// python wrapper for vtkPixel // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkPixel.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkPixel(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkPixel_ClassNew(); } #ifndef DECLARED_PyvtkCell_ClassNew extern "C" { PyObject *PyvtkCell_ClassNew(); } #define DECLARED_PyvtkCell_ClassNew #endif static const char *PyvtkPixel_Doc = "vtkPixel - a cell that represents an orthogonal quadrilateral\n\n" "Superclass: vtkCell\n\n" "vtkPixel is a concrete implementation of vtkCell to represent a 2D\n" "orthogonal quadrilateral. Unlike vtkQuad, the corners are at right\n" "angles, and aligned along x-y-z coordinate axes leading to large\n" "increases in computational efficiency.\n\n"; static PyObject * PyvtkPixel_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkPixel::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkPixel::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkPixel *tempr = vtkPixel::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkPixel_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkPixel *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkPixel::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkPixel_GetCellType(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellType"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetCellType() : op->vtkPixel::GetCellType()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_GetCellDimension(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCellDimension"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetCellDimension() : op->vtkPixel::GetCellDimension()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_GetNumberOfEdges(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfEdges"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfEdges() : op->vtkPixel::GetNumberOfEdges()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_GetNumberOfFaces(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfFaces"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfFaces() : op->vtkPixel::GetNumberOfFaces()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_GetEdge(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEdge"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { vtkCell *tempr = (ap.IsBound() ? op->GetEdge(temp0) : op->vtkPixel::GetEdge(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkPixel_GetFace(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetFace"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { vtkCell *tempr = (ap.IsBound() ? op->GetFace(temp0) : op->vtkPixel::GetFace(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkPixel_CellBoundary(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CellBoundary"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); int temp0; const int size1 = 3; double temp1[3]; double save1[3]; vtkIdList *temp2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetArray(temp1, size1) && ap.GetVTKObject(temp2, "vtkIdList")) { ap.SaveArray(temp1, save1, size1); int tempr = (ap.IsBound() ? op->CellBoundary(temp0, temp1, temp2) : op->vtkPixel::CellBoundary(temp0, temp1, temp2)); if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_Contour(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Contour"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); double temp0; vtkDataArray *temp1 = nullptr; vtkIncrementalPointLocator *temp2 = nullptr; vtkCellArray *temp3 = nullptr; vtkCellArray *temp4 = nullptr; vtkCellArray *temp5 = nullptr; vtkPointData *temp6 = nullptr; vtkPointData *temp7 = nullptr; vtkCellData *temp8 = nullptr; vtkIdType temp9; vtkCellData *temp10 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(11) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDataArray") && ap.GetVTKObject(temp2, "vtkIncrementalPointLocator") && ap.GetVTKObject(temp3, "vtkCellArray") && ap.GetVTKObject(temp4, "vtkCellArray") && ap.GetVTKObject(temp5, "vtkCellArray") && ap.GetVTKObject(temp6, "vtkPointData") && ap.GetVTKObject(temp7, "vtkPointData") && ap.GetVTKObject(temp8, "vtkCellData") && ap.GetValue(temp9) && ap.GetVTKObject(temp10, "vtkCellData")) { if (ap.IsBound()) { op->Contour(temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9, temp10); } else { op->vtkPixel::Contour(temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9, temp10); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_Clip(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Clip"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); double