// python wrapper for vtkPCAStatistics // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkPCAStatistics.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkPCAStatistics(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkPCAStatistics_ClassNew(); } #ifndef DECLARED_PyvtkMultiCorrelativeStatistics_ClassNew extern "C" { PyObject *PyvtkMultiCorrelativeStatistics_ClassNew(); } #define DECLARED_PyvtkMultiCorrelativeStatistics_ClassNew #endif static const char *PyvtkPCAStatistics_Doc = "vtkPCAStatistics - A class for multivariate principal component\nanalysis\n\n" "Superclass: vtkMultiCorrelativeStatistics\n\n" "This class derives from the multi-correlative statistics algorithm\n" "and uses the covariance matrix and Cholesky decomposition computed by\n" "it. However, when it finalizes the statistics in learn operation, the\n" "PCA class computes the SVD of the covariance matrix in order to\n" "obtain its eigenvectors.\n\n" "In the assess operation, the input data are\n" "- projected into the basis defined by the eigenvectors,\n" "- the energy associated with each datum is computed,\n" "- or some combination thereof. Additionally, the user may specify\n" " some threshold energy or eigenvector entry below which the basis is\n" "truncated. This allows projection into a lower-dimensional state\n" " while minimizing (in a least squares sense) the projection error.\n\n" "In the test operation, a Jarque-Bera-Srivastava test of n-d normality\n" "is performed.\n\n" "The Robust PCA can be computed by using the median instead of the\n" "mean, and the MAD matrix (Median Absolute Deviation) instead of the\n" "covariance matrix. This can be done by activating the\n" "MedianAbsoluteDeviation boolean (declared in the superclass).\n\n" "@par Thanks: Thanks to David Thompson, Philippe Pebay and Jackson\n" "Mayo from Sandia National Laboratories for implementing this class.\n" "Updated by Philippe Pebay, Kitware SAS 2012 Updated by Tristan\n" "Coulange and Joachim Pouderoux, Kitware SAS 2013\n\n"; static PyTypeObject PyvtkPCAStatistics_NormalizationType_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersStatisticsPython.vtkPCAStatistics.NormalizationType", // tp_name sizeof(PyIntObject), // tp_basicsize 0, // tp_itemsize nullptr, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare nullptr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call nullptr, // tp_str nullptr, // tp_getattro nullptr, // tp_setattro nullptr, // tp_as_buffer Py_TPFLAGS_DEFAULT, // tp_flags nullptr, // tp_doc nullptr, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare 0, // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members nullptr, // tp_getset &PyInt_Type, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set 0, // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc nullptr, // tp_new PyObject_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; PyObject *PyvtkPCAStatistics_NormalizationType_FromEnum(int val) { #ifdef VTK_PY3K PyObject *args = Py_BuildValue("(i)", val); PyObject *obj = PyLong_Type.tp_new(&PyvtkPCAStatistics_NormalizationType_Type, args, nullptr); Py_DECREF(args); return obj; #else PyIntObject *self = PyObject_New(PyIntObject, &PyvtkPCAStatistics_NormalizationType_Type); self->ob_ival = val; return (PyObject *)self; #endif } static PyTypeObject PyvtkPCAStatistics_ProjectionType_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersStatisticsPython.vtkPCAStatistics.ProjectionType", // tp_name sizeof(PyIntObject), // tp_basicsize 0, // tp_itemsize nullptr, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare nullptr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call nullptr, // tp_str nullptr, // tp_getattro nullptr, // tp_setattro nullptr, // tp_as_buffer Py_TPFLAGS_DEFAULT, // tp_flags nullptr, // tp_doc nullptr, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare 0, // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members nullptr, // tp_getset &PyInt_Type, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set 0, // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc nullptr, // tp_new PyObject_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; PyObject *PyvtkPCAStatistics_ProjectionType_FromEnum(int val) { #ifdef VTK_PY3K PyObject *args = Py_BuildValue("(i)", val); PyObject *obj = PyLong_Type.tp_new(&PyvtkPCAStatistics_ProjectionType_Type, args, nullptr); Py_DECREF(args); return obj; #else PyIntObject *self = PyObject_New(PyIntObject, &PyvtkPCAStatistics_ProjectionType_Type); self->ob_ival = val; return (PyObject *)self; #endif } static PyObject * PyvtkPCAStatistics_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkPCAStatistics::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkPCAStatistics::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkPCAStatistics *tempr = vtkPCAStatistics::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkPCAStatistics *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkPCAStatistics::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkPCAStatistics_SetNormalizationScheme(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNormalizationScheme"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNormalizationScheme(temp0); } else { op->vtkPCAStatistics::SetNormalizationScheme(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetNormalizationScheme(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNormalizationScheme"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNormalizationScheme() : op->vtkPCAStatistics::GetNormalizationScheme()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_SetNormalizationSchemeByName(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNormalizationSchemeByName"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNormalizationSchemeByName(temp0); } else { op->vtkPCAStatistics::SetNormalizationSchemeByName(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetNormalizationSchemeName(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNormalizationSchemeName"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { const char *tempr = (ap.IsBound() ? op->GetNormalizationSchemeName(temp0) : op->vtkPCAStatistics::GetNormalizationSchemeName(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_GetSpecifiedNormalization(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSpecifiedNormalization"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkTable *tempr = (ap.IsBound() ? op->GetSpecifiedNormalization() : op->vtkPCAStatistics::GetSpecifiedNormalization()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_SetSpecifiedNormalization(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSpecifiedNormalization"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); vtkTable *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkTable")) { if (ap.IsBound()) { op->SetSpecifiedNormalization(temp0); } else { op->vtkPCAStatistics::SetSpecifiedNormalization(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvalues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvalues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; vtkDoubleArray *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDoubleArray")) { if (ap.IsBound()) { op->GetEigenvalues(temp0, temp1); } else { op->vtkPCAStatistics::GetEigenvalues(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvalues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvalues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); vtkDoubleArray *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkDoubleArray")) { if (ap.IsBound()) { op->GetEigenvalues(temp0); } else { op->vtkPCAStatistics::GetEigenvalues(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvalues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkPCAStatistics_GetEigenvalues_s1(self, args); case 1: return PyvtkPCAStatistics_GetEigenvalues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetEigenvalues"); return nullptr; } static PyObject * PyvtkPCAStatistics_GetEigenvalue_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvalue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; int temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { double tempr = (ap.IsBound() ? op->GetEigenvalue(temp0, temp1) : op->vtkPCAStatistics::GetEigenvalue(temp0, temp1)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvalue_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvalue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { double tempr = (ap.IsBound() ? op->GetEigenvalue(temp0) : op->vtkPCAStatistics::GetEigenvalue(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvalue(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkPCAStatistics_GetEigenvalue_s1(self, args); case 1: return PyvtkPCAStatistics_GetEigenvalue_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetEigenvalue"); return nullptr; } static PyObject * PyvtkPCAStatistics_GetEigenvectors_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvectors"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; vtkDoubleArray *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDoubleArray")) { if (ap.IsBound()) { op->GetEigenvectors(temp0, temp1); } else { op->vtkPCAStatistics::GetEigenvectors(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvectors_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvectors"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); vtkDoubleArray *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkDoubleArray")) { if (ap.IsBound()) { op->GetEigenvectors(temp0); } else { op->vtkPCAStatistics::GetEigenvectors(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvectors(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkPCAStatistics_GetEigenvectors_s1(self, args); case 1: return PyvtkPCAStatistics_GetEigenvectors_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetEigenvectors"); return nullptr; } static PyObject * PyvtkPCAStatistics_GetEigenvector_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; vtkDoubleArray *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDoubleArray")) { if (ap.IsBound()) { op->GetEigenvector(temp0, temp1); } else { op->vtkPCAStatistics::GetEigenvector(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvector_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEigenvector"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; int temp1; vtkDoubleArray *temp2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetVTKObject(temp2, "vtkDoubleArray")) { if (ap.IsBound()) { op->GetEigenvector(temp0, temp1, temp2); } else { op->vtkPCAStatistics::GetEigenvector(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetEigenvector(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkPCAStatistics_GetEigenvector_s1(self, args); case 3: return PyvtkPCAStatistics_GetEigenvector_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetEigenvector"); return nullptr; } static PyObject * PyvtkPCAStatistics_SetBasisScheme(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBasisScheme"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetBasisScheme(temp0); } else { op->vtkPCAStatistics::SetBasisScheme(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetBasisScheme(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetBasisScheme"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetBasisScheme() : op->vtkPCAStatistics::GetBasisScheme()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_GetBasisSchemeName(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetBasisSchemeName"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { const char *tempr = (ap.IsBound() ? op->GetBasisSchemeName(temp0) : op->vtkPCAStatistics::GetBasisSchemeName(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_SetBasisSchemeByName(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBasisSchemeByName"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetBasisSchemeByName(temp0); } else { op->vtkPCAStatistics::SetBasisSchemeByName(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_SetFixedBasisSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetFixedBasisSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetFixedBasisSize(temp0); } else { op->vtkPCAStatistics::SetFixedBasisSize(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetFixedBasisSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFixedBasisSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetFixedBasisSize() : op->vtkPCAStatistics::GetFixedBasisSize()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_SetFixedBasisEnergy(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetFixedBasisEnergy"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetFixedBasisEnergy(temp0); } else { op->vtkPCAStatistics::SetFixedBasisEnergy(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPCAStatistics_GetFixedBasisEnergyMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFixedBasisEnergyMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetFixedBasisEnergyMinValue() : op->vtkPCAStatistics::GetFixedBasisEnergyMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_GetFixedBasisEnergyMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFixedBasisEnergyMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetFixedBasisEnergyMaxValue() : op->vtkPCAStatistics::GetFixedBasisEnergyMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_GetFixedBasisEnergy(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFixedBasisEnergy"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetFixedBasisEnergy() : op->vtkPCAStatistics::GetFixedBasisEnergy()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPCAStatistics_SetParameter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetParameter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPCAStatistics *op = static_cast(vp); char *temp0 = nullptr; int temp1; vtkVariant *temp2 = nullptr; PyObject *pobj2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetSpecialObject(temp2, pobj2, "vtkVariant")) { bool tempr = (ap.IsBound() ? op->SetParameter(temp0, temp1, *temp2) : op->vtkPCAStatistics::SetParameter(temp0, temp1, *temp2)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } Py_XDECREF(pobj2); return result; } static PyMethodDef PyvtkPCAStatistics_Methods[] = { {"IsTypeOf", PyvtkPCAStatistics_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkPCAStatistics_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkPCAStatistics_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkPCAStatistics\nC++: static vtkPCAStatistics *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkPCAStatistics_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkPCAStatistics\nC++: vtkPCAStatistics *NewInstance()\n\n"}, {"SetNormalizationScheme", PyvtkPCAStatistics_SetNormalizationScheme, METH_VARARGS, "V.SetNormalizationScheme(int)\nC++: virtual void SetNormalizationScheme(int _arg)\n\nThis determines how (or if) the covariance matrix cov is\nnormalized before PCA.\n\n* When set to NONE, no normalization is performed. This is the\n default.\n\n* When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided\n by V(i,j).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided\n by sqrt(V(i)*V(j)).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided\n by sqrt(cov(i,i)*cov(j,j)).\n* Warning: Although this is accepted practice in some fields,\n* some people think you should not turn this option on unless\n there\n* is a good physically-based reason for doing so. Much better\n instead\n* to determine how component magnitudes should be compared using\n* physical reasoning and use DIAGONAL_SPECIFIED,\n TRIANGLE_SPECIFIED, or\n* perform some pre-processing to shift and scale input data\n columns\n* appropriately than to expect magical results from a shady\n normalization hack.\n"}, {"GetNormalizationScheme", PyvtkPCAStatistics_GetNormalizationScheme, METH_VARARGS, "V.GetNormalizationScheme() -> int\nC++: virtual int GetNormalizationScheme()\n\nThis determines how (or if) the covariance matrix cov is\nnormalized before PCA.\n\n* When set to NONE, no normalization is performed. This is the\n default.\n\n* When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided\n by V(i,j).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided\n by sqrt(V(i)*V(j)).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided\n by sqrt(cov(i,i)*cov(j,j)).\n* Warning: Although this is accepted practice in some fields,\n* some people think you should not turn this option on unless\n there\n* is a good physically-based reason for doing so. Much better\n instead\n* to determine how component magnitudes should be compared using\n* physical reasoning and use DIAGONAL_SPECIFIED,\n TRIANGLE_SPECIFIED, or\n* perform some pre-processing to shift and scale input data\n columns\n* appropriately than to expect magical results from a shady\n normalization hack.\n"}, {"SetNormalizationSchemeByName", PyvtkPCAStatistics_SetNormalizationSchemeByName, METH_VARARGS, "V.SetNormalizationSchemeByName(string)\nC++: virtual void SetNormalizationSchemeByName(const char *sname)\n\nThis determines how (or if) the covariance matrix cov is\nnormalized before PCA.\n\n* When set to NONE, no normalization is performed. This is the\n default.\n\n* When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided\n by V(i,j).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided\n by sqrt(V(i)*V(j)).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided\n by sqrt(cov(i,i)*cov(j,j)).\n* Warning: Although this is accepted practice in some fields,\n* some people think you should not turn this option on unless\n there\n* is a good physically-based reason for doing so. Much better\n instead\n* to determine how component magnitudes should be compared using\n* physical reasoning and use DIAGONAL_SPECIFIED,\n TRIANGLE_SPECIFIED, or\n* perform some pre-processing to shift and scale input data\n columns\n* appropriately than to expect magical results from a shady\n normalization hack.\n"}, {"GetNormalizationSchemeName", PyvtkPCAStatistics_GetNormalizationSchemeName, METH_VARARGS, "V.GetNormalizationSchemeName(int) -> string\nC++: virtual const char *GetNormalizationSchemeName(int scheme)\n\nThis determines how (or if) the covariance matrix cov is\nnormalized before PCA.