[3], double center[3]) Compute the center of the triangle. V.TriangleArea([float, float, float], [float, float, float], [float, float, float]) -> float C++: static double TriangleArea(double p1[3], double p2[3], double p3[3]) Compute the area of a triangle in 3D. See also vtkTriangle::ComputeArea() V.Circumcircle([float, float], [float, float], [float, float], [float, float]) -> float C++: static double Circumcircle(double p1[2], double p2[2], double p3[2], double center[2]) Compute the circumcenter (center[3]) and radius squared (method return value) of a triangle defined by the three points x1, x2, and x3. (Note that the coordinates are 2D. 3D points can be used but the z-component will be ignored.) V.BarycentricCoords([float, float], [float, float], [float, float], [float, float], [float, float, float]) -> int C++: static int BarycentricCoords(double x[2], double x1[2], double x2[2], double x3[2], double bcoords[3]) Given a 2D point x[2], determine the barycentric coordinates of the point. Barycentric coordinates are a natural coordinate system for simplices that express a position as a linear combination of the vertices. For a triangle, there are three barycentric coordinates (because there are three vertices), and the sum of the coordinates must equal 1. If a point x is inside a simplex, then all three coordinates will be strictly positive. If two coordinates are zero (so the third =1), then the point x is on a vertex. If one coordinates are zero, the point x is on an edge. In this method, you must specify the vertex coordinates x1->x3. Returns 0 if triangle is degenerate. V.ProjectTo2D([float, float, float], [float, float, float], [float, float, float], [float, float], [float, float], [float, float]) -> int C++: static int ProjectTo2D(double x1[3], double x2[3], double x3[3], double v1[2], double v2[2], double v3[2]) Project triangle defined in 3D to 2D coordinates. Returns 0 if degenerate triangle; non-zero value otherwise. Input points are x1->x3; output 2D points are v1->v3. V.ComputeNormal(vtkPoints, int, [int, ...], [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]) V.ComputeNormal([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]) Compute the triangle normal from a points list, and a list of point ids that index into the points list. V.ComputeNormalDirection([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3], double n[3]) Compute the (unnormalized) triangle normal direction from three points. V.TrianglesIntersect([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float]) -> int C++: static int TrianglesIntersect(double p1[3], double q1[3], double r1[3], double p2[3], double q2[3], double r2[3]) Determine whether or not triangle (p1,q1,r1) intersects triangle (p2,q2,r2). This method is adapted from Olivier Devillers, Philippe Guigue. Faster Triangle-Triangle Intersection Tests. RR-4488, IN-RIA. 2002. . V.PointInTriangle([float, float, float], [float, float, float], [float, float, float], [float, float, float], float) -> int C++: static int PointInTriangle(double x[3], double x1[3], double x2[3], double x3[3], double tol2) Given a point x, determine whether it is