// python wrapper for vtkImageAnisotropicDiffusion2D // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkImageAnisotropicDiffusion2D.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkImageAnisotropicDiffusion2D(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkImageAnisotropicDiffusion2D_ClassNew(); } #ifndef DECLARED_PyvtkImageSpatialAlgorithm_ClassNew extern "C" { PyObject *PyvtkImageSpatialAlgorithm_ClassNew(); } #define DECLARED_PyvtkImageSpatialAlgorithm_ClassNew #endif static const char *PyvtkImageAnisotropicDiffusion2D_Doc = "vtkImageAnisotropicDiffusion2D - edge preserving smoothing.\n\n" "Superclass: vtkImageSpatialAlgorithm\n\n" "vtkImageAnisotropicDiffusion2D diffuses a 2d image iteratively. The\n" "neighborhood of the diffusion is determined by the instance flags. If\n" "\"Edges\" is on the 4 edge connected voxels are included, and if\n" "\"Corners\" is on, the 4 corner connected voxels are included. \n" "\"DiffusionFactor\" determines how far a pixel value moves toward its\n" "neighbors, and is insensitive to the number of neighbors chosen. The\n" "diffusion is anisotropic because it only occurs when a gradient\n" "measure is below \"GradientThreshold\". Two gradient measures exist\n" "and are toggled by the \"GradientMagnitudeThreshold\" flag. When\n" "\"GradientMagnitudeThreshold\" is on, the magnitude of the gradient,\n" "computed by central differences, above \"DiffusionThreshold\" a voxel\n" "is not modified. The alternative measure examines each neighbor\n" "independently. The gradient between the voxel and the neighbor must\n" "be below the \"DiffusionThreshold\" for diffusion to occur with THAT\n" "neighbor.\n\n" "@sa\n" "vtkImageAnisotropicDiffusion3D\n\n"; static PyObject * PyvtkImageAnisotropicDiffusion2D_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkImageAnisotropicDiffusion2D::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkImageAnisotropicDiffusion2D::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkImageAnisotropicDiffusion2D *tempr = vtkImageAnisotropicDiffusion2D::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkImageAnisotropicDiffusion2D *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkImageAnisotropicDiffusion2D::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetNumberOfIterations(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfIterations"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfIterations(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetNumberOfIterations(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetNumberOfIterations(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfIterations"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfIterations() : op->vtkImageAnisotropicDiffusion2D::GetNumberOfIterations()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetDiffusionThreshold(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetDiffusionThreshold"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetDiffusionThreshold(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetDiffusionThreshold(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetDiffusionThreshold(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDiffusionThreshold"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetDiffusionThreshold() : op->vtkImageAnisotropicDiffusion2D::GetDiffusionThreshold()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetDiffusionFactor(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetDiffusionFactor"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetDiffusionFactor(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetDiffusionFactor(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetDiffusionFactor(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDiffusionFactor"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetDiffusionFactor() : op->vtkImageAnisotropicDiffusion2D::GetDiffusionFactor()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetFaces(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetFaces"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetFaces(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetFaces(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetFaces(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFaces"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetFaces() : op->vtkImageAnisotropicDiffusion2D::GetFaces()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_FacesOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "FacesOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->FacesOn(); } else { op->vtkImageAnisotropicDiffusion2D::FacesOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_FacesOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "FacesOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->FacesOff(); } else { op->vtkImageAnisotropicDiffusion2D::FacesOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetEdges(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetEdges"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetEdges(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetEdges(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetEdges(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEdges"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetEdges() : op->vtkImageAnisotropicDiffusion2D::GetEdges()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_EdgesOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EdgesOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->EdgesOn(); } else { op->vtkImageAnisotropicDiffusion2D::EdgesOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_EdgesOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EdgesOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->EdgesOff(); } else { op->vtkImageAnisotropicDiffusion2D::EdgesOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetCorners(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCorners"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCorners(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetCorners(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetCorners(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCorners"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetCorners() : op->vtkImageAnisotropicDiffusion2D::GetCorners()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_CornersOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CornersOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CornersOn(); } else { op->vtkImageAnisotropicDiffusion2D::CornersOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_CornersOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CornersOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CornersOff(); } else { op->vtkImageAnisotropicDiffusion2D::CornersOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_SetGradientMagnitudeThreshold(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGradientMagnitudeThreshold"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGradientMagnitudeThreshold(temp0); } else { op->vtkImageAnisotropicDiffusion2D::SetGradientMagnitudeThreshold(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GetGradientMagnitudeThreshold(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGradientMagnitudeThreshold"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetGradientMagnitudeThreshold() : op->vtkImageAnisotropicDiffusion2D::GetGradientMagnitudeThreshold()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GradientMagnitudeThresholdOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GradientMagnitudeThresholdOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GradientMagnitudeThresholdOn(); } else { op->vtkImageAnisotropicDiffusion2D::GradientMagnitudeThresholdOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageAnisotropicDiffusion2D_GradientMagnitudeThresholdOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GradientMagnitudeThresholdOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageAnisotropicDiffusion2D *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GradientMagnitudeThresholdOff(); } else { op->vtkImageAnisotropicDiffusion2D::GradientMagnitudeThresholdOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkImageAnisotropicDiffusion2D_Methods[] = { {"IsTypeOf", PyvtkImageAnisotropicDiffusion2D_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkImageAnisotropicDiffusion2D_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkImageAnisotropicDiffusion2D_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkImageAnisotropicDiffusion2D\nC++: static vtkImageAnisotropicDiffusion2D *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkImageAnisotropicDiffusion2D_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkImageAnisotropicDiffusion2D\nC++: vtkImageAnisotropicDiffusion2D *NewInstance()\n\n"}, {"SetNumberOfIterations", PyvtkImageAnisotropicDiffusion2D_SetNumberOfIterations, METH_VARARGS, "V.SetNumberOfIterations(int)\nC++: void SetNumberOfIterations(int num)\n\nThis method sets the number of interations which also affects the\ninput neighborhood needed to compute one output pixel. Each\niterations requires an extra pixel layer on the neighborhood. \nThis is only relavent when you are trying to stream or are\nrequesting a sub extent of the \"wholeExtent\".\n"}, {"GetNumberOfIterations", PyvtkImageAnisotropicDiffusion2D_GetNumberOfIterations, METH_VARARGS, "V.GetNumberOfIterations() -> int\nC++: virtual int GetNumberOfIterations()\n\nGet the number of iterations.\n"}, {"SetDiffusionThreshold", PyvtkImageAnisotropicDiffusion2D_SetDiffusionThreshold, METH_VARARGS, "V.SetDiffusionThreshold(float)\nC++: virtual void SetDiffusionThreshold(double _arg)\n\nSet/Get the difference threshold that stops diffusion. when the\ndifference between two pixel is greater than this threshold, the\npixels are not diffused. This causes diffusion to avoid sharp\nedges. If the GradientMagnitudeThreshold is set, then gradient\nmagnitude is used for comparison instead of pixel differences.\n"}, {"GetDiffusionThreshold", PyvtkImageAnisotropicDiffusion2D_GetDiffusionThreshold, METH_VARARGS, "V.GetDiffusionThreshold() -> float\nC++: virtual double GetDiffusionThreshold()\n\nSet/Get the difference threshold that stops diffusion. when the\ndifference between two pixel is greater than this threshold, the\npixels are not diffused. This causes diffusion to avoid sharp\nedges. If the GradientMagnitudeThreshold is set, then gradient\nmagnitude is used for comparison instead of pixel differences.