\n\n* When set to NONE, no normalization is performed. This is the\n default.\n\n* When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided\n by V(i,j).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided\n by sqrt(V(i)*V(j)).\n* The list V of normalization factors must be set using the\n SetNormalization method\n* before the filter is executed.\n\n* When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided\n by sqrt(cov(i,i)*cov(j,j)).\n* Warning: Although this is accepted practice in some fields,\n* some people think you should not turn this option on unless\n there\n* is a good physically-based reason for doing so. Much better\n instead\n* to determine how component magnitudes should be compared using\n* physical reasoning and use DIAGONAL_SPECIFIED,\n TRIANGLE_SPECIFIED, or\n* perform some pre-processing to shift and scale input data\n columns\n* appropriately than to expect magical results from a shady\n normalization hack.\n"}, {"GetSpecifiedNormalization", PyvtkPCAStatistics_GetSpecifiedNormalization, METH_VARARGS, "V.GetSpecifiedNormalization() -> vtkTable\nC++: virtual vtkTable *GetSpecifiedNormalization()\n\nThese methods allow you to set/get values used to normalize the\ncovariance matrix before PCA. The normalization values apply to\nall requests, so you do not specify a single vector but a\n3-column table.\n\n* The first two columns contain the names of columns from input 0\nand the third column contains\n* the value to normalize the corresponding entry in the\n covariance matrix.\n* The table must always have 3 columns even when the\n NormalizationScheme is DIAGONAL_SPECIFIED.\n* When only diagonal entries are to be used, only table rows\n where the first two columns are\n* identical to one another will be employed.\n* If there are multiple rows specifying different values for the\n same pair of columns,\n* the entry nearest the bottom of the table takes precedence.\n\n* These functions are actually convenience methods that set/get\n the third input of the filter.\n* Because the table is the third input, you may use other filters\nto produce a table of\n* normalizations and have the pipeline take care of updates.\n\n* Any missing entries will be set to 1.0 and a warning issued.\n* An error will occur if the third input to the filter is not set\nand the\n* NormalizationScheme is DIAGONAL_SPECIFIED or\n TRIANGLE_SPECIFIED.\n\n* NOTE: SetSpecifiedNormalization( table ) is equivalent to\n SetInputData(3, table)\n* and therefore does not make a pipeline connection.\n"}, {"SetSpecifiedNormalization", PyvtkPCAStatistics_SetSpecifiedNormalization, METH_VARARGS, "V.SetSpecifiedNormalization(vtkTable)\nC++: virtual void SetSpecifiedNormalization(vtkTable *)\n\nThese methods allow you to set/get values used to normalize the\ncovariance matrix before PCA. The normalization values apply to\nall requests, so you do not specify a single vector but a\n3-column table.\n\n* The first two columns contain the names of columns from input 0\nand the third column contains\n* the value to normalize the corresponding entry in the\n covariance matrix.\n* The table must always have 3 columns even when the\n NormalizationScheme is DIAGONAL_SPECIFIED.\n* When only diagonal entries are to be used, only table rows\n where the first two columns are\n* identical to one another will be employed.\n* If there are multiple rows specifying different values for the\n same pair of columns,\n* the entry nearest the bottom of the table takes precedence.\n\n* These functions are actually convenience methods that set/get\n the third input of the filter.\n* Because the table is the third input, you may use other filters\nto produce a table of\n* normalizations and have the pipeline take care of updates.\n\n* Any missing entries will be set to 1.0 and a warning issued.\n* An error will occur if the third input to the filter is not set\nand the\n* NormalizationScheme is DIAGONAL_SPECIFIED or\n TRIANGLE_SPECIFIED.\n\n* NOTE: SetSpecifiedNormalization( table ) is equivalent to\n SetInputData(3, table)\n* and therefore does not make a pipeline connection.\n"}, {"GetEigenvalues", PyvtkPCAStatistics_GetEigenvalues, METH_VARARGS, "V.GetEigenvalues(int, vtkDoubleArray)\nC++: void GetEigenvalues(int request, vtkDoubleArray *)\nV.GetEigenvalues(vtkDoubleArray)\nC++: void GetEigenvalues(vtkDoubleArray *)\n\nGet the eigenvalues. The eigenvalues are ordered according from\nlargest to smallest. This function: void GetEigenvalues(int\nrequest, int i, vtkDoubleArray*); does all of the work. The other\nfunctions simply call this function with the appropriate\nparameters. These functions are not valid unless Update() has\nbeen called and the Derive option is turned on.