// python wrapper for vtkDataSetEdgeSubdivisionCriterion // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkDataSetEdgeSubdivisionCriterion.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkDataSetEdgeSubdivisionCriterion(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkDataSetEdgeSubdivisionCriterion_ClassNew(); } #ifndef DECLARED_PyvtkEdgeSubdivisionCriterion_ClassNew extern "C" { PyObject *PyvtkEdgeSubdivisionCriterion_ClassNew(); } #define DECLARED_PyvtkEdgeSubdivisionCriterion_ClassNew #endif static const char *PyvtkDataSetEdgeSubdivisionCriterion_Doc = "vtkDataSetEdgeSubdivisionCriterion - a subclass of\nvtkEdgeSubdivisionCriterion for vtkDataSet objects.\n\n" "Superclass: vtkEdgeSubdivisionCriterion\n\n" "This is a subclass of vtkEdgeSubdivisionCriterion that is used for\n" "tessellating cells of a vtkDataSet, particularly nonlinear cells.\n\n" "It provides functions for setting the current cell being tessellated\n" "and a convenience routine, EvaluateFields() to evaluate field values\n" "at a point. You should call EvaluateFields() from inside\n" "EvaluateEdge() whenever the result of EvaluateEdge() will be true.\n" "Otherwise, do not call EvaluateFields() as the midpoint is about to\n" "be discarded. (Implementor's note: This isn't true if\n" "UGLY_ASPECT_RATIO_HACK has been defined. But in that case, we don't\n" "want the exact field values; we need the linearly interpolated ones\n" "at the midpoint for continuity.)\n\n" "@sa\n" "vtkEdgeSubdivisionCriterion\n\n"; static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkDataSetEdgeSubdivisionCriterion::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkDataSetEdgeSubdivisionCriterion::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkDataSetEdgeSubdivisionCriterion *tempr = vtkDataSetEdgeSubdivisionCriterion::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkDataSetEdgeSubdivisionCriterion *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkDataSetEdgeSubdivisionCriterion::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_SetMesh(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMesh"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); vtkDataSet *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkDataSet")) { if (ap.IsBound()) { op->SetMesh(temp0); } else { op->vtkDataSetEdgeSubdivisionCriterion::SetMesh(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_GetMesh(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMesh"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkDataSet *tempr = (ap.IsBound() ? op->GetMesh() : op->vtkDataSetEdgeSubdivisionCriterion::GetMesh()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_SetCellId(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCellId"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCellId(temp0); } else { op->vtkDataSetEdgeSubdivisionCriterion::SetCellId(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_GetCellId(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellId"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType *tempr = (ap.IsBound() ? &op->GetCellId() : &op->vtkDataSetEdgeSubdivisionCriterion::GetCellId()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(*tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_GetCell(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCell"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkCell *tempr = (ap.IsBound() ? op->GetCell() : op->vtkDataSetEdgeSubdivisionCriterion::GetCell()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_EvaluateEdge(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateEdge"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(size0); double *temp0 = store0.Data(); int size1 = ap.GetArgSize(1); vtkPythonArgs::Array store1(2*size1); double *temp1 = store1.Data(); double *save1 = (size1 == 0 ? nullptr : temp1 + size1); int size2 = ap.GetArgSize(2); vtkPythonArgs::Array store2(size2); double *temp2 = store2.Data(); int temp3; PyObject *result = nullptr; if (op && ap.CheckArgCount(4) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1) && ap.GetArray(temp2, size2) && ap.GetValue(temp3)) { ap.SaveArray(temp1, save1, size1); bool tempr = (ap.IsBound() ? op->EvaluateEdge(temp0, temp1, temp2, temp3) : op->vtkDataSetEdgeSubdivisionCriterion::EvaluateEdge(temp0, temp1, temp2, temp3)); if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_EvaluateFields(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFields"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(2*size0); double *temp0 = store0.Data(); double *save0 = (size0 == 0 ? nullptr : temp0 + size0); int size1 = ap.GetArgSize(1); vtkPythonArgs::Array store1(2*size1); double *temp1 = store1.Data(); double *save1 = (size1 == 0 ? nullptr : temp1 + size1); int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1) && ap.GetValue(temp2)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); double *tempr = (ap.IsBound() ? op->EvaluateFields(temp0, temp1, temp2) : op->vtkDataSetEdgeSubdivisionCriterion::EvaluateFields(temp0, temp1, temp2)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_EvaluatePointDataField(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluatePointDataField"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(2*size0); double *temp0 = store0.Data(); double *save0 = (size0 == 0 ? nullptr : temp0 + size0); int size1 = ap.GetArgSize(1); vtkPythonArgs::Array store1(2*size1); double *temp1 = store1.Data(); double *save1 = (size1 == 0 ? nullptr : temp1 + size1); int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1) && ap.GetValue(temp2)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->EvaluatePointDataField(temp0, temp1, temp2); } else { op->vtkDataSetEdgeSubdivisionCriterion::EvaluatePointDataField(temp0, temp1, temp2); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_EvaluateCellDataField(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateCellDataField"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(2*size0); double *temp0 = store0.Data(); double *save0 = (size0 == 0 ? nullptr : temp0 + size0); int size1 = ap.GetArgSize(1); vtkPythonArgs::Array store1(2*size1); double *temp1 = store1.Data(); double *save1 = (size1 == 0 ? nullptr : temp1 + size1); int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1) && ap.GetValue(temp2)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->EvaluateCellDataField(temp0, temp1, temp2); } else { op->vtkDataSetEdgeSubdivisionCriterion::EvaluateCellDataField(temp0, temp1, temp2); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_SetChordError2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetChordError2"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetChordError2(temp0); } else { op->vtkDataSetEdgeSubdivisionCriterion::SetChordError2(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_GetChordError2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetChordError2"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetChordError2() : op->vtkDataSetEdgeSubdivisionCriterion::GetChordError2()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_SetFieldError2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetFieldError2"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); int temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetFieldError2(temp0, temp1); } else { op->vtkDataSetEdgeSubdivisionCriterion::SetFieldError2(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_GetFieldError2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFieldError2"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { double tempr = (ap.IsBound() ? op->GetFieldError2(temp0) : op->vtkDataSetEdgeSubdivisionCriterion::GetFieldError2(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_ResetFieldError2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ResetFieldError2"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ResetFieldError2(); } else { op->vtkDataSetEdgeSubdivisionCriterion::ResetFieldError2(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDataSetEdgeSubdivisionCriterion_GetActiveFieldCriteria(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetActiveFieldCriteria"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDataSetEdgeSubdivisionCriterion *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetActiveFieldCriteria() : op->vtkDataSetEdgeSubdivisionCriterion::GetActiveFieldCriteria()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkDataSetEdgeSubdivisionCriterion_Methods[] = { {"IsTypeOf", PyvtkDataSetEdgeSubdivisionCriterion_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkDataSetEdgeSubdivisionCriterion_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkDataSetEdgeSubdivisionCriterion_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase)\n -> vtkDataSetEdgeSubdivisionCriterion\nC++: static vtkDataSetEdgeSubdivisionCriterion *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkDataSetEdgeSubdivisionCriterion_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkDataSetEdgeSubdivisionCriterion\nC++: vtkDataSetEdgeSubdivisionCriterion *NewInstance()\n\n"}, {"SetMesh", PyvtkDataSetEdgeSubdivisionCriterion_SetMesh, METH_VARARGS, "V.SetMesh(vtkDataSet)\nC++: virtual void SetMesh(vtkDataSet *)\n\n"}, {"GetMesh", PyvtkDataSetEdgeSubdivisionCriterion_GetMesh, METH_VARARGS, "V.GetMesh() -> vtkDataSet\nC++: vtkDataSet *GetMesh()\n\n"}, {"SetCellId", PyvtkDataSetEdgeSubdivisionCriterion_SetCellId, METH_VARARGS, "V.SetCellId(int)\nC++: virtual void SetCellId(vtkIdType cell)\n\n"}, {"GetCellId", PyvtkDataSetEdgeSubdivisionCriterion_GetCellId, METH_VARARGS, "V.GetCellId() -> int\nC++: vtkIdType &GetCellId()\n\n"}, {"GetCell", PyvtkDataSetEdgeSubdivisionCriterion_GetCell, METH_VARARGS, "V.GetCell() -> vtkCell\nC++: vtkCell *GetCell()\n\n"}, {"EvaluateEdge", PyvtkDataSetEdgeSubdivisionCriterion_EvaluateEdge, METH_VARARGS, "V.EvaluateEdge((float, ...), [float, ...], (float, ...), int)\n -> bool\nC++: bool EvaluateEdge(const double *p0, double *midpt,\n const double *p1, int field_start) override;\n\nYou must implement this member function in a subclass. It will be\ncalled by vtkStreamingTessellator for each edge in each primitive\nthat vtkStreamingTessellator generates.\n"}, {"EvaluateFields", PyvtkDataSetEdgeSubdivisionCriterion_EvaluateFields, METH_VARARGS, "V.EvaluateFields([float, ...], [float, ...], int) -> (float, ...)\nC++: double *EvaluateFields(double *vertex, double *weights,\n int field_start)\n\nEvaluate all of the fields that should be output with the given\nvertex and store them just past the parametric coordinates of\nvertex, at the offsets given\nbyvtkEdgeSubdivisionCriterion::GetFieldOffsets() plus\nfield_start.field_start contains the number of world-space\ncoordinates (always 3) plus the embedding dimension (the size of\nthe parameter-space in which the cell is embedded). It will range\nbetween 3 and 6, inclusive.\n\n* You must have called SetCellId() before calling this routine or\nthere\n* will not be a mesh over which to evaluate the fields.\n\n* You must have called\n vtkEdgeSubdivisionCriterion::PassDefaultFields()\n* or vtkEdgeSubdivisionCriterion::PassField() or there will be no\nfields\n* defined for the output vertex.\n\n* This routine is public and returns its input argument so that\n it\n* may be used as an argument to\n* vtkStreamingTessellator::AdaptivelySamplekFacet():\n* \n * vtkStreamingTessellator* t = vtkStreamingTessellator::New();\n * vtkEdgeSubdivisionCriterion* s;\n * ...\n * t->AdaptivelySample1Facet( s->EvaluateFields( p0 ), s->EvaluateFields( p1 ) );\n * ...\n * \n* Although this will work, using EvaluateFields() in this manner\n* should be avoided. It's much more efficient to fetch the corner\nvalues\n* for each attribute and copy them into p0, p1, ... as opposed to\n* performing shape function evaluations. The only case where you\n wouldn't\n* want to do this is when the field you are interpolating is\n discontinuous\n* at cell borders, such as with a discontinuous galerkin method\n or when\n* all the Gauss points for quadrature are interior to the cell.