// python wrapper for vtkGeoAlignedImageSource // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkGeoAlignedImageSource.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkGeoAlignedImageSource(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkGeoAlignedImageSource_ClassNew(); } #ifndef DECLARED_PyvtkGeoSource_ClassNew extern "C" { PyObject *PyvtkGeoSource_ClassNew(); } #define DECLARED_PyvtkGeoSource_ClassNew #endif static const char *PyvtkGeoAlignedImageSource_Doc = "vtkGeoAlignedImageSource - Splits hi-res image into tiles.\n\n" "Superclass: vtkGeoSource\n\n" "vtkGeoAlignedImageSource uses a high resolution image to generate\n" "tiles at multiple resolutions in a hierarchy. It should be used as a\n" "source in vtkGeoAlignedImageRepresentation.\n\n" "@sa\n" "vtkGeoAlignedImageRepresentation vtkGeoView vtkGeoView2D\n\n"; static PyObject * PyvtkGeoAlignedImageSource_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkGeoAlignedImageSource::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkGeoAlignedImageSource::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkGeoAlignedImageSource *tempr = vtkGeoAlignedImageSource::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkGeoAlignedImageSource *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkGeoAlignedImageSource::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkGeoAlignedImageSource_FetchRoot(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "FetchRoot"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); vtkGeoTreeNode *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkGeoTreeNode")) { bool tempr = (ap.IsBound() ? op->FetchRoot(temp0) : op->vtkGeoAlignedImageSource::FetchRoot(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_FetchChild(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "FetchChild"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); vtkGeoTreeNode *temp0 = nullptr; int temp1; vtkGeoTreeNode *temp2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetVTKObject(temp0, "vtkGeoTreeNode") && ap.GetValue(temp1) && ap.GetVTKObject(temp2, "vtkGeoTreeNode")) { bool tempr = (ap.IsBound() ? op->FetchChild(temp0, temp1, temp2) : op->vtkGeoAlignedImageSource::FetchChild(temp0, temp1, temp2)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_GetImage(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImage"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkImageData *tempr = (ap.IsBound() ? op->GetImage() : op->vtkGeoAlignedImageSource::GetImage()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetImage(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetImage"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); vtkImageData *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkImageData")) { if (ap.IsBound()) { op->SetImage(temp0); } else { op->vtkGeoAlignedImageSource::SetImage(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetLatitudeRange_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLatitudeRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); double temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetLatitudeRange(temp0, temp1); } else { op->vtkGeoAlignedImageSource::SetLatitudeRange(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetLatitudeRange_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLatitudeRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); const int size0 = 2; double temp0[2]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetLatitudeRange(temp0); } else { op->vtkGeoAlignedImageSource::SetLatitudeRange(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetLatitudeRange(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkGeoAlignedImageSource_SetLatitudeRange_s1(self, args); case 1: return PyvtkGeoAlignedImageSource_SetLatitudeRange_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetLatitudeRange"); return nullptr; } static PyObject * PyvtkGeoAlignedImageSource_GetLatitudeRange(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLatitudeRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); int sizer = 2; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetLatitudeRange() : op->vtkGeoAlignedImageSource::GetLatitudeRange()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetLongitudeRange_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLongitudeRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); double temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetLongitudeRange(temp0, temp1); } else { op->vtkGeoAlignedImageSource::SetLongitudeRange(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetLongitudeRange_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLongitudeRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); const int size0 = 2; double temp0[2]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetLongitudeRange(temp0); } else { op->vtkGeoAlignedImageSource::SetLongitudeRange(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetLongitudeRange(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkGeoAlignedImageSource_SetLongitudeRange_s1(self, args); case 1: return PyvtkGeoAlignedImageSource_SetLongitudeRange_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetLongitudeRange"); return nullptr; } static PyObject * PyvtkGeoAlignedImageSource_GetLongitudeRange(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLongitudeRange"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); int sizer = 2; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetLongitudeRange() : op->vtkGeoAlignedImageSource::GetLongitudeRange()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetOverlap(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOverlap"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOverlap(temp0); } else { op->vtkGeoAlignedImageSource::SetOverlap(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_GetOverlapMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOverlapMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetOverlapMinValue() : op->vtkGeoAlignedImageSource::GetOverlapMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_GetOverlapMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOverlapMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetOverlapMaxValue() : op->vtkGeoAlignedImageSource::GetOverlapMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_GetOverlap(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOverlap"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetOverlap() : op->vtkGeoAlignedImageSource::GetOverlap()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_SetPowerOfTwoSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPowerOfTwoSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); bool