// python wrapper for vtkProbePolyhedron // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkProbePolyhedron.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkProbePolyhedron(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkProbePolyhedron_ClassNew(); } #ifndef DECLARED_PyvtkDataSetAlgorithm_ClassNew extern "C" { PyObject *PyvtkDataSetAlgorithm_ClassNew(); } #define DECLARED_PyvtkDataSetAlgorithm_ClassNew #endif static const char *PyvtkProbePolyhedron_Doc = "vtkProbePolyhedron - probe/interpolate data values in the interior,\nexterior or of the surface of a closed, manifold polyhedron\n\n" "Superclass: vtkDataSetAlgorithm\n\n" "vtkProbePolyhedron is a filter that computes point attributes (e.g.,\n" "scalars, vectors, etc.) at specified point positions. The filter has\n" "two inputs: the Input and Source. The Source geometric structure is\n" "passed through the filter. The point attributes are computed at the\n" "Input point positions by interpolating into the source data. In this\n" "filter, the Source is always a closed, non-self-intersecting,\n" "polyhedral mesh. For example, we can compute data values on a plane\n" "(plane specified as Input) from a triangle mesh (e.g., output of\n" "marching cubes).\n\n" "This filter can be used to resample data from a mesh onto a different\n" "dataset type. For example, a polyhedral mesh (vtkPolyData) can be\n" "probed with a volume (three-dimensional vtkImageData), and then\n" "volume rendering techniques can be used to visualize the results.\n" "Another example: a line or curve can be used to probe a mesh to\n" "produce x-y plots along that line or curve.\n\n" "@warning\n" "Note that cell data is not interpolated from the source. If you need\n" "cell data, you can always use vtkPointDataToCellData and/or\n" "vtkCellDataToPointData in various combinations.\n\n" "@warning\n" "Note that the filter interpolates from a mesh to points interior,\n" "exterior or on the surface of the mesh. This process is necessarily\n" "an approximation. Currently the approach of Mean Value Coordinates is\n" "used, but this filter may be extended in the future to use other\n" "methods.\n\n" "@sa\n" "vtkProbeFilter vtkMeanValueCoordinatesInterpolator vtkPolyhedron\n\n"; static PyObject * PyvtkProbePolyhedron_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkProbePolyhedron::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkProbePolyhedron_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkProbePolyhedron::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkProbePolyhedron_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkProbePolyhedron *tempr = vtkProbePolyhedron::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkProbePolyhedron_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkProbePolyhedron *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkProbePolyhedron::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkProbePolyhedron_SetSourceData(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSourceData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); vtkPolyData *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkPolyData")) { if (ap.IsBound()) { op->SetSourceData(temp0); } else { op->vtkProbePolyhedron::SetSourceData(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_GetSource(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSource"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkPolyData *tempr = (ap.IsBound() ? op->GetSource() : op->vtkProbePolyhedron::GetSource()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkProbePolyhedron_SetSourceConnection(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSourceConnection"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); vtkAlgorithmOutput *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkAlgorithmOutput")) { if (ap.IsBound()) { op->SetSourceConnection(temp0); } else { op->vtkProbePolyhedron::SetSourceConnection(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_SetProbePointData(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProbePointData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetProbePointData(temp0); } else { op->vtkProbePolyhedron::SetProbePointData(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_GetProbePointData(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProbePointData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetProbePointData() : op->vtkProbePolyhedron::GetProbePointData()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkProbePolyhedron_ProbePointDataOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProbePointDataOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProbePointDataOn(); } else { op->vtkProbePolyhedron::ProbePointDataOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_ProbePointDataOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProbePointDataOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProbePointDataOff(); } else { op->vtkProbePolyhedron::ProbePointDataOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_SetProbeCellData(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetProbeCellData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetProbeCellData(temp0); } else { op->vtkProbePolyhedron::SetProbeCellData(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_GetProbeCellData(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetProbeCellData"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetProbeCellData() : op->vtkProbePolyhedron::GetProbeCellData()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkProbePolyhedron_ProbeCellDataOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProbeCellDataOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProbeCellDataOn(); } else { op->vtkProbePolyhedron::ProbeCellDataOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkProbePolyhedron_ProbeCellDataOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ProbeCellDataOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkProbePolyhedron *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ProbeCellDataOff(); } else { op->vtkProbePolyhedron::ProbeCellDataOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkProbePolyhedron_Methods[] = { {"IsTypeOf", PyvtkProbePolyhedron_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nStandard methods for instantiable (i.e., concrete) class.