// python wrapper for vtkMoleculeAlgorithm // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkInformationVector.h" #include "vtkMoleculeAlgorithm.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkMoleculeAlgorithm(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkMoleculeAlgorithm_ClassNew(); } #ifndef DECLARED_PyvtkAlgorithm_ClassNew extern "C" { PyObject *PyvtkAlgorithm_ClassNew(); } #define DECLARED_PyvtkAlgorithm_ClassNew #endif static const char *PyvtkMoleculeAlgorithm_Doc = "vtkMoleculeAlgorithm - Superclass for algorithms that operate on\nvtkMolecules\n\n" "Superclass: vtkAlgorithm\n\n" "vtkMoleculeAlgorithm is a convenience class to make writing\n" "algorithms easier. There are some assumptions and defaults made by\n" "this class you should be aware of. This class defaults such that your\n" "filter will have one input port and one output port. If that is not\n" "the case simply change it with SetNumberOfInputPorts etc. See this\n" "class constructor for the default. This class also provides a\n" "FillInputPortInfo method that by default says that all inputs will be\n" "vtkMolecules. If that isn't the case then please override this method\n" "in your subclass. You should implement the subclass's algorithm into\n" "RequestData( request, inputVec, outputVec).\n\n"; static PyObject * PyvtkMoleculeAlgorithm_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkMoleculeAlgorithm::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkMoleculeAlgorithm::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkMoleculeAlgorithm *tempr = vtkMoleculeAlgorithm::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkMoleculeAlgorithm *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkMoleculeAlgorithm::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkMoleculeAlgorithm_GetOutput_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkMolecule *tempr = (ap.IsBound() ? op->GetOutput() : op->vtkMoleculeAlgorithm::GetOutput()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_GetOutput_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { vtkMolecule *tempr = (ap.IsBound() ? op->GetOutput(temp0) : op->vtkMoleculeAlgorithm::GetOutput(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_GetOutput(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 0: return PyvtkMoleculeAlgorithm_GetOutput_s1(self, args); case 1: return PyvtkMoleculeAlgorithm_GetOutput_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetOutput"); return nullptr; } static PyObject * PyvtkMoleculeAlgorithm_SetOutput(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); vtkMolecule *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkMolecule")) { if (ap.IsBound()) { op->SetOutput(temp0); } else { op->vtkMoleculeAlgorithm::SetOutput(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_GetInput_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetInput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkDataObject *tempr = (ap.IsBound() ? op->GetInput() : op->vtkMoleculeAlgorithm::GetInput()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_GetInput_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetInput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { vtkDataObject *tempr = (ap.IsBound() ? op->GetInput(temp0) : op->vtkMoleculeAlgorithm::GetInput(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_GetInput(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 0: return PyvtkMoleculeAlgorithm_GetInput_s1(self, args); case 1: return PyvtkMoleculeAlgorithm_GetInput_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetInput"); return nullptr; } static PyObject * PyvtkMoleculeAlgorithm_GetMoleculeInput(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMoleculeInput"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { vtkMolecule *tempr = (ap.IsBound() ? op->GetMoleculeInput(temp0) : op->vtkMoleculeAlgorithm::GetMoleculeInput(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_SetInputData_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetInputData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); vtkDataObject *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkDataObject")) { if (ap.IsBound()) { op->SetInputData(temp0); } else { op->vtkMoleculeAlgorithm::SetInputData(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_SetInputData_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetInputData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); int temp0; vtkDataObject *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDataObject")) { if (ap.IsBound()) { op->SetInputData(temp0, temp1); } else { op->vtkMoleculeAlgorithm::SetInputData(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_SetInputData(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkMoleculeAlgorithm_SetInputData_s1(self, args); case 2: return PyvtkMoleculeAlgorithm_SetInputData_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetInputData"); return nullptr; } static PyObject * PyvtkMoleculeAlgorithm_AddInputData_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AddInputData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); vtkDataObject *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkDataObject")) { if (ap.IsBound()) { op->AddInputData(temp0); } else { op->vtkMoleculeAlgorithm::AddInputData(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_AddInputData_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AddInputData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkMoleculeAlgorithm *op = static_cast(vp); int temp0; vtkDataObject *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDataObject")) { if (ap.IsBound()) { op->AddInputData(temp0, temp1); } else { op->vtkMoleculeAlgorithm::AddInputData(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkMoleculeAlgorithm_AddInputData(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkMoleculeAlgorithm_AddInputData_s1(self, args); case 2: return PyvtkMoleculeAlgorithm_AddInputData_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "AddInputData"); return nullptr; } static PyMethodDef PyvtkMoleculeAlgorithm_Methods[] = { {"IsTypeOf", PyvtkMoleculeAlgorithm_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkMoleculeAlgorithm_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkMoleculeAlgorithm_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkMoleculeAlgorithm\nC++: static vtkMoleculeAlgorithm *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkMoleculeAlgorithm_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkMoleculeAlgorithm\nC++: vtkMoleculeAlgorithm *NewInstance()\n\n"}, {"GetOutput", PyvtkMoleculeAlgorithm_GetOutput, METH_VARARGS, "V.GetOutput() -> vtkMolecule\nC++: vtkMolecule *GetOutput()\nV.GetOutput(int) -> vtkMolecule\nC++: vtkMolecule *GetOutput(int)\n\nGet the output data object for a port on this algorithm.\n"}, {"SetOutput", PyvtkMoleculeAlgorithm_SetOutput, METH_VARARGS, "V.SetOutput(vtkMolecule)\nC++: virtual void SetOutput(vtkMolecule *d)\n\nGet the output data object for a port on this algorithm.\n"}, {"GetInput", PyvtkMoleculeAlgorithm_GetInput, METH_VARARGS, "V.GetInput() -> vtkDataObject\nC++: vtkDataObject *GetInput()\nV.GetInput(int) -> vtkDataObject\nC++: vtkDataObject *GetInput(int port)\n\n"}, {"GetMoleculeInput", PyvtkMoleculeAlgorithm_GetMoleculeInput, METH_VARARGS, "V.GetMoleculeInput(int) -> vtkMolecule\nC++: vtkMolecule *GetMoleculeInput(int port)\n\n"}, {"SetInputData", PyvtkMoleculeAlgorithm_SetInputData, METH_VARARGS, "V.SetInputData(vtkDataObject)\nC++: void SetInputData(vtkDataObject *)\nV.SetInputData(int, vtkDataObject)\nC++: void SetInputData(int, vtkDataObject *)\n\nSet an input of this algorithm. You should not override these\nmethods because they are not the only way to connect a pipeline.\nNote that these methods support old-style pipeline connections.\nWhen writing new code you should use the more general\nvtkAlgorithm::SetInputConnection(). These methods transform the\ninput index to the input port index, not an index of a connection\nwithin a single port.\n"}, {"AddInputData", PyvtkMoleculeAlgorithm_AddInputData, METH_VARARGS, "V.AddInputData(vtkDataObject)\nC++: void AddInputData(vtkDataObject *)\nV.AddInputData(int, vtkDataObject)\nC++: void AddInputData(int, vtkDataObject *)\n\nAdd an input of this algorithm. Note that these methods support\nold-style pipeline connections. When writing new code you should\nuse the more general vtkAlgorithm::AddInputConnection(). See\nSetInputData() for details.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkMoleculeAlgorithm_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkDomainsChemistryPython.vtkMoleculeAlgorithm", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkMoleculeAlgorithm_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkMoleculeAlgorithm_StaticNew() { return vtkMoleculeAlgorithm::New(); } PyObject *PyvtkMoleculeAlgorithm_ClassNew() { PyVTKClass_Add( &PyvtkMoleculeAlgorithm_Type, PyvtkMoleculeAlgorithm_Methods, "vtkMoleculeAlgorithm", &PyvtkMoleculeAlgorithm_StaticNew); PyTypeObject *pytype = &PyvtkMoleculeAlgorithm_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkMoleculeAlgorithm( PyObject *dict) { PyObject *o; o = PyvtkMoleculeAlgorithm_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkMoleculeAlgorithm", o) != 0) { Py_DECREF(o); } }