temp0 = false; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPowerOfTwoSize(temp0); } else { op->vtkGeoAlignedImageSource::SetPowerOfTwoSize(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_GetPowerOfTwoSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPowerOfTwoSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { bool tempr = (ap.IsBound() ? op->GetPowerOfTwoSize() : op->vtkGeoAlignedImageSource::GetPowerOfTwoSize()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_PowerOfTwoSizeOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "PowerOfTwoSizeOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->PowerOfTwoSizeOn(); } else { op->vtkGeoAlignedImageSource::PowerOfTwoSizeOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoAlignedImageSource_PowerOfTwoSizeOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "PowerOfTwoSizeOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoAlignedImageSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->PowerOfTwoSizeOff(); } else { op->vtkGeoAlignedImageSource::PowerOfTwoSizeOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkGeoAlignedImageSource_Methods[] = { {"IsTypeOf", PyvtkGeoAlignedImageSource_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkGeoAlignedImageSource_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkGeoAlignedImageSource_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkGeoAlignedImageSource\nC++: static vtkGeoAlignedImageSource *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkGeoAlignedImageSource_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkGeoAlignedImageSource\nC++: vtkGeoAlignedImageSource *NewInstance()\n\n"}, {"FetchRoot", PyvtkGeoAlignedImageSource_FetchRoot, METH_VARARGS, "V.FetchRoot(vtkGeoTreeNode) -> bool\nC++: bool FetchRoot(vtkGeoTreeNode *node) override;\n\nFetch the root image.\n"}, {"FetchChild", PyvtkGeoAlignedImageSource_FetchChild, METH_VARARGS, "V.FetchChild(vtkGeoTreeNode, int, vtkGeoTreeNode) -> bool\nC++: bool FetchChild(vtkGeoTreeNode *parent, int index,\n vtkGeoTreeNode *child) override;\n\nFetch a child image.\n"}, {"GetImage", PyvtkGeoAlignedImageSource_GetImage, METH_VARARGS, "V.GetImage() -> vtkImageData\nC++: virtual vtkImageData *GetImage()\n\nThe high-resolution image to be used to cover the globe.\n"}, {"SetImage", PyvtkGeoAlignedImageSource_SetImage, METH_VARARGS, "V.SetImage(vtkImageData)\nC++: virtual void SetImage(vtkImageData *image)\n\nThe high-resolution image to be used to cover the globe.\n"}, {"SetLatitudeRange", PyvtkGeoAlignedImageSource_SetLatitudeRange, METH_VARARGS, "V.SetLatitudeRange(float, float)\nC++: void SetLatitudeRange(double, double)\nV.SetLatitudeRange((float, float))\nC++: void SetLatitudeRange(double a[2])\n\n"}, {"GetLatitudeRange", PyvtkGeoAlignedImageSource_GetLatitudeRange, METH_VARARGS, "V.GetLatitudeRange() -> (float, float)\nC++: double *GetLatitudeRange()\n\n"}, {"SetLongitudeRange", PyvtkGeoAlignedImageSource_SetLongitudeRange, METH_VARARGS, "V.SetLongitudeRange(float, float)\nC++: void SetLongitudeRange(double, double)\nV.SetLongitudeRange((float, float))\nC++: void SetLongitudeRange(double a[2])\n\n"}, {"GetLongitudeRange", PyvtkGeoAlignedImageSource_GetLongitudeRange, METH_VARARGS, "V.GetLongitudeRange() -> (float, float)\nC++: double *GetLongitudeRange()\n\n"}, {"SetOverlap", PyvtkGeoAlignedImageSource_SetOverlap, METH_VARARGS, "V.SetOverlap(float)\nC++: virtual void SetOverlap(double _arg)\n\nThe overlap of adjacent tiles.\n"}, {"GetOverlapMinValue", PyvtkGeoAlignedImageSource_GetOverlapMinValue, METH_VARARGS, "V.GetOverlapMinValue() -> float\nC++: virtual double GetOverlapMinValue()\n\nThe overlap of adjacent tiles.\n"}, {"GetOverlapMaxValue", PyvtkGeoAlignedImageSource_GetOverlapMaxValue, METH_VARARGS, "V.GetOverlapMaxValue() -> float\nC++: virtual double GetOverlapMaxValue()\n\nThe overlap of adjacent tiles.\n"}, {"GetOverlap", PyvtkGeoAlignedImageSource_GetOverlap, METH_VARARGS, "V.GetOverlap() -> float\nC++: virtual double GetOverlap()\n\nThe overlap of adjacent tiles.\n"}, {"SetPowerOfTwoSize", PyvtkGeoAlignedImageSource_SetPowerOfTwoSize, METH_VARARGS, "V.SetPowerOfTwoSize(bool)\nC++: virtual void SetPowerOfTwoSize(bool _arg)\n\nWhether to force image sizes to a power of two.\n"}, {"GetPowerOfTwoSize", PyvtkGeoAlignedImageSource_GetPowerOfTwoSize, METH_VARARGS, "V.GetPowerOfTwoSize() -> bool\nC++: virtual bool GetPowerOfTwoSize()\n\nWhether to force image sizes to a power of two.\n"}, {"PowerOfTwoSizeOn", PyvtkGeoAlignedImageSource_PowerOfTwoSizeOn, METH_VARARGS, "V.PowerOfTwoSizeOn()\nC++: virtual void PowerOfTwoSizeOn()\n\nWhether to force image sizes to a power of two.\n"}, {"PowerOfTwoSizeOff", PyvtkGeoAlignedImageSource_PowerOfTwoSizeOff, METH_VARARGS, "V.PowerOfTwoSizeOff()\nC++: virtual void PowerOfTwoSizeOff()\n\nWhether to force image sizes to a power of two.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkGeoAlignedImageSource_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkGeovisCorePython.vtkGeoAlignedImageSource", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkGeoAlignedImageSource_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkGeoAlignedImageSource_StaticNew() { return vtkGeoAlignedImageSource::New(); } PyObject *PyvtkGeoAlignedImageSource_ClassNew() { PyVTKClass_Add( &PyvtkGeoAlignedImageSource_Type, PyvtkGeoAlignedImageSource_Methods, "vtkGeoAlignedImageSource", &PyvtkGeoAlignedImageSource_StaticNew); PyTypeObject *pytype = &PyvtkGeoAlignedImageSource_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkGeoSource_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkGeoAlignedImageSource( PyObject *dict) { PyObject *o; o = PyvtkGeoAlignedImageSource_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkGeoAlignedImageSource", o) != 0) { Py_DECREF(o); } }