// python wrapper for vtkExtractUnstructuredGrid // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkExtractUnstructuredGrid.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkExtractUnstructuredGrid(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkExtractUnstructuredGrid_ClassNew(); } #ifndef DECLARED_PyvtkUnstructuredGridAlgorithm_ClassNew extern "C" { PyObject *PyvtkUnstructuredGridAlgorithm_ClassNew(); } #define DECLARED_PyvtkUnstructuredGridAlgorithm_ClassNew #endif static const char *PyvtkExtractUnstructuredGrid_Doc = "vtkExtractUnstructuredGrid - extract subset of unstructured grid\ngeometry\n\n" "Superclass: vtkUnstructuredGridAlgorithm\n\n" "vtkExtractUnstructuredGrid is a general-purpose filter to extract\n" "geometry (and associated data) from an unstructured grid dataset. The\n" "extraction process is controlled by specifying a range of point ids,\n" "cell ids, or a bounding box (referred to as \"Extent\"). Those cells\n" "laying within these regions are sent to the output. The user has the\n" "choice of merging coincident points (Merging is on) or using the\n" "original point set (Merging is off).\n\n" "@warning\n" "If merging is off, the input points are copied through to the output.\n" "This means unused points may be present in the output data. If\n" "merging is on, then coincident points with different point attribute\n" "values are merged.\n\n" "@sa\n" "vtkImageDataGeometryFilter vtkStructuredGridGeometryFilter\n" "vtkRectilinearGridGeometryFilter vtkExtractGeometry vtkExtractVOI\n\n"; static PyObject * PyvtkExtractUnstructuredGrid_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkExtractUnstructuredGrid::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkExtractUnstructuredGrid::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkExtractUnstructuredGrid *tempr = vtkExtractUnstructuredGrid::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkExtractUnstructuredGrid *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkExtractUnstructuredGrid::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetPointClipping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPointClipping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPointClipping(temp0); } else { op->vtkExtractUnstructuredGrid::SetPointClipping(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointClipping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointClipping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetPointClipping() : op->vtkExtractUnstructuredGrid::GetPointClipping()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_PointClippingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "PointClippingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->PointClippingOn(); } else { op->vtkExtractUnstructuredGrid::PointClippingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_PointClippingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "PointClippingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->PointClippingOff(); } else { op->vtkExtractUnstructuredGrid::PointClippingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetCellClipping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCellClipping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCellClipping(temp0); } else { op->vtkExtractUnstructuredGrid::SetCellClipping(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellClipping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellClipping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetCellClipping() : op->vtkExtractUnstructuredGrid::GetCellClipping()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_CellClippingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CellClippingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CellClippingOn(); } else { op->vtkExtractUnstructuredGrid::CellClippingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_CellClippingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CellClippingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CellClippingOff(); } else { op->vtkExtractUnstructuredGrid::CellClippingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetExtentClipping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetExtentClipping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetExtentClipping(temp0); } else { op->vtkExtractUnstructuredGrid::SetExtentClipping(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetExtentClipping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetExtentClipping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetExtentClipping() : op->vtkExtractUnstructuredGrid::GetExtentClipping()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_ExtentClippingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ExtentClippingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ExtentClippingOn(); } else { op->vtkExtractUnstructuredGrid::ExtentClippingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_ExtentClippingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ExtentClippingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ExtentClippingOff(); } else { op->vtkExtractUnstructuredGrid::ExtentClippingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetPointMinimum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPointMinimum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPointMinimum(temp0); } else { op->vtkExtractUnstructuredGrid::SetPointMinimum(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointMinimumMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointMinimumMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetPointMinimumMinValue() : op->vtkExtractUnstructuredGrid::GetPointMinimumMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointMinimumMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointMinimumMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetPointMinimumMaxValue() : op->vtkExtractUnstructuredGrid::GetPointMinimumMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointMinimum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointMinimum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetPointMinimum() : op->vtkExtractUnstructuredGrid::GetPointMinimum()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetPointMaximum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPointMaximum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPointMaximum(temp0); } else { op->vtkExtractUnstructuredGrid::SetPointMaximum(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointMaximumMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointMaximumMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetPointMaximumMinValue() : op->vtkExtractUnstructuredGrid::GetPointMaximumMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointMaximumMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointMaximumMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetPointMaximumMaxValue() : op->vtkExtractUnstructuredGrid::GetPointMaximumMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetPointMaximum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPointMaximum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetPointMaximum() : op->vtkExtractUnstructuredGrid::GetPointMaximum()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetCellMinimum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCellMinimum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCellMinimum(temp0); } else { op->vtkExtractUnstructuredGrid::SetCellMinimum(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellMinimumMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellMinimumMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetCellMinimumMinValue() : op->vtkExtractUnstructuredGrid::GetCellMinimumMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellMinimumMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellMinimumMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetCellMinimumMaxValue() : op->vtkExtractUnstructuredGrid::GetCellMinimumMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellMinimum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellMinimum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetCellMinimum() : op->vtkExtractUnstructuredGrid::GetCellMinimum()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetCellMaximum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCellMaximum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCellMaximum(temp0); } else { op->vtkExtractUnstructuredGrid::SetCellMaximum(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellMaximumMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellMaximumMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetCellMaximumMinValue() : op->vtkExtractUnstructuredGrid::GetCellMaximumMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellMaximumMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellMaximumMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetCellMaximumMaxValue() : op->vtkExtractUnstructuredGrid::GetCellMaximumMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetCellMaximum(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellMaximum"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetCellMaximum() : op->vtkExtractUnstructuredGrid::GetCellMaximum()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetExtent_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetExtent"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); double