// python wrapper for vtkSuperquadric // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkSuperquadric.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkSuperquadric(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkSuperquadric_ClassNew(); } #ifndef DECLARED_PyvtkImplicitFunction_ClassNew extern "C" { PyObject *PyvtkImplicitFunction_ClassNew(); } #define DECLARED_PyvtkImplicitFunction_ClassNew #endif static const char *PyvtkSuperquadric_Doc = "vtkSuperquadric - implicit function for a Superquadric\n\n" "Superclass: vtkImplicitFunction\n\n" "vtkSuperquadric computes the implicit function and function gradient\n" "for a superquadric. vtkSuperquadric is a concrete implementation of\n" "vtkImplicitFunction. The superquadric is centered at Center and axes\n" "of rotation is along the y-axis. (Use the superclass'\n" "vtkImplicitFunction transformation matrix if necessary to\n" "reposition.) Roundness parameters (PhiRoundness and ThetaRoundness)\n" "control the shape of the superquadric. The Toroidal boolean controls\n" "whether a toroidal superquadric is produced. If so, the Thickness\n" "parameter controls the thickness of the toroid: 0 is the thinnest\n" "allowable toroid, and 1 has a minimum sized hole. The Scale\n" "parameters allow the superquadric to be scaled in x, y, and z (normal\n" "vectors are correctly generated in any case). The Size parameter\n" "controls size of the superquadric.\n\n" "This code is based on \"Rigid physically based superquadrics\", A. H.\n" "Barr, in \"Graphics Gems III\", David Kirk, ed., Academic Press, 1992.\n\n" "@warning\n" "The Size and Thickness parameters control coefficients of\n" "superquadric generation, and may do not exactly describe the size of\n" "the superquadric.\n\n"; static PyObject * PyvtkSuperquadric_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkSuperquadric::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkSuperquadric::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkSuperquadric *tempr = vtkSuperquadric::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkSuperquadric_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkSuperquadric *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkSuperquadric::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkSuperquadric_EvaluateFunction_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); double tempr = (ap.IsBound() ? op->EvaluateFunction(temp0) : op->vtkSuperquadric::EvaluateFunction(temp0)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_EvaluateFunction_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); vtkDataArray *temp0 = nullptr; vtkDataArray *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetVTKObject(temp0, "vtkDataArray") && ap.GetVTKObject(temp1, "vtkDataArray")) { if (ap.IsBound()) { op->EvaluateFunction(temp0, temp1); } else { op->vtkSuperquadric::EvaluateFunction(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_EvaluateFunction_s3(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { double tempr = (ap.IsBound() ? op->EvaluateFunction(temp0, temp1, temp2) : op->vtkSuperquadric::EvaluateFunction(temp0, temp1, temp2)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_EvaluateFunction(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkSuperquadric_EvaluateFunction_s1(self, args); case 2: return PyvtkSuperquadric_EvaluateFunction_s2(self, args); case 3: return PyvtkSuperquadric_EvaluateFunction_s3(self, args); } vtkPythonArgs::ArgCountError(nargs, "EvaluateFunction"); return nullptr; } static PyObject * PyvtkSuperquadric_EvaluateGradient(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "EvaluateGradient"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 3; double temp1[3]; double save1[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); if (ap.IsBound()) { op->EvaluateGradient(temp0, temp1); } else { op->vtkSuperquadric::EvaluateGradient(temp0, temp1); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_SetCenter_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetCenter(temp0, temp1, temp2); } else { op->vtkSuperquadric::SetCenter(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_SetCenter_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetCenter(temp0); } else { op->vtkSuperquadric::SetCenter(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_SetCenter(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkSuperquadric_SetCenter_s1(self, args); case 1: return PyvtkSuperquadric_SetCenter_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetCenter"); return nullptr; } static PyObject * PyvtkSuperquadric_GetCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetCenter() : op->vtkSuperquadric::GetCenter()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkSuperquadric_SetScale_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScale"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetScale(temp0, temp1, temp2); } else { op->vtkSuperquadric::SetScale(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_SetScale_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScale"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetScale(temp0); } else { op->vtkSuperquadric::SetScale(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_SetScale(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkSuperquadric_SetScale_s1(self, args); case 1: return PyvtkSuperquadric_SetScale_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetScale"); return nullptr; } static PyObject * PyvtkSuperquadric_GetScale(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetScale"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetScale() : op->vtkSuperquadric::GetScale()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkSuperquadric_GetThickness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThickness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThickness() : op->vtkSuperquadric::GetThickness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_SetThickness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetThickness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetThickness(temp0); } else { op->vtkSuperquadric::SetThickness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_GetThicknessMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThicknessMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThicknessMinValue() : op->vtkSuperquadric::GetThicknessMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_GetThicknessMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThicknessMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThicknessMaxValue() : op->vtkSuperquadric::GetThicknessMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_GetPhiRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPhiRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetPhiRoundness() : op->vtkSuperquadric::GetPhiRoundness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_SetPhiRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPhiRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPhiRoundness(temp0); } else { op->vtkSuperquadric::SetPhiRoundness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_GetThetaRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThetaRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThetaRoundness() : op->vtkSuperquadric::GetThetaRoundness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_SetThetaRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetThetaRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetThetaRoundness(temp0); } else { op->vtkSuperquadric::SetThetaRoundness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_SetSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetSize(temp0); } else { op->vtkSuperquadric::SetSize(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_GetSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetSize() : op->vtkSuperquadric::GetSize()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_ToroidalOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ToroidalOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ToroidalOn(); } else { op->vtkSuperquadric::ToroidalOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_ToroidalOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ToroidalOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ToroidalOff(); } else { op->vtkSuperquadric::ToroidalOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadric_GetToroidal(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetToroidal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetToroidal() : op->vtkSuperquadric::GetToroidal()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadric_SetToroidal(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetToroidal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadric *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetToroidal(temp0); } else { op->vtkSuperquadric::SetToroidal(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkSuperquadric_Methods[] = { {"IsTypeOf", PyvtkSuperquadric_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkSuperquadric_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkSuperquadric_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkSuperquadric\nC++: static vtkSuperquadric *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkSuperquadric_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkSuperquadric\nC++: vtkSuperquadric *NewInstance()\n\n"}, {"EvaluateFunction", PyvtkSuperquadric_EvaluateFunction, METH_VARARGS, "V.EvaluateFunction([float, float, float]) -> float\nC++: double EvaluateFunction(double x[3]) override;\nV.EvaluateFunction(vtkDataArray, vtkDataArray)\nC++: virtual void EvaluateFunction(vtkDataArray *input,\n vtkDataArray *output)\nV.EvaluateFunction(float, float, float) -> float\nC++: virtual double EvaluateFunction(double x, double y, double z)\n\nEvaluate function at position x-y-z and return value. You should\ngenerally not call this method directly, you should use\nFunctionValue() instead. This method must be implemented by any\nderived class.