// python wrapper for vtkUnstructuredGridVolumeRayCastMapper // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkUnstructuredGridVolumeRayCastMapper.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkUnstructuredGridVolumeRayCastMapper(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkUnstructuredGridVolumeRayCastMapper_ClassNew(); } #ifndef DECLARED_PyvtkUnstructuredGridVolumeMapper_ClassNew extern "C" { PyObject *PyvtkUnstructuredGridVolumeMapper_ClassNew(); } #define DECLARED_PyvtkUnstructuredGridVolumeMapper_ClassNew #endif static const char *PyvtkUnstructuredGridVolumeRayCastMapper_Doc = "vtkUnstructuredGridVolumeRayCastMapper - A software mapper for\nunstructured volumes\n\n" "Superclass: vtkUnstructuredGridVolumeMapper\n\n" "This is a software ray caster for rendering volumes in\n" "vtkUnstructuredGrid.\n\n" "@sa\n" "vtkVolumeMapper\n\n"; static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkUnstructuredGridVolumeRayCastMapper::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkUnstructuredGridVolumeRayCastMapper::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkUnstructuredGridVolumeRayCastMapper *tempr = vtkUnstructuredGridVolumeRayCastMapper::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkUnstructuredGridVolumeRayCastMapper *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkUnstructuredGridVolumeRayCastMapper::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetImageSampleDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetImageSampleDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); float temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetImageSampleDistance(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetImageSampleDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetImageSampleDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImageSampleDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetImageSampleDistanceMinValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetImageSampleDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetImageSampleDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImageSampleDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetImageSampleDistanceMaxValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetImageSampleDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetImageSampleDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImageSampleDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetImageSampleDistance() : op->vtkUnstructuredGridVolumeRayCastMapper::GetImageSampleDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetMinimumImageSampleDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMinimumImageSampleDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); float temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMinimumImageSampleDistance(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetMinimumImageSampleDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetMinimumImageSampleDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumImageSampleDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetMinimumImageSampleDistanceMinValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetMinimumImageSampleDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetMinimumImageSampleDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumImageSampleDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetMinimumImageSampleDistanceMaxValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetMinimumImageSampleDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetMinimumImageSampleDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMinimumImageSampleDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetMinimumImageSampleDistance() : op->vtkUnstructuredGridVolumeRayCastMapper::GetMinimumImageSampleDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetMaximumImageSampleDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMaximumImageSampleDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); float temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMaximumImageSampleDistance(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetMaximumImageSampleDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetMaximumImageSampleDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumImageSampleDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetMaximumImageSampleDistanceMinValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetMaximumImageSampleDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetMaximumImageSampleDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumImageSampleDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetMaximumImageSampleDistanceMaxValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetMaximumImageSampleDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetMaximumImageSampleDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumImageSampleDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { