// python wrapper for vtkDescriptiveStatistics // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkDescriptiveStatistics.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkDescriptiveStatistics(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkDescriptiveStatistics_ClassNew(); } #ifndef DECLARED_PyvtkStatisticsAlgorithm_ClassNew extern "C" { PyObject *PyvtkStatisticsAlgorithm_ClassNew(); } #define DECLARED_PyvtkStatisticsAlgorithm_ClassNew #endif static const char *PyvtkDescriptiveStatistics_Doc = "vtkDescriptiveStatistics - A class for univariate descriptive\nstatistics\n\n" "Superclass: vtkStatisticsAlgorithm\n\n" "Given a selection of columns of interest in an input data table, this\n" "class provides the following functionalities, depending on the chosen\n" "execution options:\n" "* Learn: calculate extremal values, sample mean, and M2, M3, and M4\n" " aggregates (cf. P. Pebay, Formulas for robust, one-pass parallel\n" " computation of covariances and Arbitrary-Order Statistical Moments,\n" "Sandia Report SAND2008-6212, Sep 2008,\n" " http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)\n" "* Derive: calculate unbiased variance estimator, standard deviation\n" " estimator, two skewness estimators, and two kurtosis excess\n" " estimators.\n" "* Assess: given an input data set, a reference value and a\n" " non-negative deviation, mark each datum with corresponding relative\n" "deviation (1-dimensional Mahlanobis distance). If the deviation is\n" " zero, then mark each datum which are equal to the reference value\n" " with 0, and all others with 1. By default, the reference value and\n" " the deviation are, respectively, the mean and the standard\n" " deviation of the input model.\n" "* Test: calculate Jarque-Bera statistic and, if VTK to R interface is\n" "available, retrieve corresponding p-value for normality testing.\n\n" "@par Thanks: Thanks to Philippe Pebay and David Thompson from Sandia\n" "National Laboratories for implementing this class. Updated by\n" "Philippe Pebay, Kitware SAS 2012\n\n"; static PyObject * PyvtkDescriptiveStatistics_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkDescriptiveStatistics::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkDescriptiveStatistics::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkDescriptiveStatistics *tempr = vtkDescriptiveStatistics::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkDescriptiveStatistics *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkDescriptiveStatistics::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkDescriptiveStatistics_SetUnbiasedVariance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetUnbiasedVariance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetUnbiasedVariance(temp0); } else { op->vtkDescriptiveStatistics::SetUnbiasedVariance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_GetUnbiasedVariance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetUnbiasedVariance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetUnbiasedVariance() : op->vtkDescriptiveStatistics::GetUnbiasedVariance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_UnbiasedVarianceOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "UnbiasedVarianceOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->UnbiasedVarianceOn(); } else { op->vtkDescriptiveStatistics::UnbiasedVarianceOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_UnbiasedVarianceOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "UnbiasedVarianceOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->UnbiasedVarianceOff(); } else { op->vtkDescriptiveStatistics::UnbiasedVarianceOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_SetG1Skewness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetG1Skewness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetG1Skewness(temp0); } else { op->vtkDescriptiveStatistics::SetG1Skewness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_GetG1Skewness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetG1Skewness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetG1Skewness() : op->vtkDescriptiveStatistics::GetG1Skewness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_G1SkewnessOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "G1SkewnessOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->G1SkewnessOn(); } else { op->vtkDescriptiveStatistics::G1SkewnessOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_G1SkewnessOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "G1SkewnessOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->G1SkewnessOff(); } else { op->vtkDescriptiveStatistics::G1SkewnessOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_SetG2Kurtosis(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetG2Kurtosis"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetG2Kurtosis(temp0); } else { op->vtkDescriptiveStatistics::SetG2Kurtosis(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_GetG2Kurtosis(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetG2Kurtosis"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetG2Kurtosis() : op->vtkDescriptiveStatistics::GetG2Kurtosis()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_G2KurtosisOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "G2KurtosisOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->G2KurtosisOn(); } else { op->vtkDescriptiveStatistics::G2KurtosisOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_G2KurtosisOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "G2KurtosisOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->G2KurtosisOff(); } else { op->vtkDescriptiveStatistics::G2KurtosisOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_SetSignedDeviations(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSignedDeviations"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetSignedDeviations(temp0); } else { op->vtkDescriptiveStatistics::SetSignedDeviations(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_GetSignedDeviations(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSignedDeviations"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetSignedDeviations() : op->vtkDescriptiveStatistics::GetSignedDeviations()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDescriptiveStatistics_SignedDeviationsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SignedDeviationsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SignedDeviationsOn(); } else { op->vtkDescriptiveStatistics::SignedDeviationsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_SignedDeviationsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SignedDeviationsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SignedDeviationsOff(); } else { op->vtkDescriptiveStatistics::SignedDeviationsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDescriptiveStatistics_Aggregate(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Aggregate"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDescriptiveStatistics *op = static_cast(vp); vtkDataObjectCollection *temp0 = nullptr; vtkMultiBlockDataSet *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetVTKObject(temp0, "vtkDataObjectCollection") && ap.GetVTKObject(temp1, "vtkMultiBlockDataSet")) { if (ap.IsBound()) { op->Aggregate(temp0, temp1); } else { op->vtkDescriptiveStatistics::Aggregate(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkDescriptiveStatistics_Methods[] = { {"IsTypeOf", PyvtkDescriptiveStatistics_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkDescriptiveStatistics_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkDescriptiveStatistics_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkDescriptiveStatistics\nC++: static vtkDescriptiveStatistics *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkDescriptiveStatistics_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkDescriptiveStatistics\nC++: vtkDescriptiveStatistics *NewInstance()\n\n"}, {"SetUnbiasedVariance", PyvtkDescriptiveStatistics_SetUnbiasedVariance, METH_VARARGS, "V.SetUnbiasedVariance(int)\nC++: virtual void SetUnbiasedVariance(int _arg)\n\nSet/get whether the unbiased estimator for the variance should be\nused, or if the population variance will be calculated. The\ndefault is that the unbiased estimator will be used.\n"}, {"GetUnbiasedVariance", PyvtkDescriptiveStatistics_GetUnbiasedVariance, METH_VARARGS, "V.GetUnbiasedVariance() -> int\nC++: virtual int GetUnbiasedVariance()\n\nSet/get whether the unbiased estimator for the variance should be\nused, or if the population variance will be calculated. The\ndefault is that the unbiased estimator will be used.\n"}, {"UnbiasedVarianceOn", PyvtkDescriptiveStatistics_UnbiasedVarianceOn, METH_VARARGS, "V.UnbiasedVarianceOn()\nC++: virtual void UnbiasedVarianceOn()\n\nSet/get whether the unbiased estimator for the variance should be\nused, or if the population variance will be calculated. The\ndefault is that the unbiased estimator will be used.\n"}, {"UnbiasedVarianceOff", PyvtkDescriptiveStatistics_UnbiasedVarianceOff, METH_VARARGS, "V.UnbiasedVarianceOff()\nC++: virtual void UnbiasedVarianceOff()\n\nSet/get whether the unbiased estimator for the variance should be\nused, or if the population variance will be calculated. The\ndefault is that the unbiased estimator will be used.\n"}, {"SetG1Skewness", PyvtkDescriptiveStatistics_SetG1Skewness, METH_VARARGS, "V.SetG1Skewness(int)\nC++: virtual void SetG1Skewness(int _arg)\n\nSet/get whether the G1 estimator for the skewness should be used,\nor if the g1 skewness will be calculated. The default is that the\ng1 skewness estimator will be used.