// python wrapper for vtkRegularPolygonSource // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkRegularPolygonSource.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkRegularPolygonSource(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkRegularPolygonSource_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkRegularPolygonSource_Doc = "vtkRegularPolygonSource - create a regular, n-sided polygon and/or\npolyline\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkRegularPolygonSource is a source object that creates a single\n" "n-sided polygon and/or polyline. The polygon is centered at a\n" "specified point, orthogonal to a specified normal, and with a\n" "circumscribing radius set by the user. The user can also specify the\n" "number of sides of the polygon ranging from [3,N].\n\n" "This object can be used for seeding streamlines or defining regions\n" "for clipping/cutting.\n\n"; static PyObject * PyvtkRegularPolygonSource_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkRegularPolygonSource::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkRegularPolygonSource::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkRegularPolygonSource *tempr = vtkRegularPolygonSource::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkRegularPolygonSource *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkRegularPolygonSource::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkRegularPolygonSource_SetNumberOfSides(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfSides"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfSides(temp0); } else { op->vtkRegularPolygonSource::SetNumberOfSides(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetNumberOfSidesMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSidesMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSidesMinValue() : op->vtkRegularPolygonSource::GetNumberOfSidesMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetNumberOfSidesMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSidesMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSidesMaxValue() : op->vtkRegularPolygonSource::GetNumberOfSidesMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetNumberOfSides(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfSides"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfSides() : op->vtkRegularPolygonSource::GetNumberOfSides()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetCenter_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetCenter(temp0, temp1, temp2); } else { op->vtkRegularPolygonSource::SetCenter(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetCenter_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetCenter(temp0); } else { op->vtkRegularPolygonSource::SetCenter(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetCenter(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkRegularPolygonSource_SetCenter_s1(self, args); case 1: return PyvtkRegularPolygonSource_SetCenter_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetCenter"); return nullptr; } static PyObject * PyvtkRegularPolygonSource_GetCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetCenter() : op->vtkRegularPolygonSource::GetCenter()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetNormal_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNormal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetNormal(temp0, temp1, temp2); } else { op->vtkRegularPolygonSource::SetNormal(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetNormal_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNormal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetNormal(temp0); } else { op->vtkRegularPolygonSource::SetNormal(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetNormal(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkRegularPolygonSource_SetNormal_s1(self, args); case 1: return PyvtkRegularPolygonSource_SetNormal_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetNormal"); return nullptr; } static PyObject * PyvtkRegularPolygonSource_GetNormal(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNormal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetNormal() : op->vtkRegularPolygonSource::GetNormal()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetRadius(temp0); } else { op->vtkRegularPolygonSource::SetRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadius() : op->vtkRegularPolygonSource::GetRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetGeneratePolygon(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGeneratePolygon"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGeneratePolygon(temp0); } else { op->vtkRegularPolygonSource::SetGeneratePolygon(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetGeneratePolygon(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGeneratePolygon"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetGeneratePolygon() : op->vtkRegularPolygonSource::GetGeneratePolygon()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_GeneratePolygonOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GeneratePolygonOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GeneratePolygonOn(); } else { op->vtkRegularPolygonSource::GeneratePolygonOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GeneratePolygonOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GeneratePolygonOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GeneratePolygonOff(); } else { op->vtkRegularPolygonSource::GeneratePolygonOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetGeneratePolyline(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetGeneratePolyline"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetGeneratePolyline(temp0); } else { op->vtkRegularPolygonSource::SetGeneratePolyline(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetGeneratePolyline(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetGeneratePolyline"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetGeneratePolyline() : op->vtkRegularPolygonSource::GetGeneratePolyline()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkRegularPolygonSource_GeneratePolylineOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GeneratePolylineOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GeneratePolylineOn(); } else { op->vtkRegularPolygonSource::GeneratePolylineOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GeneratePolylineOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GeneratePolylineOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->GeneratePolylineOff(); } else { op->vtkRegularPolygonSource::GeneratePolylineOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_SetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputPointsPrecision(temp0); } else { op->vtkRegularPolygonSource::SetOutputPointsPrecision(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkRegularPolygonSource_GetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkRegularPolygonSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputPointsPrecision() : op->vtkRegularPolygonSource::GetOutputPointsPrecision()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkRegularPolygonSource_Methods[] = { {"IsTypeOf", PyvtkRegularPolygonSource_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nStandard methods for instantiation, obtaining type and printing\ninstance values.\n"}, {"IsA", PyvtkRegularPolygonSource_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nStandard methods for instantiation, obtaining type and printing\ninstance values.\n"}, {"SafeDownCast", PyvtkRegularPolygonSource_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkRegularPolygonSource\nC++: static vtkRegularPolygonSource *SafeDownCast(\n vtkObjectBase *o)\n\nStandard methods for instantiation, obtaining type and printing\ninstance values.\n"}, {"NewInstance", PyvtkRegularPolygonSource_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkRegularPolygonSource\nC++: vtkRegularPolygonSource *NewInstance()\n\nStandard methods for instantiation, obtaining type and printing\ninstance values.\n"}, {"SetNumberOfSides", PyvtkRegularPolygonSource_SetNumberOfSides, METH_VARARGS, "V.SetNumberOfSides(int)\nC++: virtual void SetNumberOfSides(int _arg)\n\nSet/Get the number of sides of the polygon. By default, the\nnumber of sides is set to six.\n"}, {"GetNumberOfSidesMinValue", PyvtkRegularPolygonSource_GetNumberOfSidesMinValue, METH_VARARGS, "V.GetNumberOfSidesMinValue() -> int\nC++: virtual int GetNumberOfSidesMinValue()\n\nSet/Get the number of sides of the polygon. By default, the\nnumber of sides is set to six.\n"}, {"GetNumberOfSidesMaxValue", PyvtkRegularPolygonSource_GetNumberOfSidesMaxValue, METH_VARARGS, "V.GetNumberOfSidesMaxValue() -> int\nC++: virtual int GetNumberOfSidesMaxValue()\n\nSet/Get the number of sides of the polygon. By default, the\nnumber of sides is set to six.\n"}, {"GetNumberOfSides", PyvtkRegularPolygonSource_GetNumberOfSides, METH_VARARGS, "V.GetNumberOfSides() -> int\nC++: virtual int GetNumberOfSides()\n\nSet/Get the number of sides of the polygon. By default, the\nnumber of sides is set to six.