// python wrapper for vtkImplicitModeller // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkInformationVector.h" #include "vtkImplicitModeller.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkImplicitModeller(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkImplicitModeller_ClassNew(); } #ifndef DECLARED_PyvtkImageAlgorithm_ClassNew extern "C" { PyObject *PyvtkImageAlgorithm_ClassNew(); } #define DECLARED_PyvtkImageAlgorithm_ClassNew #endif static const char *PyvtkImplicitModeller_Doc = "vtkImplicitModeller - compute distance from input geometry on\nstructured point dataset\n\n" "Superclass: vtkImageAlgorithm\n\n" "vtkImplicitModeller is a filter that computes the distance from the\n" "input geometry to the points of an output structured point set. This\n" "distance function can then be \"contoured\" to generate new, offset\n" "surfaces from the original geometry. An important feature of this\n" "object is \"capping\". If capping is turned on, after the implicit\n" "model is created, the values on the boundary of the structured points\n" "dataset are set to the cap value. This is used to force closure of\n" "the resulting contoured surface. Note, however, that large cap values\n" "can generate weird surface normals in those cells adjacent to the\n" "boundary of the dataset. Using smaller cap value will reduce this\n" "effect.\n\n" "Another important ivar is MaximumDistance. This controls how far into\n" "the volume the distance function is computed from the input geometry.\n" " Small values give significant increases in performance. However,\n" "there can strange sampling effects at the extreme range of the\n" "MaximumDistance.\n\n" "In order to properly execute and sample the input data, a rectangular\n" "region in space must be defined (this is the ivar ModelBounds). If\n" "not explicitly defined, the model bounds will be computed. Note that\n" "to avoid boundary effects, it is possible to adjust the model bounds\n" "(i.e., using the AdjustBounds and AdjustDistance ivars) to strictly\n" "contain the sampled data.\n\n" "This filter has one other unusual capability: it is possible to\n" "append data in a sequence of operations to generate a single output.\n" "This is useful when you have multiple datasets and want to create a\n" "conglomeration of all the data. However, the user must be careful to\n" "either specify the ModelBounds or specify the first item such that\n" "its bounds completely contain all other items. This is because the\n" "rectangular region of the output can not be changed after the 1st\n" "Append.\n\n" "The ProcessMode ivar controls the method used within the Append\n" "function (where the actual work is done regardless if the Append\n" "function is explicitly called) to compute the implicit model. If set\n" "to work in voxel mode, each voxel is visited once. If set to cell\n" "mode, each cell is visited once. Tests have shown once per voxel to\n" "be faster when there are a lot of cells (at least a thousand?);\n" "relative performance improvement increases with addition cells.\n" "Primitives should not be stripped for best performance of the voxel\n" "mode. Also, if explicitly using the Append feature many times, the\n" "cell mode will probably be better because each voxel will be visited\n" "each Append. Append the data before input if possible when using the\n" "voxel mode. Do not switch between voxel and cell mode between\n" "execution of StartAppend and EndAppend.\n\n" "Further performance improvement is now possible using the PerVoxel\n" "process mode on multi-processor machines (the mode is now\n" "multithreaded). Each thread processes a different \"slab\" of the\n" "output. Also, if the input is vtkPolyData, it is appropriately\n" "clipped for each thread; that is, each thread only considers the\n" "input which could affect its slab of the output.\n\n" "This filter can now produce output of any type supported by\n" "vtkImageData. However to support this change, additional sqrts must\n" "be executed during the Append step. Previously, the output was\n" "initialized to the squared CapValue in StartAppend, the output was\n" "updated with squared distance values during the Append, and then the\n" "sqrt of the distances was computed in EndAppend. To support different\n" "scalar types in the output (largely to reduce memory requirements as\n" "an vtkImageShiftScale and/or vtkImageCast could have achieved the\n" "same result), we can't \"afford\" to save squared value in the output,\n" "because then we could only represent up to the sqrt of the scalar max\n" "for an integer type in the output; 1 (instead of 255) for an unsigned\n" "char; 11 for a char (instead of 127). Thus this change may result in\n" "a minor performance degradation. Non-float output types can be\n" "scaled to the CapValue by turning ScaleToMaximumDistance On.