temp0; double temp1; double temp2; double temp3; double temp4; double temp5; PyObject *result = nullptr; if (op && ap.CheckArgCount(6) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetValue(temp4) && ap.GetValue(temp5)) { if (ap.IsBound()) { op->SetExtent(temp0, temp1, temp2, temp3, temp4, temp5); } else { op->vtkExtractUnstructuredGrid::SetExtent(temp0, temp1, temp2, temp3, temp4, temp5); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetExtent_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetExtent"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); const int size0 = 6; double temp0[6]; double save0[6]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->SetExtent(temp0); } else { op->vtkExtractUnstructuredGrid::SetExtent(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetExtent(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 6: return PyvtkExtractUnstructuredGrid_SetExtent_s1(self, args); case 1: return PyvtkExtractUnstructuredGrid_SetExtent_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetExtent"); return nullptr; } static PyObject * PyvtkExtractUnstructuredGrid_GetExtent(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetExtent"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); int sizer = 6; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetExtent() : op->vtkExtractUnstructuredGrid::GetExtent()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetMerging(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMerging"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMerging(temp0); } else { op->vtkExtractUnstructuredGrid::SetMerging(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetMerging(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMerging"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetMerging() : op->vtkExtractUnstructuredGrid::GetMerging()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_MergingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "MergingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->MergingOn(); } else { op->vtkExtractUnstructuredGrid::MergingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_MergingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "MergingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->MergingOff(); } else { op->vtkExtractUnstructuredGrid::MergingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_SetLocator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLocator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); vtkIncrementalPointLocator *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkIncrementalPointLocator")) { if (ap.IsBound()) { op->SetLocator(temp0); } else { op->vtkExtractUnstructuredGrid::SetLocator(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetLocator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLocator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIncrementalPointLocator *tempr = (ap.IsBound() ? op->GetLocator() : op->vtkExtractUnstructuredGrid::GetLocator()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_CreateDefaultLocator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CreateDefaultLocator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CreateDefaultLocator(); } else { op->vtkExtractUnstructuredGrid::CreateDefaultLocator(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkExtractUnstructuredGrid_GetMTime(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMTime"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkExtractUnstructuredGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { unsigned long tempr = (ap.IsBound() ? op->GetMTime() : op->vtkExtractUnstructuredGrid::GetMTime()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkExtractUnstructuredGrid_Methods[] = { {"IsTypeOf", PyvtkExtractUnstructuredGrid_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkExtractUnstructuredGrid_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkExtractUnstructuredGrid_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkExtractUnstructuredGrid\nC++: static vtkExtractUnstructuredGrid *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkExtractUnstructuredGrid_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkExtractUnstructuredGrid\nC++: vtkExtractUnstructuredGrid *NewInstance()\n\n"}, {"SetPointClipping", PyvtkExtractUnstructuredGrid_SetPointClipping, METH_VARARGS, "V.SetPointClipping(int)\nC++: virtual void SetPointClipping(int _arg)\n\nTurn on/off selection of geometry by point id.\n"}, {"GetPointClipping", PyvtkExtractUnstructuredGrid_GetPointClipping, METH_VARARGS, "V.GetPointClipping() -> int\nC++: virtual int GetPointClipping()\n\nTurn on/off selection of geometry by point id.