// python wrapper for vtkClosedSurfacePointPlacer // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkClosedSurfacePointPlacer.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkClosedSurfacePointPlacer(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkClosedSurfacePointPlacer_ClassNew(); } #ifndef DECLARED_PyvtkPointPlacer_ClassNew extern "C" { PyObject *PyvtkPointPlacer_ClassNew(); } #define DECLARED_PyvtkPointPlacer_ClassNew #endif static const char *PyvtkClosedSurfacePointPlacer_Doc = "vtkClosedSurfacePointPlacer - PointPlacer to constrain validity\nwithin a set of convex planes\n\n" "Superclass: vtkPointPlacer\n\n" "This placer takes a set of boudning planes and constraints the\n" "validity within the supplied convex planes. It is used by the\n" "ParallelopPipedRepresentation to place constraints on the motion the\n" "handles within the parallelopiped.\n\n" "@sa\n" "vtkParallelopipedRepresentation\n\n"; static PyObject * PyvtkClosedSurfacePointPlacer_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkClosedSurfacePointPlacer::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkClosedSurfacePointPlacer::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkClosedSurfacePointPlacer *tempr = vtkClosedSurfacePointPlacer::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkClosedSurfacePointPlacer *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkClosedSurfacePointPlacer::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_AddBoundingPlane(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AddBoundingPlane"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); vtkPlane *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkPlane")) { if (ap.IsBound()) { op->AddBoundingPlane(temp0); } else { op->vtkClosedSurfacePointPlacer::AddBoundingPlane(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_RemoveBoundingPlane(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "RemoveBoundingPlane"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); vtkPlane *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkPlane")) { if (ap.IsBound()) { op->RemoveBoundingPlane(temp0); } else { op->vtkClosedSurfacePointPlacer::RemoveBoundingPlane(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_RemoveAllBoundingPlanes(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "RemoveAllBoundingPlanes"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->RemoveAllBoundingPlanes(); } else { op->vtkClosedSurfacePointPlacer::RemoveAllBoundingPlanes(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_SetBoundingPlanes_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBoundingPlanes"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); vtkPlaneCollection *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkPlaneCollection")) { if (ap.IsBound()) { op->SetBoundingPlanes(temp0); } else { op->vtkClosedSurfacePointPlacer::SetBoundingPlanes(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_SetBoundingPlanes_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBoundingPlanes"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); vtkPlanes *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkPlanes")) { if (ap.IsBound()) { op->SetBoundingPlanes(temp0); } else { op->vtkClosedSurfacePointPlacer::SetBoundingPlanes(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkClosedSurfacePointPlacer_SetBoundingPlanes_Methods[] = { {nullptr, PyvtkClosedSurfacePointPlacer_SetBoundingPlanes_s1, METH_VARARGS, "@V *vtkPlaneCollection"}, {nullptr, PyvtkClosedSurfacePointPlacer_SetBoundingPlanes_s2, METH_VARARGS, "@V *vtkPlanes"}, {nullptr, nullptr, 0, nullptr} }; static PyObject * PyvtkClosedSurfacePointPlacer_SetBoundingPlanes(PyObject *self, PyObject *args) { PyMethodDef *methods = PyvtkClosedSurfacePointPlacer_SetBoundingPlanes_Methods; int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return vtkPythonOverload::CallMethod(methods, self, args); } vtkPythonArgs::ArgCountError(nargs, "SetBoundingPlanes"); return nullptr; } static PyObject * PyvtkClosedSurfacePointPlacer_GetBoundingPlanes(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetBoundingPlanes"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkPlaneCollection *tempr = (ap.IsBound() ? op->GetBoundingPlanes() : op->vtkClosedSurfacePointPlacer::GetBoundingPlanes()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_ComputeWorldPosition_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeWorldPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); vtkRenderer *temp0 = nullptr; const int size1 = 2; double temp1[2]; double save1[2]; const int size2 = 3; double temp2[3]; double save2[3]; const int size3 = 9; double temp3[9]; double save3[9]; PyObject *result = nullptr; if (op && ap.CheckArgCount(4) && ap.GetVTKObject(temp0, "vtkRenderer") && ap.GetArray(temp1, size1) && ap.GetArray(temp2, size2) && ap.GetArray(temp3, size3)) { ap.SaveArray(temp1, save1, size1); ap.SaveArray(temp2, save2, size2); ap.SaveArray(temp3, save3, size3); int tempr = (ap.IsBound() ? op->ComputeWorldPosition(temp0, temp1, temp2, temp3) : op->vtkClosedSurfacePointPlacer::ComputeWorldPosition(temp0, temp1, temp2, temp3)); if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (ap.ArrayHasChanged(temp2, save2, size2) && !ap.ErrorOccurred()) { ap.SetArray(2, temp2, size2); } if (ap.ArrayHasChanged(temp3, save3, size3) && !ap.ErrorOccurred()) { ap.SetArray(3, temp3, size3); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_ComputeWorldPosition_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeWorldPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); vtkRenderer *temp0 = nullptr; const int size1 = 2; double temp1[2]; double save1[2]; const int size2 = 2; double temp2[2]; double save2[2]; const int size3 = 3; double temp3[3]; double save3[3]; const int size4 = 9; double temp4[9]; double save4[9]; PyObject *result = nullptr; if (op && ap.CheckArgCount(5) && ap.GetVTKObject(temp0, "vtkRenderer") && ap.GetArray(temp1, size1) && ap.GetArray(temp2, size2) && ap.GetArray(temp3, size3) && ap.GetArray(temp4, size4)) { ap.SaveArray(temp1, save1, size1); ap.SaveArray(temp2, save2, size2); ap.SaveArray(temp3, save3, size3); ap.SaveArray(temp4, save4, size4); int tempr = (ap.IsBound() ? op->ComputeWorldPosition(temp0, temp1, temp2, temp3, temp4) : op->vtkClosedSurfacePointPlacer::ComputeWorldPosition(temp0, temp1, temp2, temp3, temp4)); if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (ap.ArrayHasChanged(temp2, save2, size2) && !ap.ErrorOccurred()) { ap.SetArray(2, temp2, size2); } if (ap.ArrayHasChanged(temp3, save3, size3) && !ap.ErrorOccurred()) { ap.SetArray(3, temp3, size3); } if (ap.ArrayHasChanged(temp4, save4, size4) && !ap.ErrorOccurred()) { ap.SetArray(4, temp4, size4); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_ComputeWorldPosition(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 4: return PyvtkClosedSurfacePointPlacer_ComputeWorldPosition_s1(self, args); case 5: return PyvtkClosedSurfacePointPlacer_ComputeWorldPosition_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "ComputeWorldPosition"); return nullptr; } static PyObject * PyvtkClosedSurfacePointPlacer_ValidateWorldPosition_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ValidateWorldPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); int tempr = (ap.IsBound() ? op->ValidateWorldPosition(temp0) : op->vtkClosedSurfacePointPlacer::ValidateWorldPosition(temp0)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_ValidateWorldPosition_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ValidateWorldPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 9; double temp1[9]; double save1[9]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); int tempr = (ap.IsBound() ? op->ValidateWorldPosition(temp0, temp1) : op->vtkClosedSurfacePointPlacer::ValidateWorldPosition(temp0, temp1)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_ValidateWorldPosition(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkClosedSurfacePointPlacer_ValidateWorldPosition_s1(self, args); case 2: return PyvtkClosedSurfacePointPlacer_ValidateWorldPosition_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "ValidateWorldPosition"); return nullptr; } static PyObject * PyvtkClosedSurfacePointPlacer_SetMinimumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMinimumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMinimumDistance(temp0); } else { op->vtkClosedSurfacePointPlacer::SetMinimumDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_GetMinimumDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMinimumDistanceMinValue() : op->vtkClosedSurfacePointPlacer::GetMinimumDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_GetMinimumDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMinimumDistanceMaxValue() : op->vtkClosedSurfacePointPlacer::GetMinimumDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkClosedSurfacePointPlacer_GetMinimumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkClosedSurfacePointPlacer *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMinimumDistance() : op->vtkClosedSurfacePointPlacer::GetMinimumDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkClosedSurfacePointPlacer_Methods[] = { {"IsTypeOf", PyvtkClosedSurfacePointPlacer_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nStandard methods for instances of this class.\n"}, {"IsA", PyvtkClosedSurfacePointPlacer_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nStandard methods for instances of this class.\n"}, {"SafeDownCast", PyvtkClosedSurfacePointPlacer_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkClosedSurfacePointPlacer\nC++: static vtkClosedSurfacePointPlacer *SafeDownCast(\n vtkObjectBase *o)\n\nStandard methods for instances of this class.\n"}, {"NewInstance", PyvtkClosedSurfacePointPlacer_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkClosedSurfacePointPlacer\nC++: vtkClosedSurfacePointPlacer *NewInstance()\n\nStandard methods for instances of this class.\n"}, {"AddBoundingPlane", PyvtkClosedSurfacePointPlacer_AddBoundingPlane, METH_VARARGS, "V.AddBoundingPlane(vtkPlane)\nC++: void AddBoundingPlane(vtkPlane *plane)\n\nA collection of plane equations used to bound the position of the\npoint. This is in addition to confining the point to a plane -\nthese constraints are meant to, for example, keep a point within\nthe extent of an image. Using a set of plane equations allows for\nmore complex bounds (such as bounding a point to an oblique\nreliced image that has hexagonal shape) than a simple extent.\n"}, {"RemoveBoundingPlane", PyvtkClosedSurfacePointPlacer_RemoveBoundingPlane, METH_VARARGS, "V.RemoveBoundingPlane(vtkPlane)\nC++: void RemoveBoundingPlane(vtkPlane *plane)\n\nA collection of plane equations used to bound the position of the\npoint. This is in addition to confining the point to a plane -\nthese constraints are meant to, for example, keep a point within\nthe extent of an image. Using a set of plane equations allows for\nmore complex bounds (such as bounding a point to an oblique\nreliced image that has hexagonal shape) than a simple extent.\n"}, {"RemoveAllBoundingPlanes", PyvtkClosedSurfacePointPlacer_RemoveAllBoundingPlanes, METH_VARARGS, "V.RemoveAllBoundingPlanes()\nC++: void RemoveAllBoundingPlanes()\n\nA collection of plane equations used to bound the position of the\npoint. This is in addition to confining the point to a plane -\nthese constraints are meant to, for example, keep a point within\nthe extent of an image. Using a set of plane equations allows for\nmore complex bounds (such as bounding a point to an oblique\nreliced image that has hexagonal shape) than a simple extent.\n"}, {"SetBoundingPlanes", PyvtkClosedSurfacePointPlacer_SetBoundingPlanes, METH_VARARGS, "V.SetBoundingPlanes(vtkPlaneCollection)\nC++: virtual void SetBoundingPlanes(vtkPlaneCollection *)\nV.SetBoundingPlanes(vtkPlanes)\nC++: void SetBoundingPlanes(vtkPlanes *planes)\n\nA collection of plane equations used to bound the position of the\npoint. This is in addition to confining the point to a plane -\nthese constraints are meant to, for example, keep a point within\nthe extent of an image. Using a set of plane equations allows for\nmore complex bounds (such as bounding a point to an oblique\nreliced image that has hexagonal shape) than a simple extent.