// python wrapper for vtkHyperOctreeCutter // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkHyperOctreeCutter.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkHyperOctreeCutter(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkHyperOctreeCutter_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkHyperOctreeCutter_Doc = "vtkHyperOctreeCutter - Cut vtkHyperOctree with user-specified\nimplicit function\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkHyperOctreeCutter is a filter to cut through data using any\n" "subclass of vtkImplicitFunction. That is, a polygonal surface is\n" "created corresponding to the implicit function F(x,y,z) = value(s),\n" "where you can specify one or more values used to cut with.\n\n" "In VTK, cutting means reducing a cell of dimension N to a cut surface\n" "of dimension N-1. For example, a tetrahedron when cut by a plane\n" "(i.e., vtkPlane implicit function) will generate triangles. (In\n" "comparison, clipping takes a N dimensional cell and creates N\n" "dimension primitives.)\n\n" "vtkHyperOctreeCutter is generally used to \"slice-through\" a dataset,\n" "generating a surface that can be visualized. It is also possible to\n" "use vtkHyperOctreeCutter to do a form of volume rendering.\n" "vtkHyperOctreeCutter does this by generating multiple cut surfaces\n" "(usually planes) which are ordered (and rendered) from back-to-front.\n" "The surfaces are set translucent to give a volumetric rendering\n" "effect.\n\n" "Note that data can be cut using either 1) the scalar values\n" "associated with the dataset or 2) an implicit function associated\n" "with this class. By default, if an implicit function is set it is\n" "used to cut the data set, otherwise the dataset scalars are used to\n" "perform the cut.\n\n" "@sa\n" "vtkImplicitFunction vtkHyperOctree\n\n"; static PyObject * PyvtkHyperOctreeCutter_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkHyperOctreeCutter::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkHyperOctreeCutter::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkHyperOctreeCutter *tempr = vtkHyperOctreeCutter::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkHyperOctreeCutter *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkHyperOctreeCutter::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetValue(temp0, temp1); } else { op->vtkHyperOctreeCutter::SetValue(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { double tempr = (ap.IsBound() ? op->GetValue(temp0) : op->vtkHyperOctreeCutter::GetValue(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetValues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetValues() : op->vtkHyperOctreeCutter::GetValues()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetValues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(2*size0); double *temp0 = store0.Data(); double *save0 = (size0 == 0 ? nullptr : temp0 + size0); PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->GetValues(temp0); } else { op->vtkHyperOctreeCutter::GetValues(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetValues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 0: return PyvtkHyperOctreeCutter_GetValues_s1(self, args); case 1: return PyvtkHyperOctreeCutter_GetValues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetValues"); return nullptr; } static PyObject * PyvtkHyperOctreeCutter_SetNumberOfContours(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfContours"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfContours(temp0); } else { op->vtkHyperOctreeCutter::SetNumberOfContours(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetNumberOfContours(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfContours"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfContours() : op->vtkHyperOctreeCutter::GetNumberOfContours()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GenerateValues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; const int size1 = 2; double temp1[2]; double save1[2]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->GenerateValues(temp0, temp1); } else { op->vtkHyperOctreeCutter::GenerateValues(temp0, temp1); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GenerateValues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->GenerateValues(temp0, temp1, temp2); } else { op->vtkHyperOctreeCutter::GenerateValues(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GenerateValues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkHyperOctreeCutter_GenerateValues_s1(self, args); case 3: return PyvtkHyperOctreeCutter_GenerateValues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GenerateValues"); return nullptr; } static PyObject * PyvtkHyperOctreeCutter_GetMTime(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMTime"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { unsigned long tempr = (ap.IsBound() ? op->GetMTime() : op->vtkHyperOctreeCutter::GetMTime()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetCutFunction(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCutFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); vtkImplicitFunction *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkImplicitFunction")) { if (ap.IsBound()) { op->SetCutFunction(temp0); } else { op->vtkHyperOctreeCutter::SetCutFunction(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetCutFunction(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCutFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkImplicitFunction *tempr = (ap.IsBound() ? op->GetCutFunction() : op->vtkHyperOctreeCutter::GetCutFunction()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetGenerateCutScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGenerateCutScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGenerateCutScalars(temp0); } else { op->vtkHyperOctreeCutter::SetGenerateCutScalars(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetGenerateCutScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGenerateCutScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetGenerateCutScalars() : op->vtkHyperOctreeCutter::GetGenerateCutScalars()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GenerateCutScalarsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateCutScalarsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GenerateCutScalarsOn(); } else { op->vtkHyperOctreeCutter::GenerateCutScalarsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GenerateCutScalarsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateCutScalarsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GenerateCutScalarsOff(); } else { op->vtkHyperOctreeCutter::GenerateCutScalarsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetLocator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLocator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); vtkIncrementalPointLocator *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkIncrementalPointLocator")) { if (ap.IsBound()) { op->SetLocator(temp0); } else { op->vtkHyperOctreeCutter::SetLocator(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetLocator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLocator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIncrementalPointLocator *tempr = (ap.IsBound() ? op->GetLocator() : op->vtkHyperOctreeCutter::GetLocator()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetSortBy(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSortBy"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetSortBy(temp0); } else { op->vtkHyperOctreeCutter::SetSortBy(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetSortByMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSortByMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetSortByMinValue() : op->vtkHyperOctreeCutter::GetSortByMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetSortByMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSortByMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetSortByMaxValue() : op->vtkHyperOctreeCutter::GetSortByMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetSortBy(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSortBy"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetSortBy() : op->vtkHyperOctreeCutter::GetSortBy()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetSortByToSortByValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSortByToSortByValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetSortByToSortByValue(); } else { op->vtkHyperOctreeCutter::SetSortByToSortByValue(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_SetSortByToSortByCell(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSortByToSortByCell"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetSortByToSortByCell(); } else { op->vtkHyperOctreeCutter::SetSortByToSortByCell(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperOctreeCutter_GetSortByAsString(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSortByAsString"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { const char *tempr = (ap.IsBound() ? op->GetSortByAsString() : op->vtkHyperOctreeCutter::GetSortByAsString()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperOctreeCutter_CreateDefaultLocator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CreateDefaultLocator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperOctreeCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CreateDefaultLocator(); } else { op->vtkHyperOctreeCutter::CreateDefaultLocator(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkHyperOctreeCutter_Methods[] = { {"IsTypeOf", PyvtkHyperOctreeCutter_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkHyperOctreeCutter_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkHyperOctreeCutter_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkHyperOctreeCutter\nC++: static vtkHyperOctreeCutter *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkHyperOctreeCutter_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkHyperOctreeCutter\nC++: vtkHyperOctreeCutter *NewInstance()\n\n"}, {"SetValue", PyvtkHyperOctreeCutter_SetValue, METH_VARARGS, "V.SetValue(int, float)\nC++: void SetValue(int i, double value)\n\nSet a particular contour value at contour number i. The index i\nranges between 0<=i float\nC++: double GetValue(int i)\n\nGet the ith contour value.