temp0; vtkDataArray *temp1 = nullptr; vtkIncrementalPointLocator *temp2 = nullptr; vtkCellArray *temp3 = nullptr; vtkPointData *temp4 = nullptr; vtkPointData *temp5 = nullptr; vtkCellData *temp6 = nullptr; vtkIdType temp7; vtkCellData *temp8 = nullptr; int temp9; PyObject *result = nullptr; if (op && ap.CheckArgCount(10) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkDataArray") && ap.GetVTKObject(temp2, "vtkIncrementalPointLocator") && ap.GetVTKObject(temp3, "vtkCellArray") && ap.GetVTKObject(temp4, "vtkPointData") && ap.GetVTKObject(temp5, "vtkPointData") && ap.GetVTKObject(temp6, "vtkCellData") && ap.GetValue(temp7) && ap.GetVTKObject(temp8, "vtkCellData") && ap.GetValue(temp9)) { if (ap.IsBound()) { op->Clip(temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9); } else { op->vtkPixel::Clip(temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_EvaluatePosition(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluatePosition"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; int size1 = ap.GetArgSize(1); vtkPythonArgs::Array store1(2*size1); double *temp1 = store1.Data(); double *save1 = (size1 == 0 ? nullptr : temp1 + size1); int temp2; const int size3 = 3; double temp3[3]; double save3[3]; double temp4; int size5 = ap.GetArgSize(5); vtkPythonArgs::Array store5(2*size5); double *temp5 = store5.Data(); double *save5 = (size5 == 0 ? nullptr : temp5 + size5); PyObject *result = nullptr; if (op && ap.CheckArgCount(6) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1) && ap.GetValue(temp2) && ap.GetArray(temp3, size3) && ap.GetValue(temp4) && ap.GetArray(temp5, size5)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); ap.SaveArray(temp3, save3, size3); ap.SaveArray(temp5, save5, size5); int tempr = (ap.IsBound() ? op->EvaluatePosition(temp0, temp1, temp2, temp3, temp4, temp5) : op->vtkPixel::EvaluatePosition(temp0, temp1, temp2, temp3, temp4, temp5)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { ap.SetArgValue(2, temp2); } if (ap.ArrayHasChanged(temp3, save3, size3) && !ap.ErrorOccurred()) { ap.SetArray(3, temp3, size3); } if (!ap.ErrorOccurred()) { ap.SetArgValue(4, temp4); } if (ap.ArrayHasChanged(temp5, save5, size5) && !ap.ErrorOccurred()) { ap.SetArray(5, temp5, size5); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_EvaluateLocation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateLocation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); int temp0; const int size1 = 3; double temp1[3]; double save1[3]; const int size2 = 3; double temp2[3]; double save2[3]; int size3 = ap.GetArgSize(3); vtkPythonArgs::Array store3(2*size3); double *temp3 = store3.Data(); double *save3 = (size3 == 0 ? nullptr : temp3 + size3); PyObject *result = nullptr; if (op && ap.CheckArgCount(4) && ap.GetValue(temp0) && ap.GetArray(temp1, size1) && ap.GetArray(temp2, size2) && ap.GetArray(temp3, size3)) { ap.SaveArray(temp1, save1, size1); ap.SaveArray(temp2, save2, size2); ap.SaveArray(temp3, save3, size3); if (ap.IsBound()) { op->EvaluateLocation(temp0, temp1, temp2, temp3); } else { op->vtkPixel::EvaluateLocation(temp0, temp1, temp2, temp3); } if (!ap.ErrorOccurred()) { ap.SetArgValue(0, temp0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (ap.ArrayHasChanged(temp2, save2, size2) && !ap.ErrorOccurred()) { ap.SetArray(2, temp2, size2); } if (ap.ArrayHasChanged(temp3, save3, size3) && !ap.ErrorOccurred()) { ap.SetArray(3, temp3, size3); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_GetParametricCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetParametricCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); int tempr = (ap.IsBound() ? op->GetParametricCenter(temp0) : op->vtkPixel::GetParametricCenter(temp0)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_IntersectWithLine(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IntersectWithLine"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 3; double temp1[3]; double save1[3]; double temp2; double temp3; const int size4 = 3; double temp4[3]; double save4[3]; const int size5 = 3; double temp5[3]; double save5[3]; int temp6; PyObject *result = nullptr; if (op && ap.CheckArgCount(7) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetArray(temp4, size4) && ap.GetArray(temp5, size5) && ap.GetValue(temp6)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); ap.SaveArray(temp4, save4, size4); ap.SaveArray(temp5, save5, size5); int