\n"}, {"GetEigenvalue", PyvtkPCAStatistics_GetEigenvalue, METH_VARARGS, "V.GetEigenvalue(int, int) -> float\nC++: double GetEigenvalue(int request, int i)\nV.GetEigenvalue(int) -> float\nC++: double GetEigenvalue(int i)\n\nGet the eigenvalues. The eigenvalues are ordered according from\nlargest to smallest. This function: void GetEigenvalues(int\nrequest, int i, vtkDoubleArray*); does all of the work. The other\nfunctions simply call this function with the appropriate\nparameters. These functions are not valid unless Update() has\nbeen called and the Derive option is turned on.\n"}, {"GetEigenvectors", PyvtkPCAStatistics_GetEigenvectors, METH_VARARGS, "V.GetEigenvectors(int, vtkDoubleArray)\nC++: void GetEigenvectors(int request,\n vtkDoubleArray *eigenvectors)\nV.GetEigenvectors(vtkDoubleArray)\nC++: void GetEigenvectors(vtkDoubleArray *eigenvectors)\n\nGet the eigenvectors. The eigenvectors are ordered according to\nthe magnitude of their associated eigenvalues, sorted from\nlargest to smallest. That is, eigenvector 0 corresponds to the\nlargest eigenvalue. This function: void GetEigenvectors(int\nrequest, vtkDoubleArray* eigenvectors) does all of the work. The\nother functions are convenience functions that call this function\nwith default arguments. These functions are not valid unless\nUpdate() has been called and the Derive option is turned on.\n"}, {"GetEigenvector", PyvtkPCAStatistics_GetEigenvector, METH_VARARGS, "V.GetEigenvector(int, vtkDoubleArray)\nC++: void GetEigenvector(int i, vtkDoubleArray *eigenvector)\nV.GetEigenvector(int, int, vtkDoubleArray)\nC++: void GetEigenvector(int request, int i,\n vtkDoubleArray *eigenvector)\n\nGet the eigenvectors. The eigenvectors are ordered according to\nthe magnitude of their associated eigenvalues, sorted from\nlargest to smallest. That is, eigenvector 0 corresponds to the\nlargest eigenvalue. This function: void GetEigenvectors(int\nrequest, vtkDoubleArray* eigenvectors) does all of the work. The\nother functions are convenience functions that call this function\nwith default arguments. These functions are not valid unless\nUpdate() has been called and the Derive option is turned on.\n"}, {"SetBasisScheme", PyvtkPCAStatistics_SetBasisScheme, METH_VARARGS, "V.SetBasisScheme(int)\nC++: virtual void SetBasisScheme(int _arg)\n\nThis variable controls the dimensionality of output tuples in\nAssess operation. Consider the case where you have requested a\nPCA on D columns.\n\n* When set to vtkPCAStatistics::FULL_BASIS, the entire set of\n basis vectors\n* is used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of the\n same dimension\n* as the input tuples. (That dimension is D, so there will be D\n additional\n* columns added to the table for the request.)\n\n* When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first\n N basis vectors\n* are used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of\n dimension min(N,D).\n* You must set N prior to assessing data using the\n SetFixedBasisSize() method.\n* When N < D, this turns the PCA into a projection (instead of\n change of basis).\n\n* When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of\nbasis vectors\n* used to derive new coordinates for each tuple will be the\n minimum number\n* of columns N that satisfy\n* \\[\n* \\frac{\\sum_{i=1}^{N} \\lambda_i}{\\sum_{i=1}^{D} \\lambda_i} < T\n* \\]\n* You must set T prior to assessing data using the\n SetFixedBasisEnergy() method.\n* When T < 1, this turns the PCA into a projection (instead of\n change of basis).\n\n* By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.\n"}, {"GetBasisScheme", PyvtkPCAStatistics_GetBasisScheme, METH_VARARGS, "V.GetBasisScheme() -> int\nC++: virtual int GetBasisScheme()\n\nThis variable controls the dimensionality of output tuples in\nAssess operation. Consider the case where you have requested a\nPCA on D columns.\n\n* When set to vtkPCAStatistics::FULL_BASIS, the entire set of\n basis vectors\n* is used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of the\n same dimension\n* as the input tuples. (That dimension is D, so there will be D\n additional\n* columns added to the table for the request.)\n\n* When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first\n N basis vectors\n* are used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of\n dimension min(N,D).