// python wrapper for vtkGeoAdaptiveArcs // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkGeoAdaptiveArcs.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkGeoAdaptiveArcs(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkGeoAdaptiveArcs_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkGeoAdaptiveArcs_Doc = "vtkGeoAdaptiveArcs - no description provided.\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" ; static PyObject * PyvtkGeoAdaptiveArcs_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkGeoAdaptiveArcs::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkGeoAdaptiveArcs::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkGeoAdaptiveArcs *tempr = vtkGeoAdaptiveArcs::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkGeoAdaptiveArcs *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkGeoAdaptiveArcs::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_SetGlobeRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGlobeRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGlobeRadius(temp0); } else { op->vtkGeoAdaptiveArcs::SetGlobeRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_GetGlobeRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGlobeRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetGlobeRadius() : op->vtkGeoAdaptiveArcs::GetGlobeRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_SetMaximumPixelSeparation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMaximumPixelSeparation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMaximumPixelSeparation(temp0); } else { op->vtkGeoAdaptiveArcs::SetMaximumPixelSeparation(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_GetMaximumPixelSeparation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumPixelSeparation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumPixelSeparation() : op->vtkGeoAdaptiveArcs::GetMaximumPixelSeparation()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_SetMinimumPixelSeparation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMinimumPixelSeparation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMinimumPixelSeparation(temp0); } else { op->vtkGeoAdaptiveArcs::SetMinimumPixelSeparation(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_GetMinimumPixelSeparation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumPixelSeparation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMinimumPixelSeparation() : op->vtkGeoAdaptiveArcs::GetMinimumPixelSeparation()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_SetRenderer(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRenderer"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); vtkRenderer *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkRenderer")) { if (ap.IsBound()) { op->SetRenderer(temp0); } else { op->vtkGeoAdaptiveArcs::SetRenderer(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_GetRenderer(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRenderer"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkRenderer *tempr = (ap.IsBound() ? op->GetRenderer() : op->vtkGeoAdaptiveArcs::GetRenderer()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGeoAdaptiveArcs_GetMTime(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMTime"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAdaptiveArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { unsigned long tempr = (ap.IsBound() ? op->GetMTime() : op->vtkGeoAdaptiveArcs::GetMTime()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkGeoAdaptiveArcs_Methods[] = { {"IsTypeOf", PyvtkGeoAdaptiveArcs_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkGeoAdaptiveArcs_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkGeoAdaptiveArcs_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkGeoAdaptiveArcs\nC++: static vtkGeoAdaptiveArcs *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkGeoAdaptiveArcs_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkGeoAdaptiveArcs\nC++: vtkGeoAdaptiveArcs *NewInstance()\n\n"}, {"SetGlobeRadius", PyvtkGeoAdaptiveArcs_SetGlobeRadius, METH_VARARGS, "V.SetGlobeRadius(float)\nC++: virtual void SetGlobeRadius(double _arg)\n\nThe base radius used to determine the earth's surface. Default is\nthe earth's radius in meters. TODO: Change this to take in a\nvtkGeoTerrain to get altitude.\n"}, {"GetGlobeRadius", PyvtkGeoAdaptiveArcs_GetGlobeRadius, METH_VARARGS, "V.GetGlobeRadius() -> float\nC++: virtual double GetGlobeRadius()\n\nThe base radius used to determine the earth's surface. Default is\nthe earth's radius in meters. TODO: Change this to take in a\nvtkGeoTerrain to get altitude.\n"}, {"SetMaximumPixelSeparation", PyvtkGeoAdaptiveArcs_SetMaximumPixelSeparation, METH_VARARGS, "V.SetMaximumPixelSeparation(float)\nC++: virtual void SetMaximumPixelSeparation(double _arg)\n\nThe maximum number of pixels between points on the arcs. If two\nadjacent points are farther than the threshold, the line segment\nwill be subdivided such that each point is separated by at most\nthe threshold.\n"}, {"GetMaximumPixelSeparation", PyvtkGeoAdaptiveArcs_GetMaximumPixelSeparation, METH_VARARGS, "V.GetMaximumPixelSeparation() -> float\nC++: virtual double GetMaximumPixelSeparation()\n\nThe maximum number of pixels between points on the arcs. If two\nadjacent points are farther than the threshold, the line segment\nwill be subdivided such that each point is separated by at most\nthe threshold.\n"}, {"SetMinimumPixelSeparation", PyvtkGeoAdaptiveArcs_SetMinimumPixelSeparation, METH_VARARGS, "V.SetMinimumPixelSeparation(float)\nC++: virtual void SetMinimumPixelSeparation(double _arg)\n\nThe minimum number of pixels between points on the arcs. Points\ncloser than the threshold will be skipped until a point farther\nthan the minimum threshold is reached.\n"}, {"GetMinimumPixelSeparation", PyvtkGeoAdaptiveArcs_GetMinimumPixelSeparation, METH_VARARGS, "V.GetMinimumPixelSeparation() -> float\nC++: virtual double GetMinimumPixelSeparation()\n\nThe minimum number of pixels between points on the arcs. Points\ncloser than the threshold will be skipped until a point farther\nthan the minimum threshold is reached.\n"}, {"SetRenderer", PyvtkGeoAdaptiveArcs_SetRenderer, METH_VARARGS, "V.SetRenderer(vtkRenderer)\nC++: virtual void SetRenderer(vtkRenderer *ren)\n\nThe renderer used to estimate the number of pixels between\npoints.\n"}, {"GetRenderer", PyvtkGeoAdaptiveArcs_GetRenderer, METH_VARARGS, "V.GetRenderer() -> vtkRenderer\nC++: virtual vtkRenderer *GetRenderer()\n\nThe renderer used to estimate the number of pixels between\npoints.\n"}, {"GetMTime", PyvtkGeoAdaptiveArcs_GetMTime, METH_VARARGS, "V.GetMTime() -> int\nC++: vtkMTimeType GetMTime() override;\n\nReturn the modified time of this object.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkGeoAdaptiveArcs_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkGeovisCorePython.vtkGeoAdaptiveArcs", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkGeoAdaptiveArcs_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkGeoAdaptiveArcs_StaticNew() { return vtkGeoAdaptiveArcs::New(); } PyObject *PyvtkGeoAdaptiveArcs_ClassNew() { PyVTKClass_Add( &PyvtkGeoAdaptiveArcs_Type, PyvtkGeoAdaptiveArcs_Methods, "vtkGeoAdaptiveArcs", &PyvtkGeoAdaptiveArcs_StaticNew); PyTypeObject *pytype = &PyvtkGeoAdaptiveArcs_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkGeoAdaptiveArcs( PyObject *dict) { PyObject *o; o = PyvtkGeoAdaptiveArcs_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkGeoAdaptiveArcs", o) != 0) { Py_DECREF(o); } }