tempr = (ap.IsBound() ? op->IntersectWithLine(temp0, temp1, temp2, temp3, temp4, temp5, temp6) : op->vtkPixel::IntersectWithLine(temp0, temp1, temp2, temp3, temp4, temp5, temp6)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { ap.SetArgValue(3, temp3); } if (ap.ArrayHasChanged(temp4, save4, size4) && !ap.ErrorOccurred()) { ap.SetArray(4, temp4, size4); } if (ap.ArrayHasChanged(temp5, save5, size5) && !ap.ErrorOccurred()) { ap.SetArray(5, temp5, size5); } if (!ap.ErrorOccurred()) { ap.SetArgValue(6, temp6); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_Triangulate(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Triangulate"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); int temp0; vtkIdList *temp1 = nullptr; vtkPoints *temp2 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetVTKObject(temp1, "vtkIdList") && ap.GetVTKObject(temp2, "vtkPoints")) { int tempr = (ap.IsBound() ? op->Triangulate(temp0, temp1, temp2) : op->vtkPixel::Triangulate(temp0, temp1, temp2)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_Derivatives(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Derivatives"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); int temp0; const int size1 = 3; double temp1[3]; double save1[3]; int size2 = ap.GetArgSize(2); vtkPythonArgs::Array store2(2*size2); double *temp2 = store2.Data(); double *save2 = (size2 == 0 ? nullptr : temp2 + size2); int temp3; int size4 = ap.GetArgSize(4); vtkPythonArgs::Array store4(2*size4); double *temp4 = store4.Data(); double *save4 = (size4 == 0 ? nullptr : temp4 + size4); PyObject *result = nullptr; if (op && ap.CheckArgCount(5) && ap.GetValue(temp0) && ap.GetArray(temp1, size1) && ap.GetArray(temp2, size2) && ap.GetValue(temp3) && ap.GetArray(temp4, size4)) { ap.SaveArray(temp1, save1, size1); ap.SaveArray(temp2, save2, size2); ap.SaveArray(temp4, save4, size4); if (ap.IsBound()) { op->Derivatives(temp0, temp1, temp2, temp3, temp4); } else { op->vtkPixel::Derivatives(temp0, temp1, temp2, temp3, temp4); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (ap.ArrayHasChanged(temp2, save2, size2) && !ap.ErrorOccurred()) { ap.SetArray(2, temp2, size2); } if (ap.ArrayHasChanged(temp4, save4, size4) && !ap.ErrorOccurred()) { ap.SetArray(4, temp4, size4); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_GetParametricCoords(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetParametricCoords"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetParametricCoords() : op->vtkPixel::GetParametricCoords()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkPixel_InterpolationFunctions(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "InterpolationFunctions"); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 4; double temp1[4]; double save1[4]; PyObject *result = nullptr; if (ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); vtkPixel::InterpolationFunctions(temp0, temp1); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_InterpolationDerivs(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "InterpolationDerivs"); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 8; double temp1[8]; double save1[8]; PyObject *result = nullptr; if (ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); vtkPixel::InterpolationDerivs(temp0, temp1); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_InterpolateFunctions(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "InterpolateFunctions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 4; double temp1[4]; double save1[4]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->InterpolateFunctions(temp0, temp1); } else { op->vtkPixel::InterpolateFunctions(temp0, temp1); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkPixel_InterpolateDerivs(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "InterpolateDerivs"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkPixel *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 8; double temp1[8]; double save1[8]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->InterpolateDerivs(temp0, temp1); } else { op->vtkPixel::InterpolateDerivs(temp0, temp1); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkPixel_Methods[] = { {"IsTypeOf", PyvtkPixel_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkPixel_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkPixel_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkPixel\nC++: static vtkPixel *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkPixel_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkPixel\nC++: vtkPixel *NewInstance()\n\n"}, {"GetCellType", PyvtkPixel_GetCellType, METH_VARARGS, "V.GetCellType() -> int\nC++: int GetCellType() override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"GetCellDimension", PyvtkPixel_GetCellDimension, METH_VARARGS, "V.GetCellDimension() -> int\nC++: int GetCellDimension() override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"GetNumberOfEdges", PyvtkPixel_GetNumberOfEdges, METH_VARARGS, "V.GetNumberOfEdges() -> int\nC++: int GetNumberOfEdges() override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"GetNumberOfFaces", PyvtkPixel_GetNumberOfFaces, METH_VARARGS, "V.GetNumberOfFaces() -> int\nC++: int GetNumberOfFaces() override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"GetEdge", PyvtkPixel_GetEdge, METH_VARARGS, "V.GetEdge(int) -> vtkCell\nC++: vtkCell *GetEdge(int edgeId) override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"GetFace", PyvtkPixel_GetFace, METH_VARARGS, "V.GetFace(int) -> vtkCell\nC++: vtkCell *GetFace(int) override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"CellBoundary", PyvtkPixel_CellBoundary, METH_VARARGS, "V.CellBoundary(int, [float, float, float], vtkIdList) -> int\nC++: int CellBoundary(int subId, double pcoords[3],\n vtkIdList *pts) override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"Contour", PyvtkPixel_Contour, METH_VARARGS, "V.Contour(float, vtkDataArray, vtkIncrementalPointLocator,\n vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData,\n vtkPointData, vtkCellData, int, vtkCellData)\nC++: void Contour(double value, vtkDataArray *cellScalars,\n vtkIncrementalPointLocator *locator, vtkCellArray *verts,\n vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd,\n vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId,\n vtkCellData *outCd) override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"Clip", PyvtkPixel_Clip, METH_VARARGS, "V.Clip(float, vtkDataArray, vtkIncrementalPointLocator,\n vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int,\n vtkCellData, int)\nC++: void Clip(double value, vtkDataArray *cellScalars,\n vtkIncrementalPointLocator *locator, vtkCellArray *polys,\n vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd,\n vtkIdType cellId, vtkCellData *outCd, int insideOut) override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"EvaluatePosition", PyvtkPixel_EvaluatePosition, METH_VARARGS, "V.EvaluatePosition([float, float, float], [float, ...], int,\n [float, float, float], float, [float, ...]) -> int\nC++: int EvaluatePosition(double x[3], double *closestPoint,\n int &subId, double pcoords[3], double &dist2, double *weights)\n override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"EvaluateLocation", PyvtkPixel_EvaluateLocation, METH_VARARGS, "V.EvaluateLocation(int, [float, float, float], [float, float,\n float], [float, ...])\nC++: void EvaluateLocation(int &subId, double pcoords[3],\n double x[3], double *weights) override;\n\nSee the vtkCell API for descriptions of these methods.\n"}, {"GetParametricCenter", PyvtkPixel_GetParametricCenter, METH_VARARGS, "V.GetParametricCenter([float, float, float]) -> int\nC++: int GetParametricCenter(double pcoords[3]) override;\n\nReturn the center of the triangle in parametric coordinates.\n"}, {"IntersectWithLine", PyvtkPixel_IntersectWithLine, METH_VARARGS, "V.IntersectWithLine([float, float, float], [float, float, float],\n float, float, [float, float, float], [float, float, float],\n int) -> int\nC++: int IntersectWithLine(double p1[3], double p2[3], double tol,\n double &t, double x[3], double pcoords[3], int &subId)\n override;\n\nIntersect with a ray. Return parametric coordinates (both line\nand cell) and global intersection coordinates, given ray\ndefinition p1[3], p2[3] and tolerance tol. The method returns\nnon-zero value if intersection occurs. A parametric distance t\nbetween 0 and 1 along the ray representing the intersection\npoint, the point coordinates x[3] in data coordinates and also\npcoords[3] in parametric coordinates. subId is the index within\nthe cell if a composed cell like a triangle strip.