// python wrapper for vtkCylinder // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkCylinder.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkCylinder(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkCylinder_ClassNew(); } #ifndef DECLARED_PyvtkImplicitFunction_ClassNew extern "C" { PyObject *PyvtkImplicitFunction_ClassNew(); } #define DECLARED_PyvtkImplicitFunction_ClassNew #endif static const char *PyvtkCylinder_Doc = "vtkCylinder - implicit function for a cylinder\n\n" "Superclass: vtkImplicitFunction\n\n" "vtkCylinder computes the implicit function and function gradient for\n" "a cylinder using F(r)=r^2-Radius^2. vtkCylinder is a concrete\n" "implementation of vtkImplicitFunction. By default the Cylinder is\n" "centered at the origin and the axis of rotation is along the y-axis.\n" "You can redefine the center and axis of rotation by setting the\n" "Center and Axis data members. (Note that it is also possible to use\n" "the superclass' vtkImplicitFunction transformation matrix if\n" "necessary to reposition by using FunctionValue() and\n" "FunctionGradient().)\n\n" "@warning\n" "The cylinder is infinite in extent. To truncate the cylinder in\n" "modeling operations use the vtkImplicitBoolean in combination with\n" "clipping planes.\n\n"; static PyObject * PyvtkCylinder_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkCylinder::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinder_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkCylinder::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinder_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkCylinder *tempr = vtkCylinder::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkCylinder_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkCylinder *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkCylinder::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkCylinder_EvaluateFunction_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); double tempr = (ap.IsBound() ? op->EvaluateFunction(temp0) : op->vtkCylinder::EvaluateFunction(temp0)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinder_EvaluateFunction_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); vtkDataArray *temp0 = nullptr; vtkDataArray *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetVTKObject(temp0, "vtkDataArray") && ap.GetVTKObject(temp1, "vtkDataArray")) { if (ap.IsBound()) { op->EvaluateFunction(temp0, temp1); } else { op->vtkCylinder::EvaluateFunction(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_EvaluateFunction_s3(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { double tempr = (ap.IsBound() ? op->EvaluateFunction(temp0, temp1, temp2) : op->vtkCylinder::EvaluateFunction(temp0, temp1, temp2)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinder_EvaluateFunction(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkCylinder_EvaluateFunction_s1(self, args); case 2: return PyvtkCylinder_EvaluateFunction_s2(self, args); case 3: return PyvtkCylinder_EvaluateFunction_s3(self, args); } vtkPythonArgs::ArgCountError(nargs, "EvaluateFunction"); return nullptr; } static PyObject * PyvtkCylinder_EvaluateGradient(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateGradient"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 3; double temp1[3]; double save1[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->EvaluateGradient(temp0, temp1); } else { op->vtkCylinder::EvaluateGradient(temp0, temp1); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_SetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetRadius(temp0); } else { op->vtkCylinder::SetRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_GetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadius() : op->vtkCylinder::GetRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinder_SetCenter_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetCenter(temp0, temp1, temp2); } else { op->vtkCylinder::SetCenter(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_SetCenter_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetCenter(temp0); } else { op->vtkCylinder::SetCenter(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_SetCenter(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkCylinder_SetCenter_s1(self, args); case 1: return PyvtkCylinder_SetCenter_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetCenter"); return nullptr; } static PyObject * PyvtkCylinder_GetCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetCenter() : op->vtkCylinder::GetCenter()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkCylinder_SetAxis_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetAxis"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetAxis(temp0, temp1, temp2); } else { op->vtkCylinder::SetAxis(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_SetAxis_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetAxis"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->SetAxis(temp0); } else { op->vtkCylinder::SetAxis(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinder_SetAxis(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkCylinder_SetAxis_s1(self, args); case 1: return PyvtkCylinder_SetAxis_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetAxis"); return nullptr; } static PyObject * PyvtkCylinder_GetAxis(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAxis"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinder *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetAxis() : op->vtkCylinder::GetAxis()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyMethodDef PyvtkCylinder_Methods[] = { {"IsTypeOf", PyvtkCylinder_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkCylinder_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkCylinder_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkCylinder\nC++: static vtkCylinder *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkCylinder_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkCylinder\nC++: vtkCylinder *NewInstance()\n\n"}, {"EvaluateFunction", PyvtkCylinder_EvaluateFunction, METH_VARARGS, "V.EvaluateFunction([float, float, float]) -> float\nC++: double EvaluateFunction(double x[3]) override;\nV.EvaluateFunction(vtkDataArray, vtkDataArray)\nC++: virtual void EvaluateFunction(vtkDataArray *input,\n vtkDataArray *output)\nV.EvaluateFunction(float, float, float) -> float\nC++: virtual double EvaluateFunction(double x, double y, double z)\n\nEvaluate cylinder equation F(r) = r^2 - Radius^2.\n"}, {"EvaluateGradient", PyvtkCylinder_EvaluateGradient, METH_VARARGS, "V.EvaluateGradient([float, float, float], [float, float, float])\nC++: void EvaluateGradient(double x[3], double g[3]) override;\n\nEvaluate cylinder function gradient.\n"}, {"SetRadius", PyvtkCylinder_SetRadius, METH_VARARGS, "V.SetRadius(float)\nC++: virtual void SetRadius(double _arg)\n\nSet/Get the cylinder radius.\n"}, {"GetRadius", PyvtkCylinder_GetRadius, METH_VARARGS, "V.GetRadius() -> float\nC++: virtual double GetRadius()\n\nSet/Get the cylinder radius.\n"}, {"SetCenter", PyvtkCylinder_SetCenter, METH_VARARGS, "V.SetCenter(float, float, float)\nC++: void SetCenter(double, double, double)\nV.SetCenter((float, float, float))\nC++: void SetCenter(double a[3])\n\n"}, {"GetCenter", PyvtkCylinder_GetCenter, METH_VARARGS, "V.GetCenter() -> (float, float, float)\nC++: double *GetCenter()\n\n"}, {"SetAxis", PyvtkCylinder_SetAxis, METH_VARARGS, "V.SetAxis(float, float, float)\nC++: void SetAxis(double ax, double ay, double az)\nV.SetAxis([float, float, float])\nC++: void SetAxis(double a[3])\n\nSet/Get the axis of the cylinder. If the axis is not specified as\na unit vector, it will be normalized. If zero-length axis vector\nis used as input to this method, it will be ignored.\n"}, {"GetAxis", PyvtkCylinder_GetAxis, METH_VARARGS, "V.GetAxis() -> (float, float, float)\nC++: double *GetAxis()\n\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkCylinder_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkCommonDataModelPython.vtkCylinder", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkCylinder_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkCylinder_StaticNew() { return vtkCylinder::New(); } PyObject *PyvtkCylinder_ClassNew() { PyVTKClass_Add( &PyvtkCylinder_Type, PyvtkCylinder_Methods, "vtkCylinder", &PyvtkCylinder_StaticNew); PyTypeObject *pytype = &PyvtkCylinder_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkImplicitFunction_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkCylinder( PyObject *dict) { PyObject *o; o = PyvtkCylinder_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkCylinder", o) != 0) { Py_DECREF(o); } }