// python wrapper for vtkRectilinearSynchronizedTemplates // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkRectilinearSynchronizedTemplates.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkRectilinearSynchronizedTemplates(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkRectilinearSynchronizedTemplates_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkRectilinearSynchronizedTemplates_Doc = "vtkRectilinearSynchronizedTemplates - generate isosurface from\nrectilinear grid\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkRectilinearSynchronizedTemplates is a 3D implementation (for\n" "rectilinear grids) of the synchronized template algorithm. Note that\n" "vtkContourFilter will automatically use this class when appropriate.\n\n" "@warning\n" "This filter is specialized to rectilinear grids.\n\n" "@sa\n" "vtkContourFilter vtkSynchronizedTemplates2D\n" "vtkSynchronizedTemplates3D\n\n"; static PyObject * PyvtkRectilinearSynchronizedTemplates_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkRectilinearSynchronizedTemplates::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkRectilinearSynchronizedTemplates::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkRectilinearSynchronizedTemplates *tempr = vtkRectilinearSynchronizedTemplates::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkRectilinearSynchronizedTemplates *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkRectilinearSynchronizedTemplates::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetMTime(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMTime"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { unsigned long tempr = (ap.IsBound() ? op->GetMTime() : op->vtkRectilinearSynchronizedTemplates::GetMTime()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetComputeNormals(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeNormals"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeNormals(temp0); } else { op->vtkRectilinearSynchronizedTemplates::SetComputeNormals(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetComputeNormals(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeNormals"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeNormals() : op->vtkRectilinearSynchronizedTemplates::GetComputeNormals()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeNormalsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeNormalsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeNormalsOn(); } else { op->vtkRectilinearSynchronizedTemplates::ComputeNormalsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeNormalsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeNormalsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeNormalsOff(); } else { op->vtkRectilinearSynchronizedTemplates::ComputeNormalsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetComputeGradients(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeGradients"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeGradients(temp0); } else { op->vtkRectilinearSynchronizedTemplates::SetComputeGradients(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetComputeGradients(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeGradients"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeGradients() : op->vtkRectilinearSynchronizedTemplates::GetComputeGradients()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeGradientsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeGradientsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeGradientsOn(); } else { op->vtkRectilinearSynchronizedTemplates::ComputeGradientsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeGradientsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeGradientsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeGradientsOff(); } else { op->vtkRectilinearSynchronizedTemplates::ComputeGradientsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetComputeScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetComputeScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetComputeScalars(temp0); } else { op->vtkRectilinearSynchronizedTemplates::SetComputeScalars(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetComputeScalars(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetComputeScalars"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetComputeScalars() : op->vtkRectilinearSynchronizedTemplates::GetComputeScalars()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeScalarsOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeScalarsOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeScalarsOn(); } else { op->vtkRectilinearSynchronizedTemplates::ComputeScalarsOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeScalarsOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeScalarsOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ComputeScalarsOff(); } else { op->vtkRectilinearSynchronizedTemplates::ComputeScalarsOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; double temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->SetValue(temp0, temp1); } else { op->vtkRectilinearSynchronizedTemplates::SetValue(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { double tempr = (ap.IsBound() ? op->GetValue(temp0) : op->vtkRectilinearSynchronizedTemplates::GetValue(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetValues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetValues() : op->vtkRectilinearSynchronizedTemplates::GetValues()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetValues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int size0 = ap.GetArgSize(0); vtkPythonArgs::Array store0(2*size0); double *temp0 = store0.Data(); double *save0 = (size0 == 0 ? nullptr : temp0 + size0); PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->GetValues(temp0); } else { op->vtkRectilinearSynchronizedTemplates::GetValues(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetValues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 0: return PyvtkRectilinearSynchronizedTemplates_GetValues_s1(self, args); case 1: return PyvtkRectilinearSynchronizedTemplates_GetValues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GetValues"); return nullptr; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetNumberOfContours(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfContours"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfContours(temp0); } else { op->vtkRectilinearSynchronizedTemplates::SetNumberOfContours(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetNumberOfContours(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfContours"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfContours() : op->vtkRectilinearSynchronizedTemplates::GetNumberOfContours()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GenerateValues_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; const int size1 = 2; double temp1[2]; double save1[2]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->GenerateValues(temp0, temp1); } else { op->vtkRectilinearSynchronizedTemplates::GenerateValues(temp0, temp1); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GenerateValues_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateValues"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->GenerateValues(temp0, temp1, temp2); } else { op->vtkRectilinearSynchronizedTemplates::GenerateValues(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GenerateValues(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 2: return PyvtkRectilinearSynchronizedTemplates_GenerateValues_s1(self, args); case 3: return PyvtkRectilinearSynchronizedTemplates_GenerateValues_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "GenerateValues"); return nullptr; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetArrayComponent(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetArrayComponent"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetArrayComponent(temp0); } else { op->vtkRectilinearSynchronizedTemplates::SetArrayComponent(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetArrayComponent(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetArrayComponent"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetArrayComponent() : op->vtkRectilinearSynchronizedTemplates::GetArrayComponent()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_SetGenerateTriangles(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGenerateTriangles"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGenerateTriangles(temp0); } else { op->vtkRectilinearSynchronizedTemplates::SetGenerateTriangles(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GetGenerateTriangles(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGenerateTriangles"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetGenerateTriangles() : op->vtkRectilinearSynchronizedTemplates::GetGenerateTriangles()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GenerateTrianglesOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateTrianglesOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GenerateTrianglesOn(); } else { op->vtkRectilinearSynchronizedTemplates::GenerateTrianglesOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_GenerateTrianglesOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GenerateTrianglesOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GenerateTrianglesOff(); } else { op->vtkRectilinearSynchronizedTemplates::GenerateTrianglesOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRectilinearSynchronizedTemplates_ComputeSpacing(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeSpacing"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRectilinearSynchronizedTemplates *op = static_cast(vp); vtkRectilinearGrid *temp0 = nullptr; int temp1; int temp2; int temp3; const int size4 = 6; int temp4[6]; int save4[6]; const int size5 = 6; double