// python wrapper for vtkHyperStreamline // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkHyperStreamline.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkHyperStreamline(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkHyperStreamline_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkHyperStreamline_Doc = "vtkHyperStreamline - generate hyperstreamline in arbitrary dataset\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkHyperStreamline is a filter that integrates through a tensor field\n" "to generate a hyperstreamline. The integration is along the maximum\n" "eigenvector and the cross section of the hyperstreamline is defined\n" "by the two other eigenvectors. Thus the shape of the hyperstreamline\n" "is \"tube-like\", with the cross section being elliptical.\n" "Hyperstreamlines are used to visualize tensor fields.\n\n" "The starting point of a hyperstreamline can be defined in one of two\n" "ways. First, you may specify an initial position. This is a x-y-z\n" "global coordinate. The second option is to specify a starting\n" "location. This is cellId, subId, and cell parametric coordinates.\n\n" "The integration of the hyperstreamline occurs through the major\n" "eigenvector field. IntegrationStepLength controls the step length\n" "within each cell (i.e., this is the fraction of the cell length). The\n" "length of the hyperstreamline is controlled by\n" "MaximumPropagationDistance. This parameter is the length of the\n" "hyperstreamline in units of distance. The tube itself is composed of\n" "many small sub-tubes - NumberOfSides controls the number of sides in\n" "the tube, and StepLength controls the length of the sub-tubes.\n\n" "Because hyperstreamlines are often created near regions of\n" "singularities, it is possible to control the scaling of the tube\n" "cross section by using a logarithmic scale. Use LogScalingOn to turn\n" "this capability on. The Radius value controls the initial radius of\n" "the tube.\n\n" "@sa\n" "vtkTensorGlyph\n\n"; static PyObject * PyvtkHyperStreamline_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkHyperStreamline::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkHyperStreamline::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkHyperStreamline *tempr = vtkHyperStreamline::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkHyperStreamline *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkHyperStreamline::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkHyperStreamline_SetStartLocation_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStartLocation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); vtkIdType temp0; int temp1; const int size2 = 3; double temp2[3]; double save2[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetArray(temp2, size2)) { ap.SaveArray(temp2, save2, size2); if (ap.IsBound()) { op->SetStartLocation(temp0, temp1, temp2); } else { op->vtkHyperStreamline::SetStartLocation(temp0, temp1, temp2); } if (ap.ArrayHasChanged(temp2, save2, size2) && !ap.ErrorOccurred()) { ap.SetArray(2, temp2, size2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetStartLocation_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStartLocation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); vtkIdType temp0; int temp1; double temp2; double temp3; double temp4; PyObject *result = nullptr; if (op && ap.CheckArgCount(5) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetValue(temp4)) { if (ap.IsBound()) { op->SetStartLocation(temp0, temp1, temp2, temp3, temp4); } else { op->vtkHyperStreamline::SetStartLocation(temp0, temp1, temp2, temp3, temp4); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetStartLocation(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkHyperStreamline_SetStartLocation_s1(self, args); case 5: return PyvtkHyperStreamline_SetStartLocation_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetStartLocation"); return nullptr; } static PyObject * PyvtkHyperStreamline_GetStartLocation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartLocation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); int temp0; const int size1 = 3; double temp1[3]; double save1[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp1, save1, size1); vtkIdType tempr = (ap.IsBound() ? op->GetStartLocation(temp0, temp1) : op->vtkHyperStreamline::GetStartLocation(temp0, temp1)); if (!ap.ErrorOccurred()) { ap.SetArgValue(0, temp0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetStartPosition_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStartPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->SetStartPosition(temp0); } else { op->vtkHyperStreamline::SetStartPosition(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetStartPosition_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStartPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetStartPosition(temp0, temp1, temp2); } else { op->vtkHyperStreamline::SetStartPosition(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetStartPosition(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkHyperStreamline_SetStartPosition_s1(self, args); case 3: return PyvtkHyperStreamline_SetStartPosition_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetStartPosition"); return nullptr; } static PyObject * PyvtkHyperStreamline_GetStartPosition(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartPosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetStartPosition() : op->vtkHyperStreamline::GetStartPosition()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkHyperStreamline_SetMaximumPropagationDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMaximumPropagationDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMaximumPropagationDistance(temp0); } else { op->vtkHyperStreamline::SetMaximumPropagationDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetMaximumPropagationDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumPropagationDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumPropagationDistanceMinValue() : op->vtkHyperStreamline::GetMaximumPropagationDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetMaximumPropagationDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumPropagationDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumPropagationDistanceMaxValue() : op->vtkHyperStreamline::GetMaximumPropagationDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetMaximumPropagationDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumPropagationDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumPropagationDistance() : op->vtkHyperStreamline::GetMaximumPropagationDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationEigenvector(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetIntegrationEigenvector(temp0); } else { op->vtkHyperStreamline::SetIntegrationEigenvector(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationEigenvectorMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationEigenvectorMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntegrationEigenvectorMinValue() : op->vtkHyperStreamline::GetIntegrationEigenvectorMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationEigenvectorMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationEigenvectorMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntegrationEigenvectorMaxValue() : op->vtkHyperStreamline::GetIntegrationEigenvectorMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationEigenvector(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntegrationEigenvector() : op->vtkHyperStreamline::GetIntegrationEigenvector()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationEigenvectorToMajor(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationEigenvectorToMajor"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetIntegrationEigenvectorToMajor(); } else { op->vtkHyperStreamline::SetIntegrationEigenvectorToMajor(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationEigenvectorToMedium(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationEigenvectorToMedium"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetIntegrationEigenvectorToMedium(); } else { op->vtkHyperStreamline::SetIntegrationEigenvectorToMedium(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationEigenvectorToMinor(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationEigenvectorToMinor"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetIntegrationEigenvectorToMinor(); } else { op->vtkHyperStreamline::SetIntegrationEigenvectorToMinor(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_IntegrateMajorEigenvector(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IntegrateMajorEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->IntegrateMajorEigenvector(); } else { op->vtkHyperStreamline::IntegrateMajorEigenvector(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_IntegrateMediumEigenvector(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IntegrateMediumEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->IntegrateMediumEigenvector(); } else { op->vtkHyperStreamline::IntegrateMediumEigenvector(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_IntegrateMinorEigenvector(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IntegrateMinorEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->IntegrateMinorEigenvector(); } else { op->vtkHyperStreamline::IntegrateMinorEigenvector(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationStepLength(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationStepLength"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetIntegrationStepLength(temp0); } else { op->vtkHyperStreamline::SetIntegrationStepLength(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationStepLengthMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationStepLengthMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetIntegrationStepLengthMinValue() : op->vtkHyperStreamline::GetIntegrationStepLengthMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationStepLengthMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationStepLengthMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetIntegrationStepLengthMaxValue() : op->vtkHyperStreamline::GetIntegrationStepLengthMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationStepLength(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationStepLength"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetIntegrationStepLength() : op->vtkHyperStreamline::GetIntegrationStepLength()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetStepLength(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStepLength"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetStepLength(temp0); } else { op->vtkHyperStreamline::SetStepLength(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetStepLengthMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStepLengthMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStepLengthMinValue() : op->vtkHyperStreamline::GetStepLengthMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetStepLengthMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStepLengthMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStepLengthMaxValue() : op->vtkHyperStreamline::GetStepLengthMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetStepLength(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStepLength"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStepLength() : op->vtkHyperStreamline::GetStepLength()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationDirection(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationDirection"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetIntegrationDirection(temp0); } else { op->vtkHyperStreamline::SetIntegrationDirection(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationDirectionMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationDirectionMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntegrationDirectionMinValue() : op->vtkHyperStreamline::GetIntegrationDirectionMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationDirectionMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationDirectionMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntegrationDirectionMaxValue() : op->vtkHyperStreamline::GetIntegrationDirectionMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetIntegrationDirection(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntegrationDirection"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntegrationDirection() : op->vtkHyperStreamline::GetIntegrationDirection()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationDirectionToForward(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationDirectionToForward"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetIntegrationDirectionToForward(); } else { op->vtkHyperStreamline::SetIntegrationDirectionToForward(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationDirectionToBackward(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationDirectionToBackward"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetIntegrationDirectionToBackward(); } else { op->vtkHyperStreamline::SetIntegrationDirectionToBackward(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetIntegrationDirectionToIntegrateBothDirections(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntegrationDirectionToIntegrateBothDirections"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetIntegrationDirectionToIntegrateBothDirections(); } else { op->vtkHyperStreamline::SetIntegrationDirectionToIntegrateBothDirections(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_SetTerminalEigenvalue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetTerminalEigenvalue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetTerminalEigenvalue(temp0); } else { op->vtkHyperStreamline::SetTerminalEigenvalue(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetTerminalEigenvalueMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetTerminalEigenvalueMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetTerminalEigenvalueMinValue() : op->vtkHyperStreamline::GetTerminalEigenvalueMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetTerminalEigenvalueMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetTerminalEigenvalueMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetTerminalEigenvalueMaxValue() : op->vtkHyperStreamline::GetTerminalEigenvalueMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetTerminalEigenvalue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetTerminalEigenvalue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetTerminalEigenvalue() : op->vtkHyperStreamline::GetTerminalEigenvalue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetNumberOfSides(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfSides"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfSides(temp0); } else { op->vtkHyperStreamline::SetNumberOfSides(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetNumberOfSidesMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSidesMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSidesMinValue() : op->vtkHyperStreamline::GetNumberOfSidesMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetNumberOfSidesMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSidesMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSidesMaxValue() : op->vtkHyperStreamline::GetNumberOfSidesMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetNumberOfSides(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSides"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSides() : op->vtkHyperStreamline::GetNumberOfSides()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetRadius(temp0); } else { op->vtkHyperStreamline::SetRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetRadiusMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadiusMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadiusMinValue() : op->vtkHyperStreamline::GetRadiusMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetRadiusMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadiusMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadiusMaxValue() : op->vtkHyperStreamline::GetRadiusMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_GetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadius() : op->vtkHyperStreamline::GetRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_SetLogScaling(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLogScaling"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetLogScaling(temp0); } else { op->vtkHyperStreamline::SetLogScaling(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_GetLogScaling(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLogScaling"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetLogScaling() : op->vtkHyperStreamline::GetLogScaling()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperStreamline_LogScalingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "LogScalingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->LogScalingOn(); } else { op->vtkHyperStreamline::LogScalingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperStreamline_LogScalingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "LogScalingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperStreamline *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->LogScalingOff(); } else { op->vtkHyperStreamline::LogScalingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkHyperStreamline_Methods[] = { {"IsTypeOf", PyvtkHyperStreamline_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkHyperStreamline_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkHyperStreamline_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkHyperStreamline\nC++: static vtkHyperStreamline *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkHyperStreamline_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkHyperStreamline\nC++: vtkHyperStreamline *NewInstance()\n\n"}, {"SetStartLocation", PyvtkHyperStreamline_SetStartLocation, METH_VARARGS, "V.SetStartLocation(int, int, [float, float, float])\nC++: void SetStartLocation(vtkIdType cellId, int subId,\n double pcoords[3])\nV.SetStartLocation(int, int, float, float, float)\nC++: void SetStartLocation(vtkIdType cellId, int subId, double r,\n double s, double t)\n\nSpecify the start of the hyperstreamline in the cell coordinate\nsystem. That is, cellId and subId (if composite cell), and\nparametric coordinates.\n"}, {"GetStartLocation", PyvtkHyperStreamline_GetStartLocation, METH_VARARGS, "V.GetStartLocation(int, [float, float, float]) -> int\nC++: vtkIdType GetStartLocation(int &subId, double pcoords[3])\n\nGet the starting location of the hyperstreamline in the cell\ncoordinate system. Returns the cell that the starting point is\nin.\n"}, {"SetStartPosition", PyvtkHyperStreamline_SetStartPosition, METH_VARARGS, "V.SetStartPosition([float, float, float])\nC++: void SetStartPosition(double x[3])\nV.SetStartPosition(float, float, float)\nC++: void SetStartPosition(double x, double y, double z)\n\nSpecify the start of the hyperstreamline in the global coordinate\nsystem. Starting from position implies that a search must be\nperformed to find initial cell to start integration from.\n"}, {"GetStartPosition", PyvtkHyperStreamline_GetStartPosition, METH_VARARGS, "V.GetStartPosition() -> (float, float, float)\nC++: double *GetStartPosition()\n\nGet the start position of the hyperstreamline in global x-y-z\ncoordinates.\n"}, {"SetMaximumPropagationDistance", PyvtkHyperStreamline_SetMaximumPropagationDistance, METH_VARARGS, "V.SetMaximumPropagationDistance(float)\nC++: virtual void SetMaximumPropagationDistance(double _arg)\n\nSet / get the maximum length of the hyperstreamline expressed as\nabsolute distance (i.e., arc length) value.