ELF>@0@8 @''000mmDTT8iiEUU@@ $$Std PtdXXX44QtdRtdDTT  GNUGNUtԋ4D>Mç+6^I  D! j ECP60GH F (D8eL@*#aBr(BZA* P  lC(HPP̀@M!@T$$LhL 'bP A!A, @ +0$ @ hH@Pd$T K `aH HX  0/4a@1@   #$'+-./01345679;<=>@BCDGIJLMPRTUXYZ[]_abcefhjlnoprstux{|}̇os^@!r{&Hg.&sVM%O"CoKU-vОqɛPr/ַ]Bgsv+X_{7{}%Ƣ1׀~|S-%BhhteLˆt<3͞c(Gʷ3U]܄N&F]nn_̙|Tٿ]ow❝&V )"|t8/ҠDi7AZYπ'oR`i{[׳Lv{u S4>Q8|n@M1a8Q"^>Yurt5WfF* h:ө;(mY(5K4sXY$%@q^"9a!Rh5.95%:WO,xfuC{ ?ҸfJ  !=Qx L:+؆uIК4^vaXvwX2Nc¬#_ߢw]*~[$B!xQD 7ӞE3cVqخ)&bAQ$n"C/v-`E*Zmiy4PS^;_+Èz yQ['z]1Cԝ% !F五P{XJ[ +f$6REn8㳻wL xsEb\q\c\,wa\T^mV%% x۪B3ag7Y@c? oPdjfXyb }!Eݕ- 9Cv;Iѯ=%<čR}%@zA-t&-E1&P?. 9 >o-.d=r!Cp((!F"9-2Cq=7UY>54@I8 9E @I5'?  ;<.i ]9:P:1>wB6k t1.8"C-9"- _0 { p ,<B7%}7.K'$> , A| 91IO?"` *2"0 X2"@)[+"))"< $" " @<8"6O'")'M4 M"< 7"06)9"E ";1." e#" r" V";3"@)"s + "0O#" " "=?"8<SM\<"\O"@? "0);" \)")@0")8 -M{M:)" Y"0O="l >"0{ {"91$"@ ("0 x"  "P;_)"!,"`@?-"`8;"\ FM&"  0OO XO":/")<" 2" B@"p +")^"@<'"  r,"?"tO1 ")"p;m1MU"9<`SO)"85"$)P3" -!" &": !"Њ 6"$ "b _;"`\)"?<V "p)"a " 0") ">?R";""`!@`M("P x6"p$ %"pD%"0:1MOS$"P)"` )" o `O" >?"8'"" )":3MM?7MN&O"9{("  f")"; "`><  Mf" b &/")"t "`; !" "a sA" ";q@"O "` 4" 1jM ,"@  "aO%A" " :,4")2"p B" OS");"\ &"9 |3");"\)#")=cM[%"Ќ 6"$ 0GOK"p: "0< " " }" 9D1"O"O>PcO0 XM6"0$ " "  m" ??"a)%"0?"0bOOBOF"><+"  pO"P8 '"POz": ":1+*"0 1" 0"p G"@< ''"0 ":": h5Ow.`Ox4")"p)L"a)"0))"`!i0" +"0 ]7POc"O L"@QO8p-OW"8 "=<N M""17"$O$3"),"pD"" _"s ]:<O"s)VpOLA"Л!$" ," D"P<}";1"8 X.M"PO." =<nkOa*"@ "p)"a)"??8:<M0" " /"0 "P h?rO5"OA?0rM MY""P %"O"8 g"<$8"`6 f8"p6 G" *"P14"p 2") "  *"S"9 +";1=" lOi'"@ ,+" ^O$Md"`=<R4" Bp"O "O!")("@ r"0Q "0)D50M9"E _!")G6"@$)" /"@)"@9 "`!*&PM>"@{ " )" 7" 6 ##":"\ 8 "` 1O"`??$")?"P{Oj"a 8="l '@O%<"\ M7H3"0 )"1]M "O`O)BM4" "  "<"08@O*" A"`a)"a V " 7O "<<R(" ,"?"`<1%" Q,"POq"a "P91A" :"EO "OU/" 9;"P\ t " __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_ZN17vtkCardinalSpline3NewEv_ZNK17vtkCardinalSpline19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN17vtkCardinalSpline3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_PyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkCardinalSpline_ClassNewPyVTKClass_AddPyvtkSpline_ClassNewPyType_ReadyPyVTKAddFile_vtkCardinalSplinePyDict_SetItemString_Py_Dealloc_Py_NoneStruct_ZN17vtkCardinalSpline8DeepCopyEP9vtkSpline_ZN13vtkPythonArgs8GetValueERdPyFloat_FromDouble_ZN17vtkCardinalSpline8EvaluateEd_ZN17vtkCardinalSpline7ComputeEvPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del_ZN17vtkKochanekSpline14SetDefaultBiasEd_ZN17vtkKochanekSpline14GetDefaultBiasEv_ZN17vtkKochanekSpline17SetDefaultTensionEd_ZN17vtkKochanekSpline17GetDefaultTensionEv_ZN17vtkKochanekSpline20SetDefaultContinuityEd_ZN17vtkKochanekSpline20GetDefaultContinuityEv_ZN17vtkKochanekSpline3NewEv_ZNK17vtkKochanekSpline19NewInstanceInternalEv_ZN17vtkKochanekSpline3IsAEPKcPyvtkKochanekSpline_ClassNewPyVTKAddFile_vtkKochanekSpline_ZN17vtkKochanekSpline8DeepCopyEP9vtkSpline_ZN17vtkKochanekSpline8EvaluateEd_ZN17vtkKochanekSpline7ComputeEv_ZN16vtkParametricBoy12GetDimensionEv_ZN16vtkParametricBoy9SetZScaleEd_ZN16vtkParametricBoy9GetZScaleEv_ZN16vtkParametricBoy3NewEv_ZNK16vtkParametricBoy19NewInstanceInternalEv_ZN16vtkParametricBoy3IsAEPKcPyvtkParametricBoy_ClassNewPyvtkParametricFunction_ClassNewPyVTKAddFile_vtkParametricBoy_ZN13vtkPythonArgs8GetArrayEPdi_ZN16vtkParametricBoy14EvaluateScalarEPdS0_S0__ZN13vtkPythonArgs8SetArrayEiPKdi_ZN16vtkParametricBoy8EvaluateEPdS0_S0__ZN24vtkParametricConicSpiral12GetDimensionEv_ZN24vtkParametricConicSpiral4SetAEd_ZN24vtkParametricConicSpiral4GetAEv_ZN24vtkParametricConicSpiral4SetBEd_ZN24vtkParametricConicSpiral4GetBEv_ZN24vtkParametricConicSpiral4SetCEd_ZN24vtkParametricConicSpiral4GetCEv_ZN24vtkParametricConicSpiral4SetNEd_ZN24vtkParametricConicSpiral4GetNEv_ZN24vtkParametricConicSpiral3NewEv_ZNK24vtkParametricConicSpiral19NewInstanceInternalEv_ZN24vtkParametricConicSpiral3IsAEPKcPyvtkParametricConicSpiral_ClassNewPyVTKAddFile_vtkParametricConicSpiral_ZN24vtkParametricConicSpiral14EvaluateScalarEPdS0_S0__ZN24vtkParametricConicSpiral8EvaluateEPdS0_S0__ZN21vtkParametricCrossCap12GetDimensionEv_ZN21vtkParametricCrossCap3NewEv_ZNK21vtkParametricCrossCap19NewInstanceInternalEv_ZN21vtkParametricCrossCap3IsAEPKcPyvtkParametricCrossCap_ClassNewPyVTKAddFile_vtkParametricCrossCap_ZN21vtkParametricCrossCap14EvaluateScalarEPdS0_S0__ZN21vtkParametricCrossCap8EvaluateEPdS0_S0__ZN17vtkParametricDini12GetDimensionEv_ZN17vtkParametricDini4SetAEd_ZN17vtkParametricDini4GetAEv_ZN17vtkParametricDini4SetBEd_ZN17vtkParametricDini4GetBEv_ZN17vtkParametricDini3NewEv_ZNK17vtkParametricDini19NewInstanceInternalEv_ZN17vtkParametricDini3IsAEPKcPyvtkParametricDini_ClassNewPyVTKAddFile_vtkParametricDini_ZN17vtkParametricDini14EvaluateScalarEPdS0_S0__ZN17vtkParametricDini8EvaluateEPdS0_S0__ZN22vtkParametricEllipsoid12GetDimensionEv_ZN22vtkParametricEllipsoid10SetXRadiusEd_ZN22vtkParametricEllipsoid10GetXRadiusEv_ZN22vtkParametricEllipsoid10SetYRadiusEd_ZN22vtkParametricEllipsoid10GetYRadiusEv_ZN22vtkParametricEllipsoid10SetZRadiusEd_ZN22vtkParametricEllipsoid10GetZRadiusEv_ZN22vtkParametricEllipsoid3NewEv_ZNK22vtkParametricEllipsoid19NewInstanceInternalEv_ZN22vtkParametricEllipsoid3IsAEPKcPyvtkParametricEllipsoid_ClassNewPyVTKAddFile_vtkParametricEllipsoid_ZN22vtkParametricEllipsoid14EvaluateScalarEPdS0_S0__ZN22vtkParametricEllipsoid8EvaluateEPdS0_S0__ZN20vtkParametricEnneper12GetDimensionEv_ZN20vtkParametricEnneper3NewEv_ZNK20vtkParametricEnneper19NewInstanceInternalEv_ZN20vtkParametricEnneper3IsAEPKcPyvtkParametricEnneper_ClassNewPyVTKAddFile_vtkParametricEnneper_ZN20vtkParametricEnneper14EvaluateScalarEPdS0_S0__ZN20vtkParametricEnneper8EvaluateEPdS0_S0__ZN25vtkParametricFigure8Klein9SetRadiusEd_ZN25vtkParametricFigure8Klein9GetRadiusEv_ZN25vtkParametricFigure8Klein12GetDimensionEv_ZN25vtkParametricFigure8Klein3NewEv_ZNK25vtkParametricFigure8Klein19NewInstanceInternalEv_ZN25vtkParametricFigure8Klein3IsAEPKcPyvtkParametricFigure8Klein_ClassNewPyVTKAddFile_vtkParametricFigure8Klein_ZN25vtkParametricFigure8Klein14EvaluateScalarEPdS0_S0__ZN25vtkParametricFigure8Klein8EvaluateEPdS0_S0__ZN21vtkParametricFunction11SetMinimumUEd_ZN21vtkParametricFunction11GetMinimumUEv_ZN21vtkParametricFunction11SetMaximumUEd_ZN21vtkParametricFunction11GetMaximumUEv_ZN21vtkParametricFunction11SetMinimumVEd_ZN21vtkParametricFunction11GetMinimumVEv_ZN21vtkParametricFunction11SetMaximumVEd_ZN21vtkParametricFunction11GetMaximumVEv_ZN21vtkParametricFunction11SetMinimumWEd_ZN21vtkParametricFunction11GetMinimumWEv_ZN21vtkParametricFunction11SetMaximumWEd_ZN21vtkParametricFunction11GetMaximumWEv_ZN21vtkParametricFunction8SetJoinUEi_ZN21vtkParametricFunction16GetJoinUMinValueEv_ZN21vtkParametricFunction16GetJoinUMaxValueEv_ZN21vtkParametricFunction8GetJoinUEv_ZN21vtkParametricFunction8SetJoinVEi_ZN21vtkParametricFunction16GetJoinVMinValueEv_ZN21vtkParametricFunction16GetJoinVMaxValueEv_ZN21vtkParametricFunction8GetJoinVEv_ZN21vtkParametricFunction8SetJoinWEi_ZN21vtkParametricFunction16GetJoinWMinValueEv_ZN21vtkParametricFunction16GetJoinWMaxValueEv_ZN21vtkParametricFunction8GetJoinWEv_ZN21vtkParametricFunction9SetTwistUEi_ZN21vtkParametricFunction17GetTwistUMinValueEv_ZN21vtkParametricFunction17GetTwistUMaxValueEv_ZN21vtkParametricFunction9GetTwistUEv_ZN21vtkParametricFunction9SetTwistVEi_ZN21vtkParametricFunction17GetTwistVMinValueEv_ZN21vtkParametricFunction17GetTwistVMaxValueEv_ZN21vtkParametricFunction9GetTwistVEv_ZN21vtkParametricFunction9SetTwistWEi_ZN21vtkParametricFunction17GetTwistWMinValueEv_ZN21vtkParametricFunction17GetTwistWMaxValueEv_ZN21vtkParametricFunction9GetTwistWEv_ZN21vtkParametricFunction20SetClockwiseOrderingEi_ZN21vtkParametricFunction28GetClockwiseOrderingMinValueEv_ZN21vtkParametricFunction28GetClockwiseOrderingMaxValueEv_ZN21vtkParametricFunction20GetClockwiseOrderingEv_ZN21vtkParametricFunction23SetDerivativesAvailableEi_ZN21vtkParametricFunction31GetDerivativesAvailableMinValueEv_ZN21vtkParametricFunction31GetDerivativesAvailableMaxValueEv_ZN21vtkParametricFunction23GetDerivativesAvailableEv_ZN13vtkPythonArgs16PureVirtualErrorEv_ZNK21vtkParametricFunction19NewInstanceInternalEv_ZN9vtkObject3NewEv_ZN21vtkParametricFunction3IsAEPKc_ZN21vtkParametricFunction23DerivativesAvailableOffEv_ZN21vtkParametricFunction8JoinUOffEv_ZN21vtkParametricFunction7JoinVOnEv_ZN21vtkParametricFunction8JoinVOffEv_ZN21vtkParametricFunction7JoinWOnEv_ZN21vtkParametricFunction8JoinWOffEv_ZN21vtkParametricFunction8TwistUOnEv_ZN21vtkParametricFunction9TwistUOffEv_ZN21vtkParametricFunction8TwistVOnEv_ZN21vtkParametricFunction7JoinUOnEv_ZN21vtkParametricFunction9TwistVOffEv_ZN21vtkParametricFunction8TwistWOnEv_ZN21vtkParametricFunction9TwistWOffEv_ZN21vtkParametricFunction19ClockwiseOrderingOnEv_ZN21vtkParametricFunction20ClockwiseOrderingOffEv_ZN21vtkParametricFunction22DerivativesAvailableOnEv_ZN13vtkPythonArgs8GetValueERiPyvtkObject_ClassNewPyVTKAddFile_vtkParametricFunction_ZN18vtkParametricKlein12GetDimensionEv_ZN18vtkParametricKlein3NewEv_ZNK18vtkParametricKlein19NewInstanceInternalEv_ZN18vtkParametricKlein3IsAEPKcPyvtkParametricKlein_ClassNewPyVTKAddFile_vtkParametricKlein_ZN18vtkParametricKlein14EvaluateScalarEPdS0_S0__ZN18vtkParametricKlein8EvaluateEPdS0_S0__ZN19vtkParametricMobius9SetRadiusEd_ZN19vtkParametricMobius9GetRadiusEv_ZN19vtkParametricMobius12GetDimensionEv_ZN19vtkParametricMobius3NewEv_ZNK19vtkParametricMobius19NewInstanceInternalEv_ZN19vtkParametricMobius3IsAEPKcPyvtkParametricMobius_ClassNewPyVTKAddFile_vtkParametricMobius_ZN19vtkParametricMobius14EvaluateScalarEPdS0_S0__ZN19vtkParametricMobius8EvaluateEPdS0_S0__ZN24vtkParametricRandomHills12GetDimensionEv_ZN24vtkParametricRandomHills16SetNumberOfHillsEi_ZN24vtkParametricRandomHills16GetNumberOfHillsEv_ZN24vtkParametricRandomHills16SetHillXVarianceEd_ZN24vtkParametricRandomHills16GetHillXVarianceEv_ZN24vtkParametricRandomHills16SetHillYVarianceEd_ZN24vtkParametricRandomHills16GetHillYVarianceEv_ZN24vtkParametricRandomHills16SetHillAmplitudeEd_ZN24vtkParametricRandomHills16GetHillAmplitudeEv_ZN24vtkParametricRandomHills13SetRandomSeedEi_ZN24vtkParametricRandomHills13GetRandomSeedEv_ZN24vtkParametricRandomHills24SetAllowRandomGenerationEi_ZN24vtkParametricRandomHills32GetAllowRandomGenerationMinValueEv_ZN24vtkParametricRandomHills32GetAllowRandomGenerationMaxValueEv_ZN24vtkParametricRandomHills24GetAllowRandomGenerationEv_ZN24vtkParametricRandomHills23SetXVarianceScaleFactorEd_ZN24vtkParametricRandomHills23GetXVarianceScaleFactorEv_ZN24vtkParametricRandomHills23SetYVarianceScaleFactorEd_ZN24vtkParametricRandomHills23GetYVarianceScaleFactorEv_ZN24vtkParametricRandomHills23SetAmplitudeScaleFactorEd_ZN24vtkParametricRandomHills23GetAmplitudeScaleFactorEv_ZN24vtkParametricRandomHills3NewEv_ZNK24vtkParametricRandomHills19NewInstanceInternalEv_ZN24vtkParametricRandomHills3IsAEPKc_ZN24vtkParametricRandomHills23AllowRandomGenerationOnEv_ZN24vtkParametricRandomHills24AllowRandomGenerationOffEvPyvtkParametricRandomHills_ClassNewPyVTKAddFile_vtkParametricRandomHills_ZN24vtkParametricRandomHills14EvaluateScalarEPdS0_S0__ZN24vtkParametricRandomHills8EvaluateEPdS0_S0__ZN18vtkParametricRoman12GetDimensionEv_ZN18vtkParametricRoman9SetRadiusEd_ZN18vtkParametricRoman9GetRadiusEv_ZN18vtkParametricRoman3NewEv_ZNK18vtkParametricRoman19NewInstanceInternalEv_ZN18vtkParametricRoman3IsAEPKcPyvtkParametricRoman_ClassNewPyVTKAddFile_vtkParametricRoman_ZN18vtkParametricRoman14EvaluateScalarEPdS0_S0__ZN18vtkParametricRoman8EvaluateEPdS0_S0__ZN19vtkParametricSpline12GetDimensionEv_ZN19vtkParametricSpline10GetXSplineEv_ZN19vtkParametricSpline10GetYSplineEv_ZN19vtkParametricSpline10GetZSplineEv_ZN19vtkParametricSpline9GetPointsEv_ZN19vtkParametricSpline9SetClosedEi_ZN19vtkParametricSpline9GetClosedEv_ZN19vtkParametricSpline23SetParameterizeByLengthEi_ZN19vtkParametricSpline23GetParameterizeByLengthEv_ZN19vtkParametricSpline17SetLeftConstraintEi_ZN19vtkParametricSpline25GetLeftConstraintMinValueEv_ZN19vtkParametricSpline25GetLeftConstraintMaxValueEv_ZN19vtkParametricSpline17GetLeftConstraintEv_ZN19vtkParametricSpline18SetRightConstraintEi_ZN19vtkParametricSpline26GetRightConstraintMinValueEv_ZN19vtkParametricSpline26GetRightConstraintMaxValueEv_ZN19vtkParametricSpline18GetRightConstraintEv_ZN19vtkParametricSpline12SetLeftValueEd_ZN19vtkParametricSpline12GetLeftValueEv_ZN19vtkParametricSpline13SetRightValueEd_ZN19vtkParametricSpline13GetRightValueEv_ZN19vtkParametricSpline3NewEv_ZNK19vtkParametricSpline19NewInstanceInternalEv_ZN19vtkParametricSpline3IsAEPKc_ZN19vtkParametricSpline22ParameterizeByLengthOnEv_ZN19vtkParametricSpline8ClosedOnEv_ZN19vtkParametricSpline9ClosedOffEv_ZN19vtkParametricSpline23ParameterizeByLengthOffEv_ZN13vtkPythonArgs8GetValueERx_ZN19vtkParametricSpline17SetNumberOfPointsEx_ZN19vtkParametricSpline10SetXSplineEP9vtkSpline_ZN19vtkParametricSpline10SetYSplineEP9vtkSpline_ZN19vtkParametricSpline10SetZSplineEP9vtkSpline_ZN19vtkParametricSpline9SetPointsEP9vtkPoints_ZN19vtkParametricSpline8SetPointExdddPyvtkParametricSpline_ClassNewPyVTKAddFile_vtkParametricSpline_ZN19vtkParametricSpline14EvaluateScalarEPdS0_S0__ZN19vtkParametricSpline8EvaluateEPdS0_S0__ZN27vtkParametricSuperEllipsoid12GetDimensionEv_ZN27vtkParametricSuperEllipsoid10SetXRadiusEd_ZN27vtkParametricSuperEllipsoid10GetXRadiusEv_ZN27vtkParametricSuperEllipsoid10SetYRadiusEd_ZN27vtkParametricSuperEllipsoid10GetYRadiusEv_ZN27vtkParametricSuperEllipsoid10SetZRadiusEd_ZN27vtkParametricSuperEllipsoid10GetZRadiusEv_ZN27vtkParametricSuperEllipsoid5SetN1Ed_ZN27vtkParametricSuperEllipsoid5GetN1Ev_ZN27vtkParametricSuperEllipsoid5SetN2Ed_ZN27vtkParametricSuperEllipsoid5GetN2Ev_ZN27vtkParametricSuperEllipsoid3NewEv_ZNK27vtkParametricSuperEllipsoid19NewInstanceInternalEv_ZN27vtkParametricSuperEllipsoid3IsAEPKcPyvtkParametricSuperEllipsoid_ClassNewPyVTKAddFile_vtkParametricSuperEllipsoid_ZN27vtkParametricSuperEllipsoid14EvaluateScalarEPdS0_S0__ZN27vtkParametricSuperEllipsoid8EvaluateEPdS0_S0__ZN24vtkParametricSuperToroid12GetDimensionEv_ZN24vtkParametricSuperToroid13SetRingRadiusEd_ZN24vtkParametricSuperToroid13GetRingRadiusEv_ZN24vtkParametricSuperToroid21SetCrossSectionRadiusEd_ZN24vtkParametricSuperToroid21GetCrossSectionRadiusEv_ZN24vtkParametricSuperToroid10SetXRadiusEd_ZN24vtkParametricSuperToroid10GetXRadiusEv_ZN24vtkParametricSuperToroid10SetYRadiusEd_ZN24vtkParametricSuperToroid10GetYRadiusEv_ZN24vtkParametricSuperToroid10SetZRadiusEd_ZN24vtkParametricSuperToroid10GetZRadiusEv_ZN24vtkParametricSuperToroid5SetN1Ed_ZN24vtkParametricSuperToroid5GetN1Ev_ZN24vtkParametricSuperToroid5SetN2Ed_ZN24vtkParametricSuperToroid5GetN2Ev_ZN24vtkParametricSuperToroid3NewEv_ZNK24vtkParametricSuperToroid19NewInstanceInternalEv_ZN24vtkParametricSuperToroid3IsAEPKcPyvtkParametricSuperToroid_ClassNewPyVTKAddFile_vtkParametricSuperToroid_ZN24vtkParametricSuperToroid14EvaluateScalarEPdS0_S0__ZN24vtkParametricSuperToroid8EvaluateEPdS0_S0__ZN18vtkParametricTorus13SetRingRadiusEd_ZN18vtkParametricTorus13GetRingRadiusEv_ZN18vtkParametricTorus21SetCrossSectionRadiusEd_ZN18vtkParametricTorus21GetCrossSectionRadiusEv_ZN18vtkParametricTorus12GetDimensionEv_ZN18vtkParametricTorus3NewEv_ZNK18vtkParametricTorus19NewInstanceInternalEv_ZN18vtkParametricTorus3IsAEPKcPyvtkParametricTorus_ClassNewPyVTKAddFile_vtkParametricTorus_ZN18vtkParametricTorus14EvaluateScalarEPdS0_S0__ZN18vtkParametricTorus8EvaluateEPdS0_S0__ZN17vtkParametricKuen12GetDimensionEv_ZN17vtkParametricKuen10SetDeltaV0Ed_ZN17vtkParametricKuen10GetDeltaV0Ev_ZN17vtkParametricKuen3NewEv_ZNK17vtkParametricKuen19NewInstanceInternalEv_ZN17vtkParametricKuen3IsAEPKcPyvtkParametricKuen_ClassNewPyVTKAddFile_vtkParametricKuen_ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__cxa_atexit_ZN17vtkParametricKuen14EvaluateScalarEPdS0_S0__ZN17vtkParametricKuen8EvaluateEPdS0_S0__ZN25vtkParametricPseudosphere12GetDimensionEv_ZN25vtkParametricPseudosphere3NewEv_ZNK25vtkParametricPseudosphere19NewInstanceInternalEv_ZN25vtkParametricPseudosphere3IsAEPKcPyvtkParametricPseudosphere_ClassNewPyVTKAddFile_vtkParametricPseudosphere_ZN25vtkParametricPseudosphere14EvaluateScalarEPdS0_S0__ZN25vtkParametricPseudosphere8EvaluateEPdS0_S0__ZN25vtkParametricBohemianDome4GetAEv_ZN25vtkParametricBohemianDome4SetAEd_ZN25vtkParametricBohemianDome4GetBEv_ZN25vtkParametricBohemianDome4SetBEd_ZN25vtkParametricBohemianDome4GetCEv_ZN25vtkParametricBohemianDome4SetCEd_ZN25vtkParametricBohemianDome12GetDimensionEv_ZN25vtkParametricBohemianDome3NewEv_ZNK25vtkParametricBohemianDome19NewInstanceInternalEv_ZN25vtkParametricBohemianDome3IsAEPKcPyvtkParametricBohemianDome_ClassNewPyVTKAddFile_vtkParametricBohemianDome_ZN25vtkParametricBohemianDome14EvaluateScalarEPdS0_S0__ZN25vtkParametricBohemianDome8EvaluateEPdS0_S0__ZN22vtkParametricHenneberg12GetDimensionEv_ZN22vtkParametricHenneberg3NewEv_ZNK22vtkParametricHenneberg19NewInstanceInternalEv_ZN22vtkParametricHenneberg3IsAEPKcPyvtkParametricHenneberg_ClassNewPyVTKAddFile_vtkParametricHenneberg_ZN22vtkParametricHenneberg14EvaluateScalarEPdS0_S0__ZN22vtkParametricHenneberg8EvaluateEPdS0_S0__ZN27vtkParametricCatalanMinimal12GetDimensionEv_ZN27vtkParametricCatalanMinimal3NewEv_ZNK27vtkParametricCatalanMinimal19NewInstanceInternalEv_ZN27vtkParametricCatalanMinimal3IsAEPKcPyvtkParametricCatalanMinimal_ClassNewPyVTKAddFile_vtkParametricCatalanMinimal_ZN27vtkParametricCatalanMinimal14EvaluateScalarEPdS0_S0__ZN27vtkParametricCatalanMinimal8EvaluateEPdS0_S0__ZN17vtkParametricBour12GetDimensionEv_ZN17vtkParametricBour3NewEv_ZNK17vtkParametricBour19NewInstanceInternalEv_ZN17vtkParametricBour3IsAEPKcPyvtkParametricBour_ClassNewPyVTKAddFile_vtkParametricBour_ZN17vtkParametricBour14EvaluateScalarEPdS0_S0__ZN17vtkParametricBour8EvaluateEPdS0_S0__ZN26vtkParametricPluckerConoid4GetNEv_ZN26vtkParametricPluckerConoid4SetNEi_ZN26vtkParametricPluckerConoid12GetDimensionEv_ZN26vtkParametricPluckerConoid3NewEv_ZNK26vtkParametricPluckerConoid19NewInstanceInternalEv_ZN26vtkParametricPluckerConoid3IsAEPKcPyvtkParametricPluckerConoid_ClassNewPyVTKAddFile_vtkParametricPluckerConoid_ZN26vtkParametricPluckerConoid14EvaluateScalarEPdS0_S0__ZN26vtkParametricPluckerConoid8EvaluateEPdS0_S0_real_initvtkCommonComputationalGeometryPythonPyModule_Create2PyModule_GetDict_Py_FatalErrorFunclibvtkCommonDataModelPython310D-8.1.so.1libvtkCommonComputationalGeometry-8.1.so.1libvtkCommonCorePython310D-8.1.so.1libvtkWrappingPython310Core-8.1.so.1libvtkCommonCore-8.1.so.1libstdc++.so.6libc.so.6libvtkCommonComputationalGeometryPython310D-8.1.so.1GLIBCXX_3.4GLIBC_2.4GLIBC_2.2.5/mnt/storage/workspace/med-ubuntu-free/build/ExtProjs/VTK/lib:C t)JD Dii VDui `DTHTDUDUDUDUE U E(U@E0U`E8UE@UEHUEPUEXUF`U FhU@FpU`FxUFUFUFUGU GU@GU`GUGUGUGU`H@e@exeXg-gIg g6(gJ8g@gHgHXg`g:hgLxggXgPPgXgOg0OggFg Ng(hhi-iRii6iSiiiQij:j@\j jX(j`8jh@jOHj`_Xj`jhjZxj(jjVjjjYjjĥjWjj֥j XjkkTk kF(kP^8k(xkm-mpcm m6(mg8m@mHmbXmб`m:hm@ixmHm!mpdmm8mpfmm.m`emmOmom0nBnPknXnPo-oPuop6pp p(ppt8p@p:HppXp`p!hpPvxpp p@~pxpppzpؼpp|p0pp`ypؽqqqx q(qPx8q @qHq{Xq`qhq@wxqhqOqqqBqqqHs-s0ss6s0sss`ss:sst!t@t tO(t8t`@tBHtXtt` v-(vp8v@v6Hv@Xv`vhvxvv:vvv!vpvv vv`vv`vwww w(wp8w8@wOHwXw`wBhwxww@y-HyXy`y6hyxyyy yy:y@yy!yyyyyzzzh z(z8z@zHzXz``zhz xzzzzXzOzzzBzz{|-|0||6|0|||`|0}:}} }!(}@8}@}OH}X}`}Bh}x}}@-HpX`6hx:@pp`@!p O(8@BHPX` -(`8@6H0X`hx:2 ! xOȂp3؂B`( (8@WH X`hxHc {ȃ؃h,o`( K( 8@HPX`hxHx'u (Ȅ؄B HR# (8@@H`(X`dh@x8A` 0Hȅ ؅0) (8 @HX`hPx0Jp"Ȇ,؆pRP`  (8P @H@X0 `hx -  ȇ؇p  (08@@H +X`hPx 8 ZȈ$؈pc%H $(8@HX`hxP5`! ȉ@/؉!"0# (p8$@HP X%`hx&@+@-HCX`6hDx0Ax+:pE+!ȌB،OK@,BGX/-@Q6U (`P800@:HWX0`h@Tx10Sx1!@ROȏP]؏1B Y38;-ȑ cؑ6p~@b; :(8`<@!HeX`7hxx<)7m8=7r=6Ȓfؒ8>7Pu>H7nP? 7(v8?