// python wrapper for vtkCylinderSource // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkCylinderSource.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkCylinderSource(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkCylinderSource_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkCylinderSource_Doc = "vtkCylinderSource - generate a cylinder centered at origin\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkCylinderSource creates a polygonal cylinder centered at Center;\n" "The axis of the cylinder is aligned along the global y-axis. The\n" "height and radius of the cylinder can be specified, as well as the\n" "number of sides. It is also possible to control whether the cylinder\n" "is open-ended or capped. If you have the end points of the cylinder,\n" "you should use a vtkLineSource followed by a vtkTubeFilter instead of\n" "the vtkCylinderSource.\n\n"; static PyObject * PyvtkCylinderSource_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkCylinderSource::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkCylinderSource::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkCylinderSource *tempr = vtkCylinderSource::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkCylinderSource_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkCylinderSource *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkCylinderSource::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkCylinderSource_SetHeight(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetHeight"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetHeight(temp0); } else { op->vtkCylinderSource::SetHeight(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_GetHeightMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetHeightMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetHeightMinValue() : op->vtkCylinderSource::GetHeightMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_GetHeightMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetHeightMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetHeightMaxValue() : op->vtkCylinderSource::GetHeightMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_GetHeight(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetHeight"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetHeight() : op->vtkCylinderSource::GetHeight()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_SetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetRadius(temp0); } else { op->vtkCylinderSource::SetRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_GetRadiusMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadiusMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadiusMinValue() : op->vtkCylinderSource::GetRadiusMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_GetRadiusMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadiusMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadiusMaxValue() : op->vtkCylinderSource::GetRadiusMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_GetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadius() : op->vtkCylinderSource::GetRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_SetCenter_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetCenter(temp0, temp1, temp2); } else { op->vtkCylinderSource::SetCenter(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_SetCenter_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetCenter(temp0); } else { op->vtkCylinderSource::SetCenter(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_SetCenter(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkCylinderSource_SetCenter_s1(self, args); case 1: return PyvtkCylinderSource_SetCenter_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetCenter"); return nullptr; } static PyObject * PyvtkCylinderSource_GetCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetCenter() : op->vtkCylinderSource::GetCenter()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkCylinderSource_SetResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetResolution(temp0); } else { op->vtkCylinderSource::SetResolution(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_GetResolutionMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetResolutionMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetResolutionMinValue() : op->vtkCylinderSource::GetResolutionMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_GetResolutionMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetResolutionMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetResolutionMaxValue() : op->vtkCylinderSource::GetResolutionMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_GetResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetResolution() : op->vtkCylinderSource::GetResolution()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_SetCapping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCapping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCapping(temp0); } else { op->vtkCylinderSource::SetCapping(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_GetCapping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCapping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetCapping() : op->vtkCylinderSource::GetCapping()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkCylinderSource_CappingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CappingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CappingOn(); } else { op->vtkCylinderSource::CappingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_CappingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CappingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CappingOff(); } else { op->vtkCylinderSource::CappingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_SetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputPointsPrecision(temp0); } else { op->vtkCylinderSource::SetOutputPointsPrecision(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkCylinderSource_GetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkCylinderSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputPointsPrecision() : op->vtkCylinderSource::GetOutputPointsPrecision()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkCylinderSource_Methods[] = { {"IsTypeOf", PyvtkCylinderSource_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkCylinderSource_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkCylinderSource_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkCylinderSource\nC++: static vtkCylinderSource *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkCylinderSource_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkCylinderSource\nC++: vtkCylinderSource *NewInstance()\n\n"}, {"SetHeight", PyvtkCylinderSource_SetHeight, METH_VARARGS, "V.SetHeight(float)\nC++: virtual void SetHeight(double _arg)\n\nSet the height of the cylinder. Initial value is 1.\n"}, {"GetHeightMinValue", PyvtkCylinderSource_GetHeightMinValue, METH_VARARGS, "V.GetHeightMinValue() -> float\nC++: virtual double GetHeightMinValue()\n\nSet the height of the cylinder. Initial value is 1.\n"}, {"GetHeightMaxValue", PyvtkCylinderSource_GetHeightMaxValue, METH_VARARGS, "V.GetHeightMaxValue() -> float\nC++: virtual double GetHeightMaxValue()\n\nSet the height of the cylinder. Initial value is 1.\n"}, {"GetHeight", PyvtkCylinderSource_GetHeight, METH_VARARGS, "V.GetHeight() -> float\nC++: virtual double GetHeight()\n\nSet the height of the cylinder. Initial value is 1.\n"}, {"SetRadius", PyvtkCylinderSource_SetRadius, METH_VARARGS, "V.SetRadius(float)\nC++: virtual void SetRadius(double _arg)\n\nSet the radius of the cylinder. Initial value is 0.5\n"}, {"GetRadiusMinValue", PyvtkCylinderSource_GetRadiusMinValue, METH_VARARGS, "V.GetRadiusMinValue() -> float\nC++: virtual double GetRadiusMinValue()\n\nSet the radius of the cylinder. Initial value is 0.5\n"}, {"GetRadiusMaxValue", PyvtkCylinderSource_GetRadiusMaxValue, METH_VARARGS, "V.GetRadiusMaxValue() -> float\nC++: virtual double GetRadiusMaxValue()\n\nSet the radius of the cylinder. Initial value is 0.5\n"}, {"GetRadius", PyvtkCylinderSource_GetRadius, METH_VARARGS, "V.GetRadius() -> float\nC++: virtual double GetRadius()\n\nSet the radius of the cylinder. Initial value is 0.5\n"}, {"SetCenter", PyvtkCylinderSource_SetCenter, METH_VARARGS, "V.SetCenter(float, float, float)\nC++: void SetCenter(double, double, double)\nV.SetCenter((float, float, float))\nC++: void SetCenter(double a[3])\n\n"}, {"GetCenter", PyvtkCylinderSource_GetCenter, METH_VARARGS, "V.GetCenter() -> (float, float, float)\nC++: double *GetCenter()\n\nSet/Get cylinder center. Initial value is (0.0,0.0,0.0)\n"}, {"SetResolution", PyvtkCylinderSource_SetResolution, METH_VARARGS, "V.SetResolution(int)\nC++: virtual void SetResolution(int _arg)\n\nSet the number of facets used to define cylinder. Initial value\nis 6.\n"}, {"GetResolutionMinValue", PyvtkCylinderSource_GetResolutionMinValue, METH_VARARGS, "V.GetResolutionMinValue() -> int\nC++: virtual int GetResolutionMinValue()\n\nSet the number of facets used to define cylinder. Initial value\nis 6.\n"}, {"GetResolutionMaxValue", PyvtkCylinderSource_GetResolutionMaxValue, METH_VARARGS, "V.GetResolutionMaxValue() -> int\nC++: virtual int GetResolutionMaxValue()\n\nSet the number of facets used to define cylinder. Initial value\nis 6.\n"}, {"GetResolution", PyvtkCylinderSource_GetResolution, METH_VARARGS, "V.GetResolution() -> int\nC++: virtual int GetResolution()\n\nSet the number of facets used to define cylinder. Initial value\nis 6.\n"}, {"SetCapping", PyvtkCylinderSource_SetCapping, METH_VARARGS, "V.SetCapping(int)\nC++: virtual void SetCapping(int _arg)\n\nTurn on/off whether to cap cylinder with polygons. Initial value\nis true.\n"}, {"GetCapping", PyvtkCylinderSource_GetCapping, METH_VARARGS, "V.GetCapping() -> int\nC++: virtual int GetCapping()\n\nTurn on/off whether to cap cylinder with polygons. Initial value\nis true.\n"}, {"CappingOn", PyvtkCylinderSource_CappingOn, METH_VARARGS, "V.CappingOn()\nC++: virtual void CappingOn()\n\nTurn on/off whether to cap cylinder with polygons. Initial value\nis true.\n"}, {"CappingOff", PyvtkCylinderSource_CappingOff, METH_VARARGS, "V.CappingOff()\nC++: virtual void CappingOff()\n\nTurn on/off whether to cap cylinder with polygons. Initial value\nis true.\n"}, {"SetOutputPointsPrecision", PyvtkCylinderSource_SetOutputPointsPrecision, METH_VARARGS, "V.SetOutputPointsPrecision(int)\nC++: virtual void SetOutputPointsPrecision(int _arg)\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {"GetOutputPointsPrecision", PyvtkCylinderSource_GetOutputPointsPrecision, METH_VARARGS, "V.GetOutputPointsPrecision() -> int\nC++: virtual int GetOutputPointsPrecision()\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkCylinderSource_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersSourcesPython.vtkCylinderSource", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkCylinderSource_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkCylinderSource_StaticNew() { return vtkCylinderSource::New(); } PyObject *PyvtkCylinderSource_ClassNew() { PyVTKClass_Add( &PyvtkCylinderSource_Type, PyvtkCylinderSource_Methods, "vtkCylinderSource", &PyvtkCylinderSource_StaticNew); PyTypeObject *pytype = &PyvtkCylinderSource_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkCylinderSource( PyObject *dict) { PyObject *o; o = PyvtkCylinderSource_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkCylinderSource", o) != 0) { Py_DECREF(o); } }