\n"}, {"GetMaximumPropagationDistanceMinValue", PyvtkHyperStreamline_GetMaximumPropagationDistanceMinValue, METH_VARARGS, "V.GetMaximumPropagationDistanceMinValue() -> float\nC++: virtual double GetMaximumPropagationDistanceMinValue()\n\nSet / get the maximum length of the hyperstreamline expressed as\nabsolute distance (i.e., arc length) value.\n"}, {"GetMaximumPropagationDistanceMaxValue", PyvtkHyperStreamline_GetMaximumPropagationDistanceMaxValue, METH_VARARGS, "V.GetMaximumPropagationDistanceMaxValue() -> float\nC++: virtual double GetMaximumPropagationDistanceMaxValue()\n\nSet / get the maximum length of the hyperstreamline expressed as\nabsolute distance (i.e., arc length) value.\n"}, {"GetMaximumPropagationDistance", PyvtkHyperStreamline_GetMaximumPropagationDistance, METH_VARARGS, "V.GetMaximumPropagationDistance() -> float\nC++: virtual double GetMaximumPropagationDistance()\n\nSet / get the maximum length of the hyperstreamline expressed as\nabsolute distance (i.e., arc length) value.\n"}, {"SetIntegrationEigenvector", PyvtkHyperStreamline_SetIntegrationEigenvector, METH_VARARGS, "V.SetIntegrationEigenvector(int)\nC++: virtual void SetIntegrationEigenvector(int _arg)\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"GetIntegrationEigenvectorMinValue", PyvtkHyperStreamline_GetIntegrationEigenvectorMinValue, METH_VARARGS, "V.GetIntegrationEigenvectorMinValue() -> int\nC++: virtual int GetIntegrationEigenvectorMinValue()\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"GetIntegrationEigenvectorMaxValue", PyvtkHyperStreamline_GetIntegrationEigenvectorMaxValue, METH_VARARGS, "V.GetIntegrationEigenvectorMaxValue() -> int\nC++: virtual int GetIntegrationEigenvectorMaxValue()\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"GetIntegrationEigenvector", PyvtkHyperStreamline_GetIntegrationEigenvector, METH_VARARGS, "V.GetIntegrationEigenvector() -> int\nC++: virtual int GetIntegrationEigenvector()\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"SetIntegrationEigenvectorToMajor", PyvtkHyperStreamline_SetIntegrationEigenvectorToMajor, METH_VARARGS, "V.SetIntegrationEigenvectorToMajor()\nC++: void SetIntegrationEigenvectorToMajor()\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"SetIntegrationEigenvectorToMedium", PyvtkHyperStreamline_SetIntegrationEigenvectorToMedium, METH_VARARGS, "V.SetIntegrationEigenvectorToMedium()\nC++: void SetIntegrationEigenvectorToMedium()\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"SetIntegrationEigenvectorToMinor", PyvtkHyperStreamline_SetIntegrationEigenvectorToMinor, METH_VARARGS, "V.SetIntegrationEigenvectorToMinor()\nC++: void SetIntegrationEigenvectorToMinor()\n\nSet / get the eigenvector field through which to ingrate. It is\npossible to integrate using the major, medium or minor\neigenvector field. The major eigenvector is the eigenvector\nwhose corresponding eigenvalue is closest to positive infinity.\nThe minor eigenvector is the eigenvector whose corresponding\neigenvalue is closest to negative infinity. The medium\neigenvector is the eigenvector whose corresponding eigenvalue is\nbetween the major and minor eigenvalues.\n"}, {"IntegrateMajorEigenvector", PyvtkHyperStreamline_IntegrateMajorEigenvector, METH_VARARGS, "V.IntegrateMajorEigenvector()\nC++: void IntegrateMajorEigenvector()\n\nUse the major eigenvector field as the vector field through which\nto integrate. The major eigenvector is the eigenvector whose\ncorresponding eigenvalue is closest to positive infinity.\n"}, {"IntegrateMediumEigenvector", PyvtkHyperStreamline_IntegrateMediumEigenvector, METH_VARARGS, "V.IntegrateMediumEigenvector()\nC++: void IntegrateMediumEigenvector()\n\nUse the medium eigenvector field as the vector field through\nwhich to integrate. The medium eigenvector is the eigenvector\nwhose corresponding eigenvalue is between the major and minor\neigenvalues.\n"}, {"IntegrateMinorEigenvector", PyvtkHyperStreamline_IntegrateMinorEigenvector, METH_VARARGS, "V.IntegrateMinorEigenvector()\nC++: void IntegrateMinorEigenvector()\n\nUse the minor eigenvector field as the vector field through which\nto integrate. The minor eigenvector is the eigenvector whose\ncorresponding eigenvalue is closest to negative infinity.\n"}, {"SetIntegrationStepLength", PyvtkHyperStreamline_SetIntegrationStepLength, METH_VARARGS, "V.SetIntegrationStepLength(float)\nC++: virtual void SetIntegrationStepLength(double _arg)\n\nSet / get a nominal integration step size (expressed as a\nfraction of the size of each cell).\n"}, {"GetIntegrationStepLengthMinValue", PyvtkHyperStreamline_GetIntegrationStepLengthMinValue, METH_VARARGS, "V.GetIntegrationStepLengthMinValue() -> float\nC++: virtual double GetIntegrationStepLengthMinValue()\n\nSet / get a nominal integration step size (expressed as a\nfraction of the size of each cell).