ELF>0@@32Ht'SH ooKH[1ff.fHtSHo[1ff.fHtSHo[1ff.fHt'SH ooKH[1ff.fATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(upHHL]A\fH-HT$H|$HIHt Ao$HHAoL$HIpfATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(ueHHL]A\fH-HT$H|$HIHtAo$HHI{@ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$HIHtAo$HHIff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(uiHHL]A\fHT$H|$HIHt Ao$HHAoL$HIwHXdH%(HD$H1HH4$HD$HFHD$D$t2H1HT$HdH+%(uRHXfHt$ Htʿ foD$ foL$0H=HHUH-HPdH%(HD$H1HFH4$Hl$D$HD$t1H1HT$HdH+%(uMHP]Ht$ Ht˿ foD$ foL$0HHHff.HHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$1HT$8dH+%(uJHHfDHt$H|$tп D$H=Hf@ff.UH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$1HT$8dH+%(uEH@]@Ht$H|$tѿ D$HHf@UHHHtH]UHHHtH]UHHHtH]UHHHtH]HHdH%(HD$81HH4$HD$HFHD$D$t2H1HT$8dH+%(uHHHfHt$ HtʿfoD$ H=HUH-H@dH%(HD$81HFH4$Hl$D$HD$t1H1HT$8dH+%(uCH@]Ht$ Ht˿foD$ HHDHHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$1HT$8dH+%(uFHHfDHt$ H|$tпD$ H=HUH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$1HT$8dH+%(uAH@]@Ht$ H|$tѿD$ HH@HHdH%(HD$81HH4$HD$HFHD$D$t#H111HT$8dH+%(u4HH)D$ I1MuHt$ H=ff.HXdH%(HD$H1HH4$HD$HFHD$D$t#H111HT$HdH+%(u=HX~)D$ f)D$0I1MuHt$ H=ATIHPdH%(HD$H1HtHHmID$ǃ-txt,H51HT$HdH+%(OHPA\ fH@HD$HdH+%(HPH=A\f.HLd$ Ld$ HHD$(HLD$8HD$0[Ht$LFHt$L1Ht$L f(D$f( $H=H@@HD$HdH+%(u=HPLH=1A\fHH5H81ff.ATIH@dH%(HD$81HtHHmID$ǃ5tpt,H51HT$8dH+%(OH@A\fHHD$8dH+%(H@H=A\fDHLd$Ld$HHD$HLD$(HD$ cHt$LNHt$L9Ht$ L$D$ L$H=T$H$HD$8dH+%(u5H@LH=1A\HH5H81ff.ATIUHXdH%(HD$H1HtHHlID$ǃ,twt3H51HT$HdH+%(NHX]A\f fH@HD$HdH+%(HXH=]A\Ld$ HLd$ HH-LD$8Hl$(HD$0\Ht$LGHt$L2Ht$L f(D$f( $HH@HD$HdH+%(u=HXLH=1]A\HH5H81ff.ATIUHHdH%(HD$81HtHH|ID$ǃ<twt3H51HT$8dH+%(^HH]A\ffHHD$8dH+%(%HHH=]A\DLd$HLd$HH-LD$(Hl$HD$ \Ht$LGHt$L2Ht$ LD$ L$HT$H$HD$8dH+%(u=HHLH=1]A\HH5H81ff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u1H0[fDHHuӐHufDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u2H0[fDHHuӐHuCDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u2H0[fDHHuӐHuCDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u2H0[fDHHuӐHuCDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u6H0[fDHHuӐHufZC SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u5H0[fDHHuӐHufZfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u6H0[fDHHuӐHufZCSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u6H0[fDHHuӐHufZCH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uGH8HHuҐ~f@HuHHH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(u?H8HHuҐHuHHfSH0fnFdH%(HD$(1HH4$HD$HGfn؉D$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(uhH0[fDHHuӐfYX(UX(XXf~HufnfZff.@SH0fnFdH%(HD$(1HH4$HD$HGfn؉D$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(udH0[fDHHuӐfffYXfXf@fYXfXfH~HufHnH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(ufH8HHuҐ~@ZfWfZ@fZ@ fWZ@ HuHHfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uWH8HHuҐf@fW@@fW@HuHHSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$H|$tD$CHuHHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$H|$tD$CHuHHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$H|$tD$CHuHHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$ H|$tD$ CHuHHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uTH@[f.HHuϐHt$ H|$tD$ HuHHSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uTH@[f.HHuϐHt$H|$tD$HuHHSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$ H|$tD$ C HuHHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$ H|$tD$ CHuHHfDSH0fnFdH%(HD$(1HH4$HD$HGfnD$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(uwH0[fDHHuӐfY((XUX(XX.w-Qf~HufnfZyf~DSH0fnFdH%(HD$(1HH4$HD$HGfnD$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(uuH0[fDHHuӐfffYf(fXXf@fYXfXf.w'QfH~HufHn{fH~fDHxfnFdH%(HD$h1HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H111HT$hdH+%(uWHxf.HHuАfo)D$ f)D$0I1MuHt$ H=HXfnFdH%(HD$H1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$HdH+%(uwHXHHuҐo)T$ oX)\$0fD$(fWD$(D$8fWD$8HuHt$ H=yHxfnFdH%(HD$h1HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$hdH+%(Hx@HHuҐoo@f)L$@fY)D$PfYf(fXXXfXf.z?u=fol$@fot$P)l$ )t$0HjHt$ H=VfL$HfW fL$HL$XfW L$Xf(L$@f^)L$@f(L$Pf^)L$Puff.fHfnFdH%(H$1HHt$0HD$8HGfnD$HfbfD$@uGHGHtL$D9L$@tDH|$0111H$dH+%(+HĨDHHuːo(f)l$pohT$x)$f($$Yf(YXf(YXf.QH|$(Ht$ d$L$T$$$fl$ \$(T$f.L$d$zMuKYf(YYf)|$Pf)L$`HHt$PH=D^^^d$L$$d$L$$!HfnFdH%(H$1HHt$ HD$(HGfnD$8fbfD$0uGHGHtL$49L$0tDH|$ 111H$dH+%(HĘDHHuːffoho8f()l$pf(T$pfY)|$`f(fXXf(fYXfXf.wzQf.zSuQYD$`fol$p)l$PD$`fo|$`)|$@H3Ht$@H=ff^f^)\$`)T$p)T$)$f(T$f($fhHHfnFdH%(HD$81HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$8dH+%(HH@HHuҐ~fffZ@ZP ZHfWfWfWZZZ()L$ HsHt$ H=_HxfnFdH%(HD$h1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$hdH+%(Hx@HHuҐooX)T$@)\$PfD$HfWD$HD$XfWfod$@D$Xfol$P)d$ )l$0HsHt$ H=_HHfnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H111HT$8dH+%(uNHHf.HHuА)D$ I1MuHt$ H=ff.HhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐHHuՐPHfh ((YYX(YX.QH|$Ht$l$L$T$ D$D$f\$d$T$ .L$l$zGuEY(YY)D$@HHt$@H=@^^^l$L$ T$l$L$ T$$HXfnFdH%(HD$H1HHt$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$111HT$HdH+%()HXÐHHuՐo(f),$($Y((XUX(XX.z4u2(4$)t$0HuHt$0H=ofHD$H$fH H fnHD$ZfW H H H$ZfHnZfWfZfH~fH~H H H HH$HT$H!H f~H H HT$(<$^)<$+HhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐHHuՐo0f)4$($$(Y((XUX(XX.Q.zdubH$fn$YH HHD$fnfnH fn)D$@H=Ht$@H=)^)$$)d$(d$fmfDHHfnFdH%(HD$81HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$8dH+%(HH@HHuҐ~fffZ@ZP ZHfWfWfWZZZ()L$ HsHt$ H=_ATUSHpfnFdH%(HD$h1HH4$HD$HGfnȉD$fbfD$uJH_HtD$+D$tDH1HT$hdH+%(Hp[]A\HHuϐLd$ HLHtfoT$ fo\$0HC)T$@)\$PI9f#fk)d$ )l$0D$ f.D$@zPuND$(f.D$Hz@u>D$0f.D$Pz0u.D$8f.D$Xz uH.HH HuعL1Hfffs)D$ )t$0jATUSH@fnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$uJH_HtD$+D$tDH1HT$8dH+%(H@[]A\HHuϐLd$ HLHtHsLHD$ HT$(H)H#)d$ fn.T$ zSuQH fn.D$$zBu@fn.\$(z5u3H fn.D$,z$u"HBHH4@HuԹL1Hf+)l$ uff.AVATUSHfnFdH%(HD$x1HHt$@HD$HHGfnD$XfbfD$PuTH_Ht!D$P+D$TtNH|$@1HT$xdH+%(HĈ[]A\A^fDHHuǐLd$`Hl$@LHtfS|$`[L$hfI~f(f(YfL$ L$pf(YL$( Xf(YXff.Qf.f(f ff(fT$)T$`)$\$p\$0f($fInD$8f.zYuWl$f.l$ zIuG\$0f.\$(z9u7HD$8XDf^^tHuL1H\$0L$)$\$0L$ff($ff.AUATUSHhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uOH_Ht!D$0+D$4tQH|$ 1HT$XdH+%(}Hh[]A\A]@HHufLd$HLl$ LLtS[c |$L((l$H Y|$ |$PY|$X(YXf.Q. (((T$HT$\$L\$d$Pd$T$fnD$.z_u]\$.\$ zPuNd$.d$zAu?HD$XZ^^^jHuL1Ld$\$T$L$d$f\$T$L$AUATUSHfnFdH%(H$1HH4$HD$HGfnD$fbfD$uRH_HtD$+D$tLH1H$dH+%()H[]A\A]HHuǐLd$ HH LHtD-D-E~IcH|$pLHcKfCf(f(YfD(f(YDYYfD(DXfD(EXEXfD.z&fD(f(fD(DYA\YYDYYYA^fE(fE(D\AXDXA\YXYDYYDYYXYXfAfD(XD\fYDYAYffEX)t$ Ic1H|$p)d$0)\$@D)L$PD$`E(fDHH9tAf.ztHt;HHHfEffA(fA(fA(qLL1HAUATUSHfnFdH%(HD$x1HH4$HD$HGfnD$fbfD$uUH_HtD$+D$tOH1HT$xdH+%(HĈ[]A\A]fHHuĐLd$ HH LHtAՅHL$PHcLHHKDKDS H(A(YA((AYAYYD(DXD(DXEXD.-zhufD$@f)D$ )D$0DD1 HH9tA.ztHvHHH(D((D(A\HL$PA^EYEYYAYAYEYE(E(D\AXDXA\YXYDYYYDYYDA(\AXXXYYAYA)d$ X)\$0D$@E DDKKDS A((AYA((YAYYD(DXD(DXEXD.-fD$@)D$ )D$0LL1HlfH8fnFdH%(HD$(1HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(H8@HHuҐfffYf(fXXf@fYXfXf.zuHuHHfHfW fHHfW Hff^fHf^HHt3ff.fH8fnFdH%(HD$(1HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(H8@HHuҐfY((XUX(XX.zuHuHH@~HZfW fZHfZH fW ZH ^Ht3ff.fHXfnFdH%(HD$H1HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$HdH+%(HX@HHuҐo(f)l$ f(L$ o@fY)D$0fYf(fXXXfXf.z)u'HzHt$ H=ffL$(fW fL$(L$8fW L$8f(L$ f^)L$ f(L$0f^)L$0H fHXfnFdH%(HD$H1HHt$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$111HT$HdH+%()HXÐHHuՐo(f),$($Y((XUX(XX.z4u2(4$)t$0HuHt$0H=ofHD$H$fH H fnHD$ZfW H H H$ZfHnZfWfZfH~fH~H H H HH$HT$H!H f~H H HT$(<$^)<$+SH@fnFdH%(HD$81HHt$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$111HT$8dH+%(H@[HHuff(Y((XUX(XX.wNQ.z1u/$$HlZ`f(^)$($ffSHPfnFdH%(HD$H1HHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 111HT$HdH+%(HP[HHuffffSf(fYf(fXXf(fYXfXf.wOQf.z'u%$$HbZf(ff^f^S)T$)$f(T$f($fSH@fnFdH%(HD$81HHt$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$111HT$8dH+%(H@[HHuff(Y((XUX(XX.wKQ.z1u/YHfHHX^)$($fff.SHPfnFdH%(HD$H1HHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 111HT$HdH+%(HP[HHuffffSf(fYf(fXXf(fYXfXf.w[Qf.z7u5YH\HHNff^f^S)T$)$f(T$f($fHxfnFdH%(HD$h1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$hdH+%(HxÐHHuՐo8f)|$@f(\$@ohf()l$Pf(T$PfYf(fXXf(fYXfXf.w^Qf.z)u'HeHt$@H=Qff^f^)\$@)T$PH()T$)$f(T$f($fff.HxfnFdH%(HD$h1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$hdH+%(HxÐHHuՐo8f)|$@f(\$@ohf()l$Pf(T$PfYf(fXXf(fYXfXf.whQf.zAu?YD$@D$@HQHt$@H==ff^f^)\$@)T$P)T$)$f(T$f($fzSH`fnFdH%(HD$X1HHt$0HD$8HGfnD$HfbfD$@uDH_HtD$D9D$@tIH|$0111HT$XdH+%( H`[HHufSKfcf(f(YYXf(YXf.QH|$(Ht$ d$L$T$$$fl$ \$(T$f.L$d$zDuBYf(YYffKHHHD^^^d$L$$d$L$$*fSHPfnFdH%(HD$H1HHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 111HT$HdH+%(HP[HHufSKfk ((YYX(YX.QH|$Ht$l$L$T$ D$D$f\$d$T$ .L$l$z?u=Y(YYH HH@^^^l$L$ T$l$L$ T$,ff.@HhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐHHuՐof((Y((XUX(XX.wZQ.z-u+)T$@HuHt$@H=lfD^()T$@HG)T$)$foT$(,$fff.HfnFdH%(H$1HHt$ HD$(HGfnD$8fbfD$0uGHGHtL$49L$0tDH|$ 111H$dH+%(HĘDHHuːffoho8f()l$pf(T$pfY)|$`f(fXXf(fYXfXf.wjQf.zCuAfo|$`fol$p)|$@)l$PHGHt$@H=3ff^f^)\$`)T$p)T$)$f(T$f($fxHhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐHHuՐo0f)4$($$(Y((XUX(XX.Q.zdubH$fn$YH HHD$fnfnH fn)D$@H=Ht$@H=)^)$$)d$(d$fmfDHfnFdH%(HD$x1HHt$0HD$8HGfnD$HfbfD$@uBHGHtL$D9L$@tGH|$0111HT$xdH+%()HĈHHufo8)|$PohT$Xf)l$`L$`f(d$hYf(YXf(YXf.QH|$(Ht$ d$L$T$$$fl$ \$(T$f.L$d$zNuLYf(YYf)D$Pf)L$`HHt$PH=fD^^^d$L$$d$L$$ fHhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐHHuՐPHfh ((YYX(YX.QH|$Ht$l$L$T$ D$D$f\$d$T$ .L$l$zGuEY(YY)D$@HHt$@H=@^^^l$L$ T$l$L$ T$$HhfnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐHHuՐof((Y((XUX(XX.wZQ.z-u+)T$@HuHt$@H=lfD^()T$@HG)T$)$foT$(,$fff.ATUSHdH%(H$HFtHHt$ HD$(HGD$0D$4D$8nH_Hf1H$dH+%(HĐ[]A\HHt$ HD$(HGD$0D$4D$8H_HtLd$@Hl$ LHufoT$@fo\$PHD$H)T$`)\$pH9f(d$@#f(l$PD$@kf.D$`D$hf.D$H|vD$Pf.D$pd^D$Xf.D$xLFHHHH51HHXHD$0+D$4t H|$ 1gDHl$ HHHHt$H3Ht$HHt$H f(D$f( $C H@HHXHD$0+D$4H|$ HL1HD$@D$HD$PD$XD$`ATUSH`dH%(HD$XHFt}HHt$ HD$(HGD$0D$4D$8lH_H1HT$XdH+%(H`[]A\fHHt$ HD$(HGD$0D$4D$8H_HtLd$@Hl$ LHufo\$@HT$DHH))$H($$#$fn.D$@H$H fn.D$DD$fn.D$HHD$H fn.D$LicHHHDH51HHXHD$0+D$4t H|$ 1gDHl$ Ht$HFHt$H1Ht$HHt$HD$L$T$D$HHHXHD$0+D$4H|$ HL1HxD$@D$DCD$HCD$LC ff.ATUSHpdH%(HD$hHFt=H51HT$hdH+%(Hp[]A\HHt$0HD$8HGD$@D$DD$HH_Hs1HHt$0HD$8HGD$@D$DD$HH_HtHl$0Ht$ HtHt$$HtHt$(HxHt$,Hc\$$T$(d$,((YYX(YX. zfH|$Ht$L$ ZD$ Yd$T$$L$ $fT$d$Zl$f^ZD$^Y^YY1@Hl$0Ht$,HsLd$XHLV\$\L$Xd$`((YYX(YX.zfH|$Ht$d$ ZD$,Y\$L$$L$\$fEd$ $DZD$f((ZD$^(^AY^AYAY...HRHHDH/HXH"D$@+D$D]H|$01HHXHD$@+D$DHHtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuHHff.