ELF>T@@0/UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tH@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH=tLH=u)HeHcZfDLLH=tL븐HЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(utH0[fDHHuӐt,WLf~HufnfZfDHHH;u _Lf~ff~SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(utH0[fDHHuӐt,WDf~HufnfZfDHHH;u _Df~ff~SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐt_HHuHcDHHH;tЉfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$D$ t7.EDztHEEDHHuHH{HEHH;u.EDztEDH@Hff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$D$ t7.ELztHEELHHuHH{HEHH;u.ELztELH@Hff.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtAHH;uIHt GHHuHHHH;t@fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtAHH;uIGHt GHHuHHfDHH;t@1DUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$t$ t19uHtHEuHHHuHHDHEHH;u;uHtˉuHHfH@ATL%H H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@.GDzuHGDGD9wHtHwHGH.GLzuHGLGLSafeDownCastvtkObjectBasevtkConeLayoutStrategyIsTypeOfIsAGetSpacingGetCompactnessGetCompressionSetCompactnessSetSpacingNewInstanceCompressionOnCompressionOffSetCompressionLayoutvtkGraphLayoutStrategyvtkObjectUH=Hu]ÐHH=tHH=tH]HHH;u!HtGHfDHHH;u!WHtGHD1vtkConeLayoutStrategy - produce a cone-tree layout for a forest Superclass: vtkGraphLayoutStrategy vtkConeLayoutStrategy positions the nodes of a tree(forest) in 3D space based on the cone-tree approach first described by Robertson, Mackinlay and Card in Proc. CHI'91. This implementation incorporates refinements to the layout developed by Carriere and Kazman, and by Auber. The input graph must be a forest (i.e. a set of trees, or a single tree); in the case of a forest, the input will be converted to a single tree by introducing a new root node, and connecting each root in the input forest to the meta-root. The tree is then laid out, after which the meta-root is removed. The cones are positioned so that children lie in planes parallel to the X-Y plane, with the axis of cones parallel to Z, and with Z coordinate increasing with distance of nodes from the root. @par Thanks: Thanks to David Duke from the University of Leeds for providing this implementation. vtkInfovisLayoutPython.vtkConeLayoutStrategyV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkConeLayoutStrategy C++: static vtkConeLayoutStrategy *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkConeLayoutStrategy C++: vtkConeLayoutStrategy *NewInstance() V.SetCompactness(float) C++: virtual void SetCompactness(float _arg) Determine the compactness, the ratio between the average width of a cone in the tree, and the height of the cone. The default setting is 0.75 which (empirically) seems reasonable, but this will need adapting depending on the data. V.GetCompactness() -> float C++: virtual float GetCompactness() Determine the compactness, the ratio between the average width of a cone in the tree, and the height of the cone. The default setting is 0.75 which (empirically) seems reasonable, but this will need adapting depending on the data. V.SetCompression(int) C++: virtual void SetCompression(int _arg) Determine if layout should be compressed, i.e. the layout puts children closer together, possibly allowing sub-trees to overlap. This is useful if the tree is actually the spanning tree of a graph. For "real" trees, non-compressed layout is best, and is the default. V.GetCompression() -> int C++: virtual int GetCompression() Determine if layout should be compressed, i.e. the layout puts children closer together, possibly allowing sub-trees to overlap. This is useful if the tree is actually the spanning tree of a graph. For "real" trees, non-compressed layout is best, and is the default. V.CompressionOn() C++: virtual void CompressionOn() Determine if layout should be compressed, i.e. the layout puts children closer together, possibly allowing sub-trees to overlap. This is useful if the tree is actually the spanning tree of a graph. For "real" trees, non-compressed layout is best, and is the default. V.CompressionOff() C++: virtual void CompressionOff() Determine if layout should be compressed, i.e. the layout puts children closer together, possibly allowing sub-trees to overlap. This is useful if the