@7HlXX@`7htx@:7mA$8}B@8ȓ dؓ0Eh8eG6 k J 7(z8L@ 8H{XN`q7h@qxPQ6jRY7oR6ȔiؔXS7`yT6gT O( 80U@BHX@W[ -(8@6HX`hЍx\:\!ȗؗ\8]O] B(8@Wxd- 6(08@HXe`:hxe!OeBȚؚg`0Xh`0Xi `(08Xj@@`HXXk`^`h`x`l``hm`0pn$`ț؛xo`@pza8q `(8r@`HXr`LahxsBaлt`0Xu`Ȝ ؜v+avahw ha(8x@_HpX`z`_h0x|.`Ua@_ȝP؝_K`8 `(ж8@w`HPX@`ah0xi`@Ȍ؞`-hx6H:Ƞ@ؠؑ! (8h@HpX`hx`Xȡء@P0 (8@OHX(`BhPxȚ@-HPX`6hPxp:!ȤPؤK= Y(88@'HX`hxphȥ`إ`@X (08@HX`hpxhPO XBȦئ-P6Ȩ بp0: K(`8@=HPX`Yhx@'@!POȩةB@W8-ȫ%ث6@*%0 :(+8@!H&X`h(xu'@O1BȬ-ج-86Ȯ9خ6: ; !(78@OH`AX`Bh0=x@-HFX`6hQxF:0PȱKر pMXIк (N8@HHX8`hLxh!GOWBȲSز- _6ȴ `شP]X:aؿ !(0^8@OHgX0`Bhcx@-HPnX`6hPoxl0:p!ȷ`mطOw(BrXx-}6~ ({8@:HX(`!h|xO0xB-6ȼؼ :P (8h@!HX`OhxB``XX] X(Xu0X8X@XHX4PXXX`XhXpXUxXXXX_XXXXXXXXXXXXMX.YYY}Y Y(Y0Y8Y@YHY:PYXY`YhYpYxY|YNYYY;YYYY`YYYYYYY>YZPZZjZ# Z(Zc0ZG8Z@ZJHZPZXZ`ZhZpZxZDZ1ZZZZZZZ7ZZRZZhZZZZ [x['[[( [([20[8[@[H[P[AX[[`[h[p[x[[T[[[W[[b[5[[w[[[{[[[[\/\\\ \(\80\a8\@\H\fP\X\$`\h\?p\,x\r\\\\\\\\S\\\\^\#\H\\]]e] ] ]=(]0]E8]@]H]P]X]`]h]%p]x]]K] ]&]]]]]]g]] ]]]]Z] ^m^^^ ^p(^0^8^@^H^P^X^!`^h^p^x^^^d^^^^^^^\^^^^)^0^^<_l___ _F(_-0_8_"@_H_qP_X_O`_h_ip_x___y_y__t_n_z___C_z_____she&h&hk&Hn&q&t&w&{&}&&&H&(&&h&Ȟ&&&(&&&&&H&&e0hkpnrtw0{}ЊpPТ0P0Я0еpeUXhUkUnU8rUtUwUX{U}U؀UUUxUؕUUUUXUxUXUUXUUU8Ue@h@k@n@hr@u@(x@{@(~@@(@ȍ@@@@H@(@@@@(@@(@ȸ@h@ehhhkhnhprhuh0xh{h0~hh0hЍhhhhPh0hhhh0hh0hиhphehknxru8x{8~8؍X888ظxf+h+l+n+r+ u+@x+{+@~+ +@+++ ++`+@++++@++@+++f h l n r 8u Xx { X~ 8 X  ؐ 8  x X  ت  X  X   Xf4h4Xl48o4r4xu4x4{4~4x44844x4X44444444484ػ4f8ilxosux8|~؋xXأ8X8ذ8ضxfQ@iQlQoQ sQuQxQ@|Q~QQQQ`QQQQQ@Q`Q@QQ@QQQ Q` `(`0`8`@@`H`P`X```h`p` x` ` ` ``````9````````aaaa a (a!0aV8a"@avHa$Pa%Xa`a+hapaBxa~a'a(a)a*aaa,a-a.a/aa0a1a2a3a5b6b7b8b b (b0b98b:@bHbPb;Xb<`bhbpb=xb>bb?bAbIbbBbbCbbDbEbFbGbHbIbccccJ c(cK0cX8cL@cMHcNPcYXcO`cPhcRpcSxccTcVcWcXcYclcQcZc[c\c]c^cc_c`cadbdcd3dL d(dd0de8df@dgHdiPdjXd`dkhdkpdmxdndodpdqdrdsdd*d6dtdudvddwdxd{d|e}e~ee eHH/HtH5/%/hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhh%MD%%D%%D%%D%%D%%D%%D%}%D%u%D%m%D%e%D%]%D%U%D%M%D%E%D%=%D%5%D%-%D%%%D%%D%%D% %D%%D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%$D%}$D%u$D%m$D%e$D%]$D%U$D%M$D%E$D%=$D%5$D%-$D%%$D%$D%$D% $D%$D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%#D%}#D%u#D%m#D%e#D%]#D%U#D%M#D%E#D%=#D%5#D%-#D%%#D%#D%#D% #D%#D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%"D%}"D%u"D%m"D%e"D%]"D%U"D%M"D%E"D%="D%5"D%-"D%%"D%"D%"D% "D%"D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%!D%}!D%u!D%m!D%e!D%]!D%U!D%M!D%E!D%=!D%5!D%-!D%%!D%!D%!D% !D%!D% D% D% D% D% D% D% D% D% D% D% D% DH[H~!f.HeaH#f.HjH>'f.H-tH)f.H~H~-f.H-H/f.HŊH2f.H]H>6f.HMH8f.HeH~;f.HH~Ef.HMHGf.HHJf.HHOf.H=HRf.HUGHXf.HOH\f.H[H`f.UH-uwHH(HtD$9D$t;H11/1HT$(dH+%(uLH8HHuҐu$HHuH H@3f.fWUH=NHu]ÐHH=NtHH=NtH]UH@dH%(HD$81H@NHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Mz|$HtHt+HH5OSHPtbHuH1IHumff.fUSHHdH%(HD$81HMHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=mRH'tHH=)MukHuHc~@HH=MtHd@ATUSH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH=QtLH=Ku)HeHc#ZfDLLH=KtL5븐HЉfSH0fnFdH%(HD$(1HPH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD;HHuӐt,fH~ HufHn fHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD+HHuӐt,fH~HufHnfHH`H;ufH~fDfH~f.SH0fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHpH;ufH~fDfH~f.UH@fnFdH%(HD$81HMHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDHHuϐHt$H|$tD$$D$t?f.ztHEHHuHHt@HEHxH;u$f.ztHDHlff.UH@fnFdH%(HD$81HFLHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$H|$!tD$$D$t?f.ztHEH9HuHHt@HEHhH;nu$f.ztHDH ff.UH@fnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD;HHuϐHt$H|$tD$$D$t?f.ztHEHHuH5Ht@HEHXH;u$f.ztHDHff.ATH0fnFdH%(HD$(1HCH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5rHLPtZHuLIHoHbLt1HHP@LG8fE1(H"DIj9fATL%C H HGH5 L uLH yLA\ATIUHmHt HH5lGLHtHmtH]A\HH]A\UH@fnFdH%(HD$81HAHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uzH@]f.HHuϐH5YAHT$H|$|$HtD$$u(HEHPvHuHH@HhUH@fnFdH%(HD$81H@Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uH@]f.HHuϐHt$H|$AtD$$D$u/HEHfH~hHufHniH(fH~lff.H8fnFdH%(HD$(1H?H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$H~HuHH@sf.ff.z uHf.z uHf.z uHUH=RCH u]ÐHH=>tHH==tH]UH@dH%(HD$81HP=Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5<|$HtHt+HH5KHPtrHuH1YHu}ff.fUSHHdH%(HD$81H<Ht$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$tHl$H=JH7tHH=*K$u{HuHc@HH=<tHt@SH0fnFdH%(HD$(1HJH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;"tЉff.fSH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;ufH~fDfH~zf.UH@fnFdH%(HD$81HHHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$H|$1tD$$D$t?f.ztHEHIHuHHt@HEHH;u$f.ztHDHff.ATUSH@fnFdH%(HD$81H>8Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\;HHuːHt$H|$atD$$Ld$uXHELH@H;FulH=EFtLH=sFmu)HeHcZfDLLH=P71tL븐HЉfATH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5DLPtZHuLIHoHbLt1HHP@LG8fE1(H"DIj9fATL%H HEDH5.L(uLHnyLA\ATIUHHt HH5CLHtHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1HCHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_HHu뾐Ld$PHl$0LHVtLl$pHL=tL$ HL!fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEH fInLLLLL$(fI~@Hu LHHLH|ZH$L1H eDAWAVAUATUSH8fnFdH%(H$(1H0Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(xH8[]A\A]A^A_{HHu뾐Ld$PHl$0LH&tLl$pHL tL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBHHH@LLLLD$(@@{Hu LHZHLH2H'L1H=f.fDf.z uHUH=:H,u]ÐHH=;tHH=,tH]UH@dH%(HD$81Hp+Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5+|$HtHt+HH5CHPtHuH1yHuff.fUSHHdH%(HD$81H*Ht$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$tHl$H=BHWtHH=J9DuHuHc@HH=8*tH@SH0fnFdH%(HD$(1H8H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HAH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1H|@H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1Hq?H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;ufH~fDfH~zf.SH0fnFdH%(HD$(1Hf>H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;ufH~fDfH~jf.UH@fnFdH%(HD$81H[=Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$H|$!tD$$D$t?f.ztHEH9HuHHt@HEHH;u$f.ztHDH ff.UH@fnFdH%(HD$81H<Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD;HHuϐHt$H|$tD$$D$t?f.ztHEHHuH5Ht@HEHH;u$f.ztHDHff.UH@fnFdH%(HD$81H:Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$H|$atD$$D$t?f.ztHEHyHuHHt@HEHH;u$f.ztHDHLff.UH@fnFdH%(HD$81HJ9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD{HHuϐHt$H|$tD$$D$t?f.ztHEHHuHuHt@HEHH;u$f.ztHDHff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f1HT$8dH+%(H@[]A\ HHuːHt$H|$1tD$$Ld$uXHELH@H;ulH=6PtLH=C-=u)HeHc裿ZfDLLH= tL赹븐HЉrfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@賾HHufHHRxH;׿IMtoI$H55LPtZUHuL舺IHoH蔷bLD1HHP@L8fE1H"DIj fATL%SH lH4H5LּuXLHILA\ATIUH荼Ht HH54LHstHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1H*Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_{HHu뾐Ld$PHl$0LH&tLl$pHL tL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuE踺H fIn赵LLLL迶L$(fI~@sHu LHRHLHĶ|*H$L1H蟶 5DAWAVAUATUSH8fnFdH%(H$(1HkHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0賺1H$(dH+%(xH8[]A\A]A^A_KHHu뾐Ld$PHl$0LHtLl$pHLݴtL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB荶HHH@LLLLD$(@@KHu LH*HLH蜲H'L1Hw f.fDf.z uHf.z uHf.z uHf.z uHUH=*H1HT$(dH+%(uZH0[fDHHuӐt²HuHcձHHH;tЉ软ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$b1HT$8dH+%(HH[]DHt$H|$?tHl$H=#2HwtHH=jdu軱HuHcΰ@HH=X9tH贮@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$61HT$8dH+%(H@[]A\ۯHHuːHt$H|$tD$$Ld$uXHELH@H;ulH=0 tLH= u)dHeHcsZfDLLH= ѮtL腩븐HЉBfATH0fnFdH%(HD$(1Ht H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ݰE1HD$(dH+%(H0LA\@胮HHufHHRxH;*IMtoI$H5x/LPtZ%HuLXIHoHdbL1HHP@L8fE1ȮH"DIj٫fATL%H ,H.H5NL覬Hu(LHLA\ATIUH-Ht HH5r.LHCtHmtH]A\HH]A\鑩AWAVAUATUSH8fnFdH%(H$(1H^Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0賮1H$(dH+%(H8[]A\A]A^A_KHHu뾐Ld$PHl$0LHtLl$pHLݨtL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuE航H fIn腥LLLL/L$(fI~@CHu LH蹦"HLH蔦|H$L1Ho DAWAVAUATUSH8fnFdH%(H$(1H;Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0胪1H$(dH+%(xH8[]A\A]A^A_HHu뾐Ld$PHl$0LHƤtLl$pHL譤tL$ HL葤fH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB]HHH@LLLLD$(@@Hu LH葢HLHlҥH'L1HGݢf.fD7UH=%H u]ÐHH=tHH=ޣtH]鑞7UH@dH%(HD$81HPHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5芣|$HtHt+HH5*HPtrHuH襟1YHu}ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$tHl$H=0)H7tHH=*$u{HuHc莢@HH=tH譜t@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD軡HHuӐt蒢HuHc襡HHH;jtЉ荟ff.fSH0fnFdH%(HD$(1HvH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDˠHHuӐt,fH~蚡HufHn蛜fHHH;ufH~fDfH~zf.SH0fnFdH%(HD$(1HaH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD軟HHuӐt,fH~芠HufHn苛fHHH;ufH~fDfH~jf.UH@fnFdH%(HD$81H`Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD蛞HHuϐHt$H|$!tD$$D$t?f.ztHEH9HuHHt@HEHH;&u$f.ztHDH ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒟1HT$8dH+%(H@]fD;HHuϐHt$H|$tD$$D$t?f.ztHEHٝHuH5Ht@HEHH;nu$f.ztHDH謚ff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\˛HHuːHt$H|$tD$$Ld$uXHELH@H;vulH="tLH= u)THeHccZfDLLH=tLu븐HЉ2fATH0fnFdH%(HD$(1HdH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11͜E1HD$(dH+%(H0LA\@sHHufHHRxH;"GIMtoI$H5 LPtZHuLHIHoHTbL1HHP@Lט8fE1踚H"DIjɗfATL%SH LH H5L薘uLH LA\ATIUH͛Ht HH5LH3tHmtH]A\HH]A\違AWAVAUATUSH8fnFdH%(H$(1HNHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0裚1H$(dH+%(H8[]A\A]A^A_;HHu뾐Ld$PHl$0LHtLl$pHL͔tL$ HL豔fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuExH fInuLLLL/L$(fI~@3Hu LH詒HLH脒|H$L1H_ DAWAVAUATUSH8fnFdH%(H$(1H+Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0s1H$(dH+%(xH8[]A\A]A^A_ HHu뾐Ld$PHl$0LH趐tLl$pHL蝐tL$ HL聐fH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBMHHH@LLLLϏD$(@@ Hu LH聎HLH\‘H'L1H7͎f.fDf.z uHf.z uHUH=uH|u]ÐHH=gatHH=mNtH]UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5l|$HtHt+HH5HPtHuH1ɏHuff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$蒐1HT$8dH+%(HH[]DHt$H|$otHl$H=H觍tHH=蔍uHuHc@HH=itH@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD+HHuӐtHuHcHHH;©tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莎1HT$(dH+%(u}H0[fD;HHuӐt,fH~ HufHn fHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD+HHuӐt,fH~HufHnfHHH;WufH~fDfH~ڈf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;OufH~fDfH~ʇf.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDHHuϐHt$H|$聄tD$$D$t?f.ztHEH虉HuHHt@HEHH;u$f.ztHDHlff.UH@fnFdH%(HD$81HRHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD蛇HHuϐHt$H|$!tD$$D$t?f.ztHEH9HuHHt@HEHH;u$f.ztHDH ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒈1HT$8dH+%(H@]fD;HHuϐHt$H|$tD$$D$t?f.ztHEHنHuH5Ht@HEHH;&u$f.ztHDH謃ff.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@HHufHHRxH;'IMtoI$H5LPtZ腅HuL踀IHoH}bLt1HHP@LG8fE1(H"DIj9fATUSH@fnFdH%(HD$81H^Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$超1HT$8dH+%(H@[]A\[HHuːHt$H|$tD$$Ld$uXHELH@H;NulH= 蠂tLH=荂u)HeHcZfDLLH=pQtL}븐HЉ€fATL%sH HyH5L薁uLH> LA\ATIUHHt HH5"LH3}tHmtH]A\HH]A\~AWAVAUATUSH8fnFdH%(H$(1HNHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0裃1H$(dH+%(H8[]A\A]A^A_;HHu뾐Ld$PHl$0LH}tLl$pHL}tL$ HL}fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuExH fInuzLLLL_wL$(fI~@3Hu LH{HLH{|~H$L1H_{ {DAWAVAUATUSH8fnFdH%(H$(1H+Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0s1H$(dH+%(xH8[]A\A]A^A_ }HHu뾐Ld$PHl$0LHytLl$pHLytL$ HLyfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBM{HHH@LLLL{D$(@@ {Hu LHwzHLH\wzH'L1H7wwf.fDf.z uHf.z uHf.z uH7uUH=Hy1HT$(dH+%(uZH0[fDvHHuӐtwHuHcvHHH;tЉtff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$bx1HT$8dH+%(HH[]DHt$H|$?rtHl$H= HwutHH=jduuvHuHcu@HH=X9utHos@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$6w1HT$8dH+%(H@[]A\tHHuːHt$H|$qtD$$Ld$uXHELH@H;ulH=  ttLH= tu)duHeHcstZfDLLH=stLn븐HЉBrfATH0fnFdH%(HD$(1HtH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11uE1HD$(dH+%(H0LA\@sHHufHHRxH;RtIMtoI$H56 LPtZ%tHuLXoIHoHdlbLq1HHP@Lq8fE1sH"DIjpfATL%H ,H H5nLqhu(qLHrLA\ATIUH kHt HH50 LHCmtHmtH]A\HH]A\nAWAVAUATUSH8fnFdH%(H$(1H^Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0s1H$(dH+%(H8[]A\A]A^A_KqHHu뾐Ld$PHl$0LHmtLl$pHLmtL$ HLmfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEoH fInjLLLLhL$(fI~@CoHu LHk"oHLHk|nH$L1Hok lDAWAVAUATUSH8fnFdH%(H$(1H;Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0o1H$(dH+%(xH8[]A\A]A^A_mHHu뾐Ld$PHl$0LHitLl$pHLitL$ HLifH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB]kHHH@LLLL/iD$(@@kHu LHgjHLHlgjH'L1HGggf.fDkUH=vH iu]ÐHH=htHH=htH]ckUH@dH%(HD$81HPHt$HD$HFHD$$D$ t0H|$ k1HT$8dH+%(uhH@]@HT$H|$H5h|$HtHt+HH5{HPtriHuHd1YiHu}fff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$"j1HT$8dH+%(HH[]DHt$H|$ctHl$H=H7gtHH=*$gu{hHuHcg@HH=ftHate@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11i1HT$(dH+%(uZH0[fDfHHuӐtgHuHcfHHH;j}tЉdff.fSH0fnFdH%(HD$(1H?H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11h1HT$(dH+%(u}H0[fDeHHuӐt,fH~fHufHnafHHH;w}ufH~fDfH~zcf.UH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$g1HT$8dH+%(H@]fDdHHuϐHt$H|$1`tD$$D$t?f.ztHEHIeHuH|Ht@HEHH;fu$f.ztHDHbff.ATUSH@fnFdH%(HD$81H>Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$e1HT$8dH+%(H@[]A\;cHHuːHt$H|$a_tD$$Ld$uXHELH@H;ulH=btLH=smbu)cHeHcbZfDLLH=P1btL\븐HЉ`fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=dE1HD$(dH+%(H0LA\@aHHufHHRxH;7dIMtoI$H5LPtZbHuL]IHoHZbLt_1HHP@LG`8fE1(bH"DIj9_fATL%H HH5nL`hu_LHy`LA\ATIUHm`Ht HH5LH[tHmtH]A\HH]A\\AWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0b1H$(dH+%(H8[]A\A]A^A__HHu뾐Ld$PHl$0LHV\tLl$pHL=\tL$ HL!\fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuE]H fInXLLLL?WL$(fI~@]Hu LHZ]HLHY|Z]H$L1HY eZDAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0]1H$(dH+%(xH8[]A\A]A^A_{[HHu뾐Ld$PHl$0LH&XtLl$pHL XtL$ HLWfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBYHHqH@LLLLXD$(@@{YHu LHUZYHLHU2YH'L1HU=Vf.f.z uHfD7ZUH=H,Wu]ÐHH=WtHH=VtH]QAWAVAUATUSH8VdH%(H$(1HHt$0HD$8HGfnfnЉD$HfbfD$@uSL(MttuH|$0 Y1H$(dH+%(iH8[]A\A]A^A_fDVHtLx(MtD$D7H|$0O1Ld$PHl$0LH.StLl$pHLSdL$ HLRD|$`\$xLLd$pLLH$f(L$P|$($H$ fH~Ifo$\$fo$fo$fL$fo$) $l$ )$)$)$)$f( $f.L$PfI~t$f.t$X{u|$(f.|$`c]fHnf.l$pt$f.t$x~x\$ f.$c]$f.$$$f.$$f.$$f.$$f.$$f.$$f.$ztur$f.$z^u\$f.$ zHuFTHfInOTHL1H)Q~@THu LHQjTHLHP{rQT$@WfUH@dH%(HD$81H`Ht$HD$HFHD$$D$ t0H|$U1HT$8dH+%(uhH@]@HT$H|$H5 R|$HtHt+HH52HPtSHuHN1iSHuPff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$2T1HT$8dH+%(utHH[]fHt$H|$NtHl$H=PHGQtHH=S4QuRHuHcQ@HKOSH0fnFdH%(HD$(1H(H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11.S1HT$(dH+%(uUH0[fDPHHuӐt1QHuHcPfDHHH;wntЉNfSH0fnFdH%(HD$(1H{H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11NR1HT$(dH+%(uZH0[fDOHHuӐtPHuHcOHHxH;:ltЉMff.fSH0fnFdH%(HD$(1HjH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^Q1HT$(dH+%(uZH0[fD OHHuӐtOHuHcNHHH;ltЉLff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nP1HT$(dH+%(uZH0[fDNHHuӐtNHuHcNHHH;jtЉKff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11~O1HT$(dH+%(uUH0[fD+MHHuӐt1NHuHcMfDHHpH;ctЉKfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11N1HT$(dH+%(uUH0[fDKLHHuӐt1%MHuHc8LfDHHH;htЉ"JfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11M1HT$(dH+%(uZH0[fDkKHHuӐtBLHuHcUKHH(H;ftЉ=Iff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11L1HT$(dH+%(uZH0[fD{JHHuӐtRKHuHceJHHHH; ftЉMHff.fSH0fnFdH%(HD$(1HMH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11K1HT$(dH+%(uUH0[fDIHHuӐt1eJHuHcxIfDHHH;dtЉbGfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11J1HT$(dH+%(uUH0[fDHHHuӐt1IHuHcHfDHH@H;7dtЉFfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11J1HT$(dH+%(uZH0[fDGHHuӐtHHuHcGHHXH;dtЉEff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.I1HT$(dH+%(uZH0[fDFHHuӐtGHuHcFHHH;btЉDff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>H1HT$(dH+%(uUH0[fDEHHuӐt1FHuHcEfDHHPH;btЉCfSH0fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11^G1HT$(dH+%(uUH0[fD EHHuӐt1EHuHcDfDHH H;btЉBfSH0fnFdH%(HD$(1HaH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~F1HT$(dH+%(uZH0[fD+DHHuӐtEHuHcDHHH;`tЉAff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11E1HT$(dH+%(uUH0[fD;CHHuӐt1DHuHc(CfDHHH;ZtЉAfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11D1HT$(dH+%(uUH0[fD[BHHuӐt_x4CHuHcGBDHHPH;_tЉ2@fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11C1HT$(dH+%(uUH0[fD{AHHuӐt_pTBHuHcgADHHH;gZtЉR?fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11B1HT$(dH+%(uuH0[fD@HHuӐt$W8fH~mAHufHnn<@HHH;OYu_8fH~ffH~R>fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11A1HT$(dH+%(uuH0[fD?HHuӐt$W0fH~m@HufHnn;@HHH;?Xu_0fH~ffH~R=fSH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11@1HT$(dH+%(uUH0[fD>HHuӐt_lt?HuHc>DHHH;UtЉrHuHc=DHHH;StЉ;fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.?1HT$(dH+%(uUH0[fD1HT$(dH+%(uUH0[fD;HHuӐt_d1@HHH;Ou_PfH~ffH~"3fUH@fnFdH%(HD$81HrHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$61HT$8dH+%(H@]fD[4HHuϐHt$H|$/tD$$D$t?f.E8ztHEE8H4HuH[LHzf.HEHH;fLuf.E8ztE8HH1@UH@fnFdH%(HD$81H.Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b51HT$8dH+%(H@]fD 3HHuϐHt$H|$.tD$$D$t?f.E@ztHEE@H3HuH KHzf.HEHH;>Puf.E@ztE@HH0@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$41HT$8dH+%(H@]fD1HHuϐHt$H|$A-tD$$D$t?f.EPztHEEPH_2HuHIHzf.HEHH;Luf.EPztEPHH4/@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDk0HHuϐHt$H|$+tD$$D$t?f.EHztHEEHH1HuHkHHzf.HEHH;Muf.EHztEHHH-@UH@fnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r11HT$8dH+%(H@]fD/HHuϐHt$H|$*tD$$D$t?f.E0ztHEE0H/HuHGHzf.HEHH;6Guf.E0ztE0HH,@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"01HT$8dH+%(H@]fD-HHuϐHt$H|$Q)tD$$D$t?f.EXztHEEXHo.HuHEHzf.HEHH;Huf.EXztEXHHD+@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11.1HT$(dH+%(H8@,HHuҐHtAH8H;FuIxt GxA-HuHDHHXH;zHt@2*fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11-1HT$(dH+%(H8@{+HHuҐHtAHxH;BuIGht Gh0,HuHCHfDHH;Ft@1%)DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11,1HT$(dH+%(H8@k*HHuҐHtAHH;GuIGlt Gl +HuH|BHfDHH;ZGt@1(DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11+1HT$(dH+%(H8@[)HHuҐHtAHH;AuIpt Gp*HuHmAHHH;*Ct@'fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11*1HT$(dH+%(H8@K(HHuҐHtAHhH;EuIG|t G|)HuH\@HfDHH;Ct@1%DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11)1HT$(dH+%(H8@;'HHuҐHtAHH;CuIGtt Gt'HuHL?HfDH0H;:>t@1$DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11(1HT$(dH+%(H8@+&HHuҐHtAHHH;AuIGdt Gd&HuH<>HfDHpH;2@t@1#DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o'1HT$(dH+%(H8@%HHuҐHtAHH;=uIG`t G`%HuH,=HfDH@H;@t@1"DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_&1HT$(dH+%(H8@ $HHuҐHtAHHH;?uIdt Gd$HuH<HHhH;=t@!fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O%1HT$(dH+%(H8@"HHuҐHtAHH;K;uIGpt Gp#HuH ;HfDHH; <t@1 DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?$1HT$(dH+%(H8@!HHuҐHtAHH;C?uIlt Gl"HuH9HHH;R<t@fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/#1HT$(dH+%(H8@ HHuҐHtAHhH;[>uI|t G|!HuH8HHH;=t@fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11"1HT$(dH+%(H8@HHuҐHtAH8H;#:uIGxt Gx HuH7HfDH`H;6t@1uDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11!1HT$(dH+%(H8@HHuҐHtAHxH;5uIht GhqHuH6HHH;:t@bfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtAHH;+6uI`t G`aHuH5HH8H;:t@RfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtAHH;{8uItt GtQHuH4HH(H;z4t@BfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD{HHuϐHt$ H|$tD$$t$ tIO1H9uxtHEuxHH{Hn3HmDHEH8H;n5u$O1҅H9uxtuxHH@UH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(H@]fDHHuϐHt$ H|$qtD$$t$ tIO1H9u`tHEu`HH{H2HmDHEHH;62u$O1҅H9u`tu`HH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$t$ tIO1H9udtHEudHVH{H0HmDHEHHH;4u$O1҅H9udtudHH$@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD[HHuϐHt$ H|$tD$$t$ tIO1H9uhtHEuhHH{HN/HmDHEHxH;.u$O1҅H9uhtuhHH@UH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDHHuϐHt$ H|$QtD$$t$ tIO1H9uttHEutHH{H-HmDHEHH;v1u$O1҅H9uttutHHd@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$t$ tIO1H9ultHEulH6H{H,HmDHEHH;1u$O1҅H9ultulHH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD;HHuϐHt$ H|$tD$$t$ tIO1H9uptHEupHH{H.