temp5[6]; double save5[6]; PyObject *result = nullptr; if (op && ap.CheckArgCount(6) && ap.GetVTKObject(temp0, "vtkRectilinearGrid") && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetArray(temp4, size4) && ap.GetArray(temp5, size5)) { ap.SaveArray(temp4, save4, size4); ap.SaveArray(temp5, save5, size5); if (ap.IsBound()) { op->ComputeSpacing(temp0, temp1, temp2, temp3, temp4, temp5); } else { op->vtkRectilinearSynchronizedTemplates::ComputeSpacing(temp0, temp1, temp2, temp3, temp4, temp5); } if (ap.ArrayHasChanged(temp4, save4, size4) && !ap.ErrorOccurred()) { ap.SetArray(4, temp4, size4); } if (ap.ArrayHasChanged(temp5, save5, size5) && !ap.ErrorOccurred()) { ap.SetArray(5, temp5, size5); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkRectilinearSynchronizedTemplates_Methods[] = { {"IsTypeOf", PyvtkRectilinearSynchronizedTemplates_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkRectilinearSynchronizedTemplates_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkRectilinearSynchronizedTemplates_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase)\n -> vtkRectilinearSynchronizedTemplates\nC++: static vtkRectilinearSynchronizedTemplates *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkRectilinearSynchronizedTemplates_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkRectilinearSynchronizedTemplates\nC++: vtkRectilinearSynchronizedTemplates *NewInstance()\n\n"}, {"GetMTime", PyvtkRectilinearSynchronizedTemplates_GetMTime, METH_VARARGS, "V.GetMTime() -> int\nC++: vtkMTimeType GetMTime() override;\n\nBecause we delegate to vtkContourValues\n"}, {"SetComputeNormals", PyvtkRectilinearSynchronizedTemplates_SetComputeNormals, METH_VARARGS, "V.SetComputeNormals(int)\nC++: virtual void SetComputeNormals(int _arg)\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"GetComputeNormals", PyvtkRectilinearSynchronizedTemplates_GetComputeNormals, METH_VARARGS, "V.GetComputeNormals() -> int\nC++: virtual int GetComputeNormals()\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"ComputeNormalsOn", PyvtkRectilinearSynchronizedTemplates_ComputeNormalsOn, METH_VARARGS, "V.ComputeNormalsOn()\nC++: virtual void ComputeNormalsOn()\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"ComputeNormalsOff", PyvtkRectilinearSynchronizedTemplates_ComputeNormalsOff, METH_VARARGS, "V.ComputeNormalsOff()\nC++: virtual void ComputeNormalsOff()\n\nSet/Get the computation of normals. Normal computation is fairly\nexpensive in both time and storage. If the output data will be\nprocessed by filters that modify topology or geometry, it may be\nwise to turn Normals and Gradients off.\n"}, {"SetComputeGradients", PyvtkRectilinearSynchronizedTemplates_SetComputeGradients, METH_VARARGS, "V.SetComputeGradients(int)\nC++: virtual void SetComputeGradients(int _arg)\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data\nwill be processed by filters that modify topology or geometry, it\nmay be wise to turn Normals and Gradients off.\n"}, {"GetComputeGradients", PyvtkRectilinearSynchronizedTemplates_GetComputeGradients, METH_VARARGS, "V.GetComputeGradients() -> int\nC++: virtual int GetComputeGradients()\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data\nwill be processed by filters that modify topology or geometry, it\nmay be wise to turn Normals and Gradients off.\n"}, {"ComputeGradientsOn", PyvtkRectilinearSynchronizedTemplates_ComputeGradientsOn, METH_VARARGS, "V.ComputeGradientsOn()\nC++: virtual void ComputeGradientsOn()\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data\nwill be processed by filters that modify topology or geometry, it\nmay be wise to turn Normals and Gradients off.\n"}, {"ComputeGradientsOff", PyvtkRectilinearSynchronizedTemplates_ComputeGradientsOff, METH_VARARGS, "V.ComputeGradientsOff()\nC++: virtual void ComputeGradientsOff()\n\nSet/Get the computation of gradients. Gradient computation is\nfairly expensive in both time and storage. Note that if\nComputeNormals is on, gradients will have to be calculated, but\nwill not be stored in the output dataset. If the output data\nwill be processed by filters that modify topology or geometry, it\nmay be wise to turn Normals and Gradients off.\n"}, {"SetComputeScalars", PyvtkRectilinearSynchronizedTemplates_SetComputeScalars, METH_VARARGS, "V.SetComputeScalars(int)\nC++: virtual void SetComputeScalars(int _arg)\n\nSet/Get the computation of scalars.\n"}, {"GetComputeScalars", PyvtkRectilinearSynchronizedTemplates_GetComputeScalars, METH_VARARGS, "V.GetComputeScalars() -> int\nC++: virtual int GetComputeScalars()\n\nSet/Get the computation of scalars.\n"}, {"ComputeScalarsOn", PyvtkRectilinearSynchronizedTemplates_ComputeScalarsOn, METH_VARARGS, "V.ComputeScalarsOn()\nC++: virtual void ComputeScalarsOn()\n\nSet/Get the computation of scalars.\n"}, {"ComputeScalarsOff", PyvtkRectilinearSynchronizedTemplates_ComputeScalarsOff, METH_VARARGS, "V.ComputeScalarsOff()\nC++: virtual void ComputeScalarsOff()\n\nSet/Get the computation of scalars.