ELF>@U@8 @ pE pE P P P " "`/`/`/DDD8DDDpp $$Std Ptd$>$>$>QtdRtdDDD<<GNUGNUegܿkG iK@8FtV` )(! @4R U$ 1rH,dC @@I1B@!R @ °  " DD@L  `Pb@ D@@a`%@I<0Т-A 4 8$$H5 !(5@&9@ B(IXHFs"  D @@ b@  ! @ P$ `@hP1H(d@h!EB BB L2 @B5bDA @ ,h`F@ !@P H‚ ب"@ #&CIA,h #@@J $H@B @0L Q" D! @  4DK " @ D F G I P R S T V X Y Z [ ] _ a b c g i k o q r v x y z |               $ ' ( ) * - . 0 1 5 6 7 8 9 ; < > @ B D E F I K L N P S V X [ ] _ ` c f i j l n p q w x z }     "#$&(+.12467;=ADEIJNOTWX\]_`bdeghjklmprvwz|~     !#%'()*+,-01478:<>@BDHJKLNQSTVWZ\_abcehkmoqrtvyz{ !$&'(*,./138;<>ABEFHJLPRTX[_`abghimpqtvwz{|~   %'*+,.236:=>?@BCGJLNQSWZ[^acdgimoqstvwx{| !#$%'*/03S%$$Z:8i!񷇧5ƹd 썫9Xm2 K߅*栌ٻ%!j> Pvn*\s^\w3y;^MI O<}?]cΐNP,z?ʍLO pV-VZxCfAZ1hRmKJ( b,KY`u\s>?*^{]'vDT{˷nBCљ"3 &XU1Z1p':Xu6 RpM2bLfwlXX-/sI: ;':~$-% t~t+ {DoyֵrwRp 0IՕvpA0(J$"P,ͩx:EPOU;$}Ř<Ͽ07;}qs$Z`'ŸΊ9hUsV8 {V(b0r3jCa\lHǟ{20ɘezmt,vPrQ@+wo!?97 n Ό3w7ېHytif)lP~&n] _i$R`MblђξCJM+՟g8}B7^%5+<ڗ(KUW@^4hiw" 땕j+p!(WŒ;bL*XJUsWݱsFKYWeKTo <ޭ(!w@Øb5X@9ctOẁѹZ20? pߎk7e̥\߾: bvD7cAvIbs7 ;ZȌtuXs4:4 CU7y^HIc *z\eώu@bHoʓ ez, flqlZ#xo.gv#bm{ wAвKJJ_ "7(r;۸Ah_> z|Sgm4@yh @Gsj[j_ͱlE_rpRhۉSN ٘8l`%q J)S*ȻD8%BEn>}]2"6] s9YbyRz# nD86RQɜT2¢'FuT+tW)0 fĺ9JS 5`8Q.Swa_h`6͗@pHu<EX(!X܁ubTC(EgÊQ`^LB`' E2$ W RUoL84ƈEm}C*a7dQR+KpMJmh9Eu{€g+0l6 Uxh%=PHnc ?~w'4uMjSt?V-2Y~{bU̳|+y._HqBtK]38~U0~[kF~'NXXbMսr`95( Fd N -zw qwݢ#ҏP>۞#~ի {q_~khez8)\jP0O>-&hLJ7,.IBZτ]E1#B|))X퓅rHjE[|:(\7nXDZJ0n&zْAN`րQ45E\ 0,~qRˋմq!kOhAD >rro!XbgL.=H|Ʌȟlb\ OܗJ J`; ϭaR?*fҍ#5pB5N2p (fjň5 Tm_iNkV`@H`Lޓ@PBX2 "gc˨re씴X)DWIX"~0R Nv@8)Xߕ/lF |?>|NV*80_KLQ2@$J7c?Vb)]Js!(23i>MAL|r#FsHuސ ZUB zqg(T@Ǐ%B/B5ͱi:$F#Fw6\[XP7Dwk.zW&?D"871g?p 0ϱLզvZwaIA>JP>s-UoX錧Ģ`Ry: Yƨ9.=EDpJ}Wx:$Dr{i& R(t- '!ԺbrE͉y5h6'P#C#UP ¤貾-2FQ-U5)FKzQ&9:F 82\QX]ͬ=p2&f $>ȌlC0_%ʧ]f#<04Us*[ladu,GkIJAD}DXp'{:. Rn$ B2I"ǫos2Tr,Ks{8AC2eV^.T 1u[`DVJ5`L!GC7jZZ 5\1d f4"><s֔zQl3zUq%&Z#8Ŀ6Tz۸6Dz]MzPec*AQ~UфWӈ9[-:D Ʊ_v! A9KMbV]ざ-6Ks:LKE{r9H)=V8hMil}f!6Rjp\YJpd֓*uyM~;$Z"/> .u}A˅2fíh实h"AZu[,L]O[k@6d 3L<)|[qэt>[_6M]%* LX`!9Q,vFLJQo|:T2i1I T _@ԕp=+k^VvJ$s`4$^$l]],F/E%ʖ!!9r[ʺρS3(}OuAPO1JE%D\'`t_@u$&F)OS?PЧh5Q;M:ەC&aiTXi nkjO}&,8D#Fh=AMJOM섑PGO:-EְLvɔb9x;͐C{u:>'uek |:A©ګE2ЙRKa-(K}>dAfPyeNI-&!y6'/MJ덡Z=&GE؄@ yoVyԵk##XQ`7ڠWЭpJ% 'N?b^frl@-x>ZJчїȱӪHm%o18Z&L(ɇ5!:E/ еJ$Nb|ѓuQ>rx=+YԽ0*%M*Ө+˚BYO$%Ԋ )]^{q:qKD4^ܫt#`zA%m;T5++vt,oHht.l!}k0~}oZ}e'Uʽ<@MI1k:: Sn-szWc, N7\%?vVm@r$<$dpje:{{+X p~kRʺkųbJZM+ "*&0vg~ fJix9)f8ف083QlWevXCpOFu4GWL#L/I-;v= fTIBڗN6bJyՙxS1)c'I$0ҜF| DSu½Q$=ahwrN|'(Ds ̊p3E YKfo#gs&*r 0rES[M栒 [}S3tHkGA F'c8Nص$A|-|/[E^PnY4A`wU[j.꽦TV}&+o`e ^YckeLDH]@ZRnRg_ɬ[Jgsnm& "3L]a;rd b;N$:WφIXXS9& |%Jq9bK zxxT(CnX[|5X-$fWWqXb[WA J@Pe<)G/[e DbŎ:;4v$Ξv@af F" s])rg 8ٟ eCL?F [`Arn-gAhxÞ4 2&_S0pӢxn`{[o^r+1T' d3iQ/$DukQFdC6'Q2&Ns9D;(  v`Wjx @z:GsRT' c6PTNZe"No~; KrR?p*!+.K/,*`΢61VY? !QiXYrScPOe[oY5M`u.,AU/ȑVͬo )_ +_tO)Y^AB iu0'ttc$+SG;6 Xp:kleH҇xf2](Ht?wF|-uy ymxyV)RNEj Y\[nf|Vz@KvH -]Bc X]vB}uW+6[7Tg59IS:NFH^WzbSF9JݱjGN?Y-)4!J) I;OjppZj ]zcg? C9DmG5Pl"$/l7WIǿx oNh5`'S!?#9"tTjK>ZM"#5k N cyw ] ߼x* yϖ1Ӌ SXqN_t #Px~LG_f.' 02U!}/,X6]7Q*  V 1pc #z ّ  _]tCb B%* pj!&K ig}HIp6U_=mN F?k4j/,a3 >8c7pkYִKkN" Yvw(u~I(0VZy;d^.0gF<{hPJ{|"RI\YLfYXcXrgr=M5X1G.#zD1Lc Dg[WVg~[ Q#c'u(b@sdB^n  FŽ+4I4X::^UZ`sn MQ]c!~7΁d"8'Oh#WQ0_auKco]q`uX7HCsyjglf*H¹Lh~Z  TwܷT?Ω9+yInDybpbga z:os;W_cR DF?3p%F'1Hl'jCjiIQO@-Q`T^6F9ET׈%x6\ClUOHW…`׌تE F1'ޒ=i|z=X]ytW !P&RJB^B/1R ˍT#_v.~NbyEy! bnPxOO`&cB]4O/^ksoƼ $mηTXK]tSsVIu5Be{9;6nzY`9Ht G$w$j\]?*FK'r5u+P`3UQ PBts8BT4bs {)er'N[eP   2\j8Ӫ^D:6kt P> zax`TN]& ӜE'a< C[B#v))*r5o K8Ba}zWFWg{ ]_ hi-lLi"0k/#ce]: ˛ܠc#?*-xpZJycXc$"GF(vc1y; U[G27VIO&$IXEG%BS֊ Yv}\ .h%LXwV `@ʠe[uU\U!P-n= PZ=.mRzBeOw[zszR@̭9.Nx~_&h4O2XD(<J/z##pؖ7Ң{K mݬo&![w|F|.~SWIc P+s ͨYt]3F.U#t:(>!1LPsdh '"vx{&%fSXV?M9\I+wfbnsޞ7O1w~C;Ps 3%c¶yv" P}S!o>* }dߐ7KQ&n[m1Dwe(v x @ D'uto:7r{6i5`*4}a ?CznSk6gg:TYߪW? 8`*+ZO LBH>zpbsmjz5o++ON<MքS~YG-X 3h+Ǩ-ZQ}pW @aauCad#T >eWi1"I0tk^i$$~y3%qAM_Vi:2(wr9lDLjB<uh\U o  2X{/Ɛ{a!x;[n() ?[)uDS\ N}qMk [v7GNMG6 Uuڴ, W!{Ip'1\~w})vlҒ.=fpSgkJ/ 'qq1i~BbN`mjI47M2ixK"zRr!UqNx9WdEZ%8,AO6p[` 1bfDD =T|<RxEw#b afK!*&T~t 8>8+z0=nk2֌ {_rH;4hMx] ,%>mznjcg0{wxp ZITwZGXRr 4u5tQql~;qm$ʗ' l2.k IfLX)O 3%!ǙlQ@Xۃ<5pc<\NR,.roS^JfN]LČ6&K[F7Q{}' r9r4avVtؗٝf$z s4*x?V ~kF>rHt /inM{ EГX_ߘ-pkcB3A;YznD)e(rHCHC-\\TW:<K:sBL"Jݲ 7Z|a .?L&XKU\ *1$o0Sl\I4E` [rK`TzFGv~yYZ pۮa;Z=½Á!` &8h<'Qep*R%}<ӵd)D͕T1JS(?߈LiӒs9iO[^ ^EQm]Wr%U'a~xpCզ6?Yoa[~w ʙ'b #..ONE{W=d^2U./Zm]' g:q ݑpYRk?iWC5z \wpZI!M32, U @'jm+#rNW=rk^T5 4oqQ'ad< VY˸ʽ|:jT:2E+5oXbAfn3| n~oV/24m>C k$ hn]Ak(XncJ!.)S\X*C' 's>B >ne`-M"+<" "p!W"+'$Oi"(<2"Ь$b~b"= 2R-M!"#YM6" BMH4M"% 00&.Mt"P-<'"`3$btH }6"$eHM"#z"+ @.O}"z' b">R"v! PH1"~, @" # M"+ |T-M="* "Н. D"+ l" ' )" )"PE DMq&`J"@T*/K"pA/ "( "'1V'#OR" 'AGVH#OC"P"k( " <"`^ ""8"<=G"r }`ʛ"F}V".!na#Ol"p "j< O_"[( "@+b7-M"p&/ ³0M3p#OÂ`'M"Pu"( "Ж" e"PO"  7"ж @)Og"N"pz  W-M'O2"`٥"0] _") \~"{'<gs"p C"t%O"`E "` ?" E es"O"v!L+"Ж ""zM%"r"z "+SV"p. #MDL" N{6"1["Й %(MJ"ps k"C"h(.T"`.&bC"8< -MU"  +"( D,"0?.1"$֗"( "PR/<}5-neO,a,Ob0 MP"ж "0OЦ,)Mp}`"@6 hVM" FFO"6 " ]"& ^M"0uDS"a @/Hm"R" 6"$ "d( q"`b0" 0."Э " * !d:Of&`O" X"0?'`$M" ̸"><~OY"@u0`k" "2!O "@]@ OA06Ob"!" # r" bx Ш"MD DH-" Ec+O" +"p# "#b`"@!b{d7O1="o #MPU"a]"v!A")0" "` 1"pOMY"01?"+ H"(O"+ g-2"I#0|"G"* eHOB"t% k ".bLO OF8"1,pO"?G"0r!0"<D"p) 5"p7"0 "7Oz"@) 7"!QmO"P#O"P %" 3$ "_ <p-"!g" ". Z"X&O"p2"( """ O"+ "L!7"1ɘ"( T"<^"0) '""K+ O" #u'M[" "д' 0$Ors"' m "\oW"P/ d"g" w! "0%M"p2! "v! v~" |'<Q" CO".<?"Z"+"J# " n<)"p9L"3" d%pDO$e"`P r!"` "!<0"^. `O"~"@O"p'/rh"@^ 0O -M83" H"г%  .MG"@C B" # 4"`"?I"`""" ޶"LbOk"7|" f"U" . S-MU &OI%M[-M=f"`"P0"+<oX"/ " MU6O! MLЄ*M]"`&["@bO7p5`#"P7 R"`L1"` !M-MS-M "" '9LMK"XOE"p{<`A"  +"O4R"00Hu'ONR"@ApAT@ &MmJ"`s c)`H=O-6"@1 WMPHH"'1ކ"' "* Oϋ"^"@&bz"* " """0/ f"(X"<U"0<0"ś"07 "I#7q`&`W"/ M"u? (H"7 g" *X-M *O"<."@ fH"pr c"><c")O"0*b2 "\{B"0J<` A" 7"0 S"1" 7"La="oc[`Q&Oo0"@$ %+O" "I"%t`\M7"!bF?"7%b"^T)O"0 p w'OL"  F&.M"" #"p q" b?") )5"w!k"^ !x1"E"` ""/b"!O[@Z!O"  .a" )ODC"`OB" Mf"# ;*H"_ ?2 O" Q" "b .""@" lk(MŚ"` 0T-Mώ"\( z&"e"` p="`7% "2! C".)*"b<O5(M="oZ O "#"pL ""(P"( )O"е'k{"  Oo@MR" ?%M") ?/0MңpOɤ"  > "P]g"0&"a "z KMz*" f"pBO+"`o$" n"! gq& "\ןЖM}>"p16M!`[Oy:'M"4. ';O" %"P8b"* bW"l,b"&/blL"t ^"')"`) 5,OmO/O)"?.M)" o}"z'@"L"#1 "" _0z&O"@+<nm"0bQ/O19"?c#O}p&"e dC"t%J"0 "~, M[Q&M"p}z"@R'B%"P<"p'kz"O"\/"bP\.O.M*"PL)3"6 L" tu`iHe"0+1_PO"+b"0 Q>Og8"P:"(,"O "0' \-v4N"0% !". 8m" ' ")"@L l" " DMN"d(O#%ObVO0"<7d"?b1OyO"P' "! "9OV|"z'k"\ "" v M"@7)OȆ"Pc?U"-!"!B"' d"0) Bm"bY"6 d"PF<"Eb3"6 yd"& !OІ'OD"0u%bC*O'*" -,37"$A"IJ@[O "" sN"> {"y'9$"`7Op" b O@"@+ X"0?N" ?!me"P E"0) P"p!,PHET-M9`g"/ZM7O@(.Mo"Є("І O<" ` ?ߏ"/" 0-M="o "+"5 '" `!OK""("3"u"" \l"` a"+""P!O"PH9O"0T* V"' "I#") z" 0!Hs\" & '"fbVH"@ "`)8"* l" ' m"`2! "p+G"0 ."0 "L "P  O7S" Z M  "O" ̝A" (Or+" 6" ""`OB]"&"p"O}"A/<"@7"+ )V"@.!f@&O "0<"5!s" 'O"<("Oa"Og"b|"z' "0# "0E<H"%^6"P1 "`Mz"R' |"H `") j"0uR" Hr"O{ Ah"~,Og" @+,A"-) ,"o$0.OQ, "@OU"0. R"P#"P) A p.OPR-MO%" q ."PO"2"' "*"6 G"В( 1" + r"E$7Oa6"$ "K+ " 6 "p' ="p7% " """C!  NMb" >s" "+"n c">?g"P& =" "]<"!yO"p" "+O+Mڜ"0?6g"T" Ll"Z"(j="@7% 7T"P.&2"l,o,"p<v"+ "5 ".<S")"` FMZ"7/Z-MX&PnM"E "hrh"p&<l" '.MK"k(u2p"`") B|"@z'1g"pd"&͍"p[(-M{"R'O"0u"P6 |" U"v" +"&X"/ "[( "-) $6)O" b@=M$"q  O"P^ {" T* m(" 1`MO"е!|"@* O ""w"9H"`r ʀЇ'R"\H‚"P "i X-+z;'OV". YpOL"  D"P' 4,A"` sqMYZF&ODC"t%i"  [" "6<&"eBjO" F"# )"PB"I# 5?KOR"p-Mp'O\.M[,"o$6"`1 XP"@ 3 '+O>" pb"0#hf"p GMC="P7% @"6 ɵ"0L "* .x"3'O""P/O*"0o$ u"@M Op" _ML"t .^"<*MW" (Nm" )"V"0 ػ"Pz "@R/ "0i8t"- da-pGO|"@]<_y&MpoOl"?3$O""! },H9Z ON*" 1"$ Ҝ"7 `c#M"P+_" ]7"$ )0" (T"0" " tK"s!" "p) "_PMK"s b"@#n, M")j"&O L{J'M"@<pM"[(P"@ pW-M̥".) " "@ }"z':d"& P" DOl" ^ e"PP 0#MrO"@' &"P3$v"`'bX"0+ l"9?@!M-GM,J"0s)P" " )zO \O") "# ڧ@5)`UBOf"^ *"M*uO ("\(u"@ NJ"6"  "p S"0.& "uG" r ڤ") "!3j""@/ g0aM`A"10" -  Q". -MH"`L "J!b̅"0b " O\p" '<\/O  De"pP +"o$ |"G4@@O"^ "p' %.M1"+ V2"$+"j "p ( '"pfO[M'"@<Y"  \"_. "?~" {'<nP"P l/"` M"%" V". "K+!Oi"& ODz"<+"0"+ "@!`@/`,)Ok""!  P"!N,"@bOP(O"7%"` 2"b-OJ+Op},Ow"K+ gL"  Һ" * "  tQ/H0ZO@"aO]t" - "l, " )!M{" ' {1"+s"@iO"p {Olp"B1f"p "`x&'M< ". "T*uY"p1D"b\^" &j"?"I#K$g"Ёt" $YpM"* ;"+!"`v! "0[(3! GO6"(<O"!X"P0DW@"P+b)"<"`! w"#M"%/P" ޵0)MF"!b-"hfm" 'M" O="o "@#O "hl" g"`` </" "0+"+ 6H"@W"/ /" " "c?"( P"0* "@a"@ R"T* "#&qI" s " "+ Y"I#"p(?4p-Md"p+ =0)M`"!B "K+bL"* "_. I%O"0<" # "0:pM|%"3$ "" "P) "O"?<O"p *O%~"`{'?9"uf "`]M" # ``2" g 0d(O9$M0ZE&M " >"p"`&/ `C!Okp*H@M!H\&.f"Prm" _"b<u"0g T (O6"p1 "J! R"-& R"*O@W" /!"!"` bI"s,)" s" ' D`R%O;"@'6cP-Hyc(MCO"`?,3S".&" " "`z ,Ow"p3' (M "p] " q'O ")O"I#c`3"<z"P e!"# f"8 "`# sM")OS"p( "!OOg"bW"L j`&O,Aa'"`f z)" C0Y-M" t"0- V"Nb" Ob7"1 [B"L!%"2$ &+MDR%M "Pb"O"L" R-M"+ " #") u"`- " ][-Mq"' "p3"&" $"O "^H"r!"* g"\(/"`9R/͕"h "`' ~O%O " c:H?"@O*O("( iO,g"&}"{' :" C"u%"`G"% a{J'O"<T" !O*Mij&M-M9-"o$b"'A" *["F"@r")PO"( "! "( O>"7%A5M" bPa,M" (<`yM|"-<a@Mt@OC(O`0"`$ ؅"' ZMW-M@UM%"`6 U"bH^g"Ќ"0D38"@ "0 &" f "# "06 rЏMNnM?@KMZ" (ON">!"l, F" ") " 1")"?-*M"PCul,M;"C!bK0w O5"y"p;'OPOИ`ӄ"aM"%"%/ 2l"P @\Mz"pT*2d") DO\"  9 MbM"% " q@O?)@zM Mp" "P(E8"p "0 ""O"v! B7" Q}" HbV".):"p< "#FpOpMjM OE`FH'Mc@)O"@w!u"p! "#'"Pf ܡ(M{"G K}"z'mPM!"#@"@ +""E "#P.AP"` h"K+ OC"" U "" H" S"u" [( B+" > NO"# YM"@<"@ 0O!M"O+"# h"." ?HP"9 "@g<W"Op&nOxu"-"`b<g"+ "P1b+MV"/ Ө")3|"y'1P!Mk" "P pOz"pE "A" {"! "@z rp" "@' L"tDϖ"( ]"K @"6 l" '  MY""#bH"h"07) 7"P$ (i" Dg"uY-"'h&M.pmHf3" ݾ"0^<e.M*)MR-M".O{"py'"@9"<(*O M"t?"> vM3" o"@)"pO0`" "+ "` "4. \"P& "@*O7" $!\"& " ='#M&"@ @[-Mƴ OgF"pO"9haOܠY!M"! "\C"u% R"-& ." 3$MM[v'H6"$("@l"'O+ J!M(" 7"  Pu"p- c"0>Zd6M"L"p  #"*b"`{ 2"V."B 'M*"z" *"P?"P{ <"o c"&"!lrMlR"PA{cg" & Κ"м( (^"&Y"h:$OM/"p P""Ї+ !". W"`/!MO] "p# ."?Hp+H|"6!g{"G {"G 1"!O)MZ" "P<\Y-M%"! %"K!o"r"0z " * Z"X& "E%"0qO#" ""J#O|"0z')"OL%"3$ -M$OmC!MZ"6 `"@ %"03$ D" l"vy"`;' 06O-M"p "+ 9UMW9"`$b"p 0"p$ z`B"t% "K+ b" # @O5)-w"P<O.*"."@# "^ >"7% "0'G"  _"P&/ "` " "b"`O"0C 0s" <!".BE"\ G"Oy`H"b^&"@3$1{"S'b}"z' p" |*uM'^O@,sQ*"bNH"% J"s!]-L$M.K"s 04.O8"1br"r" jH~M"O΀5M!"#"+ bw'.M"`7j"@<z""C}0`R"!H0H9@(O`+Oi"0*u"6 SQ"<Z-MM"%|" z' " *-Q" H"r "' ["& !OU"- f" O"P? "* z"R' *M0"P$ {"G "_ Ocz"0R' CpJ!OI"s "z<0l"7"$MOa#HZ"0b"Ц{"y'"LOk"0 k"`" ʡ"8a\"@& " t"@- " i""K+ |"`(r""pv!)N]" X"pF&<S"@.&[S"<N"P%d$6MpP.Oq"O A"6 "P Pk(OβO0" "  O"<W" "#r`HsM" N"p6 "E ǡ")b"0m, 0+MhVOMxM"4.u7"1 "]O0"P ^O%Mu"@! G"% UUPO"`_ <0"&/r%"P" pUPOM"x@''O"6 *"@o$ Y"0D|"y'pG"r " C~"{'?"]OO_0"-=-@M`O0C(M" * H\"& I"P 3"p "\B"P !".$"O f2M__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs8GetValueERx_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN20vtkAbstractCellLinks9GetIdTypeExxP12vtkCellArrayPyErr_OccurredPyLong_FromLong__stack_chk_fail_ZNK20vtkAbstractCellLinks19NewInstanceInternalEv_ZN9vtkObject3NewEv_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN20vtkAbstractCellLinks3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN13vtkPythonArgs16PureVirtualErrorEv_Py_NoneStruct_ZN13vtkPythonArgs8GetValueERPcPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkAbstractCellLinks_ClassNewPyVTKClass_AddPyvtkObject_ClassNewPyType_ReadyPyVTKAddFile_vtkAbstractCellLinksPyDict_SetItemString_Py_DeallocPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del_ZN22vtkAbstractCellLocator23SetNumberOfCellsPerNodeEi_ZN22vtkAbstractCellLocator31GetNumberOfCellsPerNodeMinValueEv_ZN22vtkAbstractCellLocator31GetNumberOfCellsPerNodeMaxValueEv_ZN22vtkAbstractCellLocator23GetNumberOfCellsPerNodeEv_ZN22vtkAbstractCellLocator18SetCacheCellBoundsEi_ZN22vtkAbstractCellLocator18GetCacheCellBoundsEv_ZN22vtkAbstractCellLocator18SetRetainCellListsEi_ZN22vtkAbstractCellLocator18GetRetainCellListsEv_ZN22vtkAbstractCellLocator17SetLazyEvaluationEi_ZN22vtkAbstractCellLocator17GetLazyEvaluationEv_ZN22vtkAbstractCellLocator29SetUseExistingSearchStructureEi_ZN22vtkAbstractCellLocator29GetUseExistingSearchStructureEv_ZNK22vtkAbstractCellLocator19NewInstanceInternalEv_ZN22vtkAbstractCellLocator3IsAEPKc_ZN22vtkAbstractCellLocator17CacheCellBoundsOnEv_ZN22vtkAbstractCellLocator18CacheCellBoundsOffEv_ZN22vtkAbstractCellLocator17RetainCellListsOnEv_ZN22vtkAbstractCellLocator18RetainCellListsOffEv_ZN22vtkAbstractCellLocator16LazyEvaluationOnEv_ZN22vtkAbstractCellLocator17LazyEvaluationOffEv_ZN22vtkAbstractCellLocator28UseExistingSearchStructureOnEv_ZN22vtkAbstractCellLocator29UseExistingSearchStructureOffEv_ZN13vtkPythonArgs8GetValueERiPyvtkAbstractCellLocator_ClassNewPyvtkLocator_ClassNewPyVTKAddFile_vtkAbstractCellLocator_ZN13vtkPythonArgs8GetArrayEPdiPyBool_FromLong_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN22vtkAbstractCellLocator16InsideCellBoundsEPdx_ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPvPyLong_FromLongLong_ZN13vtkPythonArgs8GetValueERd_ZN22vtkAbstractCellLocator8FindCellEPd_ZN22vtkAbstractCellLocator8FindCellEPddP14vtkGenericCellS0_S0___gxx_personality_v0_Unwind_Resume_ZN22vtkAbstractCellLocator18FindCellsAlongLineEPdS0_dP9vtkIdList_ZN22vtkAbstractCellLocator21FindCellsWithinBoundsEPdP9vtkIdList_ZN13vtkPythonArgs11SetArgValueEii_ZN13vtkPythonArgs11SetArgValueEid_ZN22vtkAbstractCellLocator28FindClosestPointWithinRadiusEPddS0_RxRiRd_ZN13vtkPythonArgs11SetArgValueEix_ZN22vtkAbstractCellLocator28FindClosestPointWithinRadiusEPddS0_P14vtkGenericCellRxRiRd_ZN22vtkAbstractCellLocator28FindClosestPointWithinRadiusEPddS0_P14vtkGenericCellRxRiRdS4__ZN22vtkAbstractCellLocator16FindClosestPointEPdS0_RxRiRd_ZN22vtkAbstractCellLocator16FindClosestPointEPdS0_P14vtkGenericCellRxRiRd_ZN22vtkAbstractCellLocator17IntersectWithLineEPKdS1_P9vtkPointsP9vtkIdList_ZN22vtkAbstractCellLocator17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN22vtkAbstractCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRx_ZN22vtkAbstractCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRxP14vtkGenericCell_ZN23vtkAbstractPointLocator9GetBoundsEv_ZN23vtkAbstractPointLocator18GetNumberOfBucketsEv_ZNK23vtkAbstractPointLocator19NewInstanceInternalEv_ZN23vtkAbstractPointLocator3IsAEPKc_ZN23vtkAbstractPointLocator16FindClosestPointEddd_ZN23vtkAbstractPointLocator22FindPointsWithinRadiusEddddP9vtkIdList_ZN23vtkAbstractPointLocator18FindClosestNPointsEidddP9vtkIdListPyvtkAbstractPointLocator_ClassNewPyVTKAddFile_vtkAbstractPointLocator_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_ZN23vtkAbstractPointLocator9GetBoundsEPd_ZN25vtkAdjacentVertexIterator8GetGraphEv_ZN25vtkAdjacentVertexIterator9GetVertexEv_ZN25vtkAdjacentVertexIterator3NewEv_ZNK25vtkAdjacentVertexIterator19NewInstanceInternalEv_ZN25vtkAdjacentVertexIterator3IsAEPKc_ZN25vtkAdjacentVertexIterator10InitializeEP8vtkGraphxPyvtkAdjacentVertexIterator_ClassNewPyVTKAddFile_vtkAdjacentVertexIterator_Znwm_ZN9vtkAMRBoxC1ERKS__ZdlPv_ZN9vtkAMRBoxD0Ev_ZN13vtkPythonArgs8GetArrayEPii_ZN9vtkAMRBoxC1EPKiPyVTKSpecialObject_New_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_object_ZN9vtkAMRBox28ComputeStructuredCoordinatesERKS_PKdS3_S3_PiPd_ZN13vtkPythonArgs8SetArrayEiPKii_ZN9vtkAMRBox8HasPointERKS_PKdS3_ddd_ZN9vtkAMRBox12GetBoxOriginERKS_PKdS3_Pd_ZN9vtkAMRBox9GetBoundsERKS_PKdS3_Pd_ZN9vtkAMRBox18GetCellLinearIndexERKS_iiiPi_ZN13vtkPythonUtil27GetPointerFromSpecialObjectEP7_objectPKcPS1__ZNK9vtkAMRBoxeqERKS_PyErr_Clear_Py_NotImplementedStructPyExc_TypeErrorPyErr_SetStringPyObject_HashNotImplementedPyDict_Size_ZN13vtkPythonArgs5ArrayIiEC1El_ZN9vtkAMRBoxC1EPKdPKiS1_S1_i_ZN9vtkAMRBoxC1Eiiiiii_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN9vtkAMRBoxC1EPKiS1__ZN9vtkAMRBoxC1EvPyObject_Free_ZNK9vtkAMRBox16ComputeDimensionEv_ZN9vtkAMRBox7CoarsenEi_ZN9vtkAMRBox6RefineEi_ZN9vtkAMRBox4GrowEi_ZN9vtkAMRBox6ShrinkEi_ZN9vtkAMRBox12RemoveGhostsEi_ZNK9vtkAMRBox8ContainsEPKi_ZNK9vtkAMRBox13DoesIntersectERKS__ZNK9vtkAMRBox8ContainsERKS__ZN9vtkAMRBox9IntersectERKS__ZN9vtkAMRBox13SetDimensionsEPKii_ZNK9vtkAMRBox30DoesBoxIntersectAlongDimensionERKS_i_ZN9vtkAMRBox13SetDimensionsEPKiS1_i_ZN9vtkAMRBox13SetDimensionsEiiiiiii_ZNK9vtkAMRBox16GetValidHiCornerEPi_ZNK9vtkAMRBox14GetGhostVectorEiPi_ZN13vtkPythonArgs5ArrayIhEC1El_ZN13vtkPythonArgs8GetArrayEPhi_ZN9vtkAMRBox11DeserializeEPhRKx_ZN13vtkPythonArgs8SetArrayEiPKhi_ZNK9vtkAMRBox8ContainsEiii_ZN9vtkAMRBox5ShiftEPKi_ZN9vtkAMRBox5ShiftEiii_ZNK9vtkAMRBox16GetNumberOfCellsEPi_ZNK9vtkAMRBox16GetNumberOfCellsEv_ZNK9vtkAMRBox16GetNumberOfNodesEv_ZNK9vtkAMRBox16GetNumberOfNodesEPi_ZNK9vtkAMRBox13GetDimensionsEPi_ZNK9vtkAMRBox13GetDimensionsEPiS0__ZN9vtkAMRBox9SerializeERPhRx_ZNK9vtkAMRBox9SerializeEPi_ZN13vtkPythonArgs11SetArgValueEiPKhi_ZN9vtkAMRBoxD2Ev_ZN9vtkAMRBoxD1EvPyvtkAMRBox_TypeNewPyVTKSpecialType_AddPyVTKAddFile_vtkAMRBoxPyVTKSpecialObject_Repr_ZN15vtkAMRUtilities33HasPartiallyOverlappingGhostCellsEP17vtkOverlappingAMR_ZN15vtkAMRUtilities16StripGhostLayersEP17vtkOverlappingAMRS1__ZNK15vtkAMRUtilities19NewInstanceInternalEv_ZN15vtkAMRUtilities10BlankCellsEP17vtkOverlappingAMR_ZN15vtkAMRUtilities3IsAEPKcPyvtkAMRUtilities_ClassNewPyVTKAddFile_vtkAMRUtilities_ZN17vtkAnimationScene11SetPlayModeEi_ZN17vtkAnimationScene11GetPlayModeEv_ZN17vtkAnimationScene12SetFrameRateEd_ZN17vtkAnimationScene12GetFrameRateEv_ZN17vtkAnimationScene7SetLoopEi_ZN17vtkAnimationScene7GetLoopEv_ZN17vtkAnimationScene3NewEv_ZNK17vtkAnimationScene19NewInstanceInternalEv_ZN17vtkAnimationScene3IsAEPKc_ZN17vtkAnimationScene13RemoveAllCuesEv_ZN17vtkAnimationScene4StopEv_ZN17vtkAnimationScene15GetNumberOfCuesEvPyFloat_FromDouble_ZN17vtkAnimationScene16SetAnimationTimeEd_ZN17vtkAnimationScene6AddCueEP15vtkAnimationCue_ZN17vtkAnimationScene9RemoveCueEP15vtkAnimationCue_Z38PyvtkAnimationScene_PlayModes_FromEnumiPy_BuildValuePyLong_TypePyvtkAnimationScene_ClassNewPyvtkAnimationCue_ClassNew_ZN13vtkPythonUtil12AddEnumToMapEP11_typeobjectPyVTKAddFile_vtkAnimationScene_ZN17vtkAnimationScene11SetTimeModeEi_ZN17vtkAnimationScene4PlayEv_ZN13vtkAnnotation12GetSelectionEv_ZN13vtkAnnotation3NewEv_ZNK13vtkAnnotation19NewInstanceInternalEv_ZN13vtkAnnotation7GetDataEP14vtkInformation_ZN13vtkAnnotation7GetDataEP20vtkInformationVectori_ZN13vtkAnnotation4DATAEv_ZN13vtkAnnotation4HIDEEv_ZN13vtkAnnotation6ENABLEEv_ZN13vtkAnnotation10ICON_INDEXEv_ZN13vtkAnnotation7OPACITYEv_ZN13vtkAnnotation5COLOREv_ZN13vtkAnnotation5LABELEv_ZN13vtkAnnotation3IsAEPKcPyvtkAnnotation_ClassNewPyvtkDataObject_ClassNewPyVTKAddFile_vtkAnnotation_ZN13vtkAnnotation8GetMTimeEvPyLong_FromUnsignedLong_ZN13vtkAnnotation8DeepCopyEP13vtkDataObject_ZN13vtkAnnotation11ShallowCopyEP13vtkDataObject_ZN13vtkAnnotation10InitializeEv_ZN13vtkAnnotation12SetSelectionEP12vtkSelection_ZN19vtkAnnotationLayers20GetCurrentAnnotationEv_ZN19vtkAnnotationLayers3NewEv_ZNK19vtkAnnotationLayers19NewInstanceInternalEv_ZN19vtkAnnotationLayers7GetDataEP14vtkInformation_ZN19vtkAnnotationLayers7GetDataEP20vtkInformationVectori_ZN19vtkAnnotationLayers3IsAEPKc_ZN19vtkAnnotationLayers22GetNumberOfAnnotationsEv_ZN19vtkAnnotationLayers13AddAnnotationEP13vtkAnnotation_ZN19vtkAnnotationLayers16RemoveAnnotationEP13vtkAnnotation_ZN13vtkPythonArgs8GetValueERj_ZN19vtkAnnotationLayers13GetAnnotationEjPyvtkAnnotationLayers_ClassNewPyVTKAddFile_vtkAnnotationLayers_ZN19vtkAnnotationLayers8GetMTimeEv_ZN19vtkAnnotationLayers8DeepCopyEP13vtkDataObject_ZN19vtkAnnotationLayers11ShallowCopyEP13vtkDataObject_ZN19vtkAnnotationLayers10InitializeEv_ZN19vtkAnnotationLayers19GetCurrentSelectionEv_ZN19vtkAnnotationLayers19SetCurrentSelectionEP12vtkSelection_ZN19vtkAnnotationLayers20SetCurrentAnnotationEP13vtkAnnotation_ZN12vtkArrayData17GetDataObjectTypeEv_ZN12vtkArrayData3NewEv_ZNK12vtkArrayData19NewInstanceInternalEv_ZN12vtkArrayData7GetDataEP14vtkInformation_ZN12vtkArrayData7GetDataEP20vtkInformationVectori_ZN12vtkArrayData3IsAEPKc_ZN12vtkArrayData11ClearArraysEv_ZN12vtkArrayData17GetNumberOfArraysEv_ZN12vtkArrayData8AddArrayEP8vtkArray_ZN12vtkArrayData8GetArrayEx_ZN12vtkArrayData14GetArrayByNameEPKcPyvtkArrayData_ClassNewPyVTKAddFile_vtkArrayData_ZN12vtkArrayData8DeepCopyEP13vtkDataObject_ZN12vtkArrayData11ShallowCopyEP13vtkDataObjectPyVTKAddFile_vtkArrayListTemplate_ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__cxa_atexit_ZN20vtkDebugLeaksManagerC1Ev_ZN20vtkDebugLeaksManagerD1Ev_ZN31vtkObjectFactoryRegistryCleanupC1Ev_ZN31vtkObjectFactoryRegistryCleanupD1Ev_ZN24vtkAttributesErrorMetric29GetAbsoluteAttributeToleranceEv_ZN24vtkAttributesErrorMetric21GetAttributeToleranceEv_ZN24vtkAttributesErrorMetric3NewEv_ZNK24vtkAttributesErrorMetric19NewInstanceInternalEv_ZN24vtkAttributesErrorMetric3IsAEPKc_ZN24vtkAttributesErrorMetric29SetAbsoluteAttributeToleranceEd_ZN24vtkAttributesErrorMetric21SetAttributeToleranceEdPyvtkAttributesErrorMetric_ClassNewPyvtkGenericSubdivisionErrorMetric_ClassNewPyVTKAddFile_vtkAttributesErrorMetric_ZN24vtkAttributesErrorMetric8GetErrorEPdS0_S0_d_ZN24vtkAttributesErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_d_ZN18vtkBiQuadraticQuad11GetCellTypeEv_ZN18vtkBiQuadraticQuad16GetCellDimensionEv_ZN18vtkBiQuadraticQuad16GetNumberOfEdgesEv_ZN18vtkBiQuadraticQuad16GetNumberOfFacesEv_ZN18vtkBiQuadraticQuad7GetFaceEi_ZN18vtkBiQuadraticQuad19GetParametricCenterEPd_ZN18vtkBiQuadraticQuad3NewEv_ZNK18vtkBiQuadraticQuad19NewInstanceInternalEv_ZN18vtkBiQuadraticQuad17InterpolateDerivsEPdS0__ZN18vtkBiQuadraticQuad26InterpolationDerivsPrivateEPdS0__ZN18vtkBiQuadraticQuad20InterpolateFunctionsEPdS0__ZN18vtkBiQuadraticQuad29InterpolationFunctionsPrivateEPdS0__ZN18vtkBiQuadraticQuad3IsAEPKcPyvtkBiQuadraticQuad_ClassNewPyvtkNonLinearCell_ClassNewPyVTKAddFile_vtkBiQuadraticQuad_ZN18vtkBiQuadraticQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN18vtkBiQuadraticQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN18vtkBiQuadraticQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN18vtkBiQuadraticQuad19GetParametricCoordsEv_ZN18vtkBiQuadraticQuad11DerivativesEiPdS0_iS0__ZN18vtkBiQuadraticQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN18vtkBiQuadraticQuad16EvaluateLocationERiPdS1_S1__ZN18vtkBiQuadraticQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN18vtkBiQuadraticQuad12CellBoundaryEiPdP9vtkIdList_ZN18vtkBiQuadraticQuad7GetEdgeEi_ZN33vtkBiQuadraticQuadraticHexahedron11GetCellTypeEv_ZN33vtkBiQuadraticQuadraticHexahedron16GetCellDimensionEv_ZN33vtkBiQuadraticQuadraticHexahedron16GetNumberOfEdgesEv_ZN33vtkBiQuadraticQuadraticHexahedron16GetNumberOfFacesEv_ZN33vtkBiQuadraticQuadraticHexahedron3NewEv_ZNK33vtkBiQuadraticQuadraticHexahedron19NewInstanceInternalEv_ZN33vtkBiQuadraticQuadraticHexahedron12GetFaceArrayEi_ZN33vtkBiQuadraticQuadraticHexahedron17InterpolateDerivsEPdS0__ZN33vtkBiQuadraticQuadraticHexahedron19InterpolationDerivsEPdS0__ZN33vtkBiQuadraticQuadraticHexahedron20InterpolateFunctionsEPdS0__ZN33vtkBiQuadraticQuadraticHexahedron22InterpolationFunctionsEPdS0__ZN33vtkBiQuadraticQuadraticHexahedron3IsAEPKc_ZN33vtkBiQuadraticQuadraticHexahedron12GetEdgeArrayEiPyvtkBiQuadraticQuadraticHexahedron_ClassNewPyVTKAddFile_vtkBiQuadraticQuadraticHexahedron_ZN33vtkBiQuadraticQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN33vtkBiQuadraticQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN33vtkBiQuadraticQuadraticHexahedron19GetParametricCoordsEv_ZN33vtkBiQuadraticQuadraticHexahedron11DerivativesEiPdS0_iS0__ZN33vtkBiQuadraticQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN33vtkBiQuadraticQuadraticHexahedron16EvaluateLocationERiPdS1_S1__ZN33vtkBiQuadraticQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN33vtkBiQuadraticQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN33vtkBiQuadraticQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_ZN33vtkBiQuadraticQuadraticHexahedron7GetFaceEi_ZN33vtkBiQuadraticQuadraticHexahedron7GetEdgeEi_ZN28vtkBiQuadraticQuadraticWedge11GetCellTypeEv_ZN28vtkBiQuadraticQuadraticWedge16GetCellDimensionEv_ZN28vtkBiQuadraticQuadraticWedge16GetNumberOfEdgesEv_ZN28vtkBiQuadraticQuadraticWedge16GetNumberOfFacesEv_ZN28vtkBiQuadraticQuadraticWedge19GetParametricCenterEPd_ZN28vtkBiQuadraticQuadraticWedge3NewEv_ZNK28vtkBiQuadraticQuadraticWedge19NewInstanceInternalEv_ZN28vtkBiQuadraticQuadraticWedge12GetFaceArrayEi_ZN28vtkBiQuadraticQuadraticWedge17InterpolateDerivsEPdS0__ZN28vtkBiQuadraticQuadraticWedge19InterpolationDerivsEPdS0__ZN28vtkBiQuadraticQuadraticWedge20InterpolateFunctionsEPdS0__ZN28vtkBiQuadraticQuadraticWedge22InterpolationFunctionsEPdS0__ZN28vtkBiQuadraticQuadraticWedge3IsAEPKc_ZN28vtkBiQuadraticQuadraticWedge12GetEdgeArrayEiPyvtkBiQuadraticQuadraticWedge_ClassNewPyVTKAddFile_vtkBiQuadraticQuadraticWedge_ZN28vtkBiQuadraticQuadraticWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN28vtkBiQuadraticQuadraticWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN28vtkBiQuadraticQuadraticWedge19GetParametricCoordsEv_ZN28vtkBiQuadraticQuadraticWedge11DerivativesEiPdS0_iS0__ZN28vtkBiQuadraticQuadraticWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN28vtkBiQuadraticQuadraticWedge16EvaluateLocationERiPdS1_S1__ZN28vtkBiQuadraticQuadraticWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN28vtkBiQuadraticQuadraticWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN28vtkBiQuadraticQuadraticWedge12CellBoundaryEiPdP9vtkIdList_ZN28vtkBiQuadraticQuadraticWedge7GetFaceEi_ZN28vtkBiQuadraticQuadraticWedge7GetEdgeEi_ZN22vtkBiQuadraticTriangle11GetCellTypeEv_ZN22vtkBiQuadraticTriangle16GetCellDimensionEv_ZN22vtkBiQuadraticTriangle16GetNumberOfEdgesEv_ZN22vtkBiQuadraticTriangle16GetNumberOfFacesEv_ZN22vtkBiQuadraticTriangle7GetFaceEi_ZN22vtkBiQuadraticTriangle19GetParametricCenterEPd_ZN22vtkBiQuadraticTriangle3NewEv_ZNK22vtkBiQuadraticTriangle19NewInstanceInternalEv_ZN22vtkBiQuadraticTriangle17InterpolateDerivsEPdS0__ZN22vtkBiQuadraticTriangle19InterpolationDerivsEPdS0__ZN22vtkBiQuadraticTriangle20InterpolateFunctionsEPdS0__ZN22vtkBiQuadraticTriangle22InterpolationFunctionsEPdS0__ZN22vtkBiQuadraticTriangle3IsAEPKcPyvtkBiQuadraticTriangle_ClassNewPyVTKAddFile_vtkBiQuadraticTriangle_ZN22vtkBiQuadraticTriangle21GetParametricDistanceEPd_ZN22vtkBiQuadraticTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN22vtkBiQuadraticTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN22vtkBiQuadraticTriangle19GetParametricCoordsEv_ZN22vtkBiQuadraticTriangle11DerivativesEiPdS0_iS0__ZN22vtkBiQuadraticTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN22vtkBiQuadraticTriangle16EvaluateLocationERiPdS1_S1__ZN22vtkBiQuadraticTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN22vtkBiQuadraticTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN22vtkBiQuadraticTriangle12CellBoundaryEiPdP9vtkIdList_ZN22vtkBiQuadraticTriangle7GetEdgeEi_ZN19vtkImplicitFunction16EvaluateFunctionEddd_ZN6vtkBox3NewEv_ZNK6vtkBox19NewInstanceInternalEv_ZN6vtkBox18IntersectWithPlaneEPdS0_S0__ZN6vtkBox17IntersectWithLineEPKdS1_S1_RdS2_PdS3_RiS4__ZN6vtkBox12IntersectBoxEPdS0_S0_S0_Rd_ZN6vtkBox3IsAEPKc_ZN6vtkBox9AddBoundsEPKd_ZN6vtkBox9SetBoundsEdddddd_ZN6vtkBox9SetBoundsEPKd_ZN6vtkBox7SetXMaxEddd_ZN6vtkBox7SetXMinEddd_ZN6vtkBox7GetXMinEPd_ZN6vtkBox7GetXMinERdS0_S0__ZN6vtkBox7GetXMaxEPd_ZN6vtkBox7GetXMaxERdS0_S0__ZN6vtkBox9GetBoundsERdS0_S0_S0_S0_S0__ZN6vtkBox9GetBoundsEv_ZN13vtkPythonArgs10BuildTupleEPKdi_ZN6vtkBox9GetBoundsEPdPyvtkBox_ClassNewPyvtkImplicitFunction_ClassNewPyVTKAddFile_vtkBox_ZN6vtkBox16EvaluateGradientEPdS0__ZN6vtkBox16EvaluateFunctionEPd_ZN19vtkImplicitFunction16EvaluateFunctionEP12vtkDataArrayS1__ZN10vtkBSPCuts15GetNumberOfCutsEv_ZN10vtkBSPCuts3NewEv_ZNK10vtkBSPCuts19NewInstanceInternalEv_ZN10vtkBSPCuts7GetDataEP14vtkInformation_ZN10vtkBSPCuts7GetDataEP20vtkInformationVectori_ZN10vtkBSPCuts10CreateCutsEPdiPiS0_S1_S1_S0_S0_S1__ZN10vtkBSPCuts3IsAEPKc_ZN10vtkBSPCuts11PrintArraysEv_ZN10vtkBSPCuts9PrintTreeEv_ZN10vtkBSPCuts6EqualsEPS_d_ZN10vtkBSPCuts10CreateCutsEP9vtkKdNode_ZN10vtkBSPCuts9GetArraysEiPiPdS0_S0_S1_S1_S0_PyvtkBSPCuts_ClassNewPyVTKAddFile_vtkBSPCuts_ZN10vtkBSPCuts8DeepCopyEP13vtkDataObject_ZN10vtkBSPCuts11ShallowCopyEP13vtkDataObject_ZN10vtkBSPCuts10InitializeEv_ZN19vtkBSPIntersections7GetCutsEv_ZN19vtkBSPIntersections38GetComputeIntersectionsUsingDataBoundsEv_ZN19vtkBSPIntersections3NewEv_ZNK19vtkBSPIntersections19NewInstanceInternalEv_ZN19vtkBSPIntersections3IsAEPKc_ZN19vtkBSPIntersections37ComputeIntersectionsUsingDataBoundsOnEv_ZN19vtkBSPIntersections38ComputeIntersectionsUsingDataBoundsOffEv_ZN19vtkBSPIntersections18GetNumberOfRegionsEv_ZN19vtkBSPIntersections38SetComputeIntersectionsUsingDataBoundsEi_ZN19vtkBSPIntersections7SetCutsEP10vtkBSPCuts_ZN19vtkBSPIntersections14IntersectsCellEiP7vtkCelli_ZN19vtkBSPIntersections15GetRegionBoundsEiPd_ZN19vtkBSPIntersections19GetRegionDataBoundsEiPd_ZN19vtkBSPIntersections9GetBoundsEPd_ZN19vtkBSPIntersections14IntersectsCellEPiiP7vtkCelli_ZN19vtkBSPIntersections17IntersectsSphere2Eidddd_ZN19vtkBSPIntersections17IntersectsSphere2EPiidddd_ZN19vtkBSPIntersections13IntersectsBoxEPiidddddd_ZN19vtkBSPIntersections13IntersectsBoxEidddddd_ZN19vtkBSPIntersections13IntersectsBoxEPiiPd_ZN19vtkBSPIntersections13IntersectsBoxEiPdPyvtkBSPIntersections_ClassNewPyVTKAddFile_vtkBSPIntersections_ZN9vtkCell3D16GetCellDimensionEv_ZN9vtkCell3D17SetMergeToleranceEd_ZN9vtkCell3D25GetMergeToleranceMinValueEv_ZN9vtkCell3D25GetMergeToleranceMaxValueEv_ZN9vtkCell3D17GetMergeToleranceEv_ZNK9vtkCell3D19NewInstanceInternalEv_ZN9vtkCell3D3IsAEPKc_ZN13vtkPythonArgs11SetArgValueEiPKiiPyvtkCell3D_ClassNewPyvtkCell_ClassNewPyVTKAddFile_vtkCell3D_ZN9vtkCell3D4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN9vtkCell3D7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN12vtkCellArray16GetNumberOfCellsEv_ZN12vtkCellArray16SetNumberOfCellsEx_ZN19vtkGenericDataArrayI23vtkAOSDataArrayTemplateIxExE7SqueezeEv_ZN12vtkCellArray3NewEv_ZNK12vtkCellArray19NewInstanceInternalEv_ZN19vtkGenericDataArrayI23vtkAOSDataArrayTemplateIxExE11DataChangedEvfree_ZN12vtkCellArray3IsAEPKc_ZN12vtkCellArray10InitializeEv_ZN12vtkCellArray14GetMaxCellSizeEv_ZN12vtkCellArray19GetActualMemorySizeEv_ZN12vtkCellArray8DeepCopyEPS__ZN23vtkAOSDataArrayTemplateIxE10GetPointerEx_ZN12vtkCellArray8SetCellsExP14vtkIdTypeArray_ZN23vtkAOSDataArrayTemplateIxE12WritePointerExx_ZN13vtkPythonArgs12PrecondErrorEPKc_ZN13vtkPythonArgs5ArrayIxEC1El_ZN13vtkPythonArgs8GetArrayEPxi_ZN13vtkPythonArgs13CheckSizeHintEill_ZN12vtkCellArray11GetNextCellEP9vtkIdList_ZN13vtkPythonArgs11SetArgValueEiPKxi_ZN12vtkCellArray7GetCellExP9vtkIdListPyvtkCellArray_ClassNewPyVTKAddFile_vtkCellArray_ZN7vtkCell8IsLinearEv_ZN7vtkCell22RequiresInitializationEv_ZN7vtkCell10InitializeEv_ZN7vtkCell14IsExplicitCellEv_ZN7vtkCell34RequiresExplicitFaceRepresentationEv_ZN7vtkCell8SetFacesEPx_ZN7vtkCell8GetFacesEv_ZN7vtkCell13IsPrimaryCellEv_ZN7vtkCell20InterpolateFunctionsEPdS0__ZN7vtkCell17InterpolateDerivsEPdS0__ZNK7vtkCell19NewInstanceInternalEv_ZN7vtkCell3IsAEPKc_ZN7vtkCell10GetLength2Ev_ZN13vtkPythonArgs8SetArrayEiPKxi_ZN7vtkCell9GetBoundsEPd_ZN7vtkCell9GetBoundsEv_ZN7vtkCell10InitializeEiP9vtkPoints_ZN7vtkCell10InitializeEiPxP9vtkPointsPyVTKAddFile_vtkCell_ZN7vtkCell19GetParametricCoordsEv_ZN7vtkCell21GetParametricDistanceEPd_ZN7vtkCell19GetParametricCenterEPd_ZN7vtkCell8DeepCopyEPS__ZN7vtkCell11ShallowCopyEPS__ZN11vtkCellData3NewEv_ZNK11vtkCellData19NewInstanceInternalEv_ZN11vtkCellData3IsAEPKcPyvtkCellData_ClassNewPyvtkDataSetAttributes_ClassNewPyVTKAddFile_vtkCellData_ZN15vtkCellIterator10FetchFacesEv_ZNK9vtkObject19NewInstanceInternalEv_ZN15vtkCellIterator3IsAEPKc_ZN15vtkCellIterator16GetCellDimensionEv_ZN15vtkCellIterator7GetCellEP14vtkGenericCellPyvtkCellIterator_ClassNewPyVTKAddFile_vtkCellIterator_ZN9vtkObject23GetGlobalWarningDisplayEv_ZN20vtkOStrStreamWrapperC1Ev_ZN17vtkOStreamWrapperlsEPKc_ZN17vtkOStreamWrapperlsEi_ZN20vtkOStrStreamWrapper3strEv_Z40vtkOutputWindowDisplayGenericWarningTextPKc_ZN20vtkOStrStreamWrapper5rdbufEv_ZN20vtkOStrStreamWrapper6freezeEi_ZN20vtkOStrStreamWrapperD1Ev_ZN12vtkCellLinks3NewEv_ZNK12vtkCellLinks19NewInstanceInternalEv_ZN12vtkCellLinks3IsAEPKc_ZN12vtkCellLinks10InitializeEv_ZN12vtkCellLinks7SqueezeEv_ZN12vtkCellLinks5ResetEv_ZN12vtkCellLinks19GetActualMemorySizeEv_ZN12vtkCellLinks8DeepCopyEPS__ZN12vtkCellLinks15InsertNextPointEi_ZN12vtkCellLinks8AllocateExxmemmove_Znammemcpy__cxa_throw_bad_array_new_lengthPyvtkCellLinks_ClassNewPyVTKAddFile_vtkCellLinks_ZN12vtkCellLinks10BuildLinksEP10vtkDataSetP12vtkCellArray_ZN12vtkCellLinks10BuildLinksEP10vtkDataSet_ZN14vtkCellLocator3NewEv_ZNK14vtkCellLocator19NewInstanceInternalEv_ZN14vtkCellLocator3IsAEPKcPyvtkCellLocator_ClassNewPyVTKAddFile_vtkCellLocator_ZN14vtkCellLocator22GenerateRepresentationEiP11vtkPolyData_ZN14vtkCellLocator20BuildLocatorInternalEv_ZN14vtkCellLocator17ForceBuildLocatorEv_ZN14vtkCellLocator20BuildLocatorIfNeededEv_ZN14vtkCellLocator12BuildLocatorEv_ZN14vtkCellLocator19FreeSearchStructureEv_ZN14vtkCellLocator18FindCellsAlongLineEPdS0_dP9vtkIdList_ZN14vtkCellLocator21FindCellsWithinBoundsEPdP9vtkIdList_ZN14vtkCellLocator8FindCellEPddP14vtkGenericCellS0_S0__ZN14vtkCellLocator18GetNumberOfBucketsEv_ZN14vtkCellLocator8GetCellsEi_ZN14vtkCellLocator28FindClosestPointWithinRadiusEPddS0_P14vtkGenericCellRxRiRdS4__ZN14vtkCellLocator16FindClosestPointEPdS0_P14vtkGenericCellRxRiRd_ZN14vtkCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRxP14vtkGenericCell_ZN12vtkCellTypes3NewEv_ZNK12vtkCellTypes19NewInstanceInternalEv_ZN13vtkPythonArgs8GetValueERh_ZN12vtkCellTypes22GetTypeIdFromClassNameEPKc_ZN12vtkCellTypes22GetClassNameFromTypeIdEistrlenPyUnicode_FromStringAndSizePyBytes_FromStringAndSize_ZN12vtkCellTypes3IsAEPKc_ZN12vtkCellTypes7SqueezeEv_ZN12vtkCellTypes5ResetEv_ZN12vtkCellTypes19GetActualMemorySizeEv_ZN12vtkCellTypes8DeepCopyEPS__ZN12vtkCellTypes14InsertNextCellEhx_ZN12vtkCellTypes10InsertCellExhx_ZN12vtkCellTypes12SetCellTypesExP20vtkUnsignedCharArrayP14vtkIdTypeArray_ZN12vtkCellTypes12SetCellTypesExP20vtkUnsignedCharArrayP11vtkIntArray_ZN12vtkCellTypes8AllocateEiiPyvtkCellTypes_ClassNewPyVTKAddFile_vtkCellTypes_ZN19vtkCompositeDataSet17GetDataObjectTypeEv_ZN19vtkCompositeDataSet7GetDataEP14vtkInformation_ZN19vtkCompositeDataSet7GetDataEP20vtkInformationVectori_ZNK19vtkCompositeDataSet19NewInstanceInternalEv_ZN13vtkDataObject3NewEv_ZN19vtkCompositeDataSet30CURRENT_PROCESS_CAN_LOAD_BLOCKEv_ZN19vtkCompositeDataSet4NAMEEv_ZN19vtkCompositeDataSet3IsAEPKcPyvtkCompositeDataSet_ClassNewPyVTKAddFile_vtkCompositeDataSet_ZN19vtkCompositeDataSet17GetNumberOfPointsEv_ZN19vtkCompositeDataSet8DeepCopyEP13vtkDataObject_ZN19vtkCompositeDataSet11ShallowCopyEP13vtkDataObject_ZN19vtkCompositeDataSet10InitializeEv_ZN19vtkCompositeDataSet19GetActualMemorySizeEv_ZN24vtkCompositeDataIterator10GetDataSetEv_ZN24vtkCompositeDataIterator17SetSkipEmptyNodesEi_ZN24vtkCompositeDataIterator17GetSkipEmptyNodesEv_ZN24vtkCompositeDataIterator10GetReverseEv_ZNK24vtkCompositeDataIterator19NewInstanceInternalEv_ZN24vtkCompositeDataIterator3IsAEPKc_ZN24vtkCompositeDataIterator16SkipEmptyNodesOnEv_ZN24vtkCompositeDataIterator17SkipEmptyNodesOffEvPyvtkCompositeDataIterator_ClassNewPyVTKAddFile_vtkCompositeDataIterator_ZN24vtkCompositeDataIterator20InitReverseTraversalEv_ZN24vtkCompositeDataIterator13InitTraversalEv_ZN24vtkCompositeDataIterator10SetDataSetEP19vtkCompositeDataSet_ZN7vtkCone8SetAngleEd_ZN7vtkCone16GetAngleMinValueEv_ZN7vtkCone16GetAngleMaxValueEv_ZN7vtkCone8GetAngleEv_ZN7vtkCone3NewEv_ZNK7vtkCone19NewInstanceInternalEv_ZN7vtkCone3IsAEPKcPyvtkCone_ClassNewPyVTKAddFile_vtkCone_ZN7vtkCone16EvaluateGradientEPdS0__ZN7vtkCone16EvaluateFunctionEPd_ZN17vtkConvexPointSet16HasFixedTopologyEv_ZN17vtkConvexPointSet13GetEdgePointsEiRPi_ZN17vtkConvexPointSet13GetFacePointsEiRPi_ZN17vtkConvexPointSet11GetCellTypeEv_ZN17vtkConvexPointSet22RequiresInitializationEv_ZN17vtkConvexPointSet16GetNumberOfEdgesEv_ZN17vtkConvexPointSet7GetEdgeEi_ZN17vtkConvexPointSet13IsPrimaryCellEv_ZN17vtkConvexPointSet19GetParametricCenterEPd_ZN17vtkConvexPointSet3NewEv_ZNK17vtkConvexPointSet19NewInstanceInternalEv_ZN17vtkConvexPointSet3IsAEPKcPyvtkConvexPointSet_ClassNewPyVTKAddFile_vtkConvexPointSet_ZN17vtkConvexPointSet17InterpolateDerivsEPdS0__ZN17vtkConvexPointSet20InterpolateFunctionsEPdS0__ZN17vtkConvexPointSet12CellBoundaryEiPdP9vtkIdList_ZN17vtkConvexPointSet11DerivativesEiPdS0_iS0__ZN17vtkConvexPointSet11TriangulateEiP9vtkIdListP9vtkPoints_ZN17vtkConvexPointSet17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkConvexPointSet16EvaluateLocationERiPdS1_S1__ZN17vtkConvexPointSet16EvaluatePositionEPdS0_RiS0_RdS0__ZN17vtkConvexPointSet4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkConvexPointSet7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN17vtkConvexPointSet7GetFaceEi_ZN17vtkConvexPointSet16GetNumberOfFacesEv_ZN17vtkConvexPointSet10InitializeEv_ZN17vtkConvexPointSet19GetParametricCoordsEv_ZN12vtkCubicLine11GetCellTypeEv_ZN12vtkCubicLine16GetCellDimensionEv_ZN12vtkCubicLine16GetNumberOfEdgesEv_ZN12vtkCubicLine16GetNumberOfFacesEv_ZN12vtkCubicLine7GetEdgeEi_ZN12vtkCubicLine7GetFaceEi_ZN12vtkCubicLine19GetParametricCenterEPd_ZN12vtkCubicLine3NewEv_ZNK12vtkCubicLine19NewInstanceInternalEv_ZN12vtkCubicLine17InterpolateDerivsEPdS0__ZN12vtkCubicLine19InterpolationDerivsEPdS0__ZN12vtkCubicLine20InterpolateFunctionsEPdS0__ZN12vtkCubicLine22InterpolationFunctionsEPdS0__ZN12vtkCubicLine3IsAEPKcPyvtkCubicLine_ClassNewPyVTKAddFile_vtkCubicLine_ZN12vtkCubicLine17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN12vtkCubicLine4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN12vtkCubicLine21GetParametricDistanceEPd_ZN12vtkCubicLine19GetParametricCoordsEv_ZN12vtkCubicLine11DerivativesEiPdS0_iS0__ZN12vtkCubicLine11TriangulateEiP9vtkIdListP9vtkPoints_ZN12vtkCubicLine16EvaluateLocationERiPdS1_S1__ZN12vtkCubicLine16EvaluatePositionEPdS0_RiS0_RdS0__ZN12vtkCubicLine7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN12vtkCubicLine12CellBoundaryEiPdP9vtkIdList_ZN11vtkCylinder9SetRadiusEd_ZN11vtkCylinder9GetRadiusEv_ZN11vtkCylinder9SetCenterEddd_ZN11vtkCylinder9GetCenterEv_ZN11vtkCylinder7GetAxisEv_ZN11vtkCylinder3NewEv_ZNK11vtkCylinder19NewInstanceInternalEv_ZN11vtkCylinder3IsAEPKc_ZN11vtkCylinder9SetCenterEPd_ZN11vtkCylinder7SetAxisEddd_ZN11vtkCylinder7SetAxisEPdPyvtkCylinder_ClassNewPyVTKAddFile_vtkCylinder_ZN11vtkCylinder16EvaluateGradientEPdS0__ZN11vtkCylinder16EvaluateFunctionEPd_ZN22vtkDataSetCellIterator3NewEv_ZNK22vtkDataSetCellIterator19NewInstanceInternalEv_ZN22vtkDataSetCellIterator3IsAEPKcPyvtkDataSetCellIterator_ClassNewPyVTKAddFile_vtkDataSetCellIterator_ZN22vtkDataSetCellIterator9GetCellIdEv_ZN22vtkDataSetCellIterator19IsDoneWithTraversalEv_ZN23vtkDataObjectCollection3NewEv_ZNK23vtkDataObjectCollection19NewInstanceInternalEv_ZN23vtkDataObjectCollection3IsAEPKc_ZN13vtkCollection7AddItemEP9vtkObject_ZN13vtkCollection15GetItemAsObjectEiPyvtkDataObjectCollection_ClassNewPyvtkCollection_ClassNewPyVTKAddFile_vtkDataObjectCollection_ZN13vtkDataObject14GetInformationEv_ZN13vtkDataObject15GetDataReleasedEv_ZN13vtkDataObject12GetFieldDataEv_ZN13vtkDataObject17GetDataObjectTypeEv_ZN13vtkDataObject27CopyInformationFromPipelineEP14vtkInformation_ZN13vtkDataObject25CopyInformationToPipelineEP14vtkInformation_ZN13vtkDataObject17PrepareForNewDataEv_ZN13vtkDataObject13GetExtentTypeEv_ZNK13vtkDataObject19NewInstanceInternalEv_ZN13vtkDataObject7GetDataEP14vtkInformation_ZN13vtkDataObject7GetDataEP20vtkInformationVectori_ZN13vtkDataObject28GetAssociationTypeFromStringEPKc_ZN13vtkDataObject26GetAssociationTypeAsStringEi_ZN13vtkDataObject28SetPointDataActiveScalarInfoEP14vtkInformationii_ZN13vtkDataObject22SetActiveAttributeInfoEP14vtkInformationiiPKciii_ZN13vtkDataObject18SetActiveAttributeEP14vtkInformationiPKci_ZN13vtkDataObject27RemoveNamedFieldInformationEP14vtkInformationiPKc_ZN13vtkDataObject24GetNamedFieldInformationEP14vtkInformationiPKc_ZN13vtkDataObject25GetActiveFieldInformationEP14vtkInformationii_ZN13vtkDataObject24SetGlobalReleaseDataFlagEi_ZN13vtkDataObject3SILEv_ZN13vtkDataObject12BOUNDING_BOXEv_ZN13vtkDataObject7SPACINGEv_ZN13vtkDataObject6ORIGINEv_ZN13vtkDataObject10FIELD_NAMEEv_ZN13vtkDataObject12PIECE_EXTENTEv_ZN13vtkDataObject11FIELD_RANGEEv_ZN13vtkDataObject15FIELD_OPERATIONEv_ZN13vtkDataObject22FIELD_NUMBER_OF_TUPLESEv_ZN13vtkDataObject26FIELD_NUMBER_OF_COMPONENTSEv_ZN13vtkDataObject22FIELD_ACTIVE_ATTRIBUTEEv_ZN13vtkDataObject20FIELD_ATTRIBUTE_TYPEEv_ZN13vtkDataObject17FIELD_ASSOCIATIONEv_ZN13vtkDataObject16FIELD_ARRAY_TYPEEv_ZN13vtkDataObject16EDGE_DATA_VECTOREv_ZN13vtkDataObject18VERTEX_DATA_VECTOREv_ZN13vtkDataObject16CELL_DATA_VECTOREv_ZN13vtkDataObject17POINT_DATA_VECTOREv_ZN13vtkDataObject14DATA_TIME_STEPEv_ZN13vtkDataObject27DATA_NUMBER_OF_GHOST_LEVELSEv_ZN13vtkDataObject21DATA_NUMBER_OF_PIECESEv_ZN13vtkDataObject17DATA_PIECE_NUMBEREv_ZN13vtkDataObject17ALL_PIECES_EXTENTEv_ZN13vtkDataObject11DATA_EXTENTEv_ZN13vtkDataObject16DATA_EXTENT_TYPEEv_ZN13vtkDataObject11DATA_OBJECTEv_ZN13vtkDataObject14DATA_TYPE_NAMEEv_ZN13vtkDataObject24GetGlobalReleaseDataFlagEv_ZN13vtkDataObject3IsAEPKc_ZN13vtkDataObject20DataHasBeenGeneratedEv_ZN13vtkDataObject11ReleaseDataEv_ZN13vtkDataObject13GetUpdateTimeEv_Z42PyvtkDataObject_FieldAssociations_FromEnumi_Z39PyvtkDataObject_AttributeTypes_FromEnumi_Z40PyvtkDataObject_FieldOperations_FromEnumiPyVTKAddFile_vtkDataObject_ZN13vtkDataObject19GetNumberOfElementsEi_ZN13vtkDataObject24GetAttributeTypeForArrayEP16vtkAbstractArray_ZN13vtkDataObject24GetAttributesAsFieldDataEi_ZN13vtkDataObject13GetAttributesEi_ZN13vtkDataObject4CropEPKi_ZN13vtkDataObject8DeepCopyEPS__ZN13vtkDataObject11ShallowCopyEPS__ZN13vtkDataObject10InitializeEv_ZN13vtkDataObject19GetActualMemorySizeEv_ZN13vtkDataObject12SetFieldDataEP12vtkFieldData_ZN13vtkDataObject8GetMTimeEv_ZN13vtkDataObject14SetInformationEP14vtkInformation_ZN18vtkDataObjectTypes3NewEv_ZNK18vtkDataObjectTypes19NewInstanceInternalEv_ZN18vtkDataObjectTypes13NewDataObjectEi_ZN18vtkDataObjectTypes13NewDataObjectEPKc_ZN18vtkDataObjectTypes22GetTypeIdFromClassNameEPKc_ZN18vtkDataObjectTypes22GetClassNameFromTypeIdEi_ZN18vtkDataObjectTypes3IsAEPKcPyvtkDataObjectTypes_ClassNewPyVTKAddFile_vtkDataObjectTypes_ZN17vtkDataObjectTree7GetDataEP14vtkInformation_ZN17vtkDataObjectTree7GetDataEP20vtkInformationVectori_ZNK17vtkDataObjectTree19NewInstanceInternalEv_ZN17vtkDataObjectTree3IsAEPKc_ZN17vtkDataObjectTree14SetDataSetFromEP25vtkDataObjectTreeIteratorP13vtkDataObjectPyvtkDataObjectTree_ClassNewPyVTKAddFile_vtkDataObjectTree_ZN17vtkDataObjectTree17GetNumberOfPointsEv_ZN17vtkDataObjectTree8DeepCopyEP13vtkDataObject_ZN17vtkDataObjectTree11ShallowCopyEP13vtkDataObject_ZN17vtkDataObjectTree10InitializeEv_ZN17vtkDataObjectTree19GetActualMemorySizeEv_ZN17vtkDataObjectTree11HasMetaDataEP24vtkCompositeDataIterator_ZN17vtkDataObjectTree11GetMetaDataEP24vtkCompositeDataIterator_ZN17vtkDataObjectTree10GetDataSetEP24vtkCompositeDataIterator_ZN17vtkDataObjectTree10SetDataSetEP24vtkCompositeDataIteratorP13vtkDataObject_ZN17vtkDataObjectTree13CopyStructureEP19vtkCompositeDataSet_ZN17vtkDataObjectTree11NewIteratorEv_ZN17vtkDataObjectTree15NewTreeIteratorEv_ZN25vtkDataObjectTreeIterator18SetVisitOnlyLeavesEi_ZN25vtkDataObjectTreeIterator18GetVisitOnlyLeavesEv_ZN25vtkDataObjectTreeIterator18SetTraverseSubTreeEi_ZN25vtkDataObjectTreeIterator18GetTraverseSubTreeEv_ZN25vtkDataObjectTreeIterator3NewEv_ZNK25vtkDataObjectTreeIterator19NewInstanceInternalEv_ZN25vtkDataObjectTreeIterator3IsAEPKc_ZN25vtkDataObjectTreeIterator18TraverseSubTreeOffEv_ZN25vtkDataObjectTreeIterator18VisitOnlyLeavesOffEv_ZN25vtkDataObjectTreeIterator17TraverseSubTreeOnEv_ZN25vtkDataObjectTreeIterator17VisitOnlyLeavesOnEvPyvtkDataObjectTreeIterator_ClassNewPyVTKAddFile_vtkDataObjectTreeIterator_ZN25vtkDataObjectTreeIterator19GetCurrentFlatIndexEv_ZN25vtkDataObjectTreeIterator18HasCurrentMetaDataEv_ZN25vtkDataObjectTreeIterator18GetCurrentMetaDataEv_ZN25vtkDataObjectTreeIterator20GetCurrentDataObjectEv_ZN25vtkDataObjectTreeIterator19IsDoneWithTraversalEv_ZN25vtkDataObjectTreeIterator12GoToNextItemEv_ZN25vtkDataObjectTreeIterator13GoToFirstItemEv_ZN20vtkDataSetAttributes6UpdateEv_ZN20vtkDataSetAttributes3NewEv_ZNK20vtkDataSetAttributes19NewInstanceInternalEv_ZN20vtkDataSetAttributes17CopyPedigreeIdsOnEv_ZN20vtkDataSetAttributes18SetCopyPedigreeIdsEii_ZN20vtkDataSetAttributes18CopyPedigreeIdsOffEv_ZN20vtkDataSetAttributes15CopyGlobalIdsOnEv_ZN20vtkDataSetAttributes16SetCopyGlobalIdsEii_ZN20vtkDataSetAttributes16CopyGlobalIdsOffEv_ZN20vtkDataSetAttributes13CopyTensorsOnEv_ZN20vtkDataSetAttributes14SetCopyTensorsEii_ZN20vtkDataSetAttributes14CopyTensorsOffEv_ZN20vtkDataSetAttributes13CopyTCoordsOnEv_ZN20vtkDataSetAttributes14SetCopyTCoordsEii_ZN20vtkDataSetAttributes14CopyTCoordsOffEv_ZN20vtkDataSetAttributes13CopyNormalsOnEv_ZN20vtkDataSetAttributes14SetCopyNormalsEii_ZN20vtkDataSetAttributes14CopyNormalsOffEv_ZN20vtkDataSetAttributes13CopyVectorsOnEv_ZN20vtkDataSetAttributes14SetCopyVectorsEii_ZN20vtkDataSetAttributes14CopyVectorsOffEv_ZN20vtkDataSetAttributes13CopyScalarsOnEv_ZN20vtkDataSetAttributes14SetCopyScalarsEii_ZN20vtkDataSetAttributes14CopyScalarsOffEv_ZN20vtkDataSetAttributes24GetAttributeTypeAsStringEi_ZN20vtkDataSetAttributes3IsAEPKc_ZN20vtkDataSetAttributes28GetLongAttributeTypeAsStringEi_ZN20vtkDataSetAttributes12SetupForCopyEPS__ZN20vtkDataSetAttributes10SetScalarsEP12vtkDataArray_ZN20vtkDataSetAttributes18IsArrayAnAttributeEi_ZN20vtkDataSetAttributes12GetAttributeEi_ZN20vtkDataSetAttributes20GetAbstractAttributeEi_ZN20vtkDataSetAttributes12SetGlobalIdsEP12vtkDataArray_ZN20vtkDataSetAttributes10SetTCoordsEP12vtkDataArray_ZN20vtkDataSetAttributes10SetNormalsEP12vtkDataArray_ZN20vtkDataSetAttributes10SetTensorsEP12vtkDataArray_ZN20vtkDataSetAttributes14SetPedigreeIdsEP16vtkAbstractArray_ZN20vtkDataSetAttributes10SetVectorsEP12vtkDataArray_ZN20vtkDataSetAttributes16SetActiveVectorsEPKc_ZN20vtkDataSetAttributes16SetActiveScalarsEPKc_ZN20vtkDataSetAttributes18SetActiveGlobalIdsEPKc_ZN20vtkDataSetAttributes16SetActiveTensorsEPKc_ZN20vtkDataSetAttributes16SetActiveTCoordsEPKc_ZN20vtkDataSetAttributes16SetActiveNormalsEPKc_ZN20vtkDataSetAttributes20SetActivePedigreeIdsEPKc_ZN20vtkDataSetAttributes14GetCopyVectorsEi_ZN20vtkDataSetAttributes14GetCopyTensorsEi_ZN20vtkDataSetAttributes16GetCopyGlobalIdsEi_ZN20vtkDataSetAttributes14GetCopyScalarsEi_ZN20vtkDataSetAttributes18GetCopyPedigreeIdsEi_ZN20vtkDataSetAttributes14GetCopyNormalsEi_ZN20vtkDataSetAttributes14GetCopyTCoordsEi_ZN20vtkDataSetAttributes18SetActiveAttributeEii_ZN20vtkDataSetAttributes16GetCopyAttributeEii_ZN20vtkDataSetAttributes12SetAttributeEP16vtkAbstractArrayi_ZN20vtkDataSetAttributes18SetActiveAttributeEPKci_ZN20vtkDataSetAttributes8CopyDataEPS_xx_ZN20vtkDataSetAttributes8CopyDataEPS_P9vtkIdListS2__ZN20vtkDataSetAttributes16SetCopyAttributeEiii_ZN20vtkDataSetAttributes9CopyTupleEP16vtkAbstractArrayS1_xx_ZN20vtkDataSetAttributes15InterpolateTimeEPS_S0_xd_ZN20vtkDataSetAttributes15InterpolateEdgeEPS_xxxd_ZN20vtkDataSetAttributes19GetAttributeIndicesEPi_ZN20vtkDataSetAttributes18CopyStructuredDataEPS_PKiS2_b_ZN13vtkPythonArgs8GetValueERb_ZN20vtkDataSetAttributes16InterpolatePointEPS_xP9vtkIdListPd_ZN20vtkDataSetAttributes8CopyDataEPS_xxx_ZN20vtkDataSetAttributes10GetNormalsEv_ZN20vtkDataSetAttributes10GetNormalsEPKc_ZN20vtkDataSetAttributes10GetScalarsEv_ZN20vtkDataSetAttributes10GetScalarsEPKc_ZN20vtkDataSetAttributes14GetPedigreeIdsEv_ZN20vtkDataSetAttributes14GetPedigreeIdsEPKc_ZN20vtkDataSetAttributes12GetGlobalIdsEv_ZN20vtkDataSetAttributes12GetGlobalIdsEPKc_ZN20vtkDataSetAttributes10GetVectorsEv_ZN20vtkDataSetAttributes10GetVectorsEPKc_ZN20vtkDataSetAttributes10GetTCoordsEv_ZN20vtkDataSetAttributes10GetTCoordsEPKc_ZN20vtkDataSetAttributes10GetTensorsEv_ZN20vtkDataSetAttributes10GetTensorsEPKc_ZN20vtkDataSetAttributes12CopyAllocateEPS_xxi_ZN20vtkDataSetAttributes19InterpolateAllocateEPS_xxi_ZN20vtkDataSetAttributes10CopyTuplesEP16vtkAbstractArrayS1_P9vtkIdListS3__ZN20vtkDataSetAttributes10CopyTuplesEP16vtkAbstractArrayS1_xxx_Z46PyvtkDataSetAttributes_AttributeTypes_FromEnumi_Z51PyvtkDataSetAttributes_AttributeLimitTypes_FromEnumi_Z46PyvtkDataSetAttributes_CellGhostTypes_FromEnumi_Z47PyvtkDataSetAttributes_PointGhostTypes_FromEnumi_Z55PyvtkDataSetAttributes_AttributeCopyOperations_FromEnumiPyvtkFieldData_ClassNewPyVTKAddFile_vtkDataSetAttributes_ZN20vtkDataSetAttributes8PassDataEP12vtkFieldData_ZN20vtkDataSetAttributes10CopyAllOffEi_ZN20vtkDataSetAttributes9CopyAllOnEi_ZN12vtkFieldData11RemoveArrayEPKc_ZN20vtkDataSetAttributes11RemoveArrayEi_ZN20vtkDataSetAttributes11ShallowCopyEP12vtkFieldData_ZN20vtkDataSetAttributes8DeepCopyEP12vtkFieldData_ZN20vtkDataSetAttributes10InitializeEv_ZN20vtkDataSetCollection3NewEv_ZNK20vtkDataSetCollection19NewInstanceInternalEv_ZN20vtkDataSetCollection3IsAEPKcPyvtkDataSetCollection_ClassNewPyVTKAddFile_vtkDataSetCollection_ZN10vtkDataSet17GetDataObjectTypeEv_ZN10vtkDataSet18GenerateGhostArrayEPi_ZN10vtkDataSet16HasAnyBlankCellsEv_ZN10vtkDataSet17HasAnyBlankPointsEv_ZN10vtkDataSet8GetPointExPd_ZN10vtkDataSet7GetDataEP14vtkInformation_ZN10vtkDataSet7GetDataEP20vtkInformationVectori_ZNK10vtkDataSet19NewInstanceInternalEv_ZN10vtkDataSet3IsAEPKc_ZN10vtkDataSet25UpdateCellGhostArrayCacheEv_ZN10vtkDataSet26UpdatePointGhostArrayCacheEv_ZN10vtkDataSet16HasAnyGhostCellsEv_ZN10vtkDataSet17HasAnyGhostPointsEv_ZN10vtkDataSet15CheckAttributesEv_ZN10vtkDataSet23AllocatePointGhostArrayEv_ZN10vtkDataSet22AllocateCellGhostArrayEv_ZN10vtkDataSet17GetCellGhostArrayEv_ZN10vtkDataSet18GetPointGhostArrayEv_ZN10vtkDataSet9GetLengthEv_ZN10vtkDataSet9GetCenterEv_ZN10vtkDataSet9GetCenterEPd_ZN10vtkDataSet9GetBoundsEv_ZN10vtkDataSet9GetBoundsEPd_Z35PyvtkDataSet_FieldDataType_FromEnumiPyvtkDataSet_ClassNewPyVTKAddFile_vtkDataSet_ZN10vtkDataSet19GetNumberOfElementsEi_ZN10vtkDataSet24GetAttributesAsFieldDataEi_ZN10vtkDataSet18GenerateGhostArrayEPib_ZN10vtkDataSet8DeepCopyEP13vtkDataObject_ZN10vtkDataSet11ShallowCopyEP13vtkDataObject_ZN10vtkDataSet19GetActualMemorySizeEv_ZN10vtkDataSet14GetScalarRangeEv_ZN10vtkDataSet14GetScalarRangeEPd_ZN10vtkDataSet10InitializeEv_ZN10vtkDataSet13ComputeBoundsEv_ZN10vtkDataSet7SqueezeEv_ZN10vtkDataSet8GetMTimeEv_ZN10vtkDataSet14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN10vtkDataSet16GetCellNeighborsExP9vtkIdListS1__ZN10vtkDataSet12GetCellTypesEP12vtkCellTypes_ZN10vtkDataSet13GetCellBoundsExPd_ZN10vtkDataSet7GetCellEiii_ZNK13vtkObjectBase12GetClassNameEv_ZN17vtkOStreamWrapperlsEPv_ZN9vtkObject11HasObserverEPKc_Z31vtkOutputWindowDisplayErrorTextPKc_ZN9vtkObject12BreakOnErrorEv_ZN9vtkObject11InvokeEventEPKcPv_ZN10vtkDataSet15NewCellIteratorEv_ZN10vtkDataSet14CopyAttributesEPS__ZN23vtkDirectedAcyclicGraph17GetDataObjectTypeEv_ZN23vtkDirectedAcyclicGraph3NewEv_ZNK23vtkDirectedAcyclicGraph19NewInstanceInternalEv_ZN23vtkDirectedAcyclicGraph7GetDataEP14vtkInformation_ZN23vtkDirectedAcyclicGraph7GetDataEP20vtkInformationVectori_ZN23vtkDirectedAcyclicGraph3IsAEPKcPyvtkDirectedAcyclicGraph_ClassNewPyvtkDirectedGraph_ClassNewPyVTKAddFile_vtkDirectedAcyclicGraph_ZN16vtkDirectedGraph17GetDataObjectTypeEv_ZN16vtkDirectedGraph3NewEv_ZNK16vtkDirectedGraph19NewInstanceInternalEv_ZN16vtkDirectedGraph7GetDataEP14vtkInformation_ZN16vtkDirectedGraph7GetDataEP20vtkInformationVectori_ZN16vtkDirectedGraph3IsAEPKcPyvtkGraph_ClassNewPyVTKAddFile_vtkDirectedGraph_ZN16vtkDirectedGraph16IsStructureValidEP8vtkGraph_ZNK25vtkDistributedGraphHelper19NewInstanceInternalEv_ZN25vtkDistributedGraphHelper18DISTRIBUTEDEDGEIDSEv_ZN25vtkDistributedGraphHelper20DISTRIBUTEDVERTEXIDSEv_ZN25vtkDistributedGraphHelper3IsAEPKc_ZNK25vtkDistributedGraphHelper14GetVertexIndexEx_ZNK25vtkDistributedGraphHelper12GetEdgeOwnerEx_ZNK25vtkDistributedGraphHelper12GetEdgeIndexEx_ZNK25vtkDistributedGraphHelper14GetVertexOwnerEx_ZN25vtkDistributedGraphHelper26GetVertexOwnerByPedigreeIdERK10vtkVariant_ZN25vtkDistributedGraphHelper17MakeDistributedIdEixPyvtkDistributedGraphHelper_ClassNewPyVTKAddFile_vtkDistributedGraphHelper_ZN19vtkEdgeListIterator8GetGraphEv_ZN19vtkEdgeListIterator3NewEv_ZNK19vtkEdgeListIterator19NewInstanceInternalEv_ZN19vtkEdgeListIterator3IsAEPKc_ZN19vtkEdgeListIterator13NextGraphEdgeEv_ZN19vtkEdgeListIterator7HasNextEv_ZN19vtkEdgeListIterator4NextEvPyVTKSpecialObject_CopyNewPyvtkEdgeListIterator_ClassNewPyVTKAddFile_vtkEdgeListIterator_ZN19vtkEdgeListIterator8SetGraphEP8vtkGraph_ZN12vtkEdgeTable16GetNumberOfEdgesEv_ZN12vtkEdgeTable3NewEv_ZNK12vtkEdgeTable19NewInstanceInternalEv_ZN12vtkEdgeTable10InsertEdgeExx_ZN12vtkEdgeTable3IsAEPKc_ZN12vtkEdgeTable10InitializeEv_ZN12vtkEdgeTable13InitTraversalEv_ZN12vtkEdgeTable5ResetEv_ZN12vtkEdgeTable6IsEdgeExx_ZN12vtkEdgeTable18InitPointInsertionEP9vtkPointsx_ZN12vtkEdgeTable10InsertEdgeExxx_ZN12vtkEdgeTable17InitEdgeInsertionExi_ZN12vtkEdgeTable11GetNextEdgeERxS0_PyBuffer_Release_ZN13vtkPythonArgs9GetBufferERPvP10bufferinfo_ZN12vtkEdgeTable10InsertEdgeExxPv_ZN12vtkEdgeTable17InsertUniquePointExxPdRxPyvtkEdgeTable_ClassNewPyVTKAddFile_vtkEdgeTable_ZN12vtkEmptyCell11GetCellTypeEv_ZN12vtkEmptyCell16GetCellDimensionEv_ZN12vtkEmptyCell16GetNumberOfEdgesEv_ZN12vtkEmptyCell16GetNumberOfFacesEv_ZN12vtkEmptyCell7GetEdgeEi_ZN12vtkEmptyCell7GetFaceEi_ZN12vtkEmptyCell3NewEv_ZNK12vtkEmptyCell19NewInstanceInternalEv_ZN12vtkEmptyCell3IsAEPKcPyvtkEmptyCell_ClassNewPyVTKAddFile_vtkEmptyCell_ZN12vtkEmptyCell11DerivativesEiPdS0_iS0__ZN12vtkEmptyCell11TriangulateEiP9vtkIdListP9vtkPoints_ZN12vtkEmptyCell17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN12vtkEmptyCell16EvaluateLocationERiPdS1_S1__ZN12vtkEmptyCell16EvaluatePositionEPdS0_RiS0_RdS0__ZN12vtkEmptyCell4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN12vtkEmptyCell7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN12vtkEmptyCell12CellBoundaryEiPdP9vtkIdList_ZN30vtkExtractStructuredGridHelper20GetOutputWholeExtentEv_ZN30vtkExtractStructuredGridHelper3NewEv_ZNK30vtkExtractStructuredGridHelper19NewInstanceInternalEv_ZN30vtkExtractStructuredGridHelper26GetPartitionedOutputExtentEPKiS1_S1_S1_bPi_ZN30vtkExtractStructuredGridHelper17GetPartitionedVOIEPKiS1_S1_bPi_ZN30vtkExtractStructuredGridHelper18ComputeBeginAndEndEPiS0_S0_S0__ZN30vtkExtractStructuredGridHelper3IsAEPKc_ZNK30vtkExtractStructuredGridHelper7IsValidEv_ZN13vtkPythonArgs10BuildTupleEPKii_ZN30vtkExtractStructuredGridHelper7GetSizeEi_ZN30vtkExtractStructuredGridHelper14GetMappedIndexEii_ZN30vtkExtractStructuredGridHelper29GetMappedExtentValueFromIndexEii_ZN30vtkExtractStructuredGridHelper29GetMappedIndexFromExtentValueEii_ZN30vtkExtractStructuredGridHelper20GetMappedExtentValueEii_ZN30vtkExtractStructuredGridHelper12CopyCellDataEPiS0_P11vtkCellDataS2__ZN30vtkExtractStructuredGridHelper22CopyPointsAndPointDataEPiS0_P12vtkPointDataP9vtkPointsS2_S4__ZN30vtkExtractStructuredGridHelper10InitializeEPiS0_S0_bPyvtkExtractStructuredGridHelper_ClassNewPyVTKAddFile_vtkExtractStructuredGridHelper_ZN16vtkAbstractArray7GetNameEv_ZN12vtkFieldData3NewEv_ZNK12vtkFieldData19NewInstanceInternalEv_ZN12vtkFieldData16GetAbstractArrayEPKcRi_ZN12vtkFieldData3IsAEPKc_ZN12vtkFieldData7SqueezeEv_ZN12vtkFieldData5ResetEv_ZN12vtkFieldData21GetNumberOfComponentsEv_ZN12vtkFieldData17GetNumberOfTuplesEv_ZN12vtkFieldData17SetNumberOfTuplesEx_ZN12vtkFieldData13CopyStructureEPS__ZN12vtkFieldData14AllocateArraysEi_ZN12vtkFieldData8GetArrayEi_ZN12vtkFieldData16GetAbstractArrayEi_ZN12vtkFieldData8AddArrayEP16vtkAbstractArray_ZN12vtkFieldData14CopyFieldOnOffEPKci_ZN12vtkFieldData8GetArrayEPKcRi_ZN12vtkFieldData8GetFieldEP9vtkIdListPS__ZN12vtkFieldData15InsertNextTupleExPS__ZN12vtkFieldData27GetArrayContainingComponentEiRi_ZN12vtkFieldData8AllocateExx_ZN12vtkFieldData8SetTupleExxPS__ZN12vtkFieldData11InsertTupleExxPS_PyVTKAddFile_vtkFieldData_ZN12vtkFieldData8GetMTimeEv_ZN12vtkFieldData19GetActualMemorySizeEv_ZN12vtkFieldData11ShallowCopyEPS__ZN12vtkFieldData8DeepCopyEPS__ZN12vtkFieldData10CopyAllOffEi_ZN12vtkFieldData9CopyAllOnEi_ZN12vtkFieldData8PassDataEPS__ZN12vtkFieldData11RemoveArrayEi_ZN12vtkFieldData10InitializeEv_ZNK21vtkGenericAdaptorCell19NewInstanceInternalEv_ZN21vtkGenericAdaptorCell3IsAEPKc_ZN21vtkGenericAdaptorCell16IsGeometryLinearEv_ZN21vtkGenericAdaptorCell17IsAttributeLinearEP19vtkGenericAttributePyvtkGenericAdaptorCell_ClassNewPyVTKAddFile_vtkGenericAdaptorCell_ZN21vtkGenericAdaptorCell15TriangulateFaceEP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatoriP9vtkPointsP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataSB_P11vtkCellData_ZN21vtkGenericAdaptorCell10TessellateEP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatorP9vtkPointsP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataSB_P11vtkCellDataP20vtkUnsignedCharArray_ZN21vtkGenericAdaptorCell10GetLength2Ev_ZN21vtkGenericAdaptorCell9GetBoundsEv_ZN21vtkGenericAdaptorCell4ClipEdP19vtkImplicitFunctionP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatoriP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataP11vtkCellDataSB_SB_SD__ZN21vtkGenericAdaptorCell7ContourEP16vtkContourValuesP19vtkImplicitFunctionP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatorP26vtkIncrementalPointLocatorP12vtkCellArraySB_SB_P12vtkPointDataP11vtkCellDataSD_SD_SF__ZN21vtkGenericAdaptorCell24GetHighestOrderAttributeEP29vtkGenericAttributeCollection_ZN29vtkGenericAttributeCollection18GetActiveAttributeEv_ZN29vtkGenericAttributeCollection18GetActiveComponentEv_ZN29vtkGenericAttributeCollection34GetNumberOfAttributesToInterpolateEv_ZN29vtkGenericAttributeCollection3NewEv_ZNK29vtkGenericAttributeCollection19NewInstanceInternalEv_ZN29vtkGenericAttributeCollection12HasAttributeEiPii_ZN29vtkGenericAttributeCollection3IsAEPKc_ZN29vtkGenericAttributeCollection5ResetEv_ZN29vtkGenericAttributeCollection31SetAttributesToInterpolateToAllEv_ZN29vtkGenericAttributeCollection21GetNumberOfAttributesEv_ZN29vtkGenericAttributeCollection7IsEmptyEv_ZN29vtkGenericAttributeCollection21GetNumberOfComponentsEv_ZN29vtkGenericAttributeCollection34GetNumberOfPointCenteredComponentsEv_ZN29vtkGenericAttributeCollection24GetMaxNumberOfComponentsEv_ZN29vtkGenericAttributeCollection19GetActualMemorySizeEv_ZN29vtkGenericAttributeCollection26GetAttributesToInterpolateEv_ZN29vtkGenericAttributeCollection19InsertNextAttributeEP19vtkGenericAttribute_ZN29vtkGenericAttributeCollection15RemoveAttributeEi_ZN29vtkGenericAttributeCollection8DeepCopyEPS__ZN29vtkGenericAttributeCollection11ShallowCopyEPS__ZN29vtkGenericAttributeCollection17GetAttributeIndexEi_ZN29vtkGenericAttributeCollection12GetAttributeEi_ZN29vtkGenericAttributeCollection13FindAttributeEPKc_ZN29vtkGenericAttributeCollection15InsertAttributeEiP19vtkGenericAttribute_ZN29vtkGenericAttributeCollection18SetActiveAttributeEii_ZN29vtkGenericAttributeCollection26SetAttributesToInterpolateEiPiPyvtkGenericAttributeCollection_ClassNewPyVTKAddFile_vtkGenericAttributeCollection_ZN29vtkGenericAttributeCollection8GetMTimeEv_ZNK19vtkGenericAttribute19NewInstanceInternalEv_ZN19vtkGenericAttribute3IsAEPKcPyvtkGenericAttribute_ClassNewPyVTKAddFile_vtkGenericAttribute_ZN14vtkGenericCell3NewEv_ZNK14vtkGenericCell19NewInstanceInternalEv_ZN14vtkGenericCell15InstantiateCellEi_ZN14vtkGenericCell3IsAEPKc_ZN14vtkGenericCell11SetCellTypeEi_ZN14vtkGenericCell9SetPointsEP9vtkPoints_ZN14vtkGenericCell11SetPointIdsEP9vtkIdListPyvtkGenericCell_ClassNewPyVTKAddFile_vtkGenericCell_ZN14vtkGenericCell17InterpolateDerivsEPdS0__ZN14vtkGenericCell20InterpolateFunctionsEPdS0__ZN14vtkGenericCell13IsPrimaryCellEv_ZN14vtkGenericCell19GetParametricCoordsEv_ZN14vtkGenericCell19GetParametricCenterEPd_ZN14vtkGenericCell11DerivativesEiPdS0_iS0__ZN14vtkGenericCell11TriangulateEiP9vtkIdListP9vtkPoints_ZN14vtkGenericCell17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN14vtkGenericCell4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN14vtkGenericCell7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN14vtkGenericCell16EvaluateLocationERiPdS1_S1__ZN14vtkGenericCell16EvaluatePositionEPdS0_RiS0_RdS0__ZN14vtkGenericCell12CellBoundaryEiPdP9vtkIdList_ZN14vtkGenericCell7GetFaceEi_ZN14vtkGenericCell7GetEdgeEi_ZN14vtkGenericCell16GetNumberOfFacesEv_ZN14vtkGenericCell16GetNumberOfEdgesEv_ZN14vtkGenericCell8GetFacesEv_ZN14vtkGenericCell8SetFacesEPx_ZN14vtkGenericCell34RequiresExplicitFaceRepresentationEv_ZN14vtkGenericCell10InitializeEv_ZN14vtkGenericCell22RequiresInitializationEv_ZN14vtkGenericCell8IsLinearEv_ZN14vtkGenericCell16GetCellDimensionEv_ZN14vtkGenericCell11GetCellTypeEv_ZN14vtkGenericCell8DeepCopyEP7vtkCell_ZN14vtkGenericCell11ShallowCopyEP7vtkCell_ZNK22vtkGenericCellIterator19NewInstanceInternalEv_ZN22vtkGenericCellIterator3IsAEPKcPyvtkGenericCellIterator_ClassNewPyVTKAddFile_vtkGenericCellIterator_ZN25vtkGenericCellTessellator15GetErrorMetricsEv_ZN25vtkGenericCellTessellator14GetMeasurementEv_ZN25vtkGenericCellTessellator14SetMeasurementEi_ZN25vtkGenericCellTessellator12GetMaxErrorsEPd_ZNK25vtkGenericCellTessellator19NewInstanceInternalEv_ZN25vtkGenericCellTessellator3IsAEPKc_ZN25vtkGenericCellTessellator16InitErrorMetricsEP17vtkGenericDataSetPyvtkGenericCellTessellator_ClassNewPyVTKAddFile_vtkGenericCellTessellator_ZN25vtkGenericCellTessellator15SetErrorMetricsEP13vtkCollection_ZN17vtkGenericDataSet13GetAttributesEv_ZN17vtkGenericDataSet14GetTessellatorEv_ZN17vtkGenericDataSet7GetDataEP14vtkInformation_ZN17vtkGenericDataSet7GetDataEP20vtkInformationVectori_ZNK17vtkGenericDataSet19NewInstanceInternalEv_ZN17vtkGenericDataSet3IsAEPKcPyvtkGenericDataSet_ClassNewPyVTKAddFile_vtkGenericDataSet_ZN17vtkGenericDataSet17GetDataObjectTypeEv_ZN17vtkGenericDataSet19GetActualMemorySizeEv_ZN17vtkGenericDataSet14SetTessellatorEP25vtkGenericCellTessellator_ZN17vtkGenericDataSet13GetAttributesEi_ZN17vtkGenericDataSet9GetLengthEv_ZN17vtkGenericDataSet9GetCenterEPd_ZN17vtkGenericDataSet9GetCenterEv_ZN17vtkGenericDataSet9GetBoundsEPd_ZN17vtkGenericDataSet9GetBoundsEv_ZN17vtkGenericDataSet8GetMTimeEv_ZN17vtkGenericDataSet12GetCellTypesEP12vtkCellTypes_ZN19vtkGenericEdgeTable3NewEv_ZNK19vtkGenericEdgeTable19NewInstanceInternalEv_ZN19vtkGenericEdgeTable3IsAEPKc_ZN19vtkGenericEdgeTable9DumpTableEv_ZN19vtkGenericEdgeTable10LoadFactorEv_ZN19vtkGenericEdgeTable21GetNumberOfComponentsEv_ZN19vtkGenericEdgeTable28IncrementPointReferenceCountEx_ZN19vtkGenericEdgeTable10InitializeEx_ZN19vtkGenericEdgeTable21SetNumberOfComponentsEi_ZN19vtkGenericEdgeTable11RemovePointEx_ZN19vtkGenericEdgeTable10RemoveEdgeExx_ZN19vtkGenericEdgeTable23CheckEdgeReferenceCountExx_ZN19vtkGenericEdgeTable27IncrementEdgeReferenceCountExxx_ZN19vtkGenericEdgeTable9CheckEdgeExxRx_ZN19vtkGenericEdgeTable11InsertPointExPd_ZN19vtkGenericEdgeTable20InsertPointAndScalarExPdS0__ZN19vtkGenericEdgeTable10InsertEdgeExxxi_ZN19vtkGenericEdgeTable10InsertEdgeExxxiRx_ZN19vtkGenericEdgeTable10CheckPointEx_ZN19vtkGenericEdgeTable10CheckPointExPdS0_PyvtkGenericEdgeTable_ClassNewPyVTKAddFile_vtkGenericEdgeTable_ZN35vtkGenericInterpolatedVelocityField10GetCachingEv_ZN35vtkGenericInterpolatedVelocityField10SetCachingEi_ZN35vtkGenericInterpolatedVelocityField11GetCacheHitEv_ZN35vtkGenericInterpolatedVelocityField12GetCacheMissEv_ZN35vtkGenericInterpolatedVelocityField19GetVectorsSelectionEv_ZN35vtkGenericInterpolatedVelocityField14GetLastDataSetEv_ZN35vtkGenericInterpolatedVelocityField3NewEv_ZNK35vtkGenericInterpolatedVelocityField19NewInstanceInternalEv_ZN35vtkGenericInterpolatedVelocityField19SetVectorsSelectionEPKc_ZN35vtkGenericInterpolatedVelocityField3IsAEPKc_ZN35vtkGenericInterpolatedVelocityField9CachingOnEv_ZN35vtkGenericInterpolatedVelocityField10CachingOffEv_ZN35vtkGenericInterpolatedVelocityField13ClearLastCellEv_ZN35vtkGenericInterpolatedVelocityField11GetLastCellEv_ZN35vtkGenericInterpolatedVelocityField23GetLastLocalCoordinatesEPdPyvtkGenericInterpolatedVelocityField_ClassNewPyvtkFunctionSet_ClassNewPyVTKAddFile_vtkGenericInterpolatedVelocityField_ZN35vtkGenericInterpolatedVelocityField14CopyParametersEPS__ZN35vtkGenericInterpolatedVelocityField10AddDataSetEP17vtkGenericDataSet_ZN35vtkGenericInterpolatedVelocityField14FunctionValuesEPdS0__ZNK23vtkGenericPointIterator19NewInstanceInternalEv_ZN23vtkGenericPointIterator3IsAEPKcPyvtkGenericPointIterator_ClassNewPyVTKAddFile_vtkGenericPointIterator_ZN32vtkGenericSubdivisionErrorMetric14GetGenericCellEv_ZN32vtkGenericSubdivisionErrorMetric10GetDataSetEv_ZNK32vtkGenericSubdivisionErrorMetric19NewInstanceInternalEv_ZN32vtkGenericSubdivisionErrorMetric3IsAEPKc_ZN32vtkGenericSubdivisionErrorMetric10SetDataSetEP17vtkGenericDataSet_ZN32vtkGenericSubdivisionErrorMetric14SetGenericCellEP21vtkGenericAdaptorCellPyVTKAddFile_vtkGenericSubdivisionErrorMetric_ZN23vtkGeometricErrorMetric29GetAbsoluteGeometricToleranceEv_ZN23vtkGeometricErrorMetric3NewEv_ZNK23vtkGeometricErrorMetric19NewInstanceInternalEv_ZN23vtkGeometricErrorMetric3IsAEPKc_ZN23vtkGeometricErrorMetric11GetRelativeEv_ZN23vtkGeometricErrorMetric29SetAbsoluteGeometricToleranceEd_ZN23vtkGeometricErrorMetric29SetRelativeGeometricToleranceEdP17vtkGenericDataSetPyvtkGeometricErrorMetric_ClassNewPyVTKAddFile_vtkGeometricErrorMetric_ZN23vtkGeometricErrorMetric8GetErrorEPdS0_S0_d_ZN23vtkGeometricErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_d_ZN8vtkGraph13GetVertexDataEv_ZN8vtkGraph11GetEdgeDataEv_ZN8vtkGraph17GetDataObjectTypeEv_Zne11vtkEdgeBaseS__Zeq11vtkEdgeBaseS__ZN8vtkGraph7GetDataEP14vtkInformation_ZN8vtkGraph7GetDataEP20vtkInformationVectori_ZNK8vtkGraph19NewInstanceInternalEv_ZN8vtkGraph3IsAEPKc_ZN8vtkGraph13ComputeBoundsEv_ZN8vtkGraph4DumpEv_ZN8vtkGraph9GetPointsEv_ZN8vtkGraph25GetDistributedGraphHelperEv_ZN8vtkGraph25SetDistributedGraphHelperEP25vtkDistributedGraphHelper_ZN8vtkGraph21ShallowCopyEdgePointsEPS__ZN8vtkGraph18DeepCopyEdgePointsEPS__ZN8vtkGraph15ClearEdgePointsEx_ZN8vtkGraph21GetNumberOfEdgePointsEx_ZN8vtkGraph17ToUndirectedGraphEP18vtkUndirectedGraph_ZN8vtkGraph15ToDirectedGraphEP16vtkDirectedGraph_ZN8vtkGraph15IsSameStructureEPS__ZN8vtkGraph15GetSourceVertexEx_ZN8vtkGraph15GetTargetVertexEx_ZN8vtkGraph17GetGraphInternalsEb_ZN8vtkGraph18ReorderOutVerticesExP14vtkIdTypeArray_ZN8vtkGraph15GetInducedEdgesEP14vtkIdTypeArrayS1__ZN8vtkGraph10FindVertexERK10vtkVariant_ZN8vtkGraph9GetEdgeIdExx_ZN8vtkGraph12GetEdgePointExx_ZN8vtkGraph13GetEdgePointsExRxRPd_ZN13vtkPythonArgs11SetArgValueEiPKdi_ZN8vtkGraph13SetEdgePointsExxPd_ZN8vtkGraph9GetBoundsEv_ZN8vtkGraph9GetBoundsEPd_ZN8vtkGraph8GetPointEx_ZN8vtkGraph8GetPointExPd_ZN8vtkGraph12AddEdgePointExPd_ZN8vtkGraph12SetEdgePointExxPdPyvtkEdgeBase_TypeNewPyvtkOutEdgeType_TypeNewPyvtkInEdgeType_TypeNewPyvtkEdgeType_TypeNewPyVTKAddFile_vtkGraph_ZTVNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEEE_ZTVSt15basic_streambufIcSt11char_traitsIcEE_ZNSt8ios_baseC2Ev_ZTVSt9basic_iosIcSt11char_traitsIcEE_ZTTNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEEE_ZNSt9basic_iosIcSt11char_traitsIcEE4initEPSt15basic_streambufIcS1_E_ZNSt6localeC1Ev_ZTVNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEEE_ZlsRSo11vtkEdgeBase_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE10_M_replaceEmmPKcm_ZNSt6localeD1Ev_ZNSt8ios_baseD2Ev_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_M_assignERKS4__ZNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEED1Ev_ZN8vtkGraph19GetNumberOfElementsEi_ZN8vtkGraph24GetAttributesAsFieldDataEi_ZN8vtkGraph7SqueezeEv_ZN8vtkGraph15CheckedDeepCopyEPS__ZN8vtkGraph18CheckedShallowCopyEPS__ZN8vtkGraph13CopyStructureEPS__ZN8vtkGraph8DeepCopyEP13vtkDataObject_ZN8vtkGraph11ShallowCopyEP13vtkDataObject_ZN8vtkGraph19GetNumberOfVerticesEv_ZN8vtkGraph11GetVerticesEP21vtkVertexListIterator_ZN8vtkGraph16GetNumberOfEdgesEv_ZN8vtkGraph8GetEdgesEP19vtkEdgeListIterator_ZN8vtkGraph19GetAdjacentVerticesExP25vtkAdjacentVertexIterator_ZN8vtkGraph9GetInEdgeExx_ZN8vtkGraph9GetInEdgeExxP12vtkGraphEdge_ZN8vtkGraph11GetInDegreeEx_ZN8vtkGraph10GetInEdgesExP17vtkInEdgeIterator_ZN8vtkGraph10GetOutEdgeExx_ZN8vtkGraph10GetOutEdgeExxP12vtkGraphEdge_ZN8vtkGraph12GetOutDegreeEx_ZN8vtkGraph9GetDegreeEx_ZN8vtkGraph11GetOutEdgesExP18vtkOutEdgeIterator_ZN8vtkGraph8GetMTimeEv_ZN8vtkGraph9SetPointsEP9vtkPoints_ZN8vtkGraph10InitializeEv_ZN12vtkGraphEdge9SetSourceEx_ZN12vtkGraphEdge9GetSourceEv_ZN12vtkGraphEdge9SetTargetEx_ZN12vtkGraphEdge9GetTargetEv_ZN12vtkGraphEdge5SetIdEx_ZN12vtkGraphEdge5GetIdEv_ZN12vtkGraphEdge3NewEv_ZNK12vtkGraphEdge19NewInstanceInternalEv_ZN12vtkGraphEdge3IsAEPKcPyvtkGraphEdge_ClassNewPyVTKAddFile_vtkGraphEdge_ZN17vtkGraphInternals3NewEv_ZNK17vtkGraphInternals19NewInstanceInternalEv_ZSt28__throw_bad_array_new_lengthv_ZSt17__throw_bad_allocv_ZN17vtkGraphInternals3IsAEPKcPyvtkVertexAdjacencyList_TypeNewPyvtkGraphInternals_ClassNewPyVTKAddFile_vtkGraphInternals_ZN17vtkHexagonalPrism11GetCellTypeEv_ZN17vtkHexagonalPrism16GetCellDimensionEv_ZN17vtkHexagonalPrism16GetNumberOfEdgesEv_ZN17vtkHexagonalPrism16GetNumberOfFacesEv_ZN17vtkHexagonalPrism19GetParametricCenterEPd_ZN17vtkHexagonalPrism3NewEv_ZNK17vtkHexagonalPrism19NewInstanceInternalEv_ZN17vtkHexagonalPrism12GetFaceArrayEi_ZN17vtkHexagonalPrism17InterpolateDerivsEPdS0__ZN17vtkHexagonalPrism19InterpolationDerivsEPdS0__ZN17vtkHexagonalPrism20InterpolateFunctionsEPdS0__ZN17vtkHexagonalPrism22InterpolationFunctionsEPdS0__ZN17vtkHexagonalPrism3IsAEPKc_ZN17vtkHexagonalPrism12GetEdgeArrayEiPyvtkHexagonalPrism_ClassNewPyVTKAddFile_vtkHexagonalPrism_ZN17vtkHexagonalPrism19GetParametricCoordsEv_ZN17vtkHexagonalPrism11DerivativesEiPdS0_iS0__ZN17vtkHexagonalPrism11TriangulateEiP9vtkIdListP9vtkPoints_ZN17vtkHexagonalPrism17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkHexagonalPrism16EvaluateLocationERiPdS1_S1__ZN17vtkHexagonalPrism16EvaluatePositionEPdS0_RiS0_RdS0__ZN17vtkHexagonalPrism12CellBoundaryEiPdP9vtkIdList_ZN17vtkHexagonalPrism7GetFaceEi_ZN17vtkHexagonalPrism7GetEdgeEi_ZN17vtkHexagonalPrism13GetFacePointsEiRPi_ZN17vtkHexagonalPrism13GetEdgePointsEiRPi_ZN13vtkHexahedron11GetCellTypeEv_ZN13vtkHexahedron16GetNumberOfEdgesEv_ZN13vtkHexahedron16GetNumberOfFacesEv_ZN13vtkHexahedron3NewEv_ZNK13vtkHexahedron19NewInstanceInternalEv_ZN13vtkHexahedron12GetFaceArrayEi_ZN13vtkHexahedron12GetEdgeArrayEi_ZN13vtkHexahedron17InterpolateDerivsEPdS0__ZN13vtkHexahedron19InterpolationDerivsEPdS0__ZN13vtkHexahedron20InterpolateFunctionsEPdS0__ZN13vtkHexahedron22InterpolationFunctionsEPdS0__ZN13vtkHexahedron3IsAEPKcPyvtkHexahedron_ClassNewPyVTKAddFile_vtkHexahedron_ZN13vtkHexahedron19GetParametricCoordsEv_ZN13vtkHexahedron11DerivativesEiPdS0_iS0__ZN13vtkHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkHexahedron16EvaluateLocationERiPdS1_S1__ZN13vtkHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN13vtkHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkHexahedron12CellBoundaryEiPdP9vtkIdList_ZN13vtkHexahedron7GetFaceEi_ZN13vtkHexahedron7GetEdgeEi_ZN13vtkHexahedron13GetFacePointsEiRPi_ZN13vtkHexahedron13GetEdgePointsEiRPi_ZN30vtkHierarchicalBoxDataIterator3NewEv_ZNK30vtkHierarchicalBoxDataIterator19NewInstanceInternalEv_ZN30vtkHierarchicalBoxDataIterator3IsAEPKcPyvtkHierarchicalBoxDataIterator_ClassNewPyvtkUniformGridAMRDataIterator_ClassNewPyVTKAddFile_vtkHierarchicalBoxDataIterator_ZN25vtkHierarchicalBoxDataSet17GetDataObjectTypeEv_ZN25vtkHierarchicalBoxDataSet3NewEv_ZNK25vtkHierarchicalBoxDataSet19NewInstanceInternalEv_ZN25vtkHierarchicalBoxDataSet7GetDataEP14vtkInformation_ZN25vtkHierarchicalBoxDataSet7GetDataEP20vtkInformationVectori_ZN25vtkHierarchicalBoxDataSet3IsAEPKcPyvtkHierarchicalBoxDataSet_ClassNewPyvtkOverlappingAMR_ClassNewPyVTKAddFile_vtkHierarchicalBoxDataSet_ZN25vtkHierarchicalBoxDataSet11NewIteratorEv_ZN12vtkHyperTree14CreateInstanceEjj_ZNK12vtkHyperTree19NewInstanceInternalEv_ZN12vtkHyperTree3IsAEPKcPyvtkHyperTree_ClassNewPyVTKAddFile_vtkHyperTree_ZN12vtkHyperTree19FindChildParametersEiRxRb_ZN13vtkPythonArgs11SetArgValueEib_ZN12vtkHyperTree15FindParentIndexERx_ZNK18vtkHyperTreeCursor19NewInstanceInternalEv_ZN18vtkHyperTreeCursor3IsAEPKcPyvtkHyperTreeCursor_ClassNewPyVTKAddFile_vtkHyperTreeCursor_ZN16vtkHyperTreeGrid11GetGridSizeEv_ZN16vtkHyperTreeGrid25SetTransposedRootIndexingEb_ZN16vtkHyperTreeGrid25GetTransposedRootIndexingEv_ZN16vtkHyperTreeGrid12GetDimensionEv_ZN16vtkHyperTreeGrid14GetOrientationEv_ZN16vtkHyperTreeGrid15GetBranchFactorEv_ZN16vtkHyperTreeGrid15GetXCoordinatesEv_ZN16vtkHyperTreeGrid15GetYCoordinatesEv_ZN16vtkHyperTreeGrid15GetZCoordinatesEv_ZN16vtkHyperTreeGrid15GetMaterialMaskEv_ZN16vtkHyperTreeGrid20GetMaterialMaskIndexEv_ZN16vtkHyperTreeGrid15SetHasInterfaceEb_ZN16vtkHyperTreeGrid15GetHasInterfaceEv_ZN16vtkHyperTreeGrid23GetInterfaceNormalsNameEv_ZN16vtkHyperTreeGrid26GetInterfaceInterceptsNameEv_ZN16vtkHyperTreeGrid13GetExtentTypeEv_ZN16vtkHyperTreeGrid19GetNumberOfChildrenEv_ZN16vtkHyperTreeGrid3NewEv_ZNK16vtkHyperTreeGrid19NewInstanceInternalEv_ZN16vtkHyperTreeGrid7GetDataEP14vtkInformation_ZN16vtkHyperTreeGrid7GetDataEP20vtkInformationVectori_ZN16vtkHyperTreeGrid23SetInterfaceNormalsNameEPKc_ZN16vtkHyperTreeGrid26SetInterfaceInterceptsNameEPKc_ZN16vtkHyperTreeGrid5SIZESEv_ZN16vtkHyperTreeGrid11ORIENTATIONEv_ZN16vtkHyperTreeGrid9DIMENSIONEv_ZN16vtkHyperTreeGrid6LEVELSEv_ZN16vtkHyperTreeGrid3IsAEPKc_ZN16vtkHyperTreeGrid15HasInterfaceOffEv_ZN16vtkHyperTreeGrid14HasInterfaceOnEv_ZN16vtkHyperTreeGrid17GetNumberOfLeavesEv_ZN16vtkHyperTreeGrid19GetPureMaterialMaskEv_ZN16vtkHyperTreeGrid15HasMaterialMaskEv_ZN16vtkHyperTreeGrid16GetNumberOfTreesEv_ZN16vtkHyperTreeGrid19GetNumberOfVerticesEv_ZN13vtkPythonArgs10BuildTupleEPKji_ZN16vtkHyperTreeGrid15SetXCoordinatesEP12vtkDataArray_ZN16vtkHyperTreeGrid12SetDimensionEj_ZN16vtkHyperTreeGrid15SetBranchFactorEj_ZN16vtkHyperTreeGrid15SetMaterialMaskEP11vtkBitArray_ZN16vtkHyperTreeGrid15SetYCoordinatesEP12vtkDataArray_ZN16vtkHyperTreeGrid15SetZCoordinatesEP12vtkDataArray_ZN16vtkHyperTreeGrid7GetTreeEx_ZN16vtkHyperTreeGrid12GetChildMaskEj_ZN16vtkHyperTreeGrid37RecursivelyInitializePureMaterialMaskEP22vtkHyperTreeGridCursor_ZN16vtkHyperTreeGrid13SubdivideLeafEP18vtkHyperTreeCursorx_ZN16vtkHyperTreeGrid7SetTreeExP12vtkHyperTree_ZN16vtkHyperTreeGrid9NewCursorExb_ZN16vtkHyperTreeGrid13NewGridCursorExb_ZN16vtkHyperTreeGrid24NewVonNeumannSuperCursorExb_ZN16vtkHyperTreeGrid19NewMooreSuperCursorExb_ZN16vtkHyperTreeGrid18NewGeometricCursorExb_ZN16vtkHyperTreeGrid24GetShiftedLevelZeroIndexExiii_ZN16vtkHyperTreeGrid32GetIndexFromLevelZeroCoordinatesERxjjj_ZN16vtkHyperTreeGrid32GetLevelZeroCoordinatesFromIndexExRjS0_S0__ZN13vtkPythonArgs11SetArgValueEij_ZN16vtkHyperTreeGrid17GetNumberOfLevelsEx_ZN16vtkHyperTreeGrid17GetNumberOfLevelsEv_ZN13vtkPythonArgs8GetArrayEPji_ZN16vtkHyperTreeGrid11SetGridSizeEPj_ZN16vtkHyperTreeGrid11SetGridSizeEjjj_ZN13vtkPythonArgs8SetArrayEiPKji_ZN16vtkHyperTreeGrid13SetGridExtentEPi_ZN16vtkHyperTreeGrid13SetGridExtentEiiiiiiPyvtkHyperTreeGrid_ClassNewPyVTKAddFile_vtkHyperTreeGrid_ZN16vtkHyperTreeGrid19GetActualMemorySizeEv_ZN16vtkHyperTreeGrid8DeepCopyEP13vtkDataObject_ZN16vtkHyperTreeGrid11ShallowCopyEP13vtkDataObject_ZN16vtkHyperTreeGrid14GetMaxCellSizeEv_ZN16vtkHyperTreeGrid10InitializeEv_ZN16vtkHyperTreeGrid8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN16vtkHyperTreeGrid8FindCellEPdP7vtkCellxdRiS0_S0__ZN16vtkHyperTreeGrid9FindPointEPd_ZN16vtkHyperTreeGrid16GetCellNeighborsExP9vtkIdListS1__ZN16vtkHyperTreeGrid13GetPointCellsExP9vtkIdList_ZN16vtkHyperTreeGrid13GetCellPointsExRxRPx_ZN16vtkHyperTreeGrid13GetCellPointsExP9vtkIdList_ZN16vtkHyperTreeGrid11GetCellTypeEx_ZN16vtkHyperTreeGrid7GetCellEiii_ZN16vtkHyperTreeGrid7GetCellEx_ZN16vtkHyperTreeGrid7GetCellExP14vtkGenericCell_ZN16vtkHyperTreeGrid8GetPointEx_ZN16vtkHyperTreeGrid8GetPointExPd_ZN16vtkHyperTreeGrid13GenerateTreesEv_ZN16vtkHyperTreeGrid20SetMaterialMaskIndexEP14vtkIdTypeArray_ZN16vtkHyperTreeGrid17GetNumberOfPointsEv_ZN16vtkHyperTreeGrid16GetNumberOfCellsEv_ZN16vtkHyperTreeGrid14SetOrientationEj_ZN16vtkHyperTreeGrid13CopyStructureEP10vtkDataSet_ZN16vtkHyperTreeGrid17GetDataObjectTypeEv_ZN22vtkHyperTreeGridCursor7GetGridEv_ZN22vtkHyperTreeGridCursor7GetTreeEv_ZN22vtkHyperTreeGridCursor8GetLevelEv_ZN22vtkHyperTreeGridCursor12ToSameVertexEP18vtkHyperTreeCursor_ZN22vtkHyperTreeGridCursor7IsEqualEP18vtkHyperTreeCursor_ZN22vtkHyperTreeGridCursor8SameTreeEP18vtkHyperTreeCursor_ZN22vtkHyperTreeGridCursor9GetOriginEv_ZN22vtkHyperTreeGridCursor7GetSizeEv_ZN22vtkHyperTreeGridCursor9GetBoundsEPd_ZN22vtkHyperTreeGridCursor8GetPointEPd_ZN22vtkHyperTreeGridCursor18GetNumberOfCursorsEv_ZN22vtkHyperTreeGridCursor9GetCursorEj_ZN22vtkHyperTreeGridCursor16GetCornerCursorsEjjP9vtkIdList_ZN22vtkHyperTreeGridCursor3NewEv_ZNK22vtkHyperTreeGridCursor19NewInstanceInternalEv_ZN22vtkHyperTreeGridCursor3IsAEPKcPyvtkHyperTreeGridCursor_ClassNewPyVTKAddFile_vtkHyperTreeGridCursor_ZN22vtkHyperTreeGridCursor12GetDimensionEv_ZN22vtkHyperTreeGridCursor19GetNumberOfChildrenEv_ZN22vtkHyperTreeGridCursor7ToChildEi_ZN22vtkHyperTreeGridCursor8ToParentEv_ZN22vtkHyperTreeGridCursor6ToRootEv_ZN22vtkHyperTreeGridCursor13GetChildIndexEv_ZN22vtkHyperTreeGridCursor6IsRootEv_ZN22vtkHyperTreeGridCursor6IsLeafEv_ZN22vtkHyperTreeGridCursor18GetGlobalNodeIndexEv_ZN22vtkHyperTreeGridCursor11GetVertexIdEv_ZN22vtkHyperTreeGridCursor7SetTreeEP12vtkHyperTree_ZN22vtkHyperTreeGridCursor7SetGridEP16vtkHyperTreeGrid_ZN22vtkHyperTreeGridCursor10InitializeEP16vtkHyperTreeGridx_ZN22vtkHyperTreeGridCursor5CloneEv_ZN12vtkImageData17GetDataObjectTypeEv_ZN12vtkImageData9FindPointEddd_ZN12vtkImageData14GetMaxCellSizeEv_ZN12vtkImageData14ComputePointIdEPi_ZN12vtkImageData13ComputeCellIdEPi_ZN12vtkImageData9GetExtentEv_ZN12vtkImageData10SetSpacingEddd_ZN12vtkImageData10GetSpacingEv_ZN12vtkImageData9SetOriginEddd_ZN12vtkImageData9GetOriginEv_ZN12vtkImageData13GetExtentTypeEv_ZN12vtkImageData8GetPointEx_ZN12vtkImageData17GetNumberOfPointsEv_ZN12vtkImageData3NewEv_ZNK12vtkImageData19NewInstanceInternalEv_ZN12vtkImageData7GetDataEP14vtkInformation_ZN12vtkImageData7GetDataEP20vtkInformationVectori_ZN12vtkImageData27HasNumberOfScalarComponentsEP14vtkInformation_ZN12vtkImageData27GetNumberOfScalarComponentsEP14vtkInformation_ZN12vtkImageData13HasScalarTypeEP14vtkInformation_ZN12vtkImageData13GetScalarTypeEP14vtkInformation_ZN12vtkImageData16GetDataDimensionEv_ZN17vtkStructuredData16GetDataDimensionEi_ZN12vtkImageData13GetPointCellsExP9vtkIdList_ZN17vtkStructuredData13GetPointCellsExP9vtkIdListPi_ZN12vtkImageData13GetCellPointsExP9vtkIdList_ZN17vtkStructuredData13GetCellPointsExP9vtkIdListiPi_ZN12vtkImageData13GetScalarTypeEv_ZN12vtkImageData13SetScalarTypeEiP14vtkInformation_ZN12vtkImageData28ComputeStructuredCoordinatesEPKdPiPdPKiS1_S1_S1__ZN12vtkImageData27SetNumberOfScalarComponentsEiP14vtkInformation_ZN12vtkImageData3IsAEPKc_ZN12vtkImageData10SetSpacingEPd_ZN12vtkImageData9SetOriginEPd_ZN12vtkImageData18GetArrayIncrementsEP12vtkDataArrayPx_ZN12vtkImageData24GetArrayPointerForExtentEP12vtkDataArrayPi_ZN12vtkImageData15GetArrayPointerEP12vtkDataArrayPi_ZN12vtkImageData27GetNumberOfScalarComponentsEv_ZN12vtkImageData21ComputeInternalExtentEPiS0_S0_PyvtkImageData_ClassNewPyVTKAddFile_vtkImageData_ZN12vtkImageData8DeepCopyEP13vtkDataObject_ZN12vtkImageData11ShallowCopyEP13vtkDataObject_ZN12vtkImageData17PrepareForNewDataEv_ZN12vtkImageData25CopyInformationToPipelineEP14vtkInformation_ZN12vtkImageData27CopyInformationFromPipelineEP14vtkInformation_ZN12vtkImageData19GetActualMemorySizeEv_ZN12vtkImageData4CropEPKi_ZN12vtkImageData15CopyAndCastFromEPS_Pi_ZN12vtkImageData15AllocateScalarsEP14vtkInformation_ZN12vtkImageData15AllocateScalarsEii_ZN12vtkImageData28SetScalarComponentFromDoubleEiiiid_ZN12vtkImageData26GetScalarComponentAsDoubleEiiii_ZN13vtkPythonArgs8GetValueERf_ZN12vtkImageData27SetScalarComponentFromFloatEiiiif_ZN12vtkImageData25GetScalarComponentAsFloatEiiii_ZN12vtkImageData16GetScalarPointerEv_ZN12vtkImageData16GetScalarPointerEPi_ZN12vtkImageData16GetScalarPointerEiii_ZN12vtkImageData25GetScalarPointerForExtentEPi_ZN12vtkImageData23GetContinuousIncrementsEPiRxS1_S1__ZN12vtkImageData23GetContinuousIncrementsEP12vtkDataArrayPiRxS3_S3__ZN13vtkPythonArgs10BuildTupleEPKxi_ZN12vtkImageData13GetIncrementsEP12vtkDataArray_ZN12vtkImageData13GetIncrementsEPx_ZN12vtkImageData13GetIncrementsEv_ZN12vtkImageData13GetIncrementsEP12vtkDataArrayPx_ZN12vtkImageData13GetIncrementsERxS0_S0__ZN12vtkImageData13GetIncrementsEP12vtkDataArrayRxS2_S2__ZN12vtkImageData13GetScalarSizeEP14vtkInformation_ZN12vtkImageData13GetScalarSizeEv_ZN12vtkImageData16GetScalarTypeMaxEP14vtkInformation_ZN12vtkImageData16GetScalarTypeMaxEv_ZN12vtkImageData16GetScalarTypeMinEP14vtkInformation_ZN12vtkImageData16GetScalarTypeMinEv_ZN12vtkImageData9SetExtentEPi_ZN12vtkImageData9SetExtentEiiiiii_ZN12vtkImageData19GetAxisUpdateExtentEiRiS0_PKi_ZN12vtkImageData19SetAxisUpdateExtentEiiiPKiPi_ZN12vtkImageData16GetPointGradientEiiiP12vtkDataArrayPd_ZN12vtkImageData16GetVoxelGradientEiiiP12vtkDataArrayS1__ZN12vtkImageData28ComputeStructuredCoordinatesEPKdPiPd_ZN12vtkImageData13GetDimensionsEPi_ZN12vtkImageData13GetDimensionsEv_ZN12vtkImageData13SetDimensionsEPKi_ZN12vtkImageData13SetDimensionsEiii_ZN12vtkImageData10InitializeEv_ZN12vtkImageData13ComputeBoundsEv_ZN12vtkImageData11GetCellTypeEx_ZN12vtkImageData14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN12vtkImageData8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN12vtkImageData8FindCellEPdP7vtkCellxdRiS0_S0__ZN12vtkImageData9FindPointEPd_ZN12vtkImageData13GetCellBoundsExPd_ZN12vtkImageData7GetCellEx_ZN12vtkImageData7GetCellExP14vtkGenericCell_ZN12vtkImageData7GetCellEiii_ZN12vtkImageData8GetPointExPd_ZN12vtkImageData16GetNumberOfCellsEv_ZN12vtkImageData13CopyStructureEP10vtkDataSetPyVTKAddFile_vtkImageIterator_ZN18vtkImplicitBoolean16SetOperationTypeEi_ZN18vtkImplicitBoolean24GetOperationTypeMinValueEv_ZN18vtkImplicitBoolean24GetOperationTypeMaxValueEv_ZN18vtkImplicitBoolean16GetOperationTypeEv_ZN18vtkImplicitBoolean3NewEv_ZNK18vtkImplicitBoolean19NewInstanceInternalEv_ZN18vtkImplicitBoolean3IsAEPKc_ZN18vtkImplicitBoolean11AddFunctionEP19vtkImplicitFunction_ZN18vtkImplicitBoolean14RemoveFunctionEP19vtkImplicitFunction_Z43PyvtkImplicitBoolean_OperationType_FromEnumiPyvtkImplicitBoolean_ClassNewPyVTKAddFile_vtkImplicitBoolean_ZN18vtkImplicitBoolean8GetMTimeEv_ZN18vtkImplicitBoolean16EvaluateGradientEPdS0__ZN18vtkImplicitBoolean16EvaluateFunctionEPd_ZN18vtkImplicitDataSet10GetDataSetEv_ZN18vtkImplicitDataSet11SetOutValueEd_ZN18vtkImplicitDataSet11GetOutValueEv_ZN18vtkImplicitDataSet14SetOutGradientEddd_ZN18vtkImplicitDataSet14GetOutGradientEv_ZN18vtkImplicitDataSet3NewEv_ZNK18vtkImplicitDataSet19NewInstanceInternalEv_ZN18vtkImplicitDataSet3IsAEPKc_ZN18vtkImplicitDataSet14SetOutGradientEPdPyvtkImplicitDataSet_ClassNewPyVTKAddFile_vtkImplicitDataSet_ZN18vtkImplicitDataSet10SetDataSetEP10vtkDataSet_ZN18vtkImplicitDataSet16EvaluateGradientEPdS0__ZN18vtkImplicitDataSet16EvaluateFunctionEPd_ZN18vtkImplicitDataSet8GetMTimeEv_ZN29vtkImplicitFunctionCollection3NewEv_ZNK29vtkImplicitFunctionCollection19NewInstanceInternalEv_ZN29vtkImplicitFunctionCollection3IsAEPKcPyvtkImplicitFunctionCollection_ClassNewPyVTKAddFile_vtkImplicitFunctionCollection_ZN19vtkImplicitFunction12GetTransformEv_ZNK19vtkImplicitFunction19NewInstanceInternalEv_ZN19vtkImplicitFunction3IsAEPKc_ZN19vtkImplicitFunction16FunctionGradientEPKdPdPyVTKAddFile_vtkImplicitFunction_ZN19vtkImplicitFunction12SetTransformEPKd_ZN19vtkImplicitFunction12SetTransformEP20vtkAbstractTransform_ZN19vtkImplicitFunction13FunctionValueEPKd_ZN19vtkImplicitFunction13FunctionValueEP12vtkDataArrayS1__ZN19vtkImplicitFunction8GetMTimeEv_ZN15vtkImplicitHalo9SetRadiusEd_ZN15vtkImplicitHalo9GetRadiusEv_ZN15vtkImplicitHalo9SetCenterEddd_ZN15vtkImplicitHalo9GetCenterEv_ZN15vtkImplicitHalo10SetFadeOutEd_ZN15vtkImplicitHalo10GetFadeOutEv_ZN15vtkImplicitHalo3NewEv_ZNK15vtkImplicitHalo19NewInstanceInternalEv_ZN15vtkImplicitHalo3IsAEPKc_ZN15vtkImplicitHalo9SetCenterEPdPyvtkImplicitHalo_ClassNewPyVTKAddFile_vtkImplicitHalo_ZN15vtkImplicitHalo16EvaluateGradientEPdS0__ZN15vtkImplicitHalo16EvaluateFunctionEPd_ZN24vtkImplicitSelectionLoop7GetLoopEv_ZN24vtkImplicitSelectionLoop28SetAutomaticNormalGenerationEi_ZN24vtkImplicitSelectionLoop28GetAutomaticNormalGenerationEv_ZN24vtkImplicitSelectionLoop9SetNormalEddd_ZN24vtkImplicitSelectionLoop9GetNormalEv_ZN24vtkImplicitSelectionLoop3NewEv_ZNK24vtkImplicitSelectionLoop19NewInstanceInternalEv_ZN24vtkImplicitSelectionLoop3IsAEPKc_ZN24vtkImplicitSelectionLoop28AutomaticNormalGenerationOffEv_ZN24vtkImplicitSelectionLoop27AutomaticNormalGenerationOnEv_ZN24vtkImplicitSelectionLoop9SetNormalEPdPyvtkImplicitSelectionLoop_ClassNewPyVTKAddFile_vtkImplicitSelectionLoop_ZN24vtkImplicitSelectionLoop8GetMTimeEv_ZN24vtkImplicitSelectionLoop7SetLoopEP9vtkPoints_ZN24vtkImplicitSelectionLoop16EvaluateGradientEPdS0__ZN24vtkImplicitSelectionLoop16EvaluateFunctionEPd_ZN14vtkImplicitSum20SetNormalizeByWeightEi_ZN14vtkImplicitSum20GetNormalizeByWeightEv_ZN14vtkImplicitSum3NewEv_ZNK14vtkImplicitSum19NewInstanceInternalEv_ZN14vtkImplicitSum3IsAEPKc_ZN14vtkImplicitSum19NormalizeByWeightOnEv_ZN14vtkImplicitSum20NormalizeByWeightOffEv_ZN14vtkImplicitSum18RemoveAllFunctionsEv_ZN14vtkImplicitSum17SetFunctionWeightEP19vtkImplicitFunctiond_ZN14vtkImplicitSum11AddFunctionEP19vtkImplicitFunctiondPyvtkImplicitSum_ClassNewPyVTKAddFile_vtkImplicitSum_ZN14vtkImplicitSum8GetMTimeEv_ZN14vtkImplicitSum16EvaluateGradientEPdS0__ZN14vtkImplicitSum16EvaluateFunctionEPd_ZN17vtkImplicitVolume9GetVolumeEv_ZN17vtkImplicitVolume11SetOutValueEd_ZN17vtkImplicitVolume11GetOutValueEv_ZN17vtkImplicitVolume14SetOutGradientEddd_ZN17vtkImplicitVolume14GetOutGradientEv_ZN17vtkImplicitVolume3NewEv_ZNK17vtkImplicitVolume19NewInstanceInternalEv_ZN17vtkImplicitVolume3IsAEPKc_ZN17vtkImplicitVolume14SetOutGradientEPdPyvtkImplicitVolume_ClassNewPyVTKAddFile_vtkImplicitVolume_ZN17vtkImplicitVolume9SetVolumeEP12vtkImageData_ZN17vtkImplicitVolume16EvaluateGradientEPdS0__ZN17vtkImplicitVolume16EvaluateFunctionEPd_ZN17vtkImplicitVolume8GetMTimeEv_ZN25vtkImplicitWindowFunction19GetImplicitFunctionEv_ZN25vtkImplicitWindowFunction14SetWindowRangeEdd_ZN25vtkImplicitWindowFunction14GetWindowRangeEv_ZN25vtkImplicitWindowFunction15SetWindowValuesEdd_ZN25vtkImplicitWindowFunction15GetWindowValuesEv_ZN25vtkImplicitWindowFunction3NewEv_ZNK25vtkImplicitWindowFunction19NewInstanceInternalEv_ZN25vtkImplicitWindowFunction3IsAEPKcPyvtkImplicitWindowFunction_ClassNewPyVTKAddFile_vtkImplicitWindowFunction_ZN25vtkImplicitWindowFunction8GetMTimeEv_ZN25vtkImplicitWindowFunction19SetImplicitFunctionEP19vtkImplicitFunction_ZN25vtkImplicitWindowFunction16EvaluateGradientEPdS0__ZN25vtkImplicitWindowFunction16EvaluateFunctionEPd_ZN24vtkIncrementalOctreeNode17GetNumberOfPointsEv_ZN24vtkIncrementalOctreeNode13GetPointIdSetEv_ZN24vtkIncrementalOctreeNode12GetMinBoundsEv_ZN24vtkIncrementalOctreeNode12GetMaxBoundsEv_ZN24vtkIncrementalOctreeNode3NewEv_ZNK24vtkIncrementalOctreeNode19NewInstanceInternalEv_ZN24vtkIncrementalOctreeNode3IsAEPKc_ZN24vtkIncrementalOctreeNode16DeleteChildNodesEv_ZN24vtkIncrementalOctreeNode28ExportAllPointIdsByInsertionEP9vtkIdList_ZN24vtkIncrementalOctreeNode27GetDistance2ToInnerBoundaryEPKdPS__ZNK24vtkIncrementalOctreeNode9GetBoundsEPd_ZN24vtkIncrementalOctreeNode9SetBoundsEdddddd_ZN24vtkIncrementalOctreeNode28ExportAllPointIdsByDirectSetEPxP9vtkIdList_ZN24vtkIncrementalOctreeNode11InsertPointEP9vtkPointsPKdiPxi_ZN24vtkIncrementalOctreeNode22GetDistance2ToBoundaryEPKdPS_i_ZN24vtkIncrementalOctreeNode22GetDistance2ToBoundaryEPKdPdPS_iPyvtkIncrementalOctreeNode_ClassNewPyVTKAddFile_vtkIncrementalOctreeNode_ZN32vtkIncrementalOctreePointLocator19SetMaxPointsPerLeafEi_ZN32vtkIncrementalOctreePointLocator27GetMaxPointsPerLeafMinValueEv_ZN32vtkIncrementalOctreePointLocator27GetMaxPointsPerLeafMaxValueEv_ZN32vtkIncrementalOctreePointLocator19GetMaxPointsPerLeafEv_ZN32vtkIncrementalOctreePointLocator19SetBuildCubicOctreeEi_ZN32vtkIncrementalOctreePointLocator19GetBuildCubicOctreeEv_ZN32vtkIncrementalOctreePointLocator16GetLocatorPointsEv_ZN32vtkIncrementalOctreePointLocator10InitializeEv_ZN32vtkIncrementalOctreePointLocator9GetBoundsEv_ZN32vtkIncrementalOctreePointLocator3NewEv_ZNK32vtkIncrementalOctreePointLocator19NewInstanceInternalEv_ZN32vtkIncrementalOctreePointLocator3IsAEPKc_ZN32vtkIncrementalOctreePointLocator18BuildCubicOctreeOnEv_ZN32vtkIncrementalOctreePointLocator19BuildCubicOctreeOffEv_ZN32vtkIncrementalOctreePointLocator17GetNumberOfPointsEv_ZN32vtkIncrementalOctreePointLocator29FindPointsWithinSquaredRadiusEdPKdP9vtkIdList_ZN32vtkIncrementalOctreePointLocator26InsertPointWithoutCheckingEPKdRxi_ZN32vtkIncrementalOctreePointLocator35FindClosestPointWithinSquaredRadiusEdPKdRdPyvtkIncrementalOctreePointLocator_ClassNewPyvtkIncrementalPointLocator_ClassNewPyVTKAddFile_vtkIncrementalOctreePointLocator_ZN32vtkIncrementalOctreePointLocator15InsertNextPointEPKd_ZN32vtkIncrementalOctreePointLocator11InsertPointExPKd_ZN32vtkIncrementalOctreePointLocator17InsertUniquePointEPKdRx_ZN32vtkIncrementalOctreePointLocator15IsInsertedPointEPKd_ZN32vtkIncrementalOctreePointLocator15IsInsertedPointEddd_ZN32vtkIncrementalOctreePointLocator18InitPointInsertionEP9vtkPointsPKd_ZN32vtkIncrementalOctreePointLocator18InitPointInsertionEP9vtkPointsPKdx_ZN32vtkIncrementalOctreePointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN32vtkIncrementalOctreePointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN32vtkIncrementalOctreePointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEPKd_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEPKdPd_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEddd_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEdddPd_ZN32vtkIncrementalOctreePointLocator12BuildLocatorEv_ZN32vtkIncrementalOctreePointLocator22GenerateRepresentationEiP11vtkPolyData_ZN32vtkIncrementalOctreePointLocator24FindClosestInsertedPointEPKd_ZN32vtkIncrementalOctreePointLocator9GetBoundsEPd_ZN32vtkIncrementalOctreePointLocator19FreeSearchStructureEv_ZNK26vtkIncrementalPointLocator19NewInstanceInternalEv_ZN26vtkIncrementalPointLocator3IsAEPKcPyVTKAddFile_vtkIncrementalPointLocator_ZN17vtkInEdgeIterator8GetGraphEv_ZN17vtkInEdgeIterator9GetVertexEv_ZN17vtkInEdgeIterator3NewEv_ZNK17vtkInEdgeIterator19NewInstanceInternalEv_ZN17vtkInEdgeIterator3IsAEPKc_ZN17vtkInEdgeIterator13NextGraphEdgeEv_ZN17vtkInEdgeIterator10InitializeEP8vtkGraphxPyvtkInEdgeIterator_ClassNewPyVTKAddFile_vtkInEdgeIterator_ZNK49vtkInformationQuadratureSchemeDefinitionVectorKey19NewInstanceInternalEv_ZN13vtkObjectBaseC1Ev_ZN13vtkObjectBase20InitializeObjectBaseEv_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey3IsAEPKc_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey5ClearEP14vtkInformation_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey4SizeEP14vtkInformation_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey6ResizeEP14vtkInformationi_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey6AppendEP14vtkInformationP29vtkQuadratureSchemeDefinition_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey3GetEP14vtkInformationi_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey9SaveStateEP14vtkInformationP17vtkXMLDataElement_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey12RestoreStateEP14vtkInformationP17vtkXMLDataElement_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey3SetEP14vtkInformationP29vtkQuadratureSchemeDefinitioniPyvtkInformationQuadratureSchemeDefinitionVectorKey_ClassNewPyvtkInformationKey_ClassNewPyVTKAddFile_vtkInformationQuadratureSchemeDefinitionVectorKey_ZN30vtkCommonInformationKeyManagerC1Ev_ZN30vtkCommonInformationKeyManagerD1Ev_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey8DeepCopyEP14vtkInformationS1__ZN49vtkInformationQuadratureSchemeDefinitionVectorKey11ShallowCopyEP14vtkInformationS1__ZN33vtkIterativeClosestPointTransform9GetSourceEv_ZN33vtkIterativeClosestPointTransform9GetTargetEv_ZN33vtkIterativeClosestPointTransform10GetLocatorEv_ZN33vtkIterativeClosestPointTransform28SetMaximumNumberOfIterationsEi_ZN33vtkIterativeClosestPointTransform28GetMaximumNumberOfIterationsEv_ZN33vtkIterativeClosestPointTransform21GetNumberOfIterationsEv_ZN33vtkIterativeClosestPointTransform20SetCheckMeanDistanceEi_ZN33vtkIterativeClosestPointTransform20GetCheckMeanDistanceEv_ZN33vtkIterativeClosestPointTransform19SetMeanDistanceModeEi_ZN33vtkIterativeClosestPointTransform27GetMeanDistanceModeMinValueEv_ZN33vtkIterativeClosestPointTransform27GetMeanDistanceModeMaxValueEv_ZN33vtkIterativeClosestPointTransform19GetMeanDistanceModeEv_ZN33vtkIterativeClosestPointTransform22SetMaximumMeanDistanceEd_ZN33vtkIterativeClosestPointTransform22GetMaximumMeanDistanceEv_ZN33vtkIterativeClosestPointTransform15GetMeanDistanceEv_ZN33vtkIterativeClosestPointTransform27SetMaximumNumberOfLandmarksEi_ZN33vtkIterativeClosestPointTransform27GetMaximumNumberOfLandmarksEv_ZN33vtkIterativeClosestPointTransform27SetStartByMatchingCentroidsEi_ZN33vtkIterativeClosestPointTransform27GetStartByMatchingCentroidsEv_ZN33vtkIterativeClosestPointTransform20GetLandmarkTransformEv_ZN33vtkIterativeClosestPointTransform3NewEv_ZNK33vtkIterativeClosestPointTransform19NewInstanceInternalEv_ZN33vtkIterativeClosestPointTransform3IsAEPKc_ZN33vtkIterativeClosestPointTransform27StartByMatchingCentroidsOffEv_ZN33vtkIterativeClosestPointTransform19CheckMeanDistanceOnEv_ZN33vtkIterativeClosestPointTransform20CheckMeanDistanceOffEv_ZN33vtkIterativeClosestPointTransform26StartByMatchingCentroidsOnEv_ZN33vtkIterativeClosestPointTransform10SetLocatorEP14vtkCellLocator_ZN33vtkIterativeClosestPointTransform9SetSourceEP10vtkDataSet_ZN33vtkIterativeClosestPointTransform9SetTargetEP10vtkDataSet_ZN33vtkIterativeClosestPointTransform27GetMeanDistanceModeAsStringEvPyvtkIterativeClosestPointTransform_ClassNewPyvtkLinearTransform_ClassNewPyVTKAddFile_vtkIterativeClosestPointTransform_ZN33vtkIterativeClosestPointTransform13MakeTransformEv_ZN33vtkIterativeClosestPointTransform7InverseEv_ZN9vtkKdNode6SetDimEi_ZN9vtkKdNode6GetDimEv_ZN9vtkKdNode17SetNumberOfPointsEi_ZN9vtkKdNode17GetNumberOfPointsEv_ZN9vtkKdNode5SetIDEi_ZN9vtkKdNode5GetIDEv_ZN9vtkKdNode8GetMinIDEv_ZN9vtkKdNode8GetMaxIDEv_ZN9vtkKdNode8SetMinIDEi_ZN9vtkKdNode8SetMaxIDEi_ZN9vtkKdNode7GetLeftEv_ZN9vtkKdNode8GetRightEv_ZN9vtkKdNode5GetUpEv_ZN9vtkKdNode3NewEv_ZNK9vtkKdNode19NewInstanceInternalEv_ZN9vtkKdNode3IsAEPKc_ZN9vtkKdNode16DeleteChildNodesEv_ZN9vtkKdNode7SetLeftEPS__ZN9vtkKdNode9PrintNodeEi_ZN9vtkKdNode16PrintVerboseNodeEi_ZN9vtkKdNode8SetRightEPS__ZN9vtkKdNode5SetUpEPS__ZN9vtkKdNode16IntersectsRegionEP21vtkPlanesIntersectioni_ZN9vtkKdNode13AddChildNodesEPS_S0__ZN9vtkKdNode27GetDistance2ToInnerBoundaryEddd_ZN9vtkKdNode16SetMinDataBoundsEPKd_ZN9vtkKdNode16SetMaxDataBoundsEPKd_ZN9vtkKdNode12SetMinBoundsEPKd_ZN9vtkKdNode12SetMaxBoundsEPKd_ZN9vtkKdNode13ContainsPointEdddi_ZN9vtkKdNode17IntersectsSphere2Eddddi_ZNK9vtkKdNode9GetBoundsEPd_ZNK9vtkKdNode13GetDataBoundsEPd_ZN9vtkKdNode11ContainsBoxEddddddi_ZN9vtkKdNode13IntersectsBoxEddddddi_ZN9vtkKdNode14IntersectsCellEP7vtkCelliiPd_ZN9vtkKdNode9SetBoundsEdddddd_ZN13vtkPythonArgs5ArrayIfEC1El_ZN9vtkKdNode13SetDataBoundsEdddddd_ZN13vtkPythonArgs8GetArrayEPfi_ZN9vtkKdNode13SetDataBoundsEPf_ZN13vtkPythonArgs8SetArrayEiPKfi_ZN9vtkKdNode22GetDistance2ToBoundaryEdddi_ZN9vtkKdNode22GetDistance2ToBoundaryEdddPdiPyvtkKdNode_ClassNewPyVTKAddFile_vtkKdNode_ZN9vtkKdNode19GetDivisionPositionEv_ZN9vtkKdTree9SetTimingEi_ZN9vtkKdTree9GetTimingEv_ZN9vtkKdTree11SetMinCellsEi_ZN9vtkKdTree11GetMinCellsEv_ZN9vtkKdTree24GetNumberOfRegionsOrLessEv_ZN9vtkKdTree24SetNumberOfRegionsOrLessEi_ZN9vtkKdTree24GetNumberOfRegionsOrMoreEv_ZN9vtkKdTree24SetNumberOfRegionsOrMoreEi_ZN9vtkKdTree14GetFudgeFactorEv_ZN9vtkKdTree14SetFudgeFactorEd_ZN9vtkKdTree7GetCutsEv_ZN9vtkKdTree11GetDataSetsEv_ZN9vtkKdTree18GetNumberOfRegionsEv_ZN9vtkKdTree29SetIncludeRegionBoundaryCellsEi_ZN9vtkKdTree29GetIncludeRegionBoundaryCellsEv_ZN9vtkKdTree40SetGenerateRepresentationUsingDataBoundsEi_ZN9vtkKdTree40GetGenerateRepresentationUsingDataBoundsEv_ZN9vtkKdTree3NewEv_ZNK9vtkKdTree19NewInstanceInternalEv_ZN9vtkKdTree8CopyTreeEP9vtkKdNode_ZN9vtkKdTree10GetDataSetEv_ZN9vtkKdTree10GetDataSetEi_ZN9vtkKdTree3IsAEPKc_ZN9vtkKdTree8TimingOnEv_ZN9vtkKdTree9TimingOffEv_ZN9vtkKdTree28IncludeRegionBoundaryCellsOnEv_ZN9vtkKdTree29IncludeRegionBoundaryCellsOffEv_ZN9vtkKdTree39GenerateRepresentationUsingDataBoundsOnEv_ZN9vtkKdTree40GenerateRepresentationUsingDataBoundsOffEv_ZN9vtkKdTree17OmitXPartitioningEv_ZN9vtkKdTree18OmitYZPartitioningEv_ZN9vtkKdTree18OmitZXPartitioningEv_ZN9vtkKdTree17OmitZPartitioningEv_ZN9vtkKdTree17OmitYPartitioningEv_ZN9vtkKdTree16PrintVerboseTreeEv_ZN9vtkKdTree18OmitXYPartitioningEv_ZN9vtkKdTree9PrintTreeEv_ZN9vtkKdTree18OmitNoPartitioningEv_ZN9vtkKdTree15DeleteCellListsEv_ZN9vtkKdTree19GetNumberOfDataSetsEv_ZN9vtkKdTree26AllGetRegionContainingCellEv_ZN9vtkKdTree11PrintRegionEi_ZN9vtkKdTree22BuildLocatorFromPointsEP11vtkPointSet_ZN9vtkKdTree22BuildLocatorFromPointsEP9vtkPoints_ZN9vtkKdTree7SetCutsEP10vtkBSPCuts_ZN9vtkKdTree15GetDataSetIndexEP10vtkDataSet_ZN9vtkKdTree26BuildMapForDuplicatePointsEf_ZN9vtkKdTree11GetCellListEi_ZN9vtkKdTree17GetPointsInRegionEi_ZN9vtkKdTree19GetBoundaryCellListEi_ZN9vtkKdTree30ViewOrderAllRegionsInDirectionEPKdP11vtkIntArray_ZN9vtkKdTree31ViewOrderAllRegionsFromPositionEPKdP11vtkIntArray_ZN9vtkKdTree23GetRegionContainingCellEP10vtkDataSetx_ZN9vtkKdTree23GetRegionContainingCellEix_ZN9vtkKdTree22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN9vtkKdTree18FindClosestNPointsEiPKdP9vtkIdList_ZN9vtkKdTree24GetRegionContainingPointEddd_ZN9vtkKdTree27ViewOrderRegionsInDirectionEP11vtkIntArrayPKdS1__ZN9vtkKdTree28ViewOrderRegionsFromPositionEP11vtkIntArrayPKdS1__ZN9vtkKdTree28FindClosestPointWithinRadiusEdPKdRd_ZN9vtkKdTree12GetCellListsEP11vtkIntArrayiP9vtkIdListS3__ZN9vtkKdTree12GetCellListsEP11vtkIntArrayP10vtkDataSetP9vtkIdListS5__ZN9vtkKdTree15GetRegionBoundsEiPd_ZN9vtkKdTree19GetRegionDataBoundsEiPd_ZN9vtkKdTree9GetBoundsEPd_ZN9vtkKdTree12SetNewBoundsEPd_ZN9vtkKdTree15CreateCellListsEP10vtkDataSetPii_ZN9vtkKdTree15CreateCellListsEiPii_ZN9vtkKdTree16FindPointsInAreaEPdP14vtkIdTypeArrayb_ZN9vtkKdTree23GetRegionContainingCellEx_ZN9vtkKdTree12GetCellListsEP11vtkIntArrayP9vtkIdListS3__ZN9vtkKdTree9FindPointEddd_ZN9vtkKdTree9FindPointEPd_ZN9vtkKdTree16FindClosestPointEdddRd_ZN9vtkKdTree16FindClosestPointEPdRd_ZN9vtkKdTree15CreateCellListsEv_ZN9vtkKdTree15CreateCellListsEPii_ZN9vtkKdTree24FindClosestPointInRegionEidddRd_ZN9vtkKdTree24FindClosestPointInRegionEiPdRdPyvtkKdTree_ClassNewPyVTKAddFile_vtkKdTree_ZN9vtkKdTree18InvalidateGeometryEv_ZN9vtkKdTree11NewGeometryEv_ZN9vtkKdTree22GenerateRepresentationEPiiP11vtkPolyData_ZN9vtkKdTree22GenerateRepresentationEiP11vtkPolyData_ZN9vtkKdTree19FreeSearchStructureEv_ZN9vtkKdTree12BuildLocatorEv_ZN9vtkKdTree17RemoveAllDataSetsEv_ZN9vtkKdTree13RemoveDataSetEP10vtkDataSet_ZN9vtkKdTree13RemoveDataSetEi_ZN9vtkKdTree10AddDataSetEP10vtkDataSet_ZN9vtkKdTree10SetDataSetEP10vtkDataSet_ZN21vtkKdTreePointLocator3NewEv_ZNK21vtkKdTreePointLocator19NewInstanceInternalEv_ZN21vtkKdTreePointLocator3IsAEPKcPyvtkKdTreePointLocator_ClassNewPyVTKAddFile_vtkKdTreePointLocator_ZN21vtkKdTreePointLocator22GenerateRepresentationEiP11vtkPolyData_ZN21vtkKdTreePointLocator12BuildLocatorEv_ZN21vtkKdTreePointLocator19FreeSearchStructureEv_ZN21vtkKdTreePointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN21vtkKdTreePointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN21vtkKdTreePointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN21vtkKdTreePointLocator16FindClosestPointEPKd_ZN16vtkLagrangeCurve11GetCellTypeEv_ZN16vtkLagrangeCurve16GetCellDimensionEv_ZN16vtkLagrangeCurve22RequiresInitializationEv_ZN16vtkLagrangeCurve16GetNumberOfEdgesEv_ZN16vtkLagrangeCurve16GetNumberOfFacesEv_ZN16vtkLagrangeCurve7GetEdgeEi_ZN16vtkLagrangeCurve7GetFaceEi_ZN16vtkLagrangeCurve19GetParametricCenterEPd_ZN16vtkLagrangeCurve3NewEv_ZNK16vtkLagrangeCurve19NewInstanceInternalEv_ZN16vtkLagrangeCurve3IsAEPKc_ZN16vtkLagrangeCurve24SubCellCoordinatesFromIdER11vtkVector3ii_ZN16vtkLagrangeCurve24SubCellCoordinatesFromIdERii_ZN16vtkLagrangeCurve17PointIndexFromIJKEiii_ZN16vtkLagrangeCurve27TransformApproxToCellParamsEiPd_ZN16vtkLagrangeCurve8GetOrderEvPyvtkLagrangeCurve_ClassNewPyVTKAddFile_vtkLagrangeCurve_ZN16vtkLagrangeCurve17InterpolateDerivsEPdS0__ZN16vtkLagrangeCurve20InterpolateFunctionsEPdS0__ZN16vtkLagrangeCurve21GetParametricDistanceEPd_ZN16vtkLagrangeCurve19GetParametricCoordsEv_ZN16vtkLagrangeCurve11DerivativesEiPdS0_iS0__ZN16vtkLagrangeCurve11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkLagrangeCurve17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkLagrangeCurve4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkLagrangeCurve7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkLagrangeCurve16EvaluateLocationERiPdS1_S1__ZN16vtkLagrangeCurve16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkLagrangeCurve12CellBoundaryEiPdP9vtkIdList_ZN16vtkLagrangeCurve10InitializeEv_ZN21vtkLagrangeHexahedron11GetCellTypeEv_ZN21vtkLagrangeHexahedron16GetCellDimensionEv_ZN21vtkLagrangeHexahedron22RequiresInitializationEv_ZN21vtkLagrangeHexahedron16GetNumberOfEdgesEv_ZN21vtkLagrangeHexahedron16GetNumberOfFacesEv_ZN21vtkLagrangeHexahedron19GetParametricCenterEPd_ZN21vtkLagrangeHexahedron3NewEv_ZNK21vtkLagrangeHexahedron19NewInstanceInternalEv_ZN21vtkLagrangeHexahedron17PointIndexFromIJKEiiiPKi_ZN21vtkLagrangeHexahedron3IsAEPKc_ZN21vtkLagrangeHexahedron27TransformApproxToCellParamsEiPd_ZN21vtkLagrangeHexahedron25TransformFaceToCellParamsEiPd_ZN21vtkLagrangeHexahedron17PointIndexFromIJKEiii_ZN21vtkLagrangeHexahedron8GetOrderEv_ZN21vtkLagrangeHexahedron24SubCellCoordinatesFromIdER11vtkVector3ii_ZN21vtkLagrangeHexahedron24SubCellCoordinatesFromIdERiS0_S0_iPyvtkLagrangeHexahedron_ClassNewPyVTKAddFile_vtkLagrangeHexahedron_ZN21vtkLagrangeHexahedron17InterpolateDerivsEPdS0__ZN21vtkLagrangeHexahedron20InterpolateFunctionsEPdS0__ZN21vtkLagrangeHexahedron21GetParametricDistanceEPd_ZN21vtkLagrangeHexahedron19GetParametricCoordsEv_ZN21vtkLagrangeHexahedron11DerivativesEiPdS0_iS0__ZN21vtkLagrangeHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN21vtkLagrangeHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN21vtkLagrangeHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN21vtkLagrangeHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN21vtkLagrangeHexahedron16EvaluateLocationERiPdS1_S1__ZN21vtkLagrangeHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN21vtkLagrangeHexahedron12CellBoundaryEiPdP9vtkIdList_ZN21vtkLagrangeHexahedron10InitializeEv_ZN21vtkLagrangeHexahedron7GetFaceEi_ZN21vtkLagrangeHexahedron7GetEdgeEi_ZN24vtkLagrangeInterpolation3NewEv_ZNK24vtkLagrangeInterpolation19NewInstanceInternalEv_ZN24vtkLagrangeInterpolation28GetFixedParameterOfWedgeFaceEi_ZN24vtkLagrangeInterpolation31GetVaryingParametersOfWedgeFaceEi_ZN24vtkLagrangeInterpolation31GetEdgeIndicesBoundingWedgeFaceEi_ZN24vtkLagrangeInterpolation32GetPointIndicesBoundingWedgeFaceEi_ZN24vtkLagrangeInterpolation29GetFixedParametersOfWedgeEdgeEi_ZN24vtkLagrangeInterpolation30GetVaryingParameterOfWedgeEdgeEi_ZN24vtkLagrangeInterpolation32GetPointIndicesBoundingWedgeEdgeEi_ZN24vtkLagrangeInterpolation29GetParametricWedgeCoordinatesEi_ZN24vtkLagrangeInterpolation26GetFixedParameterOfHexFaceEi_ZN24vtkLagrangeInterpolation29GetVaryingParametersOfHexFaceEi_ZN24vtkLagrangeInterpolation29GetEdgeIndicesBoundingHexFaceEi_ZN24vtkLagrangeInterpolation30GetPointIndicesBoundingHexFaceEi_ZN24vtkLagrangeInterpolation27GetFixedParametersOfHexEdgeEi_ZN24vtkLagrangeInterpolation28GetVaryingParameterOfHexEdgeEi_ZN24vtkLagrangeInterpolation30GetPointIndicesBoundingHexEdgeEi_ZN24vtkLagrangeInterpolation27GetParametricHexCoordinatesEi_ZN24vtkLagrangeInterpolation23WedgeEvaluateDerivativeEPKiPKdPdiS4__ZN24vtkLagrangeInterpolation21WedgeShapeDerivativesEPKiPKdPd_ZN24vtkLagrangeInterpolation19WedgeShapeFunctionsEPKiPKdPd_ZN24vtkLagrangeInterpolation23Tensor3ShapeDerivativesEPKiPKdPd_ZN24vtkLagrangeInterpolation21Tensor3ShapeFunctionsEPKiPKdPd_ZN24vtkLagrangeInterpolation23Tensor2ShapeDerivativesEPKiPKdPd_ZN24vtkLagrangeInterpolation21Tensor2ShapeFunctionsEPKiPKdPd_ZN24vtkLagrangeInterpolation23Tensor1ShapeDerivativesEPKiPKdPd_ZN24vtkLagrangeInterpolation21Tensor1ShapeFunctionsEPKiPKdPd_ZN24vtkLagrangeInterpolation24EvaluateShapeAndGradientEidPdS0__ZN24vtkLagrangeInterpolation22EvaluateShapeFunctionsEidPd_ZN24vtkLagrangeInterpolation3IsAEPKc_ZN24vtkLagrangeInterpolation25Tensor3EvaluateDerivativeEPKiPKdPdiS4__ZN24vtkLagrangeInterpolation13WedgeEvaluateEPKiPKdPdiS4__Z45PyvtkLagrangeInterpolation_Constants_FromEnumiPyvtkLagrangeInterpolation_ClassNewPyVTKAddFile_vtkLagrangeInterpolation_ZN24vtkLagrangeQuadrilateral11GetCellTypeEv_ZN24vtkLagrangeQuadrilateral16GetCellDimensionEv_ZN24vtkLagrangeQuadrilateral22RequiresInitializationEv_ZN24vtkLagrangeQuadrilateral16GetNumberOfEdgesEv_ZN24vtkLagrangeQuadrilateral16GetNumberOfFacesEv_ZN24vtkLagrangeQuadrilateral7GetFaceEi_ZN24vtkLagrangeQuadrilateral19GetParametricCenterEPd_ZN24vtkLagrangeQuadrilateral3NewEv_ZNK24vtkLagrangeQuadrilateral19NewInstanceInternalEv_ZN24vtkLagrangeQuadrilateral17PointIndexFromIJKEiiPKi_ZN24vtkLagrangeQuadrilateral3IsAEPKc_ZN24vtkLagrangeQuadrilateral17PointIndexFromIJKEiii_ZN24vtkLagrangeQuadrilateral27TransformApproxToCellParamsEiPd_ZN24vtkLagrangeQuadrilateral8GetOrderEv_ZN24vtkLagrangeQuadrilateral24SubCellCoordinatesFromIdER11vtkVector3ii_ZN24vtkLagrangeQuadrilateral24SubCellCoordinatesFromIdERiS0_S0_iPyvtkLagrangeQuadrilateral_ClassNewPyVTKAddFile_vtkLagrangeQuadrilateral_ZN24vtkLagrangeQuadrilateral17InterpolateDerivsEPdS0__ZN24vtkLagrangeQuadrilateral20InterpolateFunctionsEPdS0__ZN24vtkLagrangeQuadrilateral21GetParametricDistanceEPd_ZN24vtkLagrangeQuadrilateral19GetParametricCoordsEv_ZN24vtkLagrangeQuadrilateral11DerivativesEiPdS0_iS0__ZN24vtkLagrangeQuadrilateral11TriangulateEiP9vtkIdListP9vtkPoints_ZN24vtkLagrangeQuadrilateral17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN24vtkLagrangeQuadrilateral4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN24vtkLagrangeQuadrilateral7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN24vtkLagrangeQuadrilateral16EvaluateLocationERiPdS1_S1__ZN24vtkLagrangeQuadrilateral16EvaluatePositionEPdS0_RiS0_RdS0__ZN24vtkLagrangeQuadrilateral12CellBoundaryEiPdP9vtkIdList_ZN24vtkLagrangeQuadrilateral10InitializeEv_ZN24vtkLagrangeQuadrilateral7GetEdgeEi_ZN16vtkLagrangeTetra11GetCellTypeEv_ZN16vtkLagrangeTetra16GetCellDimensionEv_ZN16vtkLagrangeTetra22RequiresInitializationEv_ZN16vtkLagrangeTetra16GetNumberOfEdgesEv_ZN16vtkLagrangeTetra16GetNumberOfFacesEv_ZN16vtkLagrangeTetra3NewEv_ZNK16vtkLagrangeTetra19NewInstanceInternalEv_ZN16vtkLagrangeTetra5IndexEPKxx_ZN16vtkLagrangeTetra16BarycentricIndexExPxx_ZN16vtkLagrangeTetra3IsAEPKc_ZN16vtkLagrangeTetra12ComputeOrderEv_ZN16vtkLagrangeTetra7ToIndexEPKx_ZN16vtkLagrangeTetra18ToBarycentricIndexExPxPyvtkLagrangeTetra_ClassNewPyVTKAddFile_vtkLagrangeTetra_ZN16vtkLagrangeTetra17InterpolateDerivsEPdS0__ZN16vtkLagrangeTetra20InterpolateFunctionsEPdS0__ZN16vtkLagrangeTetra21GetParametricDistanceEPd_ZN16vtkLagrangeTetra19GetParametricCenterEPd_ZN16vtkLagrangeTetra19GetParametricCoordsEv_ZN16vtkLagrangeTetra11DerivativesEiPdS0_iS0__ZN16vtkLagrangeTetra11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkLagrangeTetra17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkLagrangeTetra4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkLagrangeTetra7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkLagrangeTetra16EvaluateLocationERiPdS1_S1__ZN16vtkLagrangeTetra16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkLagrangeTetra12CellBoundaryEiPdP9vtkIdList_ZN16vtkLagrangeTetra10InitializeEv_ZN16vtkLagrangeTetra7GetFaceEi_ZN16vtkLagrangeTetra7GetEdgeEi_ZN19vtkLagrangeTriangle11GetCellTypeEv_ZN19vtkLagrangeTriangle16GetCellDimensionEv_ZN19vtkLagrangeTriangle22RequiresInitializationEv_ZN19vtkLagrangeTriangle16GetNumberOfEdgesEv_ZN19vtkLagrangeTriangle16GetNumberOfFacesEv_ZN19vtkLagrangeTriangle7GetFaceEi_ZN19vtkLagrangeTriangle3NewEv_ZNK19vtkLagrangeTriangle19NewInstanceInternalEv_ZN19vtkLagrangeTriangle5d_etaExxd_ZN19vtkLagrangeTriangle3etaExxd_ZN19vtkLagrangeTriangle5IndexEPKxx_ZN19vtkLagrangeTriangle16BarycentricIndexExPxx_ZN19vtkLagrangeTriangle23ComputeParametricCoordsEPdx_ZN19vtkLagrangeTriangle3IsAEPKc_ZN19vtkLagrangeTriangle12ComputeOrderEv_ZN19vtkLagrangeTriangle7ToIndexEPKx_ZN19vtkLagrangeTriangle18ToBarycentricIndexExPxPyvtkLagrangeTriangle_ClassNewPyVTKAddFile_vtkLagrangeTriangle_ZN19vtkLagrangeTriangle17InterpolateDerivsEPdS0__ZN19vtkLagrangeTriangle20InterpolateFunctionsEPdS0__ZN19vtkLagrangeTriangle21GetParametricDistanceEPd_ZN19vtkLagrangeTriangle19GetParametricCenterEPd_ZN19vtkLagrangeTriangle19GetParametricCoordsEv_ZN19vtkLagrangeTriangle11DerivativesEiPdS0_iS0__ZN19vtkLagrangeTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkLagrangeTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN19vtkLagrangeTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkLagrangeTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkLagrangeTriangle16EvaluateLocationERiPdS1_S1__ZN19vtkLagrangeTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkLagrangeTriangle12CellBoundaryEiPdP9vtkIdList_ZN19vtkLagrangeTriangle10InitializeEv_ZN19vtkLagrangeTriangle7GetEdgeEi_ZN16vtkLagrangeWedge11GetCellTypeEv_ZN16vtkLagrangeWedge16GetCellDimensionEv_ZN16vtkLagrangeWedge22RequiresInitializationEv_ZN16vtkLagrangeWedge16GetNumberOfEdgesEv_ZN16vtkLagrangeWedge16GetNumberOfFacesEv_ZN16vtkLagrangeWedge19GetParametricCenterEPd_ZN16vtkLagrangeWedge3NewEv_ZNK16vtkLagrangeWedge19NewInstanceInternalEv_ZN16vtkLagrangeWedge30GetNumberOfApproximatingWedgesEPKi_ZN16vtkLagrangeWedge17PointIndexFromIJKEiiiPKi_ZN16vtkLagrangeWedge3IsAEPKc_ZN16vtkLagrangeWedge27TransformApproxToCellParamsEiPd_ZN16vtkLagrangeWedge25TransformFaceToCellParamsEiPd_ZN16vtkLagrangeWedge8GetOrderEv_ZN16vtkLagrangeWedge17PointIndexFromIJKEiii_ZN16vtkLagrangeWedge24SubCellCoordinatesFromIdER11vtkVector3ii_ZN16vtkLagrangeWedge24SubCellCoordinatesFromIdERiS0_S0_iPyvtkLagrangeWedge_ClassNewPyVTKAddFile_vtkLagrangeWedge_ZN16vtkLagrangeWedge17InterpolateDerivsEPdS0__ZN16vtkLagrangeWedge20InterpolateFunctionsEPdS0__ZN16vtkLagrangeWedge21GetParametricDistanceEPd_ZN16vtkLagrangeWedge19GetParametricCoordsEv_ZN16vtkLagrangeWedge11DerivativesEiPdS0_iS0__ZN16vtkLagrangeWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkLagrangeWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkLagrangeWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkLagrangeWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkLagrangeWedge16EvaluateLocationERiPdS1_S1__ZN16vtkLagrangeWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkLagrangeWedge12CellBoundaryEiPdP9vtkIdList_ZN16vtkLagrangeWedge10InitializeEv_ZN16vtkLagrangeWedge7GetFaceEi_ZN16vtkLagrangeWedge7GetEdgeEi_ZN7vtkLine11GetCellTypeEv_ZN7vtkLine16GetCellDimensionEv_ZN7vtkLine16GetNumberOfEdgesEv_ZN7vtkLine16GetNumberOfFacesEv_ZN7vtkLine7GetEdgeEi_ZN7vtkLine7GetFaceEi_ZN7vtkLine19GetParametricCenterEPd_ZN7vtkLine3NewEv_ZNK7vtkLine19NewInstanceInternalEv_ZN7vtkLine17InterpolateDerivsEPdS0__ZN7vtkLine19InterpolationDerivsEPdS0__ZN7vtkLine20InterpolateFunctionsEPdS0__ZN7vtkLine22InterpolationFunctionsEPdS0__ZN7vtkLine27DistanceBetweenLineSegmentsEPdS0_S0_S0_S0_S0_RdS1__ZN7vtkLine20DistanceBetweenLinesEPdS0_S0_S0_S0_S0_RdS1__ZN7vtkLine14Intersection3DEPdS0_S0_S0_RdS1__ZN7vtkLine12IntersectionEPKdS1_S1_S1_RdS2__ZN7vtkLine14DistanceToLineEPKdS1_S1_RdPd_ZN7vtkLine14DistanceToLineEPKdS1_S1__ZN7vtkLine3IsAEPKcPyvtkLine_ClassNewPyVTKAddFile_vtkLine_ZN7vtkLine17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN7vtkLine4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN7vtkLine19GetParametricCoordsEv_ZN7vtkLine11DerivativesEiPdS0_iS0__ZN7vtkLine11TriangulateEiP9vtkIdListP9vtkPoints_ZN7vtkLine16EvaluateLocationERiPdS1_S1__ZN7vtkLine16EvaluatePositionEPdS0_RiS0_RdS0__ZN7vtkLine7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN7vtkLine12CellBoundaryEiPdP9vtkIdList_ZN10vtkLocator10GetDataSetEv_ZN10vtkLocator11SetMaxLevelEi_ZN10vtkLocator19GetMaxLevelMinValueEv_ZN10vtkLocator19GetMaxLevelMaxValueEv_ZN10vtkLocator11GetMaxLevelEv_ZN10vtkLocator8GetLevelEv_ZN10vtkLocator12SetAutomaticEi_ZN10vtkLocator12GetAutomaticEv_ZN10vtkLocator12SetToleranceEd_ZN10vtkLocator20GetToleranceMinValueEv_ZN10vtkLocator20GetToleranceMaxValueEv_ZN10vtkLocator12GetToleranceEv_ZN10vtkLocator12GetBuildTimeEv_ZNK10vtkLocator19NewInstanceInternalEv_ZN10vtkLocator3IsAEPKc_ZN10vtkLocator12AutomaticOffEv_ZN10vtkLocator11AutomaticOnEvPyVTKAddFile_vtkLocator_ZN10vtkLocator10InitializeEv_ZN10vtkLocator6UpdateEv_ZN10vtkLocator10SetDataSetEP10vtkDataSetPyVTKAddFile_vtkMappedUnstructuredGridPyVTKAddFile_vtkMappedUnstructuredGridCellIteratorPyvtkMarchingSquaresLineCases_TypeNewPyVTKAddFile_vtkMarchingSquaresLineCasesPyvtkMarchingCubesTriangleCases_TypeNewPyVTKAddFile_vtkMarchingCubesTriangleCases_ZN35vtkMeanValueCoordinatesInterpolator3NewEv_ZNK35vtkMeanValueCoordinatesInterpolator19NewInstanceInternalEv_ZN35vtkMeanValueCoordinatesInterpolator27ComputeInterpolationWeightsEPdP9vtkPointsP12vtkCellArrayS0__ZN35vtkMeanValueCoordinatesInterpolator27ComputeInterpolationWeightsEPdP9vtkPointsP9vtkIdListS0__ZN35vtkMeanValueCoordinatesInterpolator3IsAEPKcPyvtkMeanValueCoordinatesInterpolator_ClassNewPyVTKAddFile_vtkMeanValueCoordinatesInterpolator_ZN14vtkMergePoints15IsInsertedPointEddd_ZN14vtkMergePoints3NewEv_ZNK14vtkMergePoints19NewInstanceInternalEv_ZN14vtkMergePoints3IsAEPKcPyvtkMergePoints_ClassNewPyvtkPointLocator_ClassNewPyVTKAddFile_vtkMergePoints_ZN14vtkMergePoints17InsertUniquePointEPKdRx_ZN14vtkMergePoints15IsInsertedPointEPKd_ZN20vtkMultiBlockDataSet17GetDataObjectTypeEv_ZN20vtkMultiBlockDataSet3NewEv_ZNK20vtkMultiBlockDataSet19NewInstanceInternalEv_ZN20vtkMultiBlockDataSet7GetDataEP14vtkInformation_ZN20vtkMultiBlockDataSet7GetDataEP20vtkInformationVectori_ZN20vtkMultiBlockDataSet3IsAEPKc_ZN20vtkMultiBlockDataSet17GetNumberOfBlocksEv_ZN20vtkMultiBlockDataSet11RemoveBlockEj_ZN20vtkMultiBlockDataSet17SetNumberOfBlocksEj_ZN17vtkDataObjectTree16HasChildMetaDataEj_ZN17vtkDataObjectTree16GetChildMetaDataEj_ZN20vtkMultiBlockDataSet8GetBlockEj_ZN20vtkMultiBlockDataSet8SetBlockEjP13vtkDataObjectPyvtkMultiBlockDataSet_ClassNewPyVTKAddFile_vtkMultiBlockDataSet_ZN20vtkMultiBlockDataSet11GetMetaDataEP24vtkCompositeDataIterator_ZN20vtkMultiBlockDataSet11HasMetaDataEP24vtkCompositeDataIterator_ZN20vtkMultiPieceDataSet17GetDataObjectTypeEv_ZN20vtkMultiPieceDataSet3NewEv_ZNK20vtkMultiPieceDataSet19NewInstanceInternalEv_ZN20vtkMultiPieceDataSet7GetDataEP14vtkInformation_ZN20vtkMultiPieceDataSet7GetDataEP20vtkInformationVectori_ZN20vtkMultiPieceDataSet3IsAEPKc_ZN20vtkMultiPieceDataSet17GetNumberOfPiecesEv_ZN20vtkMultiPieceDataSet17SetNumberOfPiecesEj_ZN20vtkMultiPieceDataSet8GetPieceEj_ZN20vtkMultiPieceDataSet20GetPieceAsDataObjectEj_ZN20vtkMultiPieceDataSet8SetPieceEjP13vtkDataObjectPyvtkMultiPieceDataSet_ClassNewPyVTKAddFile_vtkMultiPieceDataSet_ZN20vtkMultiPieceDataSet11GetMetaDataEP24vtkCompositeDataIterator_ZN20vtkMultiPieceDataSet11HasMetaDataEP24vtkCompositeDataIterator_ZN23vtkMutableDirectedGraph3NewEv_ZNK23vtkMutableDirectedGraph19NewInstanceInternalEv_ZN23vtkMutableDirectedGraph3IsAEPKc_ZN23vtkMutableDirectedGraph12RemoveVertexEx_ZN23vtkMutableDirectedGraph14RemoveVerticesEP14vtkIdTypeArray_ZN23vtkMutableDirectedGraph11RemoveEdgesEP14vtkIdTypeArray_ZN23vtkMutableDirectedGraph10RemoveEdgeEx_ZN23vtkMutableDirectedGraph13LazyAddVertexEP15vtkVariantArray_ZN23vtkMutableDirectedGraph9AddVertexEP15vtkVariantArray_ZN23vtkMutableDirectedGraph13LazyAddVertexERK10vtkVariant_ZN23vtkMutableDirectedGraph9AddVertexERK10vtkVariant_ZN23vtkMutableDirectedGraph12AddGraphEdgeExx_ZN23vtkMutableDirectedGraph7AddEdgeExx_ZN23vtkMutableDirectedGraph7AddEdgeExxP15vtkVariantArray_ZN23vtkMutableDirectedGraph11LazyAddEdgeExxP15vtkVariantArray_ZN23vtkMutableDirectedGraph11LazyAddEdgeERK10vtkVariantxP15vtkVariantArray_ZN23vtkMutableDirectedGraph11LazyAddEdgeExRK10vtkVariantP15vtkVariantArray_ZN23vtkMutableDirectedGraph7AddEdgeERK10vtkVariantxP15vtkVariantArray_ZN23vtkMutableDirectedGraph7AddEdgeExRK10vtkVariantP15vtkVariantArray_ZN23vtkMutableDirectedGraph11LazyAddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN23vtkMutableDirectedGraph7AddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN23vtkMutableDirectedGraph13LazyAddVertexEv_ZN23vtkMutableDirectedGraph9AddVertexEv_ZN23vtkMutableDirectedGraph8AddChildExP15vtkVariantArrayPyvtkMutableDirectedGraph_ClassNewPyVTKAddFile_vtkMutableDirectedGraph_ZN23vtkMutableDirectedGraph19SetNumberOfVerticesEx_ZN25vtkMutableUndirectedGraph3NewEv_ZNK25vtkMutableUndirectedGraph19NewInstanceInternalEv_ZN25vtkMutableUndirectedGraph9AddVertexEv_ZN25vtkMutableUndirectedGraph3IsAEPKc_ZN25vtkMutableUndirectedGraph13LazyAddVertexEP15vtkVariantArray_ZN25vtkMutableUndirectedGraph12RemoveVertexEx_ZN25vtkMutableUndirectedGraph10RemoveEdgeEx_ZN25vtkMutableUndirectedGraph14RemoveVerticesEP14vtkIdTypeArray_ZN25vtkMutableUndirectedGraph11RemoveEdgesEP14vtkIdTypeArray_ZN25vtkMutableUndirectedGraph9AddVertexEP15vtkVariantArray_ZN25vtkMutableUndirectedGraph13LazyAddVertexERK10vtkVariant_ZN25vtkMutableUndirectedGraph11LazyAddEdgeExx_ZN25vtkMutableUndirectedGraph12AddGraphEdgeExx_ZN25vtkMutableUndirectedGraph9AddVertexERK10vtkVariant_ZN25vtkMutableUndirectedGraph7AddEdgeExx_ZN25vtkMutableUndirectedGraph11LazyAddEdgeExxP15vtkVariantArray_ZN25vtkMutableUndirectedGraph7AddEdgeExxP15vtkVariantArray_ZN25vtkMutableUndirectedGraph11LazyAddEdgeExRK10vtkVariantP15vtkVariantArray_ZN25vtkMutableUndirectedGraph11LazyAddEdgeERK10vtkVariantxP15vtkVariantArray_ZN25vtkMutableUndirectedGraph7AddEdgeERK10vtkVariantxP15vtkVariantArray_ZN25vtkMutableUndirectedGraph7AddEdgeExRK10vtkVariantP15vtkVariantArray_ZN25vtkMutableUndirectedGraph11LazyAddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN25vtkMutableUndirectedGraph7AddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN25vtkMutableUndirectedGraph13LazyAddVertexEvPyvtkMutableUndirectedGraph_ClassNewPyvtkUndirectedGraph_ClassNewPyVTKAddFile_vtkMutableUndirectedGraph_ZN25vtkMutableUndirectedGraph19SetNumberOfVerticesEx_ZN16vtkNonLinearCell8IsLinearEv_ZNK16vtkNonLinearCell19NewInstanceInternalEv_ZN16vtkNonLinearCell3IsAEPKcPyVTKAddFile_vtkNonLinearCell_ZN25vtkNonMergingPointLocator15IsInsertedPointEPKd_ZN25vtkNonMergingPointLocator15IsInsertedPointEddd_ZN25vtkNonMergingPointLocator3NewEv_ZNK25vtkNonMergingPointLocator19NewInstanceInternalEv_ZN25vtkNonMergingPointLocator3IsAEPKcPyvtkNonMergingPointLocator_ClassNewPyVTKAddFile_vtkNonMergingPointLocator_ZN25vtkNonMergingPointLocator17InsertUniquePointEPKdRx_ZN21vtkOctreePointLocator25SetMaximumPointsPerRegionEi_ZN21vtkOctreePointLocator25GetMaximumPointsPerRegionEv_ZN21vtkOctreePointLocator21SetCreateCubicOctantsEi_ZN21vtkOctreePointLocator21GetCreateCubicOctantsEv_ZN21vtkOctreePointLocator14GetFudgeFactorEv_ZN21vtkOctreePointLocator14SetFudgeFactorEd_ZN21vtkOctreePointLocator20GetNumberOfLeafNodesEv_ZN21vtkOctreePointLocator3NewEv_ZNK21vtkOctreePointLocator19NewInstanceInternalEv_ZN21vtkOctreePointLocator3IsAEPKc_ZN21vtkOctreePointLocator17GetPointsInRegionEi_ZN21vtkOctreePointLocator24GetRegionContainingPointEddd_ZN21vtkOctreePointLocator15GetRegionBoundsEiPd_ZN21vtkOctreePointLocator19GetRegionDataBoundsEiPd_ZN21vtkOctreePointLocator16FindPointsInAreaEPdP14vtkIdTypeArrayb_ZN21vtkOctreePointLocator24FindClosestPointInRegionEidddRd_ZN21vtkOctreePointLocator24FindClosestPointInRegionEiPdRdPyvtkOctreePointLocator_ClassNewPyVTKAddFile_vtkOctreePointLocator_ZN21vtkOctreePointLocator22GenerateRepresentationEiP11vtkPolyData_ZN21vtkOctreePointLocator19FreeSearchStructureEv_ZN21vtkOctreePointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN21vtkOctreePointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN21vtkOctreePointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN21vtkOctreePointLocator16FindClosestPointEdddRd_ZN21vtkOctreePointLocator16FindClosestPointEPKd_ZN21vtkOctreePointLocator12BuildLocatorEv_ZN21vtkOctreePointLocator9GetBoundsEPd_ZN21vtkOctreePointLocator9GetBoundsEv_ZN25vtkOctreePointLocatorNode17GetNumberOfPointsEv_ZN25vtkOctreePointLocatorNode12GetMinBoundsEv_ZN25vtkOctreePointLocatorNode12GetMaxBoundsEv_ZN25vtkOctreePointLocatorNode16GetMinDataBoundsEv_ZN25vtkOctreePointLocatorNode16GetMaxDataBoundsEv_ZN25vtkOctreePointLocatorNode5GetIDEv_ZN25vtkOctreePointLocatorNode8GetMinIDEv_ZN25vtkOctreePointLocatorNode3NewEv_ZNK25vtkOctreePointLocatorNode19NewInstanceInternalEv_ZN25vtkOctreePointLocatorNode3IsAEPKc_ZN25vtkOctreePointLocatorNode16CreateChildNodesEv_ZN25vtkOctreePointLocatorNode16DeleteChildNodesEv_ZN25vtkOctreePointLocatorNode8GetChildEi_ZN25vtkOctreePointLocatorNode16IntersectsRegionEP21vtkPlanesIntersectioni_ZN25vtkOctreePointLocatorNode27GetDistance2ToInnerBoundaryEdddPS__ZN25vtkOctreePointLocatorNode13ContainsPointEdddi_ZN25vtkOctreePointLocatorNode13SetDataBoundsEdddddd_ZNK25vtkOctreePointLocatorNode13GetDataBoundsEPd_ZNK25vtkOctreePointLocatorNode9GetBoundsEPd_ZN25vtkOctreePointLocatorNode17GetSubOctantIndexEPdi_ZN25vtkOctreePointLocatorNode28ComputeOctreeNodeInformationEPS_RiS1_Pf_ZN25vtkOctreePointLocatorNode9SetBoundsEdddddd_ZN25vtkOctreePointLocatorNode22GetDistance2ToBoundaryEdddPS_i_ZN25vtkOctreePointLocatorNode22GetDistance2ToBoundaryEdddPdPS_iPyvtkOctreePointLocatorNode_ClassNewPyVTKAddFile_vtkOctreePointLocatorNode_ZN22vtkOrderedTriangulator17GetNumberOfPointsEv_ZN22vtkOrderedTriangulator15SetUseTemplatesEi_ZN22vtkOrderedTriangulator15GetUseTemplatesEv_ZN22vtkOrderedTriangulator12SetPreSortedEi_ZN22vtkOrderedTriangulator12GetPreSortedEv_ZN22vtkOrderedTriangulator16SetUseTwoSortIdsEi_ZN22vtkOrderedTriangulator16GetUseTwoSortIdsEv_ZN22vtkOrderedTriangulator3NewEv_ZNK22vtkOrderedTriangulator19NewInstanceInternalEv_ZN22vtkOrderedTriangulator3IsAEPKc_ZN22vtkOrderedTriangulator14UseTemplatesOnEv_ZN22vtkOrderedTriangulator15UseTemplatesOffEv_ZN22vtkOrderedTriangulator11PreSortedOnEv_ZN22vtkOrderedTriangulator12PreSortedOffEv_ZN22vtkOrderedTriangulator15UseTwoSortIdsOnEv_ZN22vtkOrderedTriangulator16UseTwoSortIdsOffEv_ZN22vtkOrderedTriangulator11TriangulateEv_ZN22vtkOrderedTriangulator18InitTetraTraversalEv_ZN22vtkOrderedTriangulator10GetPointIdEx_ZN22vtkOrderedTriangulator15UpdatePointTypeExi_ZN22vtkOrderedTriangulator16GetPointPositionEx_ZN22vtkOrderedTriangulator16GetPointLocationEx_ZN22vtkOrderedTriangulator9GetTetrasEiP19vtkUnstructuredGrid_ZN22vtkOrderedTriangulator9AddTetrasEiP12vtkCellArray_ZN22vtkOrderedTriangulator9AddTetrasEiP19vtkUnstructuredGrid_ZN22vtkOrderedTriangulator19TemplateTriangulateEiii_ZN22vtkOrderedTriangulator12GetNextTetraEiP8vtkTetraP12vtkDataArrayP14vtkDoubleArray_ZN22vtkOrderedTriangulator12AddTrianglesEP12vtkCellArray_ZN22vtkOrderedTriangulator12AddTrianglesExP12vtkCellArray_ZN22vtkOrderedTriangulator17InitTriangulationEddddddi_ZN22vtkOrderedTriangulator17InitTriangulationEPdi_ZN22vtkOrderedTriangulator9AddTetrasEiP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS5_P11vtkCellDataxS7__ZN22vtkOrderedTriangulator9AddTetrasEiP9vtkIdListP9vtkPoints_ZN22vtkOrderedTriangulator11InsertPointExxxPdS0_i_ZN22vtkOrderedTriangulator11InsertPointExPdS0_i_ZN22vtkOrderedTriangulator11InsertPointExxPdS0_iPyvtkOrderedTriangulator_ClassNewPyVTKAddFile_vtkOrderedTriangulator_ZN18vtkOutEdgeIterator8GetGraphEv_ZN18vtkOutEdgeIterator9GetVertexEv_ZN18vtkOutEdgeIterator3NewEv_ZNK18vtkOutEdgeIterator19NewInstanceInternalEv_ZN18vtkOutEdgeIterator3IsAEPKc_ZN18vtkOutEdgeIterator13NextGraphEdgeEv_ZN18vtkOutEdgeIterator10InitializeEP8vtkGraphxPyvtkOutEdgeIterator_ClassNewPyVTKAddFile_vtkOutEdgeIterator_ZN7vtkPath17GetDataObjectTypeEv_ZN7vtkPath16GetNumberOfCellsEv_ZN7vtkPath7GetCellEx_ZN7vtkPath11GetCellTypeEx_ZN7vtkPath14GetMaxCellSizeEv_ZN7vtkPath3NewEv_ZNK7vtkPath19NewInstanceInternalEv_ZN7vtkPath7GetDataEP14vtkInformation_ZN7vtkPath7GetDataEP20vtkInformationVectori_ZN7vtkPath3IsAEPKc_ZN7vtkPath5ResetEv_ZN7vtkPath8GetCodesEv_ZN7vtkPath8SetCodesEP11vtkIntArray_ZN7vtkPath8AllocateExi_ZN7vtkPath15InsertNextPointEPdi_ZN7vtkPath15InsertNextPointEdddi_Z35PyvtkPath_ControlPointType_FromEnumiPyvtkPath_ClassNewPyvtkPointSet_ClassNewPyVTKAddFile_vtkPath_ZN7vtkPath13GetPointCellsExP9vtkIdList_ZN7vtkPath13GetCellPointsExP9vtkIdList_ZN7vtkPath7GetCellExP14vtkGenericCell_ZN18vtkPentagonalPrism11GetCellTypeEv_ZN18vtkPentagonalPrism16GetCellDimensionEv_ZN18vtkPentagonalPrism16GetNumberOfEdgesEv_ZN18vtkPentagonalPrism16GetNumberOfFacesEv_ZN18vtkPentagonalPrism19GetParametricCenterEPd_ZN18vtkPentagonalPrism3NewEv_ZNK18vtkPentagonalPrism19NewInstanceInternalEv_ZN18vtkPentagonalPrism12GetFaceArrayEi_ZN18vtkPentagonalPrism17InterpolateDerivsEPdS0__ZN18vtkPentagonalPrism19InterpolationDerivsEPdS0__ZN18vtkPentagonalPrism20InterpolateFunctionsEPdS0__ZN18vtkPentagonalPrism22InterpolationFunctionsEPdS0__ZN18vtkPentagonalPrism3IsAEPKc_ZN18vtkPentagonalPrism12GetEdgeArrayEiPyvtkPentagonalPrism_ClassNewPyVTKAddFile_vtkPentagonalPrism_ZN18vtkPentagonalPrism19GetParametricCoordsEv_ZN18vtkPentagonalPrism11DerivativesEiPdS0_iS0__ZN18vtkPentagonalPrism11TriangulateEiP9vtkIdListP9vtkPoints_ZN18vtkPentagonalPrism17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN18vtkPentagonalPrism16EvaluateLocationERiPdS1_S1__ZN18vtkPentagonalPrism16EvaluatePositionEPdS0_RiS0_RdS0__ZN18vtkPentagonalPrism12CellBoundaryEiPdP9vtkIdList_ZN18vtkPentagonalPrism7GetFaceEi_ZN18vtkPentagonalPrism7GetEdgeEi_ZN18vtkPentagonalPrism13GetFacePointsEiRPi_ZN18vtkPentagonalPrism13GetEdgePointsEiRPi_ZN14vtkPerlinNoise12SetFrequencyEddd_ZN14vtkPerlinNoise12GetFrequencyEv_ZN14vtkPerlinNoise8SetPhaseEddd_ZN14vtkPerlinNoise8GetPhaseEv_ZN14vtkPerlinNoise12SetAmplitudeEd_ZN14vtkPerlinNoise12GetAmplitudeEv_ZN14vtkPerlinNoise3NewEv_ZNK14vtkPerlinNoise19NewInstanceInternalEv_ZN14vtkPerlinNoise3IsAEPKc_ZN14vtkPerlinNoise12SetFrequencyEPd_ZN14vtkPerlinNoise8SetPhaseEPdPyvtkPerlinNoise_ClassNewPyVTKAddFile_vtkPerlinNoise_ZN14vtkPerlinNoise16EvaluateGradientEPdS0__ZN14vtkPerlinNoise16EvaluateFunctionEPd_ZN20vtkPiecewiseFunction17GetDataObjectTypeEv_ZN20vtkPiecewiseFunction8GetRangeEv_ZN20vtkPiecewiseFunction11SetClampingEi_ZN20vtkPiecewiseFunction11GetClampingEv_ZN20vtkPiecewiseFunction14SetUseLogScaleEb_ZN20vtkPiecewiseFunction14GetUseLogScaleEv_ZN20vtkPiecewiseFunction24SetAllowDuplicateScalarsEi_ZN20vtkPiecewiseFunction24GetAllowDuplicateScalarsEv_ZN20vtkPiecewiseFunction3NewEv_ZNK20vtkPiecewiseFunction19NewInstanceInternalEv_ZN20vtkPiecewiseFunction7GetDataEP14vtkInformation_ZN20vtkPiecewiseFunction7GetDataEP20vtkInformationVectori_ZN20vtkPiecewiseFunction3IsAEPKc_ZN20vtkPiecewiseFunction24AllowDuplicateScalarsOffEv_ZN20vtkPiecewiseFunction10ClampingOnEv_ZN20vtkPiecewiseFunction11ClampingOffEv_ZN20vtkPiecewiseFunction13UseLogScaleOnEv_ZN20vtkPiecewiseFunction14UseLogScaleOffEv_ZN20vtkPiecewiseFunction23AllowDuplicateScalarsOnEv_ZN20vtkPiecewiseFunction15RemoveAllPointsEv_ZN20vtkPiecewiseFunction20GetFirstNonZeroValueEv_ZN20vtkPiecewiseFunction7GetSizeEv_ZN20vtkPiecewiseFunction14GetDataPointerEv_ZN20vtkPiecewiseFunction11RemovePointEd_ZN20vtkPiecewiseFunction8GetValueEd_ZN20vtkPiecewiseFunction7GetTypeEv_ZN20vtkPiecewiseFunction26EstimateMinNumberOfSamplesERKdS1__ZN20vtkPiecewiseFunction10AddSegmentEdddd_ZN20vtkPiecewiseFunction11AdjustRangeEPd_ZN20vtkPiecewiseFunction12GetNodeValueEiPd_ZN20vtkPiecewiseFunction12SetNodeValueEiPd_ZN20vtkPiecewiseFunction19FillFromDataPointerEiPd_ZN20vtkPiecewiseFunction22BuildFunctionFromTableEddiPdi_ZN20vtkPiecewiseFunction8GetTableEddiPdi_ZN20vtkPiecewiseFunction8AddPointEdd_ZN20vtkPiecewiseFunction8AddPointEddddPyvtkPiecewiseFunction_ClassNewPyVTKAddFile_vtkPiecewiseFunction_ZN20vtkPiecewiseFunction10InitializeEv_ZN20vtkPiecewiseFunction11ShallowCopyEP13vtkDataObject_ZN20vtkPiecewiseFunction8DeepCopyEP13vtkDataObject_ZN8vtkPixel11GetCellTypeEv_ZN8vtkPixel16GetCellDimensionEv_ZN8vtkPixel16GetNumberOfEdgesEv_ZN8vtkPixel16GetNumberOfFacesEv_ZN8vtkPixel7GetFaceEi_ZN8vtkPixel19GetParametricCenterEPd_ZN8vtkPixel3NewEv_ZNK8vtkPixel19NewInstanceInternalEv_ZN8vtkPixel17InterpolateDerivsEPdS0__ZN8vtkPixel19InterpolationDerivsEPdS0__ZN8vtkPixel20InterpolateFunctionsEPdS0__ZN8vtkPixel22InterpolationFunctionsEPdS0__ZN8vtkPixel3IsAEPKcPyvtkPixel_ClassNewPyVTKAddFile_vtkPixel_ZN8vtkPixel19GetParametricCoordsEv_ZN8vtkPixel11DerivativesEiPdS0_iS0__ZN8vtkPixel11TriangulateEiP9vtkIdListP9vtkPoints_ZN8vtkPixel17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN8vtkPixel16EvaluateLocationERiPdS1_S1__ZN8vtkPixel16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkPixel4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN8vtkPixel7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN8vtkPixel12CellBoundaryEiPdP9vtkIdList_ZN8vtkPixel7GetEdgeEi_ZN14vtkPixelExtent5ShiftEPiS0__ZN14vtkPixelExtent5ShiftEPii_ZN14vtkPixelExtent6ShrinkERKS_i_ZN14vtkPixelExtent4GrowERKS_i_ZN14vtkPixelExtent4GrowERKS_S1_i_ZN14vtkPixelExtent10CellToNodeERKS__ZN14vtkPixelExtent10NodeToCellERKS__ZN14vtkPixelExtent7GrowLowERKS_ii_ZN14vtkPixelExtent8GrowHighERKS_ii_ZN14vtkPixelExtent6ShrinkERKS_S1_iPyvtkPixelExtent_TypeNewPyVTKAddFile_vtkPixelExtent_ZlsRSoRK14vtkPixelExtent_ZN16vtkPixelTransfer4BlitERK14vtkPixelExtentS2_S2_S2_iiPviiS3_PyvtkPixelTransfer_TypeNewPyVTKAddFile_vtkPixelTransfer_ZN18vtkPlaneCollection3NewEv_ZNK18vtkPlaneCollection19NewInstanceInternalEv_ZN18vtkPlaneCollection3IsAEPKcPyvtkPlaneCollection_ClassNewPyVTKAddFile_vtkPlaneCollection_ZN8vtkPlane9SetNormalEddd_ZN8vtkPlane9GetNormalEv_ZN8vtkPlane9SetOriginEddd_ZN8vtkPlane9GetOriginEv_ZN8vtkPlane3NewEv_ZNK8vtkPlane19NewInstanceInternalEv_ZN8vtkPlane17IntersectWithLineEPdS0_S0_S0_RdS0__ZN8vtkPlane3IsAEPKc_ZN8vtkPlane9SetNormalEPd_ZN8vtkPlane9SetOriginEPd_ZN8vtkPlane4PushEd_ZN8vtkPlane17IntersectWithLineEPdS0_RdS0__ZN8vtkPlane15DistanceToPlaneEPd_ZN8vtkPlane23GeneralizedProjectPointEPdS0_S0_S0__ZN8vtkPlane23GeneralizedProjectPointEPdS0__ZN8vtkPlane12ProjectPointEPdS0_S0_S0__ZN8vtkPlane12ProjectPointEPdS0__ZN8vtkPlane13ProjectVectorEPdS0_S0_S0__ZN8vtkPlane13ProjectVectorEPdS0_PyvtkPlane_ClassNewPyVTKAddFile_vtkPlane_ZN8vtkPlane16EvaluateGradientEPdS0__ZN8vtkPlane16EvaluateFunctionEPd_ZN8vtkPlane16EvaluateFunctionEP12vtkDataArrayS1__ZN9vtkPlanes9GetPointsEv_ZN9vtkPlanes10GetNormalsEv_ZN9vtkPlanes3NewEv_ZNK9vtkPlanes19NewInstanceInternalEv_ZN9vtkPlanes3IsAEPKc_ZN9vtkPlanes17GetNumberOfPlanesEv_ZN9vtkPlanes10SetNormalsEP12vtkDataArray_ZN9vtkPlanes16SetFrustumPlanesEPd_ZN9vtkPlanes8GetPlaneEi_ZN9vtkPlanes8GetPlaneEiP8vtkPlane_ZN9vtkPlanes9SetBoundsEPKd_ZN9vtkPlanes9SetBoundsEddddddPyvtkPlanes_ClassNewPyVTKAddFile_vtkPlanes_ZN9vtkPlanes9SetPointsEP9vtkPoints_ZN9vtkPlanes16EvaluateGradientEPdS0__ZN9vtkPlanes16EvaluateFunctionEPd_ZN21vtkPlanesIntersection3NewEv_ZNK21vtkPlanesIntersection19NewInstanceInternalEv_ZN21vtkPlanesIntersection13Convert3DCellEP7vtkCell_ZN21vtkPlanesIntersection21PolygonIntersectsBBoxEPdP9vtkPoints_ZN21vtkPlanesIntersection3IsAEPKc_ZN21vtkPlanesIntersection25GetNumberOfRegionVerticesEv_ZN21vtkPlanesIntersection16IntersectsRegionEP9vtkPoints_ZN21vtkPlanesIntersection17GetRegionVerticesEPdi_ZN21vtkPlanesIntersection17SetRegionVerticesEP9vtkPoints_ZN21vtkPlanesIntersection17SetRegionVerticesEPdiPyvtkPlanesIntersection_ClassNewPyVTKAddFile_vtkPlanesIntersection_ZN12vtkPointData3NewEv_ZNK12vtkPointData19NewInstanceInternalEv_ZN12vtkPointData3IsAEPKc_ZN12vtkPointData9NullPointExPyvtkPointData_ClassNewPyVTKAddFile_vtkPointData_ZN15vtkPointLocator12SetDivisionsEiii_ZN15vtkPointLocator12GetDivisionsEv_ZN15vtkPointLocator26SetNumberOfPointsPerBucketEi_ZN15vtkPointLocator34GetNumberOfPointsPerBucketMinValueEv_ZN15vtkPointLocator34GetNumberOfPointsPerBucketMaxValueEv_ZN15vtkPointLocator26GetNumberOfPointsPerBucketEv_ZN15vtkPointLocator15IsInsertedPointEddd_ZN15vtkPointLocator9GetPointsEv_ZN15vtkPointLocator3NewEv_ZNK15vtkPointLocator19NewInstanceInternalEv_ZN15vtkPointLocator3IsAEPKc_ZN15vtkPointLocator12SetDivisionsEPiPyVTKAddFile_vtkPointLocator_ZN15vtkPointLocator22GenerateRepresentationEiP11vtkPolyData_ZN15vtkPointLocator12BuildLocatorEv_ZN15vtkPointLocator19FreeSearchStructureEv_ZN15vtkPointLocator10InitializeEv_ZN15vtkPointLocator17GetPointsInBucketEPKdPi_ZN15vtkPointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN15vtkPointLocator21FindDistributedPointsEiPKdP9vtkIdListi_ZN15vtkPointLocator21FindDistributedPointsEidddP9vtkIdListi_ZN15vtkPointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN15vtkPointLocator24FindClosestInsertedPointEPKd_ZN15vtkPointLocator17InsertUniquePointEPKdRx_ZN15vtkPointLocator15IsInsertedPointEPKd_ZN15vtkPointLocator15InsertNextPointEPKd_ZN15vtkPointLocator11InsertPointExPKd_ZN15vtkPointLocator18InitPointInsertionEP9vtkPointsPKd_ZN15vtkPointLocator18InitPointInsertionEP9vtkPointsPKdx_ZN15vtkPointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN15vtkPointLocator28FindClosestPointWithinRadiusEdPKddRd_ZN15vtkPointLocator16FindClosestPointEPKd_ZN11vtkPointSet8GetPointExPd_ZN11vtkPointSet8GetPointEx_ZN11vtkPointSet9GetPointsEv_ZN11vtkPointSet17GetNumberOfPointsEv_ZN11vtkPointSet7GetDataEP14vtkInformation_ZN11vtkPointSet7GetDataEP20vtkInformationVectori_ZNK11vtkPointSet19NewInstanceInternalEv_ZN11vtkPointSet3IsAEPKcPyVTKAddFile_vtkPointSet_ZN11vtkPointSet8DeepCopyEP13vtkDataObject_ZN11vtkPointSet11ShallowCopyEP13vtkDataObject_ZN11vtkPointSet19GetActualMemorySizeEv_ZN11vtkPointSet9SetPointsEP9vtkPoints_ZN11vtkPointSet7SqueezeEv_ZN11vtkPointSet13ComputeBoundsEv_ZN11vtkPointSet8GetMTimeEv_ZN11vtkPointSet15NewCellIteratorEv_ZN11vtkPointSet8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN11vtkPointSet8FindCellEPdP7vtkCellxdRiS0_S0__ZN11vtkPointSet9FindPointEPd_ZN11vtkPointSet13CopyStructureEP10vtkDataSet_ZN11vtkPointSet10InitializeEv_ZN23vtkPointSetCellIterator3NewEv_ZNK23vtkPointSetCellIterator19NewInstanceInternalEv_ZN23vtkPointSetCellIterator3IsAEPKcPyvtkPointSetCellIterator_ClassNewPyVTKAddFile_vtkPointSetCellIterator_ZN23vtkPointSetCellIterator9GetCellIdEv_ZN23vtkPointSetCellIterator19IsDoneWithTraversalEv_ZN22vtkPointsProjectedHull5ResetEv_ZN22vtkPointsProjectedHull3NewEv_ZNK22vtkPointsProjectedHull19NewInstanceInternalEv_ZN22vtkPointsProjectedHull3IsAEPKc_ZN22vtkPointsProjectedHull6UpdateEv_ZN22vtkPointsProjectedHull15GetSizeCCWHullXEv_ZN22vtkPointsProjectedHull15GetSizeCCWHullYEv_ZN22vtkPointsProjectedHull15GetSizeCCWHullZEv_ZN22vtkPointsProjectedHull11GetCCWHullZEPdi_ZN22vtkPointsProjectedHull11GetCCWHullXEPdi_ZN22vtkPointsProjectedHull11GetCCWHullYEPdi_ZN22vtkPointsProjectedHull22RectangleIntersectionYEP9vtkPoints_ZN22vtkPointsProjectedHull22RectangleIntersectionYEdddd_ZN22vtkPointsProjectedHull22RectangleIntersectionZEP9vtkPoints_ZN22vtkPointsProjectedHull22RectangleIntersectionZEdddd_ZN22vtkPointsProjectedHull22RectangleIntersectionXEP9vtkPoints_ZN22vtkPointsProjectedHull22RectangleIntersectionXEddddPyvtkPointsProjectedHull_ClassNewPyvtkPoints_ClassNewPyVTKAddFile_vtkPointsProjectedHull_ZN22vtkPointsProjectedHull10InitializeEv_ZN21vtkPolyDataCollection3NewEv_ZNK21vtkPolyDataCollection19NewInstanceInternalEv_ZN21vtkPolyDataCollection3IsAEPKcPyvtkPolyDataCollection_ClassNewPyVTKAddFile_vtkPolyDataCollection_ZN11vtkPolyData17GetDataObjectTypeEv_ZN11vtkPolyData3NewEv_ZNK11vtkPolyData19NewInstanceInternalEv_ZN11vtkPolyData7GetDataEP14vtkInformation_ZN11vtkPolyData7GetDataEP20vtkInformationVectori_ZN11vtkPolyData3IsAEPKc_ZN11vtkPolyData11DeleteCellsEv_ZN11vtkPolyData5ResetEv_ZN11vtkPolyData16RemoveGhostCellsEv_ZN11vtkPolyData10BuildCellsEv_ZN11vtkPolyData11DeleteLinksEv_ZN11vtkPolyData18RemoveDeletedCellsEv_ZN11vtkPolyData8GetLinesEv_ZN11vtkPolyData8GetPolysEv_ZN11vtkPolyData9GetStripsEv_ZN11vtkPolyData16GetNumberOfVertsEv_ZN11vtkPolyData16GetNumberOfLinesEv_ZN11vtkPolyData8GetVertsEv_ZN11vtkPolyData16GetNumberOfPolysEv_ZN11vtkPolyData17GetNumberOfStripsEv_ZN11vtkPolyData9SetStripsEP12vtkCellArray_ZN11vtkPolyData8SetVertsEP12vtkCellArray_ZN11vtkPolyData11ReverseCellEx_ZN11vtkPolyData8SetLinesEP12vtkCellArray_ZN11vtkPolyData8SetPolysEP12vtkCellArray_ZN11vtkPolyData10BuildLinksEi_ZN11vtkPolyData21RemoveReferenceToCellExx_ZN11vtkPolyData18AddReferenceToCellExx_ZN11vtkPolyData6IsEdgeExx_ZN11vtkPolyData27GetScalarFieldCriticalIndexExP12vtkDataArray_ZN11vtkPolyData27GetScalarFieldCriticalIndexExi_ZN11vtkPolyData27GetScalarFieldCriticalIndexExPKc_ZN11vtkPolyData8AllocateExi_ZN11vtkPolyData9CopyCellsEPS_P9vtkIdListP15vtkPointLocator_ZN11vtkPolyData20GetCellEdgeNeighborsExxxP9vtkIdList_ZN11vtkPolyData8AllocateEPS_xi_ZN11vtkPolyData17ReplaceLinkedCellExiPx_ZN11vtkPolyData11ReplaceCellExiPx_ZN11vtkPolyData20InsertNextLinkedCellEiiPx_ZN11vtkPolyData21InsertNextLinkedPointEi_ZN11vtkPolyData21InsertNextLinkedPointEPdi_ZN11vtkPolyData14InsertNextCellEiP9vtkIdList_ZN11vtkPolyData14InsertNextCellEiiPxPyvtkPolyData_ClassNewPyVTKAddFile_vtkPolyData_ZN11vtkPolyData12GetMeshMTimeEv_ZN11vtkPolyData8DeepCopyEP13vtkDataObject_ZN11vtkPolyData11ShallowCopyEP13vtkDataObject_ZN11vtkPolyData19GetActualMemorySizeEv_ZN11vtkPolyData13GetGhostLevelEv_ZN11vtkPolyData17GetNumberOfPiecesEv_ZN11vtkPolyData8GetPieceEv_ZN11vtkPolyData10InitializeEv_ZN11vtkPolyData14GetMaxCellSizeEv_ZN11vtkPolyData7SqueezeEv_ZN11vtkPolyData13ComputeBoundsEv_ZN13vtkPythonArgs8GetValueERt_ZN11vtkPolyData13GetPointCellsExP9vtkIdList_ZN13vtkPythonArgs11SetArgValueEit_ZN11vtkPolyData13GetCellPointsExP9vtkIdList_ZN11vtkPolyData16GetCellNeighborsExP9vtkIdListS1__ZN11vtkPolyData13GetCellBoundsExPd_ZN11vtkPolyData11GetCellTypeEx_ZN11vtkPolyData7GetCellExP14vtkGenericCell_ZN11vtkPolyData7GetCellEx_ZN11vtkPolyData16GetNumberOfCellsEv_ZN11vtkPolyData13CopyStructureEP10vtkDataSet_ZN10vtkPolygon11GetCellTypeEv_ZN10vtkPolygon16GetCellDimensionEv_ZN10vtkPolygon16GetNumberOfEdgesEv_ZN10vtkPolygon16GetNumberOfFacesEv_ZN10vtkPolygon7GetFaceEi_ZN10vtkPolygon13IsPrimaryCellEv_ZN10vtkPolygon22GetUseMVCInterpolationEv_ZN10vtkPolygon22SetUseMVCInterpolationEb_ZN10vtkPolygon3NewEv_ZNK10vtkPolygon19NewInstanceInternalEv_ZN10vtkPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2__ZN10vtkPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0__ZN10vtkPolygon17DistanceToPolygonEPdiS0_S0_S0__ZN10vtkPolygon14PointInPolygonEPdiS0_S0_S0__ZN10vtkPolygon13ComputeNormalEiPdS0__ZN10vtkPolygon13ComputeNormalEP14vtkIdTypeArrayP9vtkPointsPd_ZN10vtkPolygon15ComputeCentroidEP9vtkPointsiPxPd_ZN10vtkPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPd_ZN10vtkPolygon8IsConvexEP9vtkPoints_ZN10vtkPolygon8IsConvexEP14vtkIdTypeArrayP9vtkPoints_ZN10vtkPolygon8IsConvexEv_ZN10vtkPolygon8IsConvexEP9vtkPointsiPx_ZN10vtkPolygon13ComputeNormalEP9vtkPointsPd_ZN10vtkPolygon13ComputeNormalEP9vtkPointsiPxPd_ZN10vtkPolygon3IsAEPKc_ZN10vtkPolygon24NonDegenerateTriangulateEP9vtkIdList_ZN10vtkPolygon18BoundedTriangulateEP9vtkIdListd_ZN10vtkPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0__ZN10vtkPolygon11ComputeAreaEP9vtkPointsxPxPd_ZN10vtkPolygon11ComputeAreaEvPyvtkPolygon_ClassNewPyVTKAddFile_vtkPolygon_ZN10vtkPolygon20InterpolateFunctionsEPdS0__ZN10vtkPolygon11DerivativesEiPdS0_iS0__ZN10vtkPolygon11TriangulateEP9vtkIdList_ZN10vtkPolygon11TriangulateEiP9vtkIdListP9vtkPoints_ZN10vtkPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN10vtkPolygon16EvaluateLocationERiPdS1_S1__ZN10vtkPolygon16EvaluatePositionEPdS0_RiS0_RdS0__ZN10vtkPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN10vtkPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN10vtkPolygon12CellBoundaryEiPdP9vtkIdList_ZN10vtkPolygon7GetEdgeEi_ZN13vtkPolyhedron13GetEdgePointsEiRPi_ZN13vtkPolyhedron13GetFacePointsEiRPi_ZN13vtkPolyhedron11GetCellTypeEv_ZN13vtkPolyhedron22RequiresInitializationEv_ZN13vtkPolyhedron13IsPrimaryCellEv_ZN13vtkPolyhedron34RequiresExplicitFaceRepresentationEv_ZN13vtkPolyhedron19GetParametricCenterEPd_ZN13vtkPolyhedron3NewEv_ZNK13vtkPolyhedron19NewInstanceInternalEv_ZN13vtkPolyhedron3IsAEPKc_ZN13vtkPolyhedron8IsConvexEv_ZN13vtkPolyhedron11GetPolyDataEv_ZN13vtkPolyhedron8IsInsideEPddPyvtkPolyhedron_ClassNewPyVTKAddFile_vtkPolyhedron_ZN13vtkPolyhedron8GetFacesEv_ZN13vtkPolyhedron8SetFacesEPx_ZN13vtkPolyhedron17InterpolateDerivsEPdS0__ZN13vtkPolyhedron20InterpolateFunctionsEPdS0__ZN13vtkPolyhedron12CellBoundaryEiPdP9vtkIdList_ZN13vtkPolyhedron11DerivativesEiPdS0_iS0__ZN13vtkPolyhedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkPolyhedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPolyhedron16EvaluateLocationERiPdS1_S1__ZN13vtkPolyhedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN13vtkPolyhedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN13vtkPolyhedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkPolyhedron7GetFaceEi_ZN13vtkPolyhedron16GetNumberOfFacesEv_ZN13vtkPolyhedron7GetEdgeEi_ZN13vtkPolyhedron16GetNumberOfEdgesEv_ZN13vtkPolyhedron10InitializeEv_ZN13vtkPolyhedron19GetParametricCoordsEv_ZN11vtkPolyLine11GetCellTypeEv_ZN11vtkPolyLine16GetCellDimensionEv_ZN11vtkPolyLine16GetNumberOfEdgesEv_ZN11vtkPolyLine16GetNumberOfFacesEv_ZN11vtkPolyLine7GetEdgeEi_ZN11vtkPolyLine7GetFaceEi_ZN11vtkPolyLine13IsPrimaryCellEv_ZN11vtkPolyLine3NewEv_ZNK11vtkPolyLine19NewInstanceInternalEv_ZN11vtkPolyLine22GenerateSlidingNormalsEP9vtkPointsP12vtkCellArrayP12vtkDataArray_ZN11vtkPolyLine22GenerateSlidingNormalsEP9vtkPointsP12vtkCellArrayP12vtkDataArrayPd_ZN11vtkPolyLine3IsAEPKcPyvtkPolyLine_ClassNewPyVTKAddFile_vtkPolyLine_ZN11vtkPolyLine19GetParametricCenterEPd_ZN11vtkPolyLine11DerivativesEiPdS0_iS0__ZN11vtkPolyLine11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkPolyLine17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN11vtkPolyLine16EvaluateLocationERiPdS1_S1__ZN11vtkPolyLine16EvaluatePositionEPdS0_RiS0_RdS0__ZN11vtkPolyLine4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN11vtkPolyLine7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN11vtkPolyLine12CellBoundaryEiPdP9vtkIdList_ZN12vtkPolyPlane11GetPolyLineEv_ZN12vtkPolyPlane3NewEv_ZNK12vtkPolyPlane19NewInstanceInternalEv_ZN12vtkPolyPlane3IsAEPKcPyvtkPolyPlane_ClassNewPyVTKAddFile_vtkPolyPlane_ZN12vtkPolyPlane8GetMTimeEv_ZN12vtkPolyPlane11SetPolyLineEP11vtkPolyLine_ZN12vtkPolyPlane16EvaluateGradientEPdS0__ZN12vtkPolyPlane16EvaluateFunctionEPd_ZN13vtkPolyVertex11GetCellTypeEv_ZN13vtkPolyVertex16GetCellDimensionEv_ZN13vtkPolyVertex16GetNumberOfEdgesEv_ZN13vtkPolyVertex16GetNumberOfFacesEv_ZN13vtkPolyVertex7GetEdgeEi_ZN13vtkPolyVertex7GetFaceEi_ZN13vtkPolyVertex13IsPrimaryCellEv_ZN13vtkPolyVertex3NewEv_ZNK13vtkPolyVertex19NewInstanceInternalEv_ZN13vtkPolyVertex3IsAEPKcPyvtkPolyVertex_ClassNewPyVTKAddFile_vtkPolyVertex_ZN13vtkPolyVertex19GetParametricCenterEPd_ZN13vtkPolyVertex11DerivativesEiPdS0_iS0__ZN13vtkPolyVertex11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkPolyVertex17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPolyVertex16EvaluateLocationERiPdS1_S1__ZN13vtkPolyVertex16EvaluatePositionEPdS0_RiS0_RdS0__ZN13vtkPolyVertex4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN13vtkPolyVertex7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkPolyVertex12CellBoundaryEiPdP9vtkIdList_ZN10vtkPyramid11GetCellTypeEv_ZN10vtkPyramid16GetCellDimensionEv_ZN10vtkPyramid16GetNumberOfEdgesEv_ZN10vtkPyramid16GetNumberOfFacesEv_ZN10vtkPyramid19GetParametricCenterEPd_ZN10vtkPyramid3NewEv_ZNK10vtkPyramid19NewInstanceInternalEv_ZN10vtkPyramid12GetFaceArrayEi_ZN10vtkPyramid12GetEdgeArrayEi_ZN10vtkPyramid17InterpolateDerivsEPdS0__ZN10vtkPyramid19InterpolationDerivsEPdS0__ZN10vtkPyramid20InterpolateFunctionsEPdS0__ZN10vtkPyramid22InterpolationFunctionsEPdS0__ZN10vtkPyramid3IsAEPKcPyvtkPyramid_ClassNewPyVTKAddFile_vtkPyramid_ZN10vtkPyramid19GetParametricCoordsEv_ZN10vtkPyramid11DerivativesEiPdS0_iS0__ZN10vtkPyramid11TriangulateEiP9vtkIdListP9vtkPoints_ZN10vtkPyramid17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN10vtkPyramid16EvaluateLocationERiPdS1_S1__ZN10vtkPyramid16EvaluatePositionEPdS0_RiS0_RdS0__ZN10vtkPyramid7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN10vtkPyramid12CellBoundaryEiPdP9vtkIdList_ZN10vtkPyramid7GetFaceEi_ZN10vtkPyramid7GetEdgeEi_ZN10vtkPyramid13GetFacePointsEiRPi_ZN10vtkPyramid13GetEdgePointsEiRPi_ZN7vtkQuad11GetCellTypeEv_ZN7vtkQuad16GetCellDimensionEv_ZN7vtkQuad16GetNumberOfEdgesEv_ZN7vtkQuad16GetNumberOfFacesEv_ZN7vtkQuad7GetFaceEi_ZN7vtkQuad19GetParametricCenterEPd_ZN7vtkQuad3NewEv_ZNK7vtkQuad19NewInstanceInternalEv_ZN7vtkQuad17InterpolateDerivsEPdS0__ZN7vtkQuad19InterpolationDerivsEPdS0__ZN7vtkQuad20InterpolateFunctionsEPdS0__ZN7vtkQuad22InterpolationFunctionsEPdS0__ZN7vtkQuad3IsAEPKc_ZN7vtkQuad12GetEdgeArrayEiPyvtkQuad_ClassNewPyVTKAddFile_vtkQuad_ZN7vtkQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN7vtkQuad19GetParametricCoordsEv_ZN7vtkQuad11DerivativesEiPdS0_iS0__ZN7vtkQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN7vtkQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN7vtkQuad16EvaluateLocationERiPdS1_S1__ZN7vtkQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN7vtkQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN7vtkQuad12CellBoundaryEiPdP9vtkIdList_ZN7vtkQuad7GetEdgeEi_ZN16vtkQuadraticEdge11GetCellTypeEv_ZN16vtkQuadraticEdge16GetCellDimensionEv_ZN16vtkQuadraticEdge16GetNumberOfEdgesEv_ZN16vtkQuadraticEdge16GetNumberOfFacesEv_ZN16vtkQuadraticEdge7GetEdgeEi_ZN16vtkQuadraticEdge7GetFaceEi_ZN16vtkQuadraticEdge19GetParametricCenterEPd_ZN16vtkQuadraticEdge3NewEv_ZNK16vtkQuadraticEdge19NewInstanceInternalEv_ZN16vtkQuadraticEdge17InterpolateDerivsEPdS0__ZN16vtkQuadraticEdge19InterpolationDerivsEPdS0__ZN16vtkQuadraticEdge20InterpolateFunctionsEPdS0__ZN16vtkQuadraticEdge22InterpolationFunctionsEPdS0__ZN16vtkQuadraticEdge3IsAEPKcPyvtkQuadraticEdge_ClassNewPyVTKAddFile_vtkQuadraticEdge_ZN16vtkQuadraticEdge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkQuadraticEdge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkQuadraticEdge19GetParametricCoordsEv_ZN16vtkQuadraticEdge11DerivativesEiPdS0_iS0__ZN16vtkQuadraticEdge11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkQuadraticEdge16EvaluateLocationERiPdS1_S1__ZN16vtkQuadraticEdge16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkQuadraticEdge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkQuadraticEdge12CellBoundaryEiPdP9vtkIdList_ZN22vtkQuadraticHexahedron11GetCellTypeEv_ZN22vtkQuadraticHexahedron16GetCellDimensionEv_ZN22vtkQuadraticHexahedron16GetNumberOfEdgesEv_ZN22vtkQuadraticHexahedron16GetNumberOfFacesEv_ZN22vtkQuadraticHexahedron3NewEv_ZNK22vtkQuadraticHexahedron19NewInstanceInternalEv_ZN22vtkQuadraticHexahedron12GetFaceArrayEi_ZN22vtkQuadraticHexahedron17InterpolateDerivsEPdS0__ZN22vtkQuadraticHexahedron19InterpolationDerivsEPdS0__ZN22vtkQuadraticHexahedron20InterpolateFunctionsEPdS0__ZN22vtkQuadraticHexahedron22InterpolationFunctionsEPdS0__ZN22vtkQuadraticHexahedron3IsAEPKc_ZN22vtkQuadraticHexahedron12GetEdgeArrayEiPyvtkQuadraticHexahedron_ClassNewPyVTKAddFile_vtkQuadraticHexahedron_ZN22vtkQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN22vtkQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN22vtkQuadraticHexahedron19GetParametricCoordsEv_ZN22vtkQuadraticHexahedron11DerivativesEiPdS0_iS0__ZN22vtkQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN22vtkQuadraticHexahedron16EvaluateLocationERiPdS1_S1__ZN22vtkQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN22vtkQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN22vtkQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_ZN22vtkQuadraticHexahedron7GetFaceEi_ZN22vtkQuadraticHexahedron7GetEdgeEi_ZN22vtkQuadraticLinearQuad11GetCellTypeEv_ZN22vtkQuadraticLinearQuad16GetCellDimensionEv_ZN22vtkQuadraticLinearQuad16GetNumberOfEdgesEv_ZN22vtkQuadraticLinearQuad16GetNumberOfFacesEv_ZN22vtkQuadraticLinearQuad7GetFaceEi_ZN22vtkQuadraticLinearQuad19GetParametricCenterEPd_ZN22vtkQuadraticLinearQuad3NewEv_ZNK22vtkQuadraticLinearQuad19NewInstanceInternalEv_ZN22vtkQuadraticLinearQuad12GetEdgeArrayEi_ZN22vtkQuadraticLinearQuad17InterpolateDerivsEPdS0__ZN22vtkQuadraticLinearQuad19InterpolationDerivsEPdS0__ZN22vtkQuadraticLinearQuad20InterpolateFunctionsEPdS0__ZN22vtkQuadraticLinearQuad22InterpolationFunctionsEPdS0__ZN22vtkQuadraticLinearQuad3IsAEPKcPyvtkQuadraticLinearQuad_ClassNewPyVTKAddFile_vtkQuadraticLinearQuad_ZN22vtkQuadraticLinearQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN22vtkQuadraticLinearQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN22vtkQuadraticLinearQuad19GetParametricCoordsEv_ZN22vtkQuadraticLinearQuad11DerivativesEiPdS0_iS0__ZN22vtkQuadraticLinearQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN22vtkQuadraticLinearQuad16EvaluateLocationERiPdS1_S1__ZN22vtkQuadraticLinearQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN22vtkQuadraticLinearQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN22vtkQuadraticLinearQuad12CellBoundaryEiPdP9vtkIdList_ZN22vtkQuadraticLinearQuad7GetEdgeEi_ZN23vtkQuadraticLinearWedge11GetCellTypeEv_ZN23vtkQuadraticLinearWedge16GetCellDimensionEv_ZN23vtkQuadraticLinearWedge16GetNumberOfEdgesEv_ZN23vtkQuadraticLinearWedge16GetNumberOfFacesEv_ZN23vtkQuadraticLinearWedge19GetParametricCenterEPd_ZN23vtkQuadraticLinearWedge3NewEv_ZNK23vtkQuadraticLinearWedge19NewInstanceInternalEv_ZN23vtkQuadraticLinearWedge12GetFaceArrayEi_ZN23vtkQuadraticLinearWedge17InterpolateDerivsEPdS0__ZN23vtkQuadraticLinearWedge19InterpolationDerivsEPdS0__ZN23vtkQuadraticLinearWedge20InterpolateFunctionsEPdS0__ZN23vtkQuadraticLinearWedge22InterpolationFunctionsEPdS0__ZN23vtkQuadraticLinearWedge3IsAEPKc_ZN23vtkQuadraticLinearWedge12GetEdgeArrayEiPyvtkQuadraticLinearWedge_ClassNewPyVTKAddFile_vtkQuadraticLinearWedge_ZN23vtkQuadraticLinearWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN23vtkQuadraticLinearWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN23vtkQuadraticLinearWedge19GetParametricCoordsEv_ZN23vtkQuadraticLinearWedge11DerivativesEiPdS0_iS0__ZN23vtkQuadraticLinearWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN23vtkQuadraticLinearWedge16EvaluateLocationERiPdS1_S1__ZN23vtkQuadraticLinearWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN23vtkQuadraticLinearWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN23vtkQuadraticLinearWedge12CellBoundaryEiPdP9vtkIdList_ZN23vtkQuadraticLinearWedge7GetFaceEi_ZN23vtkQuadraticLinearWedge7GetEdgeEi_ZN19vtkQuadraticPolygon11GetCellTypeEv_ZN19vtkQuadraticPolygon16GetCellDimensionEv_ZN19vtkQuadraticPolygon16GetNumberOfEdgesEv_ZN19vtkQuadraticPolygon16GetNumberOfFacesEv_ZN19vtkQuadraticPolygon7GetFaceEi_ZN19vtkQuadraticPolygon13IsPrimaryCellEv_ZN19vtkQuadraticPolygon22GetUseMVCInterpolationEv_ZN19vtkQuadraticPolygon22SetUseMVCInterpolationEb_ZN19vtkQuadraticPolygon3NewEv_ZNK19vtkQuadraticPolygon19NewInstanceInternalEv_ZN19vtkQuadraticPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2__ZN19vtkQuadraticPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0__ZN19vtkQuadraticPolygon17DistanceToPolygonEPdiS0_S0_S0__ZN19vtkQuadraticPolygon14PointInPolygonEPdiS0_S0_S0__ZN19vtkQuadraticPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPd_ZN19vtkQuadraticPolygon3IsAEPKc_ZN19vtkQuadraticPolygon24NonDegenerateTriangulateEP9vtkIdList_ZN19vtkQuadraticPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0_PyvtkQuadraticPolygon_ClassNewPyVTKAddFile_vtkQuadraticPolygon_ZN19vtkQuadraticPolygon11DerivativesEiPdS0_iS0__ZN19vtkQuadraticPolygon11TriangulateEP9vtkIdList_ZN19vtkQuadraticPolygon11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkQuadraticPolygon20InterpolateFunctionsEPdS0__ZN19vtkQuadraticPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN19vtkQuadraticPolygon16EvaluateLocationERiPdS1_S1__ZN19vtkQuadraticPolygon16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkQuadraticPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkQuadraticPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkQuadraticPolygon12CellBoundaryEiPdP9vtkIdList_ZN19vtkQuadraticPolygon7GetEdgeEi_ZN19vtkQuadraticPyramid11GetCellTypeEv_ZN19vtkQuadraticPyramid16GetCellDimensionEv_ZN19vtkQuadraticPyramid16GetNumberOfEdgesEv_ZN19vtkQuadraticPyramid16GetNumberOfFacesEv_ZN19vtkQuadraticPyramid19GetParametricCenterEPd_ZN19vtkQuadraticPyramid3NewEv_ZNK19vtkQuadraticPyramid19NewInstanceInternalEv_ZN19vtkQuadraticPyramid12GetFaceArrayEi_ZN19vtkQuadraticPyramid17InterpolateDerivsEPdS0__ZN19vtkQuadraticPyramid19InterpolationDerivsEPdS0__ZN19vtkQuadraticPyramid20InterpolateFunctionsEPdS0__ZN19vtkQuadraticPyramid22InterpolationFunctionsEPdS0__ZN19vtkQuadraticPyramid3IsAEPKc_ZN19vtkQuadraticPyramid12GetEdgeArrayEiPyvtkQuadraticPyramid_ClassNewPyVTKAddFile_vtkQuadraticPyramid_ZN19vtkQuadraticPyramid17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN19vtkQuadraticPyramid4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkQuadraticPyramid19GetParametricCoordsEv_ZN19vtkQuadraticPyramid11DerivativesEiPdS0_iS0__ZN19vtkQuadraticPyramid11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkQuadraticPyramid16EvaluateLocationERiPdS1_S1__ZN19vtkQuadraticPyramid16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkQuadraticPyramid7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkQuadraticPyramid12CellBoundaryEiPdP9vtkIdList_ZN19vtkQuadraticPyramid7GetFaceEi_ZN19vtkQuadraticPyramid7GetEdgeEi_ZN16vtkQuadraticQuad11GetCellTypeEv_ZN16vtkQuadraticQuad16GetCellDimensionEv_ZN16vtkQuadraticQuad16GetNumberOfEdgesEv_ZN16vtkQuadraticQuad16GetNumberOfFacesEv_ZN16vtkQuadraticQuad7GetFaceEi_ZN16vtkQuadraticQuad19GetParametricCenterEPd_ZN16vtkQuadraticQuad3NewEv_ZNK16vtkQuadraticQuad19NewInstanceInternalEv_ZN16vtkQuadraticQuad17InterpolateDerivsEPdS0__ZN16vtkQuadraticQuad19InterpolationDerivsEPdS0__ZN16vtkQuadraticQuad20InterpolateFunctionsEPdS0__ZN16vtkQuadraticQuad22InterpolationFunctionsEPdS0__ZN16vtkQuadraticQuad3IsAEPKcPyvtkQuadraticQuad_ClassNewPyVTKAddFile_vtkQuadraticQuad_ZN16vtkQuadraticQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkQuadraticQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkQuadraticQuad19GetParametricCoordsEv_ZN16vtkQuadraticQuad11DerivativesEiPdS0_iS0__ZN16vtkQuadraticQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkQuadraticQuad16EvaluateLocationERiPdS1_S1__ZN16vtkQuadraticQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkQuadraticQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkQuadraticQuad12CellBoundaryEiPdP9vtkIdList_ZN16vtkQuadraticQuad7GetEdgeEi_ZN17vtkQuadraticTetra11GetCellTypeEv_ZN17vtkQuadraticTetra16GetCellDimensionEv_ZN17vtkQuadraticTetra16GetNumberOfEdgesEv_ZN17vtkQuadraticTetra16GetNumberOfFacesEv_ZN17vtkQuadraticTetra3NewEv_ZNK17vtkQuadraticTetra19NewInstanceInternalEv_ZN17vtkQuadraticTetra12GetFaceArrayEi_ZN17vtkQuadraticTetra17InterpolateDerivsEPdS0__ZN17vtkQuadraticTetra19InterpolationDerivsEPdS0__ZN17vtkQuadraticTetra20InterpolateFunctionsEPdS0__ZN17vtkQuadraticTetra22InterpolationFunctionsEPdS0__ZN17vtkQuadraticTetra3IsAEPKc_ZN17vtkQuadraticTetra12GetEdgeArrayEiPyvtkQuadraticTetra_ClassNewPyVTKAddFile_vtkQuadraticTetra_ZN17vtkQuadraticTetra21GetParametricDistanceEPd_ZN17vtkQuadraticTetra19GetParametricCenterEPd_ZN17vtkQuadraticTetra17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkQuadraticTetra4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkQuadraticTetra19GetParametricCoordsEv_ZN17vtkQuadraticTetra11DerivativesEiPdS0_iS0__ZN17vtkQuadraticTetra11TriangulateEiP9vtkIdListP9vtkPoints_ZN17vtkQuadraticTetra16EvaluateLocationERiPdS1_S1__ZN17vtkQuadraticTetra16EvaluatePositionEPdS0_RiS0_RdS0__ZN17vtkQuadraticTetra7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN17vtkQuadraticTetra12CellBoundaryEiPdP9vtkIdList_ZN17vtkQuadraticTetra7GetFaceEi_ZN17vtkQuadraticTetra7GetEdgeEi_ZN20vtkQuadraticTriangle11GetCellTypeEv_ZN20vtkQuadraticTriangle16GetCellDimensionEv_ZN20vtkQuadraticTriangle16GetNumberOfEdgesEv_ZN20vtkQuadraticTriangle16GetNumberOfFacesEv_ZN20vtkQuadraticTriangle7GetFaceEi_ZN20vtkQuadraticTriangle19GetParametricCenterEPd_ZN20vtkQuadraticTriangle3NewEv_ZNK20vtkQuadraticTriangle19NewInstanceInternalEv_ZN20vtkQuadraticTriangle17InterpolateDerivsEPdS0__ZN20vtkQuadraticTriangle19InterpolationDerivsEPdS0__ZN20vtkQuadraticTriangle20InterpolateFunctionsEPdS0__ZN20vtkQuadraticTriangle22InterpolationFunctionsEPdS0__ZN20vtkQuadraticTriangle3IsAEPKcPyvtkQuadraticTriangle_ClassNewPyVTKAddFile_vtkQuadraticTriangle_ZN20vtkQuadraticTriangle21GetParametricDistanceEPd_ZN20vtkQuadraticTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN20vtkQuadraticTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN20vtkQuadraticTriangle19GetParametricCoordsEv_ZN20vtkQuadraticTriangle11DerivativesEiPdS0_iS0__ZN20vtkQuadraticTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN20vtkQuadraticTriangle16EvaluateLocationERiPdS1_S1__ZN20vtkQuadraticTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN20vtkQuadraticTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN20vtkQuadraticTriangle12CellBoundaryEiPdP9vtkIdList_ZN20vtkQuadraticTriangle7GetEdgeEi_ZN17vtkQuadraticWedge11GetCellTypeEv_ZN17vtkQuadraticWedge16GetCellDimensionEv_ZN17vtkQuadraticWedge16GetNumberOfEdgesEv_ZN17vtkQuadraticWedge16GetNumberOfFacesEv_ZN17vtkQuadraticWedge19GetParametricCenterEPd_ZN17vtkQuadraticWedge3NewEv_ZNK17vtkQuadraticWedge19NewInstanceInternalEv_ZN17vtkQuadraticWedge12GetFaceArrayEi_ZN17vtkQuadraticWedge17InterpolateDerivsEPdS0__ZN17vtkQuadraticWedge19InterpolationDerivsEPdS0__ZN17vtkQuadraticWedge20InterpolateFunctionsEPdS0__ZN17vtkQuadraticWedge22InterpolationFunctionsEPdS0__ZN17vtkQuadraticWedge3IsAEPKc_ZN17vtkQuadraticWedge12GetEdgeArrayEiPyvtkQuadraticWedge_ClassNewPyVTKAddFile_vtkQuadraticWedge_ZN17vtkQuadraticWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkQuadraticWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkQuadraticWedge19GetParametricCoordsEv_ZN17vtkQuadraticWedge11DerivativesEiPdS0_iS0__ZN17vtkQuadraticWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN17vtkQuadraticWedge16EvaluateLocationERiPdS1_S1__ZN17vtkQuadraticWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN17vtkQuadraticWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN17vtkQuadraticWedge12CellBoundaryEiPdP9vtkIdList_ZN17vtkQuadraticWedge7GetFaceEi_ZN17vtkQuadraticWedge7GetEdgeEi_ZN29vtkQuadratureSchemeDefinition3NewEv_ZNK29vtkQuadratureSchemeDefinition19NewInstanceInternalEv_ZN29vtkQuadratureSchemeDefinition28QUADRATURE_OFFSET_ARRAY_NAMEEv_ZN29vtkQuadratureSchemeDefinition10DICTIONARYEv_ZN29vtkQuadratureSchemeDefinition3IsAEPKc_ZN29vtkQuadratureSchemeDefinition5ClearEv_ZN29vtkQuadratureSchemeDefinition8DeepCopyEPKS__ZN29vtkQuadratureSchemeDefinition9SaveStateEP17vtkXMLDataElement_ZN29vtkQuadratureSchemeDefinition12RestoreStateEP17vtkXMLDataElement_ZN29vtkQuadratureSchemeDefinition10InitializeEiiiPd_ZN29vtkQuadratureSchemeDefinition10InitializeEiiiPdS0_PyvtkQuadratureSchemeDefinition_ClassNewPyVTKAddFile_vtkQuadratureSchemeDefinition_ZN10vtkQuadric15GetCoefficientsEv_ZN10vtkQuadric3NewEv_ZNK10vtkQuadric19NewInstanceInternalEv_ZN10vtkQuadric3IsAEPKc_ZN10vtkQuadric15SetCoefficientsEPd_ZN10vtkQuadric15SetCoefficientsEddddddddddPyvtkQuadric_ClassNewPyVTKAddFile_vtkQuadric_ZN10vtkQuadric16EvaluateGradientEPdS0__ZN10vtkQuadric16EvaluateFunctionEPd_ZN18vtkRectilinearGrid17GetDataObjectTypeEv_ZN18vtkRectilinearGrid14GetMaxCellSizeEv_ZN18vtkRectilinearGrid13GetDimensionsEv_ZN18vtkRectilinearGrid15GetXCoordinatesEv_ZN18vtkRectilinearGrid15GetYCoordinatesEv_ZN18vtkRectilinearGrid15GetZCoordinatesEv_ZN18vtkRectilinearGrid9GetExtentEv_ZN18vtkRectilinearGrid13GetExtentTypeEv_ZN18vtkRectilinearGrid16GetNumberOfCellsEv_ZN18vtkRectilinearGrid17GetNumberOfPointsEv_ZN18vtkRectilinearGrid3NewEv_ZNK18vtkRectilinearGrid19NewInstanceInternalEv_ZN18vtkRectilinearGrid7GetDataEP14vtkInformation_ZN18vtkRectilinearGrid7GetDataEP20vtkInformationVectori_ZN18vtkRectilinearGrid13GetPointCellsExP9vtkIdList_ZN18vtkRectilinearGrid13GetCellPointsExP9vtkIdList_ZN18vtkRectilinearGrid3IsAEPKc_ZN18vtkRectilinearGrid9GetPointsEP9vtkPoints_ZN18vtkRectilinearGrid28ComputeStructuredCoordinatesEPdPiS0__ZN18vtkRectilinearGrid13SetDimensionsEiii_ZN18vtkRectilinearGrid13SetDimensionsEPi_ZN18vtkRectilinearGrid9SetExtentEPi_ZN18vtkRectilinearGrid9SetExtentEiiiiiiPyvtkRectilinearGrid_ClassNewPyVTKAddFile_vtkRectilinearGrid_ZN18vtkRectilinearGrid4CropEPKi_ZN18vtkRectilinearGrid8DeepCopyEP13vtkDataObject_ZN18vtkRectilinearGrid11ShallowCopyEP13vtkDataObject_ZN18vtkRectilinearGrid19GetActualMemorySizeEv_ZN18vtkRectilinearGrid15SetZCoordinatesEP12vtkDataArray_ZN18vtkRectilinearGrid15SetYCoordinatesEP12vtkDataArray_ZN18vtkRectilinearGrid15SetXCoordinatesEP12vtkDataArray_ZN18vtkRectilinearGrid16GetCellNeighborsExP9vtkIdListS1__ZN18vtkRectilinearGrid13ComputeBoundsEv_ZN18vtkRectilinearGrid11GetCellTypeEx_ZN18vtkRectilinearGrid14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN18vtkRectilinearGrid8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN18vtkRectilinearGrid8FindCellEPdP7vtkCellxdRiS0_S0__ZN18vtkRectilinearGrid9FindPointEPd_ZN18vtkRectilinearGrid13GetCellBoundsExPd_ZN18vtkRectilinearGrid7GetCellEx_ZN18vtkRectilinearGrid7GetCellExP14vtkGenericCell_ZN18vtkRectilinearGrid7GetCellEiii_ZN18vtkRectilinearGrid8GetPointEiiiPd_ZN18vtkRectilinearGrid8GetPointEx_ZN18vtkRectilinearGrid8GetPointExPd_ZN18vtkRectilinearGrid10InitializeEv_ZN18vtkRectilinearGrid13CopyStructureEP10vtkDataSet_ZN12vtkReebGraph17GetDataObjectTypeEv_ZN12vtkReebGraph3NewEv_ZNK12vtkReebGraph19NewInstanceInternalEv_ZN12vtkReebGraph3IsAEPKc_ZN12vtkReebGraph11CloseStreamEv_ZN12vtkReebGraph3SetEP23vtkMutableDirectedGraph_ZN12vtkReebGraph8SimplifyEdP32vtkReebGraphSimplificationMetric_ZN12vtkReebGraph5BuildEP11vtkPolyDatax_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridx_ZN12vtkReebGraph5BuildEP11vtkPolyDataPKc_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridPKc_ZN12vtkReebGraph5BuildEP11vtkPolyDataP12vtkDataArray_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridP12vtkDataArray_ZN12vtkReebGraph14StreamTriangleExdxdxd_ZN12vtkReebGraph17StreamTetrahedronExdxdxdxdPyvtkReebGraph_ClassNewPyVTKAddFile_vtkReebGraph_ZN12vtkReebGraph8DeepCopyEP13vtkDataObject_ZN32vtkReebGraphSimplificationMetric13SetLowerBoundEd_ZN32vtkReebGraphSimplificationMetric13GetLowerBoundEv_ZN32vtkReebGraphSimplificationMetric13SetUpperBoundEd_ZN32vtkReebGraphSimplificationMetric13GetUpperBoundEv_ZN32vtkReebGraphSimplificationMetric3NewEv_ZNK32vtkReebGraphSimplificationMetric19NewInstanceInternalEv_ZN32vtkReebGraphSimplificationMetric3IsAEPKcPyvtkReebGraphSimplificationMetric_ClassNewPyVTKAddFile_vtkReebGraphSimplificationMetric_ZN32vtkReebGraphSimplificationMetric13ComputeMetricEP10vtkDataSetP12vtkDataArrayxP16vtkAbstractArrayx_ZN12vtkSelection17GetDataObjectTypeEv_ZN12vtkSelection3NewEv_ZNK12vtkSelection19NewInstanceInternalEv_ZN12vtkSelection7GetDataEP14vtkInformation_ZN12vtkSelection7GetDataEP20vtkInformationVectori_ZN12vtkSelection3IsAEPKc_ZN12vtkSelection16GetNumberOfNodesEvPyvtkSelection_ClassNewPyVTKAddFile_vtkSelection_ZN12vtkSelection4DumpEv_ZN12vtkSelection8GetMTimeEv_ZN12vtkSelection8SubtractEP16vtkSelectionNode_ZN12vtkSelection8SubtractEPS__ZN12vtkSelection5UnionEP16vtkSelectionNode_ZN12vtkSelection5UnionEPS__ZN12vtkSelection11ShallowCopyEP13vtkDataObject_ZN12vtkSelection8DeepCopyEP13vtkDataObject_ZN12vtkSelection14RemoveAllNodesEv_ZN12vtkSelection10RemoveNodeEP16vtkSelectionNode_ZN12vtkSelection10RemoveNodeEj_ZN12vtkSelection7AddNodeEP16vtkSelectionNode_ZN12vtkSelection7GetNodeEj_ZN12vtkSelection10InitializeEv_ZN16vtkSelectionNode16GetSelectionDataEv_ZN16vtkSelectionNode13GetPropertiesEv_ZN16vtkSelectionNode14GetQueryStringEv_ZN16vtkSelectionNode3NewEv_ZNK16vtkSelectionNode19NewInstanceInternalEv_ZN16vtkSelectionNode14SetQueryStringEPKc_ZN16vtkSelectionNode36ConvertAttributeTypeToSelectionFieldEi_ZN16vtkSelectionNode36ConvertSelectionFieldToAttributeTypeEi_ZN16vtkSelectionNode16INDEXED_VERTICESEv_ZN16vtkSelectionNode18HIERARCHICAL_INDEXEv_ZN16vtkSelectionNode18HIERARCHICAL_LEVELEv_ZN16vtkSelectionNode15COMPOSITE_INDEXEv_ZN16vtkSelectionNode10PROCESS_IDEv_ZN16vtkSelectionNode7PROP_IDEv_ZN16vtkSelectionNode4PROPEv_ZN16vtkSelectionNode9SOURCE_IDEv_ZN16vtkSelectionNode6SOURCEEv_ZN16vtkSelectionNode11PIXEL_COUNTEv_ZN16vtkSelectionNode7INVERSEEv_ZN16vtkSelectionNode16COMPONENT_NUMBEREv_ZN16vtkSelectionNode16CONTAINING_CELLSEv_ZN16vtkSelectionNode7EPSILONEv_ZN16vtkSelectionNode10FIELD_TYPEEv_ZN16vtkSelectionNode12CONTENT_TYPEEv_ZN16vtkSelectionNode3IsAEPKc_ZN16vtkSelectionNode18UnionSelectionListEPS__ZN16vtkSelectionNode21SubtractSelectionListEPS__ZN16vtkSelectionNode15EqualPropertiesEPS_b_Z44PyvtkSelectionNode_SelectionContent_FromEnumi_Z42PyvtkSelectionNode_SelectionField_FromEnumiPyvtkSelectionNode_ClassNewPyVTKAddFile_vtkSelectionNode_ZN16vtkSelectionNode12GetFieldTypeEv_ZN16vtkSelectionNode12SetFieldTypeEi_ZN16vtkSelectionNode14GetContentTypeEv_ZN16vtkSelectionNode14SetContentTypeEi_ZN16vtkSelectionNode8GetMTimeEv_ZN16vtkSelectionNode11ShallowCopyEPS__ZN16vtkSelectionNode8DeepCopyEPS__ZN16vtkSelectionNode16SetSelectionDataEP20vtkDataSetAttributes_ZN16vtkSelectionNode16GetSelectionListEv_ZN16vtkSelectionNode16SetSelectionListEP16vtkAbstractArray_ZN16vtkSelectionNode10InitializeEv_ZN24vtkSimpleCellTessellator14GetGenericCellEv_ZN24vtkSimpleCellTessellator3NewEv_ZNK24vtkSimpleCellTessellator19NewInstanceInternalEv_ZN24vtkSimpleCellTessellator3IsAEPKc_ZN24vtkSimpleCellTessellator5ResetEv_ZN24vtkSimpleCellTessellator20GetFixedSubdivisionsEv_ZN24vtkSimpleCellTessellator22GetMaxSubdivisionLevelEv_ZN24vtkSimpleCellTessellator26GetMaxAdaptiveSubdivisionsEv_ZN24vtkSimpleCellTessellator20SetFixedSubdivisionsEi_ZN24vtkSimpleCellTessellator22SetMaxSubdivisionLevelEi_ZN24vtkSimpleCellTessellator20SetSubdivisionLevelsEiiPyvtkSimpleCellTessellator_ClassNewPyVTKAddFile_vtkSimpleCellTessellator_ZN24vtkSimpleCellTessellator10InitializeEP17vtkGenericDataSet_ZN24vtkSimpleCellTessellator11TriangulateEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData_ZN24vtkSimpleCellTessellator10TessellateEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData_ZN24vtkSimpleCellTessellator14TessellateFaceEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionxP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData_ZN20vtkSmoothErrorMetric3NewEv_ZNK20vtkSmoothErrorMetric19NewInstanceInternalEv_ZN20vtkSmoothErrorMetric3IsAEPKc_ZN20vtkSmoothErrorMetric17GetAngleToleranceEv_ZN20vtkSmoothErrorMetric17SetAngleToleranceEdPyvtkSmoothErrorMetric_ClassNewPyVTKAddFile_vtkSmoothErrorMetric_ZN20vtkSmoothErrorMetric8GetErrorEPdS0_S0_d_ZN20vtkSmoothErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_d_ZN16vtkSortFieldData3NewEv_ZNK16vtkSortFieldData19NewInstanceInternalEv_ZN16vtkSortFieldData3IsAEPKc_ZN16vtkSortFieldData4SortEP12vtkFieldDataPKciiiPyvtkSortFieldData_ClassNewPyvtkSortDataArray_ClassNewPyVTKAddFile_vtkSortFieldData_ZN9vtkSphere9SetRadiusEd_ZN9vtkSphere9GetRadiusEv_ZN9vtkSphere9SetCenterEddd_ZN9vtkSphere9GetCenterEv_ZN9vtkSphere3NewEv_ZNK9vtkSphere19NewInstanceInternalEv_ZN9vtkSphere21ComputeBoundingSphereEPdxS0_Px_ZN9vtkSphere3IsAEPKc_ZN9vtkSphere9SetCenterEPdPyvtkSphere_ClassNewPyVTKAddFile_vtkSphere_ZN9vtkSphere16EvaluateGradientEPdS0__ZN9vtkSphere16EvaluateFunctionEPd_ZN9vtkSpline13SetClampValueEi_ZN9vtkSpline13GetClampValueEv_ZN9vtkSpline9SetClosedEi_ZN9vtkSpline9GetClosedEv_ZN9vtkSpline17SetLeftConstraintEi_ZN9vtkSpline25GetLeftConstraintMinValueEv_ZN9vtkSpline25GetLeftConstraintMaxValueEv_ZN9vtkSpline17GetLeftConstraintEv_ZN9vtkSpline18SetRightConstraintEi_ZN9vtkSpline26GetRightConstraintMinValueEv_ZN9vtkSpline26GetRightConstraintMaxValueEv_ZN9vtkSpline18GetRightConstraintEv_ZN9vtkSpline12SetLeftValueEd_ZN9vtkSpline12GetLeftValueEv_ZN9vtkSpline13SetRightValueEd_ZN9vtkSpline13GetRightValueEv_ZNK9vtkSpline19NewInstanceInternalEv_ZN9vtkSpline3IsAEPKc_ZN9vtkSpline12ClampValueOnEv_ZN9vtkSpline8ClosedOnEv_ZN9vtkSpline9ClosedOffEv_ZN9vtkSpline13ClampValueOffEv_ZN9vtkSpline15RemoveAllPointsEv_ZN9vtkSpline17GetNumberOfPointsEv_ZN9vtkSpline11RemovePointEd_ZN9vtkSpline8AddPointEdd_ZNK9vtkSpline18GetParametricRangeEPd_ZN9vtkSpline18SetParametricRangeEddPyvtkSpline_ClassNewPyVTKAddFile_vtkSpline_ZN9vtkSpline8DeepCopyEPS__ZN9vtkSpline8GetMTimeEv_ZN18vtkStaticCellLinks10BuildLinksEP10vtkDataSet_ZN18vtkStaticCellLinks3NewEv_ZNK18vtkStaticCellLinks19NewInstanceInternalEv_ZN26vtkStaticCellLinksTemplateIxE10InitializeEv_ZN18vtkStaticCellLinks3IsAEPKcPyvtkStaticCellLinks_ClassNewPyVTKAddFile_vtkStaticCellLinksPyVTKAddFile_vtkStaticCellLinksTemplate_ZN20vtkStaticCellLocator12SetDivisionsEiii_ZN20vtkStaticCellLocator12GetDivisionsEv_ZN20vtkStaticCellLocator21SetMaxNumberOfBucketsEx_ZN20vtkStaticCellLocator29GetMaxNumberOfBucketsMinValueEv_ZN20vtkStaticCellLocator29GetMaxNumberOfBucketsMaxValueEv_ZN20vtkStaticCellLocator21GetMaxNumberOfBucketsEv_ZN20vtkStaticCellLocator3NewEv_ZNK20vtkStaticCellLocator19NewInstanceInternalEv_ZN20vtkStaticCellLocator3IsAEPKc_ZN20vtkStaticCellLocator12SetDivisionsEPiPyvtkStaticCellLocator_ClassNewPyVTKAddFile_vtkStaticCellLocator_ZN20vtkStaticCellLocator12BuildLocatorEv_ZN20vtkStaticCellLocator19FreeSearchStructureEv_ZN20vtkStaticCellLocator22GenerateRepresentationEiP11vtkPolyData_ZN20vtkStaticCellLocator17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN20vtkStaticCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRx_ZN20vtkStaticCellLocator17IntersectWithLineEPKdS1_P9vtkPointsP9vtkIdList_ZN20vtkStaticCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRxP14vtkGenericCell_ZN20vtkStaticCellLocator21FindCellsWithinBoundsEPdP9vtkIdList_ZN20vtkStaticCellLocator8FindCellEPd_ZN20vtkStaticCellLocator8FindCellEPddP14vtkGenericCellS0_S0__ZN21vtkStaticPointLocator26SetNumberOfPointsPerBucketEi_ZN21vtkStaticPointLocator34GetNumberOfPointsPerBucketMinValueEv_ZN21vtkStaticPointLocator34GetNumberOfPointsPerBucketMaxValueEv_ZN21vtkStaticPointLocator26GetNumberOfPointsPerBucketEv_ZN21vtkStaticPointLocator12SetDivisionsEiii_ZN21vtkStaticPointLocator12GetDivisionsEv_ZN21vtkStaticPointLocator21SetMaxNumberOfBucketsEx_ZN21vtkStaticPointLocator29GetMaxNumberOfBucketsMinValueEv_ZN21vtkStaticPointLocator29GetMaxNumberOfBucketsMaxValueEv_ZN21vtkStaticPointLocator21GetMaxNumberOfBucketsEv_ZN21vtkStaticPointLocator3NewEv_ZNK21vtkStaticPointLocator19NewInstanceInternalEv_ZN21vtkStaticPointLocator3IsAEPKc_ZN21vtkStaticPointLocator12SetDivisionsEPi_ZN21vtkStaticPointLocator25GetNumberOfPointsInBucketEx_ZN21vtkStaticPointLocator12GetBucketIdsExP9vtkIdListPyvtkStaticPointLocator_ClassNewPyVTKAddFile_vtkStaticPointLocator_ZN21vtkStaticPointLocator22GenerateRepresentationEiP11vtkPolyData_ZN21vtkStaticPointLocator12BuildLocatorEv_ZN21vtkStaticPointLocator19FreeSearchStructureEv_ZN21vtkStaticPointLocator10InitializeEv_ZN21vtkStaticPointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN21vtkStaticPointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN21vtkStaticPointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN21vtkStaticPointLocator28FindClosestPointWithinRadiusEdPKddRd_ZN21vtkStaticPointLocator16FindClosestPointEPKd_ZN17vtkStructuredData16GetDataDimensionEPi_ZN17vtkStructuredData28GetDataDescriptionFromExtentEPi_ZN17vtkStructuredData18GetDataDescriptionEPi_ZN17vtkStructuredData9SetExtentEPiS0__ZN17vtkStructuredData13SetDimensionsEPiS0__ZNK17vtkStructuredData19NewInstanceInternalEv_ZN17vtkStructuredData16GetCellNeighborsExP9vtkIdListS1_Pi_ZN17vtkStructuredData16GetCellNeighborsExP9vtkIdListS1_PiS2__ZN17vtkStructuredData3IsAEPKcPyvtkStructuredData_ClassNewPyVTKAddFile_vtkStructuredData_ZN19vtkStructuredExtent3NewEv_ZNK19vtkStructuredExtent19NewInstanceInternalEv_ZN19vtkStructuredExtent3IsAEPKcPyvtkStructuredExtent_ClassNewPyVTKAddFile_vtkStructuredExtent_ZN17vtkStructuredGrid17GetDataObjectTypeEv_ZN17vtkStructuredGrid17GetNumberOfPointsEv_ZN17vtkStructuredGrid8GetPointEx_ZN17vtkStructuredGrid8GetPointExPd_ZN17vtkStructuredGrid14GetMaxCellSizeEv_ZN17vtkStructuredGrid9GetExtentEv_ZN17vtkStructuredGrid13GetExtentTypeEv_ZN17vtkStructuredGrid16GetNumberOfCellsEv_ZN17vtkStructuredGrid3NewEv_ZNK17vtkStructuredGrid19NewInstanceInternalEv_ZN17vtkStructuredGrid7GetDataEP14vtkInformation_ZN17vtkStructuredGrid7GetDataEP20vtkInformationVectori_ZN17vtkStructuredGrid13GetPointCellsExP9vtkIdList_ZN17vtkStructuredGrid3IsAEPKc_ZN17vtkStructuredGrid12UnBlankPointEx_ZN17vtkStructuredGrid9BlankCellEx_ZN17vtkStructuredGrid11UnBlankCellEx_ZN17vtkStructuredGrid10BlankPointEx_ZN17vtkStructuredGrid13IsCellVisibleEx_ZN17vtkStructuredGrid14IsPointVisibleEx_ZN17vtkStructuredGrid11GetCellDimsEPi_ZN17vtkStructuredGrid13SetDimensionsEiii_ZN17vtkStructuredGrid13SetDimensionsEPi_ZN17vtkStructuredGrid9SetExtentEPi_ZN17vtkStructuredGrid9SetExtentEiiiiii_ZN17vtkStructuredGrid8GetPointEiiiPdbPyvtkStructuredGrid_ClassNewPyVTKAddFile_vtkStructuredGrid_ZN17vtkStructuredGrid4CropEPKi_ZN17vtkStructuredGrid16HasAnyBlankCellsEv_ZN17vtkStructuredGrid17HasAnyBlankPointsEv_ZN17vtkStructuredGrid8DeepCopyEP13vtkDataObject_ZN17vtkStructuredGrid11ShallowCopyEP13vtkDataObject_ZN17vtkStructuredGrid19GetActualMemorySizeEv_ZN17vtkStructuredGrid13GetDimensionsEPi_ZN17vtkStructuredGrid13GetDimensionsEv_ZN17vtkStructuredGrid16GetCellNeighborsExP9vtkIdListS1_Pi_ZN17vtkStructuredGrid16GetCellNeighborsExP9vtkIdListS1__ZN17vtkStructuredGrid10InitializeEv_ZN17vtkStructuredGrid13GetCellPointsExP9vtkIdList_ZN17vtkStructuredGrid11GetCellTypeEx_ZN17vtkStructuredGrid13GetCellBoundsExPd_ZN17vtkStructuredGrid7GetCellEx_ZN17vtkStructuredGrid7GetCellExP14vtkGenericCell_ZN17vtkStructuredGrid7GetCellEiii_ZN17vtkStructuredGrid13CopyStructureEP10vtkDataSet_ZN29vtkStructuredPointsCollection3NewEv_ZNK29vtkStructuredPointsCollection19NewInstanceInternalEv_ZN29vtkStructuredPointsCollection3IsAEPKcPyvtkStructuredPointsCollection_ClassNewPyVTKAddFile_vtkStructuredPointsCollection_ZN19vtkStructuredPoints17GetDataObjectTypeEv_ZN19vtkStructuredPoints3NewEv_ZNK19vtkStructuredPoints19NewInstanceInternalEv_ZN19vtkStructuredPoints3IsAEPKcPyvtkStructuredPoints_ClassNewPyVTKAddFile_vtkStructuredPoints_ZN15vtkSuperquadric9SetCenterEddd_ZN15vtkSuperquadric9GetCenterEv_ZN15vtkSuperquadric8SetScaleEddd_ZN15vtkSuperquadric8GetScaleEv_ZN15vtkSuperquadric12GetThicknessEv_ZN15vtkSuperquadric12SetThicknessEd_ZN15vtkSuperquadric20GetThicknessMinValueEv_ZN15vtkSuperquadric20GetThicknessMaxValueEv_ZN15vtkSuperquadric15GetPhiRoundnessEv_ZN15vtkSuperquadric17GetThetaRoundnessEv_ZN15vtkSuperquadric7SetSizeEd_ZN15vtkSuperquadric7GetSizeEv_ZN15vtkSuperquadric11GetToroidalEv_ZN15vtkSuperquadric11SetToroidalEi_ZN15vtkSuperquadric3NewEv_ZNK15vtkSuperquadric19NewInstanceInternalEv_ZN15vtkSuperquadric3IsAEPKc_ZN15vtkSuperquadric10ToroidalOnEv_ZN15vtkSuperquadric11ToroidalOffEv_ZN15vtkSuperquadric9SetCenterEPd_ZN15vtkSuperquadric8SetScaleEPd_ZN15vtkSuperquadric17SetThetaRoundnessEd_ZN15vtkSuperquadric15SetPhiRoundnessEdPyvtkSuperquadric_ClassNewPyVTKAddFile_vtkSuperquadric_ZN15vtkSuperquadric16EvaluateGradientEPdS0__ZN15vtkSuperquadric16EvaluateFunctionEPd_ZN8vtkTable17GetDataObjectTypeEv_ZN8vtkTable10GetRowDataEv_ZN8vtkTable3NewEv_ZNK8vtkTable19NewInstanceInternalEv_ZN8vtkTable7GetDataEP14vtkInformation_ZN8vtkTable7GetDataEP20vtkInformationVectori_ZN8vtkTable3IsAEPKc_ZN8vtkTable15GetNumberOfRowsEv_ZN8vtkTable18GetNumberOfColumnsEv_ZN8vtkTable9AddColumnEP16vtkAbstractArray_ZN8vtkTable12RemoveColumnEx_ZN8vtkTable9RemoveRowEx_ZN8vtkTable15SetNumberOfRowsEx_ZN8vtkTable18RemoveColumnByNameEPKc_ZN8vtkTable13InsertNextRowEP15vtkVariantArray_ZN8vtkTable9GetColumnEx_ZN8vtkTable15GetColumnByNameEPKc_ZN8vtkTable18InsertNextBlankRowEd_ZN8vtkTable6SetRowExP15vtkVariantArray_ZN8vtkTable13GetColumnNameEx_ZN8vtkTable8GetValueExx_ZN10vtkVariantD1Ev_ZN8vtkTable14GetValueByNameExPKc_ZN8vtkTable4DumpEji_ZN10vtkVariantC1ERKS__ZN8vtkTable8SetValueExx10vtkVariant_ZN8vtkTable14SetValueByNameExPKc10vtkVariant_ZN8vtkTable6GetRowEx_ZN8vtkTable6GetRowExP15vtkVariantArrayPyvtkTable_ClassNewPyVTKAddFile_vtkTable_ZN8vtkTable19GetNumberOfElementsEi_ZN8vtkTable24GetAttributesAsFieldDataEi_ZN8vtkTable8DeepCopyEP13vtkDataObject_ZN8vtkTable11ShallowCopyEP13vtkDataObject_ZN8vtkTable10InitializeEv_ZN8vtkTable10SetRowDataEP20vtkDataSetAttributes_ZN8vtkTable19GetActualMemorySizeEv_ZN8vtkTetra11GetCellTypeEv_ZN8vtkTetra16GetNumberOfEdgesEv_ZN8vtkTetra16GetNumberOfFacesEv_ZN8vtkTetra19GetParametricCenterEPd_ZN8vtkTetra3NewEv_ZNK8vtkTetra19NewInstanceInternalEv_ZN8vtkTetra12GetFaceArrayEi_ZN8vtkTetra12GetEdgeArrayEi_ZN8vtkTetra17InterpolateDerivsEPdS0__ZN8vtkTetra19InterpolationDerivsEPdS0__ZN8vtkTetra20InterpolateFunctionsEPdS0__ZN8vtkTetra22InterpolationFunctionsEPdS0__ZN8vtkTetra13ComputeVolumeEPdS0_S0_S0__ZN8vtkTetra17BarycentricCoordsEPdS0_S0_S0_S0_S0__ZN8vtkTetra8InsphereEPdS0_S0_S0_S0__ZN8vtkTetra12CircumsphereEPdS0_S0_S0_S0__ZN8vtkTetra11TetraCenterEPdS0_S0_S0_S0__ZN8vtkTetra3IsAEPKcPyvtkTetra_ClassNewPyVTKAddFile_vtkTetra_ZN8vtkTetra21GetParametricDistanceEPd_ZN8vtkTetra12CellBoundaryEiPdP9vtkIdList_ZN8vtkTetra19GetParametricCoordsEv_ZN8vtkTetra11DerivativesEiPdS0_iS0__ZN8vtkTetra11TriangulateEiP9vtkIdListP9vtkPoints_ZN8vtkTetra17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN8vtkTetra16EvaluateLocationERiPdS1_S1__ZN8vtkTetra16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkTetra4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN8vtkTetra7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN8vtkTetra7GetFaceEi_ZN8vtkTetra7GetEdgeEi_ZN8vtkTetra13GetFacePointsEiRPi_ZN8vtkTetra13GetEdgePointsEiRPi_ZN18vtkTreeBFSIterator3NewEv_ZNK18vtkTreeBFSIterator19NewInstanceInternalEv_ZN18vtkTreeBFSIterator3IsAEPKcPyvtkTreeBFSIterator_ClassNewPyvtkTreeIterator_ClassNewPyVTKAddFile_vtkTreeBFSIterator_ZN7vtkTree17GetDataObjectTypeEv_ZN7vtkTree7GetRootEv_ZN7vtkTree3NewEv_ZNK7vtkTree19NewInstanceInternalEv_ZN7vtkTree7GetDataEP14vtkInformation_ZN7vtkTree7GetDataEP20vtkInformationVectori_ZN7vtkTree3IsAEPKc_ZN7vtkTree6IsLeafEx_ZN7vtkTree9GetParentEx_ZN7vtkTree8GetLevelEx_ZN7vtkTree13GetParentEdgeEx_ZN7vtkTree8GetChildExxPyvtkTree_ClassNewPyVTKAddFile_vtkTree_ZN7vtkTree15ReorderChildrenExP14vtkIdTypeArray_ZN18vtkTreeDFSIterator7GetModeEv_ZN18vtkTreeDFSIterator3NewEv_ZNK18vtkTreeDFSIterator19NewInstanceInternalEv_ZN18vtkTreeDFSIterator3IsAEPKc_ZN18vtkTreeDFSIterator7SetModeEi_Z38PyvtkTreeDFSIterator_ModeType_FromEnumiPyvtkTreeDFSIterator_ClassNewPyVTKAddFile_vtkTreeDFSIterator_ZN11vtkTriangle11GetCellTypeEv_ZN11vtkTriangle16GetCellDimensionEv_ZN11vtkTriangle16GetNumberOfEdgesEv_ZN11vtkTriangle16GetNumberOfFacesEv_ZN11vtkTriangle7GetFaceEi_ZN11vtkTriangle19GetParametricCenterEPd_ZN11vtkTriangle3NewEv_ZNK11vtkTriangle19NewInstanceInternalEv_ZN11vtkTriangle14ComputeQuadricEPdS0_S0_P10vtkQuadric_ZN13vtkPythonArgs9GetNArrayEPdiPKi_ZN11vtkTriangle14ComputeQuadricEPdS0_S0_PA4_d_ZN13vtkPythonArgs9SetNArrayEiPKdiPKi_ZN11vtkTriangle15PointInTriangleEPdS0_S0_S0_d_ZN11vtkTriangle18TrianglesIntersectEPdS0_S0_S0_S0_S0_sqrt_ZN11vtkTriangle13ComputeNormalEP9vtkPointsiPxPd_ZN11vtkTriangle11ProjectTo2DEPdS0_S0_S0_S0_S0__ZN11vtkTriangle17BarycentricCoordsEPdS0_S0_S0_S0__ZN11vtkTriangle12CircumcircleEPdS0_S0_S0__ZN11vtkTriangle17InterpolateDerivsEPdS0__ZN11vtkTriangle19InterpolationDerivsEPdS0__ZN11vtkTriangle20InterpolateFunctionsEPdS0__ZN11vtkTriangle22InterpolationFunctionsEPdS0__ZN11vtkTriangle3IsAEPKc_ZN11vtkTriangle11ComputeAreaEv_ZN11vtkTriangle12GetEdgeArrayEiPyvtkTriangle_ClassNewPyVTKAddFile_vtkTriangle_ZN11vtkTriangle21GetParametricDistanceEPd_ZN11vtkTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN11vtkTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN11vtkTriangle19GetParametricCoordsEv_ZN11vtkTriangle11DerivativesEiPdS0_iS0__ZN11vtkTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkTriangle16EvaluateLocationERiPdS1_S1__ZN11vtkTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN11vtkTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN11vtkTriangle12CellBoundaryEiPdP9vtkIdList_ZN11vtkTriangle7GetEdgeEi_ZN16vtkTriangleStrip11GetCellTypeEv_ZN16vtkTriangleStrip16GetCellDimensionEv_ZN16vtkTriangleStrip16GetNumberOfEdgesEv_ZN16vtkTriangleStrip16GetNumberOfFacesEv_ZN16vtkTriangleStrip7GetFaceEi_ZN16vtkTriangleStrip13IsPrimaryCellEv_ZN16vtkTriangleStrip3NewEv_ZNK16vtkTriangleStrip19NewInstanceInternalEv_ZN16vtkTriangleStrip14DecomposeStripEiPxP12vtkCellArray_ZN16vtkTriangleStrip3IsAEPKcPyvtkTriangleStrip_ClassNewPyVTKAddFile_vtkTriangleStrip_ZN16vtkTriangleStrip19GetParametricCenterEPd_ZN16vtkTriangleStrip11DerivativesEiPdS0_iS0__ZN16vtkTriangleStrip11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkTriangleStrip17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkTriangleStrip16EvaluateLocationERiPdS1_S1__ZN16vtkTriangleStrip16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkTriangleStrip4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkTriangleStrip7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkTriangleStrip12CellBoundaryEiPdP9vtkIdList_ZN16vtkTriangleStrip7GetEdgeEi_ZN25vtkTriQuadraticHexahedron11GetCellTypeEv_ZN25vtkTriQuadraticHexahedron16GetCellDimensionEv_ZN25vtkTriQuadraticHexahedron16GetNumberOfEdgesEv_ZN25vtkTriQuadraticHexahedron16GetNumberOfFacesEv_ZN25vtkTriQuadraticHexahedron3NewEv_ZNK25vtkTriQuadraticHexahedron19NewInstanceInternalEv_ZN25vtkTriQuadraticHexahedron12GetFaceArrayEi_ZN25vtkTriQuadraticHexahedron17InterpolateDerivsEPdS0__ZN25vtkTriQuadraticHexahedron19InterpolationDerivsEPdS0__ZN25vtkTriQuadraticHexahedron20InterpolateFunctionsEPdS0__ZN25vtkTriQuadraticHexahedron22InterpolationFunctionsEPdS0__ZN25vtkTriQuadraticHexahedron3IsAEPKc_ZN25vtkTriQuadraticHexahedron12GetEdgeArrayEiPyvtkTriQuadraticHexahedron_ClassNewPyVTKAddFile_vtkTriQuadraticHexahedron_ZN25vtkTriQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN25vtkTriQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN25vtkTriQuadraticHexahedron19GetParametricCoordsEv_ZN25vtkTriQuadraticHexahedron11DerivativesEiPdS0_iS0__ZN25vtkTriQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN25vtkTriQuadraticHexahedron16EvaluateLocationERiPdS1_S1__ZN25vtkTriQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN25vtkTriQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN25vtkTriQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_ZN25vtkTriQuadraticHexahedron7GetFaceEi_ZN25vtkTriQuadraticHexahedron7GetEdgeEi_ZN18vtkUndirectedGraph17GetDataObjectTypeEv_ZN18vtkUndirectedGraph3NewEv_ZNK18vtkUndirectedGraph19NewInstanceInternalEv_ZN18vtkUndirectedGraph7GetDataEP14vtkInformation_ZN18vtkUndirectedGraph7GetDataEP20vtkInformationVectori_ZN18vtkUndirectedGraph3IsAEPKcPyVTKAddFile_vtkUndirectedGraph_ZN18vtkUndirectedGraph16IsStructureValidEP8vtkGraph_ZN18vtkUndirectedGraph10GetInEdgesExP17vtkInEdgeIterator_ZN18vtkUndirectedGraph9GetInEdgeExxP12vtkGraphEdge_ZN18vtkUndirectedGraph9GetInEdgeExx_ZN18vtkUndirectedGraph11GetInDegreeEx_ZN14vtkUniformGrid17GetDataObjectTypeEv_ZN14vtkUniformGrid14GetMaxCellSizeEv_ZN14vtkUniformGrid3NewEv_ZNK14vtkUniformGrid19NewInstanceInternalEv_ZN14vtkUniformGrid7GetDataEP14vtkInformation_ZN14vtkUniformGrid7GetDataEP20vtkInformationVectori_ZN14vtkUniformGrid13GetPointCellsExP9vtkIdList_ZN14vtkUniformGrid13GetCellPointsExP9vtkIdList_ZN14vtkUniformGrid3IsAEPKc_ZN14vtkUniformGrid18GetGridDescriptionEvPyvtkUniformGrid_ClassNewPyVTKAddFile_vtkUniformGrid_ZN14vtkUniformGrid16NewImageDataCopyEv_ZN14vtkUniformGrid13IsCellVisibleEx_ZN14vtkUniformGrid14IsPointVisibleEx_ZN14vtkUniformGrid17HasAnyBlankPointsEv_ZN14vtkUniformGrid16HasAnyBlankCellsEv_ZN14vtkUniformGrid11UnBlankCellEx_ZN14vtkUniformGrid11UnBlankCellEiii_ZN14vtkUniformGrid9BlankCellEx_ZN14vtkUniformGrid9BlankCellEiii_ZN14vtkUniformGrid12UnBlankPointEx_ZN14vtkUniformGrid12UnBlankPointEiii_ZN14vtkUniformGrid10BlankPointEx_ZN14vtkUniformGrid10BlankPointEiii_ZN14vtkUniformGrid10InitializeEv_ZN14vtkUniformGrid11GetCellTypeEx_ZN14vtkUniformGrid14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN14vtkUniformGrid8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN14vtkUniformGrid8FindCellEPdP7vtkCellxdRiS0_S0__ZN14vtkUniformGrid7GetCellEx_ZN14vtkUniformGrid7GetCellExP14vtkGenericCell_ZN14vtkUniformGrid7GetCellEiii_ZN14vtkUniformGrid13CopyStructureEP10vtkDataSet_ZN19vtkUnstructuredGrid17GetDataObjectTypeEv_ZN19vtkUnstructuredGrid3NewEv_ZNK19vtkUnstructuredGrid19NewInstanceInternalEv_ZN19vtkUnstructuredGrid24DecomposeAPolyhedronCellExPxRxP12vtkCellArrayP14vtkIdTypeArray_ZN19vtkUnstructuredGrid24DecomposeAPolyhedronCellEPxRxS1_P12vtkCellArrayP14vtkIdTypeArray_ZN19vtkUnstructuredGrid24DecomposeAPolyhedronCellEP12vtkCellArrayRxS2_S1_P14vtkIdTypeArray_ZN19vtkUnstructuredGrid7GetDataEP14vtkInformation_ZN19vtkUnstructuredGrid7GetDataEP20vtkInformationVectori_ZN19vtkUnstructuredGrid25ConvertFaceStreamPointIdsExPxS0__ZN19vtkUnstructuredGrid25ConvertFaceStreamPointIdsEP9vtkIdListPx_ZN19vtkUnstructuredGrid3IsAEPKc_ZN19vtkUnstructuredGrid10BuildLinksEv_ZN19vtkUnstructuredGrid16RemoveGhostCellsEv_ZN19vtkUnstructuredGrid5ResetEv_ZN19vtkUnstructuredGrid29InitializeFacesRepresentationEx_ZN19vtkUnstructuredGrid21RemoveReferenceToCellExx_ZN19vtkUnstructuredGrid8SetCellsEiP12vtkCellArray_ZN19vtkUnstructuredGrid18AddReferenceToCellExx_ZN19vtkUnstructuredGrid14ResizeCellListExi_ZN19vtkUnstructuredGrid8SetCellsEPiP12vtkCellArray_ZN19vtkUnstructuredGrid20InsertNextLinkedCellEiiPx_ZN19vtkUnstructuredGrid8GetFacesEx_ZN19vtkUnstructuredGrid13GetFaceStreamExRxRPx_ZN19vtkUnstructuredGrid13GetFaceStreamExP9vtkIdList_ZN19vtkUnstructuredGrid8SetCellsEP20vtkUnsignedCharArrayP14vtkIdTypeArrayP12vtkCellArrayS3_S3__ZN19vtkUnstructuredGrid8SetCellsEP20vtkUnsignedCharArrayP14vtkIdTypeArrayP12vtkCellArrayPyvtkUnstructuredGrid_ClassNewPyvtkUnstructuredGridBase_ClassNewPyVTKAddFile_vtkUnstructuredGrid_ZN19vtkUnstructuredGrid12GetMeshMTimeEv_ZN19vtkUnstructuredGrid13IsHomogeneousEv_ZN19vtkUnstructuredGrid19GetIdsOfCellsOfTypeEiP14vtkIdTypeArray_ZN19vtkUnstructuredGrid8DeepCopyEP13vtkDataObject_ZN19vtkUnstructuredGrid11ShallowCopyEP13vtkDataObject_ZN19vtkUnstructuredGrid19GetActualMemorySizeEv_ZN19vtkUnstructuredGrid13GetGhostLevelEv_ZN19vtkUnstructuredGrid17GetNumberOfPiecesEv_ZN19vtkUnstructuredGrid8GetPieceEv_ZN19vtkUnstructuredGrid16GetCellNeighborsExP9vtkIdListS1__ZN19vtkUnstructuredGrid11ReplaceCellExiPx_ZN19vtkUnstructuredGrid14GetMaxCellSizeEv_ZN19vtkUnstructuredGrid10InitializeEv_ZN19vtkUnstructuredGrid7SqueezeEv_ZN19vtkUnstructuredGrid11GetCellTypeEx_ZN19vtkUnstructuredGrid15NewCellIteratorEv_ZN19vtkUnstructuredGrid13GetPointCellsExP9vtkIdList_ZN19vtkUnstructuredGrid13GetCellPointsExP9vtkIdList_ZN19vtkUnstructuredGrid13GetCellPointsExRxRPx_ZN19vtkUnstructuredGrid13GetCellBoundsExPd_ZN19vtkUnstructuredGrid7GetCellEx_ZN19vtkUnstructuredGrid7GetCellExP14vtkGenericCell_ZN19vtkUnstructuredGrid16GetNumberOfCellsEv_ZN19vtkUnstructuredGrid13CopyStructureEP10vtkDataSet_ZN19vtkUnstructuredGrid14InsertNextCellEiP9vtkIdList_ZN19vtkUnstructuredGrid14InsertNextCellEixPx_ZN19vtkUnstructuredGrid14InsertNextCellEixPxxS0__ZN19vtkUnstructuredGrid8AllocateExi_ZN23vtkUnstructuredGridBase17GetDataObjectTypeEv_ZN23vtkUnstructuredGridBase7GetDataEP14vtkInformation_ZN23vtkUnstructuredGridBase7GetDataEP20vtkInformationVectori_ZN23vtkUnstructuredGridBase3IsAEPKcPyVTKAddFile_vtkUnstructuredGridBase_ZN23vtkUnstructuredGridBase8DeepCopyEP13vtkDataObject_ZN31vtkUnstructuredGridCellIterator3NewEv_ZNK31vtkUnstructuredGridCellIterator19NewInstanceInternalEv_ZN31vtkUnstructuredGridCellIterator3IsAEPKcPyvtkUnstructuredGridCellIterator_ClassNewPyVTKAddFile_vtkUnstructuredGridCellIterator_ZN31vtkUnstructuredGridCellIterator9GetCellIdEv_ZN31vtkUnstructuredGridCellIterator19IsDoneWithTraversalEv_ZN9vtkVertex11GetCellTypeEv_ZN9vtkVertex16GetCellDimensionEv_ZN9vtkVertex16GetNumberOfEdgesEv_ZN9vtkVertex16GetNumberOfFacesEv_ZN9vtkVertex7GetEdgeEi_ZN9vtkVertex7GetFaceEi_ZN9vtkVertex19GetParametricCenterEPd_ZN9vtkVertex3NewEv_ZNK9vtkVertex19NewInstanceInternalEv_ZN9vtkVertex17InterpolateDerivsEPdS0__ZN9vtkVertex19InterpolationDerivsEPdS0__ZN9vtkVertex20InterpolateFunctionsEPdS0__ZN9vtkVertex22InterpolationFunctionsEPdS0__ZN9vtkVertex3IsAEPKcPyvtkVertex_ClassNewPyVTKAddFile_vtkVertex_ZN9vtkVertex11DerivativesEiPdS0_iS0__ZN9vtkVertex11TriangulateEiP9vtkIdListP9vtkPoints_ZN9vtkVertex17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN9vtkVertex7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN9vtkVertex12CellBoundaryEiPdP9vtkIdList_ZN9vtkVertex19GetParametricCoordsEv_ZN9vtkVertex16EvaluateLocationERiPdS1_S1__ZN9vtkVertex16EvaluatePositionEPdS0_RiS0_RdS0__ZN9vtkVertex4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN21vtkVertexListIterator8GetGraphEv_ZN21vtkVertexListIterator3NewEv_ZNK21vtkVertexListIterator19NewInstanceInternalEv_ZN21vtkVertexListIterator3IsAEPKcPyvtkVertexListIterator_ClassNewPyVTKAddFile_vtkVertexListIterator_ZN21vtkVertexListIterator8SetGraphEP8vtkGraph_ZN8vtkVoxel11GetCellTypeEv_ZN8vtkVoxel16GetCellDimensionEv_ZN8vtkVoxel16GetNumberOfEdgesEv_ZN8vtkVoxel16GetNumberOfFacesEv_ZN8vtkVoxel3NewEv_ZNK8vtkVoxel19NewInstanceInternalEv_ZN8vtkVoxel12GetFaceArrayEi_ZN8vtkVoxel12GetEdgeArrayEi_ZN8vtkVoxel20InterpolateFunctionsEPdS0__ZN8vtkVoxel22InterpolationFunctionsEPdS0__ZN8vtkVoxel17InterpolateDerivsEPdS0__ZN8vtkVoxel19InterpolationDerivsEPdS0__ZN8vtkVoxel3IsAEPKcPyvtkVoxel_ClassNewPyVTKAddFile_vtkVoxel_ZN8vtkVoxel11DerivativesEiPdS0_iS0__ZN8vtkVoxel11TriangulateEiP9vtkIdListP9vtkPoints_ZN8vtkVoxel17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN8vtkVoxel16EvaluateLocationERiPdS1_S1__ZN8vtkVoxel16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkVoxel7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN8vtkVoxel12CellBoundaryEiPdP9vtkIdList_ZN8vtkVoxel7GetFaceEi_ZN8vtkVoxel7GetEdgeEi_ZN8vtkVoxel19GetParametricCoordsEv_ZN8vtkVoxel13GetFacePointsEiRPi_ZN8vtkVoxel13GetEdgePointsEiRPi_ZN8vtkWedge11GetCellTypeEv_ZN8vtkWedge16GetCellDimensionEv_ZN8vtkWedge16GetNumberOfEdgesEv_ZN8vtkWedge16GetNumberOfFacesEv_ZN8vtkWedge19GetParametricCenterEPd_ZN8vtkWedge3NewEv_ZNK8vtkWedge19NewInstanceInternalEv_ZN8vtkWedge12GetFaceArrayEi_ZN8vtkWedge12GetEdgeArrayEi_ZN8vtkWedge17InterpolateDerivsEPdS0__ZN8vtkWedge19InterpolationDerivsEPdS0__ZN8vtkWedge20InterpolateFunctionsEPdS0__ZN8vtkWedge22InterpolationFunctionsEPdS0__ZN8vtkWedge3IsAEPKcPyvtkWedge_ClassNewPyVTKAddFile_vtkWedge_ZN8vtkWedge19GetParametricCoordsEv_ZN8vtkWedge11DerivativesEiPdS0_iS0__ZN8vtkWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN8vtkWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN8vtkWedge16EvaluateLocationERiPdS1_S1__ZN8vtkWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN8vtkWedge12CellBoundaryEiPdP9vtkIdList_ZN8vtkWedge7GetFaceEi_ZN8vtkWedge7GetEdgeEi_ZN8vtkWedge13GetFacePointsEiRPi_ZN8vtkWedge13GetEdgePointsEiRPi_ZN17vtkXMLDataElement7GetNameEv_ZN17vtkXMLDataElement5GetIdEv_ZN17vtkXMLDataElement16GetCharacterDataEv_ZN17vtkXMLDataElement21GetNumberOfAttributesEv_ZN17vtkXMLDataElement15GetXMLByteIndexEv_ZN17vtkXMLDataElement15SetXMLByteIndexEx_ZN17vtkXMLDataElement20SetAttributeEncodingEi_ZN17vtkXMLDataElement28GetAttributeEncodingMinValueEv_ZN17vtkXMLDataElement28GetAttributeEncodingMaxValueEv_ZN17vtkXMLDataElement20GetAttributeEncodingEv_ZN17vtkXMLDataElement21GetCharacterDataWidthEv_ZN17vtkXMLDataElement21SetCharacterDataWidthEi_ZN17vtkXMLDataElement3NewEv_ZNK17vtkXMLDataElement19NewInstanceInternalEv_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPd_ZN17vtkXMLDataElement5SetIdEPKc_ZN17vtkXMLDataElement3IsAEPKc_ZN17vtkXMLDataElement9GetParentEv_ZN17vtkXMLDataElement25GetNumberOfNestedElementsEv_ZN17vtkXMLDataElement16AddNestedElementEPS__ZN17vtkXMLDataElement9SetParentEPS__ZN17vtkXMLDataElement8PrintXMLEPKc_ZN17vtkXMLDataElement16GetNestedElementEi_ZN17vtkXMLDataElement17FindNestedElementEPKc_ZN17vtkXMLDataElement13LookupElementEPKc_ZN17vtkXMLDataElement25FindNestedElementWithNameEPKc_ZN17vtkXMLDataElement21LookupElementWithNameEPKc_ZN17vtkXMLDataElement16SetCharacterDataEPKci_ZN17vtkXMLDataElement18SetDoubleAttributeEPKcd_ZN13vtkPythonArgs8GetValueERm_ZN17vtkXMLDataElement24SetUnsignedLongAttributeEPKcm_ZN17vtkXMLDataElement15SetIntAttributeEPKci_ZN17vtkXMLDataElement17SetFloatAttributeEPKcf_ZN17vtkXMLDataElement12SetAttributeEPKcS1__ZN17vtkXMLDataElement30FindNestedElementWithNameAndIdEPKcS1__ZN17vtkXMLDataElement16GetAttributeNameEi_ZN17vtkXMLDataElement17GetAttributeValueEi_ZN17vtkXMLDataElement12GetAttributeEPKc_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRx_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRi_ZN17vtkXMLDataElement20GetWordTypeAttributeEPKcRi_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRd_ZN13vtkPythonArgs8GetValueERl_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRl_ZN13vtkPythonArgs11SetArgValueEil_ZN17vtkXMLDataElement37FindNestedElementWithNameAndAttributeEPKcS1_S1__ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKd_ZN13vtkPythonArgs5ArrayImEC1El_ZN13vtkPythonArgs8GetArrayEPmi_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKm_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKi_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKxrealloc_ZN13vtkPythonArgs5ArrayIlEC1El_ZN13vtkPythonArgs8GetArrayEPli_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPl_ZN13vtkPythonArgs8SetArrayEiPKli_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPx_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPiPyvtkXMLDataElement_ClassNewPyVTKAddFile_vtkXMLDataElement_ZN17vtkXMLDataElement8DeepCopyEPS__ZN17vtkXMLDataElement9IsEqualToEPS__ZN17vtkXMLDataElement23RemoveAllNestedElementsEv_ZN17vtkXMLDataElement19RemoveNestedElementEPS__ZN17vtkXMLDataElement7GetRootEv_ZN17vtkXMLDataElement19RemoveAllAttributesEv_ZN17vtkXMLDataElement15RemoveAttributeEPKc_ZN17vtkXMLDataElement7SetNameEPKc_ZN15vtkTreeIterator7GetTreeEv_ZN15vtkTreeIterator14GetStartVertexEv_ZNK15vtkTreeIterator19NewInstanceInternalEv_ZN15vtkTreeIterator3IsAEPKc_ZN15vtkTreeIterator7RestartEv_ZN15vtkTreeIterator4NextEv_ZN15vtkTreeIterator7HasNextEv_ZN15vtkTreeIterator14SetStartVertexEx_ZN15vtkTreeIterator7SetTreeEP7vtkTreePyVTKAddFile_vtkTreeIterator_ZN14vtkBoundingBox9SetBoundsEdddddd_ZNK14vtkBoundingBox12GetMaxLengthEv_ZNK14vtkBoundingBox17GetDiagonalLengthEv_ZN14vtkBoundingBox6AddBoxERKS__ZNK14vtkBoundingBox10IntersectsERKS__ZNK14vtkBoundingBox8ContainsERKS__ZN14vtkBoundingBox12IntersectBoxERKS__ZN14vtkBoundingBox9AddBoundsEPKd_ZN14vtkBoundingBox14IntersectPlaneEPdS0__ZNK14vtkBoundingBox16ComputeDivisionsExPdPi_ZN14vtkBoundingBox7InflateEv_ZN14vtkBoundingBox7InflateEd_ZN14vtkBoundingBox8AddPointEddd_ZN14vtkBoundingBox8AddPointEPd_ZN14vtkBoundingBox5ScaleEddd_ZN14vtkBoundingBox5ScaleEPd_ZN14vtkBoundingBox11SetMinPointEddd_ZN14vtkBoundingBox11SetMaxPointEdddPyvtkBoundingBox_TypeNewPyVTKAddFile_vtkBoundingBox_ZNK7vtkAtom15GetAtomicNumberEv_ZN7vtkAtom15SetAtomicNumberEt_ZN7vtkAtom11SetPositionEPKf_ZN7vtkAtom11SetPositionERK11vtkVector3f_ZN7vtkAtom11SetPositionEfff_ZNK7vtkAtom11GetPositionEv_ZNK7vtkAtom11GetPositionEPdPyvtkAtom_TypeNewPyVTKAddFile_vtkAtom_ZN7vtkBond10GetEndAtomEv_ZNK7vtkBond14GetBeginAtomIdEv_ZNK7vtkBond12GetEndAtomIdEv_ZN7vtkBond8GetOrderEv_ZNK7vtkBond9GetLengthEv_ZN7vtkBond12GetBeginAtomEvPyvtkBond_TypeNewPyVTKAddFile_vtkBond_ZN11vtkMolecule17GetDataObjectTypeEv_ZN11vtkMolecule17GetElectronicDataEv_ZN11vtkMolecule16GetLatticeOriginEv_ZN11vtkMolecule16SetLatticeOriginE11vtkVector3d_ZN11vtkMolecule3NewEv_ZNK11vtkMolecule19NewInstanceInternalEv_ZN11vtkMolecule16GetPlaneFromBondERK7vtkBondRK11vtkVector3fP8vtkPlane_ZN11vtkMolecule16GetPlaneFromBondERK7vtkAtomS2_RK11vtkVector3fP8vtkPlane_ZN11vtkMolecule3IsAEPKc_ZN11vtkMolecule12ClearLatticeEv_ZN11vtkMolecule10HasLatticeEv_ZN11vtkMolecule22GetAtomicPositionArrayEv_ZN11vtkMolecule16GetNumberOfAtomsEv_ZN11vtkMolecule16GetNumberOfBondsEv_ZN11vtkMolecule20GetAtomicNumberArrayEv_ZN11vtkMolecule12GetBondOrderEx_ZN11vtkMolecule19GetAtomAtomicNumberEx_ZN11vtkMolecule13GetBondLengthEx_ZN11vtkMolecule7GetAtomEx_ZN11vtkMolecule7GetBondEx_ZN11vtkMolecule19SetAtomAtomicNumberExt_ZN11vtkMolecule12SetBondOrderExt_ZN11vtkMolecule10AppendBondExxt_ZN11vtkMolecule15GetAtomPositionEx_ZN11vtkMolecule15GetAtomPositionExPf_ZN11vtkMolecule15SetAtomPositionExRK11vtkVector3f_ZN11vtkMolecule15SetAtomPositionExddd_ZN11vtkMolecule10SetLatticeEP12vtkMatrix3x3_ZN11vtkMolecule10SetLatticeERK11vtkVector3dS2_S2__ZN11vtkMolecule10GetLatticeEv_ZN11vtkMolecule10GetLatticeER11vtkVector3dS1_S1__ZN11vtkMolecule10GetLatticeER11vtkVector3dS1_S1_S1__ZN11vtkMolecule10AppendAtomEtRK11vtkVector3fPyvtkMolecule_ClassNewPyVTKAddFile_vtkMolecule_ZN11vtkMolecule18DeepCopyAttributesEPS__ZN11vtkMolecule21ShallowCopyAttributesEPS__ZN11vtkMolecule17DeepCopyStructureEPS__ZN11vtkMolecule20ShallowCopyStructureEPS__ZN11vtkMolecule8DeepCopyEP13vtkDataObject_ZN11vtkMolecule11ShallowCopyEP13vtkDataObject_ZN11vtkMolecule15CheckedDeepCopyEP8vtkGraph_ZN11vtkMolecule18CheckedShallowCopyEP8vtkGraph_ZN11vtkMolecule17SetElectronicDataEP25vtkAbstractElectronicData_ZN11vtkMolecule10InitializeEv_ZN25vtkAbstractElectronicData10GetPaddingEv_ZNK25vtkAbstractElectronicData19NewInstanceInternalEv_ZN25vtkAbstractElectronicData3IsAEPKcPyvtkAbstractElectronicData_ClassNewPyVTKAddFile_vtkAbstractElectronicData_ZN25vtkAbstractElectronicData8DeepCopyEP13vtkDataObjectPyVTKAddFile_vtkCellTypePyVTKAddFile_vtkDataArrayDispatcherPyVTKAddFile_vtkDispatcherPyVTKAddFile_vtkDoubleDispatcherPyvtkVector_IdLi4EE_TypeNewPyvtkTuple_IdLi4EE_TypeNewPyvtkVector_IfLi4EE_TypeNewPyvtkTuple_IfLi4EE_TypeNewPyvtkVector_IiLi4EE_TypeNewPyvtkTuple_IiLi4EE_TypeNewPyvtkVector_IdLi2EE_TypeNewPyvtkTuple_IdLi2EE_TypeNewPyvtkVector_IfLi2EE_TypeNewPyvtkTuple_IfLi2EE_TypeNewPyvtkVector_IiLi2EE_TypeNewPyvtkTuple_IiLi2EE_TypeNewPyvtkVector_IdLi3EE_TypeNewPyvtkTuple_IdLi3EE_TypeNewPyvtkVector_IfLi3EE_TypeNewPyvtkTuple_IfLi3EE_TypeNewPyvtkVector_IiLi3EE_TypeNewPyvtkTuple_IiLi3EE_TypeNew_Z23PyvtkVector_TemplateNewvPyVTKTemplate_NewPyVTKTemplate_AddItemPyvtkVector2_IdE_TypeNewPyvtkVector2_IfE_TypeNewPyvtkVector2_IiE_TypeNew_Z24PyvtkVector2_TemplateNewvPyvtkVector3_IdE_TypeNewPyvtkVector3_IfE_TypeNewPyvtkVector3_IiE_TypeNew_Z24PyvtkVector3_TemplateNewvPyvtkVector2i_TypeNewPyvtkVector2f_TypeNewPyvtkVector2d_TypeNewPyvtkVector3i_TypeNewPyvtkVector3f_TypeNewPyvtkVector3d_TypeNewPyVTKAddFile_vtkVectorPyObject_CallMethodPyCFunction_TypePyType_IsSubtypePyVTKAddFile_vtkVectorOperatorsPyvtkColor3_IdE_TypeNewPyvtkColor3_IfE_TypeNewPyvtkColor3_IhE_TypeNewPyvtkTuple_IhLi3EE_TypeNew_Z23PyvtkColor3_TemplateNewvPyvtkColor4_IdE_TypeNewPyvtkColor4_IfE_TypeNewPyvtkColor4_IhE_TypeNewPyvtkTuple_IhLi4EE_TypeNew_Z23PyvtkColor4_TemplateNewvPyvtkColor3ub_TypeNewPyvtkColor3f_TypeNewPyvtkColor3d_TypeNewPyvtkColor4ub_TypeNewPyvtkColor4f_TypeNewPyvtkColor4d_TypeNewPyVTKAddFile_vtkColorPyvtkRect_IdE_TypeNewPyvtkRect_IfE_TypeNewPyvtkRect_IiE_TypeNew_Z21PyvtkRect_TemplateNewvPyvtkRecti_TypeNewPyvtkRectf_TypeNewPyvtkRectd_TypeNewPyVTKAddFile_vtkRect_ZN20vtkNonOverlappingAMR17GetDataObjectTypeEv_ZN20vtkNonOverlappingAMR3NewEv_ZNK20vtkNonOverlappingAMR19NewInstanceInternalEv_ZN17vtkUniformGridAMR7GetDataEP14vtkInformation_ZN17vtkUniformGridAMR7GetDataEP20vtkInformationVectori_ZN20vtkNonOverlappingAMR3IsAEPKcPyvtkNonOverlappingAMR_ClassNewPyvtkUniformGridAMR_ClassNewPyVTKAddFile_vtkNonOverlappingAMR_ZN17vtkOverlappingAMR17GetDataObjectTypeEv_ZN17vtkOverlappingAMR10GetAMRInfoEv_ZN17vtkOverlappingAMR3NewEv_ZNK17vtkOverlappingAMR19NewInstanceInternalEv_ZN17vtkOverlappingAMR24NUMBER_OF_BLANKED_POINTSEv_ZN17vtkOverlappingAMR3IsAEPKc_ZN17vtkOverlappingAMR30GenerateParentChildInformationEv_ZN17vtkOverlappingAMR5AuditEv_ZN17vtkOverlappingAMR22HasChildrenInformationEv_ZN17vtkOverlappingAMR18GetRefinementRatioEj_ZN17vtkOverlappingAMR18GetRefinementRatioEP24vtkCompositeDataIterator_ZN17vtkOverlappingAMR10SetSpacingEjPKd_ZN17vtkOverlappingAMR20PrintParentChildInfoEjj_ZN17vtkOverlappingAMR18SetRefinementRatioEji_ZN17vtkOverlappingAMR22GetAMRBlockSourceIndexEjj_ZN17vtkOverlappingAMR9GetAMRBoxEjj_ZN17vtkOverlappingAMR22SetAMRBlockSourceIndexEjji_ZN17vtkOverlappingAMR9SetOriginEPKd_ZN17vtkOverlappingAMR9SetAMRBoxEjjRK9vtkAMRBox_ZN17vtkOverlappingAMR11GetChildrenEjjRj_ZN17vtkOverlappingAMR10GetSpacingEjPd_ZN17vtkOverlappingAMR10GetParentsEjjRj_ZN17vtkOverlappingAMR8FindGridEPdRjS1__ZN17vtkOverlappingAMR9GetOriginEv_ZN17vtkOverlappingAMR9GetOriginEjjPd_ZN17vtkUniformGridAMR9GetBoundsEPd_ZN17vtkOverlappingAMR9GetBoundsEjjPdPyVTKAddFile_vtkOverlappingAMR_ZN17vtkOverlappingAMR10SetAMRInfoEP17vtkAMRInformation_ZN17vtkUniformGridAMR10SetAMRInfoEP17vtkAMRInformation_ZN17vtkOverlappingAMR11NewIteratorEv_ZN17vtkAMRInformation18GetGridDescriptionEv_ZN17vtkAMRInformation3NewEv_ZNK17vtkAMRInformation19NewInstanceInternalEv_ZN17vtkAMRInformation3IsAEPKc_ZN17vtkAMRInformation30GenerateParentChildInformationEv_ZN17vtkAMRInformation23GenerateRefinementRatioEv_ZN17vtkAMRInformation5AuditEv_ZN17vtkAMRInformation22HasChildrenInformationEv_ZN17vtkAMRInformation18HasRefinementRatioEv_ZN17vtkAMRInformation18SetGridDescriptionEi_ZN17vtkAMRInformation8DeepCopyEPS__ZNK17vtkAMRInformation19GetNumberOfDataSetsEj_ZN17vtkAMRInformation10HasSpacingEj_ZNK17vtkAMRInformation18GetRefinementRatioEj_ZN17vtkAMRInformation22GetAMRBlockSourceIndexEi_ZN17vtkAMRInformation18SetRefinementRatioEji_ZN17vtkAMRInformation22SetAMRBlockSourceIndexEii_ZN17vtkAMRInformation20PrintParentChildInfoEjj_ZNK17vtkAMRInformation9GetAMRBoxEjj_ZNK17vtkAMRInformation18GetCoarsenedAMRBoxEjjR9vtkAMRBox_ZN17vtkAMRInformation9SetOriginEPKd_ZN17vtkAMRInformation9SetAMRBoxEjjRK9vtkAMRBox_ZN17vtkAMRInformation10InitializeEiPKi_ZN17vtkAMRInformation10SetSpacingEjPKd_ZN17vtkAMRInformation16ComputeIndexPairEjRjS0__ZN17vtkAMRInformation10GetParentsEjjRj_ZN17vtkAMRInformation10GetSpacingEjPd_ZN17vtkAMRInformation11GetChildrenEjjRj_ZN17vtkAMRInformation8FindGridEPdiRj_ZN17vtkAMRInformation8FindGridEPdRjS1__ZN17vtkAMRInformation8FindCellEPdjjRi_ZN17vtkAMRInformation9GetBoundsEv_ZN17vtkAMRInformation9GetBoundsEjjPd_ZN17vtkAMRInformation9GetOriginEv_ZN17vtkAMRInformation9GetOriginEPd_ZN17vtkAMRInformation9GetOriginEjjPdPyvtkAMRInformation_ClassNewPyVTKAddFile_vtkAMRInformation_ZN19vtkAMRDataInternals3NewEv_ZNK19vtkAMRDataInternals19NewInstanceInternalEv_ZN19vtkAMRDataInternals3IsAEPKc_ZN19vtkAMRDataInternals10InitializeEv_ZN19vtkAMRDataInternals10GetDataSetEj_ZN19vtkAMRDataInternals6InsertEjP14vtkUniformGridPyvtkAMRDataInternals_ClassNewPyVTKAddFile_vtkAMRDataInternals_ZN19vtkAMRDataInternals11ShallowCopyEP9vtkObject_ZN17vtkUniformGridAMR17GetDataObjectTypeEv_ZN17vtkUniformGridAMR3NewEv_ZNK17vtkUniformGridAMR19NewInstanceInternalEv_ZN17vtkUniformGridAMR3IsAEPKc_ZN17vtkUniformGridAMR18GetGridDescriptionEv_ZN17vtkUniformGridAMR17GetNumberOfLevelsEv_ZN17vtkUniformGridAMR18SetGridDescriptionEi_ZN17vtkUniformGridAMR19GetNumberOfDataSetsEj_ZN17vtkUniformGridAMR17GetCompositeIndexEjj_ZN17vtkUniformGridAMR6GetMinEPd_ZN17vtkUniformGridAMR6GetMaxEPd_ZN17vtkUniformGridAMR16GetLevelAndIndexEjRjS0__ZN17vtkUniformGridAMR9GetBoundsEvPyVTKAddFile_vtkUniformGridAMR_ZN17vtkUniformGridAMR13CopyStructureEP19vtkCompositeDataSet_ZN17vtkUniformGridAMR8DeepCopyEP13vtkDataObject_ZN17vtkUniformGridAMR11ShallowCopyEP13vtkDataObject_ZN17vtkUniformGridAMR10GetDataSetEjj_ZN17vtkUniformGridAMR10GetDataSetEP24vtkCompositeDataIterator_ZN17vtkUniformGridAMR10SetDataSetEP24vtkCompositeDataIteratorP13vtkDataObject_ZN17vtkUniformGridAMR10SetDataSetEjjP14vtkUniformGrid_ZN17vtkUniformGridAMR22GetTotalNumberOfBlocksEv_ZN17vtkUniformGridAMR10InitializeEv_ZN17vtkUniformGridAMR10InitializeEiPKi_ZN17vtkUniformGridAMR11NewIteratorEv_ZN29vtkUniformGridAMRDataIterator18HasCurrentMetaDataEv_ZN29vtkUniformGridAMRDataIterator3NewEv_ZNK29vtkUniformGridAMRDataIterator19NewInstanceInternalEv_ZN29vtkUniformGridAMRDataIterator3IsAEPKcPyVTKAddFile_vtkUniformGridAMRDataIterator_ZN29vtkUniformGridAMRDataIterator19IsDoneWithTraversalEv_ZN29vtkUniformGridAMRDataIterator12GoToNextItemEv_ZN29vtkUniformGridAMRDataIterator13GoToFirstItemEv_ZN29vtkUniformGridAMRDataIterator15GetCurrentIndexEv_ZN29vtkUniformGridAMRDataIterator15GetCurrentLevelEv_ZN29vtkUniformGridAMRDataIterator19GetCurrentFlatIndexEv_ZN29vtkUniformGridAMRDataIterator20GetCurrentDataObjectEv_ZN29vtkUniformGridAMRDataIterator18GetCurrentMetaDataEv_ZN14vtkHyperOctree7SetSizeEddd_ZN14vtkHyperOctree7GetSizeEv_ZN14vtkHyperOctree9SetOriginEddd_ZN14vtkHyperOctree9GetOriginEv_ZN14vtkHyperOctree15GetDualGridFlagEv_ZN14vtkHyperOctree3NewEv_ZNK14vtkHyperOctree19NewInstanceInternalEv_ZN14vtkHyperOctree7GetDataEP14vtkInformation_ZN14vtkHyperOctree7GetDataEP20vtkInformationVectori_ZN31vtkHyperOctreeLightWeightCursor10InitializeEP14vtkHyperOctree_ZN14vtkHyperOctree5SIZESEv_ZN14vtkHyperOctree9DIMENSIONEv_ZN14vtkHyperOctree6LEVELSEv_ZN31vtkHyperOctreeLightWeightCursorC1Ev_ZN14vtkHyperOctree3IsAEPKc_ZN14vtkHyperOctree7SetSizeEPd_ZN14vtkHyperOctree9SetOriginEPd_ZN31vtkHyperOctreeLightWeightCursor6ToRootEv_ZN31vtkHyperOctreeLightWeightCursor9GetIsLeafEv_ZN31vtkHyperOctreeLightWeightCursor7ToChildEi_ZN14vtkHyperOctree17GetNumberOfLeavesEv_ZN14vtkHyperOctree12GetDimensionEv_ZN14vtkHyperOctree17GetNumberOfLevelsEv_ZN14vtkHyperOctree13NewCellCursorEv_ZN14vtkHyperOctree11GetLeafDataEv_ZN14vtkHyperOctree15SetDualGridFlagEi_ZN14vtkHyperOctree12SetDimensionEi_ZN14vtkHyperOctree20CollapseTerminalNodeEP20vtkHyperOctreeCursor_ZN14vtkHyperOctree13SubdivideLeafEP20vtkHyperOctreeCursor_ZN14vtkHyperOctree30GetMaxNumberOfPointsOnBoundaryEi_ZN14vtkHyperOctree29GetMaxNumberOfCellsOnBoundaryEi_ZN14vtkHyperOctree20GetMaxNumberOfPointsEi_ZN14vtkHyperOctree15GetPointsOnFaceEP20vtkHyperOctreeCursoriiP27vtkHyperOctreePointsGrabber_ZN14vtkHyperOctree17GetPointsOnEdge2DEP20vtkHyperOctreeCursoriiP27vtkHyperOctreePointsGrabber_ZN14vtkHyperOctree23GetPointsOnParentEdge2DEP20vtkHyperOctreeCursoriiP27vtkHyperOctreePointsGrabber_ZN14vtkHyperOctree15GetPointsOnEdgeEP20vtkHyperOctreeCursoriiiiP27vtkHyperOctreePointsGrabber_ZN14vtkHyperOctree21GetPointsOnParentEdgeEP20vtkHyperOctreeCursoriiiiP27vtkHyperOctreePointsGrabber_ZN14vtkHyperOctree22GetPointsOnParentFacesEPiiP20vtkHyperOctreeCursorP27vtkHyperOctreePointsGrabberPyvtkHyperOctree_ClassNewPyvtkHyperOctreeLightWeightCursor_TypeNewPyVTKAddFile_vtkHyperOctree_ZN14vtkHyperOctree19GetActualMemorySizeEv_ZN14vtkHyperOctree8DeepCopyEP13vtkDataObject_ZN14vtkHyperOctree11ShallowCopyEP13vtkDataObject_ZN14vtkHyperOctree14GetMaxCellSizeEv_ZN14vtkHyperOctree10InitializeEv_ZN14vtkHyperOctree8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN14vtkHyperOctree8FindCellEPdP7vtkCellxdRiS0_S0__ZN14vtkHyperOctree9FindPointEPd_ZN14vtkHyperOctree16GetCellNeighborsExP9vtkIdListS1__ZN14vtkHyperOctree13GetPointCellsExP9vtkIdList_ZN14vtkHyperOctree13GetCellPointsExP9vtkIdList_ZN14vtkHyperOctree13GetCellPointsExRxRPx_ZN14vtkHyperOctree11GetCellTypeEx_ZN14vtkHyperOctree7GetCellEx_ZN14vtkHyperOctree7GetCellExP14vtkGenericCell_ZN14vtkHyperOctree8GetPointEx_ZN14vtkHyperOctree8GetPointExPd_ZN14vtkHyperOctree17GetNumberOfPointsEv_ZN14vtkHyperOctree16GetNumberOfCellsEv_ZN14vtkHyperOctree13CopyStructureEP10vtkDataSet_ZN14vtkHyperOctree17GetDataObjectTypeEv_ZNK20vtkHyperOctreeCursor19NewInstanceInternalEv_ZN20vtkHyperOctreeCursor3IsAEPKcPyvtkHyperOctreeCursor_ClassNewPyVTKAddFile_vtkHyperOctreeCursor_ZNK27vtkHyperOctreePointsGrabber19NewInstanceInternalEv_ZN27vtkHyperOctreePointsGrabber3IsAEPKc_ZN27vtkHyperOctreePointsGrabber12GetDimensionEvPyvtkHyperOctreePointsGrabber_ClassNewPyVTKAddFile_vtkHyperOctreePointsGrabberreal_initvtkCommonDataModelPythonPyModule_Create2PyModule_GetDict_Py_FatalErrorFunclibvtkCommonTransformsPython310D-8.1.so.1libvtkCommonDataModel-8.1.so.1libvtkCommonMathPython310D-8.1.so.1libvtkCommonCorePython310D-8.1.so.1libvtkWrappingPython310Core-8.1.so.1libvtkCommonCore-8.1.so.1libstdc++.so.6libm.so.6libgcc_s.so.1libc.so.6libvtkCommonDataModelPython310D-8.1.so.1GCC_3.0GLIBC_2.2.5GLIBC_2.4GLIBC_2.14CXXABI_1.3CXXABI_1.3.8GLIBCXX_3.4.29GLIBCXX_3.4.21GLIBCXX_3.4/mnt/storage/workspace/med-ubuntu-free/build/ExtProjs/VTK/lib:    P&y E ui M@ii Ycui Mӯk nxѯ yyqt)DbD@>D`>D>D>D> D>(D?0D ?8D@?@D`?HD?PD@XD @`D@@hD`@pD@xD@D@D@DAD ADADADAD0BDPBȔDpBДDCؔD CD@CD`CDCDCDCDDD DD@D D`D(DD0DD8DD@DEHD EPD@EXD`E`DEhDEpDExDEDFD FD@FD`FDFDFDFDFDGȕD GЕD@GؕD`GDGDGDGDHD@HD`HDHDH DH(DI0D I8D@I@D`IHDIPDIXDI`DIhDJpD JxD@JD`JDJDJDJDJDKD KDKDKȖDKЖDKؖDLDPLDLDLDMD0MDPMDMDM DM(DPN0DN8DN@DOHD0OPDPOXDpO`DOhDOpDOxDODPD0PDPPDpPDPDPDPDPDQȗD0QЗDpQؗDQDQDQDRD0RDPRDpRDRDR DR(DS0DT8D0T@DPTHDpTPDTXDT`DThDTpDUxD0UDPUDpUDUDUDUDUDVD0VDPVȘDpVИDVؘDVDVDVDWD0WDPWDpWDWDW D@X(DX0DX8DY@D YHD@YPD`YXDY`DYhDYpDYxDZD ZD@ZD`ZDZDZDZD[D [D@[șD`[ЙD[ؙD[D[D\D \D@\D`\D\D\D\ D ](D@]0D^8D^@D_HD0`PDP`XDp``D`hD`pDaxDPaDaDaDaD`bD1D1D1D1D1D1D1 D*20D+2@D2PD71`Dp=pDr=DG1DK1De1D~1D1ЛD(1D1D1D1D1 D+20D)+2@D5+2PD>+2`DF+2pDT+2Di+2D}+2D+2D+2D+2МD+2D+2D+2D+2 D+20D+2@D+2PD+2`D+2pD+2D+2D2D2D2D˧3Dܧ3D3 D­50Ḓ5@Dݭ5PD5`D/m8pD7m8D?m8DKm8D?9D-?9DA?9ОDW?9De?9Dm?9Dt?9 D-?90D?9@DI:`D+2pD*2D2Dp=Dr=DG1D:ПD+2D+2D:D:D: D:0D:@D:PD:`D:D\;Dj;D{;D;D;РD;D;D;Dç;DЧ; Dp=0Dp=@Dp=PDp=`Dp=pDp=Dp=D q=Dq=D q=D)q=СD3q=D=q=DLq=DVq=Dbq= Dwq=0Dq=@Dq=PDq=`Dq=pDq=Dq=D r=Dr=D5r=DJr=ТDfr=Dr=Du=D u=Dr= Dr=0Dr=@Dr=PDr=`Dr=pDs=D.s=DJs=Dfs=Ds=Ds=УDs=Ds=Ds=Ds=Dt= D,t=0DHt=@D[t=PDqt=`Dt=pDt=Dt=Dt=Dt=D>ФD.>DD>DZ>Dp>D> D>0DБ>@D>PD>`D0>pDP>Dp>D>`9E`9E9Eb/ ;EE`/(;Ee8;Eb/@;EN`/H;EfX;EXc/`;E `/h;Ecx;Ec/;ER`/;Eg;Ehd/;E:`/;Ed;Ed/;E`/;Eb;Epe/ER`/>E>Em/ >E;i/(>E8>En/@>Ei/H>E0lX>E@o/`>Ej/h>E mx>Ep/>Eg/>En>Eq/>Enh/>Et>Es/>Eg/>En>Ept/>Eh/>E|>Eu/?E i/?E}?E(w/ ?E[h/(?Es8?Ex/@?Eg/H?EoX?Ey/`?Eh/h?Exx?Ez/?Eh/?E{?E{/?Eh/?E0v?E|/?E h/?Ep?E~/?Eh/?Epw?E(/@Eh/@Ey@EH/ @E=h/(@Epr8@Eh/@@Eh/H@EqX@EЂ/`@Eh/h@Ezx@E8/@Ei/@E~@E/@Ei/@E@E/@Ei/@E@E/@Ei/@E@Ex/AEi/AEAE/ AEmi/(AE8AEД/@AEdi/HAEXAE/`AESi/hAEЄxAEp/AE /`CEE`/hCE`xCEb/CEN`/CECEXc/CE `/CECEX/CER`/CE0CE/CEi/CECE/DEi/DE@DE@/ DE̙/(DE8DE/@DE/HDEXDE0/`DEߙ/hDE`xDEP/DE/DE`DE/DEH/`FEE`/hFExFE/FEN`/FEFE/FE `/FEFE/FER`/FEFE/FE/FE`FEh/GEۦ/GEGE/ GEѦ/(GE8GE`/@GE̦/HGEXGEج/`GEɦ/hGExGE(/GE8/GEHE0hHEHEHIE@XIE/hIEpxIE3v=IE/IEIE`/IEQ/IEIE/IEn/IEIE0/JEЮ/JEJE/ JE/(JE 8JE/@JE/HJE0XJE/`JE/hJExJE/JE/JEJEh/JE /JE`JE/JE|/JEJE/JE_3JEJE/KEG/KEKE/ KEޮ/(KE 8KEh/@KE/HKEXKEH/`KE@/hKEPxKE(/KE`/KEKE/KE/KE0KE/KE/KE KEX/KE%/KEKE/LE*/LELEؾ/ LE/(LE 8LE(/@LE4C<HLEXLE/`LE>/hLExLE/LE/LELE/LE1/LELE/LE֭/LE@LEH/LE/LELE0/MEߙ/MEME@/ ME/(ME8MEP/@ME/HMEXME/`MEx/hME@xME/MEME3v=MEME/NENE/(NE8NE/xNE/PEE`/PEpPE/ PEN`/(PE`8PE/@PE `/HPEXPE/`PER`/hPExPE@/PE/PEPE/PE/PE0PE/PE2PEPE0/QE/REh/@TEE`/HTE#XTE/`TEN`/hTE4xTE/TE `/TE0"TE/TER`/TE$TEx/TE}/TE00TE/TEk/TE@/TEP/UEY/UEP.UE/ UE#/(UE)8UEP/@UE/HUEp1XUE/`UE/hUE(xUE/UEH/UEP,UE/UEO/UEP-UEx/UE/UE@&UE /UE/UE'UE/VE/VE`8VEH/ VE/(VE'8VE/@VE/HVE2XVE8/`VE//hVE*xVE/VE7/VE`+VE/VE/VEP7VE`/VE/VE%VE/WE/XEE`/XE@XE/XEN`/XEAXE/XE `/XE@:XE/YER`/YE DYE@/ YE/(YE@C8YE/@YE/HYEPKXYE/`YE/hYEExYE/YE/YE@@YE/YE/YE?YEH/YE/YE ?YE/YE/YE>YE/ZE/ZE>ZE8/ ZE/(ZEp=8ZE/@ZE9+2HZE<XZEh/`ZE/hZEpJxZE/ZE4ZE`IZEX/ZE4ZEPHZE/ZE/ZE`GZE/[E ;[E/([E;8[E/x[E@/]EE`/]EO]E/ ]EN`/(]EV8]E/@]E `/H]ELX]Ep/`]ER`/h]EPx]E/]E/]E_]E@/]EV/]ER]E/]E/]E^]E/]E/]E]]E`/^E?/^EQ^E@/ ^E/(^EU8^E/@^Ek/H^ESX^EH/`^Ey/h^ETx^E/^E/^E\^E0/^E4^E[^E/^E4^EZ^EP/^E/^EW^E/_E/_EY_EH/H_EMX_E/h_ENx_E/_Ex/@aEE`/HaEcXaE/`aEN`/haEdxaE/aE `/aE0aaE/aER`/aEkaE/aE/aE maEX/aE/aEhaEx/bE/bE@fbE/ bE/(bEg8bE /@bE/HbEiXbE/`bE/hbEjxbE0bE/bEgbE0bE4bEpbE 0bE4bEnbE0cEbcE/(cEb8cE/xcE0eEE`/eEreE0 eEN`/(eE`w8eEP0@eE `/HeEqXeE0`eER`/heExxeEp0eE0eEteE0eE0eEueE0eE0eEseE 0eE0eEpveE 0fE0fEЀfE 0 fE0(fEz8fE(0xfE0hEE`/hE0hE/ hEN`/(hEP8hE/@hE `/HhEPXhE 0`hER`/hhExhE0hEP0hEhE0hE0hE@hEx0hE?0hEhE0hE.0hE0hEp0iE#0iEiE0 iE\0(iE8iEX0@iE0HiEXiE0`iE0hiE`xiE0iE0iEiE#0iE΁9iE iE%0iE V7iEiE'0iE0iEiE+0jE0jEjE-0 jE0(jE8jE(20@jEi/HjEXjE@40`jEd0hjExjE50jEx0jEjE60jE0jEPjE70jE>0lEE`/lElE/lEN`/lElE/lE `/lElE>0lER`/lElE?0mEP0mEmE0 mE0(mE8mE?0@mE?0HmEXmE@0`mE.0hmExmE A0mE#0mEPmEA0mE\0mE@mEPB0mE0mE`mE0mE0mE mE-0nE0nEnE0 nE0(nE8nE#0@nE΁9HnEXnE%0`nE V7hnEpxnE'0nE0nE`nE+0nE0nEnEB0nEi/nEpnE@40nE!90nEpnEE0oE 90oEoEF0 oEx0(oE8oEI0@oE0HoEXoE0K0`oE890hoExoE(N0oE90oEoEN0oET0`qEE`/hqExqE/qEN`/qEqE/qE `/qEqEHT0qER`/qE qET0qEP0qEpqE0rE0rErE?0 rE?0(rE8rE@0@rE.0HrE`XrE A0`rE#0hrE00xrE@U0rE\0rE /rEU0rE0rE@-rE0rE0rE*rE-0rE0rE"rE0sE0sEsE#0 sE΁9(sEp8sE%0@sE V7HsEPXsE'0`sE0hsE@xsE+0sE0sEsEV0sEi/sEPsE@40sEd0sEPsEX0sE!90sEsEHY0tE 90tE0tEZ0 tEx0(tEp 8tE\0@tE0HtE XtE^0`tE890htExtE(N0tE90tEPtEN0tE0d0`vEE`/hvEP9xvE/vEN`/vEpBvE/vE `/vEp8vE`d0vER`/vEAvEd0vEP0vE =vE0wE0wE@;wE?0 wE?0(wE0<8wE@0@wE.0HwE`:XwE A0`wE#0hwEpnxwE@U0wE\0wE>wEPB0wE0wElwE0wE0wEPiwE-0wE0wEbwE0xE0xE@]xE#0 xE΁9(xE[8xE%0@xE V7HxEVXxE'0`xE0hxEUxxE+0xE0xERxE8e0xEi/xEMxE@40xEd0xE0?xEPg0xEo`0xEKxEh0yE!90yE5yEi0 yE 90(yEP28yEj0@yEx0HyEDXyEPk0`yE0hyE GxyE`l0yEp0@{EE`/H{E|X{E/`{EN`/h{E~x{E/{E `/{E|{Ep0{ER`/{EP{Eq0{En0{E{EHq0{Em0{E0{Eps0|Em0|E0|Et0 |Em0(|E8|Et0@|Em0H|E`X|Eu0`|Em0h|E@x|E@v0|Em0|E|Ev0|Eߙ/|E|Ew0|Em0|E}|E8y0|Em0|Ew|Ez0}Ei/}Es}E8}0 }Em0(}Ep8}EH0x}E0EE`/E`E/ EN`/(E8E/@E `/HEXE0`ER`/hEpxE0EJ0EEP0EU0E`E0Ey0EEh0E0E0E(0E0EEp0 Eo0(E8E00@Ec0HE XEX0`E/hExE0E/EpE0E4E`E0E4ȀEP؀E0EE/(E`8E/xE0EE`/EE/ EN`/(E8E/@E `/HEXE(0`ER`/hExE0Ea0EE0EY0EE`0Eߙ/ȃE؃E0EF0E@EP0Ex0EpEȖ0 E0(E@8E0@E0HEpXE0`E0hExE`0Ei0E@E80E00EE0EX0ȄE؄Eؠ0E0EE@0E0EpE0HEXE0hExEˑ0Eأ0@EE`/HEpXE/`EN`/hExE/E `/EE0ER`/E`Eh0Ep0ȇE؇E0Eb0EEH0E0E0E-0 E0(Ep8EЧ0@E0HEpXE(0`EP0hExE0E$0E`E0E 0EpEȮ0E>0ȈE`؈Eد0E80EE`/EP E/EN`/ȊE!؊E/E `/Ep E`0ER`/E #Eе0 E*2(Ep 8E0@E/HEXE0`E/hExE0E0EEh0ES0EE0E0ȋE@؋E0E0E3E0E0EEX0 EH0(Ep8E0@E<2HEP7XE0`E0hE:xE0Eܱ0Ep'EP0Ex0EE0E60ȌE،E0E0E 2Eh0E!0EE00 E0(E$8E0@E0HE)XE00`E0hE@xE0EH0EE0E0E Ex0E`0ȍE؍E0E4EE0E/EE80 E0(E8E0@E0HE XE0`E 0hExE00E@.E(0ȎE+؎E40E0E/v=8E@0EE`/ȐE@ؐE/EN`/ERE/E `/E?Eh0 ER`/(E0T8E0@E/HEXE0`E4hExE80E4EE(0EP0E0JE0E0ȑE@IؑE00E0EEE0E0EDEx0 E%0(EpG8EX0@Ex0HEFXE@0`EV0hEpWxEP0EB0EME0E0EAE0E0ȒE CؒE@0E?0E KE0E.0ELE 0 E0(E`B8E0@EK0HE0PXE0`E#0hENxEp0E\0E OE0E0EUE`0E0ȓEuؓE@0E0EgE(0E0E\E0 E0(E0Z8E80@Ei/HEpXEx0`E΁9hEPQxE0E V7EkE 0Eߙ/E|E0E0ȔECؔE0Ed0E@E0Eo`0EE0 E40(EPH8E0@E0HEpXE0`Ex0hEcxE1E0E`E01ؕE1`EE`/hExE/EN`/EE/E `/EE1ER`/ȗEؗE1E 1EE`/EE/EN`/șE0ؙE/E `/E E 1ER`/EE 1 E0(E8E 1@E1HEXE 1`Ek1hExE 1EP0EpE1E0E`E1Ea1ȚE ؚE1E0EE1E0EE1 EB0(E8E1@E<2HEXE1`E0hEPxE(1E.0E0E1؛EX1`EE`/hE`xE1EN`/EPE1E `/EE1ER`/ȝE؝EX1E:`/EE1E*2EаE1 E/(E`8E1@E1HEXE1`E1hExE1E1EE 1E1EE 1E1ȞE؞E!1E1E0EP"1E1E0E#1 E1(E8E$1@E0HE0XEh%1`E0hExE%1E 0EЪE&1E4EE'1E,1EE`/EоEb/EN`/E@EXc/E `/ȡEءE,1ER`/EE-1E(1EE-1 En(1(E8Ex.1@Ei/HE@XE.1`Ei/hE0xE(41Ei/EE881E1EE?1E/ȢEآEP@1Edi/EEA1Ei/EEC1 Emi/(E8EHD1@E(1HE XE8F1`E(1hE@xEF1E(1E`EG1E(1EExG1E(1ȣEأEG1E(1EpEPH18EL1EE`/ȥE@إE/EN`/EE/E `/EEL1 ER`/(E08EHM1@E*2HEPXEM1`EyI1hE` xE N1E0E EN1E*I1EEHO1EbI1ȦE ئEP1EHI1EEPQ1E7I1EpEQ1 ErI1(E 8E R1@ESI1HEXER1`EP0hExE@S1E0EE0E0E0ES1E 0ȧEاES1E4EEU1EI1E EPV1 EH1(Ep8EW1@E0HEXEW1EEX1EE Y1E[1EE`/EE/EN`/E E/E `/ȪEتE\1ER`/EE\1ErY1EE\1 E/(E8E]1@EC=HEXE^1`EgY1hE`xE0_1E\Y1E0E`1E 0E(Eb1E/ȫE`"ثEb1E/E0'E0E4E &E(d1 E4(E%8Ed1@E0HE0$XEe1`Ew1hE xEe1EY1EEpf1ȬEجE/EE/8Ei1EE`/ȮEP*خE/EN`/E 9E/E `/Ep)Ej1 ER`/(E@+8Ej1@EgY1HE<XEj1`E\Y1hE00xEk1E0E<Epl1Eh1E ;El1E6h1ȯE,دEpm1EDh1E-Em1Ek1E2EPn1 Eh1(E28EXo1@Eh1HE3XEp1`Eh1hE4xE8q1Eh1E5Eq1EQh1Ep.Er1Eh1ȰE7ذE(s1Eh1E8Es1Enh1E1EPt1 Ech1(EP/8Et1xEw1EE`/E@E/ EN`/(E G8E/@E `/HE ?XEx1`ER`/hEExEpx1En0EKEx1Em0E0IE(z1Eu1ȳEDسEz1Emu1EBE0{1E\u1EAE{1 E~u1(EC8E |1xE~1EE`/EQE/ EN`/(E_8E/@E `/HEPXE1`ER`/hE0^xE1E|1ETE1Ep0EPZEH1Eb0ȶE@\ضE؀1E0E@E+0EP0ERE`1 E0(EU8E؂1@E/HE`XEh1`E?0hESxE1E#0E`WE1E.0EE1E\0ȷEpطE1E0E0Eh1E0EpE1 E0(E {8E1@E0HE`vXE1`Ei/hE0qxE1E΁9EoE1E V7EjE1E0ȸEhظE1Ed0EXE81E40EVE1 Ex0(E@e8E1@E0HEaXE1E(1 EE`/(E8E/@EN`/HEXE/`E `/hExEP1ER`/E0E1EP0EE`1E0ȻE`ػE1E?0EPE1E.0EE1 E#0(E08E1@E\0HEPXE1`E0hExEx1E0E`E@1E0EE@1E0ȼEPؼE1E΁9EгEx1E V7EE81 E0(E8E01@Eo`0HEXEh0`E0hE xE1Ed0EpE1Ei/EEp1E!90ȽEؽE1E 90EE1Ex0EE1 E0(E08Eذ1xE1EE`/EE/ EN`/(E8E/@E `/HEXE@1`ER`/hE0xE1En0EE1Em0EE1E1EpE(1E1EpE1E1E`E1 EԱ1(E8Ex1@E1HEXE1`Eޱ1hExE1Eػ1@EE`/HEXE/`EN`/hExE/E `/EE1ER`/E0E1Ek1E E1Ea1E@Ep18E1EE`/EPE/EN`/EE/E `/EpE81 ER`/(E8E1@E1HE XE 1`E1hEPxE1E1E E1EP1xE1E1E1@EE`/HE@ XE/`EN`/hE@xE/E `/EEx1ER`/E0 E1E1EpE01E1E,E1E/E+E`1 E/(E0(8E 1@Ei1HEXEx1`E1hExEH1E81EE1E#1E Ex1E;1EpE 1E 1E E1E1E*E1 E1(E8E1@E/HEXE1`E1hEPxE1E 0E)Eh1E1E0E1E1E@E1E1EE1E1EE1 E1(E8EX1@E1HEXE01`E1hE0xE 1E1E@E1ET1E@E1E1EPE1E4E 'E1E4E&E1 Eu1(E8EH1@E1HEp$XE1`E1hE`#xE1Et1EP"E1EJ1E0!E`1E61E E1E1EPEH1Ej1EEH1 E1(E 8EH1@E1HE XE1`E1hE xE1E1EpE1E1EE1E1EPEx1E1EE1E|1E0E`1 Em1(E8E1@E[1HEXEP1`EJ1hExE1E71EEX1E&1E`E1E1EEh1E1E@E1E1EEH1 E1(E 8E1@E1HEXE81`E1hExE1E1EpE01E1EE1E|1EPE1Eq1EE1Ej1E0E1 Eb1(E8EH1@EU1HEXE1`EQ1hExE 1E/EEx1EE/EE/8E1EE`/E 2E/EN`/E3E/E `/E1E1 ER`/(Ep48E`1@EI1HE0XE1`EH1hE`/xEp1EI1E1E02E.E%,2E-E7v=8E2EE`/Ep9E/EN`/E:E/E `/E6E2 ER`/(EP=8E2@E2HE`LXE2`ErY1hE@KxE2EC=E0JE2EgY1EHE2EF2E<E 2E\Y1EGEh 2E{2EFE 2 Eo2(E`E8E 2@E 0HEpDXEb1`E/hECxE0E4EBE(d1E4EpAEd1E0E@E`2E/E>E82(E78E/HEp8XE/E2 EE`/(EN8E/@EN`/HEYXE/`E `/hEMxE(2ER`/EOE2E6h1E`E2EDh1E`E2Ek1E0_E2Eh1EP^E2 Eh1(Ep]8E2@Eh1HE\XE2`Enh1hE[xE2E2E TE2El2E QE2E2EXE@2E2EWE 2E2ERE"2 E2(ER8E#2@E2HEpVXE$2`E2hE`UxEx%2E22XE`y2Ey2Ey28E(z2Epz2`EE`/hEfxE/EN`/EpE/E `/EdE022ER`/EE22E/EE32E&2EhE32 E4(E8E42@E4HEXE42`E{&2hEfxE52E&2EkE52Eo'2E@vEH62E'*2EE62ES'2EPtEh72E^'2EPuE72 EN*2(E8E@82@E.'2HEPqXE82`E'2hEzxEX92E*2E0E92E#'2EPpEx:2E'2EyE:2EY*2EE`;2E9'2EPrE <2 E'2(E x8E<2@Ed*2HEpXE<2`E'2hEPoxE=2E'2E0wE>2EA*2EзE>2ED'2EPsEH?2E'2EzE?2E2*2EE8@2 E1(Ee8EA2@E)2HEPXEC2`E&2hElxEHD2E[(2EEpE2E&2EpmEhI2E'2E`nEJ2Eo&2EpeEL2EV&2EcEL2 E&2(Eg8EM2@E)2HEXEN2`EJ(2hEЄxER2EQ)2EE8S2E (2E@ES2E#)2EpE8T2E(2EEpT2E`)2E ET2 E'2(E{8EHU2@E)2HEXEU2`E(2hExEU2E1)2E`EV2E,(2EEV2E(2EЍEW2E(2EEPW2E)2EEW2 E;(2(E8E(X2@E(2HEXEX2`E(2hExEX2E)2EEX2E'2E}EY2E&2EiEY2E)2EE0Z2E@)2EEhZ2 E'2(E ~8E[2@Eh(2HE0XEp[2`E(2hExE[2Eo)2E`E[2E(2E`E\2E(2EE]2Ex(2E EH]2E+2EpE]2 E +2(E08E^2@E+2HE XE^2`Eo*2hEPxE`2E&2EjEc2E)2EE8e2E)2EPE(g2E)2EEj2E*2EEPl2 E|*2(E08En2@E *2HEPXEPq2`E)2hExEXs2E)2EEu2E E ,2E`E(y2(E8E/v=HEXE$,2EE',2EE+,2E{2EE`/EE/EN`/E E/E `/EE{2ER`/EpEp|2E1EE|2 E1(E8E0}2@Ez2HEPXE}2`E1hExE~2E\Y1EE`~2EЄ2xE2EE`/EE/ EN`/(E@8E/@E `/HEXE2`ER`/hExE`2EC=EpE2EB=E 6E2E0EE2E/EE 2E2E`E2 Ep2(E@58E؉2@E<2HE/XEp2`Eb2hE-xE؋2EP0EEP2EU2E,E@2E2EE02E2EE02ED2E+E(2 E2(EP8EД2@Edi/HEPXE2`E52hEp%xE2E/E$E@2E~2EE2E~2E@Ep2E0E#E2F'2F"Fx2 Fߙ/(F 8F2@FԱ1HF0 XF82`F2hF xF2F/F!FТ2F2FPFH2F0FFإ2F 0F`F2F/FF`2 F4(FP8F(d1@F4HF@XFd1`F72hF xFȨ2F2FFX2F/F F2Ft1FF(2F61FF2F2FF02 F%2(F`8F2@F2HFXF2`F2hFxFذ2F2FPF2F~2FF2FG2FF2Fv2FF2F~2FF2 F_2(F8F2hFxF/FF/Fк2`FE`/hF =xF/FN`/FP>F/F `/F9F2FR`/F?F2F/F0<F2F/F`AF`2HFp:XF/hF0;xF/Fп2@FE`/HFpGXF/`FN`/hFHxF/F `/FCF2FR`/FJFx2F/FFF2F/FKF2 F2 FPM F2H FDX F/h FEx F/ Fp2@ FE`/H FQX F/` FN`/h FQx F/ F `/ FO F2 FR`/ F [ F02 FB2 FW F2 F2 F U F 2 F(2 FV F2 F52( FW8 FX2@ Fl2H FZX F2` FQ2h FXx F2 F2 FPS Fx2 F2 F0T F2 F2 FpP F2 F2 FO F28 F2FE`/Fp^F/FN`/F`_F/F `/F]F2 FR`/(Fd8F@2@Fۦ/HF cXF2`F^2hFfxF2F̦/FPbF 2FP2F`Fx2Fɦ/FaF(/F2FE`/FjF/FN`/FvF/F `/FgF2FR`/F`wF82 F/(Fj8F2@F2HFqXF2`F2hFphxF@2F2F@nF2F2FPoFX2F2FxF2F?0F`mF2F0FkFh2 F2(Fs8F2@F0HFlXF2FpF2F`tF2FX2FE`/F|F/FN`/F`F/F `/F{F2FR`/FЄF2FP0F}F`1 F0(F`8F1@F?0HF@XF1`F.0hF~xF1F#0F F1F\0F@F1F0FFx1F0FF82F0FF82 F0(Fp8F0@F0HFXF#0`Fi/hFxF2F΁9FF%0F V7FF'0F2FE`/F0F/FN`/FF/F `/FPF2FR`/F`F2FD2FF2 F/(F8FP2@F<2HF XF2`F0hFвxFh2FY2FF2F2FF(2F2FF2Fh2FдF2F)2FF2 F2(F8F3@F2HFкXFX3`F2hFxF3F2FpF3F3`FE`/hF@xF/FN`/FF/F `/F@F3FR`/FFh3F/FPF3F*2F`F(3 FC=(F8F3@F 3HFXF3`F/hF0xFP3F/FFP3Fo&2F F@3F/FPF3Ft 3FpFH3F 3FF`3 F:3(Fp8F3@F+2HF XF 3`F 3hFxFH!3F 3FF"3F+2FF#3F +2FFp$3F4FF%3 F4 F F`&3 F0( F8 F&3@ F0H FX FX'3` F 0h Fx F'3 F/ F FP)3 F 3 F F)3 F 3 F  F+3 F 3 F F0-3!F 3!FP!F.3 !F 3(!F 8!F13@!F%3H!FX!F23`!F.3h!Fx!F33!F 3!F!F43!F!F/v=!F!F$,2("F8"F/v=H"FX"F$,2"F@"F$,2"F0"F/v="F?3$FE`/$F$F/$FN`/$F0$F/$F `/$F$F?3$FR`/$F$F`@3%F53%F %F@3 %F53(%Fp8%FXA3@%F53H%F`X%FA3`%F53h%F@x%FB3%F53%F0%FHC3%F53%F%FC3%FX63%F%FD3%FM73%F=%FE3&F~63&F0&FF3 &F53(&F8&FG3@&F0H&FX&F H3`&F63h&Fpx&FH3&F63&F&FK3&F663&F&FhM3&Fp2&F&FN3&F63&F &FN3'F63'FP'FxP3 'F63('F8'F8R3@'F63H'F0X'FS3`'F0h'F`#x'FU3'F0'FP'FX3'F53'Fp'FpZ3'F0'F:'F`]3'F0'F6'F8e3(Fi/(F@((Fm3 (F V7((F8(Fo3@(Fߙ/H(F3X(Fxr3`(F0h(F2x(Fs3(Fd0(F (F t3(Fo`0(F (Fu3(F0(F0(FXw3(F173(Fp0(Fy3)FG63)F)F(3 )F53()FP8)F3@)F0H)FX)F3`)F73h)F-x)Fp3)F90)F)F3)F63)F)FH3)F890)F)Fx3*F*F3(*F@8*F3x*F`3,FE`/,FB,F3 ,FN`/(,FV8,F(3@,F `/H,FBX,F3`,FR`/h,F Xx,F3,FG3,FE,F(3,F 3,FG,F3,FP3,FG,F3,Fe3,FH,F3-F 0-FK-F3 -F]3(-F@F8-F3@-F&2H-FRX-F(3`-F3h-FSx-F03-F3-FQ-F`3-F3-FM-F3-F3-FpT-Fؗ3-FӉ3-FN-F@3.F0.FC.F03 .F4(.FO8.F3@.F4H.FPX.F3`.F/h.F]x.F3.F~3.F@I.F3.F3.F J.Fx3.F1.FU.F3.Fx3.FK.FP3/F3/FL/F3 /F:3(/F ?8/F3@/F3H/FYX/F3`/F03h/FDx/Fȥ3/F3@1FE`/H1F_X1F/`1FN`/h1Fnx1F/1F `/1Fp^1F31FR`/1Fp1F31F31Fi1F31F 31FPd1F32F32F`2F3 2F53(2Fa82FȮ3@2F3H2FpbX2F(3`2F0h2F`cx2F32F 02F@f2F`32F32Fz2F32F32F@e2Fȴ32F{32FP_2FX33F33F|3F3 3F4(3F@g83F3@3F4H3F`hX3Fػ33FPm3F33Fpq3F33Fj3F833FPt3F34Fl4FS3(4F0w84F3x4F36FE`/6F 6F/ 6FN`/(6F 86F/@6F `/H6F@X6F3`6FR`/h6Fx6F 36F36F 6Fh36F 36F 6F036F46F6F36F46F6Fx37FP07F7F`1 7F0(7F87F1@7F0H7FX7F3`7F0h7F0x7F`37F/7FP7F37Fx07Fp7FX37FV07F7F37FB07F7Fx38F?08F8F1 8F.0(8F88F1@8F#0H8FX8F3`8F\0h8Fx8Fx38F08F8Fx18F08F8F@18F08F8F18F08F8F@19F09F9F3 9Fi/(9F89F3@9F΁9H9F@X9Fx1`9F V7h9F x9F819Fd09Fp9F 39F09F`9F019F409F9F39Fx09F9F@3:F0:F:F1 :F3(:F08:F(3@:F3H:FpX:F3`:Fo3h:Fx:F3:FZ3:F:F3:F3:F:F`3:F3:F@:F3:F'3:F:F3;F3;F;F3 ;FZ3(;F8;F`3@;F3H;FЛX;F3`;F53h;F@x;F3;FG3;F;F3;F3;F;FH3;F½3;F0;F3;F3;F;F3F=3>F>F3 >Fx3(>F 8>F03@>F`3H>FЎX>F3`>F3h>Fx>F3>F 3>F`>FH3>F3>F>F3>F3>F>F3>F3>F0>FP3?F3?F?F3 ?F3(?FP8?F3@?Fڽ3H?FX?FH3`?Fؼ3h?Fx?F3?F3?F ?F 3?F 3`AFE`/hAFxAFP3AFN`/AFAF3AF `/AF0AFH3AFR`/AFAF3AFm3AFAFx3BFs3BFBF3 BF{3(BF8BF@3@BF<2HBFpXBF3`BF̦/hBFxBF@3BF3@DFE`/HDFXDF/`DFN`/hDFxDF/DF `/DFDF 3DFR`/DFDF3DF!3DF`DF3DF173DFPDF(3EF΁9EF EF3 EF03(EF8EF3@EF3HEFXEF3`EF/hEFxEF3EF3EFEF3EF3EFEFH3EF3EFEF3EF3EFpEF@38FF`4GFE`/GF0 GF4GFN`/GFPGF4HF `/HFHFx4 HFR`/(HF8HF4@HF0HHF XHF4`HF/hHFxHFP4HF0HF HF`4HFU2HF&HF4HFp2HFHF4HF\3HF0HF 4IF<3IF IF@ 4 IF2(IF8IF4@IF/HIF%XIF4`IF'2hIF0 xIF(4IFߙ/IF"IF4IFԱ1IF IF4IF2IFIF4IF1IFIFx4JFp3JFJF4 JFM3(JF8JF4@JF 0HJFXJFh4`JF/hJFxJF`2JF+3JF JFx4JF/JF0JF4JFpJF/KF0KF/XKFx4LFE`/LFp)LF4MFN`/MF05MF4 MF `/(MF(8MF4@MFR`/HMF08XMFH4`MF2hMF=xMF4MF4MF0MF4MF4MF3MF4MF4MF2MF 4MF4MF1MFh!4NF/NF-NF!4 NF 3(NF,8NF"4@NFz4HNF.XNFh#4`NF4hNF@xNF$4NF4NF6NF%4NF4NF9NF%4NF4NF/NF0&4NF]4NF,NF&4OFH4OF`*OF('4 OFR4(OF0+8OF (4xOFP.4QFE`/QF`FQF/ QFN`/(QFR8QF/@QF `/HQFEXQF.4`QFR`/hQFTxQF0/4QF)4QF\QF/4QF)4QF[QF`04QF)4QF`GQF14QF%)4QF0HQF824RF)4RFQRF24 RFY)4(RFK8RF34@RFx)4HRFMXRF44`RF)4hRFPxRFh44RF)4RFNRF44RFM)4RFJRF44RF1)4RFIRFH54RFd)4RFLRF54SF)4SFUSF64 SF>)4(SFI8SFh74@SF)4HSFZXSF84SFP;4 UFE`/(UFc8UFP3@UFN`/HUFhXUF3`UF `/hUFbxUF;4UFR`/UFpiUF8<4UFm3UFpdUFx3UFs3UF0fUF3UF̦/UFPeUF<4VF94VFjVF8=4 VF53(VF g8VFH>4xVF0B4XFE`/XFuXF0 XFN`/(XFy8XFP0@XF `/HXF`nXXFpB4`XFR`/hXF {xXF0C4XF0XF@oXFC4XF0XF|XFG4XF>4XFxXFJ4XF>4XFvXFK4YFgY1YFwYFK4 YF\Y1(YFv8YFL4xYFHN4[FE`/[F`[F0 [FN`/([F08[FP0@[F `/H[FX[FN4`[FR`/h[Fx[F(O4[FL4[F [FO4[FL4[F [FP4[FL4[F[FPR4[F0[F[FS4\F0\F\FX4 \FL4(\F`8\FZ4x\FȄ4^Fص40^Fx^F8_F_F4_F`F`FXaF(4paFКaFxbFPbFP4cFXcF0hcFcF0dFdFE`/dFPdF/dFN`/dFdF/dF `/dFdF4dFR`/dFdFX4eF4eFeF4 eF4(eF`8eF4@eF/HeFXeF2`eF/heF xeF4eF2eFPeF4eF0eFeFH4eF3eFeFp4eF'2eFPeF4fFߙ/fFfFP4 fF/(fF 8fF4@fF߸4HfFXfF4`fFո4hfFxfF@4fFȸ4fFfFX4fF4fFfFP4fF4fFfF4fF4fFfF4gF}4gFgF4 gFi4(gF8gFД4@gF`4HgFXgF@4`gF?0hgFxgF`4gF>4gFgF4gF*4gFgF4gF4gF@gFЙ4gF4gFgF4hF4hF@hF4 hF4(hF8hFH4@hF4HhFXhF4`hFC=hhFxhF4hF4hFhFP4hF4hFhF(4hF0hFhF4hF/hF`hF@4iF4iFiF@4 iFX4(iF 8iF4@iFh4HiF XiF4`iFx4hiFxiF`4iF߷4iFiF@4iFp0iFpiFP4iF 4iF0iFh4iFҷ4iFiF4jF4jF@jF4 jF4(jF@8jF4@jF4HjFXjFp4`jFԶ4hjF@xjF4jF4jF@jFH4jF4jFjF4jF4jFjF4jFt1jFjF(2kF61kFkF4 kF4(kF 8kFȲ4@kFȷ4HkFpXkF4`kFH4hkF xkF4kF#4kF kFH4kFkF/kFPkF/(lF8lF4hlFМxlF 4lFlF4lF4nFE`/nFnF/nFN`/nFpnF/nF `/nFnF4nFR`/nF0nF(4oFR4oFoFp4 oF84(oF8oFȻ4@oF\4HoFXoF 4`oFB4hoFxoFx4oFL4oFpoFм4oF53oFoF 4oF4qF4qFPqFrF sFE`/(sF8sF/@sFN`/HsFXsF/`sF `/hsFxsF4sFR`/sFp sF4sFsFx4tF4uFE`/uF@uF/uFN`/uF0uF/uF `/uF`uF84vFR`/vFvF4 vFp0(vF`C8vFH1@vFb0HvFpAXvF4`vFP0hvF0xvF`1vF0vF vF1vF?0vFvF1vF.0vFvF1vF#0vF`@vF3wF\0wFP?wFx3 wF0(wFp=8wFx1@wF0HwF 6XwF0`wF0hwF`1xwF#0wFi/wF0,wF2wF΁9wF*wF%0wF V7wF%wF'0wF0wF$wF+0xFd0xFxF4 xF!90(xF 8xF@4@xF 90HxFP XxFx4`xFx0hxFxxFX4xF0xF!xF4xF890xFPxF(N0xF90xFp xFN0yF4zFE`/zFMzF/zFN`/zF SzF/zF `/zFLzF4{FR`/{FQ{Fh4 {Fp0({F}8{FH1@{Fb0H{F{X{F4`{FP0h{FOx{F`1{F?0{FP{F1{F.0{FN{F1{F#0{Fz{F3{F\0{Fy{Fx3|F0|Fw|Fx1 |F0(|Ft8|F@1@|F0H|F0mX|F0`|F0h|Fphx|F#0|Fi/|F@c|F2|F΁9|Fa|F%0|F V7|F\|F'0|F0|F[|F+0}F!90}F@J}F4 }F 90(}FG8}F4@}Fx0H}FWX}F@4`}F0h}FTx}FX4}F890}FG}F4}F90}F`F}F4}F4FE`/F`F/FN`/FpF/F `/FFH4FR`/FF48F`4FE`/ȁF0؁F/FN`/FpF/F `/FF4 FR`/(F08F 4@FrY1HFpXF4`F/hF@xF]1F/FF(4ȂF؂F/F@F/8F04FE`/ȄF؄F/FN`/FF/F `/F@FX4 FR`/(Fp8F4@F/HFXF4`F4hFxF4F*4FF4F/FFp4F4ȅF؅F4F4FFx4F53FpF4 F4(F`8F@4@F^4HFXF4`F4hF0xF@4F4F F4F{4FF4Fg4ȆF؆F4F4FPF4F 4F@F 4 F 0(F@8F84@F4HF0XF4`FF4hFxF4F.4FpF4ȇF`؇Fu=F`F48F4FE`/ȉF ؉F/FN`/FPF/F `/F@F04 FR`/(F8F4@F4HFXF4`Fd4hFxFp4Fl4FF4FS>FFh4F>ȊF؊F4Fx4FйF4F4FF4 FT4(F8F4@F[4HF`XF4`F4hFxF4F4FFH4F4F FH5F2ȋF0؋F5F4FF5F4F Fp5 F53(F@8F(5xF 5F1FF 5 F5(Fp8Fp 5@F5HFXF 5`F5hFPxF8 5FE`/FF/FN`/FF/F `/ȎF؎F 5FR`/FF 5F/F4F2 FC=(F38F` 5@F:5HF0XF5`F5hFxF5FF5FF(5F5F F5Fa5ȏF؏F5Fu5FF5F`5FF5 F5(F 8F5@F53HFXF5`F5hF2xFp5FR5FFP5F5FF05F4ȐF@ؐF5F5FF85F*4FF5 F4(F8F(5@F/HF1XF5`F0hF0xF5F4F`F5F5F Fh5FB5ȑFؑF5F5FFp5F25FF5 F5(F8Fx5@F5HF XF5`F5hFxF5F"5FF5F5F@F5F5ȒF/ؒF5F5F@F5F5FpF 5 F{5(F`8F 5@F5HFXF!5`F5hFxFh!5FT5FF!5FH5F Fh"5Fl5ȓF@ؓF"5F-5FF#5F5F/F$5 F4(F8F$5@F5HFXF%5`F5hFxF@'5F5F F(5F5FpF*5F 4ȔF`ؔF,5F2F+F-5F<2F@&Fx/5 FP0(F0%8F`15@F2HF!XF25`F2hF xF45FD2F F65F2FpFp85Fdi/ȕFؕF95F/F0F8>5Fd4FF>5 F4(F8FH?5@F0HFPXF@5`F4hF@xFA5F4F0FxA5Fu1FFA5F 0ȖF@ ؖF2F4F`F`B5F5FFB5 F5(Fp8FC5@F 5HFXF(D5`F5hFxF K5F5FFL5F!5FFM5F/ȗF0ؗFN5FF/(FP8F/xF8R5FE`/F;F/ FN`/(F0M8F/@F `/HF:XFhR5`FR`/hF<xFR5F2F[F@S5F/FPZFS5FO5ȚF@YؚFpT5FRO5F@FT5F4F0XFU5 Fd4(F>8FV5@Fl4HFPWXFV5`FO5hFpVxFV5FS>FUFW5F>FTFW5Fx4țF?؛F@X5F4FSFX5FT4FRFY5 F[4(FR8FZ5@F4HFQXFZ5`F4hFDxF`[5F4FEFx\5F4FGFP]5F4ȜF P؜F^5F53F@OF^5FZO5FBFP_5 F0(FA8F_5@Fߙ/HF0KXF`5`F2hFpIxFXa5F?O5F>Fb5FdO5FCFc5FnO5ȝF H؝Fd5Fj5FE`/F`iF/FN`/ȟF{؟