// python wrapper for vtkImageMarchingCubes // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkImageMarchingCubes.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkImageMarchingCubes(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkImageMarchingCubes_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkImageMarchingCubes_Doc = "vtkImageMarchingCubes - generate isosurface(s) from volume/images\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkImageMarchingCubes is a filter that takes as input images (e.g.,\n" "3D image region) and generates on output one or more isosurfaces. One\n" "or more contour values must be specified to generate the isosurfaces.\n" "Alternatively, you can specify a min/max scalar range and the number\n" "of contours to generate a series of evenly spaced contour values.\n" "This filter can stream, so that the entire volume need not be loaded\n" "at once. Streaming is controlled using the instance variable\n" "InputMemoryLimit, which has units KBytes.\n\n" "@warning\n" "This filter is specialized to volumes. If you are interested in\n" "contouring other types of data, use the general vtkContourFilter. If\n" "you want to contour an image (i.e., a volume slice), use\n" "vtkMarchingSquares.\n" "@sa\n" "vtkContourFilter vtkSliceCubes vtkMarchingSquares\n" "vtkSynchronizedTemplates3D\n\n"; static PyObject * PyvtkImageMarchingCubes_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkImageMarchingCubes::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkImageMarchingCubes::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkImageMarchingCubes *tempr = vtkImageMarchingCubes::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkImageMarchingCubes *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkImageMarchingCubes::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkImageMarchingCubes_SetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetValue(temp0, temp1); } else { op->vtkImageMarchingCubes::SetValue(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { double tempr = (ap.IsBound() ? op->GetValue(temp0) : op->vtkImageMarchingCubes::GetValue(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetValues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetValues() : op->vtkImageMarchingCubes::GetValues()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetValues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(2*size0); double *temp0 = store0.Data(); double *save0 = (size0 == 0 ? nullptr : temp0 + size0); PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->GetValues(temp0); } else { op->vtkImageMarchingCubes::GetValues(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetValues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 0: return PyvtkImageMarchingCubes_GetValues_s1(self, args); case 1: return PyvtkImageMarchingCubes_GetValues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetValues"); return nullptr; } static PyObject * PyvtkImageMarchingCubes_SetNumberOfContours(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfContours"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfContours(temp0); } else { op->vtkImageMarchingCubes::SetNumberOfContours(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetNumberOfContours(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfContours"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfContours() : op->vtkImageMarchingCubes::GetNumberOfContours()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_GenerateValues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; const int size1 = 2; double temp1[2]; double save1[2]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->GenerateValues(temp0, temp1); } else { op->vtkImageMarchingCubes::GenerateValues(temp0, temp1); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GenerateValues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->GenerateValues(temp0, temp1, temp2); } else { op->vtkImageMarchingCubes::GenerateValues(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GenerateValues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkImageMarchingCubes_GenerateValues_s1(self, args); case 3: return PyvtkImageMarchingCubes_GenerateValues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GenerateValues"); return nullptr; } static PyObject * PyvtkImageMarchingCubes_GetMTime(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMTime"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { unsigned long tempr = (ap.IsBound() ? op->GetMTime() : op->vtkImageMarchingCubes::GetMTime()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_SetComputeScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeScalars(temp0); } else { op->vtkImageMarchingCubes::SetComputeScalars(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetComputeScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeScalars() : op->vtkImageMarchingCubes::GetComputeScalars()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_ComputeScalarsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeScalarsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeScalarsOn(); } else { op->vtkImageMarchingCubes::ComputeScalarsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_ComputeScalarsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeScalarsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeScalarsOff(); } else { op->vtkImageMarchingCubes::ComputeScalarsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_SetComputeNormals(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeNormals"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeNormals(temp0); } else { op->vtkImageMarchingCubes::SetComputeNormals(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetComputeNormals(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeNormals"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeNormals() : op->vtkImageMarchingCubes::GetComputeNormals()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_ComputeNormalsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeNormalsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeNormalsOn(); } else { op->vtkImageMarchingCubes::ComputeNormalsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_ComputeNormalsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeNormalsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeNormalsOff(); } else { op->vtkImageMarchingCubes::ComputeNormalsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_SetComputeGradients(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeGradients"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeGradients(temp0); } else { op->vtkImageMarchingCubes::SetComputeGradients(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetComputeGradients(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeGradients"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeGradients() : op->vtkImageMarchingCubes::GetComputeGradients()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_ComputeGradientsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeGradientsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeGradientsOn(); } else { op->vtkImageMarchingCubes::ComputeGradientsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_ComputeGradientsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeGradientsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeGradientsOff(); } else { op->vtkImageMarchingCubes::ComputeGradientsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetLocatorPoint(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLocatorPoint"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; int temp1; int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { vtkIdType tempr = (ap.IsBound() ? op->GetLocatorPoint(temp0, temp1, temp2) : op->vtkImageMarchingCubes::GetLocatorPoint(temp0, temp1, temp2)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImageMarchingCubes_AddLocatorPoint(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AddLocatorPoint"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); int temp0; int temp1; int temp2; vtkIdType temp3; PyObject *result = nullptr; if (op && ap.CheckArgCount(4) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3)) { if (ap.IsBound()) { op->AddLocatorPoint(temp0, temp1, temp2, temp3); } else { op->vtkImageMarchingCubes::AddLocatorPoint(temp0, temp1, temp2, temp3); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_IncrementLocatorZ(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IncrementLocatorZ"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->IncrementLocatorZ(); } else { op->vtkImageMarchingCubes::IncrementLocatorZ(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_SetInputMemoryLimit(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetInputMemoryLimit"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); vtkIdType temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetInputMemoryLimit(temp0); } else { op->vtkImageMarchingCubes::SetInputMemoryLimit(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImageMarchingCubes_GetInputMemoryLimit(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetInputMemoryLimit"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImageMarchingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkIdType tempr = (ap.IsBound() ? op->GetInputMemoryLimit() : op->vtkImageMarchingCubes::GetInputMemoryLimit()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkImageMarchingCubes_Methods[] = { {"IsTypeOf", PyvtkImageMarchingCubes_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkImageMarchingCubes_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkImageMarchingCubes_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkImageMarchingCubes\nC++: static vtkImageMarchingCubes *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkImageMarchingCubes_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkImageMarchingCubes\nC++: vtkImageMarchingCubes *NewInstance()\n\n"}, {"SetValue", PyvtkImageMarchingCubes_SetValue, METH_VARARGS, "V.SetValue(int, float)\nC++: void SetValue(int i, double value)\n\nMethods to set contour values\n"}, {"GetValue", PyvtkImageMarchingCubes_GetValue, METH_VARARGS, "V.GetValue(int) -> float\nC++: double GetValue(int i)\n\nMethods to set contour values\n"}, {"GetValues", PyvtkImageMarchingCubes_GetValues, METH_VARARGS, "V.GetValues() -> (float, ...)\nC++: double *GetValues()\nV.GetValues([float, ...])