// python wrapper for vtkSphereSource // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkSphereSource.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkSphereSource(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkSphereSource_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkSphereSource_Doc = "vtkSphereSource - create a polygonal sphere centered at the origin\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkSphereSource creates a sphere (represented by polygons) of\n" "specified radius centered at the origin. The resolution (polygonal\n" "discretization) in both the latitude (phi) and longitude (theta)\n" "directions can be specified. It also is possible to create partial\n" "spheres by specifying maximum phi and theta angles. By default, the\n" "surface tessellation of the sphere uses triangles; however you can\n" "set LatLongTessellation to produce a tessellation using\n" "quadrilaterals.\n" "@warning\n" "Resolution means the number of latitude or longitude lines for a\n" "complete sphere. If you create partial spheres the number of\n" "latitude/longitude lines may be off by one.\n\n"; static PyObject * PyvtkSphereSource_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkSphereSource::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkSphereSource::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkSphereSource *tempr = vtkSphereSource::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkSphereSource_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkSphereSource *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkSphereSource::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkSphereSource_SetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetRadius(temp0); } else { op->vtkSphereSource::SetRadius(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetRadiusMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadiusMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadiusMinValue() : op->vtkSphereSource::GetRadiusMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetRadiusMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadiusMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadiusMaxValue() : op->vtkSphereSource::GetRadiusMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetRadius(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRadius"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetRadius() : op->vtkSphereSource::GetRadius()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetCenter_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetCenter(temp0, temp1, temp2); } else { op->vtkSphereSource::SetCenter(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_SetCenter_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetCenter(temp0); } else { op->vtkSphereSource::SetCenter(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_SetCenter(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkSphereSource_SetCenter_s1(self, args); case 1: return PyvtkSphereSource_SetCenter_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetCenter"); return nullptr; } static PyObject * PyvtkSphereSource_GetCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetCenter() : op->vtkSphereSource::GetCenter()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkSphereSource_SetThetaResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetThetaResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetThetaResolution(temp0); } else { op->vtkSphereSource::SetThetaResolution(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetThetaResolutionMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThetaResolutionMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetThetaResolutionMinValue() : op->vtkSphereSource::GetThetaResolutionMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetThetaResolutionMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThetaResolutionMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetThetaResolutionMaxValue() : op->vtkSphereSource::GetThetaResolutionMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetThetaResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThetaResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetThetaResolution() : op->vtkSphereSource::GetThetaResolution()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetPhiResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPhiResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPhiResolution(temp0); } else { op->vtkSphereSource::SetPhiResolution(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetPhiResolutionMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPhiResolutionMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetPhiResolutionMinValue() : op->vtkSphereSource::GetPhiResolutionMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetPhiResolutionMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPhiResolutionMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetPhiResolutionMaxValue() : op->vtkSphereSource::GetPhiResolutionMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetPhiResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPhiResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetPhiResolution() : op->vtkSphereSource::GetPhiResolution()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetStartTheta(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStartTheta"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetStartTheta(temp0); } else { op->vtkSphereSource::SetStartTheta(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetStartThetaMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartThetaMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStartThetaMinValue() : op->vtkSphereSource::GetStartThetaMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetStartThetaMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartThetaMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStartThetaMaxValue() : op->vtkSphereSource::GetStartThetaMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetStartTheta(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartTheta"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStartTheta() : op->vtkSphereSource::GetStartTheta()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetEndTheta(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetEndTheta"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetEndTheta(temp0); } else { op->vtkSphereSource::SetEndTheta(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetEndThetaMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEndThetaMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetEndThetaMinValue() : op->vtkSphereSource::GetEndThetaMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetEndThetaMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEndThetaMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetEndThetaMaxValue() : op->vtkSphereSource::GetEndThetaMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetEndTheta(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEndTheta"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetEndTheta() : op->vtkSphereSource::GetEndTheta()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetStartPhi(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetStartPhi"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetStartPhi(temp0); } else { op->vtkSphereSource::SetStartPhi(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetStartPhiMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartPhiMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStartPhiMinValue() : op->vtkSphereSource::GetStartPhiMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetStartPhiMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartPhiMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStartPhiMaxValue() : op->vtkSphereSource::GetStartPhiMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetStartPhi(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetStartPhi"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetStartPhi() : op->vtkSphereSource::GetStartPhi()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetEndPhi(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetEndPhi"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetEndPhi(temp0); } else { op->vtkSphereSource::SetEndPhi(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetEndPhiMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEndPhiMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetEndPhiMinValue() : op->vtkSphereSource::GetEndPhiMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetEndPhiMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEndPhiMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetEndPhiMaxValue() : op->vtkSphereSource::GetEndPhiMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_GetEndPhi(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetEndPhi"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetEndPhi() : op->vtkSphereSource::GetEndPhi()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_SetLatLongTessellation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLatLongTessellation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetLatLongTessellation(temp0); } else { op->vtkSphereSource::SetLatLongTessellation(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetLatLongTessellation(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLatLongTessellation"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetLatLongTessellation() : op->vtkSphereSource::GetLatLongTessellation()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSphereSource_LatLongTessellationOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "LatLongTessellationOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->LatLongTessellationOn(); } else { op->vtkSphereSource::LatLongTessellationOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_LatLongTessellationOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "LatLongTessellationOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->LatLongTessellationOff(); } else { op->vtkSphereSource::LatLongTessellationOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_SetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputPointsPrecision(temp0); } else { op->vtkSphereSource::SetOutputPointsPrecision(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSphereSource_GetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSphereSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputPointsPrecision() : op->vtkSphereSource::GetOutputPointsPrecision()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkSphereSource_Methods[] = { {"IsTypeOf", PyvtkSphereSource_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkSphereSource_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkSphereSource_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkSphereSource\nC++: static vtkSphereSource *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkSphereSource_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkSphereSource\nC++: vtkSphereSource *NewInstance()\n\n"}, {"SetRadius", PyvtkSphereSource_SetRadius, METH_VARARGS, "V.SetRadius(float)\nC++: virtual void SetRadius(double _arg)\n\nSet radius of sphere. Default is .5.