\n"}, {"GetBoundingPlanes", PyvtkClosedSurfacePointPlacer_GetBoundingPlanes, METH_VARARGS, "V.GetBoundingPlanes() -> vtkPlaneCollection\nC++: virtual vtkPlaneCollection *GetBoundingPlanes()\n\nA collection of plane equations used to bound the position of the\npoint. This is in addition to confining the point to a plane -\nthese constraints are meant to, for example, keep a point within\nthe extent of an image. Using a set of plane equations allows for\nmore complex bounds (such as bounding a point to an oblique\nreliced image that has hexagonal shape) than a simple extent.\n"}, {"ComputeWorldPosition", PyvtkClosedSurfacePointPlacer_ComputeWorldPosition, METH_VARARGS, "V.ComputeWorldPosition(vtkRenderer, [float, float], [float, float,\n float], [float, float, float, float, float, float, float,\n float, float]) -> int\nC++: int ComputeWorldPosition(vtkRenderer *ren,\n double displayPos[2], double worldPos[3],\n double worldOrient[9]) override;\nV.ComputeWorldPosition(vtkRenderer, [float, float], [float,\n float], [float, float, float], [float, float, float, float,\n float, float, float, float, float]) -> int\nC++: int ComputeWorldPosition(vtkRenderer *ren,\n double displayPos[2], double refWorldPos[2],\n double worldPos[3], double worldOrient[9]) override;\n\nGiven a renderer and a display position, compute the world\nposition and world orientation for this point. A plane is defined\nby a combination of the ProjectionNormal, ProjectionOrigin, and\nObliquePlane ivars. The display position is projected onto this\nplane to determine a world position, and the orientation is set\nto the normal of the plane. If the point cannot project onto the\nplane or if it falls outside the bounds imposed by the\nBoundingPlanes, then 0 is returned, otherwise 1 is returned to\nindicate a valid return position and orientation.\n"}, {"ValidateWorldPosition", PyvtkClosedSurfacePointPlacer_ValidateWorldPosition, METH_VARARGS, "V.ValidateWorldPosition([float, float, float]) -> int\nC++: int ValidateWorldPosition(double worldPos[3]) override;\nV.ValidateWorldPosition([float, float, float], [float, float,\n float, float, float, float, float, float, float]) -> int\nC++: int ValidateWorldPosition(double worldPos[3],\n double worldOrient[9]) override;\n\nGive a world position check if it is valid - does it lie on the\nplane and within the bounds? Returns 1 if it is valid, 0\notherwise.\n"}, {"SetMinimumDistance", PyvtkClosedSurfacePointPlacer_SetMinimumDistance, METH_VARARGS, "V.SetMinimumDistance(float)\nC++: virtual void SetMinimumDistance(double _arg)\n\n"}, {"GetMinimumDistanceMinValue", PyvtkClosedSurfacePointPlacer_GetMinimumDistanceMinValue, METH_VARARGS, "V.GetMinimumDistanceMinValue() -> float\nC++: virtual double GetMinimumDistanceMinValue()\n\n"}, {"GetMinimumDistanceMaxValue", PyvtkClosedSurfacePointPlacer_GetMinimumDistanceMaxValue, METH_VARARGS, "V.GetMinimumDistanceMaxValue() -> float\nC++: virtual double GetMinimumDistanceMaxValue()\n\n"}, {"GetMinimumDistance", PyvtkClosedSurfacePointPlacer_GetMinimumDistance, METH_VARARGS, "V.GetMinimumDistance() -> float\nC++: virtual double GetMinimumDistance()\n\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkClosedSurfacePointPlacer_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkInteractionWidgetsPython.vtkClosedSurfacePointPlacer", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkClosedSurfacePointPlacer_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkClosedSurfacePointPlacer_StaticNew() { return vtkClosedSurfacePointPlacer::New(); } PyObject *PyvtkClosedSurfacePointPlacer_ClassNew() { PyVTKClass_Add( &PyvtkClosedSurfacePointPlacer_Type, PyvtkClosedSurfacePointPlacer_Methods, "vtkClosedSurfacePointPlacer", &PyvtkClosedSurfacePointPlacer_StaticNew); PyTypeObject *pytype = &PyvtkClosedSurfacePointPlacer_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPointPlacer_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkClosedSurfacePointPlacer( PyObject *dict) { PyObject *o; o = PyvtkClosedSurfacePointPlacer_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkClosedSurfacePointPlacer", o) != 0) { Py_DECREF(o); } }