// python wrapper for vtkGeoSampleArcs // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkGeoSampleArcs.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkGeoSampleArcs(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkGeoSampleArcs_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkGeoSampleArcs_Doc = "vtkGeoSampleArcs - Samples geospatial lines at regular intervals.\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkGeoSampleArcs refines lines in the input polygonal data so that\n" "the distance between adjacent points is no more than a threshold\n" "distance. Points are interpolated along the surface of the globe.\n" "This is useful in order to keep lines such as political boundaries\n" "from intersecting the globe and becoming invisible.\n\n"; static PyObject * PyvtkGeoSampleArcs_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkGeoSampleArcs::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkGeoSampleArcs::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkGeoSampleArcs *tempr = vtkGeoSampleArcs::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkGeoSampleArcs *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkGeoSampleArcs::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkGeoSampleArcs_SetGlobeRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGlobeRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGlobeRadius(temp0); } else { op->vtkGeoSampleArcs::SetGlobeRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_GetGlobeRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGlobeRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetGlobeRadius() : op->vtkGeoSampleArcs::GetGlobeRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetMaximumDistanceMeters(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMaximumDistanceMeters"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMaximumDistanceMeters(temp0); } else { op->vtkGeoSampleArcs::SetMaximumDistanceMeters(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_GetMaximumDistanceMeters(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistanceMeters"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistanceMeters() : op->vtkGeoSampleArcs::GetMaximumDistanceMeters()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetInputCoordinateSystem(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetInputCoordinateSystem"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetInputCoordinateSystem(temp0); } else { op->vtkGeoSampleArcs::SetInputCoordinateSystem(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_GetInputCoordinateSystem(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetInputCoordinateSystem"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetInputCoordinateSystem() : op->vtkGeoSampleArcs::GetInputCoordinateSystem()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetInputCoordinateSystemToRectangular(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetInputCoordinateSystemToRectangular"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetInputCoordinateSystemToRectangular(); } else { op->vtkGeoSampleArcs::SetInputCoordinateSystemToRectangular(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetInputCoordinateSystemToSpherical(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetInputCoordinateSystemToSpherical"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetInputCoordinateSystemToSpherical(); } else { op->vtkGeoSampleArcs::SetInputCoordinateSystemToSpherical(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetOutputCoordinateSystem(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputCoordinateSystem"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputCoordinateSystem(temp0); } else { op->vtkGeoSampleArcs::SetOutputCoordinateSystem(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_GetOutputCoordinateSystem(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputCoordinateSystem"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputCoordinateSystem() : op->vtkGeoSampleArcs::GetOutputCoordinateSystem()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetOutputCoordinateSystemToRectangular(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputCoordinateSystemToRectangular"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputCoordinateSystemToRectangular(); } else { op->vtkGeoSampleArcs::SetOutputCoordinateSystemToRectangular(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkGeoSampleArcs_SetOutputCoordinateSystemToSpherical(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputCoordinateSystemToSpherical"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkGeoSampleArcs *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputCoordinateSystemToSpherical(); } else { op->vtkGeoSampleArcs::SetOutputCoordinateSystemToSpherical(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkGeoSampleArcs_Methods[] = { {"IsTypeOf", PyvtkGeoSampleArcs_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkGeoSampleArcs_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkGeoSampleArcs_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkGeoSampleArcs\nC++: static vtkGeoSampleArcs *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkGeoSampleArcs_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkGeoSampleArcs\nC++: vtkGeoSampleArcs *NewInstance()\n\n"}, {"SetGlobeRadius", PyvtkGeoSampleArcs_SetGlobeRadius, METH_VARARGS, "V.SetGlobeRadius(float)\nC++: virtual void SetGlobeRadius(double _arg)\n\nThe base radius used to determine the earth's surface. Default is\nthe earth's radius in meters. TODO: Change this to take in a\nvtkGeoTerrain to get altitude.