float tempr = (ap.IsBound() ? op->GetMaximumImageSampleDistance() : op->vtkUnstructuredGridVolumeRayCastMapper::GetMaximumImageSampleDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetAutoAdjustSampleDistances(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetAutoAdjustSampleDistances"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetAutoAdjustSampleDistances(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetAutoAdjustSampleDistances(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetAutoAdjustSampleDistancesMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAutoAdjustSampleDistancesMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetAutoAdjustSampleDistancesMinValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetAutoAdjustSampleDistancesMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetAutoAdjustSampleDistancesMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAutoAdjustSampleDistancesMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetAutoAdjustSampleDistancesMaxValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetAutoAdjustSampleDistancesMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetAutoAdjustSampleDistances(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetAutoAdjustSampleDistances"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetAutoAdjustSampleDistances() : op->vtkUnstructuredGridVolumeRayCastMapper::GetAutoAdjustSampleDistances()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_AutoAdjustSampleDistancesOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AutoAdjustSampleDistancesOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->AutoAdjustSampleDistancesOn(); } else { op->vtkUnstructuredGridVolumeRayCastMapper::AutoAdjustSampleDistancesOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_AutoAdjustSampleDistancesOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "AutoAdjustSampleDistancesOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->AutoAdjustSampleDistancesOff(); } else { op->vtkUnstructuredGridVolumeRayCastMapper::AutoAdjustSampleDistancesOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetNumberOfThreads(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfThreads"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfThreads(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetNumberOfThreads(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetNumberOfThreads(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfThreads"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfThreads() : op->vtkUnstructuredGridVolumeRayCastMapper::GetNumberOfThreads()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetIntermixIntersectingGeometry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetIntermixIntersectingGeometry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetIntermixIntersectingGeometry(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetIntermixIntersectingGeometry(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetIntermixIntersectingGeometryMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntermixIntersectingGeometryMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntermixIntersectingGeometryMinValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetIntermixIntersectingGeometryMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetIntermixIntersectingGeometryMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntermixIntersectingGeometryMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntermixIntersectingGeometryMaxValue() : op->vtkUnstructuredGridVolumeRayCastMapper::GetIntermixIntersectingGeometryMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetIntermixIntersectingGeometry(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetIntermixIntersectingGeometry"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetIntermixIntersectingGeometry() : op->vtkUnstructuredGridVolumeRayCastMapper::GetIntermixIntersectingGeometry()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_IntermixIntersectingGeometryOn(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IntermixIntersectingGeometryOn"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->IntermixIntersectingGeometryOn(); } else { op->vtkUnstructuredGridVolumeRayCastMapper::IntermixIntersectingGeometryOn(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_IntermixIntersectingGeometryOff(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IntermixIntersectingGeometryOff"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->IntermixIntersectingGeometryOff(); } else { op->vtkUnstructuredGridVolumeRayCastMapper::IntermixIntersectingGeometryOff(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetRayCastFunction(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRayCastFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); vtkUnstructuredGridVolumeRayCastFunction *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkUnstructuredGridVolumeRayCastFunction")) { if (ap.IsBound()) { op->SetRayCastFunction(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetRayCastFunction(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetRayCastFunction(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRayCastFunction"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkUnstructuredGridVolumeRayCastFunction *tempr = (ap.IsBound() ? op->GetRayCastFunction() : op->vtkUnstructuredGridVolumeRayCastMapper::GetRayCastFunction()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_SetRayIntegrator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetRayIntegrator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); vtkUnstructuredGridVolumeRayIntegrator *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkUnstructuredGridVolumeRayIntegrator")) { if (ap.IsBound()) { op->SetRayIntegrator(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::SetRayIntegrator(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetRayIntegrator(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetRayIntegrator"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkUnstructuredGridVolumeRayIntegrator *tempr = (ap.IsBound() ? op->GetRayIntegrator() : op->vtkUnstructuredGridVolumeRayCastMapper::GetRayIntegrator()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_Render(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "Render"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); vtkRenderer *temp0 = nullptr; vtkVolume *temp1 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetVTKObject(temp0, "vtkRenderer") && ap.GetVTKObject(temp1, "vtkVolume")) { if (ap.IsBound()) { op->Render(temp0, temp1); } else { op->vtkUnstructuredGridVolumeRayCastMapper::Render(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_ReleaseGraphicsResources(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ReleaseGraphicsResources"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); vtkWindow *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkWindow")) { if (ap.IsBound()) { op->ReleaseGraphicsResources(temp0); } else { op->vtkUnstructuredGridVolumeRayCastMapper::ReleaseGraphicsResources(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetImageInUseSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImageInUseSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int sizer = 2; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int *tempr = (ap.IsBound() ? op->GetImageInUseSize() : op->vtkUnstructuredGridVolumeRayCastMapper::GetImageInUseSize()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetImageOrigin(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImageOrigin"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int sizer = 2; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int *tempr = (ap.IsBound() ? op->GetImageOrigin() : op->vtkUnstructuredGridVolumeRayCastMapper::GetImageOrigin()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_GetImageViewportSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetImageViewportSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int sizer = 2; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int *tempr = (ap.IsBound() ? op->GetImageViewportSize() : op->vtkUnstructuredGridVolumeRayCastMapper::GetImageViewportSize()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkUnstructuredGridVolumeRayCastMapper_CastRays(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "CastRays"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkUnstructuredGridVolumeRayCastMapper *op = static_cast(vp); int temp0; int temp1; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetValue(temp0) && ap.GetValue(temp1)) { if (ap.IsBound()) { op->CastRays(temp0, temp1); } else { op->vtkUnstructuredGridVolumeRayCastMapper::CastRays(temp0, temp1); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyMethodDef PyvtkUnstructuredGridVolumeRayCastMapper_Methods[] = { {"IsTypeOf", PyvtkUnstructuredGridVolumeRayCastMapper_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkUnstructuredGridVolumeRayCastMapper_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkUnstructuredGridVolumeRayCastMapper_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase)\n -> vtkUnstructuredGridVolumeRayCastMapper\nC++: static vtkUnstructuredGridVolumeRayCastMapper *SafeDownCast(\n vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkUnstructuredGridVolumeRayCastMapper_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkUnstructuredGridVolumeRayCastMapper\nC++: vtkUnstructuredGridVolumeRayCastMapper *NewInstance()\n\n"}, {"SetImageSampleDistance", PyvtkUnstructuredGridVolumeRayCastMapper_SetImageSampleDistance, METH_VARARGS, "V.SetImageSampleDistance(float)\nC++: virtual void SetImageSampleDistance(float _arg)\n\nSampling distance in the XY image dimensions. Default value of 1\nmeaning 1 ray cast per pixel. If set to 0.5, 4 rays will be cast\nper pixel. If set to 2.0, 1 ray will be cast for every 4 (2 by 2)\npixels.\n"}, {"GetImageSampleDistanceMinValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetImageSampleDistanceMinValue, METH_VARARGS, "V.GetImageSampleDistanceMinValue() -> float\nC++: virtual float GetImageSampleDistanceMinValue()\n\nSampling distance in the XY image dimensions. Default value of 1\nmeaning 1 ray cast per pixel. If set to 0.5, 4 rays will be cast\nper pixel. If set to 2.0, 1 ray will be cast for every 4 (2 by 2)\npixels.\n"}, {"GetImageSampleDistanceMaxValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetImageSampleDistanceMaxValue, METH_VARARGS, "V.GetImageSampleDistanceMaxValue() -> float\nC++: virtual float GetImageSampleDistanceMaxValue()\n\nSampling distance in the XY image dimensions. Default value of 1\nmeaning 1 ray cast per pixel. If set to 0.5, 4 rays will be cast\nper pixel. If set to 2.0, 1 ray will be cast for every 4 (2 by 2)\npixels.\n"}, {"GetImageSampleDistance", PyvtkUnstructuredGridVolumeRayCastMapper_GetImageSampleDistance, METH_VARARGS, "V.GetImageSampleDistance() -> float\nC++: virtual float GetImageSampleDistance()\n\nSampling distance in the XY image dimensions. Default value of 1\nmeaning 1 ray cast per pixel. If set to 0.5, 4 rays will be cast\nper pixel. If set to 2.0, 1 ray will be cast for every 4 (2 by 2)\npixels.\n"}, {"SetMinimumImageSampleDistance", PyvtkUnstructuredGridVolumeRayCastMapper_SetMinimumImageSampleDistance, METH_VARARGS, "V.SetMinimumImageSampleDistance(float)\nC++: virtual void SetMinimumImageSampleDistance(float _arg)\n\nThis is the minimum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"GetMinimumImageSampleDistanceMinValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetMinimumImageSampleDistanceMinValue, METH_VARARGS, "V.GetMinimumImageSampleDistanceMinValue() -> float\nC++: virtual float GetMinimumImageSampleDistanceMinValue()\n\nThis is the minimum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"GetMinimumImageSampleDistanceMaxValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetMinimumImageSampleDistanceMaxValue, METH_VARARGS, "V.GetMinimumImageSampleDistanceMaxValue() -> float\nC++: virtual float GetMinimumImageSampleDistanceMaxValue()\n\nThis is the minimum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"GetMinimumImageSampleDistance", PyvtkUnstructuredGridVolumeRayCastMapper_GetMinimumImageSampleDistance, METH_VARARGS, "V.GetMinimumImageSampleDistance() -> float\nC++: virtual float GetMinimumImageSampleDistance()\n\nThis is the minimum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"SetMaximumImageSampleDistance", PyvtkUnstructuredGridVolumeRayCastMapper_SetMaximumImageSampleDistance, METH_VARARGS, "V.SetMaximumImageSampleDistance(float)\nC++: virtual void SetMaximumImageSampleDistance(float _arg)\n\nThis is the maximum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"GetMaximumImageSampleDistanceMinValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetMaximumImageSampleDistanceMinValue, METH_VARARGS, "V.GetMaximumImageSampleDistanceMinValue() -> float\nC++: virtual float GetMaximumImageSampleDistanceMinValue()\n\nThis is the maximum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"GetMaximumImageSampleDistanceMaxValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetMaximumImageSampleDistanceMaxValue, METH_VARARGS, "V.GetMaximumImageSampleDistanceMaxValue() -> float\nC++: virtual float GetMaximumImageSampleDistanceMaxValue()\n\nThis is the maximum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"GetMaximumImageSampleDistance", PyvtkUnstructuredGridVolumeRayCastMapper_GetMaximumImageSampleDistance, METH_VARARGS, "V.GetMaximumImageSampleDistance() -> float\nC++: virtual float GetMaximumImageSampleDistance()\n\nThis is the maximum image sample distance allow when the image\nsample distance is being automatically adjusted\n"}, {"SetAutoAdjustSampleDistances", PyvtkUnstructuredGridVolumeRayCastMapper_SetAutoAdjustSampleDistances, METH_VARARGS, "V.SetAutoAdjustSampleDistances(int)\nC++: virtual void SetAutoAdjustSampleDistances(int _arg)\n\nIf AutoAdjustSampleDistances is on, the the ImageSampleDistance\nwill be varied to achieve the allocated render time of this prop\n(controlled by the desired update rate and any culling in use).