\n"}, {"GetValues", PyvtkHyperOctreeCutter_GetValues, METH_VARARGS, "V.GetValues() -> (float, ...)\nC++: double *GetValues()\nV.GetValues([float, ...])\nC++: void GetValues(double *contourValues)\n\nGet a pointer to an array of contour values. There will be\nGetNumberOfContours() values in the list.\n"}, {"SetNumberOfContours", PyvtkHyperOctreeCutter_SetNumberOfContours, METH_VARARGS, "V.SetNumberOfContours(int)\nC++: void SetNumberOfContours(int number)\n\nSet the number of contours to place into the list. You only\nreally need to use this method to reduce list size. The method\nSetValue() will automatically increase list size as needed.\n"}, {"GetNumberOfContours", PyvtkHyperOctreeCutter_GetNumberOfContours, METH_VARARGS, "V.GetNumberOfContours() -> int\nC++: int GetNumberOfContours()\n\nGet the number of contours in the list of contour values.\n"}, {"GenerateValues", PyvtkHyperOctreeCutter_GenerateValues, METH_VARARGS, "V.GenerateValues(int, [float, float])\nC++: void GenerateValues(int numContours, double range[2])\nV.GenerateValues(int, float, float)\nC++: void GenerateValues(int numContours, double rangeStart,\n double rangeEnd)\n\nGenerate numContours equally spaced contour values between\nspecified range. Contour values will include min/max range\nvalues.\n"}, {"GetMTime", PyvtkHyperOctreeCutter_GetMTime, METH_VARARGS, "V.GetMTime() -> int\nC++: vtkMTimeType GetMTime() override;\n\nOverride GetMTime because we delegate to vtkContourValues and\nrefer to vtkImplicitFunction.\n"}, {"SetCutFunction", PyvtkHyperOctreeCutter_SetCutFunction, METH_VARARGS, "V.SetCutFunction(vtkImplicitFunction)\nC++: virtual void SetCutFunction(vtkImplicitFunction *)\n\nSpecify the implicit function to perform the cutting.\n"}, {"GetCutFunction", PyvtkHyperOctreeCutter_GetCutFunction, METH_VARARGS, "V.GetCutFunction() -> vtkImplicitFunction\nC++: virtual vtkImplicitFunction *GetCutFunction()\n\nSpecify the implicit function to perform the cutting.\n"}, {"SetGenerateCutScalars", PyvtkHyperOctreeCutter_SetGenerateCutScalars, METH_VARARGS, "V.SetGenerateCutScalars(int)\nC++: virtual void SetGenerateCutScalars(int _arg)\n\nIf this flag is enabled, then the output scalar values will be\ninterpolated from the implicit function values, and not the input\nscalar data.\n"}, {"GetGenerateCutScalars", PyvtkHyperOctreeCutter_GetGenerateCutScalars, METH_VARARGS, "V.GetGenerateCutScalars() -> int\nC++: virtual int GetGenerateCutScalars()\n\nIf this flag is enabled, then the output scalar values will be\ninterpolated from the implicit function values, and not the input\nscalar data.\n"}, {"GenerateCutScalarsOn", PyvtkHyperOctreeCutter_GenerateCutScalarsOn, METH_VARARGS, "V.GenerateCutScalarsOn()\nC++: virtual void GenerateCutScalarsOn()\n\nIf this flag is enabled, then the output scalar values will be\ninterpolated from the implicit function values, and not the input\nscalar data.\n"}, {"GenerateCutScalarsOff", PyvtkHyperOctreeCutter_GenerateCutScalarsOff, METH_VARARGS, "V.GenerateCutScalarsOff()\nC++: virtual void GenerateCutScalarsOff()\n\nIf this flag is enabled, then the output scalar values will be\ninterpolated from the implicit function values, and not the input\nscalar data.\n"}, {"SetLocator", PyvtkHyperOctreeCutter_SetLocator, METH_VARARGS, "V.SetLocator(vtkIncrementalPointLocator)\nC++: void SetLocator(vtkIncrementalPointLocator *locator)\n\nSpecify a spatial locator for merging points. By default, an\ninstance of vtkMergePoints is used.\n"}, {"GetLocator", PyvtkHyperOctreeCutter_GetLocator, METH_VARARGS, "V.GetLocator() -> vtkIncrementalPointLocator\nC++: virtual vtkIncrementalPointLocator *GetLocator()\n\nSpecify a spatial locator for merging points. By default, an\ninstance of vtkMergePoints is used.\n"}, {"SetSortBy", PyvtkHyperOctreeCutter_SetSortBy, METH_VARARGS, "V.SetSortBy(int)\nC++: virtual void SetSortBy(int _arg)\n\nSet the sorting order for the generated polydata. There are two\npossibilities: Sort by value = 0 - This is the most efficient\nsort. For each cell, all contour values are processed. This is\nthe default. Sort by cell = 1 - For each contour value, all cells\nare processed. This order should be used if the extracted\npolygons must be rendered in a back-to-front or front-to-back\norder. This is very problem dependent. For most applications, the\ndefault order is fine (and faster).\n\n* Sort by cell is going to have a problem if the input has 2D and\n3D cells.\n* Cell data will be scrambled becauses with\n* vtkPolyData output, verts and lines have lower cell ids than\n triangles.\n"}, {"GetSortByMinValue", PyvtkHyperOctreeCutter_GetSortByMinValue, METH_VARARGS, "V.GetSortByMinValue() -> int\nC++: virtual int GetSortByMinValue()\n\nSet the sorting order for the generated polydata. There are two\npossibilities: Sort by value = 0 - This is the most efficient\nsort. For each cell, all contour values are processed. This is\nthe default. Sort by cell = 1 - For each contour value, all cells\nare processed. This order should be used if the extracted\npolygons must be rendered in a back-to-front or front-to-back\norder. This is very problem dependent. For most applications, the\ndefault order is fine (and faster).