@HxfnFdH%(HD$h1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$hdH+%(umHxHHuҐooXH|$@)T$@)\$Pfod$@fol$P)d$ )l$0HuHt$ H=ff.AVAUATUHhfnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$  LgH$HD$MD$ +D$$tgH|$E1H<$Ht H/H|$Ht H/HD$XdH+%(HhL]A\A]A^fDHl$L5HLHIHtHT$LHHHoHl$0LLE1HHNHLI;HHE1F5fDfAVAUATUHfnFdH%(HD$x1HHt$HD$HGfnȉD$(fbfD$ LgH$HD$MD$ +D$$tdH|$E1H<$Ht H/H|$Ht H/HD$xdH+%(HĈL]A\A]A^Lt$H-HHLIHtHT$HLHHrLH|$PLE1foT$Pfo\$`)T$0)\$@H>Ht$0HI)fDHHE11 fDATUHxfnFdH%(HD$h1HH4$HD$HGfnȉD$fbfD$uKHoHtD$+D$tEH1HT$hdH+%(ucHx]A\fHHuΐLd$ HH LtLHHuHHfUH@fnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$8dH+%(uMH@]fDHHuӐoHl$ H)T$ HuHH=f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HHtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuHHff.@UH@fnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$8dH+%(uMH@]fDHHuӐoHl$ H)T$ HuHH=f.AVAUATUHXfnFdH%(HD$H1HHt$HD$HGfnЉD$(fbfD$ LgH$HD$MD$ +D$$tgH|$E1H<$Ht H/H|$Ht H/HD$HdH+%(HXL]A\A]A^fDLt$L-HLLHHtHT$LLHHoLHE1fD$0fL$8HJHt$0LI5DHHE1>-fD AVAUATUHhfnFdH%(HD$X1HHt$ HD$(HGfnЉD$8fbfD$0HD$LgHD$M D$0+D$4tfH|$ E1H|$Ht H/H|$Ht H/HD$XdH+%(HhL]A\A]A^@Lt$ L-HT$LLHHtHT$LLHHnLHE1)$fL$($)\$@HBHt$@LI-@HHE18'fDfATUHXfnFdH%(HD$H1HH4$HD$HGfnȉD$fbfD$uKHoHtD$+D$tEH1HT$HdH+%(ucHX]A\fHHuΐLd$ HH LtLHHuHHvtkQuaternionvtkQuaternion_IdEvtkQuaternion_IfEvtkQuaternionfvtkQuaterniondIdentityGetWGetYGetZGetXToIdentitySquaredNormConjugateSetYSetZSetXSetWNormConjugatedInverseUnitExpNormalizedWithAngleInDegreesGetGetRotationAngleAndAxisToMatrix3x3InvertNormalizeNormalizeWithAngleInDegreesNormalizedToUnitExpSetSetRotationAngleAndAxisvaluesSlerpUnitLogToUnitLogInnerPointFromMatrix3x3-@d-@P *d@W vtkQuaterniond-@f-@P *f@W vtkQuaternionf@W vtkQuaternion_IfE@W vtkQuaternion_IdEthis function takes no keyword argumentsvtkQuaterniond - Double quaternion type. Superclass: vtkTuple[T,4] This class is uses vtkQuaternion with double type data. For further description, seethe templated class vtkQuaternion. @sa vtkQuaternionf vtkQuaternion Provided Types: vtkQuaternion[float64] => vtkQuaternion vtkQuaternion[float32] => vtkQuaternion vtkCommonMathPython.vtkQuaternionvtkQuaternion- templated base type for storage of quaternions. Superclass: vtkTuple[float64,4] This class is a templated data type for storing and manipulating quaternions. The quaternions have the form [w, x, y, z]. Given a rotation of angle theta and axis v, the corresponding quaternion is [w, x, y, z] = [cos(theta/2), v*sin(theta/2)] This class implements the Spherical Linear interpolation (SLERP) and the Spherical Spline Quaternion interpolation (SQUAD). It is advised to use the vtkQuaternionInterpolator when dealing with multiple quaternions and or interpolations. @sa vtkQuaternionInterpolator vtkQuaternion() explicit vtkQuaternion(const double &scalar) explicit vtkQuaternion(const double *init) vtkQuaternion(const double &w, const double &x, const double &y, const double &z) vtkQuaternion(const &vtkQuaternion) vtkQuaternion- templated base type for storage of quaternions. Superclass: vtkTuple[float32,4] This class is a templated data type for storing and manipulating quaternions. The quaternions have the form [w, x, y, z]. Given a rotation of angle theta and axis v, the corresponding quaternion is [w, x, y, z] = [cos(theta/2), v*sin(theta/2)] This class implements the Spherical Linear interpolation (SLERP) and the Spherical Spline Quaternion interpolation (SQUAD). It is advised to use the vtkQuaternionInterpolator when dealing with multiple quaternions and or interpolations. @sa vtkQuaternionInterpolator vtkQuaternion() explicit vtkQuaternion(const float &scalar) explicit vtkQuaternion(const float *init) vtkQuaternion(const float &w, const float &x, const float &y, const float &z) vtkQuaternion(const &vtkQuaternion) vtkQuaternionf - no description provided. Superclass: vtkQuaternion[float32] vtkQuaternionf() explicit vtkQuaternionf(float w, float x, float y, float z) explicit vtkQuaternionf(float scalar) explicit vtkQuaternionf(const float *init) vtkQuaternionf(const &vtkQuaternionf) vtkQuaterniond - no description provided. Superclass: vtkQuaternion[float64] vtkQuaterniond() explicit vtkQuaterniond(double w, double x, double y, double z) explicit vtkQuaterniond(double scalar) explicit vtkQuaterniond(const double *init) vtkQuaterniond(const &vtkQuaterniond) vtkCommonMathPython.vtkQuaterniondV.Identity() -> vtkQuaterniond