// python wrapper for vtkDiscreteMarchingCubes // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkDiscreteMarchingCubes.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkDiscreteMarchingCubes(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkDiscreteMarchingCubes_ClassNew(); } #ifndef DECLARED_PyvtkMarchingCubes_ClassNew extern "C" { PyObject *PyvtkMarchingCubes_ClassNew(); } #define DECLARED_PyvtkMarchingCubes_ClassNew #endif static const char *PyvtkDiscreteMarchingCubes_Doc = "vtkDiscreteMarchingCubes - generate object boundaries from labelled\nvolumes\n\n" "Superclass: vtkMarchingCubes\n\n" "takes as input a volume (e.g., 3D structured point set) of\n" "segmentation labels and generates on output one or more models\n" "representing the boundaries between the specified label and the\n" "adjacent structures. One or more label values must be specified to\n" "generate the models. The boundary positions are always defined to be\n" "half-way between adjacent voxels. This filter works best with\n" "integral scalar values. If ComputeScalars is on (the default), each\n" "output cell will have cell data that corresponds to the scalar value\n" "(segmentation label) of the corresponding cube. Note that this\n" "differs from vtkMarchingCubes, which stores the scalar value as point\n" "data. The rationale for this difference is that cell vertices may be\n" "shared between multiple cells. This also means that the resultant\n" "polydata may be non-manifold (cell faces may be coincident). To\n" "further process the polydata, users should either: 1) extract cells\n" "that have a common scalar value using vtkThreshold, or 2) process the\n" "data with filters that can handle non-manifold polydata (e.g.\n" "vtkWindowedSincPolyDataFilter). Also note, Normals and Gradients are\n" "not computed. If ComputeAdjacentScalars is on (default is off), each\n" "output point will have point data that contains the label value of\n" "the neighbouring voxel. This allows to remove regions of the\n" "resulting vtkPolyData that are adjacent to specific label meshes. For\n" "example, if the input is a label image that was created by running a\n" "watershed transformation on a distance map followed by masking with\n" "the original binary segmentation. For further details and images see\n" "the VTK Journal paper \"Providing values of adjacent voxel with\n" "vtkDiscreteMarchingCubes\" by Roman Grothausmann:\n" "http://hdl.handle.net/10380/3559\n" "http://www.vtkjournal.org/browse/publication/975\n" "@warning\n" "This filter is specialized to volumes. If you are interested in\n" "contouring other types of data, use the general vtkContourFilter. If\n" "you want to contour an image (i.e., a volume slice), use\n" "vtkMarchingSquares.\n" "@sa\n" "vtkContourFilter vtkSliceCubes vtkMarchingSquares vtkDividingCubes\n\n"; static PyObject * PyvtkDiscreteMarchingCubes_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkDiscreteMarchingCubes::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDiscreteMarchingCubes *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkDiscreteMarchingCubes::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkDiscreteMarchingCubes *tempr = vtkDiscreteMarchingCubes::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDiscreteMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkDiscreteMarchingCubes *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkDiscreteMarchingCubes::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_SetComputeAdjacentScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeAdjacentScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDiscreteMarchingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeAdjacentScalars(temp0); } else { op->vtkDiscreteMarchingCubes::SetComputeAdjacentScalars(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_GetComputeAdjacentScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeAdjacentScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDiscreteMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeAdjacentScalars() : op->vtkDiscreteMarchingCubes::GetComputeAdjacentScalars()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_ComputeAdjacentScalarsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeAdjacentScalarsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDiscreteMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeAdjacentScalarsOn(); } else { op->vtkDiscreteMarchingCubes::ComputeAdjacentScalarsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkDiscreteMarchingCubes_ComputeAdjacentScalarsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeAdjacentScalarsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkDiscreteMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeAdjacentScalarsOff(); } else { op->vtkDiscreteMarchingCubes::ComputeAdjacentScalarsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkDiscreteMarchingCubes_Methods[] = { {"IsTypeOf", PyvtkDiscreteMarchingCubes_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkDiscreteMarchingCubes_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkDiscreteMarchingCubes_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkDiscreteMarchingCubes\nC++: static vtkDiscreteMarchingCubes *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkDiscreteMarchingCubes_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkDiscreteMarchingCubes\nC++: vtkDiscreteMarchingCubes *NewInstance()\n\n"}, {"SetComputeAdjacentScalars", PyvtkDiscreteMarchingCubes_SetComputeAdjacentScalars, METH_VARARGS, "V.SetComputeAdjacentScalars(int)\nC++: virtual void SetComputeAdjacentScalars(int _arg)\n\nSet/Get the computation of neighbouring voxel values.\n"}, {"GetComputeAdjacentScalars", PyvtkDiscreteMarchingCubes_GetComputeAdjacentScalars, METH_VARARGS, "V.GetComputeAdjacentScalars() -> int\nC++: virtual int GetComputeAdjacentScalars()\n\nSet/Get the computation of neighbouring voxel values.\n"}, {"ComputeAdjacentScalarsOn", PyvtkDiscreteMarchingCubes_ComputeAdjacentScalarsOn, METH_VARARGS, "V.ComputeAdjacentScalarsOn()\nC++: virtual void ComputeAdjacentScalarsOn()\n\nSet/Get the computation of neighbouring voxel values.\n"}, {"ComputeAdjacentScalarsOff", PyvtkDiscreteMarchingCubes_ComputeAdjacentScalarsOff, METH_VARARGS, "V.ComputeAdjacentScalarsOff()\nC++: virtual void ComputeAdjacentScalarsOff()\n\nSet/Get the computation of neighbouring voxel values.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkDiscreteMarchingCubes_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersGeneralPython.vtkDiscreteMarchingCubes", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkDiscreteMarchingCubes_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkDiscreteMarchingCubes_StaticNew() { return vtkDiscreteMarchingCubes::New(); } PyObject *PyvtkDiscreteMarchingCubes_ClassNew() { PyVTKClass_Add( &PyvtkDiscreteMarchingCubes_Type, PyvtkDiscreteMarchingCubes_Methods, "vtkDiscreteMarchingCubes", &PyvtkDiscreteMarchingCubes_StaticNew); PyTypeObject *pytype = &PyvtkDiscreteMarchingCubes_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkMarchingCubes_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkDiscreteMarchingCubes( PyObject *dict) { PyObject *o; o = PyvtkDiscreteMarchingCubes_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkDiscreteMarchingCubes", o) != 0) { Py_DECREF(o); } }