// python wrapper for vtkGaussianKernel // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkGaussianKernel.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkGaussianKernel(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkGaussianKernel_ClassNew(); } #ifndef DECLARED_PyvtkGeneralizedKernel_ClassNew extern "C" { PyObject *PyvtkGeneralizedKernel_ClassNew(); } #define DECLARED_PyvtkGeneralizedKernel_ClassNew #endif static const char *PyvtkGaussianKernel_Doc = "vtkGaussianKernel - a spherical Gaussian interpolation kernel\n\n" "Superclass: vtkGeneralizedKernel\n\n" "vtkGaussianKernel is an interpolation kernel that simply returns the\n" "weights for all points found in the sphere defined by radius R. The\n" "weights are computed as: exp(-(s*r/R)^2) where r is the distance from\n" "the point to be interpolated to a neighboring point within R. The\n" "sharpness s simply affects the rate of fall off of the Gaussian. (A\n" "more general Gaussian kernel is available from\n" "vtkEllipsoidalGaussianKernel.)\n\n" "@warning\n" "The weights are normalized sp that SUM(Wi) = 1. If a neighbor point p\n" "precisely lies on the point to be interpolated, then the interpolated\n" "point takes on the values associated with p.\n\n" "@sa\n" "vtkPointInterpolator vtkInterpolationKernel\n" "vtkEllipsoidalGaussianKernel vtkVoronoiKernel vtkSPHKernel\n" "vtkShepardKernel\n\n"; static PyObject * PyvtkGaussianKernel_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkGaussianKernel::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkGaussianKernel::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkGaussianKernel *tempr = vtkGaussianKernel::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkGaussianKernel *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkGaussianKernel::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkGaussianKernel_Initialize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Initialize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); vtkAbstractPointLocator *temp0 = nullptr; vtkDataSet *temp1 = nullptr; vtkPointData *temp2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetVTKObject(temp0, "vtkAbstractPointLocator") && ap.GetVTKObject(temp1, "vtkDataSet") && ap.GetVTKObject(temp2, "vtkPointData")) { if (ap.IsBound()) { op->Initialize(temp0, temp1, temp2); } else { op->vtkGaussianKernel::Initialize(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGaussianKernel_ComputeWeights_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeWeights"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; vtkIdList *temp1 = nullptr; vtkDoubleArray *temp2 = nullptr; vtkDoubleArray *temp3 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(4) && ap.GetArray(temp0, size0) && ap.GetVTKObject(temp1, "vtkIdList") && ap.GetVTKObject(temp2, "vtkDoubleArray") && ap.GetVTKObject(temp3, "vtkDoubleArray")) { ap.SaveArray(temp0, save0, size0); vtkIdType tempr = (ap.IsBound() ? op->ComputeWeights(temp0, temp1, temp2, temp3) : op->vtkGaussianKernel::ComputeWeights(temp0, temp1, temp2, temp3)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_ComputeWeights_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeWeights"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; vtkIdList *temp1 = nullptr; vtkDoubleArray *temp2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetArray(temp0, size0) && ap.GetVTKObject(temp1, "vtkIdList") && ap.GetVTKObject(temp2, "vtkDoubleArray")) { ap.SaveArray(temp0, save0, size0); vtkIdType tempr = (ap.IsBound() ? op->ComputeWeights(temp0, temp1, temp2) : op->vtkGaussianKernel::ComputeWeights(temp0, temp1, temp2)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_ComputeWeights(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 4: return PyvtkGaussianKernel_ComputeWeights_s1(self, args); case 3: return PyvtkGaussianKernel_ComputeWeights_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "ComputeWeights"); return nullptr; } static PyObject * PyvtkGaussianKernel_SetSharpness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSharpness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetSharpness(temp0); } else { op->vtkGaussianKernel::SetSharpness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGaussianKernel_GetSharpnessMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSharpnessMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetSharpnessMinValue() : op->vtkGaussianKernel::GetSharpnessMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_GetSharpnessMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSharpnessMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetSharpnessMaxValue() : op->vtkGaussianKernel::GetSharpnessMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGaussianKernel_GetSharpness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSharpness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGaussianKernel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetSharpness() : op->vtkGaussianKernel::GetSharpness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkGaussianKernel_Methods[] = { {"IsTypeOf", PyvtkGaussianKernel_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nStandard methods for instantiation, obtaining type information,\nand printing.\n"}, {"IsA", PyvtkGaussianKernel_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nStandard methods for instantiation, obtaining type information,\nand printing.\n"}, {"SafeDownCast", PyvtkGaussianKernel_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkGaussianKernel\nC++: static vtkGaussianKernel *SafeDownCast(vtkObjectBase *o)\n\nStandard methods for instantiation, obtaining type information,\nand printing.\n"}, {"NewInstance", PyvtkGaussianKernel_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkGaussianKernel\nC++: vtkGaussianKernel *NewInstance()\n\nStandard methods for instantiation, obtaining type information,\nand printing.\n"}, {"Initialize", PyvtkGaussianKernel_Initialize, METH_VARARGS, "V.Initialize(vtkAbstractPointLocator, vtkDataSet, vtkPointData)\nC++: void Initialize(vtkAbstractPointLocator *loc, vtkDataSet *ds,\n vtkPointData *pd) override;\n\nInitialize the kernel. Overload the superclass to set up internal\ncomputational values.\n"}, {"ComputeWeights", PyvtkGaussianKernel_ComputeWeights, METH_VARARGS, "V.ComputeWeights([float, float, float], vtkIdList, vtkDoubleArray,\n vtkDoubleArray) -> int\nC++: vtkIdType ComputeWeights(double x[3], vtkIdList *pIds,\n vtkDoubleArray *prob, vtkDoubleArray *weights) override;\nV.ComputeWeights([float, float, float], vtkIdList, vtkDoubleArray)\n -> int\nC++: vtkIdType ComputeWeights(double x[3], vtkIdList *pIds,\n vtkDoubleArray *weights) override;\n\nGiven a point x, a list of basis points pIds, and a probability\nweighting function prob, compute interpolation weights associated\nwith these basis points. Note that basis points list pIds, the\nprobability weighting prob, and the weights array are provided by\nthe caller of the method, and may be dynamically resized as\nnecessary. The method returns the number of weights (pIds may be\nresized in some cases). Typically this method is called after\nComputeBasis(), although advanced users can invoke\nComputeWeights() and provide the interpolation basis points pIds\ndirectly. The probably weighting prob are numbers 0<=prob<=1\nwhich are multiplied against the interpolation weights before\nnormalization. They are estimates of local confidence of weights.\nThe prob may be nullptr in which all probabilities are considered\n=1.\n"}, {"SetSharpness", PyvtkGaussianKernel_SetSharpness, METH_VARARGS, "V.SetSharpness(float)\nC++: virtual void SetSharpness(double _arg)\n\nSet / Get the sharpness (i.e., falloff) of the Gaussian. By\ndefault Sharpness=2. As the sharpness increases the effects of\ndistant points are reduced.\n"}, {"GetSharpnessMinValue", PyvtkGaussianKernel_GetSharpnessMinValue, METH_VARARGS, "V.GetSharpnessMinValue() -> float\nC++: virtual double GetSharpnessMinValue()\n\nSet / Get the sharpness (i.e., falloff) of the Gaussian. By\ndefault Sharpness=2. As the sharpness increases the effects of\ndistant points are reduced.\n"}, {"GetSharpnessMaxValue", PyvtkGaussianKernel_GetSharpnessMaxValue, METH_VARARGS, "V.GetSharpnessMaxValue() -> float\nC++: virtual double GetSharpnessMaxValue()\n\nSet / Get the sharpness (i.e., falloff) of the Gaussian. By\ndefault Sharpness=2. As the sharpness increases the effects of\ndistant points are reduced.\n"}, {"GetSharpness", PyvtkGaussianKernel_GetSharpness, METH_VARARGS, "V.GetSharpness() -> float\nC++: virtual double GetSharpness()\n\nSet / Get the sharpness (i.e., falloff) of the Gaussian. By\ndefault Sharpness=2. As the sharpness increases the effects of\ndistant points are reduced.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkGaussianKernel_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersPointsPython.vtkGaussianKernel", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkGaussianKernel_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkGaussianKernel_StaticNew() { return vtkGaussianKernel::New(); } PyObject *PyvtkGaussianKernel_ClassNew() { PyVTKClass_Add( &PyvtkGaussianKernel_Type, PyvtkGaussianKernel_Methods, "vtkGaussianKernel", &PyvtkGaussianKernel_StaticNew); PyTypeObject *pytype = &PyvtkGaussianKernel_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkGeneralizedKernel_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkGaussianKernel( PyObject *dict) { PyObject *o; o = PyvtkGaussianKernel_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkGaussianKernel", o) != 0) { Py_DECREF(o); } }