\n"}, {"EvaluateGradient", PyvtkSuperquadric_EvaluateGradient, METH_VARARGS, "V.EvaluateGradient([float, float, float], [float, float, float])\nC++: void EvaluateGradient(double x[3], double g[3]) override;\n\nEvaluate function gradient at position x-y-z and pass back\nvector. You should generally not call this method directly, you\nshould use FunctionGradient() instead. This method must be\nimplemented by any derived class.\n"}, {"SetCenter", PyvtkSuperquadric_SetCenter, METH_VARARGS, "V.SetCenter(float, float, float)\nC++: void SetCenter(double, double, double)\nV.SetCenter((float, float, float))\nC++: void SetCenter(double a[3])\n\n"}, {"GetCenter", PyvtkSuperquadric_GetCenter, METH_VARARGS, "V.GetCenter() -> (float, float, float)\nC++: double *GetCenter()\n\nSet the center of the superquadric. Default is 0,0,0.\n"}, {"SetScale", PyvtkSuperquadric_SetScale, METH_VARARGS, "V.SetScale(float, float, float)\nC++: void SetScale(double, double, double)\nV.SetScale((float, float, float))\nC++: void SetScale(double a[3])\n\n"}, {"GetScale", PyvtkSuperquadric_GetScale, METH_VARARGS, "V.GetScale() -> (float, float, float)\nC++: double *GetScale()\n\nSet the scale factors of the superquadric. Default is 1,1,1.\n"}, {"GetThickness", PyvtkSuperquadric_GetThickness, METH_VARARGS, "V.GetThickness() -> float\nC++: virtual double GetThickness()\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid.\n"}, {"SetThickness", PyvtkSuperquadric_SetThickness, METH_VARARGS, "V.SetThickness(float)\nC++: virtual void SetThickness(double _arg)\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid.\n"}, {"GetThicknessMinValue", PyvtkSuperquadric_GetThicknessMinValue, METH_VARARGS, "V.GetThicknessMinValue() -> float\nC++: virtual double GetThicknessMinValue()\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid.\n"}, {"GetThicknessMaxValue", PyvtkSuperquadric_GetThicknessMaxValue, METH_VARARGS, "V.GetThicknessMaxValue() -> float\nC++: virtual double GetThicknessMaxValue()\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid.\n"}, {"GetPhiRoundness", PyvtkSuperquadric_GetPhiRoundness, METH_VARARGS, "V.GetPhiRoundness() -> float\nC++: virtual double GetPhiRoundness()\n\nSet/Get Superquadric north/south roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders.\n"}, {"SetPhiRoundness", PyvtkSuperquadric_SetPhiRoundness, METH_VARARGS, "V.SetPhiRoundness(float)\nC++: void SetPhiRoundness(double e)\n\nSet/Get Superquadric north/south roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders.\n"}, {"GetThetaRoundness", PyvtkSuperquadric_GetThetaRoundness, METH_VARARGS, "V.GetThetaRoundness() -> float\nC++: virtual double GetThetaRoundness()\n\nSet/Get Superquadric east/west roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders.\n"}, {"SetThetaRoundness", PyvtkSuperquadric_SetThetaRoundness, METH_VARARGS, "V.SetThetaRoundness(float)\nC++: void SetThetaRoundness(double e)\n\nSet/Get Superquadric east/west roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders.\n"}, {"SetSize", PyvtkSuperquadric_SetSize, METH_VARARGS, "V.SetSize(float)\nC++: virtual void SetSize(double _arg)\n\nSet/Get Superquadric isotropic size.\n"}, {"GetSize", PyvtkSuperquadric_GetSize, METH_VARARGS, "V.GetSize() -> float\nC++: virtual double GetSize()\n\nSet/Get Superquadric isotropic size.\n"}, {"ToroidalOn", PyvtkSuperquadric_ToroidalOn, METH_VARARGS, "V.ToroidalOn()\nC++: virtual void ToroidalOn()\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0).\n"}, {"ToroidalOff", PyvtkSuperquadric_ToroidalOff, METH_VARARGS, "V.ToroidalOff()\nC++: virtual void ToroidalOff()\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0).\n"}, {"GetToroidal", PyvtkSuperquadric_GetToroidal, METH_VARARGS, "V.GetToroidal() -> int\nC++: virtual int GetToroidal()\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0).\n"}, {"SetToroidal", PyvtkSuperquadric_SetToroidal, METH_VARARGS, "V.SetToroidal(int)\nC++: virtual void SetToroidal(int _arg)\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0).\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkSuperquadric_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkCommonDataModelPython.vtkSuperquadric", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkSuperquadric_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkSuperquadric_StaticNew() { return vtkSuperquadric::New(); } PyObject *PyvtkSuperquadric_ClassNew() { PyVTKClass_Add( &PyvtkSuperquadric_Type, PyvtkSuperquadric_Methods, "vtkSuperquadric", &PyvtkSuperquadric_StaticNew); PyTypeObject *pytype = &PyvtkSuperquadric_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkImplicitFunction_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkSuperquadric( PyObject *dict) { PyObject *o; o = PyvtkSuperquadric_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkSuperquadric", o) != 0) { Py_DECREF(o); } o = PyFloat_FromDouble(1e-4); if (o) { PyDict_SetItemString(dict, "VTK_MIN_SUPERQUADRIC_THICKNESS", o); Py_DECREF(o); } }