\n"}, {"SetDiffusionFactor", PyvtkImageAnisotropicDiffusion2D_SetDiffusionFactor, METH_VARARGS, "V.SetDiffusionFactor(float)\nC++: virtual void SetDiffusionFactor(double _arg)\n\nThe diffusion factor specifies how much neighboring pixels\neffect each other. No diffusion occurs with a factor of 0, and a\ndiffusion factor of 1 causes the pixel to become the average of\nall its neighbors.\n"}, {"GetDiffusionFactor", PyvtkImageAnisotropicDiffusion2D_GetDiffusionFactor, METH_VARARGS, "V.GetDiffusionFactor() -> float\nC++: virtual double GetDiffusionFactor()\n\nThe diffusion factor specifies how much neighboring pixels\neffect each other. No diffusion occurs with a factor of 0, and a\ndiffusion factor of 1 causes the pixel to become the average of\nall its neighbors.\n"}, {"SetFaces", PyvtkImageAnisotropicDiffusion2D_SetFaces, METH_VARARGS, "V.SetFaces(int)\nC++: virtual void SetFaces(int _arg)\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"GetFaces", PyvtkImageAnisotropicDiffusion2D_GetFaces, METH_VARARGS, "V.GetFaces() -> int\nC++: virtual int GetFaces()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"FacesOn", PyvtkImageAnisotropicDiffusion2D_FacesOn, METH_VARARGS, "V.FacesOn()\nC++: virtual void FacesOn()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"FacesOff", PyvtkImageAnisotropicDiffusion2D_FacesOff, METH_VARARGS, "V.FacesOff()\nC++: virtual void FacesOff()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"SetEdges", PyvtkImageAnisotropicDiffusion2D_SetEdges, METH_VARARGS, "V.SetEdges(int)\nC++: virtual void SetEdges(int _arg)\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"GetEdges", PyvtkImageAnisotropicDiffusion2D_GetEdges, METH_VARARGS, "V.GetEdges() -> int\nC++: virtual int GetEdges()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"EdgesOn", PyvtkImageAnisotropicDiffusion2D_EdgesOn, METH_VARARGS, "V.EdgesOn()\nC++: virtual void EdgesOn()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"EdgesOff", PyvtkImageAnisotropicDiffusion2D_EdgesOff, METH_VARARGS, "V.EdgesOff()\nC++: virtual void EdgesOff()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"SetCorners", PyvtkImageAnisotropicDiffusion2D_SetCorners, METH_VARARGS, "V.SetCorners(int)\nC++: virtual void SetCorners(int _arg)\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"GetCorners", PyvtkImageAnisotropicDiffusion2D_GetCorners, METH_VARARGS, "V.GetCorners() -> int\nC++: virtual int GetCorners()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"CornersOn", PyvtkImageAnisotropicDiffusion2D_CornersOn, METH_VARARGS, "V.CornersOn()\nC++: virtual void CornersOn()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"CornersOff", PyvtkImageAnisotropicDiffusion2D_CornersOff, METH_VARARGS, "V.CornersOff()\nC++: virtual void CornersOff()\n\nChoose neighbors to diffuse (6 faces, 12 edges, 8 corners).\n"}, {"SetGradientMagnitudeThreshold", PyvtkImageAnisotropicDiffusion2D_SetGradientMagnitudeThreshold, METH_VARARGS, "V.SetGradientMagnitudeThreshold(int)\nC++: virtual void SetGradientMagnitudeThreshold(int _arg)\n\nSwitch between gradient magnitude threshold and pixel gradient\nthreshold.\n"}, {"GetGradientMagnitudeThreshold", PyvtkImageAnisotropicDiffusion2D_GetGradientMagnitudeThreshold, METH_VARARGS, "V.GetGradientMagnitudeThreshold() -> int\nC++: virtual int GetGradientMagnitudeThreshold()\n\nSwitch between gradient magnitude threshold and pixel gradient\nthreshold.\n"}, {"GradientMagnitudeThresholdOn", PyvtkImageAnisotropicDiffusion2D_GradientMagnitudeThresholdOn, METH_VARARGS, "V.GradientMagnitudeThresholdOn()\nC++: virtual void GradientMagnitudeThresholdOn()\n\nSwitch between gradient magnitude threshold and pixel gradient\nthreshold.\n"}, {"GradientMagnitudeThresholdOff", PyvtkImageAnisotropicDiffusion2D_GradientMagnitudeThresholdOff, METH_VARARGS, "V.GradientMagnitudeThresholdOff()\nC++: virtual void GradientMagnitudeThresholdOff()\n\nSwitch between gradient magnitude threshold and pixel gradient\nthreshold.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkImageAnisotropicDiffusion2D_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkImagingGeneralPython.vtkImageAnisotropicDiffusion2D", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkImageAnisotropicDiffusion2D_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkImageAnisotropicDiffusion2D_StaticNew() { return vtkImageAnisotropicDiffusion2D::New(); } PyObject *PyvtkImageAnisotropicDiffusion2D_ClassNew() { PyVTKClass_Add( &PyvtkImageAnisotropicDiffusion2D_Type, PyvtkImageAnisotropicDiffusion2D_Methods, "vtkImageAnisotropicDiffusion2D", &PyvtkImageAnisotropicDiffusion2D_StaticNew); PyTypeObject *pytype = &PyvtkImageAnisotropicDiffusion2D_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkImageSpatialAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkImageAnisotropicDiffusion2D( PyObject *dict) { PyObject *o; o = PyvtkImageAnisotropicDiffusion2D_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkImageAnisotropicDiffusion2D", o) != 0) { Py_DECREF(o); } }