+HmDHEHH;&+u$O1҅H9uptupHH@UH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$ H|$1tD$$t$ tIO1H9u|tHEu|HvH{H)HmDHEHhH;.u$O1҅H9u|tu|HHD@ATUSH@fnFdH%(HD$81HnoHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$ tD$$Ld$uXHELH@H;f*u\H=}tLH=nu)HeHcZfDLL( @HЉ fATH0fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@#HHufHHRxH;"(7 IMtoI$H5u|LPtZHuL IHoHbL 1HHP@L 8fE1hH"DIjy fAWAVAUATUSH8VdH%(H$(1HlHt$0HD$8HGfnfnȉD$HfbfD$@uSL(MttuH|$01H$(dH+%(iH8[]A\A]A^A_fD HtLx(MtD$D7H|$01Ld$PHl$0LH tLl$pHL dL$ HL Dl$`T$xLLH$LLf(D$P\$pl$($fo$T$fo$H$ IfH~fo$fD$fo$)$d$ )$)$)$)$f($f.D$Pd$f.d$X|vl$(f.l$`d^fHnf.\$pt$f.t$x}|$ f.$hb$f.$)#$f.$ $f.$$f.$$f.$$f.$$f.$zyuw$f.$zcua$f.$ zMuK HH#H HL1H}{ Hu LHZ HLHvbT$@WfATL%H1HwH5sJL+ mIum LHI LA\ATIUH}Ht HH5OwLHtHmtH]A\HH]A\f.G0zufHG0fG0fDf.G8zufHG8fG8fDf.G@zufHG@fG@fDf.GHzufHGHfGHfDf.GPzufHGPfGPfDf.GXzufHGXfGXfDO1H9w`tHw`f.f.D1ffDG`O1H9wdtHwdf.f.D1ffDGdO1H9whtHwhf.f.D1ffDGhO1H9wltHwlf.f.D1ffDGlO1H9wptHwpf.f.D1ffDGpO1H9wttHwtf.f.D1ffDGtO1H9wxtHwxf.f.D1ffDGxO1H9w|tHw|f.f.D1ffDG|'UH=erH\u]ÐHH=`cAtH]@HHhH;+"u!W|tG|D1@HHH;u!W`tG`D1@HHHH;u!dtGdfDHHHH;u!WdtGdD1@HHxH;u!htGhfDHHxH;u!WhtGhD1@HHH; u!ltGlfDHHH;C u!WltGlD1@HHH;u!ptGpfDHHH;u!`tG`fDHHH;{u!WptGpD1@HHH;u!ttGtfDHHH;u!WttGtD1@HH8H;u!xtGxfDHH8H;u!WxtGxD1@HHhH;ku!|tG|fDUH@dH%(HD$81H^Ht$HD$HFHD$$D$ t0H|$l1HT$8dH+%(uhH@]@HT$H|$H5\^|$HtHt+HH5HPtHuH1Huff.fSH0fnFdH%(HD$(1HlH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;:tЉff.fUSHHdH%(HD$81H ]Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$otHl$H=HtHH=kuHuHc@HH=\itH@ATUSH@fnFdH%(HD$81H\Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f1HT$8dH+%(H@[]A\ HHuːHt$H|$1tD$$Ld$uXHELH@H;NulH=PtLH=Cj=u)HeHcZfDLLH= [tL븐HЉrfATH0fnFdH%(HD$(1HZH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5@LPtZUHuLIHoHbLD1HHP@L8fE1H"DIj fATL%CH ,HH5>EL8DuXLH~DILA\ATIUHmHt HH5:LHstHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1HgHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_{HHu뾐Ld$PHl$0LH&tLl$pHL tL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEH fInLLLLL$(fI~@sHu LHRHLH|*H$L1H 5DAWAVAUATUSH8fnFdH%(H$(1HkTHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(xH8[]A\A]A^A_KHHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBHH H@LLLLD$(@@KHu LH*HLHH'L1Hw f.fD'UH=H1HT$(dH+%(uZH0[fDHHuӐtHuHcHHH; tЉff.fSH0fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHHH;/ufH~fDfH~f.UH@fnFdH%(HD$81HiHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$H|$atD$$D$t?f.ztHEHyHuHHt@HEHH;u$f.ztHDHLff.ATUSH@fnFdH%(HD$81HnJHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$tD$$Ld$uXHELH@H;~ulH=tLH=Xu)HeHcZfDLLH=IatL븐HЉfATH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mE1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H58LPtZHuLIHoHbL1HHP@Lw8fE1XH"DIjifATL%4H HH5>6L685uLH~5LA\ATIUHHt HH52LHtHmtH]A\HH]A\!AWAVAUATUSH8fnFdH%(H$(1HUHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0C1H$(dH+%(H8[]A\A]A^A_HHu뾐Ld$PHl$0LHtLl$pHLmtL$ HLQfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEH fInLLLL_L$(fI~@Hu LHIHLH$|H$L1H DAWAVAUATUSH8fnFdH%(H$(1HBHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(xH8[]A\A]A^A_HHu뾐Ld$PHl$0LHVtLl$pHL=tL$ HL!fH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBHHEH@LLLLD$(@@Hu LH!HLHbH'L1Hmf.f.z uHfDUH=8H\u]ÐHH=GMAtHH=M>.tH]7UH@dH%(HD$81H=Ht$HD$HFHD$$D$ t0H|$\1HT$8dH+%(uhH@]@HT$H|$H5L=|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81H<Ht$HD$HFHD$$D$ HD$t6H|$r1HT$8dH+%(HH[]DHt$H|$OtHl$H=HtHH=zKtuHuHc@HH=h<ItH@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11^1HT$(dH+%(uUH0[fD HHuӐt1HuHcfDHHH;/tЉfSH0fnFdH%(HD$(1HCH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD+HHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1H IH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD;HHuӐtHuHc%HHH;tЉ ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDKHHuӐt,fH~HufHnfHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD;HHuӐt,fH~ HufHn fHH@H;ufH~fDfH~f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD+HHuӐt,fH~HufHnfHH0H;ufH~fDfH~f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u}H0[fDHHuӐt,fH~HufHnfHH H;ufH~fDfH~f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uUH0[fD HHuӐtHuHcfHHH;tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD+HHuӐt,fH~HufHnfHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uUH0[fDHHuӐtHuHcfHHH;tЉfSH0fnFdH%(HD$(1H%H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD;HHuӐtHuHc$fHHH;/tЉfSH0fnFdH%(HD$(1HSH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD[HHuӐt,fH~*HufHn+fHHH;ufH~fDfH~ f.UH@fnFdH%(HD$81HTHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD;HHuϐHt$H|$tD$$D$t?f.ztHEHHuH5Ht@HEH(H;fu$f.ztHDHff.UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$H|$atD$$D$t?f.ztHEHyHuHHt@HEHH;~u$f.ztHDHLff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD{HHuϐHt$H|$tD$$D$t?f.ztHEHHuHuHt@HEHH;>u$f.ztHDHff.UH@fnFdH%(HD$81HuHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(H@]fDHHuϐHt$ H|$qtD$$t$ t99tHEHHuHH|@HEHH;u;tƉHHff.UH@fnFdH%(HD$81H3Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(H@]fDHHuϐHt$H|$QtD$$D$t?f.ztHEHiHuHHt@HEHH;u$f.ztHDHH(HtD$9D$t;H111HT$(dH+%(H8@kHHuҐHtIHH;uQtLJHuHwHfHH;t@ f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@KHHuҐHtIHH;uQtLJHuHVHHH;t@1ff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(H@]fDHHuϐHt$ H|$qtD$$t$ tQO1H9tHEHHuHHgHEHH;u,O1҅H9tHfHt@ATUSH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH="tLH=/u)$HeHc3ZfDLLH= tLE븐HЉfATH0fnFdH%(HD$(1H4 H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH;IMtoI$H5ѵLPtZHuLIHoH$bLԾ1HHP@L觿8fE1H"DIj虾fATL%H H"H5NLfHuLHٿLA\ATIUHmHt HH5˴LHtHmtH]A\HH]A\QAWAVAUATUSH8fnFdH%(H$(1H-Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0s1H$(dH+%(H8[]A\A]A^A_ HHu뾐Ld$PHl$0LH趻tLl$pHL蝻tL$ HL聻fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEHH fInELLLL_L$(fI~@Hu LHyHLHT|躼H$L1H/ ŹDAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0C1H$(dH+%(xH8[]A\A]A^A_ۺHHu뾐Ld$PHl$0LH膷tLl$pHLmtL$ HLQfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBHHuH@LLLLD$(@@۸Hu LHQ躸HLH,蒸H'L1H蝵f.fD9tHDf.DDf.z uHf.z uHf.z uH9tHDf.DDO1H9tH@f.D1ffDDf.z uHf.z uHf.z uH闶UH=H\u]ÐHH=G"AtHH=M.tH]HHH;u!tLJHHH;u)tLJ1f.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$̵1HT$8dH+%(uhH@]@HT$H|$H5J|$HtHt+HH5HPt2HuHe1Hu=ff.fUSHHdH%(HD$81H\Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$迮tHl$H=HtHH=u;HuHcN@HH=蹱tHm4@SH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11γ1HT$(dH+%(uZH0[fD{HHuӐtRHuHceHHH;JtЉMff.fSH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11޲1HT$(dH+%(u}H0[fD苰HHuӐt,fH~ZHufHn[fHHH;ufH~fDfH~:f.UH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$±1HT$8dH+%(H@]fDkHHuϐHt$H|$tD$$D$t?f.ztHEH HuHeHt@HEHH;u$f.ztHDHܬff.ATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\HHuːHt$H|$!tD$$Ld$uXHELH@H;ulH=@tLH=3-u)脮HeHc蓭ZfDLLH= tL襧븐HЉbfATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@裬HHufHHRxH;*臮IMtoI$H5LPtZEHuLxIHoH脥bL41HHP@L8fE1H"DIjfATL%H HH5LƪuHLHN9LA\ATIUHHt HH5LHctHmtH]A\HH]A\鱧AWAVAUATUSH8fnFdH%(H$(1H~Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0Ӭ1H$(dH+%(H8[]A\A]A^A_kHHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuE訨H fIn襣LLLLOL$(fI~@cHu LH٤BHLH贤|H$L1H菤 %DAWAVAUATUSH8fnFdH%(H$(1H[Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0裨1H$(dH+%(xH8[]A\A]A^A_;HHu뾐Ld$PHl$0LHtLl$pHL͢tL$ HL豢fH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB}HHջH@LLLLߝD$(@@;Hu LH豠HLH茠H'L1Hgf.fDf.z uH釤UH=Hu]ÐHH=ѡtHH=辡tH]q闣UH@dH%(HD$81H0Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5j|$HtHt+HH55HPtRHuH腝19Hu]ff.fUSHHdH%(HD$81H|Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$ߜtHl$H=SHtHH= u[HuHcn@HH=ٟtH荚T@SH0fnFdH%(HD$(1Hl H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD蛟HHuӐtrHuHc腟HHH;tЉmff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD諞HHuӐt肟HuHc蕞HH(H;"tЉ}ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD軝HHuӐt1蕞HuHc訝fDHHH;GtЉ蒛fSH0fnFdH%(HD$(1HXH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11.1HT$(dH+%(uUH0[fDۜHHuӐt1赝HuHcȜfDHH H;tЉ貚fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fDHHuӐtҜHuHcHHH;ڶtЉ͙ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uUH0[fD HHuӐtHuHcfHHH;otЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uUH0[fD+HHuӐtHuHcfHHH;tЉfUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螛1HT$(dH+%(uVH0]fDKHHuӐtH HuHS뵐HHH;tH!SH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辚1HT$(dH+%(uUH0[fDkHHuӐtAHuHcTfHHH;_tЉBfUH0fnFdH%(HD$(1H{H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ޙ1HT$(dH+%(uVH0]fD苗HHuӐtH`HuH蓓뵐HHH;ϴtHaSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD論HHuӐt聗HuHc蔖fHH0H;tЉ肔fUH0fnFdH%(HD$(1HٴH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD˕HHuӐtH蠖HuHӑ뵐HHH;tH術SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u}H0[fDHHuӐt,fH~躕HufHn軐fHHPH;ufH~fDfH~蚒f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u}H0[fDۓHHuӐt,fH~誔HufHn諏fHH@H;ufH~fDfH~芑f.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD˒HHuӐtH蠓HuHӎ뵐HHH;ǰtH衐UH@fnFdH%(HD$81H*Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uWH@]f.ۑHHuϐHt$H|$聒tHt$H蛒HuHH贏@UH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u_H@]f.HHuϐH5yHT$H|$誐|$HtHȊ裑HuHH輎ff.UH@fnFdH%(HD$81HWHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u_H@]f.HHuϐH5yHT$H|$誏|$HtH裐HuHH輍ff.UH@fnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u_H@]f.HHuϐH5yHT$H|$誎|$HtHx裏HuHH輌ff.UH@fnFdH%(HD$81HmHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$認|$HtH裎HuHH輋ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(H@]fDHHuϐHt$ H|$AtD$$t$ t99tHEH葍HuHH|@HEHH;Fu;tƉHHlff.UH@fnFdH%(HD$81HIHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD蛋HHuϐHt$ H|$tD$$t$ t99tHEHAHuHH|@HEHH;Nu;tƉHHff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袌1HT$8dH+%(H@]fDKHHuϐHt$H|$хtD$$D$t?f.ztHEHHuHEHt@HEH8H;֣u$f.ztHDH輇ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(H@]fDHHuϐHt$H|$qtD$$D$t?f.ztHEH艉HuHHt@HEHHH;~u$f.ztHDH\ff.H8fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@蛇HHuҐHtIHH;KuQtLJJHuHHHH;t@1=ff.fH8fnFdH%(HD$(1HWH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11ψ1HT$(dH+%(H8@{HHuҐHtIHH;+uQtLJ+HuHHfHH;t@f.H8fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11诇1HT$(dH+%(H8@[HHuҐHtIHH;cuQtLJ HuHfHHH;bt@1ff.fH8fnFdH%(HD$(1H8H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11菆1HT$(dH+%(H8@;HHuҐHtIHH;CuQtLJHuHGHfHH;Zt@ځf.UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(H@]fD HHuϐHt$ H|$atD$$t$ tQ9O1H9tHEH蠃HuHHgHEHH;u,9O1҅H9tHfHd@UH@fnFdH%(HD$81HáHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD蛁HHuϐHt$ H|$tD$$t$ tQ9O1H9tHEH0HuHHgHEHH;vu,9O1҅H9tHfH~@ATUHXfnFdH%(HD$H1HcHt$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 耂1HT$HdH+%(HX]A\f+HHuѐLd$ HLЀtHt$L{tHt$L{tHt$L}{tT$L$HD$H4$覀H]HHO}ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$61HT$8dH+%(H@[]A\~HHuːHt$H|${tD$$Ld$uXHELH@H;ulH=Y ~tLH= ~u)dHeHcs~ZfDLLH=}tLx븐HЉB|fATH0fnFdH%(HD$(1HtH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@}HHufHHRxH;~IMtoI$H5LPtZ%~HuLXyIHoHdvbL{1HHP@L{8fE1}H"DIjzfATL%CH |HYH5L{u({LH|LA\ATIUHyHt HH5LHCwtHmtH]A\HH]A\xAWAVAUATUSH8fnFdH%(H$(1H^Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0}1H$(dH+%(H8[]A\A]A^A_K{HHu뾐Ld$PHl$0LHwtLl$pHLwtL$ HLwfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEyH fIntLLLLozL$(fI~@CyHu LHu"yHLHu|xH$L1Hou vDAWAVAUATUSH8fnFdH%(H$(1H;Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0y1H$(dH+%(xH8[]A\A]A^A_wHHu뾐Ld$PHl$0LHstLl$pHLstL$ HLsfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB]uHHH@LLLL_nD$(@@uHu LHqtHLHlqtH'L1HGqqf.fDH@H@H@H@9tHDf.DD9tHDf.DD9O1H9tH@f.D1ffDD9O1H9tH@f.D1ffDDf.z uHf.z uHrUH=(Hpu]ÐHH=ptHH=ptH]qkHHH;ۊu!tLJHHH;u!tLJHHH;u)tLJ1f.fHHH; u)tLJ1f.fqUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$q1HT$8dH+%(uhH@]@HT$H|$H5Jo|$HtHt+HH5HPt2pHuHek1pHu=mff.fUSHHdH%(HD$81H\Ht$HD$HFHD$$D$ HD$t6H|$p1HT$8dH+%(HH[]DHt$H|$jtHl$H=4HmtHH=mu;oHuHcNn@HH=mtHmh4l@SH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11o1HT$(dH+%(uZH0[fD{mHHuӐtRnHuHcemHHH;ڈtЉMkff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u}H0[fDlHHuӐt,fH~ZmHufHn[hfHHH;_ufH~fDfH~:jf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11m1HT$(dH+%(u}H0[fD{kHHuӐt,fH~JlHufHnKgfHHH;ufH~fDfH~*if.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11l1HT$(dH+%(u}H0[fDkjHHuӐt,fH~:kHufHn;ffHHH;DžufH~fDfH~hf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11k1HT$(dH+%(u}H0[fD[iHHuӐt,fH~*jHufHn+efHHH;ufH~fDfH~ gf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11j1HT$(dH+%(u}H0[fDKhHHuӐt,fH~iHufHndfHHH;ufH~fDfH~ef.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$i1HT$8dH+%(H@]fD+gHHuϐHt$H|$btD$$D$t?f.ztHEHgHuH%Ht@HEHH;u$f.ztHDHdff.UH@fnFdH%(HD$81H>Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"h1HT$8dH+%(H@]fDeHHuϐHt$H|$QatD$$D$t?f.ztHEHifHuH}Ht@HEHH;~u$f.ztHDHHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$b1HT$8dH+%(H@[]A\;`HHuːHt$H|$a\tD$$Ld$uXHELH@H;yulH=_tLH=sm_u)`HeHc_ZfDLLH=P1_tLY븐HЉ]fATH0fnFdH%(HD$(1HԽH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=aE1HD$(dH+%(H0LA\@^HHufHHRxH;Zy_IMtoI$H5iLPtZ_HuLZIHoHWbLt\1HHP@LG]8fE1(_H"DIj9\fATL%H HH5L]u\LHλy]LA\ATIUH[Ht HH5cLHXtHmtH]A\HH]A\YAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0_1H$(dH+%(H8[]A\A]A^A_\HHu뾐Ld$PHl$0LHVYtLl$pHL=YtL$ HL!YfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEZH fInULLLL?SL$(fI~@ZHu LHWZHLHV|ZZH$L1HV eWDAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0Z1H$(dH+%(xH8[]A\A]A^A_{XHHu뾐Ld$PHl$0LH&UtLl$pHL UtL$ HLTfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBVHHnH@LLLLOXD$(@@{VHu LHRZVHLHR2VH'L1HR=Sf.fDf.z uHf.z uHf.z uHf.z uHf.z uHTUH=iH,Su]ÐHH=StHH=RtH]MOUH@dH%(HD$81HpHt$HD$HFHD$$D$ t0H|$,U1HT$8dH+%(uhH@]@HT$H|$H5R|$HtHt+HH5HPtSHuHN1ySHuPff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$BT1HT$8dH+%(HH[]DHt$H|$NtHl$H=HWQtHH=JDQuRHuHcQ@HH=8QtHKO@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.S1HT$(dH+%(uZH0[fDPHHuӐtQHuHcPHHH;mtЉNff.fSH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>R1HT$(dH+%(u}H0[fDOHHuӐt,fH~PHufHnKfHHH;iufH~fDfH~Mf.SH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.Q1HT$(dH+%(u}H0[fDNHHuӐt,fH~OHufHnJfHHH;jufH~fDfH~Lf.SH0fnFdH%(HD$(1HQH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11P1HT$(dH+%(u}H0[fDMHHuӐt,fH~NHufHnIfHHH;'gufH~fDfH~zKf.SH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11O1HT$(dH+%(u}H0[fDLHHuӐt,fH~MHufHnHfHHH;gufH~fDfH~jJf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11M1HT$(dH+%(u}H0[fDKHHuӐt,fH~zLHufHn{GfHHH;bufH~fDfH~ZIf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11L1HT$(dH+%(u}H0[fDJHHuӐt,fH~jKHufHnkFfHHH;7hufH~fDfH~JHf.SH0fnFdH%(HD$(1HxH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11K1HT$(dH+%(u}H0[fDIHHuӐt,fH~ZJHufHn[EfHHH;_eufH~fDfH~:Gf.UH@fnFdH%(HD$81H-Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$J1HT$8dH+%(H@]fDkHHHuϐHt$H|$CtD$$D$t?f.ztHEH IHuHe`Ht@HEHH;du$f.ztHDHEff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$bI1HT$8dH+%(H@]fD GHHuϐHt$H|$BtD$$D$t?f.ztHEHGHuH_Ht@HEHH;_u$f.ztHDH|Dff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$H1HT$8dH+%(H@]fDEHHuϐHt$H|$1AtD$$D$t?f.ztHEHIFHuH]Ht@HEHH;_u$f.ztHDHCff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$F1HT$8dH+%(H@]fDKDHHuϐHt$H|$?tD$$D$t?f.ztHEHDHuHE\Ht@HEHH;au$f.ztHDHAff.UH@fnFdH%(HD$81HXHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$BE1HT$8dH+%(H@]fDBHHuϐHt$H|$q>tD$$D$t?f.ztHEHCHuHZHt@HEHH;]u$f.ztHDH\@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$C1HT$8dH+%(H@]fDAHHuϐHt$H|$=tD$$D$t?f.ztHEH)BHuHYHt@HEHH;Yu$f.ztHDH>ff.UH@fnFdH%(HD$81HDHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(H@]fD+@HHuϐHt$H|$;tD$$D$t?f.ztHEH@HuH%XHt@HEHH;Xu$f.ztHDH=ff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$A1HT$8dH+%(H@[]A\>HHuːHt$H|$:tD$$Ld$uXHELH@H;VXulH=Ò>tLH==u)D?HeHcS>ZfDLLH=М=tLe8븐HЉ"HuL89IHoHD6bL:1HHP@L;8fE1=H"DIj:fATL%cH HÐH5L;u;LH.;LA\ATIUH7Ht HH5lLH#7tHmtH]A\HH]A\q8AWAVAUATUSH8fnFdH%(H$(1H>Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0=1H$(dH+%(H8[]A\A]A^A_+;HHu뾐Ld$PHl$0LH7tLl$pHL7tL$ HL7fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEh9H fIne4LLLLo4L$(fI~@#9Hu LH59HLHt5|8H$L1HO5 5DAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0c91H$(dH+%(xH8[]A\A]A^A_6HHu뾐Ld$PHl$0LH3tLl$pHL3tL$ HLq3fH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB=5HHLH@LLLL1D$(@@4Hu LHq14HLHL14H'L1H'11f.fDf.z uHf.z uHf.z uHf.z uHf.z uHf.z uHf.z uH.UH=H,1u]ÐHH=1tHH=0tH]+0UH@dH%(HD$81HpHt$HD$HFHD$$D$ t0H|$,31HT$8dH+%(uhH@]@HT$H|$H50|$HtHt+HH5,HPt1HuH,1y1Hu.ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B21HT$8dH+%(HH[]DHt$H|$,tHl$H=JHW/tHH=JD/u0HuHc/@HH=8/tH)-@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.11HT$(dH+%(uZH0[fD.HHuӐt/HuHc.HHH;JKtЉ,ff.fSH0fnFdH%(HD$(1H‚H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>01HT$(dH+%(u}H0[fD-HHuӐt,fH~.HufHn)fHHH;GufH~fDfH~+f.SH0fnFdH%(HD$(1HȁH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11./1HT$(dH+%(u}H0[fD,HHuӐt,fH~-HufHn(fHHH;_DufH~fDfH~*f.UH@fnFdH%(HD$81HƀHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$.1HT$8dH+%(H@]fD+HHuϐHt$H|$A'tD$$D$t?f.ztHEHY,HuHCHt@HEHH;VBu$f.ztHDH,)ff.UH@fnFdH%(HD$81HtHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$,1HT$8dH+%(H@]fD[*HHuϐHt$H|$%tD$$D$t?f.ztHEH*HuHUBHt@HEHH;Gu$f.ztHDH'ff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$F+1HT$8dH+%(H@[]A\(HHuːHt$H|$%tD$$Ld$uXHELH@H;@ulH= 0(tLH=#(u)t)HeHc(ZfDLLH='tL"븐HЉR&fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11)E1HD$(dH+%(H0LA\@'HHufHHRxH;@&IMtoI$H5χLPtZ5(HuLh#IHoHt bL$%1HHP@L%8fE1'H"DIj$fATL%H LH H5~L%xu8%LH)&LA\ATIUHMHt HH5ɆLHS!tHmtH]A\HH]A\"AWAVAUATUSH8fnFdH%(H$(1HnHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0'1H$(dH+%(H8[]A\A]A^A_[%HHu뾐Ld$PHl$0LH"tLl$pHL!tL$ HL!fH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuE#H fInLLLLo$L$(fI~@S#Hu LH2#HLH| #H$L1H  DAWAVAUATUSH8fnFdH%(H$(1HKHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0#1H$(dH+%(xH8[]A\A]A^A_+!HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBmHH6H@LLLLD$(@@+Hu LH HLH|H'L1HWf.f.z uHf.z uHfDUH=}Hu]ÐHH=tHH={ntH]!UH@dH%(HD$81HzHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5z|$HtHt+HH5ăHPtHuH51Hu ff.fUSHHdH%(HD$81H,zHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=u HuHc@HH=ytH=@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDKHHuӐt"HuHc5HHH;J1tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD[HHuӐt,fH~*HufHn+fHHH;'4ufH~fDfH~ f.UH@fnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD;HHuϐHt$H|$tD$$D$t?f.ztHEHHuH50Ht@HEHH;.u$f.ztHDHff.ATUSH@fnFdH%(HD$81HuHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;v-ulH=(~tLH=u)THeHccZfDLLH=ttLu븐HЉ2fATH0fnFdH%(HD$(1HdtH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@sHHufHHRxH;",'IMtoI$H5|LPtZHuLHIHoHTbL1HHP@L8fE1H"DIjfATL%|H H(|H5~~Lx}uLH} LA\ATIUH Ht HH5{LH3tHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1HNHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_;HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuExH fInu LLLLL$(fI~@3Hu LH HLH |H$L1H_ DAWAVAUATUSH8fnFdH%(H$(1H+nHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0s1H$(dH+%(xH8[]A\A]A^A_ HHu뾐Ld$PHl$0LH tLl$pHL tL$ HL fH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBM HH$H@LLLL D$(@@ Hu LH HLH\  H'L1H7  f.fDf.z uH'UH=rH u]ÐHH=x tHH=i tH]AUH@dH%(HD$81HiHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5h: |$HtHt+HH5[zHPt" HuHU1 Hu-ff.fSH0fnFdH%(HD$(1HulH=/wtLH=tu)HeHcZfDLLH=peQtL븐HЉfATH0fnFdH%(HD$(1HdH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5uLPtZHuLIHoHbL1HHP@Lg8fE1HH"DIjYfATL%cpH ,H/uH5qL&puLH.qLA\ATIUHHt HH5tLHtHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1HqHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$031H$(dH+%(H8[]A\A]A^A_HHu뾐Ld$PHl$0LHvtLl$pHL]tL$ HLAfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEH fInLLLLL$(fI~@Hu LH9HLH|zH$L1H DAWAVAUATUSH8fnFdH%(H$(1H^Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(xH8[]A\A]A^A_HHu뾐Ld$PHl$0LHFtLl$pHL-tL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBHH5H@LLLLD$(@@Hu LHzHLHRH'L1H]f.fDUH=lHu]ÐHH=wiqtHH=}Z^tH]GUH@dH%(HD$81HYHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|Y |$HtHt+HH5FpHPtHuH%1Huff.fUSHHdH%(HD$81HYHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=doHtHH=guHuHc@HH=XytH-@SH0fnFdH%(HD$(1H gH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD;HHuӐtHuHc%HHH;tЉ ff.fSH0fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDKHHuӐt,fH~HufHnfHHH;ufH~fDfH~f.SH0fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD;HHuӐt,fH~ HufHn fHHH;gufH~fDfH~f.SH0fnFdH%(HD$(1HmH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD+HHuӐt,fH~HufHnfHHH;/ufH~fDfH~f.UH@fnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(H@]fD HHuϐHt$H|$tD$$D$t?f.ztHEHHuH Ht@HEHH;u$f.ztHDH|ff.UH@fnFdH%(HD$81HukHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$H|$1tD$$D$t?f.ztHEHIHuH Ht@HEHH;u$f.ztHDHff.UH@fnFdH%(HD$81HjHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDKHHuϐHt$H|$tD$$D$t?f.ztHEHHuHE Ht@HEHH;^ u$f.ztHDHff.ATH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@HHufHHRxH;:WIMtoI$H5eLPtZHuLIHoHbL1HHP@LW8fE18H"DIjIfATUSH@fnFdH%(HD$81HnNHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$tD$$Ld$uXHELH@H; ulH=ZdtLH=\u)HeHcZfDLLH=MatL븐HЉfATL%\H HcH5^L]u(LHN]LA\ATIUH]Ht HH5scLHCtHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1H^[Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_KHHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEH fInLLLLL$(fI~@CHu LH"HLH|H$L1Ho DAWAVAUATUSH8fnFdH%(H$(1H;HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(xH8[]A\A]A^A_HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB]HHH@LLLLD$(@@Hu LHHLHlH'L1HGf.f.z uHf.z uHf.z uHfDgUH=YHLu]ÐHH=7R1tHH==CtH]UH@dH%(HD$81HBHt$HD$HFHD$$D$ t0H|$L1HT$8dH+%(uhH@]@HT$H|$H5H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5A[LPtZ5HuLhIHoHtbL$1HHP@L8fE1H"DIjfATL%OH ,HZH5~QLxPu8LHP)LA\ATIUHHt HH5;ZLHStHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1HnKHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_[HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEH fInLLLLL$(fI~@SHu LH2HLH| H$L1H DAWAVAUATUSH8fnFdH%(H$(1HK8Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(xH8[]A\A]A^A_+HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuBmHHH@LLLL/D$(@@+Hu LH HLH|H'L1HWf.fDUH=QHu]ÐHH=CtHH= 4tH]UH@dH%(HD$81H`3Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5 3|$HtHt+HH5%UHPtHuH1iHuff.fSH0fnFdH%(HD$(1HAH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fUSHHdH%(HD$81H1Ht$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$tHl$H=SSHWtHH=J@DuHuHc@HH=81tH@ATUSH@fnFdH%(HD$81H0Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH=QtLH=>u)DHeHcSZfDLLH=/tLe븐HЉ"fATH0fnFdH%(HD$(1HT/H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@cHHufHHRxH;wIMtoI$H5PLPtZHuL8IHoHDbL1HHP@L8fE1H"DIjfATL%cCH ,HOH5DLCuLH.DLA\ATIUHHt HH5OLH#tHmtH]A\HH]A\qAWAVAUATUSH8fnFdH%(H$(1H><Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_+HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEhH fIneLLLL/L$(fI~@#Hu LHHLHt|H$L1HO DAWAVAUATUSH8fnFdH%(H$(1H)Ht$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0c1H$(dH+%(xH8[]A\A]A^A_HHu뾐Ld$PHl$0LHtLl$pHLtL$ HLqfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB=HHH@LLLLD$(@@Hu LHqHLHLH'L1H'f.fDUH=FHu]ÐHH=3tHH=$tH]qǾUH@dH%(HD$81H0$Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5#j|$HtHt+HH5JHPtRHuH19Hu]ff.fSH0fnFdH%(HD$(1Hl2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtrHuHcHHH;tЉmff.fUSHHdH%(HD$81H"Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=IH'tHH=1ukHuHc~@HH="tH蝽d@ATUSH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$豾tD$$Ld$uXHELH@H;ulH=GtLH=/u)HeHc#ZfDLLH= tL5븐HЉfATH0fnFdH%(HD$(1H$ H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@3HHufHHRxH;跹IMtoI$H5nFLPtZHuLIHoHbLľ1HHP@L藿8fE1xH"DIj艾fATL%6H ,HEH5^8LVX7uؾLH7ɿLA\ATIUH荺Ht HH5hELHtHmtH]A\HH]A\AAWAVAUATUSH8fnFdH%(H$(1H-Ht$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0c1H$(dH+%(H8[]A\A]A^A_HHu뾐Ld$PHl$0LH覻tLl$pHL荻tL$ HLqfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuE8H fIn5LLLL诸L$(fI~@Hu LHiҼHLHD|誼H$L1H 赹DAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$031H$(dH+%(xH8[]A\A]A^A_˺HHu뾐Ld$PHl$0LHvtLl$pHL]tL$ HLAfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB HHeH@LLLL?D$(@@˸Hu LHA誸HLH肸H'L1H荵f.fDUH=<H輶u]ÐHH=$衶tHH=莶tH]AGUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$輸1HT$8dH+%(uhH@]@HT$H|$H5:|$HtHt+HH5@HPt"HuHU1 Hu-ff.fUSHHdH%(HD$81HLHt$HD$HFHD$$D$ HD$t6H|$ҷ1HT$8dH+%(HH[]DHt$H|$诱tHl$H=&?HtHH="Դu+HuHc>@HH=詴tH]$@SH0fnFdH%(HD$(1H<"H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辶1HT$(dH+%(uZH0[fDkHHuӐtBHuHcUHHH;tЉ=ff.fSH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ε1HT$(dH+%(uUH0[fD{HHuӐtQHuHcdfHHH;7tЉRfUH@fnFdH%(HD$81HK*Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD苲HHuϐHt$ H|$tD$$t$ t99tHEH1HuHH|@HEHH;u;tƉHH ff.ATUSH@fnFdH%(HD$81H.Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$膳1HT$8dH+%(H@[]A\+HHuːHt$H|$QtD$$Ld$uXHELH@H;ulH=:ptLH=c]u)贱HeHcðZfDLLH=@!tLժ븐HЉ蒮fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-E1HD$(dH+%(H0LA\@ӯHHufHHRxH;IMtoI$H5[9LPtZuHuL訫IHoH质bLd1HHP@L78fE1H"DIj)fATL%(H H8H5)L(uxLH(iLA\ATIUH蝫Ht HH5U8LH蓩tHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnЉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$01H$(dH+%(H8[]A\A]A^A_蛭HHu뾐Ld$PHl$0LHFtLl$pHL-tL$ HLfH$\$Xd$`l$xt$pL$PH$ D$D\$$fo$d$ fH~fo$fo$l$fo$|$)$)$)$)$L$(ILLLLL$(fI~f.L$PL$f.L$Xd$ f.d$`fHnf.|$p\$f.\$x}wl$f.$b\$f.$#$f.$$f.$$f.$$f.$$f.$$f.$zsuq$f.$z]u[$f.$ zGuEثH fInզLLLLL$(fI~@蓫Hu LH rHLH|JH$L1H迧 UDAWAVAUATUSH8fnFdH%(H$(1HHt$0HD$8HGfnȉD$HfbfD$@u]L(Mt!D$@+D$DtWH|$0ӫ1H$(dH+%(xH8[]A\A]A^A_kHHu뾐Ld$PHl$0LHtLl$pHLtL$ HLfH$T$X\$`d$xH$ D$DD$Pl$pT$$\$ fo$fo$d$fH~fo$fo$t$)$)$)$)$D$(ILLLLD$(f.D$Pt$f.t$Xt$ f.t$`fHnf.l$p|$f.|$xzt|$f.$_Y$f.$ $f.$$f.$$f.$$f.$$f.$$f.$zpun$f.$zZuX$f.$ zDuB譧HHH@LLLL/D$(@@kHu LHJHLH輣"H'L1H藣-f.D9tHDf.DfDUH=[/Hu]ÐHH=tHH= tH]顟ATH=C!UH褥HI艟HHHEHMH襥H荣H%HmH5HHHHuH]HHͦH՟H荢HeHHeH]H5H-H5H蝡HŢHL]A\H5c4H=4HHSafeDownCastvtkObjectBasevtkCardinalSplineIsTypeOfIsANewInstanceDeepCopyEvaluateComputevtkSplinevtkObjectvtkCardinalSpline - computes an interpolating spline using a a Cardinal basis. Superclass: vtkSpline vtkCardinalSpline is a concrete implementation of vtkSpline using a Cardinal basis. @sa vtkSpline vtkKochanekSpline vtkCommonComputationalGeometryPython.vtkCardinalSplineV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkCardinalSpline C++: static vtkCardinalSpline *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCardinalSpline C++: vtkCardinalSpline *NewInstance() V.Compute() C++: void Compute() override; Compute Cardinal Splines for each dependent variable V.Evaluate(float) -> float C++: double Evaluate(double t) override; Evaluate a 1D cardinal spline. V.DeepCopy(vtkSpline) C++: void DeepCopy(vtkSpline *s) override; Deep copy of cardinal spline data. vtkKochanekSplineGetDefaultContinuityGetDefaultBiasGetDefaultTensionSetDefaultContinuitySetDefaultTensionSetDefaultBiasvtkKochanekSpline - computes an interpolating spline using a Kochanek basis. Superclass: vtkSpline Implements the Kochanek interpolating spline described in: Kochanek, D., Bartels, R., "Interpolating Splines with Local Tension, Continuity, and Bias Control," Computer Graphics, vol. 18, no. 3, pp. 33-41, July 1984. These splines give the user more control over the shape of the curve than the cardinal splines implemented in vtkCardinalSpline. Three parameters can be specified. All have a range from -1 to 1. Tension controls how sharply the curve bends at an input point. A value of -1 produces more slack in the curve. A value of 1 tightens the curve. Continuity controls the continuity of the first derivative at input points. Bias controls the direction of the curve at it passes through an input point. A value of -1 undershoots the point while a value of 1 overshoots the point. These three parameters give the user broad control over the shape of the interpolating spline. The original Kochanek paper describes the effects nicely and is recommended reading. @sa vtkSpline vtkCardinalSpline vtkCommonComputationalGeometryPython.vtkKochanekSplineV.SafeDownCast(vtkObjectBase) -> vtkKochanekSpline C++: static vtkKochanekSpline *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkKochanekSpline C++: vtkKochanekSpline *NewInstance() V.Compute() C++: void Compute() override; Compute Kochanek Spline coefficients. V.Evaluate(float) -> float C++: double Evaluate(double t) override; Evaluate a 1D Kochanek spline. V.SetDefaultBias(float) C++: virtual void SetDefaultBias(double _arg) Set the bias for all points. Default is 0. V.GetDefaultBias() -> float C++: virtual double GetDefaultBias() Set the bias for all points. Default is 0. V.SetDefaultTension(float) C++: virtual void SetDefaultTension(double _arg) Set the tension for all points. Default is 0. V.GetDefaultTension() -> float C++: virtual double GetDefaultTension() Set the tension for all points. Default is 0. V.SetDefaultContinuity(float) C++: virtual void SetDefaultContinuity(double _arg) Set the continuity for all points. Default is 0. V.GetDefaultContinuity() -> float C++: virtual double GetDefaultContinuity() Set the continuity for all points. Default is 0. vtkParametricBoyGetDimensionGetZScaleSetZScaleEvaluateScalarvtkParametricFunctionvtkParametricBoy - Generate Boy's surface. Superclass: vtkParametricFunction vtkParametricBoy generates Boy's surface. This is a Model of the projective plane without singularities. It was found by Werner Boy on assignment from David Hilbert. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricBoyV.SafeDownCast(vtkObjectBase) -> vtkParametricBoy C++: static vtkParametricBoy *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricBoy C++: vtkParametricBoy *NewInstance() V.GetDimension() -> int C++: int GetDimension() override; Return the parametric dimension of the class. V.SetZScale(float) C++: virtual void SetZScale(double _arg) Set/Get the scale factor for the z-coordinate. Default is 1/8, giving a nice shape. V.GetZScale() -> float C++: virtual double GetZScale() Set/Get the scale factor for the z-coordinate. Default is 1/8, giving a nice shape. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Boy's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricConicSpiralGetNGetCGetBGetASetNSetBSetASetCvtkParametricConicSpiral - Generate conic spiral surfaces that resemble sea-shells. Superclass: vtkParametricFunction vtkParametricConicSpiral generates conic spiral surfaces. These can resemble sea shells, or may look like a torus "eating" its own tail. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricConicSpiralV.SafeDownCast(vtkObjectBase) -> vtkParametricConicSpiral C++: static vtkParametricConicSpiral *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricConicSpiral C++: vtkParametricConicSpiral *NewInstance() V.SetA(float) C++: virtual void SetA(double _arg) Set/Get the scale factor. Default = 0.2 V.GetA() -> float C++: virtual double GetA() Set/Get the scale factor. Default = 0.2 V.SetB(float) C++: virtual void SetB(double _arg) Set/Get the A function coefficient. See the definition in Parametric surfaces referred to above. Default is 1. V.GetB() -> float C++: virtual double GetB() Set/Get the A function coefficient. See the definition in Parametric surfaces referred to above. Default is 1. V.SetC(float) C++: virtual void SetC(double _arg) Set/Get the B function coefficient. See the definition in Parametric surfaces referred to above. Default is 0.1. V.GetC() -> float C++: virtual double GetC() Set/Get the B function coefficient. See the definition in Parametric surfaces referred to above. Default is 0.1. V.SetN(float) C++: virtual void SetN(double _arg) Set/Get the C function coefficient. See the definition in Parametric surfaces referred to above. Default is 2. V.GetN() -> float C++: virtual double GetN() Set/Get the C function coefficient. See the definition in Parametric surfaces referred to above. Default is 2. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A conic spiral surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricCrossCapvtkParametricCrossCap - Generate a cross-cap. Superclass: vtkParametricFunction vtkParametricCrossCap generates a cross-cap which is a non-orientable self-intersecting single-sided surface. This is one possible image of a projective plane in three-space. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricCrossCapV.SafeDownCast(vtkObjectBase) -> vtkParametricCrossCap C++: static vtkParametricCrossCap *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricCrossCap C++: vtkParametricCrossCap *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A cross-cap. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricDinivtkParametricDini - Generate Dini's surface. Superclass: vtkParametricFunction vtkParametricDini generates Dini's surface. Dini's surface is a surface that possesses constant negative Gaussian curvature For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricDiniV.SafeDownCast(vtkObjectBase) -> vtkParametricDini C++: static vtkParametricDini *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricDini C++: vtkParametricDini *NewInstance() V.SetA(float) C++: virtual void SetA(double _arg) Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 1. V.GetA() -> float C++: virtual double GetA() Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 1. V.SetB(float) C++: virtual void SetB(double _arg) Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 0.2 V.GetB() -> float C++: virtual double GetB() Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 0.2 V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Dini's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricEllipsoidGetXRadiusGetYRadiusGetZRadiusSetZRadiusSetXRadiusSetYRadiusvtkParametricEllipsoid - Generate an ellipsoid. Superclass: vtkParametricFunction vtkParametricEllipsoid generates an ellipsoid. If all the radii are the same, we have a sphere. An oblate spheroid occurs if RadiusX = RadiusY > RadiusZ. Here the Z-axis forms the symmetry axis. To a first approximation, this is the shape of the earth. A prolate spheroid occurs if RadiusX = RadiusY < RadiusZ. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricEllipsoidV.SafeDownCast(vtkObjectBase) -> vtkParametricEllipsoid C++: static vtkParametricEllipsoid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricEllipsoid C++: vtkParametricEllipsoid *NewInstance() V.SetXRadius(float) C++: virtual void SetXRadius(double _arg) Set/Get the scaling factor for the x-axis. Default is 1. V.GetXRadius() -> float C++: virtual double GetXRadius() Set/Get the scaling factor for the x-axis. Default is 1. V.SetYRadius(float) C++: virtual void SetYRadius(double _arg) Set/Get the scaling factor for the y-axis. Default is 1. V.GetYRadius() -> float C++: virtual double GetYRadius() Set/Get the scaling factor for the y-axis. Default is 1. V.SetZRadius(float) C++: virtual void SetZRadius(double _arg) Set/Get the scaling factor for the z-axis. Default is 1. V.GetZRadius() -> float C++: virtual double GetZRadius() Set/Get the scaling factor for the z-axis. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; An ellipsoid. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricEnnepervtkParametricEnneper - Generate Enneper's surface. Superclass: vtkParametricFunction vtkParametricEnneper generates Enneper's surface. Enneper's surface is a a self-intersecting minimal surface possessing constant negative Gaussian curvature For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricEnneperV.SafeDownCast(vtkObjectBase) -> vtkParametricEnneper C++: static vtkParametricEnneper *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricEnneper C++: vtkParametricEnneper *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Enneper's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uv are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricFigure8KleinGetRadiusSetRadiusvtkParametricFigure8Klein - Generate a figure-8 Klein bottle. Superclass: vtkParametricFunction vtkParametricFigure8Klein generates a figure-8 Klein bottle. A Klein bottle is a closed surface with no interior and only one surface. It is unrealisable in 3 dimensions without intersecting surfaces. It can be realised in 4 dimensions by considering the map $F:R^2 \rightarrow R^4 $ given by: - $f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)* sin(u/2)) $ This representation of the immersion in $R^3 $ is formed by taking two Mobius strips and joining them along their boundaries, this is the so called "Figure-8 Klein Bottle" For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricFigure8KleinV.SafeDownCast(vtkObjectBase) -> vtkParametricFigure8Klein C++: static vtkParametricFigure8Klein *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricFigure8Klein C++: vtkParametricFigure8Klein *NewInstance() V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the radius of the bottle. Default is 1. V.GetRadius() -> float C++: virtual double GetRadius() Set/Get the radius of the bottle. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A Figure-8 Klein bottle. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . GetTwistWMinValueGetTwistWMaxValueGetTwistVMaxValueGetJoinWMinValueGetJoinUMaxValueGetClockwiseOrderingMaxValueGetTwistUMinValueGetClockwiseOrderingMinValueGetJoinVMaxValueGetTwistUMaxValueGetJoinVMinValueGetJoinUMinValueGetJoinWMaxValueGetTwistVMinValueGetClockwiseOrderingGetTwistVGetMaximumUGetMinimumUGetTwistUGetDerivativesAvailableGetJoinWGetJoinVGetMaximumWGetMinimumVGetMaximumVGetTwistWGetJoinUGetMinimumWSetMaximumUSetMinimumVSetMinimumWSetMaximumVSetMinimumUSetMaximumWClockwiseOrderingOnJoinWOffTwistUOffTwistVOnDerivativesAvailableOffTwistWOffJoinVOffJoinUOffJoinVOnTwistVOffTwistUOnDerivativesAvailableOnClockwiseOrderingOffJoinWOnJoinUOnTwistWOnSetClockwiseOrderingSetJoinUSetJoinVSetJoinWSetTwistWSetTwistUSetTwistVSetDerivativesAvailableGetDerivativesAvailableMaxValueGetDerivativesAvailableMinValuevtkParametricFunction - abstract interface for parametric functions Superclass: vtkObject vtkParametricFunction is an abstract interface for functions defined by parametric mapping i.e. f(u,v,w)->(x,y,z) where u_min <= u < u_max, v_min <= v < v_max, w_min <= w < w_max. (For notational convenience, we will write f(u)->x and assume that u means (u,v,w) and x means (x,y,z).) The interface contains the pure virtual function, Evaluate(), that generates a point and the derivatives at that point which are then used to construct the surface. A second pure virtual function, EvaluateScalar(), can be used to generate a scalar for the surface. Finally, the GetDimension() virtual function is used to differentiate 1D, 2D, and 3D parametric functions. Since this abstract class defines a pure virtual API, its subclasses must implement the pure virtual functions GetDimension(), Evaluate() and EvaluateScalar(). This class has also methods for defining a range of parametric values (u,v,w). @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. @sa vtkParametricFunctionSource - tessellates a parametric function @sa Implementations of derived classes implementing non-orentable surfaces: vtkParametricBoy vtkParametricCrossCap vtkParametricFigure8Klein vtkParametricKlein vtkParametricMobius vtkParametricRoman @sa Implementations of derived classes implementing orientable surfaces: vtkParametricConicSpiral vtkParametricDini vtkParametricEllipsoid vtkParametricEnneper vtkParametricRandomHills vtkParametricSuperEllipsoid vtkParametricSuperToroid vtkParametricTorus vtkCommonComputationalGeometryPython.vtkParametricFunctionV.SafeDownCast(vtkObjectBase) -> vtkParametricFunction C++: static vtkParametricFunction *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricFunction C++: vtkParametricFunction *NewInstance() V.GetDimension() -> int C++: virtual int GetDimension() Return the dimension of parametric space. Depending on the dimension, then the (u,v,w) parameters and associated information (e.g., derivates) have meaning. For example, if the dimension of the function is one, then u[0] and Duvw[0...2] have meaning. This is a pure virtual function that must be instantiated in a derived class. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) Performs the mapping $f(uvw)->(Pt,Duvw)$f. This is a pure virtual function that must be instantiated in a derived class. * uvw are the parameters, with u corresponding to uvw[0], * v to uvw[1] and w to uvw[2] respectively. Pt is the returned Cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Note that the first three values in Duvw are Du, the next three are Dv, * and the final three are Dw. Du Dv Dw are the partial derivatives of the * function at the point Pt with respect to u, v and w respectively. V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) Calculate a user defined scalar using one or all of uvw, Pt, Duvw. This is a pure virtual function that must be instantiated in a derived class. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v, and w. * Pt, Duvw are obtained from Evaluate(). V.SetMinimumU(float) C++: virtual void SetMinimumU(double _arg) Set/Get the minimum u-value. V.GetMinimumU() -> float C++: virtual double GetMinimumU() Set/Get the minimum u-value. V.SetMaximumU(float) C++: virtual void SetMaximumU(double _arg) Set/Get the maximum u-value. V.GetMaximumU() -> float C++: virtual double GetMaximumU() Set/Get the maximum u-value. V.SetMinimumV(float) C++: virtual void SetMinimumV(double _arg) Set/Get the minimum v-value. V.GetMinimumV() -> float C++: virtual double GetMinimumV() Set/Get the minimum v-value. V.SetMaximumV(float) C++: virtual void SetMaximumV(double _arg) Set/Get the maximum v-value. V.GetMaximumV() -> float C++: virtual double GetMaximumV() Set/Get the maximum v-value. V.SetMinimumW(float) C++: virtual void SetMinimumW(double _arg) Set/Get the minimum w-value. V.GetMinimumW() -> float C++: virtual double GetMinimumW() Set/Get the minimum w-value. V.SetMaximumW(float) C++: virtual void SetMaximumW(double _arg) Set/Get the maximum w-value. V.GetMaximumW() -> float C++: virtual double GetMaximumW() Set/Get the maximum w-value. V.SetJoinU(int) C++: virtual void SetJoinU(int _arg) Set/Get the flag which joins the first triangle strip to the last one. V.GetJoinUMinValue() -> int C++: virtual int GetJoinUMinValue() Set/Get the flag which joins the first triangle strip to the last one. V.GetJoinUMaxValue() -> int C++: virtual int GetJoinUMaxValue() Set/Get the flag which joins the first triangle strip to the last one. V.GetJoinU() -> int C++: virtual int GetJoinU() Set/Get the flag which joins the first triangle strip to the last one. V.JoinUOn() C++: virtual void JoinUOn() Set/Get the flag which joins the first triangle strip to the last one. V.JoinUOff() C++: virtual void JoinUOff() Set/Get the flag which joins the first triangle strip to the last one. V.SetJoinV(int) C++: virtual void SetJoinV(int _arg) Set/Get the flag which joins the the ends of the triangle strips. V.GetJoinVMinValue() -> int C++: virtual int GetJoinVMinValue() Set/Get the flag which joins the the ends of the triangle strips. V.GetJoinVMaxValue() -> int C++: virtual int GetJoinVMaxValue() Set/Get the flag which joins the the ends of the triangle strips. V.GetJoinV() -> int C++: virtual int GetJoinV() Set/Get the flag which joins the the ends of the triangle strips. V.JoinVOn() C++: virtual void JoinVOn() Set/Get the flag which joins the the ends of the triangle strips. V.JoinVOff() C++: virtual void JoinVOff() Set/Get the flag which joins the the ends of the triangle strips. V.SetJoinW(int) C++: virtual void SetJoinW(int _arg) Set/Get the flag which joins the the ends of the triangle strips. V.GetJoinWMinValue() -> int C++: virtual int GetJoinWMinValue() Set/Get the flag which joins the the ends of the triangle strips. V.GetJoinWMaxValue() -> int C++: virtual int GetJoinWMaxValue() Set/Get the flag which joins the the ends of the triangle strips. V.GetJoinW() -> int C++: virtual int GetJoinW() Set/Get the flag which joins the the ends of the triangle strips. V.JoinWOn() C++: virtual void JoinWOn() Set/Get the flag which joins the the ends of the triangle strips. V.JoinWOff() C++: virtual void JoinWOff() Set/Get the flag which joins the the ends of the triangle strips. V.SetTwistU(int) C++: virtual void SetTwistU(int _arg) Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistUMinValue() -> int C++: virtual int GetTwistUMinValue() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistUMaxValue() -> int C++: virtual int GetTwistUMaxValue() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistU() -> int C++: virtual int GetTwistU() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. V.TwistUOn() C++: virtual void TwistUOn() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. V.TwistUOff() C++: virtual void TwistUOff() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. V.SetTwistV(int) C++: virtual void SetTwistV(int _arg) Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistVMinValue() -> int C++: virtual int GetTwistVMinValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistVMaxValue() -> int C++: virtual int GetTwistVMaxValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistV() -> int C++: virtual int GetTwistV() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. V.TwistVOn() C++: virtual void TwistVOn() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. V.TwistVOff() C++: virtual void TwistVOff() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. V.SetTwistW(int) C++: virtual void SetTwistW(int _arg) Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistWMinValue() -> int C++: virtual int GetTwistWMinValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistWMaxValue() -> int C++: virtual int GetTwistWMaxValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. V.GetTwistW() -> int C++: virtual int GetTwistW() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. V.TwistWOn() C++: virtual void TwistWOn() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. V.TwistWOff() C++: virtual void TwistWOff() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. V.SetClockwiseOrdering(int) C++: virtual void SetClockwiseOrdering(int _arg) Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). V.GetClockwiseOrderingMinValue() -> int C++: virtual int GetClockwiseOrderingMinValue() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). V.GetClockwiseOrderingMaxValue() -> int C++: virtual int GetClockwiseOrderingMaxValue() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). V.GetClockwiseOrdering() -> int C++: virtual int GetClockwiseOrdering() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). V.ClockwiseOrderingOn() C++: virtual void ClockwiseOrderingOn() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). V.ClockwiseOrderingOff() C++: virtual void ClockwiseOrderingOff() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). V.SetDerivativesAvailable(int) C++: virtual void SetDerivativesAvailable(int _arg) Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). V.GetDerivativesAvailableMinValue() -> int C++: virtual int GetDerivativesAvailableMinValue() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). V.GetDerivativesAvailableMaxValue() -> int C++: virtual int GetDerivativesAvailableMaxValue() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). V.GetDerivativesAvailable() -> int C++: virtual int GetDerivativesAvailable() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). V.DerivativesAvailableOn() C++: virtual void DerivativesAvailableOn() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). V.DerivativesAvailableOff() C++: virtual void DerivativesAvailableOff() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). vtkParametricKleinvtkParametricKlein - Generates a "classical" representation of a Klein bottle. Superclass: vtkParametricFunction vtkParametricKlein generates a "classical" representation of a Klein bottle. A Klein bottle is a closed surface with no interior and only one surface. It is unrealisable in 3 dimensions without intersecting surfaces. It can be realised in 4 dimensions by considering the map $F:R^2 \rightarrow R^4 $ given by: - $f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)* sin(u/2)) $ The classical representation of the immersion in $R^3 $ is returned by this function. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricKleinV.SafeDownCast(vtkObjectBase) -> vtkParametricKlein C++: static vtkParametricKlein *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricKlein C++: vtkParametricKlein *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A Klein bottle. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricMobiusvtkParametricMobius - Generate a Mobius strip. Superclass: vtkParametricFunction vtkParametricMobius generates a Mobius strip. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricMobiusV.SafeDownCast(vtkObjectBase) -> vtkParametricMobius C++: static vtkParametricMobius *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricMobius C++: vtkParametricMobius *NewInstance() V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the radius of the Mobius strip. Default is 1. V.GetRadius() -> float C++: virtual double GetRadius() Set/Get the radius of the Mobius strip. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; The Mobius strip. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Du, Dv are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricRandomHillsGetHillXVarianceGetAmplitudeScaleFactorGetYVarianceScaleFactorGetXVarianceScaleFactorGetAllowRandomGenerationGetHillAmplitudeGetNumberOfHillsGetRandomSeedGetHillYVarianceSetYVarianceScaleFactorSetXVarianceScaleFactorSetHillXVarianceSetRandomSeedSetHillYVarianceSetHillAmplitudeSetNumberOfHillsSetAmplitudeScaleFactorAllowRandomGenerationOnAllowRandomGenerationOffSetAllowRandomGenerationGetAllowRandomGenerationMinValueGetAllowRandomGenerationMaxValuevtkParametricRandomHills - Generate a surface covered with randomly placed hills. Superclass: vtkParametricFunction vtkParametricRandomHills generates a surface covered with randomly placed hills. Hills will vary in shape and height since the presence of nearby hills will contribute to the shape and height of a given hill. An option is provided for placing hills on a regular grid on the surface. In this case the hills will all have the same shape and height. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricRandomHillsV.SafeDownCast(vtkObjectBase) -> vtkParametricRandomHills C++: static vtkParametricRandomHills *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricRandomHills C++: vtkParametricRandomHills *NewInstance() V.SetNumberOfHills(int) C++: virtual void SetNumberOfHills(int _arg) Set/Get the number of hills. Default is 30. V.GetNumberOfHills() -> int C++: virtual int GetNumberOfHills() Set/Get the number of hills. Default is 30. V.SetHillXVariance(float) C++: virtual void SetHillXVariance(double _arg) Set/Get the hill variance in the x-direction. Default is 2.5. V.GetHillXVariance() -> float C++: virtual double GetHillXVariance() Set/Get the hill variance in the x-direction. Default is 2.5. V.SetHillYVariance(float) C++: virtual void SetHillYVariance(double _arg) Set/Get the hill variance in the y-direction. Default is 2.5. V.GetHillYVariance() -> float C++: virtual double GetHillYVariance() Set/Get the hill variance in the y-direction. Default is 2.5. V.SetHillAmplitude(float) C++: virtual void SetHillAmplitude(double _arg) Set/Get the hill amplitude (height). Default is 2. V.GetHillAmplitude() -> float C++: virtual double GetHillAmplitude() Set/Get the hill amplitude (height). Default is 2. V.SetRandomSeed(int) C++: virtual void SetRandomSeed(int _arg) Set/Get the Seed for the random number generator, a value of 1 will initialize the random number generator, a negative value will initialize it with the system time. Default is 1. V.GetRandomSeed() -> int C++: virtual int GetRandomSeed() Set/Get the Seed for the random number generator, a value of 1 will initialize the random number generator, a negative value will initialize it with the system time. Default is 1. V.SetAllowRandomGeneration(int) C++: virtual void SetAllowRandomGeneration(int _arg) Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. V.GetAllowRandomGenerationMinValue() -> int C++: virtual int GetAllowRandomGenerationMinValue() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. V.GetAllowRandomGenerationMaxValue() -> int C++: virtual int GetAllowRandomGenerationMaxValue() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. V.GetAllowRandomGeneration() -> int C++: virtual int GetAllowRandomGeneration() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. V.AllowRandomGenerationOn() C++: virtual void AllowRandomGenerationOn() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. V.AllowRandomGenerationOff() C++: virtual void AllowRandomGenerationOff() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. V.SetXVarianceScaleFactor(float) C++: virtual void SetXVarianceScaleFactor(double _arg) Set/Get the scaling factor for the variance in the x-direction. Default is 1/3. V.GetXVarianceScaleFactor() -> float C++: virtual double GetXVarianceScaleFactor() Set/Get the scaling factor for the variance in the x-direction. Default is 1/3. V.SetYVarianceScaleFactor(float) C++: virtual void SetYVarianceScaleFactor(double _arg) Set/Get the scaling factor for the variance in the y-direction. Default is 1/3. V.GetYVarianceScaleFactor() -> float C++: virtual double GetYVarianceScaleFactor() Set/Get the scaling factor for the variance in the y-direction. Default is 1/3. V.SetAmplitudeScaleFactor(float) C++: virtual void SetAmplitudeScaleFactor(double _arg) Set/Get the scaling factor for the amplitude. Default is 1/3. V.GetAmplitudeScaleFactor() -> float C++: virtual double GetAmplitudeScaleFactor() Set/Get the scaling factor for the amplitude. Default is 1/3. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Construct a terrain consisting of hills on a surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the Cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricRomanvtkParametricRoman - Generate Steiner's Roman Surface. Superclass: vtkParametricFunction vtkParametricRoman generates Steiner's Roman Surface. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricRomanV.SafeDownCast(vtkObjectBase) -> vtkParametricRoman C++: static vtkParametricRoman *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricRoman C++: vtkParametricRoman *NewInstance() V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the radius. Default is 1. V.GetRadius() -> float C++: virtual double GetRadius() Set/Get the radius. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Steiner's Roman Surface * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricSplineGetRightConstraintMaxValueGetLeftConstraintMinValueGetRightConstraintMinValueGetLeftConstraintMaxValueGetParameterizeByLengthGetClosedGetPointsGetLeftConstraintGetXSplineGetRightConstraintGetYSplineGetRightValueGetLeftValueGetZSplineSetNumberOfPointsSetXSplineSetYSplineSetZSplineSetPointsvtkPointsSetParameterizeByLengthSetClosedSetLeftValueSetRightValueParameterizeByLengthOffParameterizeByLengthOnClosedOffClosedOnSetRightConstraintSetLeftConstraintSetPointvtkParametricSpline - parametric function for 1D interpolating splines Superclass: vtkParametricFunction vtkParametricSpline is a parametric function for 1D interpolating splines. vtkParametricSpline maps the single parameter u into a 3D point (x,y,z) using three instances of interpolating splines. This family of 1D splines is guaranteed to be parameterized in the interval [0,1]. Attempting to evaluate outside this interval will cause the parameter u to be clamped in the range [0,1]. When constructed, this class creates instances of vtkCardinalSpline for each of the x-y-z coordinates. The user may choose to replace these with their own instances of subclasses of vtkSpline. @warning If you wish to tessellate the spline, use the class vtkParametricFunctionSource. @sa vtkSpline vtkKochanekSpline vtkCardinalSpline vtkCommonComputationalGeometryPython.vtkParametricSplineV.SafeDownCast(vtkObjectBase) -> vtkParametricSpline C++: static vtkParametricSpline *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricSpline C++: vtkParametricSpline *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double u[3], double Pt[3], double Du[9]) override; Evaluate the spline at parametric coordinate u[0] returning the point coordinate Pt[3]. V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double u[3], double Pt[3], double Du[9]) override; Evaluate a scalar value at parametric coordinate u[0] and Pt[3]. The scalar value is just the parameter u[0]. V.SetXSpline(vtkSpline) C++: void SetXSpline(vtkSpline *) By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. V.SetYSpline(vtkSpline) C++: void SetYSpline(vtkSpline *) By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. V.SetZSpline(vtkSpline) C++: void SetZSpline(vtkSpline *) By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. V.GetXSpline() -> vtkSpline C++: virtual vtkSpline *GetXSpline() By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. V.GetYSpline() -> vtkSpline C++: virtual vtkSpline *GetYSpline() By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. V.GetZSpline() -> vtkSpline C++: virtual vtkSpline *GetZSpline() By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. V.SetPoints(vtkPoints) C++: void SetPoints(vtkPoints *) Specify the list of points defining the spline. Do this by specifying a vtkPoints array containing the points. Note that the order of the points in vtkPoints is the order that the splines will be fit. V.GetPoints() -> vtkPoints C++: virtual vtkPoints *GetPoints() Specify the list of points defining the spline. Do this by specifying a vtkPoints array containing the points. Note that the order of the points in vtkPoints is the order that the splines will be fit. V.SetNumberOfPoints(int) C++: void SetNumberOfPoints(vtkIdType numPts) Another API to set the points. Set the number of points and then set the individual point coordinates. V.SetPoint(int, float, float, float) C++: void SetPoint(vtkIdType index, double x, double y, double z) Another API to set the points. Set the number of points and then set the individual point coordinates. V.SetClosed(int) C++: virtual void SetClosed(int _arg) Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.GetClosed() -> int C++: virtual int GetClosed() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.ClosedOn() C++: virtual void ClosedOn() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.ClosedOff() C++: virtual void ClosedOff() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.SetParameterizeByLength(int) C++: virtual void SetParameterizeByLength(int _arg) Control whether the spline is parameterized by length or by point index. Default is by length. V.GetParameterizeByLength() -> int C++: virtual int GetParameterizeByLength() Control whether the spline is parameterized by length or by point index. Default is by length. V.ParameterizeByLengthOn() C++: virtual void ParameterizeByLengthOn() Control whether the spline is parameterized by length or by point index. Default is by length. V.ParameterizeByLengthOff() C++: virtual void ParameterizeByLengthOff() Control whether the spline is parameterized by length or by point index. Default is by length. V.SetLeftConstraint(int) C++: virtual void SetLeftConstraint(int _arg) Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetLeftConstraintMinValue() -> int C++: virtual int GetLeftConstraintMinValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetLeftConstraintMaxValue() -> int C++: virtual int GetLeftConstraintMaxValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetLeftConstraint() -> int C++: virtual int GetLeftConstraint() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.SetRightConstraint(int) C++: virtual void SetRightConstraint(int _arg) Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetRightConstraintMinValue() -> int C++: virtual int GetRightConstraintMinValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetRightConstraintMaxValue() -> int C++: virtual int GetRightConstraintMaxValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetRightConstraint() -> int C++: virtual int GetRightConstraint() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.SetLeftValue(float) C++: virtual void SetLeftValue(double _arg) The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.GetLeftValue() -> float C++: virtual double GetLeftValue() The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.SetRightValue(float) C++: virtual void SetRightValue(double _arg) The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.GetRightValue() -> float C++: virtual double GetRightValue() The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. vtkParametricSuperEllipsoidGetN2GetN1SetN1SetN2vtkParametricSuperEllipsoid - Generate a superellipsoid. Superclass: vtkParametricFunction vtkParametricSuperEllipsoid generates a superellipsoid. A superellipsoid is a versatile primitive that is controlled by two parameters n1 and n2. As special cases it can represent a sphere, square box, and closed cylindrical can. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. Also see: http://paulbourke.net/geometry/superellipse/ @warning Care needs to be taken specifying the bounds correctly. You may need to carefully adjust MinimumU, MinimumV, MaximumU, MaximumV. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricSuperEllipsoidV.SafeDownCast(vtkObjectBase) -> vtkParametricSuperEllipsoid C++: static vtkParametricSuperEllipsoid *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricSuperEllipsoid C++: vtkParametricSuperEllipsoid *NewInstance() V.SetN1(float) C++: virtual void SetN1(double _arg) Set/Get the "squareness" parameter in the z axis. Default is 1. V.GetN1() -> float C++: virtual double GetN1() Set/Get the "squareness" parameter in the z axis. Default is 1. V.SetN2(float) C++: virtual void SetN2(double _arg) Set/Get the "squareness" parameter in the x-y plane. Default is 1. V.GetN2() -> float C++: virtual double GetN2() Set/Get the "squareness" parameter in the x-y plane. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A superellipsoid. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricSuperToroidGetCrossSectionRadiusGetRingRadiusSetRingRadiusSetCrossSectionRadiusvtkParametricSuperToroid - Generate a supertoroid. Superclass: vtkParametricFunction vtkParametricSuperToroid generates a supertoroid. Essentially a supertoroid is a torus with the sine and cosine terms raised to a power. A supertoroid is a versatile primitive that is controlled by four parameters r0, r1, n1 and n2. r0, r1 determine the type of torus whilst the value of n1 determines the shape of the torus ring and n2 determines the shape of the cross section of the ring. It is the different values of these powers which give rise to a family of 3D shapes that are all basically toroidal in shape. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. Also see: http://paulbourke.net/geometry/torus/#super. @warning Care needs to be taken specifying the bounds correctly. You may need to carefully adjust MinimumU, MinimumV, MaximumU, MaximumV. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricSuperToroidV.SafeDownCast(vtkObjectBase) -> vtkParametricSuperToroid C++: static vtkParametricSuperToroid *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricSuperToroid C++: vtkParametricSuperToroid *NewInstance() V.SetRingRadius(float) C++: virtual void SetRingRadius(double _arg) Set/Get the radius from the center to the middle of the ring of the supertoroid. Default is 1. V.GetRingRadius() -> float C++: virtual double GetRingRadius() Set/Get the radius from the center to the middle of the ring of the supertoroid. Default is 1. V.SetCrossSectionRadius(float) C++: virtual void SetCrossSectionRadius(double _arg) Set/Get the radius of the cross section of ring of the supertoroid. Default = 0.5. V.GetCrossSectionRadius() -> float C++: virtual double GetCrossSectionRadius() Set/Get the radius of the cross section of ring of the supertoroid. Default = 0.5. V.SetN1(float) C++: virtual void SetN1(double _arg) Set/Get the shape of the torus ring. Default is 1. V.GetN1() -> float C++: virtual double GetN1() Set/Get the shape of the torus ring. Default is 1. V.SetN2(float) C++: virtual void SetN2(double _arg) Set/Get the shape of the cross section of the ring. Default is 1. V.GetN2() -> float C++: virtual double GetN2() Set/Get the shape of the cross section of the ring. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A supertoroid. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricTorusvtkParametricTorus - Generate a torus. Superclass: vtkParametricFunction vtkParametricTorus generates a torus. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. vtkCommonComputationalGeometryPython.vtkParametricTorusV.SafeDownCast(vtkObjectBase) -> vtkParametricTorus C++: static vtkParametricTorus *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricTorus C++: vtkParametricTorus *NewInstance() V.SetRingRadius(float) C++: virtual void SetRingRadius(double _arg) Set/Get the radius from the center to the middle of the ring of the torus. Default is 1.0. V.GetRingRadius() -> float C++: virtual double GetRingRadius() Set/Get the radius from the center to the middle of the ring of the torus. Default is 1.0. V.SetCrossSectionRadius(float) C++: virtual void SetCrossSectionRadius(double _arg) Set/Get the radius of the cross section of ring of the torus. Default is 0.5. V.GetCrossSectionRadius() -> float C++: virtual double GetCrossSectionRadius() Set/Get the radius of the cross section of ring of the torus. Default is 0.5. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A torus. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $. * Then the normal is $N = Du X Dv $. vtkParametricKuenGetDeltaV0SetDeltaV0vtkParametricKuen - Generate Kuens' surface. Superclass: vtkParametricFunction vtkParametricKuen generates Kuens' surface. This surface has a constant negative gaussian curvature. For more information about this surface, see Dr. O'Niell's page at the UCLA Mathematics Department.@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricKuenV.SafeDownCast(vtkObjectBase) -> vtkParametricKuen C++: static vtkParametricKuen *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricKuen C++: vtkParametricKuen *NewInstance() V.SetDeltaV0(float) C++: virtual void SetDeltaV0(double _arg) Set/Get the value to use when V == 0. Default is 0.05, giving the best appearance with the default settings. Setting it to a value less than 0.05 extrapolates the surface towards a pole in the -z direction. Setting it to 0 retains the pole whose z-value is -inf. V.GetDeltaV0() -> float C++: virtual double GetDeltaV0() Set/Get the value to use when V == 0. Default is 0.05, giving the best appearance with the default settings. Setting it to a value less than 0.05 extrapolates the surface towards a pole in the -z direction. Setting it to 0 retains the pole whose z-value is -inf. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Kuen's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. This method simply returns 0. vtkParametricPseudospherevtkParametricPseudosphere - Generate a pseudosphere. Superclass: vtkParametricFunction vtkParametricPseudosphere generates a parametric pseudosphere. The pseudosphere is generated as a surface of revolution of the tractrix about it's asymptote, and is a surface of constant negative Gaussian curvature. You can find out more about this interesting surface at Math World.@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricPseudosphereV.SafeDownCast(vtkObjectBase) -> vtkParametricPseudosphere C++: static vtkParametricPseudosphere *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricPseudosphere C++: vtkParametricPseudosphere *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Pseudosphere surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricBohemianDomevtkParametricBohemianDome - Generate a Bohemian dome. Superclass: vtkParametricFunction vtkParametricBohemianDome generates a parametric Bohemian dome. The Bohemian dome is a quartic surface, and is described in much better detail at HMC page. @warning I haven't set any restrictions on the A, B, or C values.@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricBohemianDomeV.SafeDownCast(vtkObjectBase) -> vtkParametricBohemianDome C++: static vtkParametricBohemianDome *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricBohemianDome C++: vtkParametricBohemianDome *NewInstance() V.GetA() -> float C++: virtual double GetA() Construct a Bohemian dome surface with the following parameters: V.SetA(float) C++: virtual void SetA(double _arg) Construct a Bohemian dome surface with the following parameters: V.GetB() -> float C++: virtual double GetB() V.SetB(float) C++: virtual void SetB(double _arg) V.GetC() -> float C++: virtual double GetC() V.SetC(float) C++: virtual void SetC(double _arg) V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; BohemianDome surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricHennebergvtkParametricHenneberg - Generate Henneberg's minimal surface. Superclass: vtkParametricFunction vtkParametricHenneberg generates Henneberg's minimal surface parametrically. Henneberg's minimal surface is discussed further at Math World.@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricHennebergV.SafeDownCast(vtkObjectBase) -> vtkParametricHenneberg C++: static vtkParametricHenneberg *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricHenneberg C++: vtkParametricHenneberg *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Henneberg's minimal surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricCatalanMinimalvtkParametricCatalanMinimal - Generate Catalan's minimal surface. Superclass: vtkParametricFunction vtkParametricCatalanMinimal generates Catalan's minimal surface parametrically. This minimal surface contains the cycloid as a geodesic. More information about it can be found at Wikip edia.@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricCatalanMinimalV.SafeDownCast(vtkObjectBase) -> vtkParametricCatalanMinimal C++: static vtkParametricCatalanMinimal *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricCatalanMinimal C++: vtkParametricCatalanMinimal *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Catalan's minimal surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricBourvtkParametricBour - Generate Bour's minimal surface. Superclass: vtkParametricFunction vtkParametricBour generates Bour's minimal surface parametrically. More information can be found at Wikipedia .@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricBourV.SafeDownCast(vtkObjectBase) -> vtkParametricBour C++: static vtkParametricBour *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricBour C++: vtkParametricBour *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Bour's minimal surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricPluckerConoidvtkParametricPluckerConoid - Generate Plucker's conoid surface. Superclass: vtkParametricFunction vtkParametricPluckerConoid generates Plucker's conoid surface parametrically. Plucker's conoid is a ruled surface, named after Julius Plucker. It is possible to set the number of folds in this class via the parameter 'N'. For more information, see the Wikipedia page on Plucker's Conoid. @warning I haven't done any special checking on the number of folds parameter, N.@par Thanks: Tim Meehan vtkCommonComputationalGeometryPython.vtkParametricPluckerConoidV.SafeDownCast(vtkObjectBase) -> vtkParametricPluckerConoid C++: static vtkParametricPluckerConoid *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricPluckerConoid C++: vtkParametricPluckerConoid *NewInstance() V.GetN() -> int C++: virtual int GetN() This is the number of folds in the conoid. V.SetN(int) C++: virtual void SetN(int _arg) This is the number of folds in the conoid. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Plucker's conoid surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . can't get dictionary for module vtkCommonComputationalGeometryPythonreal_initvtkCommonComputationalGeometryPython;4]Pgxh(rHrhrPr8!r`#rh&r)s,(s.Hs=hsh?sBsHsKsStX(t8]Ht@`htbtethtjul(unHuqhulrXvhvHwHx@yt({x{{| }D~~8H(D(pȅ(4X|X((L`8tHxȏ؏$(8<`xXd(Xhh| Lp( $ H Hl  ر!(L!X!Ⱥ(غ<PdHxX!$"h"ؽ"ؾ"H"#,#Xt##!"H"(t$8$$ %0%T%(x%%%X%&4&h|&&$$$8$L$H`$X$h$''(<(`(((((()8)X\)))h)@*','@'T'Hh'X|''''**+4+`+H+++X,h,***(,8-`-- - -x - ,.XP.l..(/X,,,-@-2( 34445 <5!`5"5h#5X$5H%5(&6'86'\6(6)6*6+6x,7X-478.X78/|780717172 83084T85x8687888h99h:,9;P9=t9X>9?9@9HB:XC :hD<:xEX:Ft:G:H:I:J:K;L;M8;OT;Pp;(Q;8R;HS;T;V <hW0<XT<(Zx<[<\<H^<_=a<=8e=e=eP/ed/fx/(f/8f/Xf/hf/f/f/f0f0f,0f@08gT0Hgh0Xg|0hg0g0g0g0g0h0(h18h1Hh01hD1hX1hl1h1h1i1i1(i1hi1xi1i 2i 2i42iH2i\2jp2Hj2Xj2hj2xj 3jD3jd3kx3Hk3k3k3l3Hl3l3l4m4Hm,4m@4mT4nh4Hn|4n4n>n,>op>p>q>s>t?t4?(u|?Xy?}=}>}P>}T@~|@~@@؀A4AHXAA(AxAȆB`B(@X,@h@@xh@@؏TD|DȐDȑE8E\EEEEEȘF4FXF|FxFFFH G0GTGXxGGGhGHH@HtHHHHHȳHIBB8BHBxCC(CȸL^>t^>^?^@_A,_CP_hDt_E_8G_H_H `HIT`xM`Q]Q]Q^R$^(R8^8R`^HR^R,aRTaSaTaxUaV bW0bXYdbZb[bh[b_@cc`cadad@a(dxaxdcdchedXf4dXg`dhd8jdjdjeohe8scHscXscsDfslftfufvgw$gxHgylg{gx|g}gHg0hLhXhheȉeee8fHfx0fXffDili؋iȌiȍj84jXjtjHjxk0iXișilk(kkk(lh\l؟l(lxl0mبXkkkHmXm8n($n(PnnnXn oسXomm(mxo phPph|pXp8ppqh@q\qq8qhoxooo0p@rzRx $pG0 FJ w?:*3$"DxQ\pQ t_ h _EDPa AE gOEY B j(,`EAD`n AAF 0 anFAA D`  AABH @EAD`n AAF *>ED@ AG *?ED@ AG +@TEDP AG 0$+AnFAA D`  AABH X+$CgFD@ EE |+pDMFF0+DOFDD n ABA DDB+1H+D+FBB B(A0A8G 8A0A(B BBBI L,,H#FBB B(A0A8G 8A0A(B BBBI |,@u , 8>)L> `> )t>( >$)>@ ><)>X >T)>p ?, ?X (?EDPa AE L?0OEY B j(l?EAD`n AAF ?ED@ AG ?PED@ AG ?<ED@ AG @(ED@ AG (@ED@ AG L@ED@ AG p@TEDP AG @(TEDP AG @dTEDP AG @TEDP AG AܵTEDP AG 0$AnFAA D`  AABH XATgFD@ EE |AMFF0AԹOFDD n ABA DDBAHAܹ+FBB B(A0A8G 8A0A(B BBBI L,B#FBB B(A0A8G 8A0A(B BBBI |B B)B8 B4)BP BL)Bh Cd)C 0C|)DC XC)lC C)C C$ C C EDPa AE COEY B j(DEAD`n AAF @D|ED@ AG dDHED@ AG D4ED@ AG D ED@ AG D ED@ AG DED@ AG EED@ AG 7Pu>H7nP?7v?7lX@7t@:7mA$8}B@8 d0Eh8eG6 k J7zL 8{Nq7@qPQ6jRY7oR6iXS7`yT6gTO 0UB@W[HD-6Ѝ\:\!\8]O]B@WdHD-60e:e!OeBg`0Xh`0Xi`0Xj@`Xk^```l``hm`0pn$`xo`@pza8q`r`rLasBaлt`0Xu` v+avahwhax_p`z_0|.`Ua@_P_K`8`жw`P@a0i`@ȌHD-6H:@ؑ!hp`X@P0O(BPȚHD-P6Pp:!PK=Y8'ph``@X0phPO XBHD-P6 p0:K`=PY@'@!POB@WHD-%6@*%0:+!&(u'@O1B-HD-8696: ;!7O`AB0=HD-F6QF:0PK pMXIкNH8Lh!GOWBSHD- _6 `P]X:aؿ!0^Og0BcHD-Pn6Pol0:p!`mOw(BrxHD-}6~{:(!|O0xBHD-6 :Ph!OB``GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0-H %HWIJnLg`egDI Nw0OPPHQ Q(RVSnTVW$ XT^YTZT@\ghi9DdP^`_`b bApcnpd`epfTgn#@igS`kpm@DPk+o#8 `t Ept~PuPv@wPxN`ypz{T|T @~TC Tt n pg @n o) D[ + #I  P `) @_ 0 0n g q s: Ei + #  ) pW p ` p TT1@nZgt v E+)#W  !V TT*T_@gnw@y @E<+u#P `@90j0ng{|`E=+t#  pAp{`pTn@gS}y@@EP+#&G``P"0k *de`P@ N4ipPD0v K ~   LLO`LLLPL# `       8! k! ! ! "0 3"@e"P "`! "p"##E#$w#%\#'\#`(\$)\K$ +\~$,\$-\$@/\%%0^R%2g%p3%% &E'/& A T&0A&B&C&Dn'pEgE'd'@'E'G+'K#)(PP <(`Pp(@Q(@R(0S)@TT6)Una)Wg)@)@)E* Y+:*P]#1j*0b *@b* c+ dP+e+e+f,gW,i,j, k$-la-m-m-n.oTY.@qT.rT.tD/PuTQ/vT/xD/`yT0zS0{0}l0p~n 1gE1 j11F1+1 #342 Y2Ѝ2223TN3nx3g33 @3 F4+L4#\<{4 44595{5p5P50?6 ~6667K77`7@7P 8`R8@808080!90R90D9D9жT90T+:j::л: ;lC;l|;8;0n;g <`*<M<@Fz<+<#@< =J====2>l>>>T ?PT@?Tz?T?pT?n!@@g\@@`@@`F@P+"A#EZA` ApAPAP,B@cBPB`BpCECwCCTCTDpTQDTD0TDTDT6EPnfEgEE@EFF+XF #HF` FpFPGPGG@GPG`TGT'H nQHgHHHFH+%I#KTI$ xI%I%I& J':J(TjJ@*nJ+gJ J@KF:.KA=K-+qK1#=MK6 K6L7?L8uL9nL ;gLM.MGaM0=+M`A#PMF MF9NFoNGNHNI OK?OLTqOpMTONTO0PgPQn?PeP@P GPS+PW#R3Q@] \QP]Q0^Q _Q `n+RagaRRR@GRc+Sg#TFSpl tSlS`mSPn$TPonWTpgTT@T`GUr+XUw#VU{ U{U|V}FV~noVgV@VVG W+>W0#xYlWЊ WW XFXyXDXnXPgY?Y@iYGY`+Y#SZZhDZG+.KZ` ZZGZ HZ`HZ@ZU![H-[TZL[DZ[Xm[@ez[[ 0[U[([`["aO["<\\B\"\"0)\\M\ ]"0O/]"l c]"a ]"O ]"O]<O]" #^" W^Mu^^^MM^"@{ ._"P \_" _"<_" `"p6 A`"06)f```" `aa"6O9a" ha" a"0?aa"` b")>b"$)gbbbb%cGc{c"EOcc" d"@ 7d"a)\d" 6 dMdFMd"0:1d"`!e"@<Me" @<teee"\ ef"0{ Ffqf")f" f"1f";!g"P Fg"  kg"P;g"pDgh"@9 2h"p)Whyhhh")h"0$ h"$OiOi"\ ~iii"i`Mij"`a)8j" cj" jj" j"t kBk"Ohk" k" krOl" 0lCl0Mgl"P{Ol"??l" l" m"m"`!Qm}m")m";1m" nn"PO:n"`8dn"`\)nOn"08n"P91o"E 8oDo`Oeo`Oo"9o" o" p")8p" gp"a p"Њ p"P8 p"@)q"8 HqpOlqPMqq"a qrHrgr" rXMr" r" lOrs]M-sJsxss"< s"p;t" b 2t"$ btut")tSMt"0 t'uauu"\ uuu":u"@)(vLv"0 vvvvvXOv"?<w"p$ Mw"0bOlw0GOw`SOww" x"s)+x"OQx")vx"0 x"0)x"Ox"0 y5y" ey"!yjMy"OyMzzQzMOpz"=?zOz"p z {"@QO({"@ a{"E {{"){"){"@).|MU|w|")||" |,}" ??R}"<<u}"0)}"s }"a)}"@ ~"\O@~"=<f~"P1~M~";1~"\ M+"9 U")"  -M EOn" O"s ـ")")1"` X">?~":ā߁" \)=Q"b "O΂"  " )cMK")zOpO0O"PO" 4"`6 Y"0 "8 "O")1" i""PO7H"8 "pD?")i0rM" Dކ"P\ <pj" 9" ")"9 >" o"p Mֈ"`>< <";c" =<"0< "@< F"a oOΊ"?"91'FWu" ۋM " 4<MY";1"p)ʌ"p:" "p F": v"P ׍ " 1"`=<Wg`O"tOَ$"`@?V" |"O "1ҏ" >?!"` ?"< }"?" )": C"Ќ yPOkO Mّ%S"P)"$ ے" ")>"  q"`; "  ͓")"l Gn"  "a ɔ"8 "` "@?M"0 t": "`!ȕ7O"0 A")m^O ̖":-"><T"`??y"P<"p):l"p PcO":1 "  1OWp-Ov"OΙ"\)"a)#"`<1Y"@ "8" :)@OI"8s"@$)ɛ ";="0Q l" "; ܜ"0O"Л!