\n* You must set N prior to assessing data using the\n SetFixedBasisSize() method.\n* When N < D, this turns the PCA into a projection (instead of\n change of basis).\n\n* When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of\nbasis vectors\n* used to derive new coordinates for each tuple will be the\n minimum number\n* of columns N that satisfy\n* \\[\n* \\frac{\\sum_{i=1}^{N} \\lambda_i}{\\sum_{i=1}^{D} \\lambda_i} < T\n* \\]\n* You must set T prior to assessing data using the\n SetFixedBasisEnergy() method.\n* When T < 1, this turns the PCA into a projection (instead of\n change of basis).\n\n* By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.\n"}, {"GetBasisSchemeName", PyvtkPCAStatistics_GetBasisSchemeName, METH_VARARGS, "V.GetBasisSchemeName(int) -> string\nC++: virtual const char *GetBasisSchemeName(int schemeIndex)\n\nThis variable controls the dimensionality of output tuples in\nAssess operation. Consider the case where you have requested a\nPCA on D columns.\n\n* When set to vtkPCAStatistics::FULL_BASIS, the entire set of\n basis vectors\n* is used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of the\n same dimension\n* as the input tuples. (That dimension is D, so there will be D\n additional\n* columns added to the table for the request.)\n\n* When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first\n N basis vectors\n* are used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of\n dimension min(N,D).\n* You must set N prior to assessing data using the\n SetFixedBasisSize() method.\n* When N < D, this turns the PCA into a projection (instead of\n change of basis).\n\n* When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of\nbasis vectors\n* used to derive new coordinates for each tuple will be the\n minimum number\n* of columns N that satisfy\n* \\[\n* \\frac{\\sum_{i=1}^{N} \\lambda_i}{\\sum_{i=1}^{D} \\lambda_i} < T\n* \\]\n* You must set T prior to assessing data using the\n SetFixedBasisEnergy() method.\n* When T < 1, this turns the PCA into a projection (instead of\n change of basis).\n\n* By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.\n"}, {"SetBasisSchemeByName", PyvtkPCAStatistics_SetBasisSchemeByName, METH_VARARGS, "V.SetBasisSchemeByName(string)\nC++: virtual void SetBasisSchemeByName(const char *schemeName)\n\nThis variable controls the dimensionality of output tuples in\nAssess operation. Consider the case where you have requested a\nPCA on D columns.\n\n* When set to vtkPCAStatistics::FULL_BASIS, the entire set of\n basis vectors\n* is used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of the\n same dimension\n* as the input tuples. (That dimension is D, so there will be D\n additional\n* columns added to the table for the request.)\n\n* When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first\n N basis vectors\n* are used to derive new coordinates for each tuple being\n assessed.\n* In this mode, you are guaranteed to have output tuples of\n dimension min(N,D).\n* You must set N prior to assessing data using the\n SetFixedBasisSize() method.\n* When N < D, this turns the PCA into a projection (instead of\n change of basis).\n\n* When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of\nbasis vectors\n* used to derive new coordinates for each tuple will be the\n minimum number\n* of columns N that satisfy\n* \\[\n* \\frac{\\sum_{i=1}^{N} \\lambda_i}{\\sum_{i=1}^{D} \\lambda_i} < T\n* \\]\n* You must set T prior to assessing data using the\n SetFixedBasisEnergy() method.\n* When T < 1, this turns the PCA into a projection (instead of\n change of basis).\n\n* By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.\n"}, {"SetFixedBasisSize", PyvtkPCAStatistics_SetFixedBasisSize, METH_VARARGS, "V.SetFixedBasisSize(int)\nC++: virtual void SetFixedBasisSize(int _arg)\n\nThe number of basis vectors to use. See SetBasisScheme() for more\ninformation. When FixedBasisSize <= 0 (the default), the fixed\nbasis size scheme is equivalent to the full basis scheme.\n"}, {"GetFixedBasisSize", PyvtkPCAStatistics_GetFixedBasisSize, METH_VARARGS, "V.GetFixedBasisSize() -> int\nC++: virtual int GetFixedBasisSize()\n\nThe number of basis vectors to use. See SetBasisScheme() for more\ninformation. When FixedBasisSize <= 0 (the default), the fixed\nbasis size scheme is equivalent to the full basis scheme.