// python wrapper for vtkVoxelModeller // #define VTK_WRAPPING_CXX #define VTK_STREAMS_FWD_ONLY #include "vtkPythonArgs.h" #include "vtkPythonOverload.h" #include "vtkConfigure.h" #include #include #include "vtkVariant.h" #include "vtkIndent.h" #include "vtkVoxelModeller.h" extern "C" { VTK_ABI_EXPORT void PyVTKAddFile_vtkVoxelModeller(PyObject *); } extern "C" { VTK_ABI_EXPORT PyObject *PyvtkVoxelModeller_ClassNew(); } #ifndef DECLARED_PyvtkImageAlgorithm_ClassNew extern "C" { PyObject *PyvtkImageAlgorithm_ClassNew(); } #define DECLARED_PyvtkImageAlgorithm_ClassNew #endif static const char *PyvtkVoxelModeller_Doc = "vtkVoxelModeller - convert an arbitrary dataset to a voxel\nrepresentation\n\n" "Superclass: vtkImageAlgorithm\n\n" "vtkVoxelModeller is a filter that converts an arbitrary data set to a\n" "structured point (i.e., voxel) representation. It is very similar to\n" "vtkImplicitModeller, except that it doesn't record distance; instead\n" "it records occupancy. By default it supports a compact output of 0/1\n" "VTK_BIT. Other vtk scalar types can be specified. The Foreground and\n" "Background values of the output can also be specified. NOTE: Not all\n" "vtk filters/readers/writers support the VTK_BIT scalar type. You may\n" "want to use VTK_CHAR as an alternative.\n" "@sa\n" "vtkImplicitModeller\n\n"; static PyObject * PyvtkVoxelModeller_IsTypeOf(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "IsTypeOf"); char *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = vtkVoxelModeller::IsTypeOf(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_IsA(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "IsA"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); char *temp0 = nullptr; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { int tempr = (ap.IsBound() ? op->IsA(temp0) : op->vtkVoxelModeller::IsA(temp0)); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_SafeDownCast(PyObject *, PyObject *args) { vtkPythonArgs ap(args, "SafeDownCast"); vtkObjectBase *temp0 = nullptr; PyObject *result = nullptr; if (ap.CheckArgCount(1) && ap.GetVTKObject(temp0, "vtkObjectBase")) { vtkVoxelModeller *tempr = vtkVoxelModeller::SafeDownCast(temp0); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_NewInstance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "NewInstance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { vtkVoxelModeller *tempr = (ap.IsBound() ? op->NewInstance() : op->vtkVoxelModeller::NewInstance()); if (!ap.ErrorOccurred()) { result = ap.BuildVTKObject(tempr); if (result && PyVTKObject_Check(result)) { PyVTKObject_GetObject(result)->UnRegister(0); PyVTKObject_SetFlag(result, VTK_PYTHON_IGNORE_UNREGISTER, 1); } } } return result; } static PyObject * PyvtkVoxelModeller_ComputeModelBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "ComputeModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); const int size0 = 3; double temp0[3]; double save0[3]; const int size1 = 3; double temp1[3]; double save1[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(2) && ap.GetArray(temp0, size0) && ap.GetArray(temp1, size1)) { ap.SaveArray(temp0, save0, size0); ap.SaveArray(temp1, save1, size1); double tempr = (ap.IsBound() ? op->ComputeModelBounds(temp0, temp1) : op->vtkVoxelModeller::ComputeModelBounds(temp0, temp1)); if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (ap.ArrayHasChanged(temp1, save1, size1) && !ap.ErrorOccurred()) { ap.SetArray(1, temp1, size1); } if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_SetSampleDimensions_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSampleDimensions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); int temp0; int temp1; int temp2; PyObject *result = nullptr; if (op && ap.CheckArgCount(3) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2)) { if (ap.IsBound()) { op->SetSampleDimensions(temp0, temp1, temp2); } else { op->vtkVoxelModeller::SetSampleDimensions(temp0, temp1, temp2); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetSampleDimensions_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetSampleDimensions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); const int size0 = 3; int temp0[3]; int save0[3]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { ap.SaveArray(temp0, save0, size0); if (ap.IsBound()) { op->SetSampleDimensions(temp0); } else { op->vtkVoxelModeller::SetSampleDimensions(temp0); } if (ap.ArrayHasChanged(temp0, save0, size0) && !ap.ErrorOccurred()) { ap.SetArray(0, temp0, size0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetSampleDimensions(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 