\n\n* Sort by cell is going to have a problem if the input has 2D and\n3D cells.\n* Cell data will be scrambled becauses with\n* vtkPolyData output, verts and lines have lower cell ids than\n triangles.\n"}, {"GetSortByMaxValue", PyvtkHyperOctreeCutter_GetSortByMaxValue, METH_VARARGS, "V.GetSortByMaxValue() -> int\nC++: virtual int GetSortByMaxValue()\n\nSet the sorting order for the generated polydata. There are two\npossibilities: Sort by value = 0 - This is the most efficient\nsort. For each cell, all contour values are processed. This is\nthe default. Sort by cell = 1 - For each contour value, all cells\nare processed. This order should be used if the extracted\npolygons must be rendered in a back-to-front or front-to-back\norder. This is very problem dependent. For most applications, the\ndefault order is fine (and faster).\n\n* Sort by cell is going to have a problem if the input has 2D and\n3D cells.\n* Cell data will be scrambled becauses with\n* vtkPolyData output, verts and lines have lower cell ids than\n triangles.\n"}, {"GetSortBy", PyvtkHyperOctreeCutter_GetSortBy, METH_VARARGS, "V.GetSortBy() -> int\nC++: virtual int GetSortBy()\n\nSet the sorting order for the generated polydata. There are two\npossibilities: Sort by value = 0 - This is the most efficient\nsort. For each cell, all contour values are processed. This is\nthe default. Sort by cell = 1 - For each contour value, all cells\nare processed. This order should be used if the extracted\npolygons must be rendered in a back-to-front or front-to-back\norder. This is very problem dependent. For most applications, the\ndefault order is fine (and faster).\n\n* Sort by cell is going to have a problem if the input has 2D and\n3D cells.\n* Cell data will be scrambled becauses with\n* vtkPolyData output, verts and lines have lower cell ids than\n triangles.\n"}, {"SetSortByToSortByValue", PyvtkHyperOctreeCutter_SetSortByToSortByValue, METH_VARARGS, "V.SetSortByToSortByValue()\nC++: void SetSortByToSortByValue()\n\nSet the sorting order for the generated polydata. There are two\npossibilities: Sort by value = 0 - This is the most efficient\nsort. For each cell, all contour values are processed. This is\nthe default. Sort by cell = 1 - For each contour value, all cells\nare processed. This order should be used if the extracted\npolygons must be rendered in a back-to-front or front-to-back\norder. This is very problem dependent. For most applications, the\ndefault order is fine (and faster).\n\n* Sort by cell is going to have a problem if the input has 2D and\n3D cells.\n* Cell data will be scrambled becauses with\n* vtkPolyData output, verts and lines have lower cell ids than\n triangles.\n"}, {"SetSortByToSortByCell", PyvtkHyperOctreeCutter_SetSortByToSortByCell, METH_VARARGS, "V.SetSortByToSortByCell()\nC++: void SetSortByToSortByCell()\n\nSet the sorting order for the generated polydata. There are two\npossibilities: Sort by value = 0 - This is the most efficient\nsort. For each cell, all contour values are processed. This is\nthe default. Sort by cell = 1 - For each contour value, all cells\nare processed. This order should be used if the extracted\npolygons must be rendered in a back-to-front or front-to-back\norder. This is very problem dependent. For most applications, the\ndefault order is fine (and faster).\n\n* Sort by cell is going to have a problem if the input has 2D and\n3D cells.\n* Cell data will be scrambled becauses with\n* vtkPolyData output, verts and lines have lower cell ids than\n triangles.\n"}, {"GetSortByAsString", PyvtkHyperOctreeCutter_GetSortByAsString, METH_VARARGS, "V.GetSortByAsString() -> string\nC++: const char *GetSortByAsString()\n\nReturn the sorting procedure as a descriptive character string.\n"}, {"CreateDefaultLocator", PyvtkHyperOctreeCutter_CreateDefaultLocator, METH_VARARGS, "V.CreateDefaultLocator()\nC++: void CreateDefaultLocator()\n\nCreate default locator. Used to create one when none is\nspecified. The locator is used to merge coincident points.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkHyperOctreeCutter_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersHyperTreePython.vtkHyperOctreeCutter", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkHyperOctreeCutter_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkHyperOctreeCutter_StaticNew() { return vtkHyperOctreeCutter::New(); } PyObject *PyvtkHyperOctreeCutter_ClassNew() { PyVTKClass_Add( &PyvtkHyperOctreeCutter_Type, PyvtkHyperOctreeCutter_Methods, "vtkHyperOctreeCutter", &PyvtkHyperOctreeCutter_StaticNew); PyTypeObject *pytype = &PyvtkHyperOctreeCutter_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkHyperOctreeCutter( PyObject *dict) { PyObject *o; o = PyvtkHyperOctreeCutter_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkHyperOctreeCutter", o) != 0) { Py_DECREF(o); } }