C++: vtkQuaterniond Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalized() -> vtkQuaterniond C++: vtkQuaterniond Normalized() Return the normalized form of this quaternion. V.Conjugated() -> vtkQuaterniond C++: vtkQuaterniond Conjugated() Return the conjugate form of this quaternion. V.Inverse() -> vtkQuaterniond C++: vtkQuaterniond Inverse() Return the inverted form of this quaternion. V.UnitLog() -> vtkQuaterniond C++: vtkQuaterniond UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitExp() -> vtkQuaterniond C++: vtkQuaterniond UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizedWithAngleInDegrees() -> vtkQuaterniond C++: vtkQuaterniond NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Slerp(float, vtkQuaterniond) -> vtkQuaterniond C++: vtkQuaterniond Slerp(double t, const vtkQuaterniond &q) V.InnerPoint(vtkQuaterniond, vtkQuaterniond) -> vtkQuaterniond C++: vtkQuaterniond InnerPoint(const vtkQuaterniond &q1, const vtkQuaterniond &q2) vtkCommonMathPython.vtkQuaternionfV.Identity() -> vtkQuaternionf C++: vtkQuaternionf Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalized() -> vtkQuaternionf C++: vtkQuaternionf Normalized() Return the normalized form of this quaternion. V.Conjugated() -> vtkQuaternionf C++: vtkQuaternionf Conjugated() Return the conjugate form of this quaternion. V.Inverse() -> vtkQuaternionf C++: vtkQuaternionf Inverse() Return the inverted form of this quaternion. V.UnitLog() -> vtkQuaternionf C++: vtkQuaternionf UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitExp() -> vtkQuaternionf C++: vtkQuaternionf UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizedWithAngleInDegrees() -> vtkQuaternionf C++: vtkQuaternionf NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Slerp(float, vtkQuaternionf) -> vtkQuaternionf C++: vtkQuaternionf Slerp(float t, const vtkQuaternionf &q) V.InnerPoint(vtkQuaternionf, vtkQuaternionf) -> vtkQuaternionf C++: vtkQuaternionf InnerPoint(const vtkQuaternionf &q1, const vtkQuaternionf &q2) vtkCommonMathPython.vtkQuaternion_IfEV.SquaredNorm() -> float C++: float SquaredNorm() Get the squared norm of the quaternion. V.Norm() -> float C++: float Norm() Get the norm of the quaternion, i.e. its length. V.ToIdentity() C++: void ToIdentity() Set the quaternion to identity in place. V.Identity() -> vtkQuaternion_IfE C++: static vtkQuaternion Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalize() -> float C++: float Normalize() Normalize the quaternion in place. Return the norm of the quaternion. V.Normalized() -> vtkQuaternion_IfE C++: vtkQuaternion Normalized() Return the normalized form of this quaternion. V.Conjugate() C++: void Conjugate() Conjugate the quaternion in place. V.Conjugated() -> vtkQuaternion_IfE C++: vtkQuaternion Conjugated() Return the conjugate form of this quaternion. V.Invert() C++: void Invert() Invert the quaternion in place. This is equivalent to conjugate the quaternion and then divide it by its squared norm. V.Inverse() -> vtkQuaternion_IfE C++: vtkQuaternion Inverse() Return the inverted form of this quaternion. V.ToUnitLog() C++: void ToUnitLog() Convert this quaternion to a unit log quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitLog() -> vtkQuaternion_IfE C++: vtkQuaternion UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.ToUnitExp() C++: void ToUnitExp() Convert this quaternion to a unit exponential quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.UnitExp() -> vtkQuaternion_IfE C++: vtkQuaternion UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizeWithAngleInDegrees() C++: void NormalizeWithAngleInDegrees() Normalize a quaternion in place and transform it to so its angle is in degrees and its axis normalized. V.NormalizedWithAngleInDegrees() -> vtkQuaternion_IfE C++: vtkQuaternion NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Set(float, float, float, float) C++: void Set(const float &w, const float &x, const float &y, const float &z) V.Set([float, float, float, float]) C++: void Set(float quat[4]) Set/Get the w, x, y and z components of the quaternion. V.Get([float, float, float, float]) C++: void Get(float quat[4]) Set/Get the w, x, y and z components of the quaternion. V.SetW(float) C++: void SetW(const float &w) Set/Get the w component of the quaternion, i.e. element 0. V.GetW() -> float C++: const float &GetW() Set/Get the w component of the quaternion, i.e. element 0. V.SetX(float) C++: void SetX(const float &x) Set/Get the x component of the quaternion, i.e. element 1. V.GetX() -> float C++: const float &GetX() Set/Get the x component of the quaternion, i.e. element 1. V.SetY(float) C++: void SetY(const float &y) Set/Get the y component of the quaternion, i.e. element 2. V.GetY() -> float C++: const float &GetY() Set/Get the y component of the quaternion, i.e. element 2. V.SetZ(float) C++: void SetZ(const float &z) Set/Get the y