// python wrapper for vtkRecursiveDividingCubes // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkRecursiveDividingCubes.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkRecursiveDividingCubes(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkRecursiveDividingCubes_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkRecursiveDividingCubes_Doc = "vtkRecursiveDividingCubes - create points laying on isosurface (using\nrecursive approach)\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkRecursiveDividingCubes is a filter that generates points laying on\n" "a surface of constant scalar value (i.e., an isosurface). Dense point\n" "clouds (i.e., at screen resolution) will appear as a surface. Less\n" "dense clouds can be used as a source to generate streamlines or to\n" "generate \"transparent\" surfaces.\n\n" "This implementation differs from vtkDividingCubes in that it uses a\n" "recursive procedure. In many cases this can result in generating more\n" "points than the procedural implementation of vtkDividingCubes. This\n" "is because the recursive procedure divides voxels by multiples of\n" "powers of two. This can over-constrain subdivision. One of the\n" "advantages of the recursive technique is that the recursion is\n" "terminated earlier, which in some cases can be more efficient.\n\n" "@sa\n" "vtkDividingCubes vtkContourFilter vtkMarchingCubes\n\n"; static PyObject * PyvtkRecursiveDividingCubes_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkRecursiveDividingCubes::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkRecursiveDividingCubes::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkRecursiveDividingCubes *tempr = vtkRecursiveDividingCubes::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkRecursiveDividingCubes *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkRecursiveDividingCubes::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkRecursiveDividingCubes_SetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetValue(temp0); } else { op->vtkRecursiveDividingCubes::SetValue(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetValue() : op->vtkRecursiveDividingCubes::GetValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_SetDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetDistance(temp0); } else { op->vtkRecursiveDividingCubes::SetDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetDistanceMinValue() : op->vtkRecursiveDividingCubes::GetDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetDistanceMaxValue() : op->vtkRecursiveDividingCubes::GetDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetDistance() : op->vtkRecursiveDividingCubes::GetDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_SetIncrement(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIncrement"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetIncrement(temp0); } else { op->vtkRecursiveDividingCubes::SetIncrement(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetIncrementMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIncrementMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIncrementMinValue() : op->vtkRecursiveDividingCubes::GetIncrementMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetIncrementMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIncrementMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIncrementMaxValue() : op->vtkRecursiveDividingCubes::GetIncrementMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRecursiveDividingCubes_GetIncrement(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIncrement"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRecursiveDividingCubes *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIncrement() : op->vtkRecursiveDividingCubes::GetIncrement()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkRecursiveDividingCubes_Methods[] = { {"IsTypeOf", PyvtkRecursiveDividingCubes_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkRecursiveDividingCubes_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkRecursiveDividingCubes_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkRecursiveDividingCubes\nC++: static vtkRecursiveDividingCubes *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkRecursiveDividingCubes_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkRecursiveDividingCubes\nC++: vtkRecursiveDividingCubes *NewInstance()\n\n"}, {"SetValue", PyvtkRecursiveDividingCubes_SetValue, METH_VARARGS, "V.SetValue(float)\nC++: virtual void SetValue(double _arg)\n\nSet isosurface value.\n"}, {"GetValue", PyvtkRecursiveDividingCubes_GetValue, METH_VARARGS, "V.GetValue() -> float\nC++: virtual double GetValue()\n\nSet isosurface value.\n"}, {"SetDistance", PyvtkRecursiveDividingCubes_SetDistance, METH_VARARGS, "V.SetDistance(float)\nC++: virtual void SetDistance(double _arg)\n\nSpecify sub-voxel size at which to generate point.\n"}, {"GetDistanceMinValue", PyvtkRecursiveDividingCubes_GetDistanceMinValue, METH_VARARGS, "V.GetDistanceMinValue() -> float\nC++: virtual double GetDistanceMinValue()\n\nSpecify sub-voxel size at which to generate point.\n"}, {"GetDistanceMaxValue", PyvtkRecursiveDividingCubes_GetDistanceMaxValue, METH_VARARGS, "V.GetDistanceMaxValue() -> float\nC++: virtual double GetDistanceMaxValue()\n\nSpecify sub-voxel size at which to generate point.\n"}, {"GetDistance", PyvtkRecursiveDividingCubes_GetDistance, METH_VARARGS, "V.GetDistance() -> float\nC++: virtual double GetDistance()\n\nSpecify sub-voxel size at which to generate point.\n"}, {"SetIncrement", PyvtkRecursiveDividingCubes_SetIncrement, METH_VARARGS, "V.SetIncrement(int)\nC++: virtual void SetIncrement(int _arg)\n\nEvery \"Increment\" point is added to the list of points. This\nparameter, if set to a large value, can be used to limit the\nnumber of points while retaining good accuracy.\n"}, {"GetIncrementMinValue", PyvtkRecursiveDividingCubes_GetIncrementMinValue, METH_VARARGS, "V.GetIncrementMinValue() -> int\nC++: virtual int GetIncrementMinValue()\n\nEvery \"Increment\" point is added to the list of points. This\nparameter, if set to a large value, can be used to limit the\nnumber of points while retaining good accuracy.\n"}, {"GetIncrementMaxValue", PyvtkRecursiveDividingCubes_GetIncrementMaxValue, METH_VARARGS, "V.GetIncrementMaxValue() -> int\nC++: virtual int GetIncrementMaxValue()\n\nEvery \"Increment\" point is added to the list of points. This\nparameter, if set to a large value, can be used to limit the\nnumber of points while retaining good accuracy.\n"}, {"GetIncrement", PyvtkRecursiveDividingCubes_GetIncrement, METH_VARARGS, "V.GetIncrement() -> int\nC++: virtual int GetIncrement()\n\nEvery \"Increment\" point is added to the list of points. This\nparameter, if set to a large value, can be used to limit the\nnumber of points while retaining good accuracy.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkRecursiveDividingCubes_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersGeneralPython.vtkRecursiveDividingCubes", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkRecursiveDividingCubes_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkRecursiveDividingCubes_StaticNew() { return vtkRecursiveDividingCubes::New(); } PyObject *PyvtkRecursiveDividingCubes_ClassNew() { PyVTKClass_Add( &PyvtkRecursiveDividingCubes_Type, PyvtkRecursiveDividingCubes_Methods, "vtkRecursiveDividingCubes", &PyvtkRecursiveDividingCubes_StaticNew); PyTypeObject *pytype = &PyvtkRecursiveDividingCubes_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkRecursiveDividingCubes( PyObject *dict) { PyObject *o; o = PyvtkRecursiveDividingCubes_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkRecursiveDividingCubes", o) != 0) { Py_DECREF(o); } }