F/F `/F]F@j5FR`/FvFj5 FC=(F 8Fj5@F/HFpjXF2`F/hF@xFk5F0FqF(l5F2F Fl5F<2ȠFؠFm5Fb2FFo5F2F`Fo5 Fdi/(F8Fq5@F52HFpXFxs5`FP0hF`xFt5F2FsFhu5F2F rF v5F'2ȡFءFv5F0F`kFXw5F/FF8>5 Fn/(F@8Fw5@FЮ/HFXFx5`Fx/hFxF0z5Fh5F0F}5Fh5F F5Ff5ȢFpآFȁ5Fff5F}F85Fuf5F~F5 Fth5(F8F5@F`h5HF`XFh5`FVh5hFxF(5Ff5F@mF؇5FEh5FF 5F4h5ȣFأF05F&h5FF@5Fh5FF5 Fh5(F8F5@Fg5HFXF05`Fg5hFPxF5Fg5FF(5Fg5FFؕ5Fg5ȤF ؤF5Fgg5FF@5FWg5F`F5 FGg5(F`8Fx5@F1HFXF5`F 0hFКxF2Ff5FpF5Ff5F0nF5Ff5ȥF@إF`5FZO5F oF5Fe5FcF@5 Fe5(FЀ8F5@Fe5HFaXF@5`F1g5hFxF5Fe5FhF5Fe5FF5Fme5ȦF`ئF@5F1FF@5F1FF@5 F1(FЗ8F5@F4HFXF(d1`F4hFxFd1F=f5FxFp5FVf5FyF5F*f5ȧFuاFب5Ff5F@F5Fu1FPlF@5 F/(F8F5hF^xF/F_F/ȨF0aبF/FbF/HF XFh5hFxFh5F5XF5FE`/FF/FN`/F F/ F `/(F8F85@FR`/HF XF5`Fn0hFxF5Fm0FF5F/F F`5F65ȭF0حF5FB5F0Fp5F5FF5 F5(F 8F5@F5HFXF5`F 5hF`xF5F%5FPF5F|5FPF5F05ȮF0 خF5F5F@Fp5F5F`F5 Fc5(F08Fp5xF 5FE`/FF/ FN`/(F8F/@F `/HFXFP5`FR`/hF0 xF5F/F-F5Fn0F`)F5Fm0ȱF&رFH5FgY1F%F5F\Y1FFx5 FX5(Fp8F5@FL5HFXF5`Fd5hF!xF5F=5FF5زF05`FE`/hF2xF/FN`/F3F/F `/F 0Fh5FR`/ȴF@5شF5F1F1F`5F1F1F5XF5FE`/F8F/FN`/F:F/ F `/(F78F5@FR`/HF<XF5`F/hFNxF5Fx5F`KF5Fg5F?F@5FM5ȷF8طF05FZ5F9F5Fn0FDFh5 Fm0(F=8F5hFPJxF5F IFu=ظF5`FE`/hF0QxF/FN`/FWF/F `/FPPF5FR`/ȺF0YغF 5Fn0FPaFp5Fm0F^F5 F1(F U8F5@F1HF SXF5`F1hFZxF1FԱ1F0RFx1F5FpVF85F5ȻF TػF5F5FE`/F hF5FN`/ȽF0oؽF5F `/F@gF5FR`/FpF5 Fn0(Fz8Fh5@Fm0HF@xXF5`F/hF0wxF5F//FjFp5F`5FkF(5FC5ȾFjؾF05F}5FmF05F5F nF(5 F5(Fr8F(5@F95HF iXF5`F/hF@vxFh5F5@FE`/HFXF/`FN`/hF0xF/F `/FF85FR`/FF5Fn0FPF5Fm0FЏF5F/FF`5 F65(F8Fp5@F5HFXF5`F5hFxF5F 5FЅF5F5FF5FJ5F Fx6F55FF68FH6FE`/FF/FN`/FF/F `/FFx6 FR`/(F08F6@F/HFXF@6`Fn0hF`xF 6Fm0FF 6F\6FФFp 6FR6FF 6FX5FpF` 6FL5FF 6 Fd5(F8F5@F=5HFXF5F@6 FE`/(F8F/@FN`/HFXF/`F `/hF xFx6FR`/F0F6Fn0FF`6Fm0FF6F 6FF6F 6FF@6 F 6(F8F6@F 6HFXFp6`F 6hFxFH6F 6FF6F/FF`5F!6FE`/FF/FN`/FF/F `/FF"6FR`/FF"6F0F F"6 F6(F8Fh#6@F6HFXF#6`Fm0hFpxFH$6Fߙ/F@F8%6F6F@F &6F6F0Fh&6F6FF&6F6FFP'6 FS>(Fp8F'6@F4HFXFH(6`FM6hFxFP)6Fr6F`F@*6F6FF0+6F4FF,6FV6FF/6F6FF816 F06(F8F36@F6HFXF46Fx>6 FE`/(F8Fb/@FN`/HFXFXc/`F `/hFxF>6FR`/F`Fp?6F66F F@6FQ66FFXB6F566FFD6F66FF(G6 F66(F8FI6@Fm66HFXFJ6`F66hFxFJ6F66FF0K6F66FpFK6F/FPFL6F(1FFL6Fߙ/FF@M6 F0(F8FM6@F>76HFXFhN6`F(1hF`xFhP6F(1FFPQ6Fi/F FR6Fi/FFU6F76FFPW6F/FFY6 F66(F@8Fx[6@F̙/HF0XF`]6`F2hFpxF_6F.76FFXb6F2FFd6F4F0F8f6F1FFPh6F76FF`j6XFq6FE`/FpFb/FN`/F#FXc/ F `/(F8Fq6@FR`/HF"XFr6`F>76hFxF(s6F2F'FHu6F.76F%Fw6F2F!Fpy6F4FF`z6F1FF{6XF@6FE`/F,F/FN`/F-F/ F `/(F+8Fp6@FR`/HFp4XF6`F/hF@3xFh/Fۦ/F0F/FѦ/F1F`/F̦/F`2F86FP2F/Fx2Fɦ/F/F(/XF6FE`/F7F/FN`/F8F/ F `/(F68F6@FR`/HFDXF6`F6hF :xFX6F6F =F6F73F ;F`6FAB=F <F6F6FP>F6F3F@CF؆6 FĀ6(F?8F6@F4HFpHXF6`F4hFGxF6FȀ6F@F6F6FBF6F6FE`/F`KF/FN`/FLF/F `/FJF86FR`/FpmFД6FR4F[F@6 F\4(F\8F6@F84HFTXF 6`FB4hFpUxF6F>6FZF6F6F YF6F6FcF6F6F`WF 6F6F@XF6 FΎ6(Fd8F86@F6HFRXF6`FK6hFjxF6F6FgF(6F_6FlFȜ6FG6F OFX6F+6F0NF6F6FQF6 Fe6(F_8F6@F؏6HF^XF6`FI6hF]xF06F~6F`FЧ6Fc6FPF6Fԍ6FPVF6F6F@bF 6Fz6FQF@6 F6(F0f8FX6@F"6HFZXF6`F6hFhxFȭ6F/6FiFx6F6FSF(6F6F qF(6F6FpF68Fȳ6FE`/FvF/FN`/FF/F `/FuF6 FR`/(F8FX6@F6HFXF6`Fr6hF~xF86F6FFе6F6FFȶ6F0Fp{FH6Fm0FPFȷ6Fߙ/FF06 F6(F8F6@Fg6HFXFx6`F6hFwxFp6F6F`xFh&6FM6FF86FZ6FF6F6F yFH6F6FyF 6 F+6(F8Fp6@F<6HFXF6`F 6hF`xF6Fl6F~F`6F]6FP|F6F6FFp6F6FF6F6FFH6 F6(F8F6@F6HFzXF@6`Fy6hFxF6F6FpF6F6FFx6F6FPF6Ff6F0}F`6F6FPF6 F0(F8F06@F0HF XF6`Fű6hFPxF 6Fi0F0F6Fu6FFP6Fr6FF6F6FF6FV6FPF6 F6(Fp8FH6@F6HF`XF6F6 FE`/(F8Fb/@FN`/HFpXFXc/`F `/hF`xF6FR`/FF6F6FF6F6F0FH6F6FF6FB6FF6 FY6(F8F`6@F6HF`XF6`F6hFxFX6F@6FFx6F)6F@F6Fe6F@F6Fv6F`F86F 6FF`6 FY0(F8F6@Fa0HFPXFh6`FM6hFxFH6F6FF6F6FFH6F6FF6F_6FpF@6Fr6F@F6 F6(F 8F06@FgY1HF,XF6`F)4hF+xF6F?6FPF6F6F(F6F6FF6F\Y1F F`6Fj6FF6 F6(FP8F 6@Fߙ/HFPXF6`F+6hFxFx6FF0FF6Fx0FFX6F0FF6Fo0FPF6F6FF6 F6(F`8Fh6@F86HFXF6`F"6hFPxF6FL6FF@7F6FF7F~6FF7F6FF7F6F@FX7 F6(F 8F7@F6HF XF7`F6hF` xF 7F6FpF7F6FPF07F(1F'F7F06FF7F6FF7 FP6(F@8F7@F6HFXF7`F(6hFxF7F6FPF7F2FF 7Fi/FpF!7Fi/F@F#7FY6FF$7 F/(F8F&7@F̙/HFXF((7`F6hF0xF(*7F(1F&F+7F(1F"F+7F6FF@-7F6FF.7Fp6FPF07 F6(F 8F17@F6HF!XF27`Fr6hF xF37F6F@Fp47FH6F`F(57FPF6FPF6HFpXF6hFxF6FF67F F67FpF6(Fp8F6hF*xF/v=Fp)F6F87`FE`/hF2xFb/FN`/F3FXc/F `/F1F887FR`/FP5F87Fi/F>FP97Fi/F0=F:7 F̙/(F;8F;7@F/HFP:XF=7`F(1hFp9xFx?7F(1F8F@7F(1F`7F@7FB7FE`/FAF/FN`/F0PF/F `/Fp@F8B7FR`/FNFB7FP0FPFFC7 F0(F`E8Fx0@F0HFpDXFXC7`F?0hFCxF0F.0FBFp0F#0F`HF0F\0F@GFX0F/FFh1F0F~F0 F0(F`w8F0@F0HFrXF#0`F0hF`oxF-0F0FlF8D7Fi/FpgF2F΁9FeF%0F V7F`F'0G0G_G+0 Gd0(GL8GpH7@Go`0HG^XGI7`GA7hGpTxGK7Gx0GZGL7G0G WG M7GdA7GPAGM7G}A7GKGN7GA7GQGN7HGIXGA7hGJxG+,2GP7@GE`/HGЄXG/`GN`/hGЍxG/G `/GG0P7GR`/G`GP7GP0GGC7G0GІGx0G0GGXC7 G?0(G8G0@G.0HGXGp0`G#0hG@xGQ7G\0G0GQ7G/GPGh1G0GpG0G0G G0G0G`G#0 G0(G 8G-0@G0HG`XG8D7`Gi/hG0xG2G΁9GG%0G V7GG'0G0GG+0Gd0GGpH7Go`0GGI7 GA7(GP8GK7@Gx0HGPXGL7`G0hGxG M7GdA7G`GR7G}A7GGS7GA7G`GN7GO7GGS7(G8GO7xGX7 Gj7 GE`/ G@ G/ GN`/ G0 G/ G `/ G` G@X7 GR`/ G GX7 GEV7( G08 G(Y7@ G,V7H GX GY7` GV7h Gx GhZ7 GU7 GP G[7 GU7 G G[7 GU7 G G\7 GU7 Gp G8]7 GU7 G G]7 GuV7( G8 G^7@ GU7H G0X G_7` GxU7h Gx G``7 GV7 GP Ga7 G`U7 G Ga7 GDU7 G Gb7 GW7 GP G`c7 G'U7 G Gc7 G U7( G8 GHd7@ GxW7H G0X Gd7` GT7h Gx GHe7 GT7 G Ge7 GT7 G G@f7 GT7 GP Gf7 GPW7 G G(g7G0W7GGg7 GxT7(G 8G h7@GW7HGpXGh7`GV7hGxG(i7GV7GGi7G[T7GPG8j7GHk7GE`/G0G/GN`/G`G/G `/GGk7GR`/GGl7GP0G@GC7 G0(G 8Gx0@G0HG0 XGXC7`G?0hG xG0G.0G Gp0G#0GFGQ7G\0G GQ7G/GEGh1G0GCG0 G0(Gp<8G0@G0HG7XG#0`G0hGp4xG-0G0G1G8D7Gi/G,G2G΁9G+G%0G V7G%G'0G0G$G+0 Gd0(G 8GpH7@Go`0HG#XGI7`GA7hGxGK7Gx0GGL7G0G0G M7GdA7GGR7G}A7GGhl7GA7GGN7HGXGj7hGxGO7Gn7@GE`/HGMXG/`GN`/hGXxG/G `/GKG0n7GR`/GVGn7GP0G`PGC7G0G TGx0G0G@RGXC7 G?0(G0S8G0@G.0HGPQXGp0`G#0hG0xGQ7G\0G GQ7G/G@Gh1GHm7GLGn7GUm7G@MG8o7G0G`G0 G0(G8G0@G0HGPzXG#0`G0hGwxG-0G0GPtG8D7Gi/G oG2G΁9GmG%0G V7GhG'0G0GpgG+0 Gd0(Ge8Go7@Go`0HGdXGI7`Gx0hG`xGL7G0G ]G M7GA7GNGq7Gkm7GOG@q7Gm7GYGxq7Gxm7GUGq7 Gm7(GI8G8r7@Gm7HGHXGr7Gs7 GE`/(G8G/@GN`/HGpXG/`G `/hG0xGs7GR`/GGht7GP0GGC7G0G`Gx0G0GpGXC7G?0GG0 G.0(G8Gp0@G#0HGXGQ7`G\0hGPxGX0G/GGh1GHm7GGn7GUm7GG8o7G0GG0G0GpG0 G0(G8G#0@G0HGpXG-0`G0hGxG8D7Gi/GG2G΁9GG%0G V7GG'0G0GЯG+0G2s7G Gt7 Gd0(G 8Go7@Go`0HG`XGI7`Gx0hGxGL7G0GG M7GA7G Gq7Gkm7GG@q7Gm7GGxq7 Gxm7 Gp Gq7 Gm7( G8 G8r7@ Gm7H GX Gr7` G.s7h Gx G0u7 G,s7 G  Gu7 G`v7`"GE`/h"Gx"G/"GN`/"G"G/"G `/"G"Gv7"GR`/"G`"Gw7"GP0"G"GC7#G0#G#Gx0 #G0(#G8#GXC7@#G?0H#GX#G0`#G.0h#Gx#Gp0#G#0#Gp#GQ7#G\0#G`#GQ7#G/#G#Gh1#G0#G#G0$G0$GP$G0 $G0($G 8$G#0@$G0H$GPX$G-0`$G0h$Gx$G8D7$Gi/$G`$G2$G΁9$G$G%0$G V7$G$G'0$G0$G$G+0%Gd0%G%GpH7 %Go`0(%G8%GI7@%GA7H%GX%GK7`%Gx0h%Gx%GL7%G0%G%G M7%GdA7%G%GR7%G}A7%G%GS7%GA7%G`%GN7&GO7&G&GS7 &Gv7(&G8&GXw7h&Gx&G4v=&G&GO7&Gy7(GE`/(G7(G/(GN`/(G?(G/(G `/(GP2(G@y7(GR`/(G0A(Gy7)GP0)G8)G`1 )G0()G98)G1@)G?0H)G:X)G1`)G.0h)G9x)G1)G#0)G;)G1)G\0)G<)G1)G0)Gf)Gx1)G0)Gpc)G@1*G0*G \*G@1 *G0(*G`W8*G1@*G΁9H*GUX*Gx1`*G V7h*GPx*G81*G0*GO*G01*G0*GL*G1*Gd0*G=*G1*Gi/*GG*Gp1+G߱6+G0+Gy7 +Gex7(+G@,8+G8|7@+G|x7H+G03X+G7`+GPx7h+G&x+G؂7+G4x7+G+Gȅ7+G!90+G0+GȈ7+G 90+G+G7+Gx0+GD+Gp7,G0,GB,GX7X,G7-GE`/-Gpj-Gb/.GN`/.G.GXc/ .G `/(.Gi8.G7@.GR`/H.G`kX.G@7`.GgY1h.GPx.G7.G\Y1.G t.G(7.G7.G|.G7.GK7.Gm.G7.Gt7.Go.GX7/G7/G`r/G07 /Gx4(/G@s8/G7@/G7H/G0yX/GЛ7`/G7h/Gvx/G7/GՌ7/G{/G87/GȌ7/Gpz/G`7/G7/G}/G7/G67/Gl/G(70G_70Gn0GС7 0G7(0Gu80Gx7@0G&2H0GpX0G7`0G/h0Gx0G70G(10Gp0G70G(10Gq0G`70G(10Gw0G70G70Gv0G0781Gh7P1GЇ1GX2G2GІ2G73G703Gx3G84G4G4G74G76GE`/6G6G 76GN`/6G6G76G `/6G6G76GR`/6G`6GЯ77G٨77GВ7Gh7H7GX7GP7h7Gx7Gx77G7@9GE`/H9GX9G@7`9GN`/h9Gx9Gȵ79G `/9GЗ9GH79GR`/9G9G79G.769G09Gh79G29G9G78:G7;GE`/;G@;G/;GN`/;Gp;G/G>GD7H>GX>G4h>Gx>GD7>G7@@GE`/H@G0X@G/`@GN`/h@G`x@G/@G `/@G@G7@GR`/@Gp@GP7@G/@G@G]1@G 7@G@G7AG7AGAG7 AG27(AG8AG7@AG;7HAGXAGx7`AGP7hAG`xAG7AGo2AGAG7AG{2AGAG7AG/AGAGp7BGзBG/(BG8BG/hBGxBG4BGBGD7BGpBG4BGBGD78CGH7DGE`/DG`DG/DGN`/DGDG/EG `/EGEG7 EGR`/(EG`8EG7@EG!7HEG0XEGh7`EG7hEG`xEG7EG7EGEGP7EG7EG0EG7EG7EGEG7EG 7EGEGx7FG7FGFG7 FG7(FG8FG7@FG4HFGXFG7`FG7hFGxFG`7FG7FGFG7FGPFG57FGFG7GG@GG7(GG8GG7hGGpxGGL7GGpGG`7GGGGn7GGGGr7HGHG7(HG8HG7HHGXHG7HGpHGL7HGHG`7HG7JGE`/JGJG/JGN`/JG JG/JG `/JGJG7JGR`/JGpJGh7KG!7KGKG7 KG7(KG`8KG7@KG7HKGXKG7`KG7hKG@xKG7KG7KGKGX7KG 7KGKGx7KG7KGKG7KG4KGKG7LG7LGLG`7 LG7(LG8LG7hLGxLGn7LG@LGr7LGpLG7LGLG7LGLG7(MG8MGL7HMGXMG`7MG MGn7MGpMGr7MGMG7MGMG7NG NG7HNGXNGL7hNGxNG`7NG7@PGE`/HPGpXPG/`PGN`/hPGpxPG/PG `/PGPG7PGR`/PGPGH7PG0PGPG7QG7RGE`/RGPRG@7RGN`/RGRGȵ7RG `/RGpRG7SGR`/SGSG7 SG.76(SGP8SGH8@SG2HSG!XSG8SG(8 UGE`/(UG $8UGb/@UGN`/HUG04XUGXc/`UG `/hUG@#xUGX8UGR`/UG2UG8UG8UG,UGp8UG8UG 'UG8UG8UG)UG8VG8VG0%VG 8 VGv6(VG&8VG 8@VG 6HVG +XVG 8`VGߙ/hVGGxVG 8VG8VG(VG 8VGx0VG/VG` 8VG0VG0VG8VG6VG-VG8WG(1WGGWG8 WGi/(WG`D8WGh8@WGi/HWGBXWG:7`WGY6hWG8xWG8WG/WG`AWG8WG̙/WG?WG8WG6WG(WG8WG(1WG?WG8XG(1XG=XG8 XGH6(XG58XG(57xXGP8ZGE`/ZGNZG/ ZGN`/(ZG]8ZG/@ZG `/HZG MXZG8`ZGR`/hZGcxZG8ZG6ZG0SZGp8ZG0ZGPZGH6ZGm0ZGqZG8ZGߙ/ZG iZG06[G6[G e[Gp8 [Gg6([Gf8[Gx6@[G6H[G@VX[G8`[G6h[GPWx[G 8[GM6[Gp^[G`!8[GZ6[G`b[G!8[G6[G T[G"8[G6[G0U[Gh#8\G+6\G_\G@$8 \G<6(\Ga8\G$8@\Gl6H\GpQX\G%8`\G]6h\GPRx\GP&8\G8\GN\Gx'8\G6\GO\G'8\GM6\G`X\G(8\Gű6\GPY\G 6]Gr6]G[]G6 ]G6(]Gt8]G(8@]GV6H]GZX]G+8`]G8h]Gkx]G,8]G8]G`n]G.8]G?8`_GE`/h_G{x_G/_GN`/_G_G/_G `/_Gz_G?8_GR`/_G_Gp@8_G_18_G _G@8`G4`G`G`C8 `G΁9(`G|8`GH8@`G08H`GX`GI8``G[08h`Gx`GJ8`Gk08`G`GL8`G|08`G`GM8`GK0`G`G8O8`G0`G@~`GP8aG08aGЌaGQ8 aGK08(aG8aGR8@aG18HaGPXaGT8`aG08haG xaGU8aG08aG0aGW8aG>08aGaGX8aG18aGpaGY8aG18aGaGZ8bG08bGpbG[8 bG-08(bG 8bG[8@bG08HbG@XbGx\8`bG+18hbGxbG(]8bG08bGbG]8bG08bGbG`8bGR18bGbG8e8bG08bGp}bGf8cG<18cGcG@g8HcG XcGq18hcGxcG18cGk8@eGE`/HeGpXeG/`eGN`/heG`xeG/eG `/eGeGk8eGR`/eG0eGXl8eG/eGeGh/eGۦ/eG`eG/fGѦ/fG@fG`/ fG̦/(fG 8fGl8@fGP2HfGXfGx2`fGɦ/hfGxfG(/fG@n8XhGw8iGE`/iG`iG/jGN`/jGjG/ jG `/(jG8jGhn8@jGR`/HjGPXjGn8`jG/hjGxjG2jG1jG`jGo8jGm8jGjGp8jG m8jG`jGpp8jG/jGjGp8kG<2kGkGhq8 kGP0(kG8kGr8@kG2HkGXkGs8`kG2hkGPxkGPt8kG0kG0kGt8kG*2kGkGhu8kG0kGkG(v8kG/kG`kGv8(lG8lG/HlG`XlG/lGX|8 nGE`/(nG8nG/@nGN`/HnGXnG/`nG `/hnGxnG|8nGR`/nG@nG}8nGp0nG nGH1nGb0nG nG4nGP0nGnGP}8oG0oGoG}8 oG?0(oG8oGH~8@oG.0HoGXoG~8`oG#0hoG xoGH8oG\0oG oG8oG0oG oGX8oG0oGP oG0oG0oGoG#0pGi/pG`pG2 pG΁9(pG8pG%0@pG V7HpGXpG'0`pG0hpGxpG+0pGd0pGppG4pG!90pGpG(8pG 90pG0pGH8pGx0pG@pG8qG0qGqG 8 qG890(qG8qG(N0@qG90HqGPXqGN0qGp8 sGE`/(sGp 8sG/@sGN`/HsG XsG/`sG `/hsG xsG8sGR`/sG0 sG8sGn0sG$ sGP8sGm0sG`" sGЋ8sG8sG0 sG8tG8tG` tG@8 tG8(tG 8tG(8@tG8HtGp XtG8`tG8htG` xtG8tG8tGP tG(8tG8`vGE`/hvG . xvG/vGN`/vGK vG/vG `/vG+ vG88vGR`/vGL vG8vG4vG0] vG8wG4wG \ wG8 wG/(wG1 8wG2@wG0HwG0 XwG`8`wG8hwG0X xwG8wG4wG6 wG88wG_8wG / wG08wG8wG E wG8wGǒ8wG7 wG8xG8xGG xG8 xG8(xGpI 8xG8@xG8HxG6 XxGȡ8`xG8hxGM xxG(8xG3xGp2 xG8xG8xG`F xGؤ8xG8xGS xG8xGɓ8xGP xG8yG8yG@< yGP8 yG8(yG`3 8yG8@yG48HyG? XyG8`yG8hyG= xyG(8yGu8yGC yG8yG8yG@4 yG8yGg8yGB yGH8yG?8yG@ yG8zG53zG8 zG8 zGo8(zG/ 8zG8@zG/HzG@[ XzGر8`zG/hzGW xzG8zG8zG; zG8zG8zG 5 zG8zG8zG> zGp8zGN8zGA zG8{GВ8{G9 {G8H{G`, X{G/h{G - x{G/{G88@}GE`/H}Gf X}G/`}GN`/h}G0n x}G/}G `/}Ge }G`8}GR`/}Go }Gȹ8}GP0}G`i }G`1}G0}Gph }G1~G?0~GPj ~G1 ~G.0(~Gg 8~G1@~G#0H~GP X~G3`~G\0h~G@k x~G1~G0~Gp ~Gx1~G0~G0 ~G@1~G0~Gp ~G8~G0~G ~G@1G0G` G1 Gd0(G`l 8G1@Gi/HG0 XG2`G΁9hG} xG%0G V7Gx G'0G0Gw G+0G!90Gc GȻ8G 90G` G8Gx0Gq G1 G0(Gs 8G8xG8G ؀G G (G G G G%8@G;8HG XG(8`G6hG0 xG78G/G G8Gľ8G G8G8ȂG0 ؂G8G۾8Gp G8G_3G G08 G>/(G 8Gp8@G8HG XG88`G73hG xG8G%/Gp GP8G8G G8G8ȃG` ؃G8G*/G G8G/G GH8 Gվ8(G 8G8@G8HG@ XG8`G8hG xG8G0 G%8ȄG@ ؄G3v=G G+,2G0 G6(G 8GU8hG xG+,2G` G^8ȅG ؅G+,2G G^88G8PG G XG@ ȇG0 ؇G8G8G GH8XG8GE`/G G/GN`/G G/ G `/(G@ 8G8@GR`/HGP XG8`G1hG xG8G1G G 8G1G G8G`8GE`/G G/GN`/GP G/G `/ȌG ،G8GR`/G G8Gn0G`!G08 Gm0(G!8G8@G5HG !XG(5`G95hGp xGh8Gf5G !G`5GZO5G G8G8ȍG` ؍G8G8G` G@8G8G@!G8 G8(G 8G8@GV7HG XG8`G8hGP xG8Gi/G0 GH8؎G8`GE`/hG!xG/GN`/G@"!G/G `/G!G8GR`/ȐG#!ؐG(8Gn0G.!Gh8Gm0G+!G8 G3(G*!8G8@G0HG`!XG08`G.'2hG !xG8G*2G@!G8G8G !GP8Gm0ȑGP'!ؑG8G8G!G8G8G %!G8XG@8GE`/G06!G/GN`/G9!G/ G `/(G2!8Gp8@GR`/HG>!XG8`G8hGp?!xGH8G8G@7!Gp8G8G8!G8G8ȔGP;!ؔG8Gű6G8!Gp8G8G4!G08 Gz8(G3!8G8xG(9GE`/GF!G/ GN`/(G G!8G/@G `/HG@D!XGP9`GR`/hGH!xG9G9G E!G9ؗG9`GE`/hG0L!xG@7GN`/GT!Gȵ7G `/GPK!G9GR`/șGPS!ؙG`9G9G`V!G9G?9G@O!Gh 9 Gg9(GQ!8G 9@G9HG`M!XGh 9`G9hGPN!xG 9GL9GQ!G 9Gi/Gs!G8 9Gi/ȚGp!ؚG 9G2Gm!G9G4Gpl!G9 G1(GPk!8G9@G.76HGh!XG 9`G2hG0g!xG9G>76Gf!G9G̙/Gd!G;7G9țGpa!؛G9G/G`!G=7G9G`^!G9 G0(G0P!8G 9@G/HG]!XG 9`G(1hG\!xGx?7G(1G[!G@7G(1GZ!G@7G(#9GE`/Gz!G/GN`/G@!G/G `/ȞG0x!؞GP#9GR`/G}!G#9G/G!G$9 GC=(G!8G`$9@G0HG|!XG$9`G2hGЀ!xGh%9G2G0!GP&9Gdi/GЍ!G8'9Gp2ȟG!؟G)9G/G!G0*9G'2G !G*9 G0(G@!8G+9@G3HG0!XGX+9`G0hG{!xG+9G 0G@!G2G4G0!G(d1G4ȠG !ؠGd1G/GP!GH,9(Gy!8G/HGy!XG/G-9 GE`/(Gp!8G/@GN`/HGp!XG/`G `/hG!xG(.9GR`/G!G.9Gk1GХ!G1Ga1ȣG!أGp1G19GE`/G!G/GN`/ȥG!إG/G `/G !G19GR`/Gp!G029 G/9(G!8G29@Gt/9HG!XG39`G/9hGP!xG 59G\/9G!GP69Gh/9G@!G69GP/9ȦG!ئG79G /9GЩ!GX79G0/9G!G89 G@/9(GP!8G89@G/HG!XGP99`G0hG!xG99G&2G!G:9اG;9`GE`/hG!xG/GN`/G!G/G `/G!G;9GR`/ȩG0!ةG0<9G1G!G<9G1G!G<9XGJ9GE`/G!G/GN`/G`!G/ G `/(G!8GJ9@GR`/HGp!XGHK9`G/hG!xG2GC=G`2"GK9G/G1"G0L9G<2ȬG,"جGL9GP0Gp*"G0N9Gb2Gp("GN9 GD2(G&"8GPO9@Gv>9HG!XGP9`G2hG""xGQ9G2G"GR9G'2G"G*9G0ȭG"حGT9G0G"Gt8G2>9G!G0U9 G=9(G!8GU9@G;>9HG!XG`V9`G=9hG!xGV9GD>9G!GW9G=9GP!GW9G(>9ȮG!خGX9G=9G !G(Y9G=9G!GZ9 G=9(G!8GZ9@G>9HG`!XG[9`G>9hG0!xG[9G*2G!G\9G0G"G ^9G0ȯG!دG(v8G=9G@!GP`9G=9G!Ga9 G:`/(G!8GPb9@Gq=9HG!XGc9`G=9hG!xGd9G>9G@!Ge9G>9GP"GHf9G2ȰG!ذGg9G>9G`"Ghh9G0G!GPi9 G>9(G"8Gj9@G0HG!XGk9`G1hGP!xGl9GHI1G!Gl9G=9G!Gl9G>9ȱG!رG`n9G>9G`!Gp9G>9G!Gq9 G1(G@ "8Gs9@G1HG "XGPu9`GM>9hG!xGv9Gc>9G!G0x9G1G!Gy9G/ȲG"زG`z9G27G "Gz9G7G@"GP{9 G ?9(G`"8G{9@G 0HGp"XG2`G4hG`"xG(d1G4GP"Gd1G}=9Gp!G0|9G/ȳG!سG|9GU=9GP!G~9G?9G`"G9HG!XG|?9hG !xG?9G0!G?9ȴG!شG/GP!G/(Gp!8G?9HG!XG?9G+"G?9G!G?9G9GE`/GY"G/GN`/Gd"G/G `/ȷGK"طG9GR`/G@f"G9GP0G["G`1 G0(GZ"8G1@G?0HGP_"XG1`G.0hG\"xG1G#0G "G3G\0G0`"G1G0ȸG@"ظGx1G0G"G@1G0G@"GP9 G0(G"8G@1@G0HG0"XG1`Gi/hG|"xG3G΁9Gy"G9G V7Gpt"G81G40ȹG]"عG3G9G`l"G9Gx0Gq"G9 Ge9(G`U"8GȊ9@G9HG Q"XG`9`G~9hGL"xG9G9Gg"G9GV9GB"G9G9ȺGPa"غG9Gǁ9GPb"G9GD9G="G9 G(9(G6"8G89@G9HG 4"XG9`G9hGp^"xG9Gځ9Gc"Gp9ȻG0J"ػG9GpG"G98G9GE`/ȽG "ؽG@9GN`/G@"G9G `/G@"G9 GR`/(GХ"8G9@Gp0HG"XGH1`Gb0hG"xG؀1G0G"G+0GP0G"G`1G0ȾG"ؾG؂1G/G"Gh1G?0G"G9 G#0(G"8G9@G.0HG"XG9`G\0hG"xGH9G0G"G9G0G"G9G0ȿGp"ؿG9G0G"GX9Gi/G"Gh9 G΁9(G"8G9@G V7HG"XGH9`G0hG"xG@9Gd0G"GH9G40G"G09Gx0G"G9G0G "Gȿ9Gx0G"G9 GV0(G"8G9@GB0HGp"XGP9`G9hGP"xG9G9G0"GH9G9G"Gp9G9GE`/G"G/GN`/G"G/G `/G"G9GR`/G "GH9G9G"G9 GP0(G"8G`1@G0HG"XG1`G?0hG"xG1G.0G"G1G#0G"G3G\0Gp"Gx3G0G #Gx1G0G#G@1 G0(G#8Gh9@G0HGp"XG@1`G0hG"xG1Gi/G"G3G΁9G"Gx1G V7G"G81G40G"G3Gd0G0"G(9XG9GE`/G` #G/GN`/G@#G/ G `/(G #8G9@GR`/HG#XG9`Gn0hG@#xG9Gm0G#G8G9G#GP9G9G`#G9G/G#G98G9GE`/G#G/GN`/G$#G/G `/G#G9 GR`/(G&#8GH9@GP0HG#XG`1`G0hG#xG1G?0G#G1G.0G!#G1G#0G##G3G\0G`"#Gx3G0GG#Gx1 G0(GpD#8G@1@G0HGA#XG9`G0hG`:#xG@1G0G5#G1Gi/Gp0#G3G΁9G.#Gx1G V7G)#G81G40G #G3 Gd0(G (#8G(9xG9GE`/GR#G/ GN`/(GZ#8G/@G `/HGQ#XG9`GR`/hGPY#xGx9Gp0G #GH1Gb0G0#G4GP0GU#G`1G0GV#G1G?0GS#G1 G.0(GT#8G1@G#0HG #XG3`G\0hG#xGx3G0G0#Gx1G0G|#G@1G0Gu#G@1G0Gp#G1Gi/Gk#G3 G΁9(G0j#8Gx1@G V7HGe#XG81`G0hGd#xG01Gd0GW#G50G!90GO#G9G 90GK#G9Gx0GP\#G9G0G _#G9 G890(G K#8G4@G90HGpJ#XG4G9 GE`/(G#8G/@GN`/HG#XG/`G `/hG#xG9GR`/G#G 9GP0G#G`1G0G#G1G?0G#G1G.0G#G1 G#0(G#8G3@G\0HGp#XG1`G0hG#xGx1G0G#G@1G0G0#G@1G0Gp#G1Gi/G@#G3G΁9G#Gx1 G V7(G#8G81@G0HG#XG01`Gd0hG#xG1G0GР#G`9G!90GЋ#Gp9G 90G #GX9Gx0G#GX9G0G`#G8 G890(G#8GP9xGh9GE`/GP#G/ GN`/(G#8G/@G `/HGp#XG9`GR`/hG#xG9GP0G`#G0G0GP#Gx0G?0G@#G0G.0G #Gp0G#0G #G0 G\0(G#8GX0@G0HG#XG0`G0hG@#xG-0G0G#G0G0G0#G#0G΁9G#G%0G V7G#G'0G0G#G+0 G0(G#8G`9@Gi/HG#XG@40`Gd0hG@#xGh9G!90G#G 9G 90G#G9Gx0G#G9G0G#G98G89GE`/G$G/GN`/G$G/G `/G$Gh9 GR`/(G0$8G9@GP0HGp$XG0`G0hGP$xG?0G?0G`$G@0G.0G@$G A0G#0G1$GA0G\0G0$GPB0G0G.$G0 G0(G+$8G-0@G0HG`$$XG0`G0hG$xG#0G΁9G $G%0G V7G$G'0G0G$G+0G0G0$G@9Gi/G$G@40 G!90(G@#8GX9@G 90HGp#XG9`Gx0hG $xGh9G0G0 $G9G890G$G(N0G90G#GN0G:GE`/G@;$G/GN`/G`D$G/G `/G`:$G:GR`/GB$G: GP0(G0>$8G0@G0HGP<$XG?0`G?0hG@=$xG@0G.0G ?$G A0G#0G n$GA0G\0G@$GPB0G0G@l$G0G0Gi$G-0 G0(Ga$8G0@G0HG\$XG#0`G΁9hGp[$xG%0G V7GPV$G'0G0G@U$G+0G0GR$G:Gi/GPM$G@40Gd0G A$G50 G!90(G8$8G:@G 90HG4$XG :`Gx0hGE$xG@ :G0GH$GH :G890G3$Gx :GH:GE`/Gw$G/GN`/G$G/G `/Gv$G:GR`/G $G:GP0Gp{$G0 G0(Gz$8G?0@G?0HGy$XG@0`G.0hG`|$xG A0G#0G0$G@U0G\0G $GU0G0G@$G0G0G$Gh:G0G$G: G0(G$8G:@G΁9HGp$XGP:`G V7hGP$xGH:G0G@$Gx:G0G$G@:Gi/GP$G@40Gd0GP}$GX:G!90Gs$G: G 90(G0q$8Gh:@Gx0HGp$XG\0`G0hG $xG^0G890Gx$G(N0G90GPp$GN0G#:GE`/G$G/GN`/Gp$G/G `/G0$G#:GR`/G$G`$:GP0G$G0 G0(G$8Gx0@G?0HG$XG0`G.0hG$xGp0G#0G$G0G\0G$GX0G40G $G$:G0G$G&:G0Gp$Gx': G0(G$8G*:@G0HG`$XGh,:`G0hG$xG@.:Gi/Gp$G/:Gx0G$G1:G~9G$G3:G9G$G4:GV9Gл$Gh6: G΁9(Gp$8G08:@G9HG$XG9:`GD9hG$xG;:G(9G$G<:G9GP$G?:G V7GP$G'0G9G$G@:Gځ9G$G B:XGG:GE`/G%G/GN`/G %G/ G `/(G%8GG:@GR`/HG` %XGpH:`GP0hG%xG0G0G%G?0G?0G%G@0G.0G%G A0G#0G06%G@U0G\0G 5%GU0 G0(G@3%8G0@G0HG0%XG-0`G0hG(%xG0G0G#%G#0G΁9Gp"%G%0G V7GP%G'0G0G@%G+0G0G%GH: Gi/(GP%8G@40@Gd0HG%XGJ:`G!90hG$xGK:G 90G$GL:Gx0G%GN:G0G` %GP:G890G%G(N0G90G$GN0XG(U:GE`/G?%G/GN`/GH%G/ G `/(G>%8GXU:@GR`/HGpG%XGU:`GP0hGC%xG0G0G@%G?0G?0GB%G@0G.0GA%G A0G#0Gs%GA0G\0GD%GPB0 G0(Gq%8G0@G0HG`n%XG-0`G0hGg%xG0G0GPb%G#0G΁9G`%G%0G V7G[%G'0G0GZ%G+0G0GW%G V: Gi/(GR%8G@40@Gd0HGE%XG50`G!90hG0<%xG0X:G 90GP8%G@Y:Gx0GpJ%G@4G0GM%GZ:G_:GE`/G }%G/GN`/G@%G/G `/G@|%G`:GR`/GЂ%Gx`: GP0(G%8G0@G0HG%XG?0`G?0hG%xG@0G.0G%G A0G#0G%GA0G\0G%GPB0G0G%G0G0G`%G-0 G0(G%8G0@G0HGP%XG#0`G΁9hGО%xG%0G V7G%G'0G0G%G+0G0G%G`:Gi/G%G@40Gd0G%Gh9 Go`0(G@%8Gh0@G!90HG@y%XGb:`G 90hGv%xGc:Gx0G%G8G0GЅ%G 8G890G0~%G(N0G90Gu%GN08Gh:HE`/H%H/HN`/H0%H/H `/H0%Hh: HR`/(H%8H`i:@HP0HH%XH0`H0hH%xH?0H?0H%H@0H.0H %H A0H#0H%H@U0H\0Hп%HPB0H0H%H0 H0(H%8H-0@H0HH@%XH0`H0hH%xH#0H΁9H%H%0H V7H%H'0H0H%H+0H0H%H8e0Hi/H%H@40 Hd0(H%8HPg0@Ho`0HH %XHh0`H!90hHз%xHi:H 90H%Hj:Hx0H%H@ :H0H%HH :Ho:HE`/H0%H/HN`/H &H/H `/HP%H(p:HR`/H&Hp: HP0(H%8H0@H0HH%XH?0`H?0hH %xH@0H.0H%H A0H#0H,&H@U0H\0H+&HU0H0H)&H0H0H&&H-0 H0(H@&8H0@H0HH&XH#0`H΁9hH&xH%0H V7H&H'0H0H&H+0H0H&H@9Hi/H &H@40Hd0H%HX0 H!90(H%8Hp:@H 90HH%XH8r:`Hx0hH&xH\0H0H&H^0H890H@%H(N0H90H%HN0 Hv: HE`/ H0& H/ HN`/ H9& H/ H `/ H.& H0w: HR`/ H:& Hw: Hrt:( HP0&8 H(x:@ HUt:H H/&X Hx:` H4h H6&x HPy: HȀ6 H7& Hy: H6 H8& Hz: H6 H4& H{: H/ H>& Hx{: HP0 HP3& H }: H}t:( H1&8 Hp}:@ H/H H2&X H}:` Ht:h H4&x H@~: Ht: H`<& H~: Ht: H5& HX: H:HE`/HG&H/HN`/HI&H/H `/HF&H0:HR`/HK&H:Hn0H0T&H؂: Hm0(HQ&8HX:@H߀:HHpL&XH:`Hπ:hHH&xH:H0:@HE`/HH[&XH/`HN`/hHn&xH/H `/HY&H`:HR`/Hk&H؋:H/H^&H2HC=HФ&H(:H/H&H`z9 H/(Hf&8Hk5@H0HHd&XH(l5`H2hH`&xHЌ:H<2H&Hm5Hb2H&Ho5H2H&HP:Hdi/H`&Hq5H52HЅ&Hxs5 HP0(H&8Ht5@H2HH`i&XHhu5`H2hHh&xH v5H'2H&Hv5H0H\&HXw5HD2H`&HX:H0He&H0:Hn/H t&H: HЮ/(Hp`&8H:@Hf5HH`a&XH8:`Hx/hHp&xH:Hff5Hj&H:Huf5H@m&H :H5HP&H:HB5H0b&HH:H5H@&HЖ: H25(Hc&8HX:@H5HH0&XH:`H5hHc&xHh:HVh5Hv&H:Hf5H_&H؇5H 0H@~&H2H4H0}&H(d1H4H |&Hd1 Hu1(H]&8H`:@H1HHz&XHК:`H/hHr&xHț:HY&H/HZ&H/H`:HE`/H&H/HN`/H0&H/H `/H&H:HR`/H&H: H/(H&8H@:@H :HH&XH`:`H(:hHp&xHh:H7:H&H:H:H&Hh:H4H&H`:H:H&H:H3H&H`:HH&XH:hH&xH:H&Hc:H&Ht:H &H:HP&H:8H:HE`/H@&H/HN`/H&H/H `/H`&H: HR`/(H0&8H:@HS:HH0&XH:`H7:hH0&xHX:Ha:H&H:HE:H0&H:Ho:H@&H(:H:HE`/HP&H/HN`/Hp&H/H `/H&H0: HR`/ HP& H: H/( H&8 H0@ H/H H&X H:` H/h H&x HX: H: H& H: H: H& H: Ho: H& H0: Hz: H& H:!H4!H&!H8: !H4(!H&8!H:@!H5H!H&X!H:`!Hf:h!H`&x!H:!H/!H&!H:!H4!H&!Hh:!H/!H&!H:"H&"H/("H`&8"H/h"H&x"H:"H&"H:"H&"H:"H&"H:(#H&8#H4H#H&X#H:#H`:8%H:&H:`(HE`/h(H&x(H/(HN`/(HP&(H/(H `/(H`&(H:(HR`/(H&(H:(H/(H '(H 1)H:)H ')HX: )H:()H'8)H:@)H:H)H'X)HH:`)H:h)H&x)H:)H:)H&)HP:)H4)H')H:)H4)H')HP:)H/)H')H:*H:*H&*HH: *Hs:(*H'8*H:@*Hd:H*H'X*HX:`*H:h*H&x*H:*HW:*H'*H@:*HJ:*H'*H:*H(:*H&*H:*H:*H@&*Hx:+H:+H&+HX: +H:(+H&8+H:@+H:H+H&X+H8:`+H:h+H`&x+H:+Hr:+H&+H:+Hj:+H@&+H`:+H^:+H&+H:+HW:+H &+H:,HM:,H&,H: ,HH:(,H&8,HH:@,H@:H,Hp&X,H:`,H5:h,H&x,H:,H%:,HP&,H:,H:,H&,H:,H:,H0&,HP:,H:,H&,H:-H:-H&-H: -H:(-H&8-H:@-H :H-H&X-H:-Hh; /HE`/(/H '8/H/@/HN`/H/H'X/H/`/H `/h/H 'x/H;/HR`//H'/H(;/H>4/H'/H;/H!3/H'/H8;/H173/H'/HX ;0H΁90H0'0H ; 0H0(0H'80HP;@0H/H0H 'X0H;`0HD:h0H'x0H0;0HY:0HP'0H;0Hp:0H'0H;0H:0H'0HX;0H:0H'0Hh;1H:1H'1Hp;X1Hp;2HE`/2HP!'2H03HN`/3H$'3HP0 3H `/(3Hp '83H;@3HR`/H3H%'X3H@;`3HJ;h3HP"'x3H;3H\;3H #'3HH;3H03H-'3Hh;3H03H''3HX44H0&;5HE`/5H4'5H`&;5HN`/5H5'5H';5H `/5H3'5H';6HR`/6H07'6H(; 6H";(6H8'86HP);x6H/;8HE`/8H?'8H/ 8HN`/(8HE'88H/@8H `/H8H?'X8H/;`8HR`/h8H0D'x8H 0;8Hn08HM'8H`0;8Hm08H@K'8H2;8H18HB'8H2;8H18HA'8H3;9H19HG'9H1 9HԱ1(9H@'89H3;@9H.;H9H;'X9H4;9H@?; ;HE`/(;HPT'8;H/@;HN`/H;Hq'X;H/`;H `/h;HpS'x;Hh?;;HR`/;Hr';H?;;H7;;HPt';H@;;H7;;Hp';HA;;HD7;;Hf';HB;H6;>H0\'>H8R; >H7;(>Hn'8>HxT;@>H6;H>HX'X>HV;`>H6;h>HY'x>HY;>H6;>HP['>Hp[;>H77;>H@e'>H];>H7;>H^'>Hx^;>H)7;>Hc'>H8_;?H6;?H]'?H`; ?H/(?Hx'8?H`;@?H4H?Hpw'X?H8a;?HXf; AHE`/(AHP}'8AHf;@AHN`/HAHP~'XAH g;`AH `/hAHp|'xAHg;AHR`/AH'AHph;AH:`/AH'AHi;AH/AH'AHi;AH1AH'AH j;BH1BH'BHj; BH/(BHp'8BHk;xBHo;DHE`/DHЈ'DHo; DHN`/(DH@'8DHp;@DH `/HDH'XDH q;`DHR`/hDHЏ'xDHq;DH9DHВ'DH9DH?9DH'DHr;DHdi/DH'DHs;DHi/DH'DHC1EHi/EH'EHXu; EH(1(EH'8EHPH1@EH(1HEH'XEH8F1`EH(1hEH'xEHF1EHRl;EH`'EHz;EHl;EH'EH~;EHl;EH'EH;EHuHp")uHh9<uH/uH*)uH9<vH0<vH,)vH:<HvH)XvH/hvH)xvH/vH><XxHB<yHE`/yH`1)yH/zHN`/zH`2)zH/ zH `/(zH.)8zH ?<@zHR`/HzH3)XzH?<`zH%<<hzHp0)xzH?<zH<<zH/)zHXA<zHD<|HE`/|H`f)|H/|HN`/|H t)|H/|H `/|He)|HD<|HR`/|Hu)|HE<}H#0}H`)}H`E< }HP0(}Hj)8}H`1@}H0H}Hj)X}H1`}H?0h}Hi)x}H1}H.0}H0h)}H1}H\0}Hp)}H1}H0}H)}Hx1}H0}H@)}H@1~H0~H)~H@1 ~H0(~H0)8~H1@~H΁9H~H)X~Hx1`~H V7h~H)x~H81~H0~H)~H01~H9~H`g)~HF<~H0~H)~HxF<~H!90~H c)~HH<H 90H`)HhI< Hx0(H~)8H`J<@H0HH{)XHPK<`H890hH0q)xHP9Hi/H)HPL<Hd0HPr)H1Ho`0HЁ)Hh0HB<H7)HM<HcC<Hk)HN< HJC<(H])8HO<@HG<HHY)XHQ<`H>C<hHT)xHU<He9H f)HV<HpC<Hw)HX<H+C<ȀHF)؀HY<HC<HB)H[<H C<He)H]<HH?)XHC<hH<)xHC<HR)HC<ȁH L)؁HC<Hb<HE`/Hp)H/HN`/ȃH)؃H/H `/H)Hc<HR`/H)Hc< HP0(H@)8H`1@H0HHp)XH1`H?0hH)xH1H.0H0)H1H#0H)H3H\0ȄH)؄Hx3H0H )Hx1H0H)H@1 H0(H )8H8@H0HH)XH0`H0hH)xH#0Hi/H)H2H΁9H`)H%0H V7ȅH@)؅H'0H40H`)H$:Hd0H)H(9 H`<(Hp)8Hc<xHXk<HE`/H)H/ HN`/(H0)8H/@H `/HH0)XHk<`HR`/hH)xHl<HP0H)H0H0H)H?0H?0ȈH)؈H@0H.0H)H A0H#0H *HA0 H\0(H *8HPB0@H0HH *XH0`H0hH*xH-0H0H0*H0H0Hp)H#0H΁9ȉH)؉H%0H V7H)H'0H0H)H+0 H0(H)8Hxl<@Hi/HH)XH@40`H!90hH)xHn<H 90H)H8p<Hx0H)Hps<H0ȊH)؊Hu<H890H )H(N0H90H)HN0XHp{<HE`/HP*H/HN`/HP*H/ H `/(H*8H{<@HR`/HH*XH|<`H/hH`*xH2H4Hp*Hh|<H}4H*H|<H/ȍHP*؍H8~<H4H@*H`<H2H *H@<HH*XH/hHP*xH/H<@HE`/HH"*XH@<`HN`/hH+*xH<H `/H@ *H <HR`/H)*H<HC=ȐHS*ؐHj5H/H%*H2H<2HO*H< Hdi/(H0D*8Hq5@H52HH>*XHxs5`HP0hH=*xHt5H2H (*Hhu5H2H&*H v5H/ȑH<*ؑH`;H0H$*HXw5H.<H$*Hp< HQ;(HP:*8H<@HO;HH7*XHp<`H^;hH5*xH<H\;H03*HH<H2HP2*Hx;H2ȒHp1*ؒH;Hv;H`0*H<Hh;HP/*H< HA<(Hp.*8H`<@H/HH,*XH<H !*H/H!*H/H<HE`/Hd*H/HN`/HPy*H/H `/ȕH \*ؕH<HR`/H`r*H8<H/H@l*H< H*2(H*8H <@H0HH@*XHh<`H0hHpk*xHH<HC=H0*H<H/HP*H@<H<2ȖH*ؖHЙ<Hb2H*H <H2H0*H< H2(H*8H <@Hp2HH *XHН<`HP0hH*xHp<H)<Hf*Hh<H<Hf*Hȟ<H0ȗH0*ؗH+9H/HP*H$9H0Hp*H(< H:`/(Hi*8H<@H;<HHPh*XH0<`Hw<hHP~*xHx<H`0H*Hp<H1Hg*H<H0ȘH*ؘH<H>9Hv*Hx<HM>9H n*H< Hc>9(H@p*8Hh<@H1HHPq*XHȫ<`HD2hH *xH<H27H@*Hp<H7H`*H<H ?9șH*ؙH{9H 0H*H2H4H*H(d1 H4(Hp*8Hd1@H<HH@*XH<`H<hH`*xH<H}=9Hj*H <H/H{*HȰ<HB0ȚH@|*ؚH<HH<Hi*H<HY<H0m*Hx< H?9(Hp*8H9@H<HH^*XHH<`H<hH_*xH<HZ*H<țHW*؛Hؼ<H@U*H<(H]*8H/HH]*XH/H0o*H18Hs*H<H<HE`/HP*H/HN`/H*H/H `/ȞH*؞H<HR`/H*H@<H/H*H`2 H*2(H*8H<@H4HH*XHd1`H0hH*xHP<H0H *H<H<H`*Hx<H<ȟHp*؟H<H/H@*H<(H*8H/HHP*XH/H< HE`/(H*8H/@HN`/HH*XH/`H `/hH*xHH<HR`/H*H<Hk1H*H1Ha1ȢH *آHp1H<HE`/H*H/HN`/ȤH0*ؤH/H `/H*H<HR`/H*H< HP0(H*8H`1@H0HHp*XH1`H?0hHP*xH1H.0H*H1H#0HP*H1H\0ȥH0*إH1H0H@+H82H0H*H@1 H0(H0*8H1@H0HH *XH01`H0hH@*xH<H0H*H<Hd0Hp*H1Hi/ȦH*ئH <H΁9HP*H<H V7H0*H< H!90(H0*8H<@H 90HHP*XH<`Hx0hH*xH<H0H *H9اH<`HE`/hH+xH/HN`/H +H/H `/H+H<HR`/ȩH +ةH<H^2H+H<Hۦ/H +HX< H̦/(H +8Hج/@Hɦ/HH +XH(/Hx< HE`/(H+8H/@HN`/HH+XH/`H `/hH+xH<HR`/H+H<Hp0HI+HH1Hb0ȬHG+جH4H0HF+HH<HP0H+H`1 H0(H+8H1@H?0HH+XH1`H.0hH+xH1H#0HE+H3H\0HpD+Hx3H0ȭHB+حHx1H0HP?+H@1H0H8+H@1 H0(H@3+8H1@Hi/HH.+XH3`H΁9hH,+xHx1H V7Hp'+H81H 90H`+H<Hx0ȮH +خH@4H0H#+HX4H!90H+HP< H890(H+8H4@H90HHP+XH4H< HE`/(H`S+8H/@HN`/HHp[+XH/`H `/hHR+xH@<HR`/HZ+H<Hp0H+HH1Hb0ȱH+رH4HP0HPV+H`1H0H@W+H1 H?0(HpT+8H1@H.0HH`U+XH1`H#0hH+xH3H\0Hp+Hx3H0H+Hx1H0ȲHP|+زH@1H0Hu+H@1H0H@p+H1 Hi/(Hk+8H3@H΁9HHi+XHx1`H V7hHpd+xH81H0H`c+H01Hd0H0X+H4H!90ȳH P+سH<H 90HM+H<Hx0H]+H@ : H0(H_+8H8<@H890HH M+XH4`H90hHpL+xH4H0<@HE`/HH0+XH/`HN`/hH@+xH/H `/H+H`<HR`/H+H<H3ȶHН+ضH(<H+<H+H<H53H+H< HL4(H+8H<@H&2HHp+XH<`H[(2hHХ+xH<H<H0+HP<H<H`+H<H<ȷH+طHx<H<H+H<H;<H+H< HK<(H+8H0<@H<HHP+XHh<`H"<hHp+xH<H<H+H<H<H@+Hh<H<ȸH+ظH<HG3H@+H<H]<H+H< Hn<(H@+8H<@HӉ3HH+XH <`H<hH+xH<Hw0<H +H<Hy<H+H`=Ho0<ȹH+عH=H<H+HX=H<H+H= Hh<(H+8Hx=@H<HH+XH=`H<hH+xHp=H<H+H=H<H+H=Hh<ȺH+غH=H<H+H`=H<H+H= H<(HЙ+8H =@HX<HH +XHh =`H<hH+xH =H<H+H =H4H+H =H<ȻH+ػH(=H<H+H=H<H+Hp= HC<(H`+8H=@H<HH+XH=`H-<hH+xH=H<H@+H=ȼH@+ؼH3<H+H;<Hp+HC<(H+8HK<hH+xH3<H`+H;<H+HS<ȽH+ؽHK<H+H',2(H+8H[<HH@+XH_<hH+xHc<H=@HE`/HH+XH/`HN`/hH+xH/H `/H+H=HR`/H+Hx=H4H+H=Hd4HP+H(=HD=H+H= H5=(H0+8H=@H̦/HH+XHx=`Hɦ/hH+xH=H-=H+H(=H!=H+8H@+H+HP+hH+xHu=H+H=Hm0H`,H8!=H=H,H"=H=H,H#= H<2(H,8H$=@H8HH,XH%=`H=hH0+xH'=Hm0H+H'=Hm0H+H`(=H=H`+Hh)=H=H`+H)=H>/H+H(+= Hߙ/(H,8H+=@H=HH0+XH -=`H=hH0,xH-=H=H,Hh.=Hr6H,H@/=HԱ1H+H00=H=Hp+H0=H2H0+H1= Hr=(H+8Hx1=@H=HH+XH1=`H=hH,xH`2=H8H ,H3=H=H+H`5=H0HP+H8=H 9=0Hp ,xH` ,8H*,Hp,H8=H53HP!,HH9=H8=H ,H9= H8=(H",8H(:=@H8=HH",XH:=`H94hH',xH;=H8=H%,H;=H#,Hu=H$,H8=8HX==PH-,H-,XH3,H ,,H==H53H.,H== H8=(H.,8H==@H<=HH/,XH`>=`H<=hH`0,xH>=H<=H2,H@?=H<=H-,H?=HA7H01,HP@=H2H1,H@=8HI=HE`/H09,H/HN`/H@P,H/H `/H5,HI= HR`/(HJ,8H`J=@H/HHk,XH4`H/hH0?,xH2HB=H],HJ=HHB=HD,HPL=HA=H<,HL=HtA=H`6,HHM=HPB=HF,HN= HA=(H=,8HpO=@H&B=HHC,XHO=`HXB=hHG,xHP=HB=HT,H0Q=HB=HQ,HPR=HlB=HH,HHS=HB=H B,HS=H:B=HD,HpT= HA=(H;,8HU=@HA=HH`>,XHxV=`HA=hH @,xHW=H(C=Hj,HW=H4Hpi,HX=H4HPh,HpY=H4H@g,H@Z=H4H0f,HZ= HC=(H e,8HH[=@HC=HHd,XH[=`HB=hHc,xHp\=HB=Ha,H(]=HA=H6,H]=HA=H0;,Hb=HA=H`:,Hc=HB=H@W,Hxc= HB=(HpZ,8Hd=@HB=HHA,XHf=`HyB=hHL,xHpg=H I,HTC=HpN,HZC=Hi=HE`/Hn,H/HN`/H{,H/H `/Hm,H@i=HR`/Ho,Hi= Hg=(Hq,8H(j=@H h=HHr,XHj=`HQh=hHu,xH(k=Hh=Hr,Hk=Hh=Hz,Hl=Hsh=Hx,H(m=HWh=Hv,Hm=H-I`=Iu=I<-I=I,Iu=I,Iu=(I ,8Iw=`Izu=hI@,xI0=Iu=I ,IP=Iu=I`-I=Iu=I@&-I=Iu=I4-Ih=8I=PIv-IP-XI-I=Iv-8I-I-xI =Ip-I-Ip-IH=0Iv-xIЄ-8I-Ip=I`v-I-Ip-XI=pI-I-xI-I=I@v-XI-I-I=I v-I- I-8!I=P!Iv-!I-X"I@-"I="Iu-8#Ip-#I-x$IX=$Iu-$I`-%I-&I =0&Iu-x&Iv-8'I@-'It-'Iu='Iq-'Iu='Im-'IN=((I|-8(Iu=H(I y-X(Iu=h(Il-x(I\=(I~-(Ij=(I-(I.v=(In-(Iq=)Ik-)I=H)Ips-X)Iu=h)Ipp-x)Iu=)Ik-)I=)Iz-)Iu=)Iw-)Iu=*Ij-*I=H*Ip}-X*Ij=h*I-x*I.v=*I i-*Iq=*I@-*I=*I0~-*Ij=+I0h-+I=@+I3H+IP-X+I=`+I6=h+I-x+I8=+I =+I`-+I=+I-=+I -+I=+I=+I-+I=+I==+I-+I=,I=,I -,I= ,IE=(,I -8,I=@,I$=H,I -X,Ih=,IP{-,Iu=,Ipx-,Iu=,I@g-,I=-I3-I--I= -I6=(-I-8-I(=@-I =H-I-X-I=`-I-=h-IЭ-x-I=-I=-I`--Ix=-I==-I--I=-I=-I--IX=-IE=-I--I=.I$=.I`-.I8=H.I0t-X.Iu=h.I0q-x.Iu=.I@f-.IѾ=.I3.I-.I=.I6=.I-.I=/I =/I-/Ih= /I-=(/I@-8/I=@/I=H/I`-X/IH=`/I==h/I0-x/I=/I=/I -/I(=/IE=/I-/I=/I$=/I-/I=0I-0I=(0I|-80Ij=H0I@e-X0I=0I30I -0I=0I6=0I-0I8=0I =0I -0I=0I-=0I-0I=1I=1I-1I= 1I==(1I-81I=@1I=H1I`-X1I=1Iy-1Iu=1Iv-1Iu=1I@d-1I=2I32Iм-2I= 2I6=(2I-82I(=@2I =H2I-X2I=`2I-=h2I-x2I=2I=2I-2Ix=2I==2I-2I=2I=2I`-2IX=3Ir-3Iu=(3Io-83Iu=H3I@c-X3I=3I33I-3IH=3I6=3I`-3I=3I =3I -3Ih=3I-=3IP-3I=4I=4I-4IH= 4I==(4Ip-84I=@4I=H4I-X4I(=4I8=4I-4I-5I-86I`=P6I-6I-X7I-7I=7I-88I-8I-x9I=9I-9I-:I -;I@=0;I-x;I-8I-X>Iu=h>I-x>Ir=>I->Iu=>I->I~=?IP-?I2v=(?I -8?I=h?I-x?I2v=?I0-?I=?I3?I.?I=?Iu=?IP.?I=@Ipu=@I -@I= @Iu=(@I@.8@Ih=@@Iku=H@I-X@I=`@IH=h@Ip.x@IH=@I=@I-@I=@IQ=@I`.@I=@I=@I`-@I=@Iy6@I -@I=AI6AI-AI`= AI =(AI-8AI=@AI=HAI-XAI8=`AI=hAI-xAI=AI"=AI0-AI8=AI-=AI-AI=AI<=AI .AIH=AI8AI .AI=BIj=BI .BIx= BI[=(BI.8BI=hBI@-xBIu=BI@-BI=BI3BI.BIh=BIu=BI .BI(=CIpu=CI-CI= CIu=(CI .8CI=@CIku=HCI`-XCI=`CIH=hCI .xCI=CI=CI -CIx=CIQ=CI .CI=CI=CI-CIP=CIy6CI-CI=DI6DI@-DI0= DI =(DI -8DI=@DI=HDI`-XDI=`DI=hDI-xDI=DI"=DIp-DI=DI-=DIP-DI=DI<=DI.DI=DI8DI#.DI=EIj=EI.EIX> EI[=(EI@.8EI>hEI-xEIu=EI@-EI=EI3EI.EIH>EIu=EI.EI>FIpu=FI`-FI> FIu=(FI .8FI>@FIku=HFI -XFIx>`FIH=hFI .xFI>FI=FI -FI`>FIQ=FI0.FI>FI=FI-FI8>FIy6FI-FI>GI6GI-GI > GI =(GI`-8GI>@GI=HGI`-XGI>`GI=hGI-xGIp>GI"=GI-GI>GI-=GI.GI >GI<=GI.GI >GI8GI.GI >HIj=HI.HIP > HI[=(HIp.8HI >xHI>JIE`/JIP..JI/ JIN`/(JI/.8JI/@JI `/HJIp*.XJI8>`JIR`/hJI 1.xJI>JI/JI`-.JI>JI/JI2.JI>JIP+.JI/KI0,.KI/XKI>LI/LI<.LI]1MIE`/MI9.MI/ MIN`/(MIQ.8MI/@MI `/HMI05.XMI0>`MIR`/hMIPN.xMI>MIrY1MI].MI>MIf5MIF.MI>MIZO5MIT.MI>MIf5MIP@.MI>NIf5NI0K.NI> NI>(NI@H.8NI0>@NId>HNID.XNI>`NIߙ/hNI0W.xNIh>NI>NIp8.NI`>NI/NIPS.NI>NI:>NIpB.NI>NI>NI 8.NI>OIn>OIE.OI> OIM>(OIC.8OI>@OI>HOI;.XOI>`OI>hOI0:.xOIP >OI>OIL.OI!>OI0<OII.OIP">OI%>OI`A.OI#>OI>OIO.OIH$>PI>PI=.PI%> PI>(PI\.8PI%>@PI>HPI;.XPI &>PI`>.PI4PIP?.PID7PI6.PI/QI6.QI/XQI)>RIE`/RI`.RI/SIN`/SIx.SI/ SI `/(SI_.8SI@)>@SIR`/HSI.XSI)>`SI/hSIPw.xSI*>SI.<SIf.SI*>SI'>SI0h.SIp+>SIZO5SI.SI,>SIf5SI`t.SIP->TI4TI`g.TI-> TI6(TI j.8TIX.>@TI&>HTIc.XTI.>`TI='>hTIq.xTI`/>TIY'>TI{.TI/>TIߙ/TI .TI0>TIf5TI~.TIp1>TI2'>TIk.TI2>UI>UIu.UIH2> UId>(UI r.8UI2>@UIF'>HUI0s.XUI3>`UIM>hUIl.xUI`4>UIn>UIn.UIH5>UI&>UIb.UI86>UI '>UIe.UI8>UI:>UIm.UI8>VI>VIl.VI9> VIf5(VIPz.8VI:>@VI>HVIe.XVI>`VI>hVIp}.xVI!>VI0<VI.VIP">VI%>VIp.VI#>VI>VIa.VIP >VI>VI@d.VI:>WIdi/WI@.WI:> WI>(WI`.8WI0<>@WI4HWI i.XWIp=>WI.WIj'>WIP.WIr'>WI>>YIE`/YI.YI/YIN`/YI.YI/YI `/YI.YI>>YIR`/YI.YIP?>ZI/ZI@.ZI?> ZI=>(ZI.8ZI?>@ZI\Y1HZI.XZI0@>`ZI4hZI.xZI@>ZI_3ZI.ZI/ZI7ZI.ZI@>ZI0B>\IE`/\IР.\I/\IN`/\IP.\I/\I `/\I0.\I`B>\IR`/\I.\IB>]IrY1]Ip.]I> ]I/(]I`.8]I]1@]I/H]I.X]I(C>`]I'>h]IP.x]IC>]I.<]I.]ID>]I4]I.]I->]I&>]Iл.]IE>]I6]I@.]IE>^Iߙ/^I.^I`F> ^I?A>(^I@.8^I(G>@^IFA>H^IШ.X^IG>`^IgY1h^I.x^IG>^I\Y1^I.^I0I>^I-A>^I0.^IXJ>^IMA>^I`.^I0K>^I4^I.^IHL>_I4_I._IL> _IC=(_I.8_IPM>@_I/H_I.X_IM>_I._I/_IП._I/_IO>aIE`/aI.aI/aIN`/aI.aI/aI `/aI0.aIP>aIR`/aIp.aIP>bIh1bI.bIQ> bIh1(bI.8bI2@bIh1HbI.XbI2`bInh1hbI.xbI2bI,O>bI.bI@R>bIO>bI .bIR>bI6h1bI@.bI2bIDh1bI`.bI2cIk1cI.cI2XcI_>pcI.cI.xdI.dIa>fI.fI`>fI/fI.fI0`>fIT4fI.fI`>gI4gI@.gI`> gIS>(gI.8gI`>@gIS>HgIp.XgIa>`gId4hgI.xgI@a>gIx4gI0.gIa>gI1gI.gI 5gI5gI.gIp 5hI5hI.hI8 5 hIE`/(hI`.8hI/@hIN`/HhI.XhI/`hI `/hhI.xhIa>hIR`/hI.hIPb>hI/hI$/hI2hIC=hI#/hI(:hI53hI.hIb>iI5iI.iIhc> iI/(iI"/8iI8d>@iI4HiI0.XiId>`iI0hiI!/xiI8e>iI+T>iI.iIe>iIT>iI.iIg>iI T>iI.iIj>iI4iI.iIk>jI;jI0.jIpl> jI0(jI .8jIm>@jIf5HjI`.XjI`5`jIZO5hjI0.xjI5jIS>jI.jI@m>jI 4jI.jIn>jIS>jI.jIo>jI2jI/jIpp>kI<2kIP/kIq> kIP0(kI@/8kIp<@kI2HkI/XkIs>`kI2hkI/xkIt>kID2kI/kIu>kI2kI`/kI0w>kIdi/kI/kIx>kI/kI /kI|>lI0lI@/lI8}> lI4(lI0/8lI(d1@lI4HlI /XlId1`lI@T>hlI.xlI@~>lIT>lIP.lI0>lIT>lI`.lIX>lIT>lI.lI>lIlT>lI.lI>mI~T>mI.mI> mIS>(mI`.8mIЌ>@mIS>HmI.XmI>`mIS>hmI.xmI>mI 0mI0/mI2mI/mI0.mI>mI.mI/nI.nI/XnI>oIE`/oI+/oI/pIN`/pI@=/pI/ pI `/(pI*/8pI>@pIR`/HpI>/XpI`>`pI>hpIP//xpI>pI>pI01/pIH>pI>pI 2/pI>pI,O>pI3/pI>pI4pI4/pI>qIˏ>qI`./qI> qIT4(qI,/8qI>@qI[4HqI-/XqIX>`qI4hqI7/xqIؗ>qI >qI9/qI>qI4qI;/qI>qI2qI4/qIp>qI4qI rI='>rI8/rI؛> rI4(rI5/8rI>@rI53HrI6/XrI(5`rI>hrI'/xrI>rI>rI@0/rI>rI>`tIE`/htIE/xtI/tIN`/tII/tI/tI `/tIE/tI>tIR`/tI0P/tI>tI53tIF/tI>uI5uIpH/uIx> uI2(uIG/8uI(>@uI4HuIL/XuI>`uI>huIA/xuI>uI>uIJ/uI>uI >vIxIDtD D(D0Dn 8D@D HDPDXD`DhD pDxD D D DDD(D DLDvDh ȨDШD بD DDiDD; DD;DD D> (D0Dc8D@D{HDPD XD `DhDpDkxDc DD'D D\D DZDK DDNȩDЩDةD D DD} DD DD D D (D00D8D@DHDd PD~ XD<`DV hD pDxDDDD DZD D DDDj ȪD ЪDGتDX DD DD'DDDD D (DN 0D 8D @DJHDR PD. XD`DhD pD xD0DaDDDOD* DDDBDk ȫD1ЫD ثD;D+ D D D DDD D D(Dr0D 8D @DHD PD$ XDX`D hD pD% xD|D!DDD DJ D!DDDȬDJЬD[جD.DrDB DDDD DD D(Dm0D8D @D HDPD XD `DhDpDHxDDDTDDDAD DD D ȭD#ЭD حD)D DDD4D DD D D(D0D8D@DHDd PD XD`DEhD~ pDxDD DD DD D DND DȮD] ЮDf خD~DlDjDd D DD DDh Dz(D 0D8D@DHD|PD XD6`D hDp pD xD\D D D{ D%DDP DDDȯD ЯDدDDD2DDD@DiDDC D( (D"0D 8D @DG HD PDXD`D hDtpDxDD De DDDDD3DD_ȰD| аDذD5 DD@DDD DD D D (D 0D8D @D=HDPDAXD]`DhDpDDxDD DV D DDDi D[ D]DȱD бDرDDDgDDDD D# D D(D0D< 8D< @D HDHPDXD `D hDpDxDD DFDDDnDDD2DȲD1вD زDQDq D4DDDjD DWD D (D0D}8D @DVHD;PD6 XDD`DhDpD[ xD D/D DDw D- D- DDmDȳDгD سD DDDDD DW D(D D(D.0D8D>@DHDWPD XD`D@ hDK pDxDDD^DDU DDDmD DI ȴDдD`شD DD DnDDID.DD D (D30D 8D@DHDPD XD`Ds hDgpDl xDDg D DDDXDDXDIDȵDеD صD5DD DD DDDD D(D0D 8D @DHD PDMXD `DhD pDxDDDD}DeDfD*DwD D ȶD8жDoضD.D9Db Dl D D D7 DGDB D(D0D8Dy@DHD PDXD`DhD*pD_xDdDxDD1DD D_ DhD DsȷDзDS طD D D` Do DDD DDi D(D0D] 8Da@D HDPDXD`D+ hD"pD1 xD,Da DD{D)DDYDQ D D ȸDиDz ظDDDDD(DDD Dk D-(D:0D 8DG @Dr HDPDXDw`D hD}pD xD&D D D DXDD DDUDAȹDйDRعD DaDa DD> DD Dt DV D(D0DL 8D@Dn HD8 PDXD`D`hDpD xD) D DDIDD!D7D, D DOȺD кD غDD=DDQDq DDD; D D(D0D8Dy @D? HD PD%XD2`DhD pD xDlD DDv D DDD3DDȻDлDػD D3DD^DD DDD D(Dh0D! 8D0 @DMHDGPD XD `DhDpD@ xD+D DDe DR D DYDD D ȼDмD[ؼD DD DhD DDDZ DW D D(D0Dn8DE@DHD5PDXD `DhD pDxDDA D>D DDSD DDD4ȽDнDYؽDDqDD D#DgD D D D(D/0D%8DP @D HD`PDm XD`DhD pDxD DDDD D\DD#D? D ȾD+оDؾD^ DD D DDD D D! D*(D 0DH 8D @D.HDPDXD `D hD{ pD8xDD D9 DTDDsDo DDDȿDvпD ؿDDDsD DDh D D6D D(D0D 8DM @D HD]PD% XD`DhD pDxD-DD D DDDND DD DxDDCD/D DsD6DrD DD Du (D 0Dt 8D @DHD$PDXD `D hDKpD xDm DRD0DD DDD8D D DDD Ds DoDD D DLD DQ Dx(D0D 8D @D HD3 PDt XD `DhDA pDu xD7D DDDZD'DD D0 DRDD;D DY DDp DDHDD D D (Dp 0D8D@DHD PD: XD} `DhD pD xD^DvD DEDD0DDsD DD DDWD DC D& DY DD D D D (D0DU8D2@D HDPD6 XDV`D hD pDixD D" D} Dn DD DD DyD' DD Dc D D D D DdDMD= D D (D0D 8D @D8HD PDZXD`D hDpD xDRDDD,D DDDDDDAD.DkD D)D<D DD DD D (D,0D8DF@D HDtPDXD`DnhDkpD xD"D{DDM D DDDDDDS DKDD DD D DDD D$ D (D 0D?8D @DHDB PD XD>`DhDpDv xDk DDq DBD D DX DH DfDD DDDD9DD DDDGD D (D 0D8Dl@D HD=PDXD `D hDpDxD#D D4 DY SEY `EY EY EY @EY EY EY EY EY `EY @FY GY @iGY &HY 'HY @yHY D DD~D DbD D DDDDDD` D D DDD D(D 0D8D @DHDPDXD `D hD pD&xD DjD|DeDuDD DQD DDDDD D DU DDD:D D D/(D0D?8D @DHD PDCXDb `D hD pD xDDv Dg D D9 DuD DD6DyDDpD#D DDDD DD)Df D (D 0D8D@D-HDl PDXDY`D hDpD xD D9DDD DDDDD D DD# DDC D%DDD1D9D DI(D-0D 8D@D-HDDPDXDE `Df hD pD xDD: DD D DD3DDD DN D D DODD' D1 D'D4 D D{ D(D0D 8D @D HD PD XD^`Dh hD pD xDD D{DD DD D DfD D2 D& DpDDDDoDQ D D Dj Dy(D 0D8D@D HDbPDXDq`DhDupD xD D DPD DDDZ DD DD DD D D DDDy D@DD[ D(D?0D/ 8D @DHDPDXD~ `DphDpDxDD D D D@D D@ DODDDD DV DqD D*D19EG(CGHGNGQGSGhXG]GcGfGHhGlGqGtG{GhG(GHGGȎGHGhGȗGGGGȧGHGG(GGHG(GhGGhG(GGGGHGHGG(GH H HHH(HH#H(%H&H-HH1H4Hh6H9H?HhBHHFHHKHPHSHZH(]H_HHdHjHhpHrHvHHxHzHHhHHHHHHHHȧHHHHHHH(H(HHHhHHHHHHH(HHhHHHHHHH(HHhHHHHH(IIhIIIHIII(!I"Ih$I&I4I(6I7Ih9I;IG PCG IG NG 0QG SG XG ]G cG fG lG qG tG {G pG G G pG G G G G 0G G pG G PG G pG PG G G G PG 0G G G pG pG 0G PG 0H 0 H  H H 0H PH 0H #H -H p1H 04H 6H 9H ?H BH pFH pKH QH TH ZH P]H _H pdH jH pH rH vH {H 0H H pH ЎH H H H 0H H H H дH оH PH 0H HI pKI pQI XI [I `I eI pnI rI 9EXGxCG8IGNGXQGSGXG^GcGfGlGqGuG{GG8GGGGG8GءGXGGG8GxG8GGxGGGGxGXG8G8GGGXGxGXHX H8 HHXHxHXH#H-H1HX4H6H9H?HBHFHKH8QH8THZHx]H_HdHjHpHrHvH8{HXHHHH8H8HؠHXHHتHدHHHxHXHHIKIQI8XI8[I8`I8eInIsI:ECHD?PD@XDA`DBhDCpDDxDED(D[DFD DGD DHDIDJDKDDLDMDND DODPDQDRDS DT(D0DU8D@DVHDWPD+XDX`DYhDZpD[xD\D]D^D_D`DaDbDcD5 DdDeDfDgDhDiDjD&DkDlDmDn Do(D0Dp8Dq@DrHDsPDtXD`DuhDvpDwxDxDyDzD{D|Dr D}D~DDDDDDDDDDDDD D(D0D8D@DHDWPDXDc `D( hDpDxDDD DDDDDDDDDDDDDD(DDDD D(D0D8D@DHDPDXD`DhDpDxDDDDDDDDDDDDDDDDDDDDD D(D0D8D@DHDPDvXD`DhDpDxDDDDDDDDDDDDtDD DDDDDDD D(D0D8D@DHDPD` XD`DhDpD! xDDDDDDDDDDDg DDDDDDDDDD D(D0D8D@DHDPDXD`DhDpD xD D D D DDDDDDDDDDz DDD DDDD D(D0D8D@DHD PD!XD"`D#hD$pD%xD&D'D(D)D D*D+D,D-D.DD/D0DD1D2D3DD4D5D D6(D70D88D9@Da HD:PD;XD<`D=hD>pD?xD@DADBDCDDDEDFDGDHDDIDJDKDLDMDNDODPDQDDR DS(DT0DU8DV@DWHDXPDYXDZ`D[hD\pD]xD^D_DD`DaDbDcDdDbDeDfDgDhDiDjDkDlDmDnDoDp Dq(D|0Dr8Ds@DtHDuPDvXDw`DxhDypDzxD{DPD|D}D~DDDDDDDDDDDDDDDD D (D0D8D@DHDPDXD`DhDpDxDx DDDDDDDDDDDDDDDDDDDDT D(D0D8D@DHDPDXD`DhDpDxDD DD Di DDD DDDDDDDDDDDDD D(D0D8D@DHD,PDXD`DhDpDxDDDDDDDDDDDDDDDDDD DD D D(D0D8D@DHDPDXD`D hDKpDxDDDDDDDDDDD DDDDDDDDDD D(DN0D8D@DHDPDXD`DhDpDxDDDD DDDDDTD D D D D DDDD DDD D(D0D8D@DHDPDXD`DhDpDxDDDDD D!D"D#D$D%D&D'D(D)D*D+D,D-D.D/D0 D(D10D28D3@D5HDJPD7XD8`D9hD:pD;xD<D=D D>D?D@DADBDCDDDEDFDGDHDIDPDJDKDLDMDN DO(DP0DQ8DR@DHD2PDSXD `DThDUpDVxDzD DWDXDYDZD D[D\D]D^D_D`DaD| DbDcDdDeDfD Dg(Dh0Di8Dj@DkHDlPDmXDn`DohD pDpxD:DqDrDsDtDuDvD* DwDxDyDzD{D|D D}DD~DUDD D(D0D8D@DHDPDXD`DhDpDxDDDy DDDDDD DD*DDDDDDDDDD D(D0D 8D@DHDPDXD`DhDpDxDDDDDDDDDDDDDDDDDDe DDD D(D0D8D@DHDPDXD`DhDpDxDDDDDm DDDDDDDDDDDDD'DDD D(D0D8D@D HDPDXD`DhDpDxDDDDDDD DDDDqDwDDDDDDDDD Dc(D0D8D@DHDPDXD`DhDpDxDDD DDDD DDDDDDDDDDDDD D D (D 0D 8D @D HDPDXD`DhDpDz xDDDDDDeD DDD DD>DDDDDLDD D!D" D#(D$0D%8D&@D'HD(PD)XD*`D+hD,pD-xDD D.DD/D0D1D2D3D4D5D6D7D8D9D:D;D<D=DD> D?(D0D@8DA@DBHDCPDDXDE`DFhDGpDHxDIDD~DJDKDLDMDNDO DODDPDQDRDSDTDUDVDWDXDY DZ(D[0D\8D@D]HD^PD_XD``D hDapDbxDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDDsDtD+Du D (Dv0Dw8Dx@DyHDzPD{XDL`D|hD}pD~xDDDDDDDDDDdDDDDDDD DDDD D(D0D8D@DHDPDXD`DhDpDxDDDDDDDDDDDDDDDDDDDD D D(D0D\ 8D@DHDPDXD`DhDpDxDDDDDDD DDDDDDDUDDD4DDDD D(D0D 8D@DHDPDXD`DdhDpDxDDDDDDDDDDDDDDDBDDDDDD D(D0D8D@DHDPDXD`DhDpDxDDDDDDDDDD DDDDDDDDDDD D (D 0D 8D @D HDPDXD`DhDpDxDDDDDDDDDDDDDDDDDDDD D! D"(D#0D$8D@D HD%PD&XD'`D(hD)pD*xD+DD,D-D<D/D0D1D2D3D4D5D6D7D8D9D:D;D<D=D> D?(DF 0D@8D_@DAHDBPDCXDD`DEhDFpDGxDHDIDJDKDLDMDNDODPDQDRDSDj DTD= DUDVDWDXDYDZ D[(D\0D_8D]@D^HD_PD`XD`DahDbpDcxDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDtDuDvDwDxDy Dz(D{0D|8D\ @D}HD~PDXD`DhDpDxDDDDDDDDDDDDDHDDDD`DDr DD D(D0D8D@DHDPDXD`DhDpDzxD7DDDDDCDDDDDDDDDDDDDDD D(D0D8D@DHDPD XDS`DhDpDxDDD DDDDDDDDDDDDDDDDDD D(D0D8D@DHDPDXD`DhDpDxD DDTDDDDDDDDDDDDDDDDDD D(D0D8D@DHD_ PDXD`DhDpDxDDDDDDDD DDDDDDDDDDDDD D(D0D?8D @D HD PD XD `DhDpDxDDxDDDDD DDDDDD\Dx DDDDs DDD  D!(D"0D8D#@D$HD%PD&XD'`D(hD)pD xD*D+Do D,D-D.D D/D0D1D2D D3D4D5D6D E7EL E8E E9(E:0E;8E<@EHE"PE>XE?`E@hEApEBxEDEEEEFEGEHEIEJEKELEMENEOEPEQERESETEUE/EV EW(EX0EY8EZ@EHE[PE\XE]`E^hE_pE`xE E EaEbE. EcEdEeEfE E EgEhEiE$EjEkEmEnEoE E(Ep0Eq8E@EHErPEsXEt`EuhEvpEwxExEyEzE{E|E}E~EEEEEEEEEEEEEE E(E0E 8E@EHEPEXE`E hEpExEEEEEEEEEEEEEEEE EEEEE E(E0E8E@EHEPEXE`EhEpExEEEEEEEEEEEEEEEEEEEEE E(E 0E8E@EHEPEXE`E hEpExE EEEEEEEEEEEEEEEEEEEE E(E 0E8E@EHE PEXE`EhEpED xEEEEEEEEEEEEEEEJ EEEEEE E(E0E8E@E HEPEXE`EhEpExEEEEEE E~E E E EEEEEEEEEw EE E(E0E8E@EHEPEXE`EhE pE!xE"E#E$E%E&E'E(E)E*EE+E,E-E.E/E0E1 E2 E3 E4 E  E5( E60 E78 E8@ E9H E:P E/ X E;` E<h E=p E>x E? E@ EA EB EC ED EE EF EG EH EI EJ EK EL EM EN EO EP EQ ER ES ET( EU0 EV8 E=@ EWH EXP EYX EZ` E[h E\p E]x E^ E_ E` Ea Eb Ec Ed Ee Ef Eg Eh Ei Ej Ek El Em En Eo Ep Eq E Er( E0 Es8 E@ EtH EuP E X Ev` Ewh Exp Eyx Ez E E{ E| E} Ee E~ E Ek E7 E E E E E E E E E E E E( E0 E8 E@ EH EP EX E` Eh Ep Ex E E E E E E E E E E5 E E E E E E E E E E E E( E0 E8 E@ EH EP EX E` E!h Ep Ex E E E E E E E E E E E E E E E E EEEEE E(E0E8E@EHE2 PEXE`EhEpExEEEEEEEEEEEEE EEEEEEEE E(E0E8E@EHEPE XE`EhEpExEEEEEEEEEEEEEEEE E EEEE E(E0E8E@EHEPEXE`EhEpExEEEEEEEEE E E E E EEEEEEEEi E(E0E8E@EHEPEXE`EhEpExEE E!E"E#E$E%E&E'E(E)EE*E+E,E3 E-E.E/E0E1 E2(E30E48E5@EwHE6PE7XE8`E9hE:pE;xEE<E=E>E?E@E$EEAEBE ECEDEEEFEGEHEIEJEKEx EL(EM0EN8EO@EPHEQPERXES`EThEUpEVxEWEXEYEZE[EFE\E]E^E_E`EaEbEcEdEeEfEgEhEiEw Ej(Ek0El8Em@EnHEoPEpXEq`ErhEspEtxEuEvEwExEyEzE{E|E}E~EEEEEEEEbEEE E(E0E8E@EHEPEXE`E hEpExE EEEEEEEEEEEEEEEEEEEEE E(E0E8E@EHEMPEXE`EhEpExEEEEE4EE EE EEEEEEEEEEEE E(E0E8E@EHEPEXE`EhEpExEEEEEEEEEEEEEEEEEEEVEE E(E0E8E@EHEPEXE`EhEpExEEEEEEEEEEEE"EEEE EEEEE E(E0E]8E@EHE PEXE`EhEpExEEEEEEEEEE E E E E E E EEEEE E(E0E8E@EHEPEXE`EhEpExEEE EoE!E"E E E#EuE$E%E&E'E(E E)EE*EE+ E (E,0E-8E.