component of the quaternion, i.e. element 3. V.GetZ() -> float C++: const float &GetZ() Set/Get the y component of the quaternion, i.e. element 3. V.GetRotationAngleAndAxis([float, float, float]) -> float C++: float GetRotationAngleAndAxis(float axis[3]) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.SetRotationAngleAndAxis(float, [float, float, float]) C++: void SetRotationAngleAndAxis(float angle, float axis[3]) V.SetRotationAngleAndAxis(float, float, float, float) C++: void SetRotationAngleAndAxis(const float &angle, const float &x, const float &y, const float &z) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.ToMatrix3x3([[float, float, float], [float, float, float], [float, float, float]]) C++: void ToMatrix3x3(float A[3][3]) Convert a quaternion to a 3x3 rotation matrix. The quaternion does not have to be normalized beforehand. @sa FromMatrix3x3() V.FromMatrix3x3(((float, float, float), (float, float, float), ( float, float, float))) C++: void FromMatrix3x3(const float A[3][3]) Convert a 3x3 matrix into a quaternion. This will provide the best possible answer even if the matrix is not a pure rotation matrix. The method used is that of B.K.P. Horn. @sa ToMatrix3x3() V.Slerp(float, vtkQuaternion_IfE) -> vtkQuaternion_IfE C++: vtkQuaternion Slerp(float t, const vtkQuaternion &q) Interpolate quaternions using spherical linear interpolation between this quaternion and q1 to produce the output. The parametric coordinate t belongs to [0,1] and lies between (this,q1). @sa vtkQuaternionInterpolator V.InnerPoint(vtkQuaternion_IfE, vtkQuaternion_IfE) -> vtkQuaternion_IfE C++: vtkQuaternion InnerPoint( const vtkQuaternion &q1, const vtkQuaternion &q2) Interpolates between quaternions, using spherical quadrangle interpolation. @sa vtkQuaternionInterpolator vtkCommonMathPython.vtkQuaternion_IdEV.SquaredNorm() -> float C++: double SquaredNorm() Get the squared norm of the quaternion. V.Norm() -> float C++: double Norm() Get the norm of the quaternion, i.e. its length. V.Identity() -> vtkQuaternion_IdE C++: static vtkQuaternion Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalize() -> float C++: double Normalize() Normalize the quaternion in place. Return the norm of the quaternion. V.Normalized() -> vtkQuaternion_IdE C++: vtkQuaternion Normalized() Return the normalized form of this quaternion. V.Conjugated() -> vtkQuaternion_IdE C++: vtkQuaternion Conjugated() Return the conjugate form of this quaternion. V.Inverse() -> vtkQuaternion_IdE C++: vtkQuaternion Inverse() Return the inverted form of this quaternion. V.UnitLog() -> vtkQuaternion_IdE C++: vtkQuaternion UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitExp() -> vtkQuaternion_IdE C++: vtkQuaternion UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizedWithAngleInDegrees() -> vtkQuaternion_IdE C++: vtkQuaternion NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Set(float, float, float, float) C++: void Set(const double &w, const double &x, const double &y, const double &z) V.Set([float, float, float, float]) C++: void Set(double quat[4]) Set/Get the w, x, y and z components of the quaternion. V.Get([float, float, float, float]) C++: void Get(double quat[4]) Set/Get the w, x, y and z components of the quaternion. V.SetW(float) C++: void SetW(const double &w) Set/Get the w component of the quaternion, i.e. element 0. V.GetW() -> float C++: const double &GetW() Set/Get the w component of the quaternion, i.e. element 0. V.SetX(float) C++: void SetX(const double &x) Set/Get the x component of the quaternion, i.e. element 1. V.GetX() -> float C++: const double &GetX() Set/Get the x component of the quaternion, i.e. element 1. V.SetY(float) C++: void SetY(const double &y) Set/Get the y component of the quaternion, i.e. element 2. V.GetY() -> float C++: const double &GetY() Set/Get the y component of the quaternion, i.e. element 2. V.SetZ(float) C++: void SetZ(const double &z) Set/Get the y component of the quaternion, i.e. element 3. V.GetZ() -> float C++: const double &GetZ() Set/Get the y component of the quaternion, i.e. element 3. V.GetRotationAngleAndAxis([float, float, float]) -> float C++: double GetRotationAngleAndAxis(double axis[3]) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.SetRotationAngleAndAxis(float, [float, float, float]) C++: void SetRotationAngleAndAxis(double angle, double axis[3]) V.SetRotationAngleAndAxis(float, float, float, float) C++: void SetRotationAngleAndAxis(const double &angle, const double &x, const double &y, const double &z) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.ToMatrix3x3([[float, float, float], [float, float, float], [float, float, float]]) C++: void ToMatrix3x3(double A[3][3]) Convert a quaternion to a 3x3 rotation matrix. The quaternion does not have to be normalized beforehand. @sa FromMatrix3x3() V.FromMatrix3x3(((float, float, float), (float, float, float), ( float, float, float))) C++: void FromMatrix3x3(const double A[3][3]) Convert a 3x3 matrix into a quaternion. This will provide the best possible answer even if the matrix is not a pure rotation matrix. The method used is that of B.K.P. Horn. @sa ToMatrix3x3() V.Slerp(float, vtkQuaternion_IdE) -> vtkQuaternion_IdE C++: vtkQuaternion Slerp(double t, const vtkQuaternion &q) Interpolate quaternions using spherical linear interpolation between this quaternion and q1 to produce the output. The parametric coordinate t belongs to [0,1] and lies between (this,q1). @sa vtkQuaternionInterpolator V.InnerPoint(vtkQuaternion_IdE, vtkQuaternion_IdE) -> vtkQuaternion_IdE C++: vtkQuaternion InnerPoint( const vtkQuaternion &q1, const vtkQuaternion &q2) Interpolates between quaternions, using spherical quadrangle interpolation. @sa vtkQuaternionInterpolator D(DGDO'AYA(EA(YA(D(YYDYDYXA(Y\A(YDY\(YYXA(YDYAXA\AXA\(\X)L$HD$~D$fHnS(HH0WYo&YVXWYVXW YV Xf/vWW%(TZ\f/vD(\(YYX)$HD$~$H0[fHnD)d$  $ $f(ZL$\f\$ZY\$$(\$$\$(ZL$^l$Y(Z$l$fod$ ($^ATf(ISHHxVdH%(HD$h1YRo*Yor)l$ )t$0XVYRXVYRXff/v*f(f(\$ fWfWfWT$0)\$ )T$0f(fT%f(\%f/vh\f(\$ f#fffCfYfYfYL$0fYfXfXA$AD$HD$hdH+%(HxL[A\f $H $f(fHnL$\\$f(Y\$$f(\$$L$\$D$^Yf($d$$f(^SHH _Wof(f(YYXf(YXff.Qf.zquo f(f(d$T$$$T$HXYd$YYY[SCH [@^^f(^l$T$\$ $l$T$f\$ $;ATISHHfo:dH%(H$1f()|$`ozfY)|$pff(fXXfJf(fYXfXf.fDQfD(f9H$fDff6fA(fE(f(fAYfEfA(fD(fYfDfD(fAYfEYf(f\fXfA(fYfE(f(f\fXf(fffYfD(fDYffD(fDYfnfDYfDYfYffYfE\fEXfYfYfDYfDYEfE(fD\fAXfE(AfDXfA\AfXfA(f\fAX)D$f\f(fAXfA\)$fA\)$f(f\fXfDXD)$f($f(D$H$)$)$f(f($fX$f($fX$fYfYff(f(f(Yff(Yf(fYfXXf. Qf(H|$XHt$P)T$0f)d$ L$$)|$@$f\$Xl$PL$f.fD(f(d$ f(T$0fEfAYfD(fD[YfAYf(f(ffDf(f3f(fD(fD(ffDffAYfD(fDfEYfD(fE\fDXfA(fAfYfA(EfE(fEfAYfE(ffD\fAXAf\f(YAYA $f(AYY\f(AYXYXf(AYY\XXAL$AD$H$dH+%(HL[A\fD$hfWfD$hD$xfWD$xf(D$`f(L$pf^f^@f(|$@^f^f^j)T$ )d$ $f(T$ f(d$ $SHHpN8f(v HL$@HfD(n@VH|$ D\Xf(DV0X^D^fD(E\AXҾdH%(H$h1f(AXHD$`XA\fA)d$`fA(fDD)$ff)d$pf(\)$\fDf(f(\ffWD)$)$\\Xf)$ffHnH$fHnH$)$fl)D$ fHnH$fHnH$fl)D$0fHnH$fHnH$ fl)D$@fHnH$@fHnfl)D$P$ $f$@f$ CH$hdH+%(u Hp[SHH_Wo ((YYX(YXf.Q.znul ((d$T$$$T$XYd$YYY[SC H[@^^(^l$ T$\$ $l$ T$f\$ $@AUfIHATUSHHXo6dH%(HD$H1)4$($Y((XUX(XX.H$Hl$0fDnH fDnHD$A(A(fnH fn؉$$LfH~fH~A(A(HHL$0fI~fI~HT$8(D$0HLl$0Ld$8)$($XD$0fY((U(((YYX(YX.pQH|$,Ht$(L$$\$ T$$$fd$(l$,T$.\$ L$$Y(HYYK[ S)D$0HT$HdH+%(HX[]A\A]HD$H$fH H fnHD$ZfW H H H$ZfHnZfWfZfH~fH~H H H HH$HT$H!H f~H H HT$(<$^)<$D^^^L$ \$$L$ \$$hSHHV DF~HL$0H(Nv H|$D^A\DX(DVXDN(dH%(H$1A(HD$PA\A\XAXEXD(ADAE(A)T$P(E\\(\WA)l$`\\XfHnHD$`)d$pfHnHD$pfl)$)D$fHnH$fHnH$fl)D$ fHnH$fHnH$fl)D$0fHnH$fHnfl)D$@$$$$H$dH+%(u H[UH-HH=HHH]HHHHHHH((((??ппcܥL@?ư>.eB?GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx 3J^H8#JUAT#JUAp3J^H(FAD`{ DBD (FAD`{ DBD (FAK`t DBD (FAK`t DBD <H`^ J XEK`W AH |HPa G EKPZ AE EUEUEUEU, @HP^ J \EKPW AH HPa G EKPZ AE HPW A H`W A 4FG`e BD p IO  NN 0D X l 4FGPe BD l IK  NF @FDDpe ABJ p HBF  MBM @FDD`e ABJ l HBJ  MBM @ED@ AG dED@ AG ED@ AG ED@ AG ED@ AG ED@ AG ED@ AG <ED@ AG `H@ I |H@ I ED@ AG ED@ AG H@ I H@ I EDP AK <EDP AK `EDP AK EDP AK EDP AK EDP AK EDP AK EDP AK 8 ED@ AG \ ED@ AG H} K H` I sH E K F K F  HP E (H E DHP} K `Hp B |H` B zHp B HP E 0FAA D  AABD 0 FAA D`  AABD 88 RFBA A(G (A ABBG 8t YFBA A(D (A ABBE 8 FBA A(G (A ABBD 8 NFBA A(G (A ABBJ ( CH@ E D CH@ E ` nH` E | H` B GEDP AH ]ED` AH DEDP AH  iED` AH ( rH B D H B ` EDp AH ED` AH  RHp B  K F  zHp B  K D  Hp B 4 RHp B 0P 8FAA G  AABD 0 UFAA D  AABJ 0 $FAA DH  AABH 0 ?FAA GQ  AABD  MFF< MFF(X FOD K DBF  MFF MFF` FBB B(A0D8D@ 8A0A(B BBBE L8D0A(B BBB }EJ@ AK 0DmFBA D  ABBB 0xlFBA D  ABBF ,FHG  DBJ 0gFBA D  ABBB 0FBA G  ABBB DEG0 AE hED` AG H@ I H I ,FDJ5 DBA 8FBB A(D (D BBBG 80FBB A(G (D BBBA $lEJ AA (FAD ABJ  EG  AE EDP AG H@ I $EDP AG <HFLA A(G (A ABBA 8FBB A(D (D BBBG 8FBB A(D (D BBBE $EJ AA ((FADp ABJ TdEm    3# @#E p#d 3    # W  p 0 + T }     0& Z  @     0 W&        0R& & &C m p 0   p? 0i    P$ PU @ 0    1  ![  "  #  $  %  & -  ' W  (  )  *s  ,  .E  /u  0  1  2  4!  @6z`  7  8  :  <R  p>YY  @    CN  - FCY @HC In K LG N]= pOD~ Pi 0Rr S1 0U` W XR 0Z [z. @][ 0_ `R Pb8 eU h$D m?$& $@& $&@@8$S&@q tm @vl wg y zD {s `| `}  Ѐ- h Ё   ` K Ї~   d $&((((( ((  ! & 2+ A0 P5):? YE ^K cQ hW m] xc i( o(0u {        )*       4 ? I M)0 e  l r z # )(@/(P5(`;)A(pG(M*S(Y_eHk` qw(GN\xRhx=CJnu `qM1> qMZu r rM rM @s 