\n"}, {"GetG1Skewness", PyvtkDescriptiveStatistics_GetG1Skewness, METH_VARARGS, "V.GetG1Skewness() -> int\nC++: virtual int GetG1Skewness()\n\nSet/get whether the G1 estimator for the skewness should be used,\nor if the g1 skewness will be calculated. The default is that the\ng1 skewness estimator will be used.\n"}, {"G1SkewnessOn", PyvtkDescriptiveStatistics_G1SkewnessOn, METH_VARARGS, "V.G1SkewnessOn()\nC++: virtual void G1SkewnessOn()\n\nSet/get whether the G1 estimator for the skewness should be used,\nor if the g1 skewness will be calculated. The default is that the\ng1 skewness estimator will be used.\n"}, {"G1SkewnessOff", PyvtkDescriptiveStatistics_G1SkewnessOff, METH_VARARGS, "V.G1SkewnessOff()\nC++: virtual void G1SkewnessOff()\n\nSet/get whether the G1 estimator for the skewness should be used,\nor if the g1 skewness will be calculated. The default is that the\ng1 skewness estimator will be used.\n"}, {"SetG2Kurtosis", PyvtkDescriptiveStatistics_SetG2Kurtosis, METH_VARARGS, "V.SetG2Kurtosis(int)\nC++: virtual void SetG2Kurtosis(int _arg)\n\nSet/get whether the G2 estimator for the kurtosis should be used,\nor if the g2 kurtosis will be calculated. The default is that the\ng2 kurtosis estimator will be used.\n"}, {"GetG2Kurtosis", PyvtkDescriptiveStatistics_GetG2Kurtosis, METH_VARARGS, "V.GetG2Kurtosis() -> int\nC++: virtual int GetG2Kurtosis()\n\nSet/get whether the G2 estimator for the kurtosis should be used,\nor if the g2 kurtosis will be calculated. The default is that the\ng2 kurtosis estimator will be used.\n"}, {"G2KurtosisOn", PyvtkDescriptiveStatistics_G2KurtosisOn, METH_VARARGS, "V.G2KurtosisOn()\nC++: virtual void G2KurtosisOn()\n\nSet/get whether the G2 estimator for the kurtosis should be used,\nor if the g2 kurtosis will be calculated. The default is that the\ng2 kurtosis estimator will be used.\n"}, {"G2KurtosisOff", PyvtkDescriptiveStatistics_G2KurtosisOff, METH_VARARGS, "V.G2KurtosisOff()\nC++: virtual void G2KurtosisOff()\n\nSet/get whether the G2 estimator for the kurtosis should be used,\nor if the g2 kurtosis will be calculated. The default is that the\ng2 kurtosis estimator will be used.\n"}, {"SetSignedDeviations", PyvtkDescriptiveStatistics_SetSignedDeviations, METH_VARARGS, "V.SetSignedDeviations(int)\nC++: virtual void SetSignedDeviations(int _arg)\n\nSet/get whether the deviations returned should be signed, or\nshould only have their magnitude reported. The default is that\nsigned deviations will be computed.\n"}, {"GetSignedDeviations", PyvtkDescriptiveStatistics_GetSignedDeviations, METH_VARARGS, "V.GetSignedDeviations() -> int\nC++: virtual int GetSignedDeviations()\n\nSet/get whether the deviations returned should be signed, or\nshould only have their magnitude reported. The default is that\nsigned deviations will be computed.\n"}, {"SignedDeviationsOn", PyvtkDescriptiveStatistics_SignedDeviationsOn, METH_VARARGS, "V.SignedDeviationsOn()\nC++: virtual void SignedDeviationsOn()\n\nSet/get whether the deviations returned should be signed, or\nshould only have their magnitude reported. The default is that\nsigned deviations will be computed.\n"}, {"SignedDeviationsOff", PyvtkDescriptiveStatistics_SignedDeviationsOff, METH_VARARGS, "V.SignedDeviationsOff()\nC++: virtual void SignedDeviationsOff()\n\nSet/get whether the deviations returned should be signed, or\nshould only have their magnitude reported. The default is that\nsigned deviations will be computed.\n"}, {"Aggregate", PyvtkDescriptiveStatistics_Aggregate, METH_VARARGS, "V.Aggregate(vtkDataObjectCollection, vtkMultiBlockDataSet)\nC++: void Aggregate(vtkDataObjectCollection *,\n vtkMultiBlockDataSet *) override;\n\nGiven a collection of models, calculate aggregate model\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkDescriptiveStatistics_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersStatisticsPython.vtkDescriptiveStatistics", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkDescriptiveStatistics_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkDescriptiveStatistics_StaticNew() { return vtkDescriptiveStatistics::New(); } PyObject *PyvtkDescriptiveStatistics_ClassNew() { PyVTKClass_Add( &PyvtkDescriptiveStatistics_Type, PyvtkDescriptiveStatistics_Methods, "vtkDescriptiveStatistics", &PyvtkDescriptiveStatistics_StaticNew); PyTypeObject *pytype = &PyvtkDescriptiveStatistics_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkStatisticsAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkDescriptiveStatistics( PyObject *dict) { PyObject *o; o = PyvtkDescriptiveStatistics_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkDescriptiveStatistics", o) != 0) { Py_DECREF(o); } }