\n\n" "@sa\n" "vtkSampleFunction vtkContourFilter\n\n"; static PyObject * PyvtkImplicitModeller_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkImplicitModeller::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkImplicitModeller::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkImplicitModeller *tempr = vtkImplicitModeller::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkImplicitModeller *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkImplicitModeller::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkImplicitModeller_ComputeModelBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); vtkDataSet *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(0, 1) && (ap.NoArgsLeft() || ap.GetVTKObject(temp0, "vtkDataSet"))) { double tempr = (ap.IsBound() ? op->ComputeModelBounds(temp0) : op->vtkImplicitModeller::ComputeModelBounds(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetSampleDimensions(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSampleDimensions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int *tempr = (ap.IsBound() ? op->GetSampleDimensions() : op->vtkImplicitModeller::GetSampleDimensions()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkImplicitModeller_SetSampleDimensions_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSampleDimensions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; int temp1; int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetSampleDimensions(temp0, temp1, temp2); } else { op->vtkImplicitModeller::SetSampleDimensions(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetSampleDimensions_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSampleDimensions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); const int size0 = 3; int temp0[3]; int save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->SetSampleDimensions(temp0); } else { op->vtkImplicitModeller::SetSampleDimensions(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetSampleDimensions(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkImplicitModeller_SetSampleDimensions_s1(self, args); case 1: return PyvtkImplicitModeller_SetSampleDimensions_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetSampleDimensions"); return nullptr; } static PyObject * PyvtkImplicitModeller_SetMaximumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMaximumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMaximumDistance(temp0); } else { op->vtkImplicitModeller::SetMaximumDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetMaximumDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistanceMinValue() : op->vtkImplicitModeller::GetMaximumDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetMaximumDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistanceMaxValue() : op->vtkImplicitModeller::GetMaximumDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetMaximumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistance() : op->vtkImplicitModeller::GetMaximumDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetModelBounds_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); double temp0; double temp1; double temp2; double temp3; double temp4; double temp5; PyObject *result = nullptr; if (op && ap.CheckArgCount(6) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetValue(temp4) && ap.GetValue(temp5)) { if (ap.IsBound()) { op->SetModelBounds(temp0, temp1, temp2, temp3, temp4, temp5); } else { op->vtkImplicitModeller::SetModelBounds(temp0, temp1, temp2, temp3, temp4, temp5); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetModelBounds_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); const int size0 = 6; double temp0[6]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetModelBounds(temp0); } else { op->vtkImplicitModeller::SetModelBounds(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetModelBounds(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 6: return PyvtkImplicitModeller_SetModelBounds_s1(self, args); case 1: return PyvtkImplicitModeller_SetModelBounds_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetModelBounds"); return nullptr; } static PyObject * PyvtkImplicitModeller_GetModelBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int sizer = 6; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetModelBounds() : op->vtkImplicitModeller::GetModelBounds()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkImplicitModeller_SetAdjustBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetAdjustBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetAdjustBounds(temp0); } else { op->vtkImplicitModeller::SetAdjustBounds(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetAdjustBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAdjustBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetAdjustBounds() : op->vtkImplicitModeller::GetAdjustBounds()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_AdjustBoundsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AdjustBoundsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->AdjustBoundsOn(); } else { op->vtkImplicitModeller::AdjustBoundsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_AdjustBoundsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AdjustBoundsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->AdjustBoundsOff(); } else { op->vtkImplicitModeller::AdjustBoundsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetAdjustDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetAdjustDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetAdjustDistance(temp0); } else { op->vtkImplicitModeller::SetAdjustDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetAdjustDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAdjustDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetAdjustDistanceMinValue() : op->vtkImplicitModeller::GetAdjustDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetAdjustDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAdjustDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetAdjustDistanceMaxValue() : op->vtkImplicitModeller::GetAdjustDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetAdjustDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAdjustDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetAdjustDistance() : op->vtkImplicitModeller::GetAdjustDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetCapping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCapping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCapping(temp0); } else { op->vtkImplicitModeller::SetCapping(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetCapping(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCapping"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetCapping() : op->vtkImplicitModeller::GetCapping()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_CappingOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CappingOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CappingOn(); } else { op->vtkImplicitModeller::CappingOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_CappingOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CappingOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->CappingOff(); } else { op->vtkImplicitModeller::CappingOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetCapValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCapValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetCapValue(temp0); } else { op->vtkImplicitModeller::SetCapValue(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetCapValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCapValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetCapValue() : op->vtkImplicitModeller::GetCapValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetScaleToMaximumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScaleToMaximumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetScaleToMaximumDistance(temp0); } else { op->vtkImplicitModeller::SetScaleToMaximumDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetScaleToMaximumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetScaleToMaximumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetScaleToMaximumDistance() : op->vtkImplicitModeller::GetScaleToMaximumDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_ScaleToMaximumDistanceOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ScaleToMaximumDistanceOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ScaleToMaximumDistanceOn(); } else { op->vtkImplicitModeller::ScaleToMaximumDistanceOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_ScaleToMaximumDistanceOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ScaleToMaximumDistanceOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ScaleToMaximumDistanceOff(); } else { op->vtkImplicitModeller::ScaleToMaximumDistanceOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetProcessMode(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProcessMode"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetProcessMode(temp0); } else { op->vtkImplicitModeller::SetProcessMode(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetProcessModeMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProcessModeMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetProcessModeMinValue() : op->vtkImplicitModeller::GetProcessModeMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetProcessModeMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProcessModeMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetProcessModeMaxValue() : op->vtkImplicitModeller::GetProcessModeMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetProcessMode(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProcessMode"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetProcessMode() : op->vtkImplicitModeller::GetProcessMode()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetProcessModeToPerVoxel(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProcessModeToPerVoxel"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetProcessModeToPerVoxel(); } else { op->vtkImplicitModeller::SetProcessModeToPerVoxel(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetProcessModeToPerCell(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProcessModeToPerCell"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetProcessModeToPerCell(); } else { op->vtkImplicitModeller::SetProcessModeToPerCell(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetProcessModeAsString(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProcessModeAsString"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { const char *tempr = (ap.IsBound() ? op->GetProcessModeAsString() : op->vtkImplicitModeller::GetProcessModeAsString()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetLocatorMaxLevel(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLocatorMaxLevel"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetLocatorMaxLevel(temp0); } else { op->vtkImplicitModeller::SetLocatorMaxLevel(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetLocatorMaxLevel(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLocatorMaxLevel"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetLocatorMaxLevel() : op->vtkImplicitModeller::GetLocatorMaxLevel()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetNumberOfThreads(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfThreads"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfThreads(temp0); } else { op->vtkImplicitModeller::SetNumberOfThreads(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetNumberOfThreadsMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfThreadsMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfThreadsMinValue() : op->vtkImplicitModeller::GetNumberOfThreadsMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetNumberOfThreadsMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfThreadsMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfThreadsMaxValue() : op->vtkImplicitModeller::GetNumberOfThreadsMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_GetNumberOfThreads(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfThreads"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfThreads() : op->vtkImplicitModeller::GetNumberOfThreads()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarType(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarType"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputScalarType(temp0); } else { op->vtkImplicitModeller::SetOutputScalarType(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_GetOutputScalarType(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputScalarType"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputScalarType() : op->vtkImplicitModeller::GetOutputScalarType()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToFloat(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToFloat"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToFloat(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToFloat(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToDouble(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToDouble"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToDouble(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToDouble(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToInt(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToInt"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToInt(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToInt(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedInt(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToUnsignedInt"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToUnsignedInt(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToUnsignedInt(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToLong(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToLong"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToLong(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToLong(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedLong(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToUnsignedLong"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToUnsignedLong(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToUnsignedLong(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToShort(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToShort"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToShort(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToShort(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedShort(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToUnsignedShort"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToUnsignedShort(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToUnsignedShort(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedChar(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToUnsignedChar"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToUnsignedChar(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToUnsignedChar(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_SetOutputScalarTypeToChar(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputScalarTypeToChar"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetOutputScalarTypeToChar(); } else { op->vtkImplicitModeller::SetOutputScalarTypeToChar(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_StartAppend(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "StartAppend"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->StartAppend(); } else { op->vtkImplicitModeller::StartAppend(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_Append(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Append"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); vtkDataSet *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkDataSet")) { if (ap.IsBound()) { op->Append(temp0); } else { op->vtkImplicitModeller::Append(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkImplicitModeller_EndAppend(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EndAppend"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkImplicitModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->EndAppend(); } else { op->vtkImplicitModeller::EndAppend(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkImplicitModeller_Methods[] = { {"IsTypeOf", PyvtkImplicitModeller_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkImplicitModeller_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkImplicitModeller_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkImplicitModeller\nC++: static vtkImplicitModeller *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkImplicitModeller_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkImplicitModeller\nC++: vtkImplicitModeller *NewInstance()\n\n"}, {"ComputeModelBounds", PyvtkImplicitModeller_ComputeModelBounds, METH_VARARGS, "V.ComputeModelBounds(vtkDataSet) -> float\nC++: double ComputeModelBounds(vtkDataSet *input=nullptr)\n\nCompute ModelBounds from input geometry. If input is not\nspecified, the input of the filter will be used.\n"}, {"GetSampleDimensions", PyvtkImplicitModeller_GetSampleDimensions, METH_VARARGS, "V.GetSampleDimensions() -> (int, int, int)\nC++: int *GetSampleDimensions()\n\nSet/Get the i-j-k dimensions on which to sample distance\nfunction.\n"}, {"SetSampleDimensions", PyvtkImplicitModeller_SetSampleDimensions, METH_VARARGS, "V.SetSampleDimensions(int, int, int)\nC++: void SetSampleDimensions(int i, int j, int k)\nV.SetSampleDimensions([int, int, int])\nC++: void SetSampleDimensions(int dim[3])\n\nSet/Get the i-j-k dimensions on which to sample distance\nfunction.\n"}, {"SetMaximumDistance", PyvtkImplicitModeller_SetMaximumDistance, METH_VARARGS, "V.SetMaximumDistance(float)\nC++: virtual void SetMaximumDistance(double _arg)\n\nSet / get the distance away from surface of input geometry to\nsample. This value is specified as a percentage of the length of\nthe diagonal of the input data bounding box. Smaller values make\nlarge increases in performance.\n"}, {"GetMaximumDistanceMinValue", PyvtkImplicitModeller_GetMaximumDistanceMinValue, METH_VARARGS, "V.GetMaximumDistanceMinValue() -> float\nC++: virtual double GetMaximumDistanceMinValue()\n\nSet / get the distance away from surface of input geometry to\nsample. This value is specified as a percentage of the length of\nthe diagonal of the input data bounding box. Smaller values make\nlarge increases in performance.\n"}, {"GetMaximumDistanceMaxValue", PyvtkImplicitModeller_GetMaximumDistanceMaxValue, METH_VARARGS, "V.GetMaximumDistanceMaxValue() -> float\nC++: virtual double GetMaximumDistanceMaxValue()\n\nSet / get the distance away from surface of input geometry to\nsample. This value is specified as a percentage of the length of\nthe diagonal of the input data bounding box. Smaller values make\nlarge increases in performance.\n"}, {"GetMaximumDistance", PyvtkImplicitModeller_GetMaximumDistance, METH_VARARGS, "V.GetMaximumDistance() -> float\nC++: virtual double GetMaximumDistance()\n\nSet / get the distance away from surface of input geometry to\nsample. This value is specified as a percentage of the length of\nthe diagonal of the input data bounding box. Smaller values make\nlarge increases in performance.\n"}, {"SetModelBounds", PyvtkImplicitModeller_SetModelBounds, METH_VARARGS, "V.SetModelBounds(float, float, float, float, float, float)\nC++: void SetModelBounds(double, double, double, double, double,\n double)\nV.SetModelBounds((float, float, float, float, float, float))\nC++: void SetModelBounds(double a[6])\n\n"}, {"GetModelBounds", PyvtkImplicitModeller_GetModelBounds, METH_VARARGS, "V.GetModelBounds() -> (float, float, float, float, float, float)\nC++: double *GetModelBounds()\n\nSet / get the region in space in which to perform the sampling.\nIf not specified, it will be computed automatically.\n"}, {"SetAdjustBounds", PyvtkImplicitModeller_SetAdjustBounds, METH_VARARGS, "V.SetAdjustBounds(int)\nC++: virtual void SetAdjustBounds(int _arg)\n\nControl how the model bounds are computed. If the ivar\nAdjustBounds is set, then the bounds specified (or computed\nautomatically) is modified by the fraction given by\nAdjustDistance. This means that the model bounds is expanded in\neach of the x-y-z directions.