// python wrapper for vtkGeoEdgeStrategy // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkGeoEdgeStrategy.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkGeoEdgeStrategy(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkGeoEdgeStrategy_ClassNew(); } #ifndef DECLARED_PyvtkEdgeLayoutStrategy_ClassNew extern "C" { PyObject *PyvtkEdgeLayoutStrategy_ClassNew(); } #define DECLARED_PyvtkEdgeLayoutStrategy_ClassNew #endif static const char *PyvtkGeoEdgeStrategy_Doc = "vtkGeoEdgeStrategy - Layout graph edges on a globe as arcs.\n\n" "Superclass: vtkEdgeLayoutStrategy\n\n" "vtkGeoEdgeStrategy produces arcs for each edge in the input graph.\n" "This is useful for viewing lines on a sphere (e.g. the earth). The\n" "arcs may \"jump\" above the sphere's surface using ExplodeFactor.\n\n"; static PyObject * PyvtkGeoEdgeStrategy_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkGeoEdgeStrategy::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkGeoEdgeStrategy::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkGeoEdgeStrategy *tempr = vtkGeoEdgeStrategy::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkGeoEdgeStrategy *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkGeoEdgeStrategy::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkGeoEdgeStrategy_SetGlobeRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGlobeRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGlobeRadius(temp0); } else { op->vtkGeoEdgeStrategy::SetGlobeRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_GetGlobeRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGlobeRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetGlobeRadius() : op->vtkGeoEdgeStrategy::GetGlobeRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_SetExplodeFactor(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetExplodeFactor"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetExplodeFactor(temp0); } else { op->vtkGeoEdgeStrategy::SetExplodeFactor(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_GetExplodeFactor(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetExplodeFactor"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetExplodeFactor() : op->vtkGeoEdgeStrategy::GetExplodeFactor()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_SetNumberOfSubdivisions(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfSubdivisions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfSubdivisions(temp0); } else { op->vtkGeoEdgeStrategy::SetNumberOfSubdivisions(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_GetNumberOfSubdivisions(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSubdivisions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSubdivisions() : op->vtkGeoEdgeStrategy::GetNumberOfSubdivisions()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoEdgeStrategy_Layout(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Layout"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoEdgeStrategy *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->Layout(); } else { op->vtkGeoEdgeStrategy::Layout(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkGeoEdgeStrategy_Methods[] = { {"IsTypeOf", PyvtkGeoEdgeStrategy_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkGeoEdgeStrategy_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkGeoEdgeStrategy_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkGeoEdgeStrategy\nC++: static vtkGeoEdgeStrategy *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkGeoEdgeStrategy_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkGeoEdgeStrategy\nC++: vtkGeoEdgeStrategy *NewInstance()\n\n"}, {"SetGlobeRadius", PyvtkGeoEdgeStrategy_SetGlobeRadius, METH_VARARGS, "V.SetGlobeRadius(float)\nC++: virtual void SetGlobeRadius(double _arg)\n\nThe base radius used to determine the earth's surface. Default is\nthe earth's radius in meters. TODO: Change this to take in a\nvtkGeoTerrain to get altitude.\n"}, {"GetGlobeRadius", PyvtkGeoEdgeStrategy_GetGlobeRadius, METH_VARARGS, "V.GetGlobeRadius() -> float\nC++: virtual double GetGlobeRadius()\n\nThe base radius used to determine the earth's surface. Default is\nthe earth's radius in meters. TODO: Change this to take in a\nvtkGeoTerrain to get altitude.\n"}, {"SetExplodeFactor", PyvtkGeoEdgeStrategy_SetExplodeFactor, METH_VARARGS, "V.SetExplodeFactor(float)\nC++: virtual void SetExplodeFactor(double _arg)\n\nFactor on which to \"explode\" the arcs away from the surface. A\nvalue of 0.0 keeps the values on the surface. Values larger than\n0.0 push the arcs away from the surface by a distance\nproportional to the distance between the points. The default is\n0.2.\n"}, {"GetExplodeFactor", PyvtkGeoEdgeStrategy_GetExplodeFactor, METH_VARARGS, "V.GetExplodeFactor() -> float\nC++: virtual double GetExplodeFactor()\n\nFactor on which to \"explode\" the arcs away from the surface. A\nvalue of 0.0 keeps the values on the surface. Values larger than\n0.0 push the arcs away from the surface by a distance\nproportional to the distance between the points. The default is\n0.2.\n"}, {"SetNumberOfSubdivisions", PyvtkGeoEdgeStrategy_SetNumberOfSubdivisions, METH_VARARGS, "V.SetNumberOfSubdivisions(int)\nC++: virtual void SetNumberOfSubdivisions(int _arg)\n\nThe number of subdivisions in the arc. The default is 20.\n"}, {"GetNumberOfSubdivisions", PyvtkGeoEdgeStrategy_GetNumberOfSubdivisions, METH_VARARGS, "V.GetNumberOfSubdivisions() -> int\nC++: virtual int GetNumberOfSubdivisions()\n\nThe number of subdivisions in the arc. The default is 20.\n"}, {"Layout", PyvtkGeoEdgeStrategy_Layout, METH_VARARGS, "V.Layout()\nC++: void Layout() override;\n\nPerform the layout.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkGeoEdgeStrategy_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkInfovisLayoutPython.vtkGeoEdgeStrategy", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkGeoEdgeStrategy_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkGeoEdgeStrategy_StaticNew() { return vtkGeoEdgeStrategy::New(); } PyObject *PyvtkGeoEdgeStrategy_ClassNew() { PyVTKClass_Add( &PyvtkGeoEdgeStrategy_Type, PyvtkGeoEdgeStrategy_Methods, "vtkGeoEdgeStrategy", &PyvtkGeoEdgeStrategy_StaticNew); PyTypeObject *pytype = &PyvtkGeoEdgeStrategy_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkEdgeLayoutStrategy_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkGeoEdgeStrategy( PyObject *dict) { PyObject *o; o = PyvtkGeoEdgeStrategy_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkGeoEdgeStrategy", o) != 0) { Py_DECREF(o); } }