\nC++: void GetValues(double *contourValues)\n\nMethods to set contour values\n"}, {"SetNumberOfContours", PyvtkImageMarchingCubes_SetNumberOfContours, METH_VARARGS, "V.SetNumberOfContours(int)\nC++: void SetNumberOfContours(int number)\n\nMethods to set contour values\n"}, {"GetNumberOfContours", PyvtkImageMarchingCubes_GetNumberOfContours, METH_VARARGS, "V.GetNumberOfContours() -> int\nC++: int GetNumberOfContours()\n\nMethods to set contour values\n"}, {"GenerateValues", PyvtkImageMarchingCubes_GenerateValues, METH_VARARGS, "V.GenerateValues(int, [float, float])\nC++: void GenerateValues(int numContours, double range[2])\nV.GenerateValues(int, float, float)\nC++: void GenerateValues(int numContours, double rangeStart,\n double rangeEnd)\n\nMethods to set contour values\n"}, {"GetMTime", PyvtkImageMarchingCubes_GetMTime, METH_VARARGS, "V.GetMTime() -> int\nC++: vtkMTimeType GetMTime() override;\n\nBecause we delegate to vtkContourValues & refer to\nvtkImplicitFunction\n"}, {"SetComputeScalars", PyvtkImageMarchingCubes_SetComputeScalars, METH_VARARGS, "V.SetComputeScalars(int)\nC++: virtual void SetComputeScalars(int _arg)\n\nSet/Get the computation of scalars.\n"}, {"GetComputeScalars", PyvtkImageMarchingCubes_GetComputeScalars, METH_VARARGS, "V.GetComputeScalars() -> int\nC++: virtual int GetComputeScalars()\n\nSet/Get the computation of scalars.\n"}, {"ComputeScalarsOn", PyvtkImageMarchingCubes_ComputeScalarsOn, METH_VARARGS, "V.ComputeScalarsOn()\nC++: virtual void ComputeScalarsOn()\n\nSet/Get the computation of scalars.\n"}, {"ComputeScalarsOff", PyvtkImageMarchingCubes_ComputeScalarsOff, METH_VARARGS, "V.ComputeScalarsOff()\nC++: virtual void ComputeScalarsOff()\n\nSet/Get the computation of scalars.\n"}, {"SetComputeNormals", PyvtkImageMarchingCubes_SetComputeNormals, METH_VARARGS, "V.SetComputeNormals(int)\nC++: virtual void SetComputeNormals(int _arg)\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"GetComputeNormals", PyvtkImageMarchingCubes_GetComputeNormals, METH_VARARGS, "V.GetComputeNormals() -> int\nC++: virtual int GetComputeNormals()\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"ComputeNormalsOn", PyvtkImageMarchingCubes_ComputeNormalsOn, METH_VARARGS, "V.ComputeNormalsOn()\nC++: virtual void ComputeNormalsOn()\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"ComputeNormalsOff", PyvtkImageMarchingCubes_ComputeNormalsOff, METH_VARARGS, "V.ComputeNormalsOff()\nC++: virtual void ComputeNormalsOff()\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"SetComputeGradients", PyvtkImageMarchingCubes_SetComputeGradients, METH_VARARGS, "V.SetComputeGradients(int)\nC++: virtual void SetComputeGradients(int _arg)\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data will\nbe processed by filters that modify topology or geometry, it may\nbe wise to turn Normals and Gradients off.\n"}, {"GetComputeGradients", PyvtkImageMarchingCubes_GetComputeGradients, METH_VARARGS, "V.GetComputeGradients() -> int\nC++: virtual int GetComputeGradients()\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data will\nbe processed by filters that modify topology or geometry, it may\nbe wise to turn Normals and Gradients off.\n"}, {"ComputeGradientsOn", PyvtkImageMarchingCubes_ComputeGradientsOn, METH_VARARGS, "V.ComputeGradientsOn()\nC++: virtual void ComputeGradientsOn()\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data will\nbe processed by filters that modify topology or geometry, it may\nbe wise to turn Normals and Gradients off.\n"}, {"ComputeGradientsOff", PyvtkImageMarchingCubes_ComputeGradientsOff, METH_VARARGS, "V.ComputeGradientsOff()\nC++: virtual void ComputeGradientsOff()\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data will\nbe processed by filters that modify topology or geometry, it may\nbe wise to turn Normals and Gradients off.\n"}, {"GetLocatorPoint", PyvtkImageMarchingCubes_GetLocatorPoint, METH_VARARGS, "V.GetLocatorPoint(int, int, int) -> int\nC++: vtkIdType GetLocatorPoint(int cellX, int cellY, int edge)\n\n"}, {"AddLocatorPoint", PyvtkImageMarchingCubes_AddLocatorPoint, METH_VARARGS, "V.AddLocatorPoint(int, int, int, int)\nC++: void AddLocatorPoint(int cellX, int cellY, int edge,\n vtkIdType ptId)\n\n"}, {"IncrementLocatorZ", PyvtkImageMarchingCubes_IncrementLocatorZ, METH_VARARGS, "V.IncrementLocatorZ()\nC++: void IncrementLocatorZ()\n\n"}, {"SetInputMemoryLimit", PyvtkImageMarchingCubes_SetInputMemoryLimit, METH_VARARGS, "V.SetInputMemoryLimit(int)\nC++: virtual void SetInputMemoryLimit(vtkIdType _arg)\n\nThe InputMemoryLimit determines the chunk size (the number of\nslices requested at each iteration). The units of this limit is\nKiloBytes. For now, only the Z axis is split.\n"}, {"GetInputMemoryLimit", PyvtkImageMarchingCubes_GetInputMemoryLimit, METH_VARARGS, "V.GetInputMemoryLimit() -> int\nC++: virtual vtkIdType GetInputMemoryLimit()\n\nThe InputMemoryLimit determines the chunk size (the number of\nslices requested at each iteration). The units of this limit is\nKiloBytes. For now, only the Z axis is split.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkImageMarchingCubes_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersGeneralPython.vtkImageMarchingCubes", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkImageMarchingCubes_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkImageMarchingCubes_StaticNew() { return vtkImageMarchingCubes::New(); } PyObject *PyvtkImageMarchingCubes_ClassNew() { PyVTKClass_Add( &PyvtkImageMarchingCubes_Type, PyvtkImageMarchingCubes_Methods, "vtkImageMarchingCubes", &PyvtkImageMarchingCubes_StaticNew); PyTypeObject *pytype = &PyvtkImageMarchingCubes_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkImageMarchingCubes( PyObject *dict) { PyObject *o; o = PyvtkImageMarchingCubes_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkImageMarchingCubes", o) != 0) { Py_DECREF(o); } }