\n"}, {"GetRadiusMinValue", PyvtkSphereSource_GetRadiusMinValue, METH_VARARGS, "V.GetRadiusMinValue() -> float\nC++: virtual double GetRadiusMinValue()\n\nSet radius of sphere. Default is .5.\n"}, {"GetRadiusMaxValue", PyvtkSphereSource_GetRadiusMaxValue, METH_VARARGS, "V.GetRadiusMaxValue() -> float\nC++: virtual double GetRadiusMaxValue()\n\nSet radius of sphere. Default is .5.\n"}, {"GetRadius", PyvtkSphereSource_GetRadius, METH_VARARGS, "V.GetRadius() -> float\nC++: virtual double GetRadius()\n\nSet radius of sphere. Default is .5.\n"}, {"SetCenter", PyvtkSphereSource_SetCenter, METH_VARARGS, "V.SetCenter(float, float, float)\nC++: void SetCenter(double, double, double)\nV.SetCenter((float, float, float))\nC++: void SetCenter(double a[3])\n\n"}, {"GetCenter", PyvtkSphereSource_GetCenter, METH_VARARGS, "V.GetCenter() -> (float, float, float)\nC++: double *GetCenter()\n\nSet the center of the sphere. Default is 0,0,0.\n"}, {"SetThetaResolution", PyvtkSphereSource_SetThetaResolution, METH_VARARGS, "V.SetThetaResolution(int)\nC++: virtual void SetThetaResolution(int _arg)\n\nSet the number of points in the longitude direction (ranging from\nStartTheta to EndTheta).\n"}, {"GetThetaResolutionMinValue", PyvtkSphereSource_GetThetaResolutionMinValue, METH_VARARGS, "V.GetThetaResolutionMinValue() -> int\nC++: virtual int GetThetaResolutionMinValue()\n\nSet the number of points in the longitude direction (ranging from\nStartTheta to EndTheta).\n"}, {"GetThetaResolutionMaxValue", PyvtkSphereSource_GetThetaResolutionMaxValue, METH_VARARGS, "V.GetThetaResolutionMaxValue() -> int\nC++: virtual int GetThetaResolutionMaxValue()\n\nSet the number of points in the longitude direction (ranging from\nStartTheta to EndTheta).\n"}, {"GetThetaResolution", PyvtkSphereSource_GetThetaResolution, METH_VARARGS, "V.GetThetaResolution() -> int\nC++: virtual int GetThetaResolution()\n\nSet the number of points in the longitude direction (ranging from\nStartTheta to EndTheta).\n"}, {"SetPhiResolution", PyvtkSphereSource_SetPhiResolution, METH_VARARGS, "V.SetPhiResolution(int)\nC++: virtual void SetPhiResolution(int _arg)\n\nSet the number of points in the latitude direction (ranging from\nStartPhi to EndPhi).\n"}, {"GetPhiResolutionMinValue", PyvtkSphereSource_GetPhiResolutionMinValue, METH_VARARGS, "V.GetPhiResolutionMinValue() -> int\nC++: virtual int GetPhiResolutionMinValue()\n\nSet the number of points in the latitude direction (ranging from\nStartPhi to EndPhi).\n"}, {"GetPhiResolutionMaxValue", PyvtkSphereSource_GetPhiResolutionMaxValue, METH_VARARGS, "V.GetPhiResolutionMaxValue() -> int\nC++: virtual int GetPhiResolutionMaxValue()\n\nSet the number of points in the latitude direction (ranging from\nStartPhi to EndPhi).\n"}, {"GetPhiResolution", PyvtkSphereSource_GetPhiResolution, METH_VARARGS, "V.GetPhiResolution() -> int\nC++: virtual int GetPhiResolution()\n\nSet the number of points in the latitude direction (ranging from\nStartPhi to EndPhi).\n"}, {"SetStartTheta", PyvtkSphereSource_SetStartTheta, METH_VARARGS, "V.SetStartTheta(float)\nC++: virtual void SetStartTheta(double _arg)\n\nSet the starting longitude angle. By default StartTheta=0\ndegrees.\n"}, {"GetStartThetaMinValue", PyvtkSphereSource_GetStartThetaMinValue, METH_VARARGS, "V.GetStartThetaMinValue() -> float\nC++: virtual double GetStartThetaMinValue()\n\nSet the starting longitude angle. By default StartTheta=0\ndegrees.\n"}, {"GetStartThetaMaxValue", PyvtkSphereSource_GetStartThetaMaxValue, METH_VARARGS, "V.GetStartThetaMaxValue() -> float\nC++: virtual double GetStartThetaMaxValue()\n\nSet the starting longitude angle. By default StartTheta=0\ndegrees.\n"}, {"GetStartTheta", PyvtkSphereSource_GetStartTheta, METH_VARARGS, "V.GetStartTheta() -> float\nC++: virtual double GetStartTheta()\n\nSet the starting longitude angle. By default StartTheta=0\ndegrees.\n"}, {"SetEndTheta", PyvtkSphereSource_SetEndTheta, METH_VARARGS, "V.SetEndTheta(float)\nC++: virtual void SetEndTheta(double _arg)\n\nSet the ending longitude angle. By default EndTheta=360 degrees.\n"}, {"GetEndThetaMinValue", PyvtkSphereSource_GetEndThetaMinValue, METH_VARARGS, "V.GetEndThetaMinValue() -> float\nC++: virtual double GetEndThetaMinValue()\n\nSet the ending longitude angle. By default EndTheta=360 degrees.\n"}, {"GetEndThetaMaxValue", PyvtkSphereSource_GetEndThetaMaxValue, METH_VARARGS, "V.GetEndThetaMaxValue() -> float\nC++: virtual double GetEndThetaMaxValue()\n\nSet the ending longitude angle. By default EndTheta=360 degrees.\n"}, {"GetEndTheta", PyvtkSphereSource_GetEndTheta, METH_VARARGS, "V.GetEndTheta() -> float\nC++: virtual double GetEndTheta()\n\nSet the ending longitude angle. By default EndTheta=360 degrees.