// python wrapper for vtkBoundedPointSource // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkBoundedPointSource.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkBoundedPointSource(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkBoundedPointSource_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkBoundedPointSource_Doc = "vtkBoundedPointSource - create a random cloud of points within a\nspecified bounding box\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkBoundedPointSource is a source object that creates a\n" "user-specified number of points within a specified bounding box. The\n" "points are scattered randomly throughout the box. Optionally, the\n" "user can produce a vtkPolyVertex cell as well as random scalar values\n" "within a specified range. The class is typically used for debugging\n" "and testing, as well as seeding streamlines.\n\n"; static PyObject * PyvtkBoundedPointSource_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkBoundedPointSource::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkBoundedPointSource::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkBoundedPointSource *tempr = vtkBoundedPointSource::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkBoundedPointSource *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkBoundedPointSource::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkBoundedPointSource_SetNumberOfPoints(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfPoints"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfPoints(temp0); } else { op->vtkBoundedPointSource::SetNumberOfPoints(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_GetNumberOfPointsMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfPointsMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetNumberOfPointsMinValue() : op->vtkBoundedPointSource::GetNumberOfPointsMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_GetNumberOfPointsMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfPointsMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetNumberOfPointsMaxValue() : op->vtkBoundedPointSource::GetNumberOfPointsMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_GetNumberOfPoints(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfPoints"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetNumberOfPoints() : op->vtkBoundedPointSource::GetNumberOfPoints()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_SetBounds_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); double temp0; double temp1; double temp2; double temp3; double temp4; double temp5; PyObject *result = nullptr; if (op && ap.CheckArgCount(6) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetValue(temp4) && ap.GetValue(temp5)) { if (ap.IsBound()) { op->SetBounds(temp0, temp1, temp2, temp3, temp4, temp5); } else { op->vtkBoundedPointSource::SetBounds(temp0, temp1, temp2, temp3, temp4, temp5); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_SetBounds_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); const int size0 = 6; double temp0[6]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetBounds(temp0); } else { op->vtkBoundedPointSource::SetBounds(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_SetBounds(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 6: return PyvtkBoundedPointSource_SetBounds_s1(self, args); case 1: return PyvtkBoundedPointSource_SetBounds_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetBounds"); return nullptr; } static PyObject * PyvtkBoundedPointSource_GetBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); int sizer = 6; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetBounds() : op->vtkBoundedPointSource::GetBounds()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkBoundedPointSource_SetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputPointsPrecision(temp0); } else { op->vtkBoundedPointSource::SetOutputPointsPrecision(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_GetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputPointsPrecision() : op->vtkBoundedPointSource::GetOutputPointsPrecision()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_SetProduceCellOutput(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProduceCellOutput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); bool temp0 = false; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetProduceCellOutput(temp0); } else { op->vtkBoundedPointSource::SetProduceCellOutput(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_GetProduceCellOutput(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProduceCellOutput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { bool tempr = (ap.IsBound() ? op->GetProduceCellOutput() : op->vtkBoundedPointSource::GetProduceCellOutput()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_ProduceCellOutputOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProduceCellOutputOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProduceCellOutputOn(); } else { op->vtkBoundedPointSource::ProduceCellOutputOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_ProduceCellOutputOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProduceCellOutputOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProduceCellOutputOff(); } else { op->vtkBoundedPointSource::ProduceCellOutputOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_SetProduceRandomScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProduceRandomScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); bool temp0 = false; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetProduceRandomScalars(temp0); } else { op->vtkBoundedPointSource::SetProduceRandomScalars(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_GetProduceRandomScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProduceRandomScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { bool tempr = (ap.IsBound() ? op->GetProduceRandomScalars() : op->vtkBoundedPointSource::GetProduceRandomScalars()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkBoundedPointSource_ProduceRandomScalarsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProduceRandomScalarsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProduceRandomScalarsOn(); } else { op->vtkBoundedPointSource::ProduceRandomScalarsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_ProduceRandomScalarsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProduceRandomScalarsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProduceRandomScalarsOff(); } else { op->vtkBoundedPointSource::ProduceRandomScalarsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_SetScalarRange_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); double temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetScalarRange(temp0, temp1); } else { op->vtkBoundedPointSource::SetScalarRange(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_SetScalarRange_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); const int size0 = 2; double temp0[2]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetScalarRange(temp0); } else { op->vtkBoundedPointSource::SetScalarRange(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkBoundedPointSource_SetScalarRange(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkBoundedPointSource_SetScalarRange_s1(self, args); case 1: return PyvtkBoundedPointSource_SetScalarRange_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetScalarRange"); return nullptr; } static PyObject * PyvtkBoundedPointSource_GetScalarRange(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetScalarRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkBoundedPointSource *op = static_cast(vp); int sizer = 2; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetScalarRange() : op->vtkBoundedPointSource::GetScalarRange()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyMethodDef PyvtkBoundedPointSource_Methods[] = { {"IsTypeOf", PyvtkBoundedPointSource_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nStandard methods for instantiation, type information and\nprinting.\n"}, {"IsA", PyvtkBoundedPointSource_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nStandard methods for instantiation, type information and\nprinting.\n"}, {"SafeDownCast", PyvtkBoundedPointSource_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkBoundedPointSource\nC++: static vtkBoundedPointSource *SafeDownCast(vtkObjectBase *o)\n\nStandard methods for instantiation, type information and\nprinting.\n"}, {"NewInstance", PyvtkBoundedPointSource_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkBoundedPointSource\nC++: vtkBoundedPointSource *NewInstance()\n\nStandard methods for instantiation, type information and\nprinting.\n"}, {"SetNumberOfPoints", PyvtkBoundedPointSource_SetNumberOfPoints, METH_VARARGS, "V.SetNumberOfPoints(int)\nC++: virtual void SetNumberOfPoints(vtkIdType _arg)\n\nSet the number of points to generate.\n"}, {"GetNumberOfPointsMinValue", PyvtkBoundedPointSource_GetNumberOfPointsMinValue, METH_VARARGS, "V.GetNumberOfPointsMinValue() -> int\nC++: virtual vtkIdType GetNumberOfPointsMinValue()\n\nSet the number of points to generate.\n"}, {"GetNumberOfPointsMaxValue", PyvtkBoundedPointSource_GetNumberOfPointsMaxValue, METH_VARARGS, "V.GetNumberOfPointsMaxValue() -> int\nC++: virtual vtkIdType GetNumberOfPointsMaxValue()\n\nSet the number of points to generate.\n"}, {"GetNumberOfPoints", PyvtkBoundedPointSource_GetNumberOfPoints, METH_VARARGS, "V.GetNumberOfPoints() -> int\nC++: virtual vtkIdType GetNumberOfPoints()\n\nSet the number of points to generate.