\n"}, {"Triangulate", PyvtkPixel_Triangulate, METH_VARARGS, "V.Triangulate(int, vtkIdList, vtkPoints) -> int\nC++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts)\n override;\n\nGenerate simplices of proper dimension. If cell is 3D,\ntetrahedron are generated; if 2D triangles; if 1D lines; if 0D\npoints. The form of the output is a sequence of points, each n+1\npoints (where n is topological cell dimension) defining a\nsimplex. The index is a parameter that controls which\ntriangulation to use (if more than one is possible). If numerical\ndegeneracy encountered, 0 is returned, otherwise 1 is returned.\nThis method does not insert new points: all the points that\ndefine the simplices are the points that define the cell.\n"}, {"Derivatives", PyvtkPixel_Derivatives, METH_VARARGS, "V.Derivatives(int, [float, float, float], [float, ...], int,\n [float, ...])\nC++: void Derivatives(int subId, double pcoords[3],\n double *values, int dim, double *derivs) override;\n\nCompute derivatives given cell subId and parametric coordinates.\nThe values array is a series of data value(s) at the cell points.\nThere is a one-to-one correspondence between cell point and data\nvalue(s). Dim is the number of data values per cell point. Derivs\nare derivatives in the x-y-z coordinate directions for each data\nvalue. Thus, if computing derivatives for a scalar function in a\nhexahedron, dim=1, 8 values are supplied, and 3 deriv values are\nreturned (i.e., derivatives in x-y-z directions). On the other\nhand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24\nvalues are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9\nderiv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz),\n(d(vy)/dx),(d(vy)/dy), (d(vy)/dz),\n(d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).\n"}, {"GetParametricCoords", PyvtkPixel_GetParametricCoords, METH_VARARGS, "V.GetParametricCoords() -> (float, ...)\nC++: double *GetParametricCoords() override;\n\nReturn a contiguous array of parametric coordinates of the points\ndefining this cell. In other words, (px,py,pz, px,py,pz, etc..) \nThe coordinates are ordered consistent with the definition of the\npoint ordering for the cell. This method returns a non-nullptr\npointer when the cell is a primary type (i.e., IsPrimaryCell() is\ntrue). Note that 3D parametric coordinates are returned no matter\nwhat the topological dimension of the cell.\n"}, {"InterpolationFunctions", PyvtkPixel_InterpolationFunctions, METH_VARARGS, "V.InterpolationFunctions([float, float, float], [float, float,\n float, float])\nC++: static void InterpolationFunctions(double pcoords[3],\n double weights[4])\n\n@deprecated Replaced by vtkPixel::InterpolateFunctions as of VTK\n5.2\n"}, {"InterpolationDerivs", PyvtkPixel_InterpolationDerivs, METH_VARARGS, "V.InterpolationDerivs([float, float, float], [float, float, float,\n float, float, float, float, float])\nC++: static void InterpolationDerivs(double pcoords[3],\n double derivs[8])\n\n@deprecated Replaced by vtkPixel::InterpolateDerivs as of VTK 5.2\n"}, {"InterpolateFunctions", PyvtkPixel_InterpolateFunctions, METH_VARARGS, "V.InterpolateFunctions([float, float, float], [float, float,\n float, float])\nC++: void InterpolateFunctions(double pcoords[3],\n double weights[4]) override;\n\nCompute the interpolation functions/derivatives (aka shape\nfunctions/derivatives)\n"}, {"InterpolateDerivs", PyvtkPixel_InterpolateDerivs, METH_VARARGS, "V.InterpolateDerivs([float, float, float], [float, float, float,\n float, float, float, float, float])\nC++: void InterpolateDerivs(double pcoords[3], double derivs[8])\n override;\n\nCompute the interpolation functions/derivatives (aka shape\nfunctions/derivatives)\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkPixel_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkCommonDataModelPython.vtkPixel", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkPixel_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkPixel_StaticNew() { return vtkPixel::New(); } PyObject *PyvtkPixel_ClassNew() { PyVTKClass_Add( &PyvtkPixel_Type, PyvtkPixel_Methods, "vtkPixel", &PyvtkPixel_StaticNew); PyTypeObject *pytype = &PyvtkPixel_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkCell_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkPixel( PyObject *dict) { PyObject *o; o = PyvtkPixel_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkPixel", o) != 0) { Py_DECREF(o); } }