\n"}, {"SetCenter", PyvtkRegularPolygonSource_SetCenter, METH_VARARGS, "V.SetCenter(float, float, float)\nC++: void SetCenter(double, double, double)\nV.SetCenter((float, float, float))\nC++: void SetCenter(double a[3])\n\n"}, {"GetCenter", PyvtkRegularPolygonSource_GetCenter, METH_VARARGS, "V.GetCenter() -> (float, float, float)\nC++: double *GetCenter()\n\nSet/Get the center of the polygon. By default, the center is set\nat the origin (0,0,0).\n"}, {"SetNormal", PyvtkRegularPolygonSource_SetNormal, METH_VARARGS, "V.SetNormal(float, float, float)\nC++: void SetNormal(double, double, double)\nV.SetNormal((float, float, float))\nC++: void SetNormal(double a[3])\n\n"}, {"GetNormal", PyvtkRegularPolygonSource_GetNormal, METH_VARARGS, "V.GetNormal() -> (float, float, float)\nC++: double *GetNormal()\n\nSet/Get the normal to the polygon. The ordering of the polygon\nwill be counter-clockwise around the normal (i.e., using the\nright-hand rule). By default, the normal is set to (0,0,1).\n"}, {"SetRadius", PyvtkRegularPolygonSource_SetRadius, METH_VARARGS, "V.SetRadius(float)\nC++: virtual void SetRadius(double _arg)\n\nSet/Get the radius of the polygon. By default, the radius is set\nto 0.5.\n"}, {"GetRadius", PyvtkRegularPolygonSource_GetRadius, METH_VARARGS, "V.GetRadius() -> float\nC++: virtual double GetRadius()\n\nSet/Get the radius of the polygon. By default, the radius is set\nto 0.5.\n"}, {"SetGeneratePolygon", PyvtkRegularPolygonSource_SetGeneratePolygon, METH_VARARGS, "V.SetGeneratePolygon(int)\nC++: virtual void SetGeneratePolygon(int _arg)\n\nControl whether a polygon is produced. By default,\nGeneratePolygon is enabled.\n"}, {"GetGeneratePolygon", PyvtkRegularPolygonSource_GetGeneratePolygon, METH_VARARGS, "V.GetGeneratePolygon() -> int\nC++: virtual int GetGeneratePolygon()\n\nControl whether a polygon is produced. By default,\nGeneratePolygon is enabled.\n"}, {"GeneratePolygonOn", PyvtkRegularPolygonSource_GeneratePolygonOn, METH_VARARGS, "V.GeneratePolygonOn()\nC++: virtual void GeneratePolygonOn()\n\nControl whether a polygon is produced. By default,\nGeneratePolygon is enabled.\n"}, {"GeneratePolygonOff", PyvtkRegularPolygonSource_GeneratePolygonOff, METH_VARARGS, "V.GeneratePolygonOff()\nC++: virtual void GeneratePolygonOff()\n\nControl whether a polygon is produced. By default,\nGeneratePolygon is enabled.\n"}, {"SetGeneratePolyline", PyvtkRegularPolygonSource_SetGeneratePolyline, METH_VARARGS, "V.SetGeneratePolyline(int)\nC++: virtual void SetGeneratePolyline(int _arg)\n\nControl whether a polyline is produced. By default,\nGeneratePolyline is enabled.\n"}, {"GetGeneratePolyline", PyvtkRegularPolygonSource_GetGeneratePolyline, METH_VARARGS, "V.GetGeneratePolyline() -> int\nC++: virtual int GetGeneratePolyline()\n\nControl whether a polyline is produced. By default,\nGeneratePolyline is enabled.\n"}, {"GeneratePolylineOn", PyvtkRegularPolygonSource_GeneratePolylineOn, METH_VARARGS, "V.GeneratePolylineOn()\nC++: virtual void GeneratePolylineOn()\n\nControl whether a polyline is produced. By default,\nGeneratePolyline is enabled.\n"}, {"GeneratePolylineOff", PyvtkRegularPolygonSource_GeneratePolylineOff, METH_VARARGS, "V.GeneratePolylineOff()\nC++: virtual void GeneratePolylineOff()\n\nControl whether a polyline is produced. By default,\nGeneratePolyline is enabled.\n"}, {"SetOutputPointsPrecision", PyvtkRegularPolygonSource_SetOutputPointsPrecision, METH_VARARGS, "V.SetOutputPointsPrecision(int)\nC++: virtual void SetOutputPointsPrecision(int _arg)\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {"GetOutputPointsPrecision", PyvtkRegularPolygonSource_GetOutputPointsPrecision, METH_VARARGS, "V.GetOutputPointsPrecision() -> int\nC++: virtual int GetOutputPointsPrecision()\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkRegularPolygonSource_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersSourcesPython.vtkRegularPolygonSource", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkRegularPolygonSource_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkRegularPolygonSource_StaticNew() { return vtkRegularPolygonSource::New(); } PyObject *PyvtkRegularPolygonSource_ClassNew() { PyVTKClass_Add( &PyvtkRegularPolygonSource_Type, PyvtkRegularPolygonSource_Methods, "vtkRegularPolygonSource", &PyvtkRegularPolygonSource_StaticNew); PyTypeObject *pytype = &PyvtkRegularPolygonSource_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkRegularPolygonSource( PyObject *dict) { PyObject *o; o = PyvtkRegularPolygonSource_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkRegularPolygonSource", o) != 0) { Py_DECREF(o); } }