\n"}, {"GetIntegrationStepLengthMaxValue", PyvtkHyperStreamline_GetIntegrationStepLengthMaxValue, METH_VARARGS, "V.GetIntegrationStepLengthMaxValue() -> float\nC++: virtual double GetIntegrationStepLengthMaxValue()\n\nSet / get a nominal integration step size (expressed as a\nfraction of the size of each cell).\n"}, {"GetIntegrationStepLength", PyvtkHyperStreamline_GetIntegrationStepLength, METH_VARARGS, "V.GetIntegrationStepLength() -> float\nC++: virtual double GetIntegrationStepLength()\n\nSet / get a nominal integration step size (expressed as a\nfraction of the size of each cell).\n"}, {"SetStepLength", PyvtkHyperStreamline_SetStepLength, METH_VARARGS, "V.SetStepLength(float)\nC++: virtual void SetStepLength(double _arg)\n\nSet / get the length of a tube segment composing the\nhyperstreamline. The length is specified as a fraction of the\ndiagonal length of the input bounding box.\n"}, {"GetStepLengthMinValue", PyvtkHyperStreamline_GetStepLengthMinValue, METH_VARARGS, "V.GetStepLengthMinValue() -> float\nC++: virtual double GetStepLengthMinValue()\n\nSet / get the length of a tube segment composing the\nhyperstreamline. The length is specified as a fraction of the\ndiagonal length of the input bounding box.\n"}, {"GetStepLengthMaxValue", PyvtkHyperStreamline_GetStepLengthMaxValue, METH_VARARGS, "V.GetStepLengthMaxValue() -> float\nC++: virtual double GetStepLengthMaxValue()\n\nSet / get the length of a tube segment composing the\nhyperstreamline. The length is specified as a fraction of the\ndiagonal length of the input bounding box.\n"}, {"GetStepLength", PyvtkHyperStreamline_GetStepLength, METH_VARARGS, "V.GetStepLength() -> float\nC++: virtual double GetStepLength()\n\nSet / get the length of a tube segment composing the\nhyperstreamline. The length is specified as a fraction of the\ndiagonal length of the input bounding box.\n"}, {"SetIntegrationDirection", PyvtkHyperStreamline_SetIntegrationDirection, METH_VARARGS, "V.SetIntegrationDirection(int)\nC++: virtual void SetIntegrationDirection(int _arg)\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"GetIntegrationDirectionMinValue", PyvtkHyperStreamline_GetIntegrationDirectionMinValue, METH_VARARGS, "V.GetIntegrationDirectionMinValue() -> int\nC++: virtual int GetIntegrationDirectionMinValue()\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"GetIntegrationDirectionMaxValue", PyvtkHyperStreamline_GetIntegrationDirectionMaxValue, METH_VARARGS, "V.GetIntegrationDirectionMaxValue() -> int\nC++: virtual int GetIntegrationDirectionMaxValue()\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"GetIntegrationDirection", PyvtkHyperStreamline_GetIntegrationDirection, METH_VARARGS, "V.GetIntegrationDirection() -> int\nC++: virtual int GetIntegrationDirection()\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"SetIntegrationDirectionToForward", PyvtkHyperStreamline_SetIntegrationDirectionToForward, METH_VARARGS, "V.SetIntegrationDirectionToForward()\nC++: void SetIntegrationDirectionToForward()\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"SetIntegrationDirectionToBackward", PyvtkHyperStreamline_SetIntegrationDirectionToBackward, METH_VARARGS, "V.SetIntegrationDirectionToBackward()\nC++: void SetIntegrationDirectionToBackward()\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"SetIntegrationDirectionToIntegrateBothDirections", PyvtkHyperStreamline_SetIntegrationDirectionToIntegrateBothDirections, METH_VARARGS, "V.SetIntegrationDirectionToIntegrateBothDirections()\nC++: void SetIntegrationDirectionToIntegrateBothDirections()\n\nSpecify the direction in which to integrate the hyperstreamline.\n"}, {"SetTerminalEigenvalue", PyvtkHyperStreamline_SetTerminalEigenvalue, METH_VARARGS, "V.SetTerminalEigenvalue(float)\nC++: virtual void SetTerminalEigenvalue(double _arg)\n\nSet/get terminal eigenvalue. If major eigenvalue falls below\nthis value, hyperstreamline terminates propagation.\n"}, {"GetTerminalEigenvalueMinValue", PyvtkHyperStreamline_GetTerminalEigenvalueMinValue, METH_VARARGS, "V.GetTerminalEigenvalueMinValue() -> float\nC++: virtual double GetTerminalEigenvalueMinValue()\n\nSet/get terminal eigenvalue. If major eigenvalue falls below\nthis value, hyperstreamline terminates propagation.\n"}, {"GetTerminalEigenvalueMaxValue", PyvtkHyperStreamline_GetTerminalEigenvalueMaxValue, METH_VARARGS, "V.GetTerminalEigenvalueMaxValue() -> float\nC++: virtual double GetTerminalEigenvalueMaxValue()\n\nSet/get terminal eigenvalue. If major eigenvalue falls below\nthis value, hyperstreamline terminates propagation.\n"}, {"GetTerminalEigenvalue", PyvtkHyperStreamline_GetTerminalEigenvalue, METH_VARARGS, "V.GetTerminalEigenvalue() -> float\nC++: virtual double GetTerminalEigenvalue()\n\nSet/get terminal eigenvalue. If major eigenvalue falls below\nthis value, hyperstreamline terminates propagation.