4EV"}z"""",K" m""!.:R_ZL25PyvtkQuaternion_IdE_CCopyPKv_ZL25PyvtkQuaternion_IfE_CCopyPKv_ZL22PyvtkQuaternionf_CCopyPKv_ZL22PyvtkQuaterniond_CCopyPKv_ZL36PyvtkQuaternion_IdE_vtkQuaternion_s5P7_objectS0__ZL36PyvtkQuaternion_IfE_vtkQuaternion_s5P7_objectS0__ZL34PyvtkQuaternionf_vtkQuaternionf_s5P7_objectS0__ZL34PyvtkQuaterniond_vtkQuaterniond_s5P7_objectS0__ZL36PyvtkQuaternion_IdE_vtkQuaternion_s3P7_objectS0__ZL34PyvtkQuaterniond_vtkQuaterniond_s4P7_objectS0__ZL36PyvtkQuaternion_IdE_vtkQuaternion_s2P7_objectS0__ZL34PyvtkQuaterniond_vtkQuaterniond_s3P7_objectS0__ZL26PyvtkQuaternion_IdE_DeleteP7_object_ZL26PyvtkQuaternion_IfE_DeleteP7_object_ZL23PyvtkQuaternionf_DeleteP7_object_ZL23PyvtkQuaterniond_DeleteP7_object_ZL24PyvtkQuaternion_IdE_HashP7_object_ZL36PyvtkQuaternion_IfE_vtkQuaternion_s3P7_objectS0__ZL34PyvtkQuaternionf_vtkQuaternionf_s4P7_objectS0__ZL36PyvtkQuaternion_IfE_vtkQuaternion_s2P7_objectS0__ZL34PyvtkQuaternionf_vtkQuaternionf_s3P7_objectS0__ZL28PyvtkQuaternion_IfE_IdentityP7_objectS0__ZL28PyvtkQuaternion_IdE_IdentityP7_objectS0__ZL23PyvtkQuaternion_IdE_NewP11_typeobjectP7_objectS2__ZL41PyvtkQuaternion_IdE_vtkQuaternion_Methods_ZNK13vtkQuaternionIfEmlERKS0_.isra.0_ZL21PyvtkQuaterniond_HashP7_object_ZL24PyvtkQuaternion_IfE_HashP7_object_ZL21PyvtkQuaternionf_HashP7_object_ZL23PyvtkQuaternion_IfE_NewP11_typeobjectP7_objectS2__ZL41PyvtkQuaternion_IfE_vtkQuaternion_Methods_ZL20PyvtkQuaterniond_NewP11_typeobjectP7_objectS2__ZL39PyvtkQuaterniond_vtkQuaterniond_Methods_ZL20PyvtkQuaternionf_NewP11_typeobjectP7_objectS2__ZL39PyvtkQuaternionf_vtkQuaternionf_Methods_ZL24PyvtkQuaternion_IdE_GetWP7_objectS0__ZL24PyvtkQuaternion_IdE_GetYP7_objectS0__ZL24PyvtkQuaternion_IdE_GetZP7_objectS0__ZL24PyvtkQuaternion_IdE_GetXP7_objectS0__ZL24PyvtkQuaternion_IfE_GetZP7_objectS0__ZL24PyvtkQuaternion_IfE_GetWP7_objectS0__ZL24PyvtkQuaternion_IfE_GetXP7_objectS0__ZL24PyvtkQuaternion_IfE_GetYP7_objectS0__ZL30PyvtkQuaternion_IdE_ToIdentityP7_objectS0__ZL30PyvtkQuaternion_IfE_ToIdentityP7_objectS0__ZL31PyvtkQuaternion_IfE_SquaredNormP7_objectS0__ZL31PyvtkQuaternion_IdE_SquaredNormP7_objectS0__ZL29PyvtkQuaternion_IfE_ConjugateP7_objectS0__ZL29PyvtkQuaternion_IdE_ConjugateP7_objectS0__ZL24PyvtkQuaternion_IdE_SetYP7_objectS0__ZL24PyvtkQuaternion_IdE_SetZP7_objectS0__ZL24PyvtkQuaternion_IdE_SetXP7_objectS0__ZL24PyvtkQuaternion_IfE_SetXP7_objectS0__ZL24PyvtkQuaternion_IfE_SetWP7_objectS0__ZL24PyvtkQuaternion_IdE_SetWP7_objectS0__ZL24PyvtkQuaternion_IfE_SetZP7_objectS0__ZL24PyvtkQuaternion_IfE_SetYP7_objectS0__ZL24PyvtkQuaternion_IfE_NormP7_objectS0__ZL24PyvtkQuaternion_IdE_NormP7_objectS0__ZL25PyvtkQuaterniond_IdentityP7_objectS0__ZL30PyvtkQuaternion_IdE_ConjugatedP7_objectS0__ZL24PyvtkQuaterniond_InverseP7_objectS0__ZL24PyvtkQuaterniond_UnitExpP7_objectS0__ZL45PyvtkQuaterniond_NormalizedWithAngleInDegreesP7_objectS0__ZL30PyvtkQuaternion_IfE_ConjugatedP7_objectS0__ZL27PyvtkQuaterniond_ConjugatedP7_objectS0__ZL25PyvtkQuaternionf_IdentityP7_objectS0__ZL24PyvtkQuaternionf_UnitExpP7_objectS0__ZL24PyvtkQuaternionf_InverseP7_objectS0__ZL45PyvtkQuaternionf_NormalizedWithAngleInDegreesP7_objectS0__ZL27PyvtkQuaternionf_ConjugatedP7_objectS0__ZL23PyvtkQuaternion_IdE_GetP7_objectS0__ZL23PyvtkQuaternion_IfE_GetP7_objectS0__ZL43PyvtkQuaternion_IdE_GetRotationAngleAndAxisP7_objectS0__ZL43PyvtkQuaternion_IfE_GetRotationAngleAndAxisP7_objectS0__ZL31PyvtkQuaternion_IdE_ToMatrix3x3P7_objectS0__ZZL31PyvtkQuaternion_IdE_ToMatrix3x3P7_objectS0_E5size0_ZL31PyvtkQuaternion_IfE_ToMatrix3x3P7_objectS0__ZZL31PyvtkQuaternion_IfE_ToMatrix3x3P7_objectS0_E5size0_ZL26PyvtkQuaternion_IdE_InvertP7_objectS0__ZL26PyvtkQuaternion_IfE_InvertP7_objectS0__ZL27PyvtkQuaternion_IdE_InverseP7_objectS0__ZL27PyvtkQuaternion_IfE_InverseP7_objectS0__ZL29PyvtkQuaternion_IfE_NormalizeP7_objectS0__ZL29PyvtkQuaternion_IdE_NormalizeP7_objectS0__ZL47PyvtkQuaternion_IfE_NormalizeWithAngleInDegreesP7_objectS0__ZL47PyvtkQuaternion_IdE_NormalizeWithAngleInDegreesP7_objectS0__ZL30PyvtkQuaternion_IdE_NormalizedP7_objectS0__ZL48PyvtkQuaternion_IdE_NormalizedWithAngleInDegreesP7_objectS0__ZL29PyvtkQuaternion_IdE_ToUnitExpP7_objectS0__ZL29PyvtkQuaternion_IfE_ToUnitExpP7_objectS0__ZL30PyvtkQuaternion_IfE_NormalizedP7_objectS0__ZL27PyvtkQuaterniond_NormalizedP7_objectS0__ZL48PyvtkQuaternion_IfE_NormalizedWithAngleInDegreesP7_objectS0__ZL27PyvtkQuaternion_IdE_UnitExpP7_objectS0__ZL27PyvtkQuaternion_IfE_UnitExpP7_objectS0__ZL27PyvtkQuaternionf_NormalizedP7_objectS0__ZL23PyvtkQuaternion_IdE_SetP7_objectS0__ZL23PyvtkQuaternion_IfE_SetP7_objectS0__ZL43PyvtkQuaternion_IfE_SetRotationAngleAndAxisP7_objectS0__ZL43PyvtkQuaternion_IdE_SetRotationAngleAndAxisP7_objectS0__ZL24PyvtkQuaternion_IdE_Type_ZL27PyvtkQuaternion_IdE_Methods_ZL24PyvtkQuaternion_IfE_Type_ZL27PyvtkQuaternion_IfE_Methods_ZL21PyvtkQuaternionf_Type_ZL24PyvtkQuaternionf_Methods_ZL21PyvtkQuaterniond_Type_ZL24PyvtkQuaterniond_Methods_ZL25PyvtkQuaternion_IfE_SlerpP7_objectS0__ZL22PyvtkQuaternionf_SlerpP7_objectS0__ZL25PyvtkQuaternion_IdE_SlerpP7_objectS0__ZL22PyvtkQuaterniond_SlerpP7_objectS0__ZL27PyvtkQuaternion_IdE_UnitLogP7_objectS0__ZL29PyvtkQuaternion_IdE_ToUnitLogP7_objectS0__ZL24PyvtkQuaterniond_UnitLogP7_objectS0__ZL30PyvtkQuaternion_IdE_InnerPointP7_objectS0__ZL27PyvtkQuaterniond_InnerPointP7_objectS0__ZL33PyvtkQuaternion_IdE_FromMatrix3x3P7_objectS0__ZZL33PyvtkQuaternion_IdE_FromMatrix3x3P7_objectS0_E5size0_ZL27PyvtkQuaternion_IfE_UnitLogP7_objectS0__ZL29PyvtkQuaternion_IfE_ToUnitLogP7_objectS0__ZL24PyvtkQuaternionf_UnitLogP7_objectS0__ZL30PyvtkQuaternion_IfE_InnerPointP7_objectS0__ZL27PyvtkQuaternionf_InnerPointP7_objectS0__ZL33PyvtkQuaternion_IfE_FromMatrix3x3P7_objectS0__ZZL33PyvtkQuaternion_IfE_FromMatrix3x3P7_objectS0_E5size0_GLOBAL__sub_I_vtkQuaternionPython.cxx_ZStL8__ioinit.LC16.LC6.LC17.LC26.LC7.LC34.LC36.LC0.LC1.LC2.LC3.LC4.LC5.LC9.LC8.LC10.LC11.LC12.LC13.LC14.LC15.LC18.LC19.LC20.LC21.LC22.LC23.LC24.LC25.LC27.LC28.LC29.LC30.LC31.LC32.LC33.LC35.LC37.LC38.LC39.LC40.LC41.LC42.LC43.LC44.LC45.LC46.LC47.LC48.LC53.LC55.LC56.LC58.LC59.LC49.LC50.LC51.LC52.LC54.LC57.LC60.LC61.LC62.LC63.LC64.LC65_Znwm_ZN13vtkPythonArgs13ArgCountErrorEii_Py_Dealloc_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_objectPyVTKSpecialObject_New__stack_chk_fail_ZN13vtkPythonArgs8GetArrayEPdi_ZN13vtkPythonArgs8GetValueERd_ZdlPvPyObject_FreePyObject_HashNotImplemented_ZN13vtkPythonArgs8GetArrayEPfi_ZN13vtkPythonArgs8GetValueERfPyErr_OccurredPyVTKSpecialObject_CopyNewPyDict_Size_ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__GLOBAL_OFFSET_TABLE_PyExc_TypeErrorPyErr_SetString_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_PyFloat_FromDouble_Py_NoneStructsqrtfsqrtsincossincosf_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN13vtkPythonArgs8SetArrayEiPKfiatan2atan2f_ZN13vtkPythonArgs9GetNArrayEPdiPKimemcpy_ZN13vtkPythonArgs9SetNArrayEiPKdiPKi_ZN13vtkPythonArgs9GetNArrayEPfiPKi_ZN13vtkPythonArgs9SetNArrayEiPKfiPKiPyvtkQuaternion_IdE_TypeNewPyVTKSpecialType_AddPyvtkTuple_IdLi4EE_TypeNewPyType_ReadyPyvtkQuaternion_IfE_TypeNewPyvtkTuple_IfLi4EE_TypeNew_Z27PyvtkQuaternion_TemplateNewvPyVTKTemplate_NewPyVTKTemplate_AddItemPyvtkQuaternionf_TypeNewPyvtkQuaterniond_TypeNewPyVTKAddFile_vtkQuaternionPyObject_CallMethodPyDict_SetItemStringPyCFunction_TypePyType_IsSubtype_ZNK13vtkQuaternionIfE5SlerpEfRKS0_acosfsinsinf_ZNK13vtkQuaternionIdE5SlerpEdRKS0_acos_ZN13vtkQuaternionIdE9ToUnitLogEv_ZNK13vtkQuaternionIdE10InnerPointERKS0_S2__ZN13vtkQuaternionIdE13FromMatrix3x3EPA3_Kd_ZN7vtkMath7JacobiNEPPdiS0_S1__ZN13vtkQuaternionIfE9ToUnitLogEv_ZNK13vtkQuaternionIfE10InnerPointERKS0_S2__ZN13vtkQuaternionIfE13FromMatrix3x3EPA3_Kf_ZN7vtkMath7JacobiNEPPfiS0_S1__ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__dso_handle__cxa_atexitPyType_TypePyVTKSpecialObject_ReprPyObject_GenericGetAttrS>q>q.a~Qn.<O^ex!K@kyK|- ^ l       & 5 < H       5 T ^ t y       " ) V       ! 6 K ` r     *   V.CXj}|*'PU0B_* %V@j*AQ_f 'Q^AQdk#*Q^ATdp*{$,8*Cq 6=q#29`**P* 1*! z     * !j!!!!!*!"Z"""""*""J#q####*##:$a${$$$*$$*%Q%k%%%*%%&A&[&o&{&*&&&!'l'''''(1(((((()A)T)g)})))))!*M*`*k*|*****!+++++++6,,,B------&.v../:/O/T/y/// 010D000000-1Q1}1111112K2q222222203Q334&4+4G4^4445h5y5~55546`666;7j777777-8Q8d888889Z999#:3:*A:X:y:::!;D;;;*;;;9<<<<u====>(>/>D>>>?F???*@F@i@@@@@RAAAAAAAkB9CCCSC*CCCCDQDpD{DDDDEHEVEfE*EFFFFG]GGGG*GG H/H`HHHI"I*@IYIpIIII!JzJJJJJJJ KpKKKKK:LYLLL1MYMMMMM1NNNO$OJOXOOO PePrPP*PPP1QYQQQQ*RRPRRR2SGSLSoSSSS TATTTTT UUQUUUCVVV*VV!WqWWX_XoX*XXX@YaYYYYYZZVZZZV[k[p[[[[0\Q\\\\]](]c]]]i^^^^^ _P___0``````a`aaaaab b.bbbOccd*dd)d`d|dddddd,e9eTeee3ff&g6g*KgRgagggggg&hAh|hhhhi&iSiiijj&jdjnjjjk3kqk{kkk6lFl*YlllllmmUm\mmm'n8nIn^nnnn>o[ooooUpep*yppppq"q@qMq[qiqwq~qqqqqqq<q|qqqqq<q rrr"r5r>rQr{rrrrr<rrDrrrrss|ss$s.s3sVspsusss* s st tt#t,t>tFtstttt[uuuuuuv v/v9vevvww6wAwQwkw wwww;xvxxxxxxx yyKyyy z.z=zMzlzzzzz{A{l{q{{{{{{!|1|6|B|*M||||}4}E}J}Q}}}X~f~~~~~~~~~:.Mh~ˀIq *Á>aЂAQVb*m27FKRXf~х 70JbxÇIq*È%  %ttQX`jz   %\x6=h   ]{(0ZqXt!! o!*I*!&-5<CJQLX_ 0Xx8@ 0HXpx0+8X p0  (p8 HX  P(  40ZP  0  *@  r`|  (,8h @ H.X@` lh yx @    @ PH1X@` 4h`x 7` 4 rH 2 @6  l(@v8@ HX  0   xP  (&88@ mHX` Ph x L 4X @ / @Hh  (K8@ zHXx` rhЁx ?W 0_ pOx [0 Ie  (:8@ H"Xx ` Yhpx  !P! h0! %(" ^" $#  c(8p#@ Hp>X#` Mhhx$ C8& Ї8' lt( `)(08 HX hx  xP8+ '+ m  P   +  ( N8 ,@  4H 0RX  -`  h 0x   ) -   F h  I  .  z { x  r z .  ?( 0U8 @  H @]X X/`  h Px x  S 80  I Pb 1  8 2  # 2  Y  2  (  8 h3@  hH X 3`  h x H4  ^ p 4   (5  c 0 5  < 6  M  m 6  ( @8 p8@  H ЀX p9`  lh wx :   `} (< <@Xpt@\p00 D0` @   0 4 H\p 0Dhp0p0@dPP@0@ d !"#$%<&`'()*,./,0H1d24@678 :< <x p> @ C, FH @Hd I K L N pO P, 0RH Sd 0U W X 0Z [ @] 0_8 `T Pb e h  m$ `q@ q\ r r r @s$uHt|@vxw yH{lz{`|`}4pЀЁ (L`,ЇX.symtab.strtab.shstrtab.rela.text.data.bss.rodata.str1.1.rodata.str1.8.text._ZNK13vtkQuaternionIfEmlERKS0_.isra.0.rela.text._ZNK13vtkQuaternionIfE5SlerpEfRKS0_.rela.text._ZNK13vtkQuaternionIdE5SlerpEdRKS0_.rela.text._ZN13vtkQuaternionIdE9ToUnitLogEv.rela.text._ZNK13vtkQuaternionIdE10InnerPointERKS0_S2_.rela.text._ZN13vtkQuaternionIdE13FromMatrix3x3EPA3_Kd.rela.text._ZN13vtkQuaternionIfE9ToUnitLogEv.rela.text._ZNK13vtkQuaternionIfE10InnerPointERKS0_S2_.rela.text._ZN13vtkQuaternionIfE13FromMatrix3x3EPA3_Kf.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rodata.cst16.rodata.cst8.rodata.cst4.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@0P 0 \ 0h 0t 0 0 0 0 Lj@<]0 &x ,12@2Q=O}{@Й0P@ؚ0 @`0 @@@0B =@H0y0 t@H`0@@00@H0d@80 'x"@00"8x 3@H0$G B@HP0&We` r0, p@ 0.H1 Hjh