\n"}, {"GetAdjustBounds", PyvtkImplicitModeller_GetAdjustBounds, METH_VARARGS, "V.GetAdjustBounds() -> int\nC++: virtual int GetAdjustBounds()\n\nControl how the model bounds are computed. If the ivar\nAdjustBounds is set, then the bounds specified (or computed\nautomatically) is modified by the fraction given by\nAdjustDistance. This means that the model bounds is expanded in\neach of the x-y-z directions.\n"}, {"AdjustBoundsOn", PyvtkImplicitModeller_AdjustBoundsOn, METH_VARARGS, "V.AdjustBoundsOn()\nC++: virtual void AdjustBoundsOn()\n\nControl how the model bounds are computed. If the ivar\nAdjustBounds is set, then the bounds specified (or computed\nautomatically) is modified by the fraction given by\nAdjustDistance. This means that the model bounds is expanded in\neach of the x-y-z directions.\n"}, {"AdjustBoundsOff", PyvtkImplicitModeller_AdjustBoundsOff, METH_VARARGS, "V.AdjustBoundsOff()\nC++: virtual void AdjustBoundsOff()\n\nControl how the model bounds are computed. If the ivar\nAdjustBounds is set, then the bounds specified (or computed\nautomatically) is modified by the fraction given by\nAdjustDistance. This means that the model bounds is expanded in\neach of the x-y-z directions.\n"}, {"SetAdjustDistance", PyvtkImplicitModeller_SetAdjustDistance, METH_VARARGS, "V.SetAdjustDistance(float)\nC++: virtual void SetAdjustDistance(double _arg)\n\nSpecify the amount to grow the model bounds (if the ivar\nAdjustBounds is set). The value is a fraction of the maximum\nlength of the sides of the box specified by the model bounds.\n"}, {"GetAdjustDistanceMinValue", PyvtkImplicitModeller_GetAdjustDistanceMinValue, METH_VARARGS, "V.GetAdjustDistanceMinValue() -> float\nC++: virtual double GetAdjustDistanceMinValue()\n\nSpecify the amount to grow the model bounds (if the ivar\nAdjustBounds is set). The value is a fraction of the maximum\nlength of the sides of the box specified by the model bounds.\n"}, {"GetAdjustDistanceMaxValue", PyvtkImplicitModeller_GetAdjustDistanceMaxValue, METH_VARARGS, "V.GetAdjustDistanceMaxValue() -> float\nC++: virtual double GetAdjustDistanceMaxValue()\n\nSpecify the amount to grow the model bounds (if the ivar\nAdjustBounds is set). The value is a fraction of the maximum\nlength of the sides of the box specified by the model bounds.\n"}, {"GetAdjustDistance", PyvtkImplicitModeller_GetAdjustDistance, METH_VARARGS, "V.GetAdjustDistance() -> float\nC++: virtual double GetAdjustDistance()\n\nSpecify the amount to grow the model bounds (if the ivar\nAdjustBounds is set). The value is a fraction of the maximum\nlength of the sides of the box specified by the model bounds.\n"}, {"SetCapping", PyvtkImplicitModeller_SetCapping, METH_VARARGS, "V.SetCapping(int)\nC++: virtual void SetCapping(int _arg)\n\nThe outer boundary of the structured point set can be assigned a\nparticular value. This can be used to close or \"cap\" all\nsurfaces.\n"}, {"GetCapping", PyvtkImplicitModeller_GetCapping, METH_VARARGS, "V.GetCapping() -> int\nC++: virtual int GetCapping()\n\nThe outer boundary of the structured point set can be assigned a\nparticular value. This can be used to close or \"cap\" all\nsurfaces.\n"}, {"CappingOn", PyvtkImplicitModeller_CappingOn, METH_VARARGS, "V.CappingOn()\nC++: virtual void CappingOn()\n\nThe outer boundary of the structured point set can be assigned a\nparticular value. This can be used to close or \"cap\" all\nsurfaces.\n"}, {"CappingOff", PyvtkImplicitModeller_CappingOff, METH_VARARGS, "V.CappingOff()\nC++: virtual void CappingOff()\n\nThe outer boundary of the structured point set can be assigned a\nparticular value. This can be used to close or \"cap\" all\nsurfaces.\n"}, {"SetCapValue", PyvtkImplicitModeller_SetCapValue, METH_VARARGS, "V.SetCapValue(float)\nC++: void SetCapValue(double value)\n\nSpecify the capping value to use. The CapValue is also used as an\ninitial distance value at each point in the dataset.\n"}, {"GetCapValue", PyvtkImplicitModeller_GetCapValue, METH_VARARGS, "V.GetCapValue() -> float\nC++: virtual double GetCapValue()\n\nSpecify the capping value to use. The CapValue is also used as an\ninitial distance value at each point in the dataset.\n"}, {"SetScaleToMaximumDistance", PyvtkImplicitModeller_SetScaleToMaximumDistance, METH_VARARGS, "V.SetScaleToMaximumDistance(int)\nC++: virtual void SetScaleToMaximumDistance(int _arg)\n\nIf a non-floating output type is specified, the output distances\ncan be scaled to use the entire positive scalar range of the\noutput type specified (up to the CapValue which is equal to the\nmax for the type unless modified by the user). For example, if\nScaleToMaximumDistance is On and the OutputScalarType is\nUnsignedChar the distances saved in the output would be linearly\nscaled between 0 (for distances \"very close\" to the surface) and\n255 (at the specifed maximum distance)... assuming the CapValue\nis not changed from 255.