3: return PyvtkVoxelModeller_SetSampleDimensions_s1(self, args); case 1: return PyvtkVoxelModeller_SetSampleDimensions_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetSampleDimensions"); return nullptr; } static PyObject * PyvtkVoxelModeller_GetSampleDimensions(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetSampleDimensions"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); int sizer = 3; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int *tempr = (ap.IsBound() ? op->GetSampleDimensions() : op->vtkVoxelModeller::GetSampleDimensions()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkVoxelModeller_SetMaximumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetMaximumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetMaximumDistance(temp0); } else { op->vtkVoxelModeller::SetMaximumDistance(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_GetMaximumDistanceMinValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistanceMinValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistanceMinValue() : op->vtkVoxelModeller::GetMaximumDistanceMinValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_GetMaximumDistanceMaxValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistanceMaxValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistanceMaxValue() : op->vtkVoxelModeller::GetMaximumDistanceMaxValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_GetMaximumDistance(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetMaximumDistance"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetMaximumDistance() : op->vtkVoxelModeller::GetMaximumDistance()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_SetModelBounds_s1(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); const int size0 = 6; double temp0[6]; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetArray(temp0, size0)) { if (ap.IsBound()) { op->SetModelBounds(temp0); } else { op->vtkVoxelModeller::SetModelBounds(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetModelBounds_s2(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); double temp0; double temp1; double temp2; double temp3; double temp4; double temp5; PyObject *result = nullptr; if (op && ap.CheckArgCount(6) && ap.GetValue(temp0) && ap.GetValue(temp1) && ap.GetValue(temp2) && ap.GetValue(temp3) && ap.GetValue(temp4) && ap.GetValue(temp5)) { if (ap.IsBound()) { op->SetModelBounds(temp0, temp1, temp2, temp3, temp4, temp5); } else { op->vtkVoxelModeller::SetModelBounds(temp0, temp1, temp2, temp3, temp4, temp5); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetModelBounds(PyObject *self, PyObject *args) { int nargs = vtkPythonArgs::GetArgCount(self, args); switch(nargs) { case 1: return PyvtkVoxelModeller_SetModelBounds_s1(self, args); case 6: return PyvtkVoxelModeller_SetModelBounds_s2(self, args); } vtkPythonArgs::ArgCountError(nargs, "SetModelBounds"); return nullptr; } static PyObject * PyvtkVoxelModeller_GetModelBounds(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetModelBounds"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); int sizer = 6; PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double *tempr = (ap.IsBound() ? op->GetModelBounds() : op->vtkVoxelModeller::GetModelBounds()); if (!ap.ErrorOccurred()) { result = ap.BuildTuple(tempr, sizer); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarType(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarType"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); int temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetScalarType(temp0); } else { op->vtkVoxelModeller::SetScalarType(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToFloat(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToFloat"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToFloat(); } else { op->vtkVoxelModeller::SetScalarTypeToFloat(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToDouble(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToDouble"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToDouble(); } else { op->vtkVoxelModeller::SetScalarTypeToDouble(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToInt(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToInt"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToInt(); } else { op->vtkVoxelModeller::SetScalarTypeToInt(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToUnsignedInt(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToUnsignedInt"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToUnsignedInt(); } else { op->vtkVoxelModeller::SetScalarTypeToUnsignedInt(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToLong(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToLong"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToLong(); } else { op->vtkVoxelModeller::SetScalarTypeToLong(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToUnsignedLong(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToUnsignedLong"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToUnsignedLong(); } else { op->vtkVoxelModeller::SetScalarTypeToUnsignedLong(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToShort(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToShort"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToShort(); } else { op->vtkVoxelModeller::SetScalarTypeToShort(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToUnsignedShort(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToUnsignedShort"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToUnsignedShort(); } else { op->vtkVoxelModeller::SetScalarTypeToUnsignedShort(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToUnsignedChar(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToUnsignedChar"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToUnsignedChar(); } else { op->vtkVoxelModeller::SetScalarTypeToUnsignedChar(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToChar(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToChar"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToChar(); } else { op->vtkVoxelModeller::SetScalarTypeToChar(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_SetScalarTypeToBit(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetScalarTypeToBit"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { if (ap.IsBound()) { op->SetScalarTypeToBit(); } else { op->vtkVoxelModeller::SetScalarTypeToBit(); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_GetScalarType(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetScalarType"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { int tempr = (ap.IsBound() ? op->GetScalarType() : op->vtkVoxelModeller::GetScalarType()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_SetForegroundValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetForegroundValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetForegroundValue(temp0); } else { op->vtkVoxelModeller::SetForegroundValue(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_GetForegroundValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetForegroundValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetForegroundValue() : op->vtkVoxelModeller::GetForegroundValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyObject * PyvtkVoxelModeller_SetBackgroundValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "SetBackgroundValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); double temp0; PyObject *result = nullptr; if (op && ap.CheckArgCount(1) && ap.GetValue(temp0)) { if (ap.IsBound()) { op->SetBackgroundValue(temp0); } else { op->vtkVoxelModeller::SetBackgroundValue(temp0); } if (!ap.ErrorOccurred()) { result = ap.BuildNone(); } } return result; } static PyObject * PyvtkVoxelModeller_GetBackgroundValue(PyObject *self, PyObject *args) { vtkPythonArgs ap(self, args, "GetBackgroundValue"); vtkObjectBase *vp = ap.GetSelfPointer(self, args); vtkVoxelModeller *op = static_cast(vp); PyObject *result = nullptr; if (op && ap.CheckArgCount(0)) { double tempr = (ap.IsBound() ? op->GetBackgroundValue() : op->vtkVoxelModeller::GetBackgroundValue()); if (!ap.ErrorOccurred()) { result = ap.BuildValue(tempr); } } return result; } static PyMethodDef PyvtkVoxelModeller_Methods[] = { {"IsTypeOf", PyvtkVoxelModeller_IsTypeOf, METH_VARARGS, "V.IsTypeOf(string) -> int\nC++: static vtkTypeBool IsTypeOf(const char *type)\n\nReturn 1 if this class type is the same type of (or a subclass\nof) the named class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"IsA", PyvtkVoxelModeller_IsA, METH_VARARGS, "V.IsA(string) -> int\nC++: vtkTypeBool IsA(const char *type) override;\n\nReturn 1 if this class is the same type of (or a subclass of) the\nnamed class. Returns 0 otherwise. This method works in\ncombination with vtkTypeMacro found in vtkSetGet.h.\n"}, {"SafeDownCast", PyvtkVoxelModeller_SafeDownCast, METH_VARARGS, "V.SafeDownCast(vtkObjectBase) -> vtkVoxelModeller\nC++: static vtkVoxelModeller *SafeDownCast(vtkObjectBase *o)\n\n"}, {"NewInstance", PyvtkVoxelModeller_NewInstance, METH_VARARGS, "V.NewInstance() -> vtkVoxelModeller\nC++: vtkVoxelModeller *NewInstance()\n\n"}, {"ComputeModelBounds", PyvtkVoxelModeller_ComputeModelBounds, METH_VARARGS, "V.ComputeModelBounds([float, float, float], [float, float, float])\n -> float\nC++: double ComputeModelBounds(double origin[3], double ar[3])\n\nCompute the ModelBounds based on the input geometry.