\n\n* The final argument, weights, is the array of weights to apply\n to each\n* point's data when interpolating the field. This is returned by\n* vtkCell::EvaluateLocation() when evaluating the geometry.\n"}, {"EvaluatePointDataField", PyvtkDataSetEdgeSubdivisionCriterion_EvaluatePointDataField, METH_VARARGS, "V.EvaluatePointDataField([float, ...], [float, ...], int)\nC++: void EvaluatePointDataField(double *result, double *weights,\n int field)\n\nEvaluate either a cell or nodal field. This exists because of the\nfunky way that Exodus data will be handled. Sure, it's a hack,\nbut what are ya gonna do?\n"}, {"EvaluateCellDataField", PyvtkDataSetEdgeSubdivisionCriterion_EvaluateCellDataField, METH_VARARGS, "V.EvaluateCellDataField([float, ...], [float, ...], int)\nC++: void EvaluateCellDataField(double *result, double *weights,\n int field)\n\nEvaluate either a cell or nodal field. This exists because of the\nfunky way that Exodus data will be handled. Sure, it's a hack,\nbut what are ya gonna do?\n"}, {"SetChordError2", PyvtkDataSetEdgeSubdivisionCriterion_SetChordError2, METH_VARARGS, "V.SetChordError2(float)\nC++: virtual void SetChordError2(double _arg)\n\nGet/Set the square of the allowable chord error at any edge's\nmidpoint. This value is used by EvaluateEdge.\n"}, {"GetChordError2", PyvtkDataSetEdgeSubdivisionCriterion_GetChordError2, METH_VARARGS, "V.GetChordError2() -> float\nC++: virtual double GetChordError2()\n\nGet/Set the square of the allowable chord error at any edge's\nmidpoint. This value is used by EvaluateEdge.\n"}, {"SetFieldError2", PyvtkDataSetEdgeSubdivisionCriterion_SetFieldError2, METH_VARARGS, "V.SetFieldError2(int, float)\nC++: virtual void SetFieldError2(int s, double err)\n\nGet/Set the square of the allowable error magnitude for the\nscalar field s at any edge's midpoint. A value less than or equal\nto 0 indicates that the field should not be used as a criterion\nfor subdivision.\n"}, {"GetFieldError2", PyvtkDataSetEdgeSubdivisionCriterion_GetFieldError2, METH_VARARGS, "V.GetFieldError2(int) -> float\nC++: double GetFieldError2(int s)\n\nGet/Set the square of the allowable error magnitude for the\nscalar field s at any edge's midpoint. A value less than or equal\nto 0 indicates that the field should not be used as a criterion\nfor subdivision.\n"}, {"ResetFieldError2", PyvtkDataSetEdgeSubdivisionCriterion_ResetFieldError2, METH_VARARGS, "V.ResetFieldError2()\nC++: virtual void ResetFieldError2()\n\nTell the subdivider not to use any field values as subdivision\ncriteria. Effectively calls SetFieldError2( a, -1. ) for all\nfields.\n"}, {"GetActiveFieldCriteria", PyvtkDataSetEdgeSubdivisionCriterion_GetActiveFieldCriteria, METH_VARARGS, "V.GetActiveFieldCriteria() -> int\nC++: virtual int GetActiveFieldCriteria()\n\nReturn a bitfield specifying which FieldError2 criteria are\npositive (i.e., actively used to decide edge subdivisions). This\nis stored as separate state to make subdivisions go faster.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkDataSetEdgeSubdivisionCriterion_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersCorePython.vtkDataSetEdgeSubdivisionCriterion", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkDataSetEdgeSubdivisionCriterion_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkDataSetEdgeSubdivisionCriterion_StaticNew() { return vtkDataSetEdgeSubdivisionCriterion::New(); } PyObject *PyvtkDataSetEdgeSubdivisionCriterion_ClassNew() { PyVTKClass_Add( &PyvtkDataSetEdgeSubdivisionCriterion_Type, PyvtkDataSetEdgeSubdivisionCriterion_Methods, "vtkDataSetEdgeSubdivisionCriterion", &PyvtkDataSetEdgeSubdivisionCriterion_StaticNew); PyTypeObject *pytype = &PyvtkDataSetEdgeSubdivisionCriterion_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkEdgeSubdivisionCriterion_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkDataSetEdgeSubdivisionCriterion( PyObject *dict) { PyObject *o; o = PyvtkDataSetEdgeSubdivisionCriterion_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkDataSetEdgeSubdivisionCriterion", o) != 0) { Py_DECREF(o); } }