\n"}, {"SetFixedBasisEnergy", PyvtkPCAStatistics_SetFixedBasisEnergy, METH_VARARGS, "V.SetFixedBasisEnergy(float)\nC++: virtual void SetFixedBasisEnergy(double _arg)\n\nThe minimum energy the new basis should use, as a fraction. See\nSetBasisScheme() for more information. When FixedBasisEnergy >= 1\n(the default), the fixed basis energy scheme is equivalent to the\nfull basis scheme.\n"}, {"GetFixedBasisEnergyMinValue", PyvtkPCAStatistics_GetFixedBasisEnergyMinValue, METH_VARARGS, "V.GetFixedBasisEnergyMinValue() -> float\nC++: virtual double GetFixedBasisEnergyMinValue()\n\nThe minimum energy the new basis should use, as a fraction. See\nSetBasisScheme() for more information. When FixedBasisEnergy >= 1\n(the default), the fixed basis energy scheme is equivalent to the\nfull basis scheme.\n"}, {"GetFixedBasisEnergyMaxValue", PyvtkPCAStatistics_GetFixedBasisEnergyMaxValue, METH_VARARGS, "V.GetFixedBasisEnergyMaxValue() -> float\nC++: virtual double GetFixedBasisEnergyMaxValue()\n\nThe minimum energy the new basis should use, as a fraction. See\nSetBasisScheme() for more information. When FixedBasisEnergy >= 1\n(the default), the fixed basis energy scheme is equivalent to the\nfull basis scheme.\n"}, {"GetFixedBasisEnergy", PyvtkPCAStatistics_GetFixedBasisEnergy, METH_VARARGS, "V.GetFixedBasisEnergy() -> float\nC++: virtual double GetFixedBasisEnergy()\n\nThe minimum energy the new basis should use, as a fraction. See\nSetBasisScheme() for more information. When FixedBasisEnergy >= 1\n(the default), the fixed basis energy scheme is equivalent to the\nfull basis scheme.\n"}, {"SetParameter", PyvtkPCAStatistics_SetParameter, METH_VARARGS, "V.SetParameter(string, int, vtkVariant) -> bool\nC++: bool SetParameter(const char *parameter, int index,\n vtkVariant value) override;\n\nA convenience method (in particular for access from other\napplications) to set parameter values. Return true if setting of\nrequested parameter name was excuted, false otherwise.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkPCAStatistics_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersStatisticsPython.vtkPCAStatistics", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkPCAStatistics_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkPCAStatistics_StaticNew() { return vtkPCAStatistics::New(); } PyObject *PyvtkPCAStatistics_ClassNew() { PyVTKClass_Add( &PyvtkPCAStatistics_Type, PyvtkPCAStatistics_Methods, "vtkPCAStatistics", &PyvtkPCAStatistics_StaticNew); PyTypeObject *pytype = &PyvtkPCAStatistics_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkMultiCorrelativeStatistics_ClassNew(); PyObject *d = pytype->tp_dict; PyObject *o; PyType_Ready(&PyvtkPCAStatistics_NormalizationType_Type); PyvtkPCAStatistics_NormalizationType_Type.tp_new = nullptr; vtkPythonUtil::AddEnumToMap(&PyvtkPCAStatistics_NormalizationType_Type); o = (PyObject *)&PyvtkPCAStatistics_NormalizationType_Type; if (PyDict_SetItemString(d, "NormalizationType", o) != 0) { Py_DECREF(o); } PyType_Ready(&PyvtkPCAStatistics_ProjectionType_Type); PyvtkPCAStatistics_ProjectionType_Type.tp_new = nullptr; vtkPythonUtil::AddEnumToMap(&PyvtkPCAStatistics_ProjectionType_Type); o = (PyObject *)&PyvtkPCAStatistics_ProjectionType_Type; if (PyDict_SetItemString(d, "ProjectionType", o) != 0) { Py_DECREF(o); } for (int c = 0; c < 5; c++) { typedef vtkPCAStatistics::NormalizationType cxx_enum_type; static const struct { const char *name; cxx_enum_type value; } constants[5] = { { "NONE", vtkPCAStatistics::NONE }, { "TRIANGLE_SPECIFIED", vtkPCAStatistics::TRIANGLE_SPECIFIED }, { "DIAGONAL_SPECIFIED", vtkPCAStatistics::DIAGONAL_SPECIFIED }, { "DIAGONAL_VARIANCE", vtkPCAStatistics::DIAGONAL_VARIANCE }, { "NUM_NORMALIZATION_SCHEMES", vtkPCAStatistics::NUM_NORMALIZATION_SCHEMES }, }; o = PyvtkPCAStatistics_NormalizationType_FromEnum(constants[c].value); if (o) { PyDict_SetItemString(d, constants[c].name, o); Py_DECREF(o); } } for (int c = 0; c < 4; c++) { typedef vtkPCAStatistics::ProjectionType cxx_enum_type; static const struct { const char *name; cxx_enum_type value; } constants[4] = { { "FULL_BASIS", vtkPCAStatistics::FULL_BASIS }, { "FIXED_BASIS_SIZE", vtkPCAStatistics::FIXED_BASIS_SIZE }, { "FIXED_BASIS_ENERGY", vtkPCAStatistics::FIXED_BASIS_ENERGY }, { "NUM_BASIS_SCHEMES", vtkPCAStatistics::NUM_BASIS_SCHEMES }, }; o = PyvtkPCAStatistics_ProjectionType_FromEnum(constants[c].value); if (o) { PyDict_SetItemString(d, constants[c].name, o); Py_DECREF(o); } } PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkPCAStatistics( PyObject *dict) { PyObject *o; o = PyvtkPCAStatistics_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkPCAStatistics", o) != 0) { Py_DECREF(o); } }