\n"}, {"IsA", PyvtkProbePolyhedron_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nStandard methods for instantiable (i.e., concrete) class.\n"}, {"SafeDownCast", PyvtkProbePolyhedron_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkProbePolyhedron\nC++: static vtkProbePolyhedron *SafeDownCast(vtkObjectBase *o)\n\nStandard methods for instantiable (i.e., concrete) class.\n"}, {"NewInstance", PyvtkProbePolyhedron_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkProbePolyhedron\nC++: vtkProbePolyhedron *NewInstance()\n\nStandard methods for instantiable (i.e., concrete) class.\n"}, {"SetSourceData", PyvtkProbePolyhedron_SetSourceData, METH_VARARGS, "V.SetSourceData(vtkPolyData)\nC++: void SetSourceData(vtkPolyData *source)\n\nSpecify the point locations used to probe input. Any geometry can\nbe used.\n"}, {"GetSource", PyvtkProbePolyhedron_GetSource, METH_VARARGS, "V.GetSource() -> vtkPolyData\nC++: vtkPolyData *GetSource()\n\nSpecify the point locations used to probe input. Any geometry can\nbe used.\n"}, {"SetSourceConnection", PyvtkProbePolyhedron_SetSourceConnection, METH_VARARGS, "V.SetSourceConnection(vtkAlgorithmOutput)\nC++: void SetSourceConnection(vtkAlgorithmOutput *algOutput)\n\nSpecify the point locations used to probe input. Any geometry can\nbe used. New style. Equivalent to SetInputConnection(1,\nalgOutput).\n"}, {"SetProbePointData", PyvtkProbePolyhedron_SetProbePointData, METH_VARARGS, "V.SetProbePointData(int)\nC++: virtual void SetProbePointData(int _arg)\n\nSpecify whether to probe (and hence produce) point data. The\ninterpolated point data of the source will produce the output\npoint data (output points are passed from the input points).\n"}, {"GetProbePointData", PyvtkProbePolyhedron_GetProbePointData, METH_VARARGS, "V.GetProbePointData() -> int\nC++: virtual int GetProbePointData()\n\nSpecify whether to probe (and hence produce) point data. The\ninterpolated point data of the source will produce the output\npoint data (output points are passed from the input points).\n"}, {"ProbePointDataOn", PyvtkProbePolyhedron_ProbePointDataOn, METH_VARARGS, "V.ProbePointDataOn()\nC++: virtual void ProbePointDataOn()\n\nSpecify whether to probe (and hence produce) point data. The\ninterpolated point data of the source will produce the output\npoint data (output points are passed from the input points).\n"}, {"ProbePointDataOff", PyvtkProbePolyhedron_ProbePointDataOff, METH_VARARGS, "V.ProbePointDataOff()\nC++: virtual void ProbePointDataOff()\n\nSpecify whether to probe (and hence produce) point data. The\ninterpolated point data of the source will produce the output\npoint data (output points are passed from the input points).\n"}, {"SetProbeCellData", PyvtkProbePolyhedron_SetProbeCellData, METH_VARARGS, "V.SetProbeCellData(int)\nC++: virtual void SetProbeCellData(int _arg)\n\nSpecify whether to probe (and hence produce) cell data. The\ninterpolated point data of the source will produce the output\ncell data (output cells are passed from the input cells). Note\nthat the probing of the input uses the centers of the cells as\nthe probe position.\n"}, {"GetProbeCellData", PyvtkProbePolyhedron_GetProbeCellData, METH_VARARGS, "V.GetProbeCellData() -> int\nC++: virtual int GetProbeCellData()\n\nSpecify whether to probe (and hence produce) cell data. The\ninterpolated point data of the source will produce the output\ncell data (output cells are passed from the input cells). Note\nthat the probing of the input uses the centers of the cells as\nthe probe position.\n"}, {"ProbeCellDataOn", PyvtkProbePolyhedron_ProbeCellDataOn, METH_VARARGS, "V.ProbeCellDataOn()\nC++: virtual void ProbeCellDataOn()\n\nSpecify whether to probe (and hence produce) cell data. The\ninterpolated point data of the source will produce the output\ncell data (output cells are passed from the input cells). Note\nthat the probing of the input uses the centers of the cells as\nthe probe position.\n"}, {"ProbeCellDataOff", PyvtkProbePolyhedron_ProbeCellDataOff, METH_VARARGS, "V.ProbeCellDataOff()\nC++: virtual void ProbeCellDataOff()\n\nSpecify whether to probe (and hence produce) cell data. The\ninterpolated point data of the source will produce the output\ncell data (output cells are passed from the input cells). Note\nthat the probing of the input uses the centers of the cells as\nthe probe position.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkProbePolyhedron_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersGeneralPython.vtkProbePolyhedron", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkProbePolyhedron_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkProbePolyhedron_StaticNew() { return vtkProbePolyhedron::New(); } PyObject *PyvtkProbePolyhedron_ClassNew() { PyVTKClass_Add( &PyvtkProbePolyhedron_Type, PyvtkProbePolyhedron_Methods, "vtkProbePolyhedron", &PyvtkProbePolyhedron_StaticNew); PyTypeObject *pytype = &PyvtkProbePolyhedron_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkDataSetAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkProbePolyhedron( PyObject *dict) { PyObject *o; o = PyvtkProbePolyhedron_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkProbePolyhedron", o) != 0) { Py_DECREF(o); } }