\n"}, {"SetStartPhi", PyvtkSphereSource_SetStartPhi, METH_VARARGS, "V.SetStartPhi(float)\nC++: virtual void SetStartPhi(double _arg)\n\nSet the starting latitude angle (0 is at north pole). By default\nStartPhi=0 degrees.\n"}, {"GetStartPhiMinValue", PyvtkSphereSource_GetStartPhiMinValue, METH_VARARGS, "V.GetStartPhiMinValue() -> float\nC++: virtual double GetStartPhiMinValue()\n\nSet the starting latitude angle (0 is at north pole). By default\nStartPhi=0 degrees.\n"}, {"GetStartPhiMaxValue", PyvtkSphereSource_GetStartPhiMaxValue, METH_VARARGS, "V.GetStartPhiMaxValue() -> float\nC++: virtual double GetStartPhiMaxValue()\n\nSet the starting latitude angle (0 is at north pole). By default\nStartPhi=0 degrees.\n"}, {"GetStartPhi", PyvtkSphereSource_GetStartPhi, METH_VARARGS, "V.GetStartPhi() -> float\nC++: virtual double GetStartPhi()\n\nSet the starting latitude angle (0 is at north pole). By default\nStartPhi=0 degrees.\n"}, {"SetEndPhi", PyvtkSphereSource_SetEndPhi, METH_VARARGS, "V.SetEndPhi(float)\nC++: virtual void SetEndPhi(double _arg)\n\nSet the ending latitude angle. By default EndPhi=180 degrees.\n"}, {"GetEndPhiMinValue", PyvtkSphereSource_GetEndPhiMinValue, METH_VARARGS, "V.GetEndPhiMinValue() -> float\nC++: virtual double GetEndPhiMinValue()\n\nSet the ending latitude angle. By default EndPhi=180 degrees.\n"}, {"GetEndPhiMaxValue", PyvtkSphereSource_GetEndPhiMaxValue, METH_VARARGS, "V.GetEndPhiMaxValue() -> float\nC++: virtual double GetEndPhiMaxValue()\n\nSet the ending latitude angle. By default EndPhi=180 degrees.\n"}, {"GetEndPhi", PyvtkSphereSource_GetEndPhi, METH_VARARGS, "V.GetEndPhi() -> float\nC++: virtual double GetEndPhi()\n\nSet the ending latitude angle. By default EndPhi=180 degrees.\n"}, {"SetLatLongTessellation", PyvtkSphereSource_SetLatLongTessellation, METH_VARARGS, "V.SetLatLongTessellation(int)\nC++: virtual void SetLatLongTessellation(int _arg)\n\nCause the sphere to be tessellated with edges along the latitude\nand longitude lines. If off, triangles are generated at non-polar\nregions, which results in edges that are not parallel to latitude\nand longitude lines. If on, quadrilaterals are generated\neverywhere except at the poles. This can be useful for generating\na wireframe sphere with natural latitude and longitude lines.\n"}, {"GetLatLongTessellation", PyvtkSphereSource_GetLatLongTessellation, METH_VARARGS, "V.GetLatLongTessellation() -> int\nC++: virtual int GetLatLongTessellation()\n\nCause the sphere to be tessellated with edges along the latitude\nand longitude lines. If off, triangles are generated at non-polar\nregions, which results in edges that are not parallel to latitude\nand longitude lines. If on, quadrilaterals are generated\neverywhere except at the poles. This can be useful for generating\na wireframe sphere with natural latitude and longitude lines.\n"}, {"LatLongTessellationOn", PyvtkSphereSource_LatLongTessellationOn, METH_VARARGS, "V.LatLongTessellationOn()\nC++: virtual void LatLongTessellationOn()\n\nCause the sphere to be tessellated with edges along the latitude\nand longitude lines. If off, triangles are generated at non-polar\nregions, which results in edges that are not parallel to latitude\nand longitude lines. If on, quadrilaterals are generated\neverywhere except at the poles. This can be useful for generating\na wireframe sphere with natural latitude and longitude lines.\n"}, {"LatLongTessellationOff", PyvtkSphereSource_LatLongTessellationOff, METH_VARARGS, "V.LatLongTessellationOff()\nC++: virtual void LatLongTessellationOff()\n\nCause the sphere to be tessellated with edges along the latitude\nand longitude lines. If off, triangles are generated at non-polar\nregions, which results in edges that are not parallel to latitude\nand longitude lines. If on, quadrilaterals are generated\neverywhere except at the poles. This can be useful for generating\na wireframe sphere with natural latitude and longitude lines.\n"}, {"SetOutputPointsPrecision", PyvtkSphereSource_SetOutputPointsPrecision, METH_VARARGS, "V.SetOutputPointsPrecision(int)\nC++: virtual void SetOutputPointsPrecision(int _arg)\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {"GetOutputPointsPrecision", PyvtkSphereSource_GetOutputPointsPrecision, METH_VARARGS, "V.GetOutputPointsPrecision() -> int\nC++: virtual int GetOutputPointsPrecision()\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkSphereSource_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersSourcesPython.vtkSphereSource", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkSphereSource_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkSphereSource_StaticNew() { return vtkSphereSource::New(); } PyObject *PyvtkSphereSource_ClassNew() { PyVTKClass_Add( &PyvtkSphereSource_Type, PyvtkSphereSource_Methods, "vtkSphereSource", &PyvtkSphereSource_StaticNew); PyTypeObject *pytype = &PyvtkSphereSource_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkSphereSource( PyObject *dict) { PyObject *o; o = PyvtkSphereSource_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkSphereSource", o) != 0) { Py_DECREF(o); } o = PyInt_FromLong(1024); if (o) { PyDict_SetItemString(dict, "VTK_MAX_SPHERE_RESOLUTION", o); Py_DECREF(o); } }