\n"}, {"PointClippingOn", PyvtkExtractUnstructuredGrid_PointClippingOn, METH_VARARGS, "V.PointClippingOn()\nC++: virtual void PointClippingOn()\n\nTurn on/off selection of geometry by point id.\n"}, {"PointClippingOff", PyvtkExtractUnstructuredGrid_PointClippingOff, METH_VARARGS, "V.PointClippingOff()\nC++: virtual void PointClippingOff()\n\nTurn on/off selection of geometry by point id.\n"}, {"SetCellClipping", PyvtkExtractUnstructuredGrid_SetCellClipping, METH_VARARGS, "V.SetCellClipping(int)\nC++: virtual void SetCellClipping(int _arg)\n\nTurn on/off selection of geometry by cell id.\n"}, {"GetCellClipping", PyvtkExtractUnstructuredGrid_GetCellClipping, METH_VARARGS, "V.GetCellClipping() -> int\nC++: virtual int GetCellClipping()\n\nTurn on/off selection of geometry by cell id.\n"}, {"CellClippingOn", PyvtkExtractUnstructuredGrid_CellClippingOn, METH_VARARGS, "V.CellClippingOn()\nC++: virtual void CellClippingOn()\n\nTurn on/off selection of geometry by cell id.\n"}, {"CellClippingOff", PyvtkExtractUnstructuredGrid_CellClippingOff, METH_VARARGS, "V.CellClippingOff()\nC++: virtual void CellClippingOff()\n\nTurn on/off selection of geometry by cell id.\n"}, {"SetExtentClipping", PyvtkExtractUnstructuredGrid_SetExtentClipping, METH_VARARGS, "V.SetExtentClipping(int)\nC++: virtual void SetExtentClipping(int _arg)\n\nTurn on/off selection of geometry via bounding box.\n"}, {"GetExtentClipping", PyvtkExtractUnstructuredGrid_GetExtentClipping, METH_VARARGS, "V.GetExtentClipping() -> int\nC++: virtual int GetExtentClipping()\n\nTurn on/off selection of geometry via bounding box.\n"}, {"ExtentClippingOn", PyvtkExtractUnstructuredGrid_ExtentClippingOn, METH_VARARGS, "V.ExtentClippingOn()\nC++: virtual void ExtentClippingOn()\n\nTurn on/off selection of geometry via bounding box.\n"}, {"ExtentClippingOff", PyvtkExtractUnstructuredGrid_ExtentClippingOff, METH_VARARGS, "V.ExtentClippingOff()\nC++: virtual void ExtentClippingOff()\n\nTurn on/off selection of geometry via bounding box.\n"}, {"SetPointMinimum", PyvtkExtractUnstructuredGrid_SetPointMinimum, METH_VARARGS, "V.SetPointMinimum(int)\nC++: virtual void SetPointMinimum(vtkIdType _arg)\n\nSpecify the minimum point id for point id selection.\n"}, {"GetPointMinimumMinValue", PyvtkExtractUnstructuredGrid_GetPointMinimumMinValue, METH_VARARGS, "V.GetPointMinimumMinValue() -> int\nC++: virtual vtkIdType GetPointMinimumMinValue()\n\nSpecify the minimum point id for point id selection.\n"}, {"GetPointMinimumMaxValue", PyvtkExtractUnstructuredGrid_GetPointMinimumMaxValue, METH_VARARGS, "V.GetPointMinimumMaxValue() -> int\nC++: virtual vtkIdType GetPointMinimumMaxValue()\n\nSpecify the minimum point id for point id selection.\n"}, {"GetPointMinimum", PyvtkExtractUnstructuredGrid_GetPointMinimum, METH_VARARGS, "V.GetPointMinimum() -> int\nC++: virtual vtkIdType GetPointMinimum()\n\nSpecify the minimum point id for point id selection.\n"}, {"SetPointMaximum", PyvtkExtractUnstructuredGrid_SetPointMaximum, METH_VARARGS, "V.SetPointMaximum(int)\nC++: virtual void SetPointMaximum(vtkIdType _arg)\n\nSpecify the maximum point id for point id selection.\n"}, {"GetPointMaximumMinValue", PyvtkExtractUnstructuredGrid_GetPointMaximumMinValue, METH_VARARGS, "V.GetPointMaximumMinValue() -> int\nC++: virtual vtkIdType GetPointMaximumMinValue()\n\nSpecify the maximum point id for point id selection.\n"}, {"GetPointMaximumMaxValue", PyvtkExtractUnstructuredGrid_GetPointMaximumMaxValue, METH_VARARGS, "V.GetPointMaximumMaxValue() -> int\nC++: virtual vtkIdType GetPointMaximumMaxValue()\n\nSpecify the maximum point id for point id selection.\n"}, {"GetPointMaximum", PyvtkExtractUnstructuredGrid_GetPointMaximum, METH_VARARGS, "V.GetPointMaximum() -> int\nC++: virtual vtkIdType GetPointMaximum()\n\nSpecify the maximum point id for point id selection.\n"}, {"SetCellMinimum", PyvtkExtractUnstructuredGrid_SetCellMinimum, METH_VARARGS, "V.SetCellMinimum(int)\nC++: virtual void SetCellMinimum(vtkIdType _arg)\n\nSpecify the minimum cell id for point id selection.\n"}, {"GetCellMinimumMinValue", PyvtkExtractUnstructuredGrid_GetCellMinimumMinValue, METH_VARARGS, "V.GetCellMinimumMinValue() -> int\nC++: virtual vtkIdType GetCellMinimumMinValue()\n\nSpecify the minimum cell id for point id selection.\n"}, {"GetCellMinimumMaxValue", PyvtkExtractUnstructuredGrid_GetCellMinimumMaxValue, METH_VARARGS, "V.GetCellMinimumMaxValue() -> int\nC++: virtual vtkIdType GetCellMinimumMaxValue()\n\nSpecify the minimum cell id for point id selection.\n"}, {"GetCellMinimum", PyvtkExtractUnstructuredGrid_GetCellMinimum, METH_VARARGS, "V.GetCellMinimum() -> int\nC++: virtual vtkIdType GetCellMinimum()\n\nSpecify the minimum cell id for point id selection.