\n"}, {"SetBounds", PyvtkBoundedPointSource_SetBounds, METH_VARARGS, "V.SetBounds(float, float, float, float, float, float)\nC++: void SetBounds(double, double, double, double, double,\n double)\nV.SetBounds((float, float, float, float, float, float))\nC++: void SetBounds(double a[6])\n\n"}, {"GetBounds", PyvtkBoundedPointSource_GetBounds, METH_VARARGS, "V.GetBounds() -> (float, float, float, float, float, float)\nC++: double *GetBounds()\n\nSet the bounding box for the point distribution. By default the\nbounds is (-1,1,-1,1,-1,1).\n"}, {"SetOutputPointsPrecision", PyvtkBoundedPointSource_SetOutputPointsPrecision, METH_VARARGS, "V.SetOutputPointsPrecision(int)\nC++: virtual void SetOutputPointsPrecision(int _arg)\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {"GetOutputPointsPrecision", PyvtkBoundedPointSource_GetOutputPointsPrecision, METH_VARARGS, "V.GetOutputPointsPrecision() -> int\nC++: virtual int GetOutputPointsPrecision()\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {"SetProduceCellOutput", PyvtkBoundedPointSource_SetProduceCellOutput, METH_VARARGS, "V.SetProduceCellOutput(bool)\nC++: virtual void SetProduceCellOutput(bool _arg)\n\nIndicate whether to produce a vtkPolyVertex cell to go along with\nthe output vtkPoints generated. By default a cell is NOT\nproduced. Some filters do not need the vtkPolyVertex which just\nconsumes a lot of memory.\n"}, {"GetProduceCellOutput", PyvtkBoundedPointSource_GetProduceCellOutput, METH_VARARGS, "V.GetProduceCellOutput() -> bool\nC++: virtual bool GetProduceCellOutput()\n\nIndicate whether to produce a vtkPolyVertex cell to go along with\nthe output vtkPoints generated. By default a cell is NOT\nproduced. Some filters do not need the vtkPolyVertex which just\nconsumes a lot of memory.\n"}, {"ProduceCellOutputOn", PyvtkBoundedPointSource_ProduceCellOutputOn, METH_VARARGS, "V.ProduceCellOutputOn()\nC++: virtual void ProduceCellOutputOn()\n\nIndicate whether to produce a vtkPolyVertex cell to go along with\nthe output vtkPoints generated. By default a cell is NOT\nproduced. Some filters do not need the vtkPolyVertex which just\nconsumes a lot of memory.\n"}, {"ProduceCellOutputOff", PyvtkBoundedPointSource_ProduceCellOutputOff, METH_VARARGS, "V.ProduceCellOutputOff()\nC++: virtual void ProduceCellOutputOff()\n\nIndicate whether to produce a vtkPolyVertex cell to go along with\nthe output vtkPoints generated. By default a cell is NOT\nproduced. Some filters do not need the vtkPolyVertex which just\nconsumes a lot of memory.\n"}, {"SetProduceRandomScalars", PyvtkBoundedPointSource_SetProduceRandomScalars, METH_VARARGS, "V.SetProduceRandomScalars(bool)\nC++: virtual void SetProduceRandomScalars(bool _arg)\n\nIndicate whether to produce random point scalars in the output.\nBy default this is off.\n"}, {"GetProduceRandomScalars", PyvtkBoundedPointSource_GetProduceRandomScalars, METH_VARARGS, "V.GetProduceRandomScalars() -> bool\nC++: virtual bool GetProduceRandomScalars()\n\nIndicate whether to produce random point scalars in the output.\nBy default this is off.\n"}, {"ProduceRandomScalarsOn", PyvtkBoundedPointSource_ProduceRandomScalarsOn, METH_VARARGS, "V.ProduceRandomScalarsOn()\nC++: virtual void ProduceRandomScalarsOn()\n\nIndicate whether to produce random point scalars in the output.\nBy default this is off.\n"}, {"ProduceRandomScalarsOff", PyvtkBoundedPointSource_ProduceRandomScalarsOff, METH_VARARGS, "V.ProduceRandomScalarsOff()\nC++: virtual void ProduceRandomScalarsOff()\n\nIndicate whether to produce random point scalars in the output.\nBy default this is off.\n"}, {"SetScalarRange", PyvtkBoundedPointSource_SetScalarRange, METH_VARARGS, "V.SetScalarRange(float, float)\nC++: void SetScalarRange(double, double)\nV.SetScalarRange((float, float))\nC++: void SetScalarRange(double a[2])\n\n"}, {"GetScalarRange", PyvtkBoundedPointSource_GetScalarRange, METH_VARARGS, "V.GetScalarRange() -> (float, float)\nC++: double *GetScalarRange()\n\nSet the range in which the random scalars should be produced. By\ndefault the scalar range is (0,1).\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkBoundedPointSource_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersPointsPython.vtkBoundedPointSource", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkBoundedPointSource_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkBoundedPointSource_StaticNew() { return vtkBoundedPointSource::New(); } PyObject *PyvtkBoundedPointSource_ClassNew() { PyVTKClass_Add( &PyvtkBoundedPointSource_Type, PyvtkBoundedPointSource_Methods, "vtkBoundedPointSource", &PyvtkBoundedPointSource_StaticNew); PyTypeObject *pytype = &PyvtkBoundedPointSource_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkBoundedPointSource( PyObject *dict) { PyObject *o; o = PyvtkBoundedPointSource_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkBoundedPointSource", o) != 0) { Py_DECREF(o); } }