\n"}, {"GetScaleToMaximumDistance", PyvtkImplicitModeller_GetScaleToMaximumDistance, METH_VARARGS, "V.GetScaleToMaximumDistance() -> int\nC++: virtual int GetScaleToMaximumDistance()\n\nIf a non-floating output type is specified, the output distances\ncan be scaled to use the entire positive scalar range of the\noutput type specified (up to the CapValue which is equal to the\nmax for the type unless modified by the user). For example, if\nScaleToMaximumDistance is On and the OutputScalarType is\nUnsignedChar the distances saved in the output would be linearly\nscaled between 0 (for distances \"very close\" to the surface) and\n255 (at the specifed maximum distance)... assuming the CapValue\nis not changed from 255.\n"}, {"ScaleToMaximumDistanceOn", PyvtkImplicitModeller_ScaleToMaximumDistanceOn, METH_VARARGS, "V.ScaleToMaximumDistanceOn()\nC++: virtual void ScaleToMaximumDistanceOn()\n\nIf a non-floating output type is specified, the output distances\ncan be scaled to use the entire positive scalar range of the\noutput type specified (up to the CapValue which is equal to the\nmax for the type unless modified by the user). For example, if\nScaleToMaximumDistance is On and the OutputScalarType is\nUnsignedChar the distances saved in the output would be linearly\nscaled between 0 (for distances \"very close\" to the surface) and\n255 (at the specifed maximum distance)... assuming the CapValue\nis not changed from 255.\n"}, {"ScaleToMaximumDistanceOff", PyvtkImplicitModeller_ScaleToMaximumDistanceOff, METH_VARARGS, "V.ScaleToMaximumDistanceOff()\nC++: virtual void ScaleToMaximumDistanceOff()\n\nIf a non-floating output type is specified, the output distances\ncan be scaled to use the entire positive scalar range of the\noutput type specified (up to the CapValue which is equal to the\nmax for the type unless modified by the user). For example, if\nScaleToMaximumDistance is On and the OutputScalarType is\nUnsignedChar the distances saved in the output would be linearly\nscaled between 0 (for distances \"very close\" to the surface) and\n255 (at the specifed maximum distance)... assuming the CapValue\nis not changed from 255.\n"}, {"SetProcessMode", PyvtkImplicitModeller_SetProcessMode, METH_VARARGS, "V.SetProcessMode(int)\nC++: virtual void SetProcessMode(int _arg)\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"GetProcessModeMinValue", PyvtkImplicitModeller_GetProcessModeMinValue, METH_VARARGS, "V.GetProcessModeMinValue() -> int\nC++: virtual int GetProcessModeMinValue()\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"GetProcessModeMaxValue", PyvtkImplicitModeller_GetProcessModeMaxValue, METH_VARARGS, "V.GetProcessModeMaxValue() -> int\nC++: virtual int GetProcessModeMaxValue()\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"GetProcessMode", PyvtkImplicitModeller_GetProcessMode, METH_VARARGS, "V.GetProcessMode() -> int\nC++: virtual int GetProcessMode()\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"SetProcessModeToPerVoxel", PyvtkImplicitModeller_SetProcessModeToPerVoxel, METH_VARARGS, "V.SetProcessModeToPerVoxel()\nC++: void SetProcessModeToPerVoxel()\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"SetProcessModeToPerCell", PyvtkImplicitModeller_SetProcessModeToPerCell, METH_VARARGS, "V.SetProcessModeToPerCell()\nC++: void SetProcessModeToPerCell()\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"GetProcessModeAsString", PyvtkImplicitModeller_GetProcessModeAsString, METH_VARARGS, "V.GetProcessModeAsString() -> string\nC++: const char *GetProcessModeAsString(void)\n\nSpecify whether to visit each cell once per append or each voxel\nonce per append. Some tests have shown once per voxel to be\nfaster when there are a lot of cells (at least a thousand?);\nrelative performance improvement increases with addition cells. \nPrimitives should not be stripped for best performance of the\nvoxel mode.\n"}, {"SetLocatorMaxLevel", PyvtkImplicitModeller_SetLocatorMaxLevel, METH_VARARGS, "V.SetLocatorMaxLevel(int)\nC++: virtual void SetLocatorMaxLevel(int _arg)\n\nSpecify the level of the locator to use when using the per voxel\nprocess mode.\n"}, {"GetLocatorMaxLevel", PyvtkImplicitModeller_GetLocatorMaxLevel, METH_VARARGS, "V.GetLocatorMaxLevel() -> int\nC++: virtual int GetLocatorMaxLevel()\n\nSpecify the level of the locator to use when using the per voxel\nprocess mode.\n"}, {"SetNumberOfThreads", PyvtkImplicitModeller_SetNumberOfThreads, METH_VARARGS, "V.SetNumberOfThreads(int)\nC++: virtual void SetNumberOfThreads(int _arg)\n\nSet / Get the number of threads used during Per-Voxel processing\nmode\n"}, {"GetNumberOfThreadsMinValue", PyvtkImplicitModeller_GetNumberOfThreadsMinValue, METH_VARARGS, "V.GetNumberOfThreadsMinValue() -> int\nC++: virtual int GetNumberOfThreadsMinValue()\n\nSet / Get the number of threads used during Per-Voxel processing\nmode\n"}, {"GetNumberOfThreadsMaxValue", PyvtkImplicitModeller_GetNumberOfThreadsMaxValue, METH_VARARGS, "V.GetNumberOfThreadsMaxValue() -> int\nC++: virtual int GetNumberOfThreadsMaxValue()\n\nSet / Get the number of threads used during Per-Voxel processing\nmode\n"}, {"GetNumberOfThreads", PyvtkImplicitModeller_GetNumberOfThreads, METH_VARARGS, "V.GetNumberOfThreads() -> int\nC++: virtual int GetNumberOfThreads()\n\nSet / Get the number of threads used during Per-Voxel processing\nmode\n"}, {"SetOutputScalarType", PyvtkImplicitModeller_SetOutputScalarType, METH_VARARGS, "V.SetOutputScalarType(int)\nC++: void SetOutputScalarType(int type)\n\nSet the desired output scalar type.\n"}, {"GetOutputScalarType", PyvtkImplicitModeller_GetOutputScalarType, METH_VARARGS, "V.GetOutputScalarType() -> int\nC++: virtual int GetOutputScalarType()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToFloat", PyvtkImplicitModeller_SetOutputScalarTypeToFloat, METH_VARARGS, "V.SetOutputScalarTypeToFloat()\nC++: void SetOutputScalarTypeToFloat()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToDouble", PyvtkImplicitModeller_SetOutputScalarTypeToDouble, METH_VARARGS, "V.SetOutputScalarTypeToDouble()\nC++: void SetOutputScalarTypeToDouble()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToInt", PyvtkImplicitModeller_SetOutputScalarTypeToInt, METH_VARARGS, "V.SetOutputScalarTypeToInt()\nC++: void SetOutputScalarTypeToInt()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToUnsignedInt", PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedInt, METH_VARARGS, "V.SetOutputScalarTypeToUnsignedInt()\nC++: void SetOutputScalarTypeToUnsignedInt()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToLong", PyvtkImplicitModeller_SetOutputScalarTypeToLong, METH_VARARGS, "V.SetOutputScalarTypeToLong()\nC++: void SetOutputScalarTypeToLong()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToUnsignedLong", PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedLong, METH_VARARGS, "V.SetOutputScalarTypeToUnsignedLong()\nC++: void SetOutputScalarTypeToUnsignedLong()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToShort", PyvtkImplicitModeller_SetOutputScalarTypeToShort, METH_VARARGS, "V.SetOutputScalarTypeToShort()\nC++: void SetOutputScalarTypeToShort()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToUnsignedShort", PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedShort, METH_VARARGS, "V.SetOutputScalarTypeToUnsignedShort()\nC++: void SetOutputScalarTypeToUnsignedShort()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToUnsignedChar", PyvtkImplicitModeller_SetOutputScalarTypeToUnsignedChar, METH_VARARGS, "V.SetOutputScalarTypeToUnsignedChar()\nC++: void SetOutputScalarTypeToUnsignedChar()\n\nSet the desired output scalar type.\n"}, {"SetOutputScalarTypeToChar", PyvtkImplicitModeller_SetOutputScalarTypeToChar, METH_VARARGS, "V.SetOutputScalarTypeToChar()\nC++: void SetOutputScalarTypeToChar()\n\nSet the desired output scalar type.\n"}, {"StartAppend", PyvtkImplicitModeller_StartAppend, METH_VARARGS, "V.StartAppend()\nC++: void StartAppend()\n\nInitialize the filter for appending data. You must invoke the\nStartAppend() method before doing successive Appends(). It's also\na good idea to manually specify the model bounds; otherwise the\ninput bounds for the data will be used.\n"}, {"Append", PyvtkImplicitModeller_Append, METH_VARARGS, "V.Append(vtkDataSet)\nC++: void Append(vtkDataSet *input)\n\nAppend a data set to the existing output. To use this function,\nyou'll have to invoke the StartAppend() method before doing\nsuccessive appends. It's also a good idea to specify the model\nbounds; otherwise the input model bounds is used. When you've\nfinished appending, use the EndAppend() method.\n"}, {"EndAppend", PyvtkImplicitModeller_EndAppend, METH_VARARGS, "V.EndAppend()\nC++: void EndAppend()\n\nMethod completes the append process.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkImplicitModeller_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersHybridPython.vtkImplicitModeller", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkImplicitModeller_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkImplicitModeller_StaticNew() { return vtkImplicitModeller::New(); } PyObject *PyvtkImplicitModeller_ClassNew() { PyVTKClass_Add( &PyvtkImplicitModeller_Type, PyvtkImplicitModeller_Methods, "vtkImplicitModeller", &PyvtkImplicitModeller_StaticNew); PyTypeObject *pytype = &PyvtkImplicitModeller_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkImageAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkImplicitModeller( PyObject *dict) { PyObject *o; o = PyvtkImplicitModeller_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkImplicitModeller", o) != 0) { Py_DECREF(o); } for (int c = 0; c < 2; c++) { static const struct { const char *name; int value; } constants[2] = { { "VTK_VOXEL_MODE", 0 }, { "VTK_CELL_MODE", 1 }, }; o = PyInt_FromLong(constants[c].value); if (o) { PyDict_SetItemString(dict, constants[c].name, o); Py_DECREF(o); } } }