\n"}, {"SetValue", PyvtkRectilinearSynchronizedTemplates_SetValue, METH_VARARGS, "V.SetValue(int, float)\nC++: void SetValue(int i, double value)\n\nSet a particular contour value at contour number i. The index i\nranges between 0<=i float\nC++: double GetValue(int i)\n\nGet the ith contour value.\n"}, {"GetValues", PyvtkRectilinearSynchronizedTemplates_GetValues, METH_VARARGS, "V.GetValues() -> (float, ...)\nC++: double *GetValues()\nV.GetValues([float, ...])\nC++: void GetValues(double *contourValues)\n\nGet a pointer to an array of contour values. There will be\nGetNumberOfContours() values in the list.\n"}, {"SetNumberOfContours", PyvtkRectilinearSynchronizedTemplates_SetNumberOfContours, METH_VARARGS, "V.SetNumberOfContours(int)\nC++: void SetNumberOfContours(int number)\n\nSet the number of contours to place into the list. You only\nreally need to use this method to reduce list size. The method\nSetValue() will automatically increase list size as needed.\n"}, {"GetNumberOfContours", PyvtkRectilinearSynchronizedTemplates_GetNumberOfContours, METH_VARARGS, "V.GetNumberOfContours() -> int\nC++: int GetNumberOfContours()\n\nGet the number of contours in the list of contour values.\n"}, {"GenerateValues", PyvtkRectilinearSynchronizedTemplates_GenerateValues, METH_VARARGS, "V.GenerateValues(int, [float, float])\nC++: void GenerateValues(int numContours, double range[2])\nV.GenerateValues(int, float, float)\nC++: void GenerateValues(int numContours, double rangeStart,\n double rangeEnd)\n\nGenerate numContours equally spaced contour values between\nspecified range. Contour values will include min/max range\nvalues.\n"}, {"SetArrayComponent", PyvtkRectilinearSynchronizedTemplates_SetArrayComponent, METH_VARARGS, "V.SetArrayComponent(int)\nC++: virtual void SetArrayComponent(int _arg)\n\nSet/get which component of the scalar array to contour on;\ndefaults to 0.\n"}, {"GetArrayComponent", PyvtkRectilinearSynchronizedTemplates_GetArrayComponent, METH_VARARGS, "V.GetArrayComponent() -> int\nC++: virtual int GetArrayComponent()\n\nSet/get which component of the scalar array to contour on;\ndefaults to 0.\n"}, {"SetGenerateTriangles", PyvtkRectilinearSynchronizedTemplates_SetGenerateTriangles, METH_VARARGS, "V.SetGenerateTriangles(int)\nC++: virtual void SetGenerateTriangles(int _arg)\n\nIf this is enabled (by default), the output will be triangles\notherwise, the output will be the intersection polygons\n"}, {"GetGenerateTriangles", PyvtkRectilinearSynchronizedTemplates_GetGenerateTriangles, METH_VARARGS, "V.GetGenerateTriangles() -> int\nC++: virtual int GetGenerateTriangles()\n\nIf this is enabled (by default), the output will be triangles\notherwise, the output will be the intersection polygons\n"}, {"GenerateTrianglesOn", PyvtkRectilinearSynchronizedTemplates_GenerateTrianglesOn, METH_VARARGS, "V.GenerateTrianglesOn()\nC++: virtual void GenerateTrianglesOn()\n\nIf this is enabled (by default), the output will be triangles\notherwise, the output will be the intersection polygons\n"}, {"GenerateTrianglesOff", PyvtkRectilinearSynchronizedTemplates_GenerateTrianglesOff, METH_VARARGS, "V.GenerateTrianglesOff()\nC++: virtual void GenerateTrianglesOff()\n\nIf this is enabled (by default), the output will be triangles\notherwise, the output will be the intersection polygons\n"}, {"ComputeSpacing", PyvtkRectilinearSynchronizedTemplates_ComputeSpacing, METH_VARARGS, "V.ComputeSpacing(vtkRectilinearGrid, int, int, int, [int, int,\n int, int, int, int], [float, float, float, float, float,\n float])\nC++: void ComputeSpacing(vtkRectilinearGrid *data, int i, int j,\n int k, int extent[6], double spacing[6])\n\nCompute the spacing between this point and its 6 neighbors. This\nmethod needs to be public so it can be accessed from a templated\nfunction.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkRectilinearSynchronizedTemplates_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersCorePython.vtkRectilinearSynchronizedTemplates", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkRectilinearSynchronizedTemplates_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkRectilinearSynchronizedTemplates_StaticNew() { return vtkRectilinearSynchronizedTemplates::New(); } PyObject *PyvtkRectilinearSynchronizedTemplates_ClassNew() { PyVTKClass_Add( &PyvtkRectilinearSynchronizedTemplates_Type, PyvtkRectilinearSynchronizedTemplates_Methods, "vtkRectilinearSynchronizedTemplates", &PyvtkRectilinearSynchronizedTemplates_StaticNew); PyTypeObject *pytype = &PyvtkRectilinearSynchronizedTemplates_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkRectilinearSynchronizedTemplates( PyObject *dict) { PyObject *o; o = PyvtkRectilinearSynchronizedTemplates_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkRectilinearSynchronizedTemplates", o) != 0) { Py_DECREF(o); } }