\n"}, {"GetAutoAdjustSampleDistancesMinValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetAutoAdjustSampleDistancesMinValue, METH_VARARGS, "V.GetAutoAdjustSampleDistancesMinValue() -> int\nC++: virtual int GetAutoAdjustSampleDistancesMinValue()\n\nIf AutoAdjustSampleDistances is on, the the ImageSampleDistance\nwill be varied to achieve the allocated render time of this prop\n(controlled by the desired update rate and any culling in use).\n"}, {"GetAutoAdjustSampleDistancesMaxValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetAutoAdjustSampleDistancesMaxValue, METH_VARARGS, "V.GetAutoAdjustSampleDistancesMaxValue() -> int\nC++: virtual int GetAutoAdjustSampleDistancesMaxValue()\n\nIf AutoAdjustSampleDistances is on, the the ImageSampleDistance\nwill be varied to achieve the allocated render time of this prop\n(controlled by the desired update rate and any culling in use).\n"}, {"GetAutoAdjustSampleDistances", PyvtkUnstructuredGridVolumeRayCastMapper_GetAutoAdjustSampleDistances, METH_VARARGS, "V.GetAutoAdjustSampleDistances() -> int\nC++: virtual int GetAutoAdjustSampleDistances()\n\nIf AutoAdjustSampleDistances is on, the the ImageSampleDistance\nwill be varied to achieve the allocated render time of this prop\n(controlled by the desired update rate and any culling in use).\n"}, {"AutoAdjustSampleDistancesOn", PyvtkUnstructuredGridVolumeRayCastMapper_AutoAdjustSampleDistancesOn, METH_VARARGS, "V.AutoAdjustSampleDistancesOn()\nC++: virtual void AutoAdjustSampleDistancesOn()\n\nIf AutoAdjustSampleDistances is on, the the ImageSampleDistance\nwill be varied to achieve the allocated render time of this prop\n(controlled by the desired update rate and any culling in use).\n"}, {"AutoAdjustSampleDistancesOff", PyvtkUnstructuredGridVolumeRayCastMapper_AutoAdjustSampleDistancesOff, METH_VARARGS, "V.AutoAdjustSampleDistancesOff()\nC++: virtual void AutoAdjustSampleDistancesOff()\n\nIf AutoAdjustSampleDistances is on, the the ImageSampleDistance\nwill be varied to achieve the allocated render time of this prop\n(controlled by the desired update rate and any culling in use).\n"}, {"SetNumberOfThreads", PyvtkUnstructuredGridVolumeRayCastMapper_SetNumberOfThreads, METH_VARARGS, "V.SetNumberOfThreads(int)\nC++: virtual void SetNumberOfThreads(int _arg)\n\nSet/Get the number of threads to use. This by default is equal to\nthe number of available processors detected.\n"}, {"GetNumberOfThreads", PyvtkUnstructuredGridVolumeRayCastMapper_GetNumberOfThreads, METH_VARARGS, "V.GetNumberOfThreads() -> int\nC++: virtual int GetNumberOfThreads()\n\nSet/Get the number of threads to use. This by default is equal to\nthe number of available processors detected.\n"}, {"SetIntermixIntersectingGeometry", PyvtkUnstructuredGridVolumeRayCastMapper_SetIntermixIntersectingGeometry, METH_VARARGS, "V.SetIntermixIntersectingGeometry(int)\nC++: virtual void SetIntermixIntersectingGeometry(int _arg)\n\nIf IntermixIntersectingGeometry is turned on, the zbuffer will be\ncaptured and used to limit the traversal of the rays.\n"}, {"GetIntermixIntersectingGeometryMinValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetIntermixIntersectingGeometryMinValue, METH_VARARGS, "V.GetIntermixIntersectingGeometryMinValue() -> int\nC++: virtual int GetIntermixIntersectingGeometryMinValue()\n\nIf IntermixIntersectingGeometry is turned on, the zbuffer will be\ncaptured and used to limit the traversal of the rays.\n"}, {"GetIntermixIntersectingGeometryMaxValue", PyvtkUnstructuredGridVolumeRayCastMapper_GetIntermixIntersectingGeometryMaxValue, METH_VARARGS, "V.GetIntermixIntersectingGeometryMaxValue() -> int\nC++: virtual int GetIntermixIntersectingGeometryMaxValue()\n\nIf IntermixIntersectingGeometry is turned on, the zbuffer will be\ncaptured and used to limit the traversal of the rays.\n"}, {"GetIntermixIntersectingGeometry", PyvtkUnstructuredGridVolumeRayCastMapper_GetIntermixIntersectingGeometry, METH_VARARGS, "V.GetIntermixIntersectingGeometry() -> int\nC++: virtual int GetIntermixIntersectingGeometry()\n\nIf IntermixIntersectingGeometry is turned on, the zbuffer will be\ncaptured and used to limit the traversal of the rays.