\n"}, {"SetNumberOfSides", PyvtkHyperStreamline_SetNumberOfSides, METH_VARARGS, "V.SetNumberOfSides(int)\nC++: virtual void SetNumberOfSides(int _arg)\n\nSet / get the number of sides for the hyperstreamlines. At a\nminimum, number of sides is 3.\n"}, {"GetNumberOfSidesMinValue", PyvtkHyperStreamline_GetNumberOfSidesMinValue, METH_VARARGS, "V.GetNumberOfSidesMinValue() -> int\nC++: virtual int GetNumberOfSidesMinValue()\n\nSet / get the number of sides for the hyperstreamlines. At a\nminimum, number of sides is 3.\n"}, {"GetNumberOfSidesMaxValue", PyvtkHyperStreamline_GetNumberOfSidesMaxValue, METH_VARARGS, "V.GetNumberOfSidesMaxValue() -> int\nC++: virtual int GetNumberOfSidesMaxValue()\n\nSet / get the number of sides for the hyperstreamlines. At a\nminimum, number of sides is 3.\n"}, {"GetNumberOfSides", PyvtkHyperStreamline_GetNumberOfSides, METH_VARARGS, "V.GetNumberOfSides() -> int\nC++: virtual int GetNumberOfSides()\n\nSet / get the number of sides for the hyperstreamlines. At a\nminimum, number of sides is 3.\n"}, {"SetRadius", PyvtkHyperStreamline_SetRadius, METH_VARARGS, "V.SetRadius(float)\nC++: virtual void SetRadius(double _arg)\n\nSet / get the initial tube radius. This is the maximum\n\"elliptical\" radius at the beginning of the tube. Radius varies\nbased on ratio of eigenvalues. Note that tube section is\nactually elliptical and may become a point or line in cross\nsection in some cases.\n"}, {"GetRadiusMinValue", PyvtkHyperStreamline_GetRadiusMinValue, METH_VARARGS, "V.GetRadiusMinValue() -> float\nC++: virtual double GetRadiusMinValue()\n\nSet / get the initial tube radius. This is the maximum\n\"elliptical\" radius at the beginning of the tube. Radius varies\nbased on ratio of eigenvalues. Note that tube section is\nactually elliptical and may become a point or line in cross\nsection in some cases.\n"}, {"GetRadiusMaxValue", PyvtkHyperStreamline_GetRadiusMaxValue, METH_VARARGS, "V.GetRadiusMaxValue() -> float\nC++: virtual double GetRadiusMaxValue()\n\nSet / get the initial tube radius. This is the maximum\n\"elliptical\" radius at the beginning of the tube. Radius varies\nbased on ratio of eigenvalues. Note that tube section is\nactually elliptical and may become a point or line in cross\nsection in some cases.\n"}, {"GetRadius", PyvtkHyperStreamline_GetRadius, METH_VARARGS, "V.GetRadius() -> float\nC++: virtual double GetRadius()\n\nSet / get the initial tube radius. This is the maximum\n\"elliptical\" radius at the beginning of the tube. Radius varies\nbased on ratio of eigenvalues. Note that tube section is\nactually elliptical and may become a point or line in cross\nsection in some cases.\n"}, {"SetLogScaling", PyvtkHyperStreamline_SetLogScaling, METH_VARARGS, "V.SetLogScaling(int)\nC++: virtual void SetLogScaling(int _arg)\n\nTurn on/off logarithmic scaling. If scaling is on, the log base\n10 of the computed eigenvalues are used to scale the cross\nsection radii.\n"}, {"GetLogScaling", PyvtkHyperStreamline_GetLogScaling, METH_VARARGS, "V.GetLogScaling() -> int\nC++: virtual int GetLogScaling()\n\nTurn on/off logarithmic scaling. If scaling is on, the log base\n10 of the computed eigenvalues are used to scale the cross\nsection radii.\n"}, {"LogScalingOn", PyvtkHyperStreamline_LogScalingOn, METH_VARARGS, "V.LogScalingOn()\nC++: virtual void LogScalingOn()\n\nTurn on/off logarithmic scaling. If scaling is on, the log base\n10 of the computed eigenvalues are used to scale the cross\nsection radii.\n"}, {"LogScalingOff", PyvtkHyperStreamline_LogScalingOff, METH_VARARGS, "V.LogScalingOff()\nC++: virtual void LogScalingOff()\n\nTurn on/off logarithmic scaling. If scaling is on, the log base\n10 of the computed eigenvalues are used to scale the cross\nsection radii.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkHyperStreamline_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersGeneralPython.vtkHyperStreamline", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkHyperStreamline_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkHyperStreamline_StaticNew() { return vtkHyperStreamline::New(); } PyObject *PyvtkHyperStreamline_ClassNew() { PyVTKClass_Add( &PyvtkHyperStreamline_Type, PyvtkHyperStreamline_Methods, "vtkHyperStreamline", &PyvtkHyperStreamline_StaticNew); PyTypeObject *pytype = &PyvtkHyperStreamline_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkHyperStreamline( PyObject *dict) { PyObject *o; o = PyvtkHyperStreamline_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkHyperStreamline", o) != 0) { Py_DECREF(o); } for (int c = 0; c < 6; c++) { static const struct { const char *name; int value; } constants[6] = { { "VTK_INTEGRATE_FORWARD", 0 }, { "VTK_INTEGRATE_BACKWARD", 1 }, { "VTK_INTEGRATE_BOTH_DIRECTIONS", 2 }, { "VTK_INTEGRATE_MAJOR_EIGENVECTOR", 0 }, { "VTK_INTEGRATE_MEDIUM_EIGENVECTOR", 1 }, { "VTK_INTEGRATE_MINOR_EIGENVECTOR", 2 }, }; o = PyInt_FromLong(constants[c].value); if (o) { PyDict_SetItemString(dict, constants[c].name, o); Py_DECREF(o); } } }