inside (within the tolerance squared, tol2) the triangle defined by the three coordinate values p1, p2, p3. Method is via comparing dot products. (Note: in current implementation the tolerance only works in the neighborhood of the three vertices of the triangle. V.ComputeQuadric([float, float, float], [float, float, float], [float, float, float], [[float, float, float, float], [float, float, float, float], [float, float, float, float], [float, float, float, float]]) C++: static void ComputeQuadric(double x1[3], double x2[3], double x3[3], double quadric[4][4]) V.ComputeQuadric([float, float, float], [float, float, float], [float, float, float], vtkQuadric) C++: static void ComputeQuadric(double x1[3], double x2[3], double x3[3], vtkQuadric *quadric) Calculate the error quadric for this triangle. Return the quadric as a 4x4 matrix or a vtkQuadric. (from Peter Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of Large Polygonal Models") UH-HH=HHH]HHD!!!!UUUUUU?UUUUUU?@@?GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D Xl  HUFBB B(A0A8Gn 8A0A(B BBBC HFBB B(A0A8Gn 8A0A(B BBBC HTFBB B(A0A8Gn 8A0A(B BBBC HFBB B(A0A8G} 8A0A(B BBBD HFBB B(A0A8G} 8A0A(B BBBD H8FBB B(A0A8Gt 8A0A(B BBBE zPLRx L$FBB B(A0A8I 8D0A(B BBBG t!HFBB B(A0A8G} 8A0A(B BBBD HdFBB B(A0A8Gn 8A0A(B BBBC HFBB B(A0A8Gn 8A0A(B BBBC 0^FBA Gn  ABBE DHXFBB B(A0A8Gh 8A0A(B BBBI EDPa AE 9dT9dTOEY B j(EAD`n AAF DED@ AG hED@ AG ED@ AG ED@ AG ED@ AG H!FBB B(A0A8Gn 8A0A(B BBBC (DFAD` ABG pEDP AG 0FBA D  ABBG 0nFAA D`  AABH gFD@ EE H FBB B(A0A8Gn 8A0A(B BBBC HlFBB B(A0A8G 8A0A(B BBBI HiFBB B(A0A8G 8A0A(B BBBG MFF0 OFDD n ABA DDBT:Em@pFBB A(A0D 0A(A BBBI l$FBB B(A0A8G 8A0A(B BBBD GUArJTAt$ FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ED@ AG P@FBB B(A0D8Gq 8D0A(B BBBJ F88 tFBB A(Dp (A BBBG LFBB B(A0A8G 8D0A(B BBBE D'@hDEC P G e...R. < P 6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@ FBB A(A0D 0A(A BBBI $ EDP AK    UM p~ p  I y ! P  P": 0&f 0)^ + p- P.9)+`S .9+ `" . / 0, 1\ p2 `3 P4! 8  96 :i <n >g p? @D 0GiR)j+$%%: @J L$ 0QC Sv U!F Zt [,g'a ``D< g6 j  l )+@ -E -J O T Y )^ 9c Lh Zn dt pz        ! !     ) 5 . B J W ^ - r v     ! ' - 3 9 "? /E ;K OQ [W g] qc i o u { $ " " " " "+ "T k "      / @ l     # B q    !/  !@` %Pc""O""OIi IM*=J IOcx.Qt 3S| 7Ody_ZL23PyvtkTriangle_StaticNewv_ZL28PyvtkTriangle_TriangleCenterP7_objectS0__ZL31PyvtkTriangle_ComputeQuadric_s2P7_objectS0__ZL31PyvtkTriangle_ComputeQuadric_s1P7_objectS0__ZZL31PyvtkTriangle_ComputeQuadric_s1P7_objectS0_E5size3_ZL29PyvtkTriangle_PointInTriangleP7_objectS0__ZL32PyvtkTriangle_TrianglesIntersectP7_objectS0__ZL30PyvtkTriangle_ComputeNormal_s2P7_objectS0__ZL30PyvtkTriangle_ComputeNormal_s1P7_objectS0__ZL30PyvtkTriangle_ComputeNormal_s1P7_objectS0_.cold_ZL25PyvtkTriangle_ProjectTo2DP7_objectS0__ZL31PyvtkTriangle_BarycentricCoordsP7_objectS0__ZL26PyvtkTriangle_CircumcircleP7_objectS0__ZL33PyvtkTriangle_InterpolationDerivsP7_objectS0__ZL36PyvtkTriangle_InterpolationFunctionsP7_objectS0__ZL26PyvtkTriangle_SafeDownCastP7_objectS0__ZL28PyvtkTriangle_ComputeQuadricP7_objectS0__ZL36PyvtkTriangle_ComputeQuadric_Methods_ZL27PyvtkTriangle_ComputeNormalP7_objectS0__ZL35PyvtkTriangle_ComputeNormal_Methods_ZL22PyvtkTriangle_IsTypeOfP7_objectS0__ZL25PyvtkTriangle_ComputeAreaP7_objectS0__ZL30PyvtkTriangle_GetNumberOfFacesP7_objectS0__ZL30PyvtkTriangle_GetNumberOfEdgesP7_objectS0__ZL30PyvtkTriangle_GetCellDimensionP7_objectS0__ZL25PyvtkTriangle_GetCellTypeP7_objectS0__ZL26PyvtkTriangle_TriangleAreaP7_objectS0__ZL21PyvtkTriangle_GetFaceP7_objectS0__ZL26PyvtkTriangle_GetEdgeArrayP7_objectS0__ZL33PyvtkTriangle_GetParametricCenterP7_objectS0__ZL17PyvtkTriangle_IsAP7_objectS0__ZL25PyvtkTriangle_NewInstanceP7_objectS0__ZL36PyvtkTriangle_ComputeNormalDirectionP7_objectS0__ZL31PyvtkTriangle_InterpolateDerivsP7_objectS0__ZL34PyvtkTriangle_InterpolateFunctionsP7_objectS0__ZL18PyvtkTriangle_Type_ZL21PyvtkTriangle_Methods_GLOBAL__sub_I_vtkTrianglePython.cxx_ZStL8__ioinit_ZL35PyvtkTriangle_GetParametricDistanceP7_objectS0__ZL31PyvtkTriangle_IntersectWithLineP7_objectS0__ZL18PyvtkTriangle_ClipP7_objectS0__ZL33PyvtkTriangle_GetParametricCoordsP7_objectS0__ZL25PyvtkTriangle_DerivativesP7_objectS0__ZL25PyvtkTriangle_DerivativesP7_objectS0_.cold_ZL25PyvtkTriangle_TriangulateP7_objectS0__ZL30PyvtkTriangle_EvaluateLocationP7_objectS0__ZL30PyvtkTriangle_EvaluateLocationP7_objectS0_.cold_ZL30PyvtkTriangle_EvaluatePositionP7_objectS0__ZL30PyvtkTriangle_EvaluatePositionP7_objectS0_.cold_ZL21PyvtkTriangle_ContourP7_objectS0__ZL26PyvtkTriangle_CellBoundaryP7_objectS0__ZL21PyvtkTriangle_GetEdgeP7_objectS0_.LC4.LC3.LC2.LC5.LC6.LC7.LC8.LC9.LC10.LC12.LC13.LC14.LC15.LC16.LC17.LC18.LC19.LC22.LC20.LC21.LC23.LC24.LC25.LC26.LC27.LC28.LC29.LC30.LC31.LC32.LC33.LC0.LC34.LC35.LC36.LC37.LC38.LC40.LC41.LC42.LC43.LC44.LC45.LC46.LC47.LC48.LC49.LC51.LC52.LC53.LC55.LC57.LC58.LC59.LC39_ZN11vtkTriangle11GetCellTypeEv_ZN11vtkTriangle16GetCellDimensionEv_ZN11vtkTriangle16GetNumberOfEdgesEv_ZN11vtkTriangle16GetNumberOfFacesEv_ZN11vtkTriangle7GetFaceEi_ZN11vtkTriangle19GetParametricCenterEPd_ZN11vtkTriangle3NewEv_ZNK11vtkTriangle19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs8GetArrayEPdiPyErr_Occurred_GLOBAL_OFFSET_TABLE__Py_NoneStruct_ZN13vtkPythonArgs8SetArrayEiPKdi__stack_chk_fail_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN11vtkTriangle14ComputeQuadricEPdS0_S0_P10vtkQuadric_ZN13vtkPythonArgs9GetNArrayEPdiPKimemcpy_ZN11vtkTriangle14ComputeQuadricEPdS0_S0_PA4_d_ZN13vtkPythonArgs9SetNArrayEiPKdiPKi_ZN13vtkPythonArgs8GetValueERd_ZN11vtkTriangle15PointInTriangleEPdS0_S0_S0_dPyLong_FromLong_ZN11vtkTriangle18TrianglesIntersectEPdS0_S0_S0_S0_S0_sqrtDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIxEC1El_ZdaPv_ZN13vtkPythonArgs8GetValueERi_ZN13vtkPythonArgs8GetArrayEPxi_ZN11vtkTriangle13ComputeNormalEP9vtkPointsiPxPd_ZN13vtkPythonArgs8SetArrayEiPKxi_Unwind_Resume_ZN11vtkTriangle11ProjectTo2DEPdS0_S0_S0_S0_S0__ZN11vtkTriangle17BarycentricCoordsEPdS0_S0_S0_S0__ZN11vtkTriangle12CircumcircleEPdS0_S0_S0_PyFloat_FromDouble_ZN11vtkTriangle17InterpolateDerivsEPdS0__ZN11vtkTriangle19InterpolationDerivsEPdS0__ZN11vtkTriangle20InterpolateFunctionsEPdS0__ZN11vtkTriangle22InterpolationFunctionsEPdS0__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN11vtkTriangle3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPc_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN11vtkTriangle11ComputeAreaEv_ZN11vtkTriangle12GetEdgeArrayEi_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromStringPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkTriangle_ClassNewPyVTKClass_AddPyvtkCell_ClassNewPyType_ReadyPyVTKAddFile_vtkTrianglePyDict_SetItemString_Py_Dealloc_ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__dso_handle__cxa_atexit_ZN11vtkTriangle21GetParametricDistanceEPd_ZN11vtkTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs11SetArgValueEii_ZN13vtkPythonArgs8GetValueERx_ZN11vtkTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN11vtkTriangle19GetParametricCoordsEv_ZN13vtkPythonArgs5ArrayIdEC1El_ZN11vtkTriangle11DerivativesEiPdS0_iS0__ZN11vtkTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkTriangle16EvaluateLocationERiPdS1_S1__ZN11vtkTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN11vtkTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN11vtkTriangle12CellBoundaryEiPdP9vtkIdList_ZN11vtkTriangle7GetEdgeEiPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del;MoLK*mDaN2NbOj* 18V`N2Neu$ 5   Q _ o *}         K P    4 I  EV`{+Qn4Yv$.LVt~RA]yHX*#AKi'R:xS[*6@{T (Dd6!L!V!q!{!!!!!!! ""3"="{"U""#1#Q#q#1$J%]%g%%%%%%%%%&%&[&V&&& ''''o((((((((()#)V)W)))?*+++*A+\+i++++X+6,O,,, -*!-8-A-[-b--Y--Z- .[.'.3.?.f.Jw.N~..J.R..\*/]/m/[u//]////^////_>0a0q0{0000`111G1T1m1*z11a12*272R2*_22b233'3B3*O33c33 4424*?4{4d445.566e6667;7q777/88f8!9;9\9*c9p999g:A:[:k:s::h:::*::i>;i;;;j;<&<*a<x<<<k=A=[=~=*=[==]====^===">lo>>>*>>[>>??5?D?c??m?@2@N@n@BB*B:CkCCCCCD/DpDnDE&E?EE*EFF*FFFFG]GoGGH/HH*HII*)I@IQIkIIIII[IJIIIIIIIIJ[JhJpJJKKKKKKK0LqLLLM,MGMlMMMQOOOP3PTPnPxPPPPPPQQ QZQrQQQs RRt%R9RuARSRveRRRwRRRwS>SSS*SSSTx^TTTThTTTT*T3Uy|UUUU#VHVgVVVVWW,WXXY"Y*GYQYqYYYYGZzZZZ{Z [S[C[T[a[[[[|\1\j\\\\]<]]]]]|^R_`_{_*_____,`D`N``}` a>aPaaaabJb`bbbbbe eeeeef;fXfwfffgfg~ggg~:h~hhshhthhuh i-iDivWixiiwijjw jzjj*jjjkqkkkkk{kplllllllJmqmmmmmmLk..;JZ<ZZ`cggj<[c  [&]+9^>K*!&-5I870X8@ .7  r(<87@ Hp-X7` vh>x78 l7 )`37  p27 17 07  B(887@ HjX7` hgx7X ``7X  q[7  [ Z7  OU7P  ;S7H  (/87 @ H0QX7P` h+x7X 0)7@ 0G78 @D7( J97( L7  ^(:87p@ H@JX7 ` hx7 5P47 0&7 pP"7 dP7H L.7  (p?87"@ 9HX7#` )h x7& P.7((p p (8 HX  4H\p    pXp <PhP"0&0)H\+p-P..%.H/l01p2`3P4H8t9:<>$p?p@D0GI$IX8t@JL( 0Q S U  !! 7<  Zx [ ? g Y `` a0 9 T g j l.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN11vtkTriangle11GetCellTypeEv.text._ZN11vtkTriangle16GetCellDimensionEv.text._ZN11vtkTriangle16GetNumberOfEdgesEv.text._ZN11vtkTriangle16GetNumberOfFacesEv.text._ZN11vtkTriangle7GetFaceEi.rela.text._ZN11vtkTriangle19GetParametricCenterEPd.rela.text._ZNK11vtkTriangle19NewInstanceInternalEv.rodata.str1.1.rela.text.unlikely.gcc_except_table.rela.text._ZN11vtkTriangle17InterpolateDerivsEPdS0_.rela.text._ZN11vtkTriangle20InterpolateFunctionsEPdS0_.rodata._ZN11vtkTriangle3IsAEPKc.str1.1.rela.text._ZN11vtkTriangle3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rodata.cst16.rodata.cst8.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group-@6-H6-P6-X6-`6-h 6-t 6- 6- 6- 6- 6 m@ ;6 &n,n1n Wn n nnn@62o -@6a2ourp@6rs@6s@62s0sO+@6"O2t*c:^@6%vPq@H6'` @` 6) @( 6+ @)6/0,ܦ  #@ @)`64@07 p 04