\n"}, {"GetGlobeRadius", PyvtkGeoSampleArcs_GetGlobeRadius, METH_VARARGS, "V.GetGlobeRadius() -> float\nC++: virtual double GetGlobeRadius()\n\nThe base radius used to determine the earth's surface. Default is\nthe earth's radius in meters. TODO: Change this to take in a\nvtkGeoTerrain to get altitude.\n"}, {"SetMaximumDistanceMeters", PyvtkGeoSampleArcs_SetMaximumDistanceMeters, METH_VARARGS, "V.SetMaximumDistanceMeters(float)\nC++: virtual void SetMaximumDistanceMeters(double _arg)\n\nThe maximum distance, in meters, between adjacent points.\n"}, {"GetMaximumDistanceMeters", PyvtkGeoSampleArcs_GetMaximumDistanceMeters, METH_VARARGS, "V.GetMaximumDistanceMeters() -> float\nC++: virtual double GetMaximumDistanceMeters()\n\nThe maximum distance, in meters, between adjacent points.\n"}, {"SetInputCoordinateSystem", PyvtkGeoSampleArcs_SetInputCoordinateSystem, METH_VARARGS, "V.SetInputCoordinateSystem(int)\nC++: virtual void SetInputCoordinateSystem(int _arg)\n\nThe input coordinate system. RECTANGULAR is x,y,z meters relative\nthe the earth center. SPHERICAL is longitude,latitude,altitude.\n"}, {"GetInputCoordinateSystem", PyvtkGeoSampleArcs_GetInputCoordinateSystem, METH_VARARGS, "V.GetInputCoordinateSystem() -> int\nC++: virtual int GetInputCoordinateSystem()\n\nThe input coordinate system. RECTANGULAR is x,y,z meters relative\nthe the earth center. SPHERICAL is longitude,latitude,altitude.\n"}, {"SetInputCoordinateSystemToRectangular", PyvtkGeoSampleArcs_SetInputCoordinateSystemToRectangular, METH_VARARGS, "V.SetInputCoordinateSystemToRectangular()\nC++: virtual void SetInputCoordinateSystemToRectangular()\n\nThe input coordinate system. RECTANGULAR is x,y,z meters relative\nthe the earth center. SPHERICAL is longitude,latitude,altitude.\n"}, {"SetInputCoordinateSystemToSpherical", PyvtkGeoSampleArcs_SetInputCoordinateSystemToSpherical, METH_VARARGS, "V.SetInputCoordinateSystemToSpherical()\nC++: virtual void SetInputCoordinateSystemToSpherical()\n\nThe input coordinate system. RECTANGULAR is x,y,z meters relative\nthe the earth center. SPHERICAL is longitude,latitude,altitude.\n"}, {"SetOutputCoordinateSystem", PyvtkGeoSampleArcs_SetOutputCoordinateSystem, METH_VARARGS, "V.SetOutputCoordinateSystem(int)\nC++: virtual void SetOutputCoordinateSystem(int _arg)\n\nThe desired output coordinate system. RECTANGULAR is x,y,z meters\nrelative the the earth center. SPHERICAL is\nlongitude,latitude,altitude.\n"}, {"GetOutputCoordinateSystem", PyvtkGeoSampleArcs_GetOutputCoordinateSystem, METH_VARARGS, "V.GetOutputCoordinateSystem() -> int\nC++: virtual int GetOutputCoordinateSystem()\n\nThe desired output coordinate system. RECTANGULAR is x,y,z meters\nrelative the the earth center. SPHERICAL is\nlongitude,latitude,altitude.\n"}, {"SetOutputCoordinateSystemToRectangular", PyvtkGeoSampleArcs_SetOutputCoordinateSystemToRectangular, METH_VARARGS, "V.SetOutputCoordinateSystemToRectangular()\nC++: virtual void SetOutputCoordinateSystemToRectangular()\n\nThe desired output coordinate system. RECTANGULAR is x,y,z meters\nrelative the the earth center. SPHERICAL is\nlongitude,latitude,altitude.\n"}, {"SetOutputCoordinateSystemToSpherical", PyvtkGeoSampleArcs_SetOutputCoordinateSystemToSpherical, METH_VARARGS, "V.SetOutputCoordinateSystemToSpherical()\nC++: virtual void SetOutputCoordinateSystemToSpherical()\n\nThe desired output coordinate system. RECTANGULAR is x,y,z meters\nrelative the the earth center. SPHERICAL is\nlongitude,latitude,altitude.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkGeoSampleArcs_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkGeovisCorePython.vtkGeoSampleArcs", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkGeoSampleArcs_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkGeoSampleArcs_StaticNew() { return vtkGeoSampleArcs::New(); } PyObject *PyvtkGeoSampleArcs_ClassNew() { PyVTKClass_Add( &PyvtkGeoSampleArcs_Type, PyvtkGeoSampleArcs_Methods, "vtkGeoSampleArcs", &PyvtkGeoSampleArcs_StaticNew); PyTypeObject *pytype = &PyvtkGeoSampleArcs_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyObject *d = pytype->tp_dict; PyObject *o; for (int c = 0; c < 2; c++) { static const struct { const char *name; int value; } constants[2] = { { "RECTANGULAR", vtkGeoSampleArcs::RECTANGULAR }, { "SPHERICAL", vtkGeoSampleArcs::SPHERICAL }, }; o = PyInt_FromLong(constants[c].value); if (o) { PyDict_SetItemString(d, constants[c].name, o); Py_DECREF(o); } } PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkGeoSampleArcs( PyObject *dict) { PyObject *o; o = PyvtkGeoSampleArcs_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkGeoSampleArcs", o) != 0) { Py_DECREF(o); } }