@EHE/PE0XE1`E2hE3pE4xE5E6E7E E8E9E:E;E<EE=EE>E?E@EAEBECEDEEEF EG(EH0EI8E @EJHEKPEF XEL`EMhENpEOxEPEQE ERESEETEUEVEWEXEYE<EZE[EE\E]E^E_E` Ea(Eb0Ec8Ed@EeHEfPEgXEh`EihEjpEkxElEmEnEmE EoEpEqErEsEtEuEvEE E&EwExEyEzE{ E|(E}0E~8E@EHEPEXE`EhEpExEEEErEEEEEEE EEEEEEEEE E Ea(E0E8E@EHEPEXE`EhEpExEEEEEEE EE EEEEEEEE E E$  E E E( E0 E8 E@ EH EP E X E` Eh Ep Ex E E E E E E E E E E E E E E E E E5!E!E!E!E !E(!E 0!E8!E@!EH!EP!EX!E`!Eh!Ep!E x!E!E!E!E!E!E!E!E!E!E!E!E6!E!E!E!E!E"E"E"E"E "E("E0"E8"E@"EH"EP"EX"E`"Eh"E p"Ex"E"E"E"E"E"E"E"E"E"E"E"E"E "E "E "E "E #E #E #E #E #E (#E 0#E 8#E@#E H#E P#E X#E `#E h#E p#E x#E #E #E #E #E #E #E #E #E #E #E #E #E #E #E #E #E $E! $E" $E$E# $E$ ($Ef 0$E% 8$E& @$E' H$EP$E( X$E) `$E* h$E+ p$E, x$E- $E. $E$E$E/ $E0 $E1 $E2 $E3 $E4 $E5 $E6 $E7 $E8 $E9 $E: $E; %E< %E= %E> %E? %E@ (%EA 0%EB 8%EC @%ED H%EE P%EF X%EG `%EH h%E p%EJ x%EK %E %EL %EM %EN %EO %E%EP %EQ %ER %ES %ET %EU %E %E%EV %EW &EX &EZ &E[ &E\ &E(&E] 0&E^ 8&E_ @&E` H&Ea P&Eb X&Ec `&E h&Ed p&E x&E &Ee &Ef &Ec&Eh &E &Ei &E8 &Ej &Ek &E&El &Em &En &Eo &Ep &Eq 'E'Er 'E'Es 'Et ('Eu 0'Ev 8'Ew @'ET H'Ex P'Ey X'Ez `'E{ h'E| p'E} x'E~ 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E 'E (E (E (E (E (E ((E 0(E 8(E @(E H(E P(E X(E `(E h(E p(E x(E(E (E (E (E (E (E (E (E (E (E (E (E (E (E (E (E )E )E )E)E )E ()E 0)E 8)E @)E H)E P)E X)E `)EJh)Ep)E x)E )E )E )E )E )E )E)E )E )E )E )E=)E )E )E )E )E *E%*E *E *E *E (*E 0*E 8*E @*E H*E P*E X*E `*E h*E p*E x*E *E *E *E *E *E*E *E *E *E *E*E *E *E *E *E*E +E +E +E +E +E (+E 0+E 8+E @+EH+EP+E X+E `+E h+Ep+E x+E +E +E +E +E +E +E +E +E +E +E+E +E +E +E +E +E ,E ,E ,E ,E ,E (,E 0,E 8,E @,E H,E P,E X,E `,E h,E p,E x,E ,E ,E ,E,E ,E ,E ,E ,E ,E ,E ,E ,E ,E ,E ,E ,E -E -E -E -E -E(-E 0-E 8-E @-E H-E P-E! X-E" `-E# h-E p-E$ x-E% -E& -E' -E( -E) -E -E* -E+ -E, -E -ES-E- -E. -E/ -E0 -E,-E1 .E.E2 .E3 .E4 .E5 (.E6 0.E7 8.E8 @.E9 H.E: P.E; X.E< `.E= h.Elp.E> x.E? .Eg.E@ .EA .E.EB .E.EC .ED .EE .E.EF .EG .EH .EI .EJ .EK /EL /EM /E}/EN /EO (/EP 0/E8/EQ @/ER H/ES P/EX/ET `/EU h/EV p/EW x/EX /EY /EZ /E[ /E\ /E/E] /E^ /E_ /E/E` /Ea /Eb /Ec /E/Ej /E0Ed 0Ee 0Ef 0Eg 0E:(0Eh 00Ei 80E@0Ej H0Ek P0Eb X0El `0Em h0En p0Eo x0Ep 0Eq 0Er 0Eu 0E) 0Es 0Et 0Eu 0Ev 0Ew 0Ex 0Ey 0Ez 0E{ 0E| 0E} 0E 1E&1E~ 1E 1E 1E (1E 01E 81E @1E H1E P1E X1E `1E h1E p1E x1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 2E 2E 2E 2E 2E (2E 02E 82E @2E H2EP2E X2Ep`2E h2E p2E x2E 2E2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 3E 3ES3E 3E 3E (3E 03E 83E @3E H3E P3E X3E `3E h3E p3E x3E 3E 3E 3E 3E 3EK3E 3E 3E 3E 3E3El3E 3E 3E 3E 3E 4E 4E 4E 4E 4E (4E 04E 84E @4E H4E$P4E X4E `4E h4E p4E0x4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E5Ec5E 5E 5E 5E (5E 05E 85E @5E H5E P5E X5E `5E h5E p5E x5E 5E 5E 5E 5E 5E 5E 5E 5E5E75E 5E 5E 5E 5E 5E 5E 6E 6E 6E 6E 6E (6E 06E 86E @6E H6E P6E X6E `6E h6E p6Ezx6EE 6E6E 6E 6E 6E)6E 6E 6E6E 6E 6E 6E 6E 6E 6E" 6E! 7E" 7E# 7E$ 7E% 7E& (7E07E' 87E( @7E) H7EP7E* X7E+ `7E, h7Ep7E- x7E. 7E/ 7E| 7E0 7E^ 7E1 7E2 7E3 7E 7E4 7E5 7E6 7EO 7E7 7E 7E8 7E8E9 8E: 8E; 8E< 8E= (8E> 08E? 88EA @8E, H8EB P8EC X8ED `8EE h8EF p8Ex8EG 8EH 8EI 8EJ 8EK 8E 8EL 8EM 8EN 8EO 8EP 8E8EQ 8ER 8ES 8ET 8EU 9EW 9EX 9EY 9EZ 9E[ (9E\ 09E] 89E^ @9E_ HH~7HtH57%7hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhѿhh鱿h顿h鑿h避hqhah Qh Ah 1h !h hhhhѾhh鱾h顾h鑾h遾hqhahQhAh1h!hhhh h!ѽh"h#鱽h$顽h%鑽h&遽h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1Ѽh2h3鱼h4顼h5鑼h6遼h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAѻhBhC鱻hD须hE鑻hF遻hGqhHahIQhJAhK1hL!hMhNhOhPhQѺhRhS鱺hT顺hU鑺hV遺hWqhXahYQhZAh[1h\!h]h^h_h`haѹhbhc鱹hd项he鑹hf遹hgqhhahiQhjAhk1hl!hmhnhohphqѸhrhs鱸ht顸hu鑸hv選hwqhxahyQhzAh{1h|!h}h~hhhѷhh鱷h顷h鑷h遷hqhahQhAh1h!hhhhhѶhh鱶h顶h鑶h遶hqhahQhAh1h!hhhhhѵhh鱵h页h鑵h遵hqhahQhAh1h!hhhhhѴhh鱴h顴h鑴h遴hqhahQhAh1h!hhhhhѳhh鱳h顳h鑳h遳hqhahQhAh1h!hhhhhѲhh鱲h顲h鑲h遲hqhahQhAh1h!hhhhhѱhh鱱h顱h鑱h遱hqhahQhAh1h!hhhhhѰhh鱰h顰h鑰h遰hqhahQhAh1h!hhhhhѯhh鱯h顯h鑯h遯hqhah Qh Ah 1h !h hhhhѮhh鱮h顮h鑮h遮hqhahQhAh1h!hhhh h!ѭh"h#鱭h$顭h%鑭h&遭h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1Ѭh2h3鱬h4顬h5鑬h6遬h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAѫhBhC鱫hD顫hE鑫hF遫hGqhHahIQhJAhK1hL!hMhNhOhPhQѪhRhS鱪hT顪hU鑪hV遪hWqhXahYQhZAh[1h\!h]h^h_h`haѩhbhc鱩hd顩he鑩hf適hgqhhahiQhjAhk1hl!hmhnhohphqѨhrhs鱨ht顨hu鑨hv遨hwqhxahyQhzAh{1h|!h}h~hhhѧhh鱧h顧h鑧h遧hqhahQhAh1h!hhhhhѦhh鱦h顦h鑦h遦hqhahQhAh1h!hhhhhѥhh鱥h顥h鑥h遥hqhahQhAh1h!hhhhhѤhh鱤h顤h鑤h遤hqhahQhAh1h!hhhhhѣhh鱣h顣h鑣h遣hqhahQhAh1h!hhhhhѢhh鱢h顢h鑢h遢hqhahQhAh1h!hhhhhѡhh鱡h顡h鑡h遡hqhahQhAh1h!hhhhhѠhh鱠h顠h鑠h遠hqhahQhAh1h!hhhhhџhh鱟h顟h鑟h遟hqhah Qh Ah 1h !h hhhhўhh鱞h類h鑞h遞hqhahQhAh1h!hhhh h!ѝh"h#鱝h$顝h%鑝h&遝h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1ќh2h3鱜h4顜h5鑜h6遜h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAћhBhC鱛hD顛hE鑛hF遛hGqhHahIQhJAhK1hL!hMhNhOhPhQњhRhS鱚hT顚hU鑚hV遚hWqhXahYQhZAh[1h\!h]h^h_h`haљhbhc鱙hd顙he鑙hf遙hgqhhahiQhjAhk1hl!hmhnhohphqјhrhs鱘ht願hu鑘hv遘hwqhxahyQhzAh{1h|!h}h~hhhїhh鱗h顗h鑗h遗hqhahQhAh1h!hhhhhіhh鱖h顖h鑖h遖hqhahQhAh1h!hhhhhѕhh鱕h顕h鑕h違hqhahQhAh1h!hhhhhєhh鱔h顔h鑔h達hqhahQhAh1h!hhhhhѓhh鱓h顓h鑓h道hqhahQhAh1h!hhhhhђhh鱒h顒h鑒h遒hqhahQhAh1h!hhhhhёhh鱑h顑h鑑h遑hqhahQhAh1h!hhhhhѐhh鱐h顐h鑐h遐hqhahQhAh1h!hhhhhяhh鱏h顏h鑏h遏hqhah Qh Ah 1h !h hhhhюhh鱎h顎h鑎h過hqhahQhAh1h!hhhh h!эh"h#鱍h$額h%鑍h&遍h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1ьh2h3鱌h4題h5鑌h6遌h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAыhBhC鱋hD顋hE鑋hF運hGqhHahIQhJAhK1hL!hMhNhOhPhQъhRhS鱊hT顊hU鑊hV遊hWqhXahYQhZAh[1h\!h]h^h_h`haщhbhc鱉hd顉he鑉hf遉hgqhhahiQhjAhk1hl!hmhnhohphqшhrhs鱈ht顈hu鑈hv遈hwqhxahyQhzAh{1h|!h}h~hhhчhh鱇h顇h鑇h遇hqhahQhAh1h!hhhhhцhh鱆h顆h鑆h遆hqhahQhAh1h!hhhhhхhh鱅h顅h鑅h遅hqhahQhAh1h!hhhhhфhh鱄h顄h鑄h遄hqhahQhAh1h!hhhhhуhh鱃h顃h鑃h遃hqhahQhAh1h!hhhhhтhh鱂h顂h鑂h遂hqhahQhAh1h!hhhhhсhh鱁h顁h鑁h遁hqhahQhAh1h!hhhhhрhh鱀h顀h鑀h遀hqhahQhAh1h!hhhhhhhhhhhqhah Qh Ah 1h !h hh~h~h~h~h~h~h~h~hq~ha~hQ~hA~h1~h!~h~h~h}h }h!}h"}h#}h$}h%}h&}h'q}h(a}h)Q}h*A}h+1}h,!}h-}h.}h/|h0|h1|h2|h3|h4|h5|h6|h7q|h8a|h9Q|h:A|h;1|h<!|h=|h>|h?{h@{hA{hB{hC{hD{hE{hF{hGq{hHa{hIQ{hJA{hK1{hL!{hM{hN{hOzhPzhQzhRzhSzhTzhUzhVzhWqzhXazhYQzhZAzh[1zh\!zh]zh^zh_yh`yhayhbyhcyhdyheyhfyhgqyhhayhiQyhjAyhk1yhl!yhmyhnyhoxhpxhqxhrxhsxhtxhuxhvxhwqxhxaxhyQxhzAxh{1xh|!xh}xh~xhwhwhwhwhwhwhwhwhqwhawhQwhAwh1wh!whwhwhvhvhvhvhvhvhvhvhqvhavhQvhAvh1vh!vhvhvhuhuhuhuhuhuhuhuhquhauhQuhAuh1uh!uhuhuhththththththththqthathQthAth1th!thththshshshshshshshshqshashQshAsh1sh!shshshrhrhrhrhrhrhrhrhqrharhQrhArh1rh!rhrhrhqhqhqhqhqhqhqhqhqqhaqhQqhAqh1qh!qhqhqhphphphphphphphphqphaphQphAph1ph!phphphoh oh oh oh oh oh oh oh qoh aoh Qoh Aoh 1oh !oh oh oh nh nh nh nh nh nh nh nh qnh anh Qnh Anh 1nh !nh nh nh mh mh! mh" mh# mh$ mh% mh& mh' qmh( amh) Qmh* Amh+ 1mh, !mh- mh. mh/ lh0 lh1 lh2 lh3 lh4 lh5 lh6 lh7 qlh8 alh9 Qlh: Alh; 1lh< !lh= lh> lh? kh@ khA khB khC khD khE khF khG qkhH akhI QkhJ AkhK 1khL !khM khN khO jhP jhQ jhR jhS jhT jhU jhV jhW qjhX ajhY QjhZ Ajh[ 1jh\ !jh] jh^ jh_ ih` iha ihb ihc ihd ihe ihf ihg qihh aihi Qihj Aihk 1ihl !ihm ihn iho hhp hhq hhr hhs hht hhu hhv hhw qhhx ahhy Qhhz Ahh{ 1hh| !hh} hh~ hh gh gh gh gh gh gh gh gh qgh agh Qgh Agh 1gh !gh gh gh fh fh fh fh fh fh fh fh qfh afh Qfh Afh 1fh !fh fh fh eh eh eh eh eh eh eh eh qeh aeh Qeh Aeh 1eh !eh eh eh dh dh dh dh dh dh dh dh qdh adh Qdh Adh 1dh !dh dh dh ch ch ch ch ch ch ch ch qch ach Qch Ach 1ch !ch ch ch bh bh bh bh bh bh bh bh qbh abh Qbh Abh 1bh !bh bh bh ah ah ah ah ah ah ah ah qah aah Qah Aah 1ah !ah ah ah `h `h `h `h `h `h `h `h q`h a`h Q`h A`h 1`h !`h `h `h _h _h _h _h _h _h _h _h q_h a_h Q_h A_h 1_h !_h _h _h ^h ^h ^h ^h ^h ^h ^h ^h q^h a^h Q^h A^h 1^h !^h ^h ^h ]h ]h! ]h" ]h# ]h$ ]h% ]h& ]h' q]h( a]h) Q]h* A]h+ 1]h, !]h- ]h. ]h/ \h0 \h1 \h2 \h3 \h4 \h5 \h6 \h7 q\h8 a\h9 Q\h: A\h; 1\h< !\h= \h> \h? [h@ [hA [hB [hC [hD [hE [hF [hG q[hH a[hI Q[hJ A[hK 1[hL ![hM [hN [hO ZhP ZhQ ZhR ZhS ZhT ZhU ZhV ZhW qZhX aZhY QZhZ AZh[ 1Zh\ !Zh] Zh^ Zh_ Yh` Yha Yhb Yhc Yhd Yhe Yhf Yhg qYhh aYhi QYhj AYhk 1Yhl !Yhm Yhn Yho Xhp Xhq Xhr Xhs Xht Xhu Xhv Xhw qXhx aXhy QXhz AXh{ 1Xh| !Xh} Xh~ Xh Wh Wh Wh Wh Wh Wh Wh Wh qWh aWh QWh AWh 1Wh !Wh Wh Wh Vh Vh Vh Vh Vh Vh Vh Vh qVh aVh QVh AVh 1Vh !Vh Vh Vh Uh Uh Uh Uh Uh Uh Uh Uh qUh aUh QUh AUh 1Uh !Uh Uh Uh Th Th Th Th Th Th Th Th qTh aTh QTh ATh 1Th !Th Th Th Sh Sh Sh Sh Sh Sh Sh Sh qSh aSh QSh ASh 1Sh !Sh Sh Sh Rh Rh Rh Rh Rh Rh Rh Rh qRh aRh QRh ARh 1Rh !Rh Rh Rh Qh Qh Qh Qh Qh Qh Qh Qh qQh aQh QQh AQh 1Qh !Qh Qh Qh Ph Ph Ph Ph Ph Ph Ph Ph qPh aPh QPh APh 1Ph !Ph Ph Ph Oh Oh Oh Oh Oh Oh Oh Oh qOh aOh QOh AOh 1Oh !Oh Oh Oh Nh Nh Nh Nh Nh Nh Nh Nh qNh aNh QNh ANh 1Nh !Nh Nh Nh Mh Mh! Mh" Mh# Mh$ Mh% Mh& Mh' qMh( aMh) QMh* AMh+ 1Mh, !Mh- Mh. Mh/ Lh0 Lh1 Lh2 Lh3 Lh4 Lh5 Lh6 Lh7 qLh8 aLh9 QLh: ALh; 1Lh< !Lh= Lh> Lh? Kh@ KhA KhB KhC KhD KhE KhF KhG qKhH aKhI QKhJ AKhK 1KhL !KhM KhN KhO JhP JhQ JhR JhS JhT JhU JhV JhW qJhX aJhY QJhZ AJh[ 1Jh\ !Jh] Jh^ Jh_ Ih` Iha Ihb Ihc Ihd Ihe Ihf Ihg qIhh aIhi QIhj AIhk 1Ihl !Ihm Ihn Iho Hhp Hhq Hhr Hhs Hht Hhu Hhv Hhw qHhx aHhy QHhz AHh{ 1Hh| !Hh} Hh~ Hh Gh Gh Gh Gh Gh Gh Gh Gh qGh aGh QGh AGh 1Gh !Gh Gh Gh Fh Fh Fh Fh Fh Fh Fh Fh qFh aFh QFh AFh 1Fh !Fh Fh Fh Eh Eh Eh Eh Eh Eh Eh Eh qEh aEh QEh AEh 1Eh !Eh Eh Eh Dh Dh Dh Dh Dh Dh Dh Dh qDh aDh QDh ADh 1Dh !Dh Dh Dh Ch Ch Ch Ch Ch Ch Ch Ch qCh aCh QCh ACh 1Ch !Ch Ch Ch Bh Bh Bh Bh Bh Bh Bh Bh qBh aBh QBh ABh 1Bh !Bh Bh Bh Ah Ah Ah Ah Ah Ah Ah Ah qAh aAh QAh AAh 1Ah !Ah Ah Ah @h @h @h @h @h @h @h @h q@h a@h Q@h A@h 1@h !@h @h @h ?h ?h ?h ?h ?h ?h ?h ?h q?h a?h Q?h A?h 1?h !?h ?h ?h >h >h >h >h >h >h >h >h q>h a>h Q>h A>h 1>h !>h >h >h =h =h! =h" =h# =h$ =h% =h& =h' q=h( a=h) Q=h* A=h+ 1=h, !=h- =h. =h/ <h0 <h1 <h2 <h3 <h4 <h5 <h6 <h7 q<h8 a<h9 Q<h: A<h; 1<h< !<h= <h> <h? ;h@ ;hA ;hB ;hC ;hD ;hE ;hF ;hG q;hH a;hI Q;hJ A;hK 1;hL !;hM ;hN ;hO :hP :hQ :hR :hS :hT :hU :hV :hW q:hX a:hY Q:hZ A:h[ 1:h\ !:h] :h^ :h_ 9h` 9ha 9hb 9hc 9hd 9he 9hf 9hg q9hh a9hi Q9hj A9hk 19hl !9hm 9hn 9ho 8hp 8hq 8hr 8hs 8ht 8hu 8hv 8hw q8hx a8hy Q8hz A8h{ 18h| !8h} 8h~ 8h 7h 7h 7h 7h 7h 7h 7h 7h q7h a7h Q7h A7h 17h !7h 7h 7h 6h 6h 6h 6h 6h 6h 6h 6h q6h a6h Q6h A6h 16h !6h 6h 6h 5h 5h 5h 5h 5h 5h 5h 5h q5h a5h Q5h A5h 15h !5h 5h 5h 4h 4h 4h 4h 4h 4h 4h 4h q4h a4h Q4h A4h 14h !4h 4h 4h 3h 3h 3h 3h 3h 3h 3h 3h q3h a3h Q3h A3h 13h !3h 3h 3h 2h 2h 2h 2h 2h 2h 2h 2h q2h a2h Q2h A2h 12h !2h 2h 2h 1h 1h 1h 1h 1h 1h 1h 1h q1h a1h Q1h A1h 11h !1h 1h 1h 0h 0h 0h 0h 0h 0h 0h 0h q0h a0h Q0h A0h 10h !0h 0h 0h /h /h /h /h /h /h /h /h q/h a/h Q/h A/h 1/h !/h /h /h .h .h .h .h .h .h .h .h q.h a.h Q.h A.h 1.h !.h .h .h -h -h! -h" -h# -h$ -h% -%6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݬ6D%լ6D%ͬ6D%Ŭ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݫ6D%ի6D%ͫ6D%ū6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݪ6D%ժ6D%ͪ6D%Ū6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݩ6D%թ6D%ͩ6D%ũ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݨ6D%ը6D%ͨ6D%Ũ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݧ6D%է6D%ͧ6D%ŧ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݦ6D%զ6D%ͦ6D%Ŧ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݥ6D%ե6D%ͥ6D%ť6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݤ6D%դ6D%ͤ6D%Ť6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݣ6D%գ6D%ͣ6D%ţ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݢ6D%բ6D%͢6D%Ţ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݡ6D%ա6D%͡6D%š6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݠ6D%ՠ6D%͠6D%Š6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݟ6D%՟6D%͟6D%ş6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݞ6D%՞6D%͞6D%Ş6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݝ6D%՝6D%͝6D%ŝ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݜ6D%՜6D%͜6D%Ŝ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݛ6D%՛6D%͛6D%ś6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݚ6D%՚6D%͚6D%Ś6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݙ6D%ՙ6D%͙6D%ř6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݘ6D%՘6D%͘6D%Ř6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݗ6D%՗6D%͗6D%ŗ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݖ6D%Ֆ6D%͖6D%Ŗ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݕ6D%Օ6D%͕6D%ŕ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݔ6D%Ք6D%͔6D%Ŕ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݓ6D%Փ6D%͓6D%œ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݒ6D%Ւ6D%͒6D%Œ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݑ6D%Ց6D%͑6D%ő6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݐ6D%Ր6D%͐6D%Ő6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݏ6D%Տ6D%͏6D%ŏ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݎ6D%Վ6D%͎6D%Ŏ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%ݍ6D%Ս6D%͍6D%ō6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݌6D%Ռ6D%͌6D%Ō6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݋6D%Ջ6D%͋6D%ŋ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݊6D%Պ6D%͊6D%Ŋ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݉6D%Չ6D%͉6D%ʼn6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݈6D%Ո6D%͈6D%ň6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݇6D%Շ6D%͇6D%Ň6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݆6D%Ն6D%͆6D%ņ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݅6D%Յ6D%ͅ6D%Ņ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݄6D%Մ6D%̈́6D%ń6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݃6D%Ճ6D%̓6D%Ń6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݂6D%Ղ6D%͂6D%ł6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݁6D%Ձ6D%́6D%Ł6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%݀6D%Հ6D%̀6D%ŀ6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%6D%}6D%u6D%m6D%e6D%]6D%U6D%M6D%E6D%=6D%56D%-6D%%6D%6D%6D% 6D%6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%~6D%}~6D%u~6D%m~6D%e~6D%]~6D%U~6D%M~6D%E~6D%=~6D%5~6D%-~6D%%~6D%~6D%~6D% ~6D%~6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}6D%}}6D%u}6D%m}6D%e}6D%]}6D%U}6D%M}6D%E}6D%=}6D%5}6D%-}6D%%}6D%}6D%}6D% }6D%}6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%|6D%}|6D%u|6D%m|6D%e|6D%]|6D%U|6D%M|6D%E|6D%=|6D%5|6D%-|6D%%|6D%|6D%|6D% |6D%|6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%{6D%}{6D%u{6D%m{6D%e{6D%]{6D%U{6D%M{6D%E{6D%={6D%5{6D%-{6D%%{6D%{6D%{6D% {6D%{6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%z6D%}z6D%uz6D%mz6D%ez6D%]z6D%Uz6D%Mz6D%Ez6D%=z6D%5z6D%-z6D%%z6D%z6D%z6D% z6D%z6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%y6D%}y6D%uy6D%my6D%ey6D%]y6D%Uy6D%My6D%Ey6D%=y6D%5y6D%-y6D%%y6D%y6D%y6D% y6D%y6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%x6D%}x6D%ux6D%mx6D%ex6D%]x6D%Ux6D%Mx6D%Ex6D%=x6D%5x6D%-x6D%%x6D%x6D%x6D% x6D%x6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%w6D%}w6D%uw6D%mw6D%ew6D%]w6D%Uw6D%Mw6D%Ew6D%=w6D%5w6D%-w6D%%w6D%w6D%w6D% w6D%w6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%v6D%}v6D%uv6D%mv6D%ev6D%]v6D%Uv6D%Mv6D%Ev6D%=v6D%5v6D%-v6D%%v6D%v6D%v6D% v6D%v6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%u6D%}u6D%uu6D%mu6D%eu6D%]u6D%Uu6D%Mu6D%Eu6D%=u6D%5u6D%-u6D%%u6D%u6D%u6D% u6D%u6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%t6D%}t6D%ut6D%mt6D%et6D%]t6D%Ut6D%Mt6D%Et6D%=t6D%5t6D%-t6D%%t6D%t6D%t6D% t6D%t6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%s6D%}s6D%us6D%ms6D%es6D%]s6D%Us6D%Ms6D%Es6D%=s6D%5s6D%-s6D%%s6D%s6D%s6D% s6D%s6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%r6D%}r6D%ur6D%mr6D%er6D%]r6D%Ur6D%Mr6D%Er6D%=r6D%5r6D%-r6D%%r6D%r6D%r6D% r6D%r6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%q6D%}q6D%uq6D%mq6D%eq6D%]q6D%Uq6D%Mq6D%Eq6D%=q6D%5q6D%-q6D%%q6D%q6D%q6D% q6D%q6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%p6D%}p6D%up6D%mp6D%ep6D%]p6D%Up6D%Mp6D%Ep6D%=p6D%5p6D%-p6D%%p6D%p6D%p6D% p6D%p6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%o6D%}o6D%uo6D%mo6D%eo6D%]o6D%Uo6D%Mo6D%Eo6D%=o6D%5o6D%-o6D%%o6D%o6D%o6D% o6D%o6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%n6D%}n6D%un6D%mn6D%en6D%]n6D%Un6D%Mn6D%En6D%=n6D%5n6D%-n6D%%n6D%n6D%n6D% n6D%n6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%m6D%}m6D%um6D%mm6D%em6D%]m6D%Um6D%Mm6D%Em6D%=m6D%5m6D%-m6D%%m6D%m6D%m6D% m6D%m6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%l6D%}l6D%ul6D%ml6D%el6D%]l6D%Ul6D%Ml6D%El6D%=l6D%5l6D%-l6D%%l6D%l6D%l6D% l6D%l6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%k6D%}k6D%uk6D%mk6D%ek6D%]k6D%Uk6D%Mk6D%Ek6D%=k6D%5k6D%-k6D%%k6D%k6D%k6D% k6D%k6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%j6D%}j6D%uj6D%mj6D%ej6D%]j6D%Uj6D%Mj6D%Ej6D%=j6D%5j6D%-j6D%%j6D%j6D%j6D% j6D%j6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%i6D%}i6D%ui6D%mi6D%ei6D%]i6D%Ui6D%Mi6D%Ei6D%=i6D%5i6D%-i6D%%i6D%i6D%i6D% i6D%i6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%h6D%}h6D%uh6D%mh6D%eh6D%]h6D%Uh6D%Mh6D%Eh6D%=h6D%5h6D%-h6D%%h6D%h6D%h6D% h6D%h6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%g6D%}g6D%ug6D%mg6D%eg6D%]g6D%Ug6D%Mg6D%Eg6D%=g6D%5g6D%-g6D%%g6D%g6D%g6D% g6D%g6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%f6D%}f6D%uf6D%mf6D%ef6D%]f6D%Uf6D%Mf6D%Ef6D%=f6D%5f6D%-f6D%%f6D%f6D%f6D% f6D%f6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%e6D%}e6D%ue6D%me6D%ee6D%]e6D%Ue6D%Me6D%Ee6D%=e6D%5e6D%-e6D%%e6D%e6D%e6D% e6D%e6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%d6D%}d6D%ud6D%md6D%ed6D%]d6D%Ud6D%Md6D%Ed6D%=d6D%5d6D%-d6D%%d6D%d6D%d6D% d6D%d6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%c6D%}c6D%uc6D%mc6D%ec6D%]c6D%Uc6D%Mc6D%Ec6D%=c6D%5c6D%-c6D%%c6D%c6D%c6D% c6D%c6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%b6D%}b6D%ub6D%mb6D%eb6D%]b6D%Ub6D%Mb6D%Eb6D%=b6D%5b6D%-b6D%%b6D%b6D%b6D% b6D%b6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%a6D%}a6D%ua6D%ma6D%ea6D%]a6D%Ua6D%Ma6D%Ea6D%=a6D%5a6D%-a6D%%a6D%a6D%a6D% a6D%a6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%`6D%}`6D%u`6D%m`6D%e`6D%]`6D%U`6D%M`6D%E`6D%=`6D%5`6D%-`6D%%`6D%`6D%`6D% `6D%`6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%_6D%}_6D%u_6D%m_6D%e_6D%]_6D%U_6D%M_6D%E_6D%=_6D%5_6D%-_6D%%_6D%_6D%_6D% _6D%_6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%^6D%}^6D%u^6D%m^6D%e^6D%]^6D%U^6D%M^6D%E^6D%=^6D%5^6D%-^6D%%^6D%^6D%^6D% ^6D%^6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%]6D%}]6D%u]6D%m]6D%e]6D%]]6D%U]6D%M]6D%E]6D%=]6D%5]6D%-]6D%%]6D%]6D%]6D% ]6D%]6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%\6D%}\6D%u\6D%m\6D%e\6D%]\6D%U\6D%M\6D%E\6D%=\6D%5\6D%-\6D%%\6D%\6D%\6D% \6D%\6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%[6D%}[6D%u[6D%m[6D%e[6D%][6D%U[6D%M[6D%E[6D%=[6D%5[6D%-[6D%%[6D%[6D%[6D% [6D%[6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%Z6D%}Z6D%uZ6D%mZ6D%eZ6D%]Z6D%UZ6D%MZ6D%EZ6D%=Z6D%5Z6D%-Z6D%%Z6D%Z6D%Z6D% Z6D%Z6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%Y6D%}Y6D%uY6D%mY6D%eY6D%]Y6D%UY6D%MY6D%EY6D%=Y6D%5Y6D%-Y6D%%Y6D%Y6D%Y6D% Y6D%Y6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%X6D%}X6D%uX6D%mX6D%eX6D%]X6D%UX6D%MX6D%EX6D%=X6D%5X6D%-X6D%%X6D%X6D%X6D% X6D%X6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%W6D%}W6D%uW6D%mW6D%eW6D%]W6D%UW6D%MW6D%EW6D%=W6D%5W6D%-W6D%%W6D%W6D%W6D% W6D%W6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%V6D%}V6D%uV6D%mV6D%eV6D%]V6D%UV6D%MV6D%EV6D%=V6D%5V6D%-V6D%%V6D%V6D%V6D% V6D%V6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%U6D%}U6D%uU6D%mU6D%eU6D%]U6D%UU6D%MU6D%EU6D%=U6D%5U6D%-U6D%%U6D%U6D%U6D% U6D%U6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%T6D%}T6D%uT6D%mT6D%eT6D%]T6D%UT6D%MT6D%ET6D%=T6D%5T6D%-T6D%%T6D%T6D%T6D% T6D%T6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%S6D%}S6D%uS6D%mS6D%eS6D%]S6D%US6D%MS6D%ES6D%=S6D%5S6D%-S6D%%S6D%S6D%S6D% S6D%S6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%R6D%}R6D%uR6D%mR6D%eR6D%]R6D%UR6D%MR6D%ER6D%=R6D%5R6D%-R6D%%R6D%R6D%R6D% R6D%R6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%Q6D%}Q6D%uQ6D%mQ6D%eQ6D%]Q6D%UQ6D%MQ6D%EQ6D%=Q6D%5Q6D%-Q6D%%Q6D%Q6D%Q6D% Q6D%Q6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%P6D%}P6D%uP6D%mP6D%eP6D%]P6D%UP6D%MP6D%EP6D%=P6D%5P6D%-P6D%%P6D%P6D%P6D% P6D%P6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%O6D%}O6D%uO6D%mO6D%eO6D%]O6D%UO6D%MO6D%EO6D%=O6D%5O6D%-O6D%%O6D%O6D%O6D% O6D%O6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%N6D%}N6D%uN6D%mN6D%eN6D%]N6D%UN6D%MN6D%EN6D%=N6D%5N6D%-N6D%%N6D%N6D%N6D% N6D%N6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%M6D%}M6D%uM6D%mM6D%eM6D%]M6D%UM6D%MM6D%EM6D%=M6D%5M6D%-M6D%%M6D%M6D%M6D% M6D%M6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%L6D%}L6D%uL6D%mL6D%eL6D%]L6D%UL6D%ML6D%EL6D%=L6D%5L6D%-L6D%%L6D%L6D%L6D% L6D%L6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%K6D%}K6D%uK6D%mK6D%eK6D%]K6D%UK6D%MK6D%EK6D%=K6D%5K6D%-K6D%%K6D%K6D%K6D% K6D%K6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%J6D%}J6D%uJ6D%mJ6D%eJ6D%]J6D%UJ6D%MJ6D%EJ6D%=J6D%5J6D%-J6D%%J6D%J6D%J6D% J6D%J6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%I6D%}I6D%uI6D%mI6D%eI6D%]I6D%UI6D%MI6D%EI6D%=I6D%5I6D%-I6D%%I6D%I6D%I6D% I6D%I6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%H6D%}H6D%uH6D%mH6D%eH6D%]H6D%UH6D%MH6D%EH6D%=H6D%5H6D%-H6D%%H6D%H6D%H6D% H6D%H6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%G6D%}G6D%uG6D%mG6D%eG6D%]G6D%UG6D%MG6D%EG6D%=G6D%5G6D%-G6D%%G6D%G6D%G6D% G6D%G6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%F6D%}F6D%uF6D%mF6D%eF6D%]F6D%UF6D%MF6D%EF6D%=F6D%5F6D%-F6D%%F6D%F6D%F6D% F6D%F6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%E6D%}E6D%uE6D%mE6D%eE6D%]E6D%UE6D%ME6D%EE6D%=E6D%5E6D%-E6D%%E6D%E6D%E6D% E6D%E6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%D6D%}D6D%uD6D%mD6D%eD6D%]D6D%UD6D%MD6D%ED6DH$HtH$H9tHYH|$0HD$8H9t Ht蠯H8H|$0HtHD$8H9tHL蟍HL菍HLHLoH}HtHEH9t(HPHXH9t Ht HHtHH9tHHH9t HtѮHiHLYH|$0HD$8H9t Ht蠮H8H|$0HD$8H9t HtHH|$0HtHD$8H9t^HH$H$H9t Ht7H$HtH$H9tH|$pHD$xH9t HtHH$H$H9t HtحH$HtH$H9t蹭H|$pHD$xH9t Ht蠭H8H$H$H9t HtyH$HtH$H9tZHH$H$H9t Ht3HH}HEH9t HtHPHXH9t HtHH$H$H9t HtЬH$HtH$H9t豬HIH$H$H9t Ht芬H"H}HEH9t HtkHPHXH9t HtNHH$H$H9t Ht'H$HtH$H9tHH$H$H9t HtHyH}HEH9t Ht«HPHXH9t Ht襫H=H$H$H9t Ht~H$HtH$H9t_HH$H$H9t Ht8HH}HEH9t HtHPHXH9t HtHHHH9t HtתH}HtHEH9tHPHXH9t Ht裪HHH9t Ht膪HpHxH9t HtiHHH9t HtLHPHXH9t Ht/HHtHH9tHHHH9t HtH}HtHEH9t֩HPHXH9t Ht蹩HHH9t Ht蜩HHH9t HtHHH9t HtbHHH9t HtEHH|$ HD$(H9t Ht$HH|$0HD$8H9t HtHH|$`HtHD$hH9tHzH$H$H9t Ht軨H|$pHD$xH9t Ht袨H:H$HtH$H9t{HH$HtH$H9tTHH|$0HtHD$8H9t3HH|$0HtHD$8H9tHH|$0HD$8H9t HtHH|$@HD$HH9t HtЧHhH|$@HtHD$HH9t诧HGH|$@HtHD$HH9t莧H&H|$ HD$(H9t HtmHH|$`HD$hH9t HtLHH|$`HD$hH9t Ht+HH$H$H9t HtHH$H$H9t HtݦH$HtH$H9t辦HVH}HEH9t Ht蟦HPHtHXH9t肦HH|$@HtHD$HH9taHH衺LH葺LtH|$0HD$8H9t HtHH$H$H9t HtHH|$0HtHD$8H9tӥHkH|$0HtHD$8H9t貥HJH|$`HtHD$hH9t葥H)H|$`HtHD$hH9tpHH$H$H9t HtIH$HtH$H9t*HH$H$H9t HtHH}HEH9t HtHPHXH9t HtǤH_H$H$H9t Ht蠤H$HtH$H9t聤HH$H$H9t HtZHH}HEH9t Ht;HPHXH9t HtHH|$ HD$(H9t HtHH|$ HD$(H9t HtܣHtH|$`HD$hH9t Ht軣H|$@HD$HH9t Ht袣H:H|$@HD$HH9t Ht聣HH}HEH9t HtbHH}HtHEH9tCHH}HtHEH9t$HLdHLTHH$H$H9t HtݢH$HtH$H9t辢HVH$H$H9t Ht藢H/H}HEH9t HtxHPHXH9t Ht[HH|$ HD$(H9t Ht:HH|$ HD$(H9t HtHH|$pHtHD$xH9tHH|$pHtHD$xH9tסHoH|$pHtHD$xH9t趡HNH$H$H9t Ht菡H'H|$0HD$8H9t HtnHH|$0HD$8H9t HtMHH|$0HD$8H9t Ht,HH|$0HD$8H9t Ht HH|$0HD$8H9t HtHH|$@HtHD$HH9tɠHaH|$`HtHD$hH9t訠H@H|$`HtHD$hH9t臠HH$H$H9t Ht`H$HtH$H9tAHH$H$H9t HtHH}HEH9t HtHPHXH9t HtޟHvH|$ HD$(H9t Ht轟HUH|$ HD$(H9t Ht蜟H4H|$pHD$xH9t Ht{HH|$pHtHD$xH9tZHH|$pHD$xH9t Ht9H|$0HtHD$8H9t HH$H$H9t HtH$HtH$H9tڞH|$pHD$xH9t HtHYH$H$H9t Ht蚞H$HtH$H9t{H|$pHD$xH9t HtbHH$H$H9t Ht;H$HtH$H9tH|$pHD$xH9t HtHH$H$H9t HtܝH$HtH$H9t轝H|$pHD$xH9t Ht褝HI<$HtzLzH H$H$H9t HtaH$HtH$H9tBHH$H$H9t HtHH}HEH9t HtHPHXH9t HtߛHwH|$0HtHD$8H9t辛HVH|$0HtHD$8H9t蝛H5H$H$H9t HtvH$HtH$H9tWHH$H$H9t Ht0HH}HEH9t HtHPHXH9t HtHH|$0HtHD$8H9tӚHkH|$0HtHD$8H9t貚HJH}HEH9t Ht蓚H+H}HEH9t HttH H|$@HtHD$HH9tSHL蓮HL胮HH}HEH9t HtHPHXH9t HtHHH9t HtڙHHH9t Ht轙HUH$H$H9t Ht薙H$HtH$H9twH|$`HD$hH9t Ht^HH|$ HD$(H9t Ht=HH|$0HD$8H9t HtHH|$`HtHD$hH9tH|$@HD$HH9t HtHzH}HtHEH9tØH[H}HEH9t Ht褘HH}HEH9t HtqHPHXH9t HtjqHH|$0HtHD$8H9tIqHH|$0HtHD$8H9t(qHH|$pHtHD$xH9tqH蟩H$H$H9t HtpH$HtH$H9tpHYH$H$H9t HtpH2H}HEH9t Ht{pHPHXH9t Ht^pHH|$0HD$8H9t Ht=pHըH$H$H9t HtpH$HtH$H9toH菨H$H$H9t HtoHhH}HEH9t HtoHPHXH9t HtoH,H$H$H9t HtmoH$HtH$H9tNoHH$H$H9t Ht'oH迧H}HEH9t HtoHPHXH9t HtnH胧H}HtHEH9tnHdH}HEH9t HtnHEH}HEH9t HtnH&H|$@HD$HH9t HtmnHH|$PHD$XH9t HtLnHH$H$H9t Ht%nH车H$H$H9t HtmH|$@HD$HH9t HtmH}H|$0HD$8H9t HtmH\H|$0HD$8H9t HtmH;H|$@HtHD$HH9tmHH|$0HD$8H9t HtamHH|$@HtHD$HH9t@mHإL老HȥLpH踥H$H$H9t HtlH|$PHtHD$XH9tlHxH$H$H9t HtlHQH|$0HD$8H9t HtlH0H$H$H9t HtqlH H$H$H9t HtJlH|$PHtHD$XH9t1lHɤH$H$H9t Ht lH$HtH$H9tkH胤H$H$H9t HtkH\H}HEH9t HtkHPHXH9t HtkH H$H$H9t HtakH$HtH$H9tBkHڣH$H$H9t HtkH賣H}HEH9t HtjHPHXH9t HtjHwH|$0HtHD$8H9tjHVH|$0HtHD$8H9tjH5H$H$H9t HtvjH$HtH$H9tWjHH$H$H9t Ht0jHȢH}HEH9t HtjHPHXH9t HtiH茢H|$0HtHD$8H9tiHkH|$0HtHD$8H9tiHJH|$0HD$8H9t HtiH)H|$0HD$8H9t HtpiHH|$0HD$8H9t HtOiHH|$0HD$8H9t Ht.iHơH|$0HD$8H9t Ht iH襡H|$0HD$8H9t HthH脡H|$0HD$8H9t HthHcH|$0HD$8H9t HthHBLFH2LFH"H|$ HD$(H9t HtihHH|$ HD$(H9t HtHhHH|$pHD$xH9t Ht'hH迠H|$ HD$(H9t HthH螠H|$0HD$8H9t HtgH}H|$0HD$8H9t HtgH\H|$@HD$HH9t HtgH;H|$@HtHD$HH9tgHH|$@HtHD$HH9tagHHELH}HEH9t Ht2gHʟH}HEH9t HtgH諟H|$@HtHD$HH9tfH芟L2{HzL"{HjH|$0HD$8H9t HtfHIfH" H5f.H+ H>5f.He[ H6f.HMh H6f.Hp H~ 6f.H݋ H6f.H H6f.H H~6f.H H6f.H H 6f.ATL%5UH-6:HHOH=05LHH-6:FUH=x5LHH-k6:%+6f.Hm!H/6f.H!H46f.H-!H96f.HB!H>=6f.HQ!HA6f.Hua!H>E6f.ATL%35UH-5:HH证H=5LHH-4::HSH=w5LHH-4::HH=Vy5LHk:Hp!H H6H]A\DH!HN6f.H!HT6f.UH-K4:HH=͍5HHK59H!]HV6fDH!H.Z6f.H!H.^6f.ATL%5UH-3:HH_H=@5LHH-3:V9HNRH=u5LHH-3:59H譌H=x5LH9H"Ha6H]A\DH"H~f6f.H%"Hj6f.HE2"Hn6f.HM9"Hq6f.HX"Hv6f.Hen"H^{6f.UH-2:HH=5HH{58Hww"]HW~6fDHz"H6f.H"H>6f.H%"H~6f.H-"H^6f.UH-1:H\~H==5HH5V7HW"]Hw6fDHe"H~6f.H5#H6f.H;#H^6f.Hmq#H>6f.Hex#H6f.H~#H6f.H݊#H>6f.HU#H6f.H#H6f.H#H6f.H=#H^6f.H=#H^6f.HUD$H6f.Hb$H6f.H{$H~6f.Hݗ$H6f.Hu$H~6f.H$H6f.H $H7f.H$H7f.He$H 7f.H$H7f.H}%H~7f.H%H7H%H07Hi%H7H%H7H%H&7DHmq%H%7f.H}u%H*7Hu%H`(7f.DHw%H^,7f.H%H>17f.UH-t.:H\zH==5HH5V3H%]H57fDH͎%H77f.H%H:7f.H%H?7f.H %HC7f.HU&HO7f.H]&H>U7f.Hd&H`7f.Hr&H^f7f.He}&Hi7f.H&Hk7f.H&H^o7f.H&H~r7f.H&Hu7f.H&H^y7f.H]&H|7f.H&H7f.H&H^7f.H!'H7f.HM2'Hތ7f.ATL%35UH-+:HHIH=@m5LHH-+:0HH=Wl5LH0H5'Hn7H]A\fDHeD'H7f.Hf'H7f.H'HN7f.H 'Hn7f.UH-*:HvH=5HH+5/H']HG7fDUH-*:HvH=m5HH5/H7(]Hǵ7fDUH-i*:HLvH=-5HH5F/H (]HG7fDUH-**:H vH=5HHk5/H(]H7fDH (H.7f.HE&(H7f.UH-):HuH=m5HH5.H((]H7fDH*(H7f.HE?(H.7f.ATL%5UH-%):HHtH=5LHH-):-HFH=oj5LHH-(:-HMH=l5HLH]A\-@ATL%5UH-(:HHtH=`5LHH-(:v-HnFH=i5LHH-e(:U-H̀H=&l5HLH]A\4-@HW(H7f.HX(H7f.HZ(Hn7f.Hd(H7f.H l(Hn7f.Hv(H7f.H(H.7f.He(H7f.H(Hn7f.H(H8f.H(H8f.H(H8f.HE(H8f.HE)H8f.H)H8f.HU')Hn8f.HU6)HN!8f.HB)Hn$8f.Hf)H.+8f.UH-$&:HqH=~5HH 5*Hn)]H/8fDUH-%:HlqH=M~5HH5f*HG})]H'58fDH])H.78f.H=)H98f.H )Hn=8f.Hݤ)H@8f.H)HC8f.H)HF8f.H)HK8f.UH-$:HLpH=-}5HH5F)H)]HgO8fDH)HQ8f.ATL%c5UH-`$:HHoH=|5LHH-?$:(HAH=Oe5LHH-$:(H-|H=g5LH(H)HT8H]A\DATL%5UH-#:HHOoH=0|5LHH-#:F(H>AH=d5LHH-#:%(H{H=f5LH (H)HV8H]A\DH.*Hnb8f.HN*Hh8f.Ht*H.n8f.H{*Hnr8f.Hm*H.u8f.H*HNy8f.Hu*HN~8f.H*H8f.H͝*H8f.HU*Hn8f.H*H.8f.H%*H8f.H *HN8f.H*H.8f.H +HΤ8f.H+HΩ8f.H+H8f.H+Hn8f.H*+H.8f.H1+Hι8f.HEG+H8f.Hl+H8f.Hy+H8f.HU+H.8f.H+H8f.H5+H8f.HU+HN8f.H+H8f.H=+H8f.ATL%5UH-:HHkH=x5LHH-:$H=H=`5LHH-c:#HmwH=b5LH#H| ,H8H]A\DATL%5UH-:HHjH=pw5LHH-:#H~8f.H1,H8f.HmO,H8f.Hs,H^8f.HM{,H>8f.He,H9f.Hœ,H>9f.HM,H~9f.Hu,H 9f.H,H>9f.H,H9f.H,H9f.H,H9f.UH-:H|hH=]u5HH5v!HO,]H 9fDHU-H'9f.H5 -H>,9f.He-H09f.HM&-H>49f.H4-H^99f.Ha-H>B9f.UH-:H|gH=]t5HH5v Hl-]HE9fDHn-HG9f.Hz-HL9f.H}-H>O9f.H-HT9f.H-HY9f.H -Hb9f.H-He9f.UH-:H\fH==s5HH5VH'-]Hj9fDHE-Hm9f.UH-:HeH=r5HH[5H_-]Hp9fDHe .H~w9f.UH-':HeH=}r5HH5H.]Hw9H .Hə9H".H9H %.Hm9H>'.H9Hp).H9H+.Hc9H-.H9H/.H9H2.HY9H3.H9H4.H9H4.HO9H5.H9H6.H9H7.HE9H&9.H9HP:.H~9H;.H;}9H<.H{9H=.Hy9f.@UH-:H/H:f.UH-4:HaH=m5H]Hz5DH=1:H*:H9tHi5Ht H=:H5:H)HH?HHHtHml5HtfD=:u+UH=L5Ht H=5 d:]wUHPdH%(HD$H1H0Ht$ HD$(HFHD$4D$0t0H|$ <1HT$HdH+%(uwHP]@Hl$ Ht$HftHt$H}ftHT$H5<(HuU|$HtHt$H|$hHuHc[y^1ff.UH@dH%(HD$81HJHt$HD$HFHD$$D$ t0H|$L1HT$8dH+%(uhH@]@HT$H|$H5T|$HtHt+HH5HPt"hHuH1 hHu}0ff.fUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$H1HT$8dH+%(u}H@]XHtHh(HtՋD$$taH|$1H5w'HT$H|$zS|$HtHEHfHuHK5Hsd/T$ Jff.USHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(utHH[]fHt$H|$_tHl$H=HGMtHH=4Mu fHuHcX@Hg.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\VHHuːHt$H|$1tD$$Ld$uXHELH@H;>Y5u\H=LtLH=Ku)dHeHcsWZfDLL@HЉ-fATH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11݀E1HD$(dH+%(H0LA\@cUHHufHHRxH;J5W.IMtoI$H5YLPtZcHuLIHoH$bL+1HHP@LA8fE18cH"DIj+fATL%51HH55L[A5u蝅LH5^MLA\ATIUH}&Ht HH5SLHctHmtH]A\HH]A\Q-UH= HlIu]ÐHH=$QItH]@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$~1HT$8dH+%(uhH@]@HT$H|$H5FM|$HtHt+HH5HPtraHuHe1YaHu)ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$}1HT$8dH+%(HH[]DHt$H|$tHl$H=HGtHH=Gu{`HuHc.S@HH=LyGtH=(@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11|1HT$(dH+%(uZH0[fD+QHHuӐt_HuHcERHHPH;[5tЉ'ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11{1HT$(dH+%(uZH0[fD;PHHuӐt^HuHcUQHHXH;>5tЉ&ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11z1HT$(dH+%(uUH0[fDKOHHuӐt_X]HuHcgPDHH`H;V5tЉ&fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11y1HT$(dH+%(uUH0[fDkNHHuӐt_`\HuHcODHHpH;>5tЉ"%fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11x1HT$(dH+%(uUH0[fDMHHuӐt_\[HuHcNDHHH;gB5tЉB$fSH0fnFdH%(HD$(1H8H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11x1HT$(dH+%(uUH0[fDLHHuӐt_d[HuHcMDHHH;V5tЉb#fSH0fnFdH%(HD$(1HjH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>w1HT$(dH+%(uUH0[fDKHHuӐt_h4ZHuHcLDHHH;\5tЉ"fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Rv1HT$8dH+%(H@]fDJHHuϐHt$ H|$>tD$$t$ t19uhtHEuhHYHuH=5HDHEHH;~M5u;uhtˉuhHfHD!@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$u1HT$8dH+%(H@]fDIHHuϐHt$ H|$=tD$$t$ t19u\tHEu\HWHuH<5HDHEHH;&<5u;u\tˉu\HfH @UH@fnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$s1HT$8dH+%(H@]fD[HHHuϐHt$ H|$A5u;u`tˉu`HfH@UH@fnFdH%(HD$81H,Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(H@]fDGHHuϐHt$ H|$;tD$$t$ t19udtHEudHWUHuH;:5HDHEHH;.35u;udtˉudHfH@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_q1HT$(dH+%(H8@EHHuҐHtAHH;K25uIdt Gd1THuH95HHH;*L5t@rfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Op1HT$(dH+%(H8@DHHuҐHtAHH;75uI\t G\!SHuH85HHH;r65t@bfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?o1HT$(dH+%(H8@CHHuҐHtAHH;+05uIGdt GdRHuH65HfDHH;L5t@1UDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/n1HT$(dH+%(H8@BHHuҐHtAHH;E5uIht GhQHuH55HHH;*B5t@BfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11m1HT$(dH+%(H8@AHHuҐHtAHH;45uIG\t G\OHuH45HfDHH;r>5t@15DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11l1HT$(dH+%(H8@@HHuҐHtAHhH;75uI`t G`NHuH35HHxH;.5t@"fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11j1HT$(dH+%(H8@?HHuҐHtAHhH;{65uIG`t G`MHuH25HfDHH;@5t@1DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11i1HT$(dH+%(H8@{>HHuҐHtAHH;kA5uIGht GhLHuH15HfDHH;.5t@1DUH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$h1HT$8dH+%(H@]fD[=HHuϐHt$ H|$A1tD$$t$ tAN9uXtHEuXHKHuHq05HxHEHHH;K5u$N9uXtuXHHff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$fg1HT$8dH+%(H@[]A\;HHuːHt$H|$qtD$$Ld$uXHELH@H;G5ulH=m@1tLH=x-1u)JHeHcu8fInf.$$aCHbL7L|$pHLHt$HHHT$GH5M)Hb/|$GH$H$HHHD$qDLH[t$x|$pt$$|$$t$8$|$($t$ |$0E~[IEH9AD$D1HffAl,HH9uDAt ADËD$dD$HIHL$MLH$LHt$f.t$pI|$f.|$xl$8f.$t$ f.$QK|$(f.$60t$0f.$E~2Ic1 @HH9tADf.zt AHk@HL5H$fDLP2IHH|$P5H$4Hc2H$1I8L1.L1IHH1DLLuIDC@HL1HX@HHT$H.?HbL1H KHL$H$MLL?D1ADHH9uDLH}Hgff.fAWAVAUATUSHfnFdH%(H$1H)Ht$0HD$8HGfnЉD$HfbfD$@u]Lw(Mt!D$@+D$DtWH|$0[1H$dH+%(HĘ[]A\A]A^A_0HHu뾐Ld$PHl$0LH6tLl$pHLtHt$(HqHT$'H5$!H*|$'HOD$D\$XL$Pd$`l$xt$p$$D$(d$fI~fH~L$|$ILLL8L$f.L$P$$f.d$Xt$f.t$`fHnf.\$pz[uYfInf.l$xzLuJ|$f.$z9u79=H]H"5HOLLL2L$W=HuLHH|$1E1H|$04Hc-H|$0IsLE1hDLHGHT$H5 !H'|$I%E~WIEH9AD$D1HDfATHH9uDAt ADËD$$ILLL0E~,Ic1 fHH9tADf.ztr:Ht'h:H|$0E1HlL%@5I$[DL1Hf@LLLWDD1ADHH9u:qHbDAW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtWAAH5D4T1H$dH+%( H[]A\A]A^A_fHOHt$pH\$x$$$HL(M$+$H|$pU1`fHHt$pH\$x$fք$HL(Mt+$+$H|$p2U1HwHt$pH\$x$$$Hu}L(Mt‹$+$H|$pT1fk)HH1vK)HH)1V+)HHr16L$Hl$pLH3 Ht$XHL$HLH\$hH5m)HH#|$hHD$Lt$`HLO4HT$PHHHT$bxHHeLL$THLLL$H2H$D$X$LL$H$L$0$$$T$($\$@l$ t$|$8IMAQLSLLL$ LHL$(Y^IL$(f.$T$0f.$mg\$@f.$RLl$f.$ t$ f.$|$8f.$i5H[5HM5Hz?5HbT$THLL$Hl$pLHHt$XHL$HLdLt$`HL2LH\$THH4LL$hHLLL$1$LL$$D$X$$$\$0$$L$(l$ t$|$T$ILILLLT$L$(\$0If.$82f.$#f.$l$f.$t$ f.$|$f.$C3H53Hv'3HJD$hH+<2fDL$Hl$pLHyHt$XH~dL$HLnDH\$hH5ݥ)HH|$hHD$Lt$`HL/LL$THLLL$HH$D$X$LL$$$$L$ $$T$\$8l$@t$(|$0ARIMLSLHL$L A[[IL$f.$T$ f.$qk\$8f.$VPl$(f.$ t$@f.$|$0f.$0H0H0H0HdL$W0HcLHI0HL1HLILLLH\$0L$(T$IfHT$`H"0HLH4/HL1HWMLLSHL$LAXAYIT$THt/HLHn/HL1HAQMLLSLL$ LHL$耻IXZHT$`HD$hH8#T$THFHT$`HjD$hH7nT$PHJff.AW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtGAH5iDH1H$dH+%(H[]A\A]A^A_H,Ht$`H\$hL$pT$tT$xHL(MD$p+D$t|H|$`hJ1uHHt$`H\$hT$xfD$pH\L(Mt%D$p+D$tH|$`J1L$Hl$`LHtL$HLtLl$PHL3*tH\$LHHOtLL$XHLLL$fpDD$tLL$$$$E$$L$0$d$(l$t$|$ D$iIILLLLD$L$0f.$}f.$nhl$(f.$SMT$f.$ d$f.$t$ f.$+H)t+Hf+H)D$XHj4DL$Hl$`LHL$HLH\$XH52)HHD|$XHD$Ll$PHL(~LL$LHLLL$'aHHDN$|$t$LL$$|$ $$T$$L$8|$l$(D$05IHLMSLHL$LY^T$D$0L$8f.$f.$f.$t$f.$a[T$ f.$F@d$(f.$+%Y)HK)H=)H|/)HH5HfDHH1kHH1ILLLLML$0D$(HLH(HL1HT$LHHT$PH.4(HLHF (HTL1H!=HLMLSHL$LQ XZL$8D$0T$D$XH0lT$LHHHT$PHh#ff.AW1AVAUATUSHHHNdH%(H$81HGAfnH%fnA)fbAACAH6H$H$$$$H,Lw(Mg$+$@H$IC1fA urHH$H$$fք$HH_(H$+$ H$ B1H5ED@1H$8dH+%( HH[]A\A]A^A_HH$H$$$$HHo(Ht2$+$s H$B@1YfH}H$H$$$$Hu_H_(Ht$+$H$A1;HH41HHu1@HH1HH%1xL$H$LHL$HLH$H註H$HHHD$舻L$HLxpH$ HHH\$SKH$HH0$$$$$T$`$$\$X$$d$p$$l$8$(t$0$ |$h$0T$H\$@d$Pl$ t$|$(8 PILMSLLL$ LHL$XZT$Xf.$  \$`f.$  d$pf.$  l$0f.$` Z t$8f.$E ? |$hf.$* $ !H T$@f.$\$Hf.$d$Pf.$l$f.$ ^Xt$ f.$(C=|$(f.$0("(!H !HHcDL$H$LHL$HLxpH$HPXL$HL5=L$HL%H$ HHHD$H$HHHL$H$HHHT$P$$$$$T$ $$\$P$d$p$$$l$($(t$H$ |$h$0T$0\$xd$`l$@t$8|$XHMt$Ht$ LLLLL$ AXAYT$Pf.$LF\$ f.$1+d$pf.$l$Hf.$t$(f.$|$hf.$[H(T$xf.$\$0f.$d$`f.$l$8f.$ t$@f.$(|$Xf.$0HH|H$Hobf.L$H$LHL$HLH$HȴL$HL譴L$HLH$ HHHD$xpH$HHHL$PH$HHHT$0H$H5)H$ $$$$$T$H$$\$P$d$x$$$l$`$(t$h$ |$p$0T$(\$ d$Xl$8t$0|$@QLHMPLLLt$t$0LL$0AH T$Pf.$qk\$Hf.$VPd$xf.$;5l$hf.$t$`f.$|$pf.$HT$ f.$;5\$(f.$ d$Xf.$l$0f.$ z*u(t$8f.$(zu|$@f.$0`HXHT$H!<@L$L$LLL$ LLh`L$H5)'LL$8LH56 LHD$$I$HL$u HELLHfDLLH貢HHT$HHULH;HLHHUL1H>ARLMLSLL$ LHL$A[A^9H/LHK$Hb$H!$H.'H[LHAHL1Ht$HLMt$ LLLL$ {^_PMHLH_$H4 $H RH6LHHL1HRHMLPLLt$t$0LL$0ԍH 'fN9wXt HwXf.DfDfDGX9w`tHw`G`9w\tHw\G\9wdtHwdGd9whtHwhGhUH=|HLu]ÐHH=|1tHH=tH]HHhH;k4u!`tG`fDHHhH;+4u!W`tG`D1@HHH;4u!\tG\fDHHH;4u!W\tG\D1@HHH;4u!dtGdfDHHH;4u!WdtGdD1@HHH;5u!htGhfDHHH;5u!WhtGhD1@UH@dH%(HD$81HjHt$HD$HFHD$$D$ t0H|$l/1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5kHPtBHuH51)Huff.fUSHHdH%(HD$81HĥHt$HD$HFHD$$D$ HD$t6H|$.1HT$8dH+%(HH[]DHt$H|$蟰tHl$H=HtHH=tuKHuHc@HH=ItH @UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n-1HT$(dH+%(uVH0]fDHHuӐtH`HuH뵐HHxH;5tHAVAUATUHXVdH%(HD$H1H-Ht$HD$HGfnfnȉD$(fbfD$ uDHo(HttfH|$,1HT$HdH+%(HX]A\A]A^ HtHh(HtˋD$$H|$h1Ld$HLtLl$0LLtLt$LLӦiHEH$LLPHHtH6H+D$LAT$ ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$*1HT$8dH+%(H@[]A\{HHuːHt$H|$tD$$Ld$uXHELH@H; 5ulH=tLH=u) HeHcCZfDLLH=TtLE븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11)E1HD$(dH+%(H0LA\@#HHufHHRxH;4IMtoI$H5~LPtZU HuLHIHoHsbL1HHP@L8fE1 H"DIjYfAT1UHhHVdH%(HD$X1HGAfnH%fnA)fbAt H1fDHxHh(HkD$4H|$ b1kHH1oLd$@H|$ LyHEHLHH HHDL$0^@AU1ATUHpHVdH%(HD$h1HGAfnH%fnA)fbAtBAH5VD#1HT$hdH+%(GHp]A\A]fLHt$0LT$8T$@L$DL$HH2Ho(AHttAtH|$0`%1@HHt$0HT$8L$HfD$@HHo(Ht!D$@+D$DtH|$0 %1,Ld$0Ht$LΟtHt$L轟tHt$ L謟tHt$(L蛟tH5 HT$L3|$Ht\$(T$ HL$D$HaH4HH@Hh(H3D$DH|$0`1IHH11Ld$0Ht$(LΞLl$PLLHT$ H5 LE|$ HHED$(LH`H1'DL$@ff.fAU1ATUH`HVdH%(HD$X1HGAfnH%fnA)fbAtBAH5D 1HT$XdH+%(EH`]A\A]fLUHt$ LT$(T$0L$4L$8H2Ho(AHttAtH|$ "1@HHt$ HT$(L$8fD$0HHo(Ht!D$0+D$4tH|$ *"1,Ld$ Ht$LtHt$LݜtHt$L̜tHt$L軜tHT$H5 LS|$HtT$L$HD$t$[kHcH4HD#H@Hh(H3D$4H|$ ']1IHH11Ld$ Ht$LLl$@LLHT$H5 Le|$HHEt$LHXH1IDL$0ff.@ATL%x51HH5z5L}y5u}zLHy5LA\ATIUH Ht HH5XLHtHmtH]A\HH]A\AV1IAUATUSHpfnFdH%(HD$hHG~H%fnfb)t>H5%1HT$hdH+%(RHp[]A\A]A^fDH Ht$HL$T$(fD$ HIx(HtD$$9D$ H|$111H Ht$HL$T$(fD$ HHl$1Mp(1HH|$04AHc,Ll$0EubMD$ +D$$HH|$01HT$8H9HHD$HD$@IcI\fD8HHhH;4!HGHHH4HvDDLHҧTE~YIEH9xAD$jD1HfATHH9uDAt ADËD$$ILLpE~3Ic1DHH9tADf.ztbHTIH|$01MH*4HHoX'HHH5_YHWSfLxIHH|$1`H|$04HcH|$01I L1fL(IH81DLLD1ADHH9uDL1H~H(HGXH@UH=H u]ÐHH=<tHH=tH]zUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Ƒz|$HtHt+HH5@HPtHuH1HuMff.fUSHHdH%(HD$81HtHt$HD$HFHD$$D$ HD$t6H|$21HT$8dH+%(utHH[]fHt$H|$OtHl$H=^H7tHH=$uHuHc@HxWATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$!tD$$Ld$uXHELH@H;.4u\H=tLH=u)HeHccZfDLLxw@HЉfUSH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uo5L8n5uLH~n5LA\ATIUHHt HH5=LH}tHmtH]A\HH]A\鱗HG0HGHUH=Hu]ÐHH=dtH]Tp@ATUHHt0H 胰HHIzHL]A\f.E1HL]A\HfDAUATUH-kH@dH%(HD$81HFH4$Hl$D$HD$t5H{1HT$8dH+%(uOH@]A\A]Ll$ HL蓩tĿ 襯LHILH<ŻHBfAUATUH-H@dH%(HD$81HFHt$Hl$D$ HD$$HD$tSH|$E1H|$HtH/t$HD$8dH+%(u^H@L]A\A]sՐHT$H|$H.IHt 謮LHIyLHCIɺHVff.fAWAVAUATUSHdH%(H$1H Ht$@HD$HHFHD$TD$PHD$8thH|$@1H|$8HtH/t2H$dH+%( H[]A\A]A^A_fH$WH$뿐L|$@HT$8H5LHHtLd$pLLnL$LLڗNL$LL躗.H\$`LHH$LHH$yL$hL $HI~D$`LL$$L$,L$fpfD$f~L$(T$\$d$ =K~D$f~;D$`uhD$(9D$du^L$,9L$huTl$f.$zdubt$f.$zQuO|$ f.$z>uDHL1L%HLHDžjHHcI?HHHdjHcHIgHHH7jHcHPIHPHHHjHcH}HHMDž+H_HHDWDLHL06HDL越HL蝊9}HH4 DLHIHHHoLLYxIHaLHL%LHHDžHHHHHHlHHUHH>HH' ՞HDDHËHPOXLZHBwI9f.HEdH+%(HeLH=^51[A\A]A^A_]fDHLPLLL%_DžHHHLHڗLuHL辗 ̝LLHHk|LH`vIZ 螝HHHEdH+%(HeHH=[A\A]A^A_]vH5E1HEdH+%(HeL[A\A]A^A_]@HE1H}HEH9t Ht(HPHXH9t Ht HHH9t HtHHH9VHMɸC@H94H5E1H8觫!譨HR H] I Hb I I H HO ff.fUHHHtHH@H;4u:H]!H]DSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H111HT$(dH+%(u7H0[fDkHHuӐHuHc@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uKH8HHuҐH1fo1HP@HuH4Hmff.fSH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11>1HT$(dH+%(u@H0[fDHHuӐ;HuH{H5v6Hn藥SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11n1HT$(dH+%(u@H0[fDHHuӐkHuH{H5ԩ5H螈ǤUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ H1lHuHP4HգDUH@fnFdH%(HD$81HټHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.+HHuϐHt$ H|$tt$ H|HuH`4HDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.;HHuϐHt$ H|$!tt$ HHuHp4HDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.KHHuϐHt$ H|$1tt$ HAHuH4HDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.[HHuϐHt$ H|$Att$ H聢HuH4HDATUHHfnFdH%(HD$81H7H4$HD$HGfnȉD$fbfD$uKHoHtD$+D$tEH1HT$8dH+%(u\HH]A\fkHHuΐLd$,HLtHL\iHu@ SH0fnFdH%(HD$(1HRH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(uWH0[fDHHuӐXS9P|H Q9P| XS9PHu@USHHfnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$1HT$8dH+%(uXHH[]HHuАHt$ H|$聺tHcD$ l\Hu19@RfSH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11.1HT$(dH+%(uWH0[fDHHuӐXS9P|H Q9P| XS9PHupUHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$ 91H|$HtH/tHT$HdH+%(u{HP]ÐHD$vHD$HH{1H5HT$H|$ HHtH芵Hq@eGUHPfnFdH%(HD$H1HiHt$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$  1H|$HtH/tHT$HdH+%(u{HP]ÐHD$tHD$sHH{1H5THT$H|$ zHHtHjHq@eUHPfnFdH%(HD$H1H/H,Ht$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$ 1H|$HtH/tHT$HdH+%(u{HP]ÐHD$sