// python wrapper for vtkHyperTreeGridPlaneCutter // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkHyperTreeGridPlaneCutter.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkHyperTreeGridPlaneCutter(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkHyperTreeGridPlaneCutter_ClassNew(); } #ifndef DECLARED_PyvtkHyperTreeGridAlgorithm_ClassNew extern "C" { PyObject *PyvtkHyperTreeGridAlgorithm_ClassNew(); } #define DECLARED_PyvtkHyperTreeGridAlgorithm_ClassNew #endif static const char *PyvtkHyperTreeGridPlaneCutter_Doc = "vtkHyperTreeGridPlaneCutter - cut an hyper tree grid volume with a\nplane and generate a polygonal cut surface.\n\n" "Superclass: vtkHyperTreeGridAlgorithm\n\n" "vtkHyperTreeGridPlaneCutter is a filter that takes as input an hyper\n" "tree grid and a single plane and generates the polygonal data\n" "intersection surface. This cut is computed at the leaf cells of the\n" "hyper tree. It is left as an option to decide whether the cut should\n" "be computed over the original AMR mesh or over its dual; in the\n" "latter case, perfect connectivity (i.e., mesh conformity in the FE\n" "sense) is achieved at the cost of interpolation to the dual of the\n" "input AMR mesh, and therefore of missing intersection plane pieces\n" "near the primal boundary.\n\n" "@sa\n" "vtkHyperTreeGrid vtkHyperTreeGridAlgorithm\n\n" "@par Thanks: This class was written by Philippe Pebay on a idea of\n" "Gu\303\251nol\303\251 Harel and Jacques-Bernard Lekien, 2016 This class was\n" "modified by Rogeli Grima Torres, 2016 This work was supported by\n" "Commissariat a l'Energie Atomique (CEA/DIF)\n\n"; static PyObject * PyvtkHyperTreeGridPlaneCutter_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkHyperTreeGridPlaneCutter::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkHyperTreeGridPlaneCutter::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkHyperTreeGridPlaneCutter *tempr = vtkHyperTreeGridPlaneCutter::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkHyperTreeGridPlaneCutter *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkHyperTreeGridPlaneCutter::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_SetPlane_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPlane"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); double temp0; double temp1; double temp2; double temp3; PyObject *result = nullptr; if (op && ap.CheckArgCount(4) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3)) { if (ap.IsBound()) { op->SetPlane(temp0, temp1, temp2, temp3); } else { op->vtkHyperTreeGridPlaneCutter::SetPlane(temp0, temp1, temp2, temp3); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_SetPlane_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPlane"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); const int size0 = 4; double temp0[4]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetPlane(temp0); } else { op->vtkHyperTreeGridPlaneCutter::SetPlane(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_SetPlane(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 4: return PyvtkHyperTreeGridPlaneCutter_SetPlane_s1(self, args); case 1: return PyvtkHyperTreeGridPlaneCutter_SetPlane_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetPlane"); return nullptr; } static PyObject * PyvtkHyperTreeGridPlaneCutter_GetPlane(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPlane"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); int sizer = 4; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetPlane() : op->vtkHyperTreeGridPlaneCutter::GetPlane()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_SetDual(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetDual"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetDual(temp0); } else { op->vtkHyperTreeGridPlaneCutter::SetDual(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_GetDual(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDual"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetDual() : op->vtkHyperTreeGridPlaneCutter::GetDual()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_DualOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "DualOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->DualOn(); } else { op->vtkHyperTreeGridPlaneCutter::DualOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkHyperTreeGridPlaneCutter_DualOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "DualOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkHyperTreeGridPlaneCutter *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->DualOff(); } else { op->vtkHyperTreeGridPlaneCutter::DualOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkHyperTreeGridPlaneCutter_Methods[] = { {"IsTypeOf", PyvtkHyperTreeGridPlaneCutter_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkHyperTreeGridPlaneCutter_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkHyperTreeGridPlaneCutter_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkHyperTreeGridPlaneCutter\nC++: static vtkHyperTreeGridPlaneCutter *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkHyperTreeGridPlaneCutter_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkHyperTreeGridPlaneCutter\nC++: vtkHyperTreeGridPlaneCutter *NewInstance()\n\n"}, {"SetPlane", PyvtkHyperTreeGridPlaneCutter_SetPlane, METH_VARARGS, "V.SetPlane(float, float, float, float)\nC++: void SetPlane(double, double, double, double)\nV.SetPlane((float, float, float, float))\nC++: void SetPlane(double a[4])\n\n"}, {"GetPlane", PyvtkHyperTreeGridPlaneCutter_GetPlane, METH_VARARGS, "V.GetPlane() -> (float, float, float, float)\nC++: double *GetPlane()\n\n"}, {"SetDual", PyvtkHyperTreeGridPlaneCutter_SetDual, METH_VARARGS, "V.SetDual(int)\nC++: virtual void SetDual(int _arg)\n\nSet/Get whether output mesh should be computed on dual grid\n"}, {"GetDual", PyvtkHyperTreeGridPlaneCutter_GetDual, METH_VARARGS, "V.GetDual() -> int\nC++: virtual int GetDual()\n\nSet/Get whether output mesh should be computed on dual grid\n"}, {"DualOn", PyvtkHyperTreeGridPlaneCutter_DualOn, METH_VARARGS, "V.DualOn()\nC++: virtual void DualOn()\n\nSet/Get whether output mesh should be computed on dual grid\n"}, {"DualOff", PyvtkHyperTreeGridPlaneCutter_DualOff, METH_VARARGS, "V.DualOff()\nC++: virtual void DualOff()\n\nSet/Get whether output mesh should be computed on dual grid\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkHyperTreeGridPlaneCutter_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersHyperTreePython.vtkHyperTreeGridPlaneCutter", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkHyperTreeGridPlaneCutter_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkHyperTreeGridPlaneCutter_StaticNew() { return vtkHyperTreeGridPlaneCutter::New(); } PyObject *PyvtkHyperTreeGridPlaneCutter_ClassNew() { PyVTKClass_Add( &PyvtkHyperTreeGridPlaneCutter_Type, PyvtkHyperTreeGridPlaneCutter_Methods, "vtkHyperTreeGridPlaneCutter", &PyvtkHyperTreeGridPlaneCutter_StaticNew); PyTypeObject *pytype = &PyvtkHyperTreeGridPlaneCutter_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkHyperTreeGridAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkHyperTreeGridPlaneCutter( PyObject *dict) { PyObject *o; o = PyvtkHyperTreeGridPlaneCutter_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkHyperTreeGridPlaneCutter", o) != 0) { Py_DECREF(o); } }