// python wrapper for vtkVoxelGrid // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkVoxelGrid.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkVoxelGrid(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkVoxelGrid_ClassNew(); } #ifndef DECLARED_PyvtkPolyDataAlgorithm_ClassNew extern "C" { PyObject *PyvtkPolyDataAlgorithm_ClassNew(); } #define DECLARED_PyvtkPolyDataAlgorithm_ClassNew #endif static const char *PyvtkVoxelGrid_Doc = "vtkVoxelGrid - subsample points using uniform binning\n\n" "Superclass: vtkPolyDataAlgorithm\n\n" "vtkVoxelGrid is a filter that subsamples a point cloud based on a\n" "regular binning of space. Basically the algorithm operates by\n" "dividing space into a volume of M x N x O bins, and then for each bin\n" "averaging all of the points positions into a single representative\n" "point. Several strategies for computing the binning can be used: 1)\n" "manual configuration of a requiring specifying bin dimensions (the\n" "bounds are calculated from the data); 2) by explicit specification of\n" "the bin size in world coordinates (x-y-z lengths); and 3) an\n" "automatic process in which the user specifies an approximate, average\n" "number of points per bin and dimensions and bin size are computed\n" "automatically. (Note that under the hood a vtkStaticPointLocator is\n" "used.)\n\n" "While any vtkPointSet type can be provided as input, the output is\n" "represented by an explicit representation of points via a\n" "vtkPolyData. This output polydata will populate its instance of\n" "vtkPoints, but no cells will be defined (i.e., no vtkVertex or\n" "vtkPolyVertex are contained in the output).\n\n" "@warning\n" "This class has been threaded with vtkSMPTools. Using TBB or other\n" "non-sequential type (set in the CMake variable\n" "VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.\n\n" "@sa\n" "vtkStaticPointLocator vtkPointCloudFilter vtkQuadricClustering\n\n"; static PyTypeObject PyvtkVoxelGrid_Style_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersPointsPython.vtkVoxelGrid.Style", // tp_name sizeof(PyIntObject), // tp_basicsize 0, // tp_itemsize nullptr, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare nullptr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call nullptr, // tp_str nullptr, // tp_getattro nullptr, // tp_setattro nullptr, // tp_as_buffer Py_TPFLAGS_DEFAULT, // tp_flags nullptr, // tp_doc nullptr, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare 0, // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members nullptr, // tp_getset &PyInt_Type, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set 0, // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc nullptr, // tp_new PyObject_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; PyObject *PyvtkVoxelGrid_Style_FromEnum(int val) { #ifdef VTK_PY3K PyObject *args = Py_BuildValue("(i)", val); PyObject *obj = PyLong_Type.tp_new(&PyvtkVoxelGrid_Style_Type, args, nullptr); Py_DECREF(args); return obj; #else PyIntObject *self = PyObject_New(PyIntObject, &PyvtkVoxelGrid_Style_Type); self->ob_ival = val; return (PyObject *)self; #endif } static PyObject * PyvtkVoxelGrid_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkVoxelGrid::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkVoxelGrid::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkVoxelGrid *tempr = vtkVoxelGrid::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkVoxelGrid *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkVoxelGrid::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkVoxelGrid_SetConfigurationStyle(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetConfigurationStyle"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetConfigurationStyle(temp0); } else { op->vtkVoxelGrid::SetConfigurationStyle(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_GetConfigurationStyle(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetConfigurationStyle"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetConfigurationStyle() : op->vtkVoxelGrid::GetConfigurationStyle()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_SetConfigurationStyleToManual(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetConfigurationStyleToManual"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetConfigurationStyleToManual(); } else { op->vtkVoxelGrid::SetConfigurationStyleToManual(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetConfigurationStyleToLeafSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetConfigurationStyleToLeafSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetConfigurationStyleToLeafSize(); } else { op->vtkVoxelGrid::SetConfigurationStyleToLeafSize(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetConfigurationStyleToAutomatic(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetConfigurationStyleToAutomatic"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetConfigurationStyleToAutomatic(); } else { op->vtkVoxelGrid::SetConfigurationStyleToAutomatic(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetDivisions_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetDivisions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); int temp0; int temp1; int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetDivisions(temp0, temp1, temp2); } else { op->vtkVoxelGrid::SetDivisions(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetDivisions_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetDivisions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); const int size0 = 3; int temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetDivisions(temp0); } else { op->vtkVoxelGrid::SetDivisions(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetDivisions(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkVoxelGrid_SetDivisions_s1(self, args); case 1: return PyvtkVoxelGrid_SetDivisions_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetDivisions"); return nullptr; } static PyObject * PyvtkVoxelGrid_GetDivisions(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetDivisions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int *tempr = (ap.IsBound() ? op->GetDivisions() : op->vtkVoxelGrid::GetDivisions()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkVoxelGrid_SetLeafSize_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLeafSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); double temp0; double temp1; double temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetLeafSize(temp0, temp1, temp2); } else { op->vtkVoxelGrid::SetLeafSize(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetLeafSize_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetLeafSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); const int size0 = 3; double temp0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetLeafSize(temp0); } else { op->vtkVoxelGrid::SetLeafSize(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_SetLeafSize(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkVoxelGrid_SetLeafSize_s1(self, args); case 1: return PyvtkVoxelGrid_SetLeafSize_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetLeafSize"); return nullptr; } static PyObject * PyvtkVoxelGrid_GetLeafSize(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetLeafSize"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetLeafSize() : op->vtkVoxelGrid::GetLeafSize()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkVoxelGrid_SetNumberOfPointsPerBin(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetNumberOfPointsPerBin"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetNumberOfPointsPerBin(temp0); } else { op->vtkVoxelGrid::SetNumberOfPointsPerBin(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_GetNumberOfPointsPerBinMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfPointsPerBinMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfPointsPerBinMinValue() : op->vtkVoxelGrid::GetNumberOfPointsPerBinMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_GetNumberOfPointsPerBinMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfPointsPerBinMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfPointsPerBinMaxValue() : op->vtkVoxelGrid::GetNumberOfPointsPerBinMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_GetNumberOfPointsPerBin(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetNumberOfPointsPerBin"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetNumberOfPointsPerBin() : op->vtkVoxelGrid::GetNumberOfPointsPerBin()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelGrid_SetKernel(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetKernel"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); vtkInterpolationKernel *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkInterpolationKernel")) { if (ap.IsBound()) { op->SetKernel(temp0); } else { op->vtkVoxelGrid::SetKernel(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelGrid_GetKernel(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetKernel"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelGrid *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkInterpolationKernel *tempr = (ap.IsBound() ? op->GetKernel() : op->vtkVoxelGrid::GetKernel()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyMethodDef PyvtkVoxelGrid_Methods[] = { {"IsTypeOf", PyvtkVoxelGrid_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nStandard methods for instantiating, obtaining type information,\nand printing information.\n"}, {"IsA", PyvtkVoxelGrid_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nStandard methods for instantiating, obtaining type information,\nand printing information.\n"}, {"SafeDownCast", PyvtkVoxelGrid_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkVoxelGrid\nC++: static vtkVoxelGrid *SafeDownCast(vtkObjectBase *o)\n\nStandard methods for instantiating, obtaining type information,\nand printing information.\n"}, {"NewInstance", PyvtkVoxelGrid_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkVoxelGrid\nC++: vtkVoxelGrid *NewInstance()\n\nStandard methods for instantiating, obtaining type information,\nand printing information.\n"}, {"SetConfigurationStyle", PyvtkVoxelGrid_SetConfigurationStyle, METH_VARARGS, "V.SetConfigurationStyle(int)\nC++: virtual void SetConfigurationStyle(int _arg)\n\nConfigure how the filter is to operate. The user can choose to\nmanually specify the binning volume (by setting its dimensions\nvia MANUAL style); or specify a leaf bin size in the x-y-z\ndirections (SPECIFY_LEAF_SIZE); or in AUTOMATIC style, use a\nrough average number of points in each bin guide the bin size and\nbinning volume dimensions. By default, AUTOMATIC configuration\nstyle is used.\n"}, {"GetConfigurationStyle", PyvtkVoxelGrid_GetConfigurationStyle, METH_VARARGS, "V.GetConfigurationStyle() -> int\nC++: virtual int GetConfigurationStyle()\n\nConfigure how the filter is to operate. The user can choose to\nmanually specify the binning volume (by setting its dimensions\nvia MANUAL style); or specify a leaf bin size in the x-y-z\ndirections (SPECIFY_LEAF_SIZE); or in AUTOMATIC style, use a\nrough average number of points in each bin guide the bin size and\nbinning volume dimensions. By default, AUTOMATIC configuration\nstyle is used.\n"}, {"SetConfigurationStyleToManual", PyvtkVoxelGrid_SetConfigurationStyleToManual, METH_VARARGS, "V.SetConfigurationStyleToManual()\nC++: void SetConfigurationStyleToManual()\n\nConfigure how the filter is to operate. The user can choose to\nmanually specify the binning volume (by setting its dimensions\nvia MANUAL style); or specify a leaf bin size in the x-y-z\ndirections (SPECIFY_LEAF_SIZE); or in AUTOMATIC style, use a\nrough average number of points in each bin guide the bin size and\nbinning volume dimensions. By default, AUTOMATIC configuration\nstyle is used.\n"}, {"SetConfigurationStyleToLeafSize", PyvtkVoxelGrid_SetConfigurationStyleToLeafSize, METH_VARARGS, "V.SetConfigurationStyleToLeafSize()\nC++: void SetConfigurationStyleToLeafSize()\n\nConfigure how the filter is to operate. The user can choose to\nmanually specify the binning volume (by setting its dimensions\nvia MANUAL style); or specify a leaf bin size in the x-y-z\ndirections (SPECIFY_LEAF_SIZE); or in AUTOMATIC style, use a\nrough average number of points in each bin guide the bin size and\nbinning volume dimensions. By default, AUTOMATIC configuration\nstyle is used.\n"}, {"SetConfigurationStyleToAutomatic", PyvtkVoxelGrid_SetConfigurationStyleToAutomatic, METH_VARARGS, "V.SetConfigurationStyleToAutomatic()\nC++: void SetConfigurationStyleToAutomatic()\n\nConfigure how the filter is to operate. The user can choose to\nmanually specify the binning volume (by setting its dimensions\nvia MANUAL style); or specify a leaf bin size in the x-y-z\ndirections (SPECIFY_LEAF_SIZE); or in AUTOMATIC style, use a\nrough average number of points in each bin guide the bin size and\nbinning volume dimensions. By default, AUTOMATIC configuration\nstyle is used.\n"}, {"SetDivisions", PyvtkVoxelGrid_SetDivisions, METH_VARARGS, "V.SetDivisions(int, int, int)\nC++: void SetDivisions(int, int, int)\nV.SetDivisions((int, int, int))\nC++: void SetDivisions(int a[3])\n\n"}, {"GetDivisions", PyvtkVoxelGrid_GetDivisions, METH_VARARGS, "V.GetDivisions() -> (int, int, int)\nC++: int *GetDivisions()\n\nSet the number of divisions in x-y-z directions (the binning\nvolume dimensions). This data member is used when the\nconfiguration style is set to MANUAL. Note that these values may\nbe adjusted if <1 or too large.\n"}, {"SetLeafSize", PyvtkVoxelGrid_SetLeafSize, METH_VARARGS, "V.SetLeafSize(float, float, float)\nC++: void SetLeafSize(double, double, double)\nV.SetLeafSize((float, float, float))\nC++: void SetLeafSize(double a[3])\n\n"}, {"GetLeafSize", PyvtkVoxelGrid_GetLeafSize, METH_VARARGS, "V.GetLeafSize() -> (float, float, float)\nC++: double *GetLeafSize()\n\nSet the bin size in the x-y-z directions. This data member is\nused when the configuration style is set to SPECIFY_LEAF_SIZE.\nThe class will use these x-y-z lengths, within the bounding box\nof the point cloud, to determine the binning dimensions.\n"}, {"SetNumberOfPointsPerBin", PyvtkVoxelGrid_SetNumberOfPointsPerBin, METH_VARARGS, "V.SetNumberOfPointsPerBin(int)\nC++: virtual void SetNumberOfPointsPerBin(int _arg)\n\nSpecify the average number of points in each bin. Larger values\nresult in higher rates of subsampling. This data member is used\nwhen the configuration style is set to AUTOMATIC. The class will\nautomatically determine the binning dimensions in the x-y-z\ndirections.\n"}, {"GetNumberOfPointsPerBinMinValue", PyvtkVoxelGrid_GetNumberOfPointsPerBinMinValue, METH_VARARGS, "V.GetNumberOfPointsPerBinMinValue() -> int\nC++: virtual int GetNumberOfPointsPerBinMinValue()\n\nSpecify the average number of points in each bin. Larger values\nresult in higher rates of subsampling. This data member is used\nwhen the configuration style is set to AUTOMATIC. The class will\nautomatically determine the binning dimensions in the x-y-z\ndirections.\n"}, {"GetNumberOfPointsPerBinMaxValue", PyvtkVoxelGrid_GetNumberOfPointsPerBinMaxValue, METH_VARARGS, "V.GetNumberOfPointsPerBinMaxValue() -> int\nC++: virtual int GetNumberOfPointsPerBinMaxValue()\n\nSpecify the average number of points in each bin. Larger values\nresult in higher rates of subsampling. This data member is used\nwhen the configuration style is set to AUTOMATIC. The class will\nautomatically determine the binning dimensions in the x-y-z\ndirections.\n"}, {"GetNumberOfPointsPerBin", PyvtkVoxelGrid_GetNumberOfPointsPerBin, METH_VARARGS, "V.GetNumberOfPointsPerBin() -> int\nC++: virtual int GetNumberOfPointsPerBin()\n\nSpecify the average number of points in each bin. Larger values\nresult in higher rates of subsampling. This data member is used\nwhen the configuration style is set to AUTOMATIC. The class will\nautomatically determine the binning dimensions in the x-y-z\ndirections.\n"}, {"SetKernel", PyvtkVoxelGrid_SetKernel, METH_VARARGS, "V.SetKernel(vtkInterpolationKernel)\nC++: void SetKernel(vtkInterpolationKernel *kernel)\n\nSpecify an interpolation kernel to combine the point attributes.\nBy default a vtkLinearKernel is used (i.e., average values). The\ninterpolation kernel changes the basis of the interpolation.\n"}, {"GetKernel", PyvtkVoxelGrid_GetKernel, METH_VARARGS, "V.GetKernel() -> vtkInterpolationKernel\nC++: virtual vtkInterpolationKernel *GetKernel()\n\nSpecify an interpolation kernel to combine the point attributes.\nBy default a vtkLinearKernel is used (i.e., average values). The\ninterpolation kernel changes the basis of the interpolation.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkVoxelGrid_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkFiltersPointsPython.vtkVoxelGrid", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkVoxelGrid_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkVoxelGrid_StaticNew() { return vtkVoxelGrid::New(); } PyObject *PyvtkVoxelGrid_ClassNew() { PyVTKClass_Add( &PyvtkVoxelGrid_Type, PyvtkVoxelGrid_Methods, "vtkVoxelGrid", &PyvtkVoxelGrid_StaticNew); PyTypeObject *pytype = &PyvtkVoxelGrid_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkPolyDataAlgorithm_ClassNew(); PyObject *d = pytype->tp_dict; PyObject *o; PyType_Ready(&PyvtkVoxelGrid_Style_Type); PyvtkVoxelGrid_Style_Type.tp_new = nullptr; vtkPythonUtil::AddEnumToMap(&PyvtkVoxelGrid_Style_Type); o = (PyObject *)&PyvtkVoxelGrid_Style_Type; if (PyDict_SetItemString(d, "Style", o) != 0) { Py_DECREF(o); } for (int c = 0; c < 3; c++) { typedef vtkVoxelGrid::Style cxx_enum_type; static const struct { const char *name; cxx_enum_type value; } constants[3] = { { "MANUAL", vtkVoxelGrid::MANUAL }, { "SPECIFY_LEAF_SIZE", vtkVoxelGrid::SPECIFY_LEAF_SIZE }, { "AUTOMATIC", vtkVoxelGrid::AUTOMATIC }, }; o = PyvtkVoxelGrid_Style_FromEnum(constants[c].value); if (o) { PyDict_SetItemString(d, constants[c].name, o); Py_DECREF(o); } } PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkVoxelGrid( PyObject *dict) { PyObject *o; o = PyvtkVoxelGrid_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkVoxelGrid", o) != 0) { Py_DECREF(o); } }