\n"}, {"IntermixIntersectingGeometryOn", PyvtkUnstructuredGridVolumeRayCastMapper_IntermixIntersectingGeometryOn, METH_VARARGS, "V.IntermixIntersectingGeometryOn()\nC++: virtual void IntermixIntersectingGeometryOn()\n\nIf IntermixIntersectingGeometry is turned on, the zbuffer will be\ncaptured and used to limit the traversal of the rays.\n"}, {"IntermixIntersectingGeometryOff", PyvtkUnstructuredGridVolumeRayCastMapper_IntermixIntersectingGeometryOff, METH_VARARGS, "V.IntermixIntersectingGeometryOff()\nC++: virtual void IntermixIntersectingGeometryOff()\n\nIf IntermixIntersectingGeometry is turned on, the zbuffer will be\ncaptured and used to limit the traversal of the rays.\n"}, {"SetRayCastFunction", PyvtkUnstructuredGridVolumeRayCastMapper_SetRayCastFunction, METH_VARARGS, "V.SetRayCastFunction(vtkUnstructuredGridVolumeRayCastFunction)\nC++: virtual void SetRayCastFunction(\n vtkUnstructuredGridVolumeRayCastFunction *f)\n\nSet/Get the helper class for casting rays.\n"}, {"GetRayCastFunction", PyvtkUnstructuredGridVolumeRayCastMapper_GetRayCastFunction, METH_VARARGS, "V.GetRayCastFunction() -> vtkUnstructuredGridVolumeRayCastFunction\nC++: virtual vtkUnstructuredGridVolumeRayCastFunction *GetRayCastFunction(\n )\n\nSet/Get the helper class for casting rays.\n"}, {"SetRayIntegrator", PyvtkUnstructuredGridVolumeRayCastMapper_SetRayIntegrator, METH_VARARGS, "V.SetRayIntegrator(vtkUnstructuredGridVolumeRayIntegrator)\nC++: virtual void SetRayIntegrator(\n vtkUnstructuredGridVolumeRayIntegrator *ri)\n\nSet/Get the helper class for integrating rays. If set to NULL, a\ndefault integrator will be assigned.\n"}, {"GetRayIntegrator", PyvtkUnstructuredGridVolumeRayCastMapper_GetRayIntegrator, METH_VARARGS, "V.GetRayIntegrator() -> vtkUnstructuredGridVolumeRayIntegrator\nC++: virtual vtkUnstructuredGridVolumeRayIntegrator *GetRayIntegrator(\n )\n\nSet/Get the helper class for integrating rays. If set to NULL, a\ndefault integrator will be assigned.\n"}, {"Render", PyvtkUnstructuredGridVolumeRayCastMapper_Render, METH_VARARGS, "V.Render(vtkRenderer, vtkVolume)\nC++: void Render(vtkRenderer *, vtkVolume *) override;\n\nWARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE\nInitialize rendering for this volume.\n"}, {"ReleaseGraphicsResources", PyvtkUnstructuredGridVolumeRayCastMapper_ReleaseGraphicsResources, METH_VARARGS, "V.ReleaseGraphicsResources(vtkWindow)\nC++: void ReleaseGraphicsResources(vtkWindow *) override;\n\nWARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE Release\nany graphics resources that are being consumed by this mapper.\nThe parameter window could be used to determine which graphic\nresources to release.\n"}, {"GetImageInUseSize", PyvtkUnstructuredGridVolumeRayCastMapper_GetImageInUseSize, METH_VARARGS, "V.GetImageInUseSize() -> (int, int)\nC++: int *GetImageInUseSize()\n\n"}, {"GetImageOrigin", PyvtkUnstructuredGridVolumeRayCastMapper_GetImageOrigin, METH_VARARGS, "V.GetImageOrigin() -> (int, int)\nC++: int *GetImageOrigin()\n\n"}, {"GetImageViewportSize", PyvtkUnstructuredGridVolumeRayCastMapper_GetImageViewportSize, METH_VARARGS, "V.GetImageViewportSize() -> (int, int)\nC++: int *GetImageViewportSize()\n\n"}, {"CastRays", PyvtkUnstructuredGridVolumeRayCastMapper_CastRays, METH_VARARGS, "V.CastRays(int, int)\nC++: void CastRays(int threadID, int threadCount)\n\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkUnstructuredGridVolumeRayCastMapper_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkRenderingVolumePython.vtkUnstructuredGridVolumeRayCastMapper", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkUnstructuredGridVolumeRayCastMapper_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkUnstructuredGridVolumeRayCastMapper_StaticNew() { return vtkUnstructuredGridVolumeRayCastMapper::New(); } PyObject *PyvtkUnstructuredGridVolumeRayCastMapper_ClassNew() { PyVTKClass_Add( &PyvtkUnstructuredGridVolumeRayCastMapper_Type, PyvtkUnstructuredGridVolumeRayCastMapper_Methods, "vtkUnstructuredGridVolumeRayCastMapper", &PyvtkUnstructuredGridVolumeRayCastMapper_StaticNew); PyTypeObject *pytype = &PyvtkUnstructuredGridVolumeRayCastMapper_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkUnstructuredGridVolumeMapper_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkUnstructuredGridVolumeRayCastMapper( PyObject *dict) { PyObject *o; o = PyvtkUnstructuredGridVolumeRayCastMapper_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkUnstructuredGridVolumeRayCastMapper", o) != 0) { Py_DECREF(o); } }