&Qw" ۝"  M/_" "9"@ _ZL29PyvtkCardinalSpline_StaticNewv_ZL32PyvtkCardinalSpline_SafeDownCastP7_objectS0__ZL28PyvtkCardinalSpline_IsTypeOfP7_objectS0__ZL23PyvtkCardinalSpline_IsAP7_objectS0__ZL31PyvtkCardinalSpline_NewInstanceP7_objectS0__ZL24PyvtkCardinalSpline_Type_ZL27PyvtkCardinalSpline_Methods_GLOBAL__sub_I_vtkCardinalSplinePython.cxx_ZL28PyvtkCardinalSpline_DeepCopyP7_objectS0__ZL28PyvtkCardinalSpline_EvaluateP7_objectS0__ZL27PyvtkCardinalSpline_ComputeP7_objectS0__ZL29PyvtkKochanekSpline_StaticNewv_ZL32PyvtkKochanekSpline_SafeDownCastP7_objectS0__ZL28PyvtkKochanekSpline_IsTypeOfP7_objectS0__ZL23PyvtkKochanekSpline_IsAP7_objectS0__ZL40PyvtkKochanekSpline_GetDefaultContinuityP7_objectS0__ZL34PyvtkKochanekSpline_GetDefaultBiasP7_objectS0__ZL37PyvtkKochanekSpline_GetDefaultTensionP7_objectS0__ZL40PyvtkKochanekSpline_SetDefaultContinuityP7_objectS0__ZL37PyvtkKochanekSpline_SetDefaultTensionP7_objectS0__ZL34PyvtkKochanekSpline_SetDefaultBiasP7_objectS0__ZL31PyvtkKochanekSpline_NewInstanceP7_objectS0__ZL24PyvtkKochanekSpline_Type_ZL27PyvtkKochanekSpline_Methods_GLOBAL__sub_I_vtkKochanekSplinePython.cxx_ZL28PyvtkKochanekSpline_DeepCopyP7_objectS0__ZL28PyvtkKochanekSpline_EvaluateP7_objectS0__ZL27PyvtkKochanekSpline_ComputeP7_objectS0__ZL28PyvtkParametricBoy_StaticNewv_ZL31PyvtkParametricBoy_SafeDownCastP7_objectS0__ZL27PyvtkParametricBoy_IsTypeOfP7_objectS0__ZL31PyvtkParametricBoy_GetDimensionP7_objectS0__ZL28PyvtkParametricBoy_GetZScaleP7_objectS0__ZL28PyvtkParametricBoy_SetZScaleP7_objectS0__ZL22PyvtkParametricBoy_IsAP7_objectS0__ZL30PyvtkParametricBoy_NewInstanceP7_objectS0__ZL23PyvtkParametricBoy_Type_ZL26PyvtkParametricBoy_Methods_GLOBAL__sub_I_vtkParametricBoyPython.cxx_ZL33PyvtkParametricBoy_EvaluateScalarP7_objectS0__ZL27PyvtkParametricBoy_EvaluateP7_objectS0__ZL36PyvtkParametricConicSpiral_StaticNewv_ZL39PyvtkParametricConicSpiral_SafeDownCastP7_objectS0__ZL35PyvtkParametricConicSpiral_IsTypeOfP7_objectS0__ZL39PyvtkParametricConicSpiral_GetDimensionP7_objectS0__ZL31PyvtkParametricConicSpiral_GetNP7_objectS0__ZL31PyvtkParametricConicSpiral_GetCP7_objectS0__ZL31PyvtkParametricConicSpiral_GetBP7_objectS0__ZL31PyvtkParametricConicSpiral_GetAP7_objectS0__ZL31PyvtkParametricConicSpiral_SetNP7_objectS0__ZL31PyvtkParametricConicSpiral_SetBP7_objectS0__ZL31PyvtkParametricConicSpiral_SetAP7_objectS0__ZL31PyvtkParametricConicSpiral_SetCP7_objectS0__ZL30PyvtkParametricConicSpiral_IsAP7_objectS0__ZL38PyvtkParametricConicSpiral_NewInstanceP7_objectS0__ZL31PyvtkParametricConicSpiral_Type_ZL34PyvtkParametricConicSpiral_Methods_GLOBAL__sub_I_vtkParametricConicSpiralPython.cxx_ZL41PyvtkParametricConicSpiral_EvaluateScalarP7_objectS0__ZL35PyvtkParametricConicSpiral_EvaluateP7_objectS0__ZL33PyvtkParametricCrossCap_StaticNewv_ZL36PyvtkParametricCrossCap_SafeDownCastP7_objectS0__ZL36PyvtkParametricCrossCap_GetDimensionP7_objectS0__ZL32PyvtkParametricCrossCap_IsTypeOfP7_objectS0__ZL27PyvtkParametricCrossCap_IsAP7_objectS0__ZL35PyvtkParametricCrossCap_NewInstanceP7_objectS0__ZL28PyvtkParametricCrossCap_Type_ZL31PyvtkParametricCrossCap_Methods_GLOBAL__sub_I_vtkParametricCrossCapPython.cxx_ZL38PyvtkParametricCrossCap_EvaluateScalarP7_objectS0__ZL32PyvtkParametricCrossCap_EvaluateP7_objectS0__ZL29PyvtkParametricDini_StaticNewv_ZL32PyvtkParametricDini_SafeDownCastP7_objectS0__ZL28PyvtkParametricDini_IsTypeOfP7_objectS0__ZL32PyvtkParametricDini_GetDimensionP7_objectS0__ZL24PyvtkParametricDini_GetAP7_objectS0__ZL24PyvtkParametricDini_GetBP7_objectS0__ZL24PyvtkParametricDini_SetBP7_objectS0__ZL24PyvtkParametricDini_SetAP7_objectS0__ZL23PyvtkParametricDini_IsAP7_objectS0__ZL31PyvtkParametricDini_NewInstanceP7_objectS0__ZL24PyvtkParametricDini_Type_ZL27PyvtkParametricDini_Methods_GLOBAL__sub_I_vtkParametricDiniPython.cxx_ZL34PyvtkParametricDini_EvaluateScalarP7_objectS0__ZL28PyvtkParametricDini_EvaluateP7_objectS0__ZL34PyvtkParametricEllipsoid_StaticNewv_ZL37PyvtkParametricEllipsoid_SafeDownCastP7_objectS0__ZL33PyvtkParametricEllipsoid_IsTypeOfP7_objectS0__ZL37PyvtkParametricEllipsoid_GetDimensionP7_objectS0__ZL35PyvtkParametricEllipsoid_GetXRadiusP7_objectS0__ZL35PyvtkParametricEllipsoid_GetYRadiusP7_objectS0__ZL35PyvtkParametricEllipsoid_GetZRadiusP7_objectS0__ZL35PyvtkParametricEllipsoid_SetZRadiusP7_objectS0__ZL35PyvtkParametricEllipsoid_SetXRadiusP7_objectS0__ZL35PyvtkParametricEllipsoid_SetYRadiusP7_objectS0__ZL36PyvtkParametricEllipsoid_NewInstanceP7_objectS0__ZL28PyvtkParametricEllipsoid_IsAP7_objectS0__ZL29PyvtkParametricEllipsoid_Type_ZL32PyvtkParametricEllipsoid_Methods_GLOBAL__sub_I_vtkParametricEllipsoidPython.cxx_ZL39PyvtkParametricEllipsoid_EvaluateScalarP7_objectS0__ZL33PyvtkParametricEllipsoid_EvaluateP7_objectS0__ZL32PyvtkParametricEnneper_StaticNewv_ZL35PyvtkParametricEnneper_SafeDownCastP7_objectS0__ZL35PyvtkParametricEnneper_GetDimensionP7_objectS0__ZL31PyvtkParametricEnneper_IsTypeOfP7_objectS0__ZL26PyvtkParametricEnneper_IsAP7_objectS0__ZL34PyvtkParametricEnneper_NewInstanceP7_objectS0__ZL27PyvtkParametricEnneper_Type_ZL30PyvtkParametricEnneper_Methods_GLOBAL__sub_I_vtkParametricEnneperPython.cxx_ZL37PyvtkParametricEnneper_EvaluateScalarP7_objectS0__ZL31PyvtkParametricEnneper_EvaluateP7_objectS0__ZL37PyvtkParametricFigure8Klein_StaticNewv_ZL40PyvtkParametricFigure8Klein_SafeDownCastP7_objectS0__ZL36PyvtkParametricFigure8Klein_IsTypeOfP7_objectS0__ZL40PyvtkParametricFigure8Klein_GetDimensionP7_objectS0__ZL37PyvtkParametricFigure8Klein_GetRadiusP7_objectS0__ZL37PyvtkParametricFigure8Klein_SetRadiusP7_objectS0__ZL31PyvtkParametricFigure8Klein_IsAP7_objectS0__ZL39PyvtkParametricFigure8Klein_NewInstanceP7_objectS0__ZL32PyvtkParametricFigure8Klein_Type_ZL35PyvtkParametricFigure8Klein_Methods_GLOBAL__sub_I_vtkParametricFigure8KleinPython.cxx_ZL42PyvtkParametricFigure8Klein_EvaluateScalarP7_objectS0__ZL36PyvtkParametricFigure8Klein_EvaluateP7_objectS0__ZL38PyvtkParametricFunction_EvaluateScalarP7_objectS0__ZL36PyvtkParametricFunction_SafeDownCastP7_objectS0__ZL32PyvtkParametricFunction_IsTypeOfP7_objectS0__ZL41PyvtkParametricFunction_GetTwistWMinValueP7_objectS0__ZL55PyvtkParametricFunction_GetDerivativesAvailableMaxValueP7_objectS0__ZL41PyvtkParametricFunction_GetTwistWMaxValueP7_objectS0__ZL41PyvtkParametricFunction_GetTwistVMaxValueP7_objectS0__ZL55PyvtkParametricFunction_GetDerivativesAvailableMinValueP7_objectS0__ZL40PyvtkParametricFunction_GetJoinWMinValueP7_objectS0__ZL40PyvtkParametricFunction_GetJoinUMaxValueP7_objectS0__ZL52PyvtkParametricFunction_GetClockwiseOrderingMaxValueP7_objectS0__ZL41PyvtkParametricFunction_GetTwistUMinValueP7_objectS0__ZL52PyvtkParametricFunction_GetClockwiseOrderingMinValueP7_objectS0__ZL40PyvtkParametricFunction_GetJoinVMaxValueP7_objectS0__ZL41PyvtkParametricFunction_GetTwistUMaxValueP7_objectS0__ZL40PyvtkParametricFunction_GetJoinVMinValueP7_objectS0__ZL40PyvtkParametricFunction_GetJoinUMinValueP7_objectS0__ZL40PyvtkParametricFunction_GetJoinWMaxValueP7_objectS0__ZL41PyvtkParametricFunction_GetTwistVMinValueP7_objectS0__ZL44PyvtkParametricFunction_GetClockwiseOrderingP7_objectS0__ZL33PyvtkParametricFunction_GetTwistVP7_objectS0__ZL35PyvtkParametricFunction_GetMaximumUP7_objectS0__ZL35PyvtkParametricFunction_GetMinimumUP7_objectS0__ZL33PyvtkParametricFunction_GetTwistUP7_objectS0__ZL47PyvtkParametricFunction_GetDerivativesAvailableP7_objectS0__ZL32PyvtkParametricFunction_GetJoinWP7_objectS0__ZL32PyvtkParametricFunction_GetJoinVP7_objectS0__ZL35PyvtkParametricFunction_GetMaximumWP7_objectS0__ZL35PyvtkParametricFunction_GetMinimumVP7_objectS0__ZL35PyvtkParametricFunction_GetMaximumVP7_objectS0__ZL36PyvtkParametricFunction_GetDimensionP7_objectS0__ZL33PyvtkParametricFunction_GetTwistWP7_objectS0__ZL32PyvtkParametricFunction_GetJoinUP7_objectS0__ZL35PyvtkParametricFunction_GetMinimumWP7_objectS0__ZL35PyvtkParametricFunction_SetMaximumUP7_objectS0__ZL35PyvtkParametricFunction_SetMinimumVP7_objectS0__ZL35PyvtkParametricFunction_SetMinimumWP7_objectS0__ZL35PyvtkParametricFunction_SetMaximumVP7_objectS0__ZL35PyvtkParametricFunction_SetMinimumUP7_objectS0__ZL35PyvtkParametricFunction_SetMaximumWP7_objectS0__ZL43PyvtkParametricFunction_ClockwiseOrderingOnP7_objectS0__ZL32PyvtkParametricFunction_JoinWOffP7_objectS0__ZL33PyvtkParametricFunction_TwistUOffP7_objectS0__ZL32PyvtkParametricFunction_TwistVOnP7_objectS0__ZL47PyvtkParametricFunction_DerivativesAvailableOffP7_objectS0__ZL33PyvtkParametricFunction_TwistWOffP7_objectS0__ZL32PyvtkParametricFunction_JoinVOffP7_objectS0__ZL32PyvtkParametricFunction_JoinUOffP7_objectS0__ZL31PyvtkParametricFunction_JoinVOnP7_objectS0__ZL33PyvtkParametricFunction_TwistVOffP7_objectS0__ZL32PyvtkParametricFunction_TwistUOnP7_objectS0__ZL46PyvtkParametricFunction_DerivativesAvailableOnP7_objectS0__ZL44PyvtkParametricFunction_ClockwiseOrderingOffP7_objectS0__ZL31PyvtkParametricFunction_JoinWOnP7_objectS0__ZL31PyvtkParametricFunction_JoinUOnP7_objectS0__ZL32PyvtkParametricFunction_TwistWOnP7_objectS0__ZL44PyvtkParametricFunction_SetClockwiseOrderingP7_objectS0__ZL32PyvtkParametricFunction_SetJoinUP7_objectS0__ZL32PyvtkParametricFunction_SetJoinVP7_objectS0__ZL32PyvtkParametricFunction_SetJoinWP7_objectS0__ZL33PyvtkParametricFunction_SetTwistWP7_objectS0__ZL33PyvtkParametricFunction_SetTwistUP7_objectS0__ZL33PyvtkParametricFunction_SetTwistVP7_objectS0__ZL47PyvtkParametricFunction_SetDerivativesAvailableP7_objectS0__ZL27PyvtkParametricFunction_IsAP7_objectS0__ZL35PyvtkParametricFunction_NewInstanceP7_objectS0__ZL32PyvtkParametricFunction_EvaluateP7_objectS0__ZL28PyvtkParametricFunction_Type_ZL31PyvtkParametricFunction_Methods_GLOBAL__sub_I_vtkParametricFunctionPython.cxx_ZL30PyvtkParametricKlein_StaticNewv_ZL33PyvtkParametricKlein_SafeDownCastP7_objectS0__ZL33PyvtkParametricKlein_GetDimensionP7_objectS0__ZL29PyvtkParametricKlein_IsTypeOfP7_objectS0__ZL24PyvtkParametricKlein_IsAP7_objectS0__ZL32PyvtkParametricKlein_NewInstanceP7_objectS0__ZL25PyvtkParametricKlein_Type_ZL28PyvtkParametricKlein_Methods_GLOBAL__sub_I_vtkParametricKleinPython.cxx_ZL35PyvtkParametricKlein_EvaluateScalarP7_objectS0__ZL29PyvtkParametricKlein_EvaluateP7_objectS0__ZL31PyvtkParametricMobius_StaticNewv_ZL34PyvtkParametricMobius_SafeDownCastP7_objectS0__ZL30PyvtkParametricMobius_IsTypeOfP7_objectS0__ZL34PyvtkParametricMobius_GetDimensionP7_objectS0__ZL31PyvtkParametricMobius_GetRadiusP7_objectS0__ZL31PyvtkParametricMobius_SetRadiusP7_objectS0__ZL25PyvtkParametricMobius_IsAP7_objectS0__ZL33PyvtkParametricMobius_NewInstanceP7_objectS0__ZL26PyvtkParametricMobius_Type_ZL29PyvtkParametricMobius_Methods_GLOBAL__sub_I_vtkParametricMobiusPython.cxx_ZL36PyvtkParametricMobius_EvaluateScalarP7_objectS0__ZL30PyvtkParametricMobius_EvaluateP7_objectS0__ZL36PyvtkParametricRandomHills_StaticNewv_ZL39PyvtkParametricRandomHills_SafeDownCastP7_objectS0__ZL35PyvtkParametricRandomHills_IsTypeOfP7_objectS0__ZL59PyvtkParametricRandomHills_GetAllowRandomGenerationMinValueP7_objectS0__ZL59PyvtkParametricRandomHills_GetAllowRandomGenerationMaxValueP7_objectS0__ZL39PyvtkParametricRandomHills_GetDimensionP7_objectS0__ZL43PyvtkParametricRandomHills_GetHillXVarianceP7_objectS0__ZL50PyvtkParametricRandomHills_GetAmplitudeScaleFactorP7_objectS0__ZL50PyvtkParametricRandomHills_GetYVarianceScaleFactorP7_objectS0__ZL50PyvtkParametricRandomHills_GetXVarianceScaleFactorP7_objectS0__ZL51PyvtkParametricRandomHills_GetAllowRandomGenerationP7_objectS0__ZL43PyvtkParametricRandomHills_GetHillAmplitudeP7_objectS0__ZL43PyvtkParametricRandomHills_GetNumberOfHillsP7_objectS0__ZL40PyvtkParametricRandomHills_GetRandomSeedP7_objectS0__ZL43PyvtkParametricRandomHills_GetHillYVarianceP7_objectS0__ZL50PyvtkParametricRandomHills_SetYVarianceScaleFactorP7_objectS0__ZL50PyvtkParametricRandomHills_SetXVarianceScaleFactorP7_objectS0__ZL43PyvtkParametricRandomHills_SetHillXVarianceP7_objectS0__ZL40PyvtkParametricRandomHills_SetRandomSeedP7_objectS0__ZL43PyvtkParametricRandomHills_SetHillYVarianceP7_objectS0__ZL43PyvtkParametricRandomHills_SetHillAmplitudeP7_objectS0__ZL43PyvtkParametricRandomHills_SetNumberOfHillsP7_objectS0__ZL50PyvtkParametricRandomHills_SetAmplitudeScaleFactorP7_objectS0__ZL50PyvtkParametricRandomHills_AllowRandomGenerationOnP7_objectS0__ZL51PyvtkParametricRandomHills_AllowRandomGenerationOffP7_objectS0__ZL51PyvtkParametricRandomHills_SetAllowRandomGenerationP7_objectS0__ZL30PyvtkParametricRandomHills_IsAP7_objectS0__ZL38PyvtkParametricRandomHills_NewInstanceP7_objectS0__ZL31PyvtkParametricRandomHills_Type_ZL34PyvtkParametricRandomHills_Methods_GLOBAL__sub_I_vtkParametricRandomHillsPython.cxx_ZL41PyvtkParametricRandomHills_EvaluateScalarP7_objectS0__ZL35PyvtkParametricRandomHills_EvaluateP7_objectS0__ZL30PyvtkParametricRoman_StaticNewv_ZL33PyvtkParametricRoman_SafeDownCastP7_objectS0__ZL29PyvtkParametricRoman_IsTypeOfP7_objectS0__ZL33PyvtkParametricRoman_GetDimensionP7_objectS0__ZL30PyvtkParametricRoman_GetRadiusP7_objectS0__ZL30PyvtkParametricRoman_SetRadiusP7_objectS0__ZL24PyvtkParametricRoman_IsAP7_objectS0__ZL32PyvtkParametricRoman_NewInstanceP7_objectS0__ZL25PyvtkParametricRoman_Type_ZL28PyvtkParametricRoman_Methods_GLOBAL__sub_I_vtkParametricRomanPython.cxx_ZL35PyvtkParametricRoman_EvaluateScalarP7_objectS0__ZL29PyvtkParametricRoman_EvaluateP7_objectS0__ZL31PyvtkParametricSpline_StaticNewv_ZL34PyvtkParametricSpline_SafeDownCastP7_objectS0__ZL30PyvtkParametricSpline_IsTypeOfP7_objectS0__ZL34PyvtkParametricSpline_GetDimensionP7_objectS0__ZL48PyvtkParametricSpline_GetRightConstraintMaxValueP7_objectS0__ZL47PyvtkParametricSpline_GetLeftConstraintMinValueP7_objectS0__ZL48PyvtkParametricSpline_GetRightConstraintMinValueP7_objectS0__ZL47PyvtkParametricSpline_GetLeftConstraintMaxValueP7_objectS0__ZL45PyvtkParametricSpline_GetParameterizeByLengthP7_objectS0__ZL31PyvtkParametricSpline_GetClosedP7_objectS0__ZL31PyvtkParametricSpline_GetPointsP7_objectS0__ZL39PyvtkParametricSpline_GetLeftConstraintP7_objectS0__ZL32PyvtkParametricSpline_GetXSplineP7_objectS0__ZL40PyvtkParametricSpline_GetRightConstraintP7_objectS0__ZL32PyvtkParametricSpline_GetYSplineP7_objectS0__ZL35PyvtkParametricSpline_GetRightValueP7_objectS0__ZL34PyvtkParametricSpline_GetLeftValueP7_objectS0__ZL32PyvtkParametricSpline_GetZSplineP7_objectS0__ZL39PyvtkParametricSpline_SetNumberOfPointsP7_objectS0__ZL32PyvtkParametricSpline_SetXSplineP7_objectS0__ZL32PyvtkParametricSpline_SetYSplineP7_objectS0__ZL32PyvtkParametricSpline_SetZSplineP7_objectS0__ZL31PyvtkParametricSpline_SetPointsP7_objectS0__ZL45PyvtkParametricSpline_SetParameterizeByLengthP7_objectS0__ZL31PyvtkParametricSpline_SetClosedP7_objectS0__ZL34PyvtkParametricSpline_SetLeftValueP7_objectS0__ZL35PyvtkParametricSpline_SetRightValueP7_objectS0__ZL45PyvtkParametricSpline_ParameterizeByLengthOffP7_objectS0__ZL44PyvtkParametricSpline_ParameterizeByLengthOnP7_objectS0__ZL31PyvtkParametricSpline_ClosedOffP7_objectS0__ZL30PyvtkParametricSpline_ClosedOnP7_objectS0__ZL40PyvtkParametricSpline_SetRightConstraintP7_objectS0__ZL39PyvtkParametricSpline_SetLeftConstraintP7_objectS0__ZL30PyvtkParametricSpline_SetPointP7_objectS0__ZL25PyvtkParametricSpline_IsAP7_objectS0__ZL33PyvtkParametricSpline_NewInstanceP7_objectS0__ZL26PyvtkParametricSpline_Type_ZL29PyvtkParametricSpline_Methods_GLOBAL__sub_I_vtkParametricSplinePython.cxx_ZL36PyvtkParametricSpline_EvaluateScalarP7_objectS0__ZL30PyvtkParametricSpline_EvaluateP7_objectS0__ZL39PyvtkParametricSuperEllipsoid_StaticNewv_ZL42PyvtkParametricSuperEllipsoid_SafeDownCastP7_objectS0__ZL38PyvtkParametricSuperEllipsoid_IsTypeOfP7_objectS0__ZL42PyvtkParametricSuperEllipsoid_GetDimensionP7_objectS0__ZL40PyvtkParametricSuperEllipsoid_GetXRadiusP7_objectS0__ZL40PyvtkParametricSuperEllipsoid_GetYRadiusP7_objectS0__ZL40PyvtkParametricSuperEllipsoid_GetZRadiusP7_objectS0__ZL35PyvtkParametricSuperEllipsoid_GetN2P7_objectS0__ZL35PyvtkParametricSuperEllipsoid_GetN1P7_objectS0__ZL35PyvtkParametricSuperEllipsoid_SetN1P7_objectS0__ZL35PyvtkParametricSuperEllipsoid_SetN2P7_objectS0__ZL40PyvtkParametricSuperEllipsoid_SetZRadiusP7_objectS0__ZL40PyvtkParametricSuperEllipsoid_SetXRadiusP7_objectS0__ZL40PyvtkParametricSuperEllipsoid_SetYRadiusP7_objectS0__ZL33PyvtkParametricSuperEllipsoid_IsAP7_objectS0__ZL41PyvtkParametricSuperEllipsoid_NewInstanceP7_objectS0__ZL34PyvtkParametricSuperEllipsoid_Type_ZL37PyvtkParametricSuperEllipsoid_Methods_GLOBAL__sub_I_vtkParametricSuperEllipsoidPython.cxx_ZL44PyvtkParametricSuperEllipsoid_EvaluateScalarP7_objectS0__ZL38PyvtkParametricSuperEllipsoid_EvaluateP7_objectS0__ZL36PyvtkParametricSuperToroid_StaticNewv_ZL39PyvtkParametricSuperToroid_SafeDownCastP7_objectS0__ZL35PyvtkParametricSuperToroid_IsTypeOfP7_objectS0__ZL39PyvtkParametricSuperToroid_GetDimensionP7_objectS0__ZL37PyvtkParametricSuperToroid_GetZRadiusP7_objectS0__ZL32PyvtkParametricSuperToroid_GetN2P7_objectS0__ZL37PyvtkParametricSuperToroid_GetYRadiusP7_objectS0__ZL37PyvtkParametricSuperToroid_GetXRadiusP7_objectS0__ZL48PyvtkParametricSuperToroid_GetCrossSectionRadiusP7_objectS0__ZL32PyvtkParametricSuperToroid_GetN1P7_objectS0__ZL40PyvtkParametricSuperToroid_GetRingRadiusP7_objectS0__ZL37PyvtkParametricSuperToroid_SetYRadiusP7_objectS0__ZL37PyvtkParametricSuperToroid_SetZRadiusP7_objectS0__ZL32PyvtkParametricSuperToroid_SetN2P7_objectS0__ZL37PyvtkParametricSuperToroid_SetXRadiusP7_objectS0__ZL32PyvtkParametricSuperToroid_SetN1P7_objectS0__ZL40PyvtkParametricSuperToroid_SetRingRadiusP7_objectS0__ZL48PyvtkParametricSuperToroid_SetCrossSectionRadiusP7_objectS0__ZL30PyvtkParametricSuperToroid_IsAP7_objectS0__ZL38PyvtkParametricSuperToroid_NewInstanceP7_objectS0__ZL31PyvtkParametricSuperToroid_Type_ZL34PyvtkParametricSuperToroid_Methods_GLOBAL__sub_I_vtkParametricSuperToroidPython.cxx_ZL41PyvtkParametricSuperToroid_EvaluateScalarP7_objectS0__ZL35PyvtkParametricSuperToroid_EvaluateP7_objectS0__ZL30PyvtkParametricTorus_StaticNewv_ZL33PyvtkParametricTorus_SafeDownCastP7_objectS0__ZL29PyvtkParametricTorus_IsTypeOfP7_objectS0__ZL33PyvtkParametricTorus_GetDimensionP7_objectS0__ZL42PyvtkParametricTorus_GetCrossSectionRadiusP7_objectS0__ZL34PyvtkParametricTorus_GetRingRadiusP7_objectS0__ZL34PyvtkParametricTorus_SetRingRadiusP7_objectS0__ZL42PyvtkParametricTorus_SetCrossSectionRadiusP7_objectS0__ZL24PyvtkParametricTorus_IsAP7_objectS0__ZL32PyvtkParametricTorus_NewInstanceP7_objectS0__ZL25PyvtkParametricTorus_Type_ZL28PyvtkParametricTorus_Methods_GLOBAL__sub_I_vtkParametricTorusPython.cxx_ZL35PyvtkParametricTorus_EvaluateScalarP7_objectS0__ZL29PyvtkParametricTorus_EvaluateP7_objectS0__ZL29PyvtkParametricKuen_StaticNewv_ZL32PyvtkParametricKuen_SafeDownCastP7_objectS0__ZL28PyvtkParametricKuen_IsTypeOfP7_objectS0__ZL32PyvtkParametricKuen_GetDimensionP7_objectS0__ZL30PyvtkParametricKuen_GetDeltaV0P7_objectS0__ZL30PyvtkParametricKuen_SetDeltaV0P7_objectS0__ZL23PyvtkParametricKuen_IsAP7_objectS0__ZL31PyvtkParametricKuen_NewInstanceP7_objectS0__ZL24PyvtkParametricKuen_Type_ZL27PyvtkParametricKuen_Methods_GLOBAL__sub_I_vtkParametricKuenPython.cxx_ZStL8__ioinit_ZL34PyvtkParametricKuen_EvaluateScalarP7_objectS0__ZL28PyvtkParametricKuen_EvaluateP7_objectS0__ZL37PyvtkParametricPseudosphere_StaticNewv_ZL40PyvtkParametricPseudosphere_SafeDownCastP7_objectS0__ZL40PyvtkParametricPseudosphere_GetDimensionP7_objectS0__ZL36PyvtkParametricPseudosphere_IsTypeOfP7_objectS0__ZL31PyvtkParametricPseudosphere_IsAP7_objectS0__ZL39PyvtkParametricPseudosphere_NewInstanceP7_objectS0__ZL32PyvtkParametricPseudosphere_Type_ZL35PyvtkParametricPseudosphere_Methods_GLOBAL__sub_I_vtkParametricPseudospherePython.cxx_ZL42PyvtkParametricPseudosphere_EvaluateScalarP7_objectS0__ZL36PyvtkParametricPseudosphere_EvaluateP7_objectS0__ZL37PyvtkParametricBohemianDome_StaticNewv_ZL40PyvtkParametricBohemianDome_SafeDownCastP7_objectS0__ZL36PyvtkParametricBohemianDome_IsTypeOfP7_objectS0__ZL40PyvtkParametricBohemianDome_GetDimensionP7_objectS0__ZL32PyvtkParametricBohemianDome_GetCP7_objectS0__ZL32PyvtkParametricBohemianDome_GetBP7_objectS0__ZL32PyvtkParametricBohemianDome_GetAP7_objectS0__ZL32PyvtkParametricBohemianDome_SetCP7_objectS0__ZL32PyvtkParametricBohemianDome_SetAP7_objectS0__ZL32PyvtkParametricBohemianDome_SetBP7_objectS0__ZL39PyvtkParametricBohemianDome_NewInstanceP7_objectS0__ZL31PyvtkParametricBohemianDome_IsAP7_objectS0__ZL32PyvtkParametricBohemianDome_Type_ZL35PyvtkParametricBohemianDome_Methods_GLOBAL__sub_I_vtkParametricBohemianDomePython.cxx_ZL42PyvtkParametricBohemianDome_EvaluateScalarP7_objectS0__ZL36PyvtkParametricBohemianDome_EvaluateP7_objectS0__ZL34PyvtkParametricHenneberg_StaticNewv_ZL37PyvtkParametricHenneberg_SafeDownCastP7_objectS0__ZL37PyvtkParametricHenneberg_GetDimensionP7_objectS0__ZL33PyvtkParametricHenneberg_IsTypeOfP7_objectS0__ZL28PyvtkParametricHenneberg_IsAP7_objectS0__ZL36PyvtkParametricHenneberg_NewInstanceP7_objectS0__ZL29PyvtkParametricHenneberg_Type_ZL32PyvtkParametricHenneberg_Methods_GLOBAL__sub_I_vtkParametricHennebergPython.cxx_ZL39PyvtkParametricHenneberg_EvaluateScalarP7_objectS0__ZL33PyvtkParametricHenneberg_EvaluateP7_objectS0__ZL39PyvtkParametricCatalanMinimal_StaticNewv_ZL42PyvtkParametricCatalanMinimal_SafeDownCastP7_objectS0__ZL42PyvtkParametricCatalanMinimal_GetDimensionP7_objectS0__ZL38PyvtkParametricCatalanMinimal_IsTypeOfP7_objectS0__ZL33PyvtkParametricCatalanMinimal_IsAP7_objectS0__ZL41PyvtkParametricCatalanMinimal_NewInstanceP7_objectS0__ZL34PyvtkParametricCatalanMinimal_Type_ZL37PyvtkParametricCatalanMinimal_Methods_GLOBAL__sub_I_vtkParametricCatalanMinimalPython.cxx_ZL44PyvtkParametricCatalanMinimal_EvaluateScalarP7_objectS0__ZL38PyvtkParametricCatalanMinimal_EvaluateP7_objectS0__ZL29PyvtkParametricBour_StaticNewv_ZL32PyvtkParametricBour_SafeDownCastP7_objectS0__ZL32PyvtkParametricBour_GetDimensionP7_objectS0__ZL28PyvtkParametricBour_IsTypeOfP7_objectS0__ZL23PyvtkParametricBour_IsAP7_objectS0__ZL31PyvtkParametricBour_NewInstanceP7_objectS0__ZL24PyvtkParametricBour_Type_ZL27PyvtkParametricBour_Methods_GLOBAL__sub_I_vtkParametricBourPython.cxx_ZL34PyvtkParametricBour_EvaluateScalarP7_objectS0__ZL28PyvtkParametricBour_EvaluateP7_objectS0__ZL38PyvtkParametricPluckerConoid_StaticNewv_ZL41PyvtkParametricPluckerConoid_SafeDownCastP7_objectS0__ZL37PyvtkParametricPluckerConoid_IsTypeOfP7_objectS0__ZL41PyvtkParametricPluckerConoid_GetDimensionP7_objectS0__ZL33PyvtkParametricPluckerConoid_GetNP7_objectS0__ZL33PyvtkParametricPluckerConoid_SetNP7_objectS0__ZL32PyvtkParametricPluckerConoid_IsAP7_objectS0__ZL40PyvtkParametricPluckerConoid_NewInstanceP7_objectS0__ZL33PyvtkParametricPluckerConoid_Type_ZL36PyvtkParametricPluckerConoid_Methods_GLOBAL__sub_I_vtkParametricPluckerConoidPython.cxx_ZL43PyvtkParametricPluckerConoid_EvaluateScalarP7_objectS0__ZL37PyvtkParametricPluckerConoid_EvaluateP7_objectS0__ZL45PyvtkCommonComputationalGeometryPython_Module_GLOBAL__sub_I_vtkCommonComputationalGeometryPythonInitImpl.cxx_ZL46PyvtkCommonComputationalGeometryPython_Methodscrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____GNU_EH_FRAME_HDR__dso_handle_fini_init_DYNAMIC__TMC_END___GLOBAL_OFFSET_TABLE__ZN19vtkParametricMobius3IsAEPKc_ZN21vtkParametricFunction23GetDerivativesAvailableEvPyVTKObject_Delete_ZN13vtkPythonArgs16PureVirtualErrorEv_ZN24vtkParametricRandomHills32GetAllowRandomGenerationMinValueEv_ZN22vtkParametricEllipsoid10SetXRadiusEd_ZN17vtkParametricBour3NewEvPyvtkParametricEnneper_ClassNew_ZN17vtkKochanekSpline8EvaluateEd_ZN20vtkParametricEnneper3IsAEPKc_ZNK22vtkParametricHenneberg19NewInstanceInternalEv_ZN19vtkParametricMobius9GetRadiusEv_ZNK18vtkParametricKlein19NewInstanceInternalEv_ZN17vtkParametricBour3IsAEPKcPyVTKAddFile_vtkParametricPseudosphere_ZN19vtkParametricSpline9GetClosedEv_ZN19vtkParametricSpline23GetParameterizeByLengthEvPyvtkParametricTorus_ClassNew_ZN22vtkParametricEllipsoid14EvaluateScalarEPdS0_S0__ZN19vtkParametricSpline17SetNumberOfPointsExPyvtkCardinalSpline_ClassNew_ZNK27vtkParametricCatalanMinimal19NewInstanceInternalEv_ZN24vtkParametricRandomHills12GetDimensionEv_ZN24vtkParametricRandomHills32GetAllowRandomGenerationMaxValueEv_ZN21vtkParametricFunction31GetDerivativesAvailableMinValueEv_ZN19vtkParametricSpline25GetLeftConstraintMinValueEv_ZNK17vtkParametricKuen19NewInstanceInternalEv_ZN17vtkParametricKuen10SetDeltaV0Ed_ZN24vtkParametricRandomHills14EvaluateScalarEPdS0_S0__ZN19vtkParametricSpline10SetYSplineEP9vtkSpline_ZN24vtkParametricConicSpiral4GetNEvPyVTKObject_TraversePyVTKObject_Check_ZN17vtkParametricKuen3IsAEPKc_ZN25vtkParametricFigure8Klein12GetDimensionEv_ZN21vtkParametricCrossCap12GetDimensionEv_ZN24vtkParametricRandomHills23AllowRandomGenerationOnEv_ZN18vtkParametricKlein3NewEv_ZN22vtkParametricEllipsoid10GetXRadiusEv_ZN19vtkParametricSpline13SetRightValueEd_ZN18vtkParametricTorus13SetRingRadiusEd_ZN27vtkParametricSuperEllipsoid14EvaluateScalarEPdS0_S0__ZN24vtkParametricRandomHills8EvaluateEPdS0_S0__ZN17vtkCardinalSpline7ComputeEv_ZN27vtkParametricCatalanMinimal8EvaluateEPdS0_S0__ZN17vtkCardinalSpline8EvaluateEd_ZN21vtkParametricCrossCap14EvaluateScalarEPdS0_S0__ZN25vtkParametricPseudosphere3IsAEPKc_ZN17vtkParametricDini14EvaluateScalarEPdS0_S0__ZN24vtkParametricSuperToroid21GetCrossSectionRadiusEv_ZN19vtkParametricSpline17GetLeftConstraintEv_ZN19vtkParametricMobius9SetRadiusEd_ZN17vtkParametricKuen12GetDimensionEvPyvtkParametricCrossCap_ClassNewPyvtkParametricKlein_ClassNew_ZN21vtkParametricFunction8SetJoinWEi_ZN24vtkParametricRandomHills16SetNumberOfHillsEi_ZN21vtkParametricFunction20ClockwiseOrderingOffEv_ZN21vtkParametricFunction9TwistWOffEv_ZN17vtkKochanekSpline7ComputeEvPyObject_GenericSetAttr_ZNK25vtkParametricBohemianDome19NewInstanceInternalEv_ZN19vtkParametricSpline10SetXSplineEP9vtkSpline_ZN27vtkParametricCatalanMinimal12GetDimensionEv_ZN19vtkParametricSpline8EvaluateEPdS0_S0__ZN24vtkParametricConicSpiral4SetAEd_ZN22vtkParametricEllipsoid10GetZRadiusEv_ZN24vtkParametricRandomHills24SetAllowRandomGenerationEi_ZN21vtkParametricFunction9GetTwistUEv_ZN19vtkParametricSpline9GetPointsEv_ZN24vtkParametricConicSpiral4GetAEv_ZN21vtkParametricFunction17GetTwistVMinValueEv_ZN24vtkParametricRandomHills24AllowRandomGenerationOffEv_ZN20vtkParametricEnneper14EvaluateScalarEPdS0_S0__ZN21vtkParametricFunction11GetMaximumWEv_ZN24vtkParametricConicSpiral4SetCEd_ZN22vtkParametricHenneberg3NewEv_ZN13vtkObjectBase8IsTypeOfEPKcPyModule_GetDict_ZN18vtkParametricRoman9SetRadiusEd_ZN18vtkParametricTorus13GetRingRadiusEv_ZN18vtkParametricTorus3IsAEPKc_ZN25vtkParametricFigure8Klein14EvaluateScalarEPdS0_S0__ZN25vtkParametricBohemianDome12GetDimensionEv_ZN18vtkParametricRoman8EvaluateEPdS0_S0_PyVTKObject_New__cxa_finalize@GLIBC_2.2.5PyvtkParametricBour_ClassNew_ZN19vtkParametricMobius3NewEv_ZN17vtkKochanekSpline14SetDefaultBiasEd_ZN25vtkParametricFigure8Klein9GetRadiusEv_ZN24vtkParametricRandomHills16GetHillYVarianceEv_ZN25vtkParametricPseudosphere3NewEv_ZN19vtkParametricSpline12GetLeftValueEv_ZNK16vtkParametricBoy19NewInstanceInternalEv_ZN19vtkParametricSpline10SetZSplineEP9vtkSpline_ZN24vtkParametricConicSpiral3IsAEPKc_ZN24vtkParametricRandomHills24GetAllowRandomGenerationEv_ZNK24vtkParametricSuperToroid19NewInstanceInternalEvPyVTKAddFile_vtkParametricCatalanMinimal_ZN24vtkParametricRandomHills13GetRandomSeedEv_Py_FatalErrorFuncPyvtkParametricSuperToroid_ClassNew_ZN27vtkParametricCatalanMinimal3IsAEPKc_ZN21vtkParametricFunction8TwistWOnEv_ZN24vtkParametricConicSpiral12GetDimensionEv_ZN19vtkParametricSpline18GetRightConstraintEv_Py_NoneStruct_ZN24vtkParametricRandomHills13SetRandomSeedEi_ZN17vtkKochanekSpline8DeepCopyEP9vtkSpline_ZN24vtkParametricSuperToroid21SetCrossSectionRadiusEd_ZN21vtkParametricFunction9SetTwistVEi_ZN22vtkParametricEllipsoid10GetYRadiusEvPyDict_SetItemString_ZN18vtkParametricKlein3IsAEPKc_ZN21vtkParametricFunction11SetMaximumUEd_ZN25vtkParametricBohemianDome4SetBEdPyVTKAddFile_vtkParametricFigure8Klein_ZN21vtkParametricFunction11SetMinimumUEd_ZN21vtkParametricFunction8SetJoinUEi_ZNK25vtkParametricPseudosphere19NewInstanceInternalEvPyType_TypePyVTKAddFile_vtkParametricSplinePyVTKAddFile_vtkParametricEnneper_ZN21vtkParametricFunction8GetJoinUEv_ZN24vtkParametricRandomHills23GetAmplitudeScaleFactorEv_ZN27vtkParametricSuperEllipsoid5GetN1Ev_ZN27vtkParametricSuperEllipsoid5SetN2Ed_ZNK17vtkParametricDini19NewInstanceInternalEv_ZN17vtkKochanekSpline17GetDefaultTensionEv_ZN24vtkParametricRandomHills16GetHillXVarianceEv_ZN21vtkParametricFunction11GetMinimumUEv_ZN24vtkParametricSuperToroid13SetRingRadiusEd_ZN21vtkParametricFunction11GetMaximumUEvPyVTKAddFile_vtkParametricEllipsoidPyvtkParametricRandomHills_ClassNew_ZN25vtkParametricBohemianDome8EvaluateEPdS0_S0__ZNK19vtkParametricMobius19NewInstanceInternalEv_ZN17vtkCardinalSpline8DeepCopyEP9vtkSpline_ZN18vtkParametricTorus8EvaluateEPdS0_S0__ZN13vtkPythonArgs8GetValueERd_ZN27vtkParametricSuperEllipsoid5GetN2EvPyvtkParametricMobius_ClassNew_ZN18vtkParametricRoman12GetDimensionEv_ZN22vtkParametricHenneberg3IsAEPKcPyVTKObject_AsBufferPyvtkKochanekSpline_ClassNew_ZN17vtkCardinalSpline3NewEv_ZN22vtkParametricHenneberg8EvaluateEPdS0_S0__ZN18vtkParametricKlein14EvaluateScalarEPdS0_S0__ZNK21vtkParametricFunction19NewInstanceInternalEv_ZN21vtkParametricFunction9GetTwistVEv_ZNK17vtkKochanekSpline19NewInstanceInternalEv_ZNK18vtkParametricTorus19NewInstanceInternalEvPyFloat_FromDouble_ZN24vtkParametricRandomHills16SetHillXVarianceEdPyvtkParametricBohemianDome_ClassNew_ZN18vtkParametricRoman9GetRadiusEv_ZN24vtkParametricSuperToroid14EvaluateScalarEPdS0_S0__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN13vtkPythonArgs8GetValueERPc_ZN25vtkParametricBohemianDome4GetAEv_ZN16vtkParametricBoy3NewEvPyVTKObject_GetSet_ZN21vtkParametricFunction8GetJoinWEv_ZN24vtkParametricSuperToroid10SetZRadiusEd_ZN24vtkParametricSuperToroid3NewEv_ZN19vtkParametricSpline13GetRightValueEv_ZN22vtkParametricEllipsoid3NewEv_Py_Dealloc_ZN17vtkParametricBour14EvaluateScalarEPdS0_S0_PyVTKAddFile_vtkParametricMobius_ZN21vtkParametricFunction9TwistVOffEv_ZN18vtkParametricTorus21GetCrossSectionRadiusEv_ZN17vtkKochanekSpline3IsAEPKcPyVTKAddFile_vtkParametricKleinPyVTKAddFile_vtkParametricBohemianDome_ZN13vtkPythonArgs8GetArrayEPdi_ZNK24vtkParametricConicSpiral19NewInstanceInternalEv_ZN16vtkParametricBoy9SetZScaleEd_ZN24vtkParametricRandomHills3IsAEPKc_ZN24vtkParametricConicSpiral4SetNEd_ZN24vtkParametricSuperToroid10GetYRadiusEv_ZN17vtkParametricDini4SetAEd_ZN27vtkParametricSuperEllipsoid3IsAEPKc_ZN27vtkParametricSuperEllipsoid10GetYRadiusEv_ZN17vtkParametricKuen3NewEv_ZN26vtkParametricPluckerConoid12GetDimensionEv_ZN19vtkParametricSpline23SetParameterizeByLengthEiPyvtkParametricBoy_ClassNew_ZN24vtkParametricSuperToroid3IsAEPKcPyvtkParametricPluckerConoid_ClassNew__cxa_atexit@GLIBC_2.2.5_ZN24vtkParametricConicSpiral14EvaluateScalarEPdS0_S0_PyVTKAddFile_vtkCardinalSpline_ZN21vtkParametricFunction7JoinVOnEvPyVTKAddFile_vtkParametricBour_ZN24vtkParametricSuperToroid10GetZRadiusEv_ZN17vtkParametricBour8EvaluateEPdS0_S0__ZN17vtkCardinalSpline3IsAEPKc_ZN24vtkParametricRandomHills23GetXVarianceScaleFactorEv_ZN25vtkParametricPseudosphere12GetDimensionEv_ZN17vtkKochanekSpline3NewEv_ZN19vtkParametricSpline12SetLeftValueEd_ZN27vtkParametricSuperEllipsoid5SetN1Ed_ZN27vtkParametricSuperEllipsoid10SetZRadiusEdPyvtkParametricSuperEllipsoid_ClassNew_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN24vtkParametricRandomHills23SetXVarianceScaleFactorEdPyVTKObject_String_ZN24vtkParametricRandomHills23GetYVarianceScaleFactorEv_ZN24vtkParametricSuperToroid8EvaluateEPdS0_S0__ZN21vtkParametricFunction8TwistVOnEv_ZN21vtkParametricFunction3IsAEPKc_ZN24vtkParametricConicSpiral4SetBEd_ZN16vtkParametricBoy9GetZScaleEv_ZN17vtkKochanekSpline17SetDefaultTensionEd_ZNK19vtkParametricSpline19NewInstanceInternalEv_ZN25vtkParametricBohemianDome3IsAEPKc_ZN21vtkParametricFunction8JoinVOffEv_ZN19vtkParametricSpline18SetRightConstraintEiPyvtkParametricSpline_ClassNew_ZN21vtkParametricFunction20SetClockwiseOrderingEi_ZN25vtkParametricBohemianDome4GetCEvPyvtkParametricRoman_ClassNew_ZN21vtkParametricFunction11GetMinimumWEv_ZN18vtkParametricRoman14EvaluateScalarEPdS0_S0__ZN27vtkParametricSuperEllipsoid10SetXRadiusEd_ZNK27vtkParametricSuperEllipsoid19NewInstanceInternalEvPyvtkParametricKuen_ClassNew_ZN27vtkParametricCatalanMinimal14EvaluateScalarEPdS0_S0_PyVTKAddFile_vtkParametricSuperEllipsoid_ZN17vtkParametricDini3NewEv_ZN26vtkParametricPluckerConoid3IsAEPKc_ZN16vtkParametricBoy12GetDimensionEv_ZN24vtkParametricSuperToroid5SetN2Ed_ZN24vtkParametricRandomHills16SetHillYVarianceEd_ZN17vtkParametricBour12GetDimensionEv_ZN21vtkParametricFunction8TwistUOnEv_ZN21vtkParametricFunction17GetTwistUMinValueEvPyVTKObject_GetObject__stack_chk_fail@GLIBC_2.4_ZN25vtkParametricBohemianDome4SetAEd_ZN25vtkParametricBohemianDome14EvaluateScalarEPdS0_S0__ZN9vtkObject3NewEv_ZN17vtkKochanekSpline20GetDefaultContinuityEv_ZN19vtkParametricSpline9SetPointsEP9vtkPoints_ZN17vtkParametricDini3IsAEPKc_ZN17vtkParametricDini12GetDimensionEv_ZNK22vtkParametricEllipsoid19NewInstanceInternalEvPyvtkParametricHenneberg_ClassNew_ZN27vtkParametricSuperEllipsoid10SetYRadiusEdPyVTKAddFile_vtkParametricPluckerConoidPyVTKAddFile_vtkParametricDiniPyVTKAddFile_vtkParametricConicSpiral_ZN19vtkParametricSpline3IsAEPKc_ZN24vtkParametricSuperToroid10GetXRadiusEv_ZN17vtkParametricKuen10GetDeltaV0Ev_ZN19vtkParametricSpline25GetLeftConstraintMaxValueEv_ZN21vtkParametricFunction11GetMinimumVEv_ZN17vtkParametricDini8EvaluateEPdS0_S0__ZN22vtkParametricEllipsoid3IsAEPKc_ZN25vtkParametricFigure8Klein9SetRadiusEd_ZNK26vtkParametricPluckerConoid19NewInstanceInternalEv_ZN19vtkParametricSpline26GetRightConstraintMinValueEv_ZN18vtkParametricRoman3IsAEPKcPyvtkParametricFunction_ClassNew_ZN21vtkParametricFunction11SetMinimumWEd_ZN19vtkParametricSpline23ParameterizeByLengthOffEv_ZN22vtkParametricEllipsoid10SetZRadiusEd_ZN17vtkParametricKuen8EvaluateEPdS0_S0_PyvtkParametricCatalanMinimal_ClassNew_ZN19vtkParametricSpline9ClosedOffEv_ZN25vtkParametricBohemianDome4GetBEv_ZN25vtkParametricPseudosphere14EvaluateScalarEPdS0_S0_real_initvtkCommonComputationalGeometryPython_ZN21vtkParametricFunction11SetMaximumWEd_ZN19vtkParametricSpline12GetDimensionEv_ZN20vtkParametricEnneper8EvaluateEPdS0_S0__ZN24vtkParametricSuperToroid5SetN1Ed_ZN21vtkParametricFunction16GetJoinUMaxValueEv_ZN27vtkParametricSuperEllipsoid12GetDimensionEv_ZN27vtkParametricSuperEllipsoid10GetZRadiusEvPyVTKObject_SetFlagPyvtkParametricConicSpiral_ClassNewPyVTKClass_Add_ZN21vtkParametricFunction8JoinWOffEv_ZN25vtkParametricPseudosphere8EvaluateEPdS0_S0__ZN21vtkParametricFunction9GetTwistWEv_ZN21vtkParametricFunction23DerivativesAvailableOffEvPyObject_GC_Del_ZN21vtkParametricFunction28GetClockwiseOrderingMinValueEv_ZN27vtkParametricCatalanMinimal3NewEv_ZN21vtkParametricFunction28GetClockwiseOrderingMaxValueEv_ZN19vtkParametricMobius12GetDimensionEv_ZN26vtkParametricPluckerConoid14EvaluateScalarEPdS0_S0_PyVTKAddFile_vtkParametricRandomHills_ZN19vtkParametricSpline22ParameterizeByLengthOnEv_ZN21vtkParametricFunction8SetJoinVEi_ZN13vtkPythonArgs8GetValueERiPyVTKObject_Repr_ZN18vtkParametricTorus3NewEvstrcmp@GLIBC_2.2.5_ZN24vtkParametricRandomHills16GetNumberOfHillsEv_ZN21vtkParametricCrossCap3NewEvPyType_ReadyPyvtkParametricFigure8Klein_ClassNew_ZN26vtkParametricPluckerConoid4GetNEvPyvtkParametricPseudosphere_ClassNew_ZN21vtkParametricFunction9SetTwistWEi_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN17vtkParametricDini4SetBEd_ZN21vtkParametricFunction16GetJoinWMinValueEv_ZN17vtkParametricDini4GetBEv_ZN24vtkParametricSuperToroid13GetRingRadiusEv_ZN21vtkParametricFunction17GetTwistUMaxValueEv_ZN16vtkParametricBoy14EvaluateScalarEPdS0_S0__ZN24vtkParametricRandomHills16GetHillAmplitudeEv_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN24vtkParametricConicSpiral4GetCEv_ZN21vtkParametricFunction8JoinUOffEvPyLong_FromLong_ZN25vtkParametricFigure8Klein8EvaluateEPdS0_S0_PyVTKAddFile_vtkParametricCrossCap_ZN16vtkParametricBoy3IsAEPKc_ZN19vtkParametricSpline8SetPointExddd_ZNSt8ios_base4InitC1Ev@GLIBCXX_3.4_ZN21vtkParametricFunction19ClockwiseOrderingOnEv_ZN24vtkParametricSuperToroid5GetN2Ev_ZN18vtkParametricKlein12GetDimensionEv_ZN19vtkParametricSpline17SetLeftConstraintEi_ZN18vtkParametricKlein8EvaluateEPdS0_S0__ZN21vtkParametricFunction7JoinWOnEv_ZN17vtkParametricDini4GetAEv_ZN21vtkParametricFunction31GetDerivativesAvailableMaxValueEv_ZN19vtkParametricSpline8ClosedOnEvPyModule_Create2_ZN24vtkParametricRandomHills16SetHillAmplitudeEd_ZN21vtkParametricFunction16GetJoinWMaxValueEv_ZN17vtkParametricKuen14EvaluateScalarEPdS0_S0__ZNK24vtkParametricRandomHills19NewInstanceInternalEvPyVTKAddFile_vtkParametricTorusPyVTKAddFile_vtkParametricBoyPyvtkParametricEllipsoid_ClassNew_ZN13vtkPythonArgs8GetValueERx_ZN21vtkParametricCrossCap8EvaluateEPdS0_S0__ZN22vtkParametricEllipsoid8EvaluateEPdS0_S0__ZN24vtkParametricRandomHills23SetYVarianceScaleFactorEdPyErr_OccurredPyObject_GenericGetAttr_ZN18vtkParametricTorus12GetDimensionEv_ZN19vtkParametricSpline26GetRightConstraintMaxValueEv_ZN24vtkParametricSuperToroid10SetYRadiusEd_ZNK21vtkParametricCrossCap19NewInstanceInternalEv_ZN21vtkParametricFunction17GetTwistVMaxValueEv_ZN22vtkParametricEllipsoid12GetDimensionEv_ZN24vtkParametricRandomHills23SetAmplitudeScaleFactorEdPyvtkSpline_ClassNew_ZN22vtkParametricHenneberg12GetDimensionEv_ZN27vtkParametricSuperEllipsoid3NewEv_ZNK20vtkParametricEnneper19NewInstanceInternalEv_ZN17vtkKochanekSpline14GetDefaultBiasEv_ZN21vtkParametricFunction11GetMaximumVEv_ZN24vtkParametricConicSpiral4GetBEv_ZN21vtkParametricFunction22DerivativesAvailableOnEv_ZN19vtkParametricSpline10GetYSplineEv_ZN21vtkParametricFunction16GetJoinVMaxValueEv_ZN19vtkParametricSpline9SetClosedEiPyVTKAddFile_vtkParametricFunction_ZN16vtkParametricBoy8EvaluateEPdS0_S0__ZN24vtkParametricSuperToroid12GetDimensionEv_ZN24vtkParametricSuperToroid10SetXRadiusEdPyVTKAddFile_vtkKochanekSpline_ITM_deregisterTMCloneTable_ZN24vtkParametricConicSpiral3NewEv_ZN21vtkParametricFunction16GetJoinVMinValueEv_ZN19vtkParametricMobius14EvaluateScalarEPdS0_S0__ZN21vtkParametricFunction9TwistUOffEv_ZN21vtkParametricFunction7JoinUOnEv_ZN20vtkParametricEnneper3NewEv_ZN19vtkParametricSpline3NewEv_ZN21vtkParametricFunction20GetClockwiseOrderingEv_ZN22vtkParametricEllipsoid10SetYRadiusEd_ZN25vtkParametricBohemianDome3NewEv_ZN26vtkParametricPluckerConoid8EvaluateEPdS0_S0__ZN24vtkParametricRandomHills3NewEv_ZNK17vtkParametricBour19NewInstanceInternalEvPyVTKAddFile_vtkParametricHenneberg_ZN21vtkParametricFunction9SetTwistUEi_ZN19vtkParametricSpline10GetXSplineEvPyVTKAddFile_vtkParametricSuperToroidPyVTKAddFile_vtkParametricKuen_ZN18vtkParametricTorus14EvaluateScalarEPdS0_S0__ZN25vtkParametricFigure8Klein3IsAEPKc_ZN25vtkParametricBohemianDome4SetCEd_ZN17vtkKochanekSpline20SetDefaultContinuityEd_ZN21vtkParametricFunction23SetDerivativesAvailableEi_ZNK18vtkParametricRoman19NewInstanceInternalEv_ZN19vtkParametricSpline14EvaluateScalarEPdS0_S0__ZN21vtkParametricFunction11SetMinimumVEd_ZN18vtkParametricRoman3NewEv_ZN21vtkParametricFunction8GetJoinVEvPyVTKAddFile_vtkParametricRoman_ZN21vtkParametricFunction11SetMaximumVEd_ZN18vtkParametricTorus21SetCrossSectionRadiusEd_ZN13vtkPythonArgs13ArgCountErrorEii_ZN22vtkParametricHenneberg14EvaluateScalarEPdS0_S0___gmon_start___ZN21vtkParametricFunction17GetTwistWMinValueEv_ZNK17vtkCardinalSpline19NewInstanceInternalEv_ZN24vtkParametricSuperToroid5GetN1Ev_ITM_registerTMCloneTable_ZN21vtkParametricFunction17GetTwistWMaxValueEv_ZN21vtkParametricCrossCap3IsAEPKc_ZN26vtkParametricPluckerConoid4SetNEi_ZN19vtkParametricMobius8EvaluateEPdS0_S0__ZN26vtkParametricPluckerConoid3NewEvPyvtkObject_ClassNew_ZN20vtkParametricEnneper12GetDimensionEv_ZN25vtkParametricFigure8Klein3NewEv_ZNK25vtkParametricFigure8Klein19NewInstanceInternalEvPyvtkParametricDini_ClassNew_ZN24vtkParametricConicSpiral8EvaluateEPdS0_S0__ZN27vtkParametricSuperEllipsoid10GetXRadiusEv_ZN21vtkParametricFunction16GetJoinUMinValueEv_ZNSt8ios_base4InitD1Ev@GLIBCXX_3.4_ZN19vtkParametricSpline10GetZSplineEv_ZN27vtkParametricSuperEllipsoid8EvaluateEPdS0_S0_.symtab.strtab.shstrtab.note.gnu.property.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.dynamic.got.plt.data.bss.comment .$Ao K  8(S55D[oyyZho}}PwX}X}@B000 0 00 P:P:`:`: DD Y 2V2XX4T\TDUEUE@XH`P(@e@UX @(H 0(+XW ;#