// python wrapper for vtkCorrelativeStatistics // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkCorrelativeStatistics.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkCorrelativeStatistics(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkCorrelativeStatistics_ClassNew(); } #ifndef DECLARED_PyvtkStatisticsAlgorithm_ClassNew extern "C" { PyObject *PyvtkStatisticsAlgorithm_ClassNew(); } #define DECLARED_PyvtkStatisticsAlgorithm_ClassNew #endif static const char *PyvtkCorrelativeStatistics_Doc = "vtkCorrelativeStatistics - A class for bivariate linear correlation\n\n" "Superclass: vtkStatisticsAlgorithm\n\n" "Given a selection of pairs of columns of interest, this class\n" "provides the following functionalities, depending on the chosen\n" "execution options:\n" "* Learn: calculate sample mean and M2 aggregates for each pair of\n" " variables (cf. P. Pebay, Formulas for robust, one-pass parallel\n" " computation of covariances and Arbitrary-Order Statistical Moments,\n" "Sandia Report SAND2008-6212, Sep 2008,\n" " http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)\n" "* Derive: calculate unbiased covariance matrix estimators and its\n" " determinant, linear regressions, and Pearson correlation\n" " coefficient.\n" "* Assess: given an input data set, two means and a 2x2 covariance\n" " matrix, mark each datum with corresponding relative deviation\n" " (2-dimensional Mahlanobis distance).\n" "* Test: Perform Jarque-Bera-Srivastava test of 2-d normality\n\n" "@par Thanks: Thanks to Philippe Pebay and David Thompson from Sandia\n" "National Laboratories for implementing this class. Updated by\n" "Philippe Pebay, Kitware SAS 2012\n\n"; static PyObject * PyvtkCorrelativeStatistics_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkCorrelativeStatistics::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCorrelativeStatistics_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCorrelativeStatistics *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkCorrelativeStatistics::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCorrelativeStatistics_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkCorrelativeStatistics *tempr = vtkCorrelativeStatistics::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkCorrelativeStatistics_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCorrelativeStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkCorrelativeStatistics *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkCorrelativeStatistics::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkCorrelativeStatistics_Aggregate(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Aggregate"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCorrelativeStatistics *op = static_cast(vp); vtkDataObjectCollection *temp0 = nullptr; vtkMultiBlockDataSet *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetVTKObject(temp0, "vtkDataObjectCollection") && ap.GetVTKObject(temp1, "vtkMultiBlockDataSet")) { if (ap.IsBound()) { op->Aggregate(temp0, temp1); } else { op->vtkCorrelativeStatistics::Aggregate(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkCorrelativeStatistics_Methods[] = { {"IsTypeOf", PyvtkCorrelativeStatistics_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkCorrelativeStatistics_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkCorrelativeStatistics_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkCorrelativeStatistics\nC++: static vtkCorrelativeStatistics *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkCorrelativeStatistics_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkCorrelativeStatistics\nC++: vtkCorrelativeStatistics *NewInstance()\n\n"}, {"Aggregate", PyvtkCorrelativeStatistics_Aggregate, METH_VARARGS, "V.Aggregate(vtkDataObjectCollection, vtkMultiBlockDataSet)\nC++: void Aggregate(vtkDataObjectCollection *,\n vtkMultiBlockDataSet *) override;\n\nGiven a collection of models, calculate aggregate model\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkCorrelativeStatistics_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersStatisticsPython.vtkCorrelativeStatistics", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkCorrelativeStatistics_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkCorrelativeStatistics_StaticNew() { return vtkCorrelativeStatistics::New(); } PyObject *PyvtkCorrelativeStatistics_ClassNew() { PyVTKClass_Add( &PyvtkCorrelativeStatistics_Type, PyvtkCorrelativeStatistics_Methods, "vtkCorrelativeStatistics", &PyvtkCorrelativeStatistics_StaticNew); PyTypeObject *pytype = &PyvtkCorrelativeStatistics_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkStatisticsAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkCorrelativeStatistics( PyObject *dict) { PyObject *o; o = PyvtkCorrelativeStatistics_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkCorrelativeStatistics", o) != 0) { Py_DECREF(o); } }