\n"}, {"SetCellMaximum", PyvtkExtractUnstructuredGrid_SetCellMaximum, METH_VARARGS, "V.SetCellMaximum(int)\nC++: virtual void SetCellMaximum(vtkIdType _arg)\n\nSpecify the maximum cell id for point id selection.\n"}, {"GetCellMaximumMinValue", PyvtkExtractUnstructuredGrid_GetCellMaximumMinValue, METH_VARARGS, "V.GetCellMaximumMinValue() -> int\nC++: virtual vtkIdType GetCellMaximumMinValue()\n\nSpecify the maximum cell id for point id selection.\n"}, {"GetCellMaximumMaxValue", PyvtkExtractUnstructuredGrid_GetCellMaximumMaxValue, METH_VARARGS, "V.GetCellMaximumMaxValue() -> int\nC++: virtual vtkIdType GetCellMaximumMaxValue()\n\nSpecify the maximum cell id for point id selection.\n"}, {"GetCellMaximum", PyvtkExtractUnstructuredGrid_GetCellMaximum, METH_VARARGS, "V.GetCellMaximum() -> int\nC++: virtual vtkIdType GetCellMaximum()\n\nSpecify the maximum cell id for point id selection.\n"}, {"SetExtent", PyvtkExtractUnstructuredGrid_SetExtent, METH_VARARGS, "V.SetExtent(float, float, float, float, float, float)\nC++: void SetExtent(double xMin, double xMax, double yMin,\n double yMax, double zMin, double zMax)\nV.SetExtent([float, float, float, float, float, float])\nC++: void SetExtent(double extent[6])\n\nSpecify a (xmin,xmax, ymin,ymax, zmin,zmax) bounding box to clip\ndata.\n"}, {"GetExtent", PyvtkExtractUnstructuredGrid_GetExtent, METH_VARARGS, "V.GetExtent() -> (float, float, float, float, float, float)\nC++: double *GetExtent()\n\nSet / get a (xmin,xmax, ymin,ymax, zmin,zmax) bounding box to\nclip data.\n"}, {"SetMerging", PyvtkExtractUnstructuredGrid_SetMerging, METH_VARARGS, "V.SetMerging(int)\nC++: virtual void SetMerging(int _arg)\n\nTurn on/off merging of coincident points. Note that is merging is\non, points with different point attributes (e.g., normals) are\nmerged, which may cause rendering artifacts.\n"}, {"GetMerging", PyvtkExtractUnstructuredGrid_GetMerging, METH_VARARGS, "V.GetMerging() -> int\nC++: virtual int GetMerging()\n\nTurn on/off merging of coincident points. Note that is merging is\non, points with different point attributes (e.g., normals) are\nmerged, which may cause rendering artifacts.\n"}, {"MergingOn", PyvtkExtractUnstructuredGrid_MergingOn, METH_VARARGS, "V.MergingOn()\nC++: virtual void MergingOn()\n\nTurn on/off merging of coincident points. Note that is merging is\non, points with different point attributes (e.g., normals) are\nmerged, which may cause rendering artifacts.\n"}, {"MergingOff", PyvtkExtractUnstructuredGrid_MergingOff, METH_VARARGS, "V.MergingOff()\nC++: virtual void MergingOff()\n\nTurn on/off merging of coincident points. Note that is merging is\non, points with different point attributes (e.g., normals) are\nmerged, which may cause rendering artifacts.\n"}, {"SetLocator", PyvtkExtractUnstructuredGrid_SetLocator, METH_VARARGS, "V.SetLocator(vtkIncrementalPointLocator)\nC++: void SetLocator(vtkIncrementalPointLocator *locator)\n\nSet / get a spatial locator for merging points. By default an\ninstance of vtkMergePoints is used.\n"}, {"GetLocator", PyvtkExtractUnstructuredGrid_GetLocator, METH_VARARGS, "V.GetLocator() -> vtkIncrementalPointLocator\nC++: virtual vtkIncrementalPointLocator *GetLocator()\n\nSet / get a spatial locator for merging points. By default an\ninstance of vtkMergePoints is used.\n"}, {"CreateDefaultLocator", PyvtkExtractUnstructuredGrid_CreateDefaultLocator, METH_VARARGS, "V.CreateDefaultLocator()\nC++: void CreateDefaultLocator()\n\nCreate default locator. Used to create one when none is\nspecified.\n"}, {"GetMTime", PyvtkExtractUnstructuredGrid_GetMTime, METH_VARARGS, "V.GetMTime() -> int\nC++: vtkMTimeType GetMTime() override;\n\nReturn the MTime also considering the locator.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkExtractUnstructuredGrid_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersExtractionPython.vtkExtractUnstructuredGrid", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkExtractUnstructuredGrid_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkExtractUnstructuredGrid_StaticNew() { return vtkExtractUnstructuredGrid::New(); } PyObject *PyvtkExtractUnstructuredGrid_ClassNew() { PyVTKClass_Add( &PyvtkExtractUnstructuredGrid_Type, PyvtkExtractUnstructuredGrid_Methods, "vtkExtractUnstructuredGrid", &PyvtkExtractUnstructuredGrid_StaticNew); PyTypeObject *pytype = &PyvtkExtractUnstructuredGrid_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkUnstructuredGridAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkExtractUnstructuredGrid( PyObject *dict) { PyObject *o; o = PyvtkExtractUnstructuredGrid_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkExtractUnstructuredGrid", o) != 0) { Py_DECREF(o); } }