tree is actually the spanning tree of a graph. For "real" trees, non-compressed layout is best, and is the default. V.SetSpacing(float) C++: virtual void SetSpacing(float _arg) Set the spacing parameter that affects space between layers of the tree. If compression is on, Spacing is the actual distance between layers. If compression is off, actual distance also includes a factor of the compactness and maximum cone radius. V.GetSpacing() -> float C++: virtual float GetSpacing() Set the spacing parameter that affects space between layers of the tree. If compression is on, Spacing is the actual distance between layers. If compression is off, actual distance also includes a factor of the compactness and maximum cone radius. V.Layout() C++: void Layout() override; Perform the layout. HHHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx 0 DXl   EDPa AE OEY B j?<((EAD`n AAF 0TnFAA D`  AABH ED@ AG ED@ AG ED@ AG DEDP AG DEDP AG <gFD@ EE `H@ E | H@ E <EDP AG MFF0OFDD n ABA DDB  H@ I   ) _  n ` `* `b @D D g P : ` r p <$&    P$&PU Z_1din:s>xI}Xgv"" "9"f"" " 1]l"O"?-C"<p(>Rq M O8DWh{_ZL33PyvtkConeLayoutStrategy_StaticNewv_ZL36PyvtkConeLayoutStrategy_SafeDownCastP7_objectS0__ZL32PyvtkConeLayoutStrategy_IsTypeOfP7_objectS0__ZL27PyvtkConeLayoutStrategy_IsAP7_objectS0__ZL34PyvtkConeLayoutStrategy_GetSpacingP7_objectS0__ZL38PyvtkConeLayoutStrategy_GetCompactnessP7_objectS0__ZL38PyvtkConeLayoutStrategy_GetCompressionP7_objectS0__ZL38PyvtkConeLayoutStrategy_SetCompactnessP7_objectS0__ZL34PyvtkConeLayoutStrategy_SetSpacingP7_objectS0__ZL35PyvtkConeLayoutStrategy_NewInstanceP7_objectS0__ZL37PyvtkConeLayoutStrategy_CompressionOnP7_objectS0__ZL38PyvtkConeLayoutStrategy_CompressionOffP7_objectS0__ZL38PyvtkConeLayoutStrategy_SetCompressionP7_objectS0__ZL28PyvtkConeLayoutStrategy_Type_ZL31PyvtkConeLayoutStrategy_Methods_GLOBAL__sub_I_vtkConeLayoutStrategyPython.cxx_ZL30PyvtkConeLayoutStrategy_LayoutP7_objectS0_.LC0.LC1.LC2.LC5.LC3.LC4.LC6.LC7.LC8.LC9.LC10.LC11.LC12.LC13.LC14.LC15.LC17.LC16_ZN21vtkConeLayoutStrategy14SetCompactnessEf_ZN21vtkConeLayoutStrategy14GetCompactnessEv_ZN21vtkConeLayoutStrategy14SetCompressionEi_ZN21vtkConeLayoutStrategy14GetCompressionEv_ZN21vtkConeLayoutStrategy10SetSpacingEf_ZN21vtkConeLayoutStrategy10GetSpacingEv_ZN21vtkConeLayoutStrategy3NewEv_ZNK21vtkConeLayoutStrategy19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN21vtkConeLayoutStrategy3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN21vtkConeLayoutStrategy13CompressionOnEv_GLOBAL_OFFSET_TABLE__ZN21vtkConeLayoutStrategy14CompressionOffEv_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_PyFloat_FromDouble_ZN13vtkPythonArgs8GetValueERf_Py_NoneStructPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZN13vtkPythonArgs8GetValueERiPyvtkConeLayoutStrategy_ClassNewPyVTKClass_AddPyvtkGraphLayoutStrategy_ClassNewPyType_ReadyPyVTKAddFile_vtkConeLayoutStrategyPyDict_SetItemString_Py_Dealloc_ZN21vtkConeLayoutStrategy6LayoutEvPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del,#`=$>%?@?A &J=}H%C'C?I(CDA)v=JH*B%C'C?I6(;CGDZA*=J?$K=*:YA+=J?$K=*6YA,=J?I-*8:Aa-=JL,?8*MV*5A. =1JKL|?*M*9A /O =y J *< ; % ? @ N O P$ ?C Ap 0 = J *7 ?' *MB *EZ A 1 = J *7, ?8 *MR *Gg A 2 = J+ QU ?a *M~ *7 A ! % " S ! T ! UR%)Wp3=J? *MY A;KX;%C&'+C9(>CKD*7*74!Z0[X\]^_`ab8c@d 1  :(8@ HX` hx g@ I` p @  X`  P   (` 8( @ vHXp` >h`x P 4H\p  ,X```@@dP ` p  $P.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN21vtkConeLayoutStrategy14SetCompactnessEf.text._ZN21vtkConeLayoutStrategy14GetCompactnessEv.text._ZN21vtkConeLayoutStrategy14SetCompressionEi.text._ZN21vtkConeLayoutStrategy14GetCompressionEv.text._ZN21vtkConeLayoutStrategy10SetSpacingEf.text._ZN21vtkConeLayoutStrategy10GetSpacingEv.rela.text._ZNK21vtkConeLayoutStrategy19NewInstanceInternalEv.rodata.str1.1.rodata._ZN21vtkConeLayoutStrategy3IsAEPKc.str1.1.rela.text._ZN21vtkConeLayoutStrategy3IsAEPKc.rela.text._ZN21vtkConeLayoutStrategy13CompressionOnEv.rela.text._ZN21vtkConeLayoutStrategy14CompressionOffEv.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group @-5 H-6 P-7 X-8 `-9 h-: p -< | -B  -E  -G $@<H - &,1d  0,P `` [@0I-2i2)!PO@HI- ?@I-D<?@J-w2 &P#@ J0- h#@PJ-"# @hJ -$ % @K-&0&, '' 0'8@0O-+h*x .5 3 Q