\n"}, {"SetSampleDimensions", PyvtkVoxelModeller_SetSampleDimensions, METH_VARARGS, "V.SetSampleDimensions(int, int, int)\nC++: void SetSampleDimensions(int i, int j, int k)\nV.SetSampleDimensions([int, int, int])\nC++: void SetSampleDimensions(int dim[3])\n\nSet the i-j-k dimensions on which to sample the distance\nfunction. Default is (50, 50, 50)\n"}, {"GetSampleDimensions", PyvtkVoxelModeller_GetSampleDimensions, METH_VARARGS, "V.GetSampleDimensions() -> (int, int, int)\nC++: int *GetSampleDimensions()\n\nSet the i-j-k dimensions on which to sample the distance\nfunction. Default is (50, 50, 50)\n"}, {"SetMaximumDistance", PyvtkVoxelModeller_SetMaximumDistance, METH_VARARGS, "V.SetMaximumDistance(float)\nC++: virtual void SetMaximumDistance(double _arg)\n\nSpecify distance away from surface of input geometry to sample.\nSmaller values make large increases in performance. Default is\n1.0.\n"}, {"GetMaximumDistanceMinValue", PyvtkVoxelModeller_GetMaximumDistanceMinValue, METH_VARARGS, "V.GetMaximumDistanceMinValue() -> float\nC++: virtual double GetMaximumDistanceMinValue()\n\nSpecify distance away from surface of input geometry to sample.\nSmaller values make large increases in performance. Default is\n1.0.\n"}, {"GetMaximumDistanceMaxValue", PyvtkVoxelModeller_GetMaximumDistanceMaxValue, METH_VARARGS, "V.GetMaximumDistanceMaxValue() -> float\nC++: virtual double GetMaximumDistanceMaxValue()\n\nSpecify distance away from surface of input geometry to sample.\nSmaller values make large increases in performance. Default is\n1.0.\n"}, {"GetMaximumDistance", PyvtkVoxelModeller_GetMaximumDistance, METH_VARARGS, "V.GetMaximumDistance() -> float\nC++: virtual double GetMaximumDistance()\n\nSpecify distance away from surface of input geometry to sample.\nSmaller values make large increases in performance. Default is\n1.0.\n"}, {"SetModelBounds", PyvtkVoxelModeller_SetModelBounds, METH_VARARGS, "V.SetModelBounds((float, float, float, float, float, float))\nC++: void SetModelBounds(const double bounds[6])\nV.SetModelBounds(float, float, float, float, float, float)\nC++: void SetModelBounds(double xmin, double xmax, double ymin,\n double ymax, double zmin, double zmax)\n\nSpecify the position in space to perform the voxelization.\nDefault is (0, 0, 0, 0, 0, 0)\n"}, {"GetModelBounds", PyvtkVoxelModeller_GetModelBounds, METH_VARARGS, "V.GetModelBounds() -> (float, float, float, float, float, float)\nC++: double *GetModelBounds()\n\nSpecify the position in space to perform the voxelization.\nDefault is (0, 0, 0, 0, 0, 0)\n"}, {"SetScalarType", PyvtkVoxelModeller_SetScalarType, METH_VARARGS, "V.SetScalarType(int)\nC++: virtual void SetScalarType(int _arg)\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToFloat", PyvtkVoxelModeller_SetScalarTypeToFloat, METH_VARARGS, "V.SetScalarTypeToFloat()\nC++: void SetScalarTypeToFloat()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToDouble", PyvtkVoxelModeller_SetScalarTypeToDouble, METH_VARARGS, "V.SetScalarTypeToDouble()\nC++: void SetScalarTypeToDouble()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToInt", PyvtkVoxelModeller_SetScalarTypeToInt, METH_VARARGS, "V.SetScalarTypeToInt()\nC++: void SetScalarTypeToInt()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToUnsignedInt", PyvtkVoxelModeller_SetScalarTypeToUnsignedInt, METH_VARARGS, "V.SetScalarTypeToUnsignedInt()\nC++: void SetScalarTypeToUnsignedInt()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToLong", PyvtkVoxelModeller_SetScalarTypeToLong, METH_VARARGS, "V.SetScalarTypeToLong()\nC++: void SetScalarTypeToLong()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToUnsignedLong", PyvtkVoxelModeller_SetScalarTypeToUnsignedLong, METH_VARARGS, "V.SetScalarTypeToUnsignedLong()\nC++: void SetScalarTypeToUnsignedLong()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToShort", PyvtkVoxelModeller_SetScalarTypeToShort, METH_VARARGS, "V.SetScalarTypeToShort()\nC++: void SetScalarTypeToShort()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToUnsignedShort", PyvtkVoxelModeller_SetScalarTypeToUnsignedShort, METH_VARARGS, "V.SetScalarTypeToUnsignedShort()\nC++: void SetScalarTypeToUnsignedShort()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToUnsignedChar", PyvtkVoxelModeller_SetScalarTypeToUnsignedChar, METH_VARARGS, "V.SetScalarTypeToUnsignedChar()\nC++: void SetScalarTypeToUnsignedChar()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToChar", PyvtkVoxelModeller_SetScalarTypeToChar, METH_VARARGS, "V.SetScalarTypeToChar()\nC++: void SetScalarTypeToChar()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetScalarTypeToBit", PyvtkVoxelModeller_SetScalarTypeToBit, METH_VARARGS, "V.SetScalarTypeToBit()\nC++: void SetScalarTypeToBit()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"GetScalarType", PyvtkVoxelModeller_GetScalarType, METH_VARARGS, "V.GetScalarType() -> int\nC++: virtual int GetScalarType()\n\nControl the scalar type of the output image. The default is\nVTK_BIT. NOTE: Not all filters/readers/writers support the\nVTK_BIT scalar type. You may want to use VTK_CHAR as an\nalternative.\n"}, {"SetForegroundValue", PyvtkVoxelModeller_SetForegroundValue, METH_VARARGS, "V.SetForegroundValue(float)\nC++: virtual void SetForegroundValue(double _arg)\n\nSet the Foreground/Background values of the output. The\nForeground value is set when a voxel is occupied. The Background\nvalue is set when a voxel is not occupied. The default\nForegroundValue is 1. The default BackgroundValue is 0.\n"}, {"GetForegroundValue", PyvtkVoxelModeller_GetForegroundValue, METH_VARARGS, "V.GetForegroundValue() -> float\nC++: virtual double GetForegroundValue()\n\nSet the Foreground/Background values of the output. The\nForeground value is set when a voxel is occupied. The Background\nvalue is set when a voxel is not occupied. The default\nForegroundValue is 1. The default BackgroundValue is 0.\n"}, {"SetBackgroundValue", PyvtkVoxelModeller_SetBackgroundValue, METH_VARARGS, "V.SetBackgroundValue(float)\nC++: virtual void SetBackgroundValue(double _arg)\n\nSet the Foreground/Background values of the output. The\nForeground value is set when a voxel is occupied. The Background\nvalue is set when a voxel is not occupied. The default\nForegroundValue is 1. The default BackgroundValue is 0.\n"}, {"GetBackgroundValue", PyvtkVoxelModeller_GetBackgroundValue, METH_VARARGS, "V.GetBackgroundValue() -> float\nC++: virtual double GetBackgroundValue()\n\nSet the Foreground/Background values of the output. The\nForeground value is set when a voxel is occupied. The Background\nvalue is set when a voxel is not occupied. The default\nForegroundValue is 1. The default BackgroundValue is 0.\n"}, {nullptr, nullptr, 0, nullptr} }; static PyTypeObject PyvtkVoxelModeller_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "vtkImagingHybridPython.vtkVoxelModeller", // tp_name sizeof(PyVTKObject), // tp_basicsize 0, // tp_itemsize PyVTKObject_Delete, // tp_dealloc 0, // tp_print nullptr, // tp_getattr nullptr, // tp_setattr nullptr, // tp_compare PyVTKObject_Repr, // tp_repr nullptr, // tp_as_number nullptr, // tp_as_sequence nullptr, // tp_as_mapping nullptr, // tp_hash nullptr, // tp_call PyVTKObject_String, // tp_str PyObject_GenericGetAttr, // tp_getattro PyObject_GenericSetAttr, // tp_setattro &PyVTKObject_AsBuffer, // tp_as_buffer Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC|Py_TPFLAGS_BASETYPE, // tp_flags PyvtkVoxelModeller_Doc, // tp_doc PyVTKObject_Traverse, // tp_traverse nullptr, // tp_clear nullptr, // tp_richcompare offsetof(PyVTKObject, vtk_weakreflist), // tp_weaklistoffset nullptr, // tp_iter nullptr, // tp_iternext nullptr, // tp_methods nullptr, // tp_members PyVTKObject_GetSet, // tp_getset nullptr, // tp_base nullptr, // tp_dict nullptr, // tp_descr_get nullptr, // tp_descr_set offsetof(PyVTKObject, vtk_dict), // tp_dictoffset nullptr, // tp_init nullptr, // tp_alloc PyVTKObject_New, // tp_new PyObject_GC_Del, // tp_free nullptr, // tp_is_gc nullptr, // tp_bases nullptr, // tp_mro nullptr, // tp_cache nullptr, // tp_subclasses nullptr, // tp_weaklist VTK_WRAP_PYTHON_SUPPRESS_UNINITIALIZED }; static vtkObjectBase *PyvtkVoxelModeller_StaticNew() { return vtkVoxelModeller::New(); } PyObject *PyvtkVoxelModeller_ClassNew() { PyVTKClass_Add( &PyvtkVoxelModeller_Type, PyvtkVoxelModeller_Methods, "vtkVoxelModeller", &PyvtkVoxelModeller_StaticNew); PyTypeObject *pytype = &PyvtkVoxelModeller_Type; if ((pytype->tp_flags & Py_TPFLAGS_READY) != 0) { return (PyObject *)pytype; } #if !defined(VTK_PY3K) && PY_VERSION_HEX >= 0x02060000 pytype->tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif pytype->tp_base = (PyTypeObject *)PyvtkImageAlgorithm_ClassNew(); PyType_Ready(pytype); return (PyObject *)pytype; } void PyVTKAddFile_vtkVoxelModeller( PyObject *dict) { PyObject *o; o = PyvtkVoxelModeller_ClassNew(); if (o && PyDict_SetItemString(dict, "vtkVoxelModeller", o) != 0) { Py_DECREF(o); } }