// python wrapper for vtkSuperquadricSource // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkSuperquadricSource.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkSuperquadricSource(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkSuperquadricSource_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkSuperquadricSource_Doc = "vtkSuperquadricSource - create a polygonal superquadric centered at\nthe origin\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkSuperquadricSource creates a superquadric (represented by\n" "polygons) of specified size centered at the origin. The alignment of\n" "the axis of the superquadric along one of the global axes can be\n" "specified. The resolution (polygonal discretization) in both the\n" "latitude (phi) and longitude (theta) directions can be specified.\n" "Roundness parameters (PhiRoundness and ThetaRoundness) control the\n" "shape of the superquadric. The Toroidal boolean controls whether a\n" "toroidal superquadric is produced. If so, the Thickness parameter\n" "controls the thickness of the toroid: 0 is the thinnest allowable\n" "toroid, and 1 has a minimum sized hole. The Scale parameters allow\n" "the superquadric to be scaled in x, y, and z (normal vectors are\n" "correctly generated in any case). The Size parameter controls size\n" "of the superquadric.\n\n" "This code is based on \"Rigid physically based superquadrics\", A. H.\n" "Barr, in \"Graphics Gems III\", David Kirk, ed., Academic Press, 1992.\n\n" "@warning\n" "Resolution means the number of latitude or longitude lines for a\n" "complete superquadric. The resolution parameters are rounded to the\n" "nearest 4 in phi and 8 in theta.\n\n" "@warning\n" "Texture coordinates are not equally distributed around all\n" "superquadrics.\n\n" "@warning\n" "The Size and Thickness parameters control coefficients of\n" "superquadric generation, and may do not exactly describe the size of\n" "the superquadric.\n\n"; static PyObject * PyvtkSuperquadricSource_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkSuperquadricSource::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkSuperquadricSource::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkSuperquadricSource *tempr = vtkSuperquadricSource::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkSuperquadricSource *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkSuperquadricSource::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkSuperquadricSource_SetCenter_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetCenter(temp0, temp1, temp2); } else { op->vtkSuperquadricSource::SetCenter(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetCenter_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetCenter(temp0); } else { op->vtkSuperquadricSource::SetCenter(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetCenter(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkSuperquadricSource_SetCenter_s1(self, args); case 1: return PyvtkSuperquadricSource_SetCenter_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetCenter"); return nullptr; } static PyObject * PyvtkSuperquadricSource_GetCenter(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetCenter"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetCenter() : op->vtkSuperquadricSource::GetCenter()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkSuperquadricSource_SetScale_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScale"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetScale(temp0, temp1, temp2); } else { op->vtkSuperquadricSource::SetScale(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetScale_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScale"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetScale(temp0); } else { op->vtkSuperquadricSource::SetScale(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetScale(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkSuperquadricSource_SetScale_s1(self, args); case 1: return PyvtkSuperquadricSource_SetScale_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetScale"); return nullptr; } static PyObject * PyvtkSuperquadricSource_GetScale(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetScale"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetScale() : op->vtkSuperquadricSource::GetScale()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkSuperquadricSource_GetThetaResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThetaResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetThetaResolution() : op->vtkSuperquadricSource::GetThetaResolution()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetThetaResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetThetaResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetThetaResolution(temp0); } else { op->vtkSuperquadricSource::SetThetaResolution(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetPhiResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPhiResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetPhiResolution() : op->vtkSuperquadricSource::GetPhiResolution()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetPhiResolution(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPhiResolution"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPhiResolution(temp0); } else { op->vtkSuperquadricSource::SetPhiResolution(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetThickness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThickness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThickness() : op->vtkSuperquadricSource::GetThickness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetThickness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetThickness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetThickness(temp0); } else { op->vtkSuperquadricSource::SetThickness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetThicknessMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThicknessMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThicknessMinValue() : op->vtkSuperquadricSource::GetThicknessMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_GetThicknessMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThicknessMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThicknessMaxValue() : op->vtkSuperquadricSource::GetThicknessMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_GetPhiRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetPhiRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetPhiRoundness() : op->vtkSuperquadricSource::GetPhiRoundness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetPhiRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetPhiRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetPhiRoundness(temp0); } else { op->vtkSuperquadricSource::SetPhiRoundness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetThetaRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetThetaRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetThetaRoundness() : op->vtkSuperquadricSource::GetThetaRoundness()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetThetaRoundness(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetThetaRoundness"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetThetaRoundness(temp0); } else { op->vtkSuperquadricSource::SetThetaRoundness(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetSize(temp0); } else { op->vtkSuperquadricSource::SetSize(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetSize() : op->vtkSuperquadricSource::GetSize()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetAxisOfSymmetry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetAxisOfSymmetry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetAxisOfSymmetry(temp0); } else { op->vtkSuperquadricSource::SetAxisOfSymmetry(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetAxisOfSymmetry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAxisOfSymmetry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetAxisOfSymmetry() : op->vtkSuperquadricSource::GetAxisOfSymmetry()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetXAxisOfSymmetry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetXAxisOfSymmetry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetXAxisOfSymmetry(); } else { op->vtkSuperquadricSource::SetXAxisOfSymmetry(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetYAxisOfSymmetry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetYAxisOfSymmetry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetYAxisOfSymmetry(); } else { op->vtkSuperquadricSource::SetYAxisOfSymmetry(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetZAxisOfSymmetry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetZAxisOfSymmetry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetZAxisOfSymmetry(); } else { op->vtkSuperquadricSource::SetZAxisOfSymmetry(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_ToroidalOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ToroidalOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ToroidalOn(); } else { op->vtkSuperquadricSource::ToroidalOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_ToroidalOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ToroidalOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->ToroidalOff(); } else { op->vtkSuperquadricSource::ToroidalOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetToroidal(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetToroidal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetToroidal() : op->vtkSuperquadricSource::GetToroidal()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkSuperquadricSource_SetToroidal(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetToroidal"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetToroidal(temp0); } else { op->vtkSuperquadricSource::SetToroidal(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_SetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetOutputPointsPrecision(temp0); } else { op->vtkSuperquadricSource::SetOutputPointsPrecision(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkSuperquadricSource_GetOutputPointsPrecision(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetOutputPointsPrecision"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkSuperquadricSource *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetOutputPointsPrecision() : op->vtkSuperquadricSource::GetOutputPointsPrecision()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkSuperquadricSource_Methods[] = { {"IsTypeOf", PyvtkSuperquadricSource_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkSuperquadricSource_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkSuperquadricSource_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkSuperquadricSource\nC++: static vtkSuperquadricSource *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkSuperquadricSource_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkSuperquadricSource\nC++: vtkSuperquadricSource *NewInstance()\n\n"}, {"SetCenter", PyvtkSuperquadricSource_SetCenter, METH_VARARGS, "V.SetCenter(float, float, float)\nC++: void SetCenter(double, double, double)\nV.SetCenter((float, float, float))\nC++: void SetCenter(double a[3])\n\n"}, {"GetCenter", PyvtkSuperquadricSource_GetCenter, METH_VARARGS, "V.GetCenter() -> (float, float, float)\nC++: double *GetCenter()\n\nSet the center of the superquadric. Default is 0,0,0.\n"}, {"SetScale", PyvtkSuperquadricSource_SetScale, METH_VARARGS, "V.SetScale(float, float, float)\nC++: void SetScale(double, double, double)\nV.SetScale((float, float, float))\nC++: void SetScale(double a[3])\n\n"}, {"GetScale", PyvtkSuperquadricSource_GetScale, METH_VARARGS, "V.GetScale() -> (float, float, float)\nC++: double *GetScale()\n\nSet the scale factors of the superquadric. Default is 1,1,1.\n"}, {"GetThetaResolution", PyvtkSuperquadricSource_GetThetaResolution, METH_VARARGS, "V.GetThetaResolution() -> int\nC++: virtual int GetThetaResolution()\n\nSet the number of points in the longitude direction. Initial\nvalue is 16.\n"}, {"SetThetaResolution", PyvtkSuperquadricSource_SetThetaResolution, METH_VARARGS, "V.SetThetaResolution(int)\nC++: void SetThetaResolution(int i)\n\nSet the number of points in the longitude direction. Initial\nvalue is 16.\n"}, {"GetPhiResolution", PyvtkSuperquadricSource_GetPhiResolution, METH_VARARGS, "V.GetPhiResolution() -> int\nC++: virtual int GetPhiResolution()\n\nSet the number of points in the latitude direction. Initial value\nis 16.\n"}, {"SetPhiResolution", PyvtkSuperquadricSource_SetPhiResolution, METH_VARARGS, "V.SetPhiResolution(int)\nC++: void SetPhiResolution(int i)\n\nSet the number of points in the latitude direction. Initial value\nis 16.\n"}, {"GetThickness", PyvtkSuperquadricSource_GetThickness, METH_VARARGS, "V.GetThickness() -> float\nC++: virtual double GetThickness()\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid. Initial\nvalue is 0.3333.\n"}, {"SetThickness", PyvtkSuperquadricSource_SetThickness, METH_VARARGS, "V.SetThickness(float)\nC++: virtual void SetThickness(double _arg)\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid. Initial\nvalue is 0.3333.\n"}, {"GetThicknessMinValue", PyvtkSuperquadricSource_GetThicknessMinValue, METH_VARARGS, "V.GetThicknessMinValue() -> float\nC++: virtual double GetThicknessMinValue()\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid. Initial\nvalue is 0.3333.\n"}, {"GetThicknessMaxValue", PyvtkSuperquadricSource_GetThicknessMaxValue, METH_VARARGS, "V.GetThicknessMaxValue() -> float\nC++: virtual double GetThicknessMaxValue()\n\nSet/Get Superquadric ring thickness (toroids only). Changing\nthickness maintains the outside diameter of the toroid. Initial\nvalue is 0.3333.\n"}, {"GetPhiRoundness", PyvtkSuperquadricSource_GetPhiRoundness, METH_VARARGS, "V.GetPhiRoundness() -> float\nC++: virtual double GetPhiRoundness()\n\nSet/Get Superquadric north/south roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders. Initial value is\n1.0.\n"}, {"SetPhiRoundness", PyvtkSuperquadricSource_SetPhiRoundness, METH_VARARGS, "V.SetPhiRoundness(float)\nC++: void SetPhiRoundness(double e)\n\nSet/Get Superquadric north/south roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders. Initial value is\n1.0.\n"}, {"GetThetaRoundness", PyvtkSuperquadricSource_GetThetaRoundness, METH_VARARGS, "V.GetThetaRoundness() -> float\nC++: virtual double GetThetaRoundness()\n\nSet/Get Superquadric east/west roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders. Initial value is\n1.0.\n"}, {"SetThetaRoundness", PyvtkSuperquadricSource_SetThetaRoundness, METH_VARARGS, "V.SetThetaRoundness(float)\nC++: void SetThetaRoundness(double e)\n\nSet/Get Superquadric east/west roundness. Values range from 0\n(rectangular) to 1 (circular) to higher orders. Initial value is\n1.0.\n"}, {"SetSize", PyvtkSuperquadricSource_SetSize, METH_VARARGS, "V.SetSize(float)\nC++: virtual void SetSize(double _arg)\n\nSet/Get Superquadric isotropic size. Initial value is 0.5;\n"}, {"GetSize", PyvtkSuperquadricSource_GetSize, METH_VARARGS, "V.GetSize() -> float\nC++: virtual double GetSize()\n\nSet/Get Superquadric isotropic size. Initial value is 0.5;\n"}, {"SetAxisOfSymmetry", PyvtkSuperquadricSource_SetAxisOfSymmetry, METH_VARARGS, "V.SetAxisOfSymmetry(int)\nC++: virtual void SetAxisOfSymmetry(int _arg)\n\nSet/Get axis of symmetry for superquadric (x axis: 0, y axis: 1,\nz axis: 2). Initial value is 1.\n"}, {"GetAxisOfSymmetry", PyvtkSuperquadricSource_GetAxisOfSymmetry, METH_VARARGS, "V.GetAxisOfSymmetry() -> int\nC++: virtual int GetAxisOfSymmetry()\n\nSet/Get axis of symmetry for superquadric (x axis: 0, y axis: 1,\nz axis: 2). Initial value is 1.\n"}, {"SetXAxisOfSymmetry", PyvtkSuperquadricSource_SetXAxisOfSymmetry, METH_VARARGS, "V.SetXAxisOfSymmetry()\nC++: void SetXAxisOfSymmetry()\n\nSet/Get axis of symmetry for superquadric (x axis: 0, y axis: 1,\nz axis: 2). Initial value is 1.\n"}, {"SetYAxisOfSymmetry", PyvtkSuperquadricSource_SetYAxisOfSymmetry, METH_VARARGS, "V.SetYAxisOfSymmetry()\nC++: void SetYAxisOfSymmetry()\n\nSet/Get axis of symmetry for superquadric (x axis: 0, y axis: 1,\nz axis: 2). Initial value is 1.\n"}, {"SetZAxisOfSymmetry", PyvtkSuperquadricSource_SetZAxisOfSymmetry, METH_VARARGS, "V.SetZAxisOfSymmetry()\nC++: void SetZAxisOfSymmetry()\n\nSet/Get axis of symmetry for superquadric (x axis: 0, y axis: 1,\nz axis: 2). Initial value is 1.\n"}, {"ToroidalOn", PyvtkSuperquadricSource_ToroidalOn, METH_VARARGS, "V.ToroidalOn()\nC++: virtual void ToroidalOn()\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0). Initial value is 0.\n"}, {"ToroidalOff", PyvtkSuperquadricSource_ToroidalOff, METH_VARARGS, "V.ToroidalOff()\nC++: virtual void ToroidalOff()\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0). Initial value is 0.\n"}, {"GetToroidal", PyvtkSuperquadricSource_GetToroidal, METH_VARARGS, "V.GetToroidal() -> int\nC++: virtual int GetToroidal()\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0). Initial value is 0.\n"}, {"SetToroidal", PyvtkSuperquadricSource_SetToroidal, METH_VARARGS, "V.SetToroidal(int)\nC++: virtual void SetToroidal(int _arg)\n\nSet/Get whether or not the superquadric is toroidal (1) or\nellipsoidal (0). Initial value is 0.\n"}, {"SetOutputPointsPrecision", PyvtkSuperquadricSource_SetOutputPointsPrecision, METH_VARARGS, "V.SetOutputPointsPrecision(int)\nC++: virtual void SetOutputPointsPrecision(int _arg)\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {"GetOutputPointsPrecision", PyvtkSuperquadricSource_GetOutputPointsPrecision, METH_VARARGS, "V.GetOutputPointsPrecision() -> int\nC++: virtual int GetOutputPointsPrecision()\n\nSet/get the desired precision for the output points.\nvtkAlgorithm::SINGLE_PRECISION - Output single-precision floating\npoint. vtkAlgorithm::DOUBLE_PRECISION - Output double-precision\nfloating point.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkSuperquadricSource_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersSourcesPython.vtkSuperquadricSource", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkSuperquadricSource_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkSuperquadricSource_StaticNew() { return vtkSuperquadricSource::New(); } PyObject *PyvtkSuperquadricSource_ClassNew() { PyVTKClass_Add( &PyvtkSuperquadricSource_Type, PyvtkSuperquadricSource_Methods, "vtkSuperquadricSource", &PyvtkSuperquadricSource_StaticNew); PyTypeObject *pytype = &PyvtkSuperquadricSource_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkSuperquadricSource( PyObject *dict) { PyObject *o; o = PyvtkSuperquadricSource_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkSuperquadricSource", o) != 0) { Py_DECREF(o); } o = PyInt_FromLong(1024); if (o) { PyDict_SetItemString(dict, "VTK_MAX_SUPERQUADRIC_RESOLUTION", o); Py_DECREF(o); } for (int c = 0; c < 2; c++) { static const struct { const char *name; double value; } constants[2] = { { "VTK_MIN_SUPERQUADRIC_THICKNESS", 1e-4 }, { "VTK_MIN_SUPERQUADRIC_ROUNDNESS", 1e-24 }, }; o = PyFloat_FromDouble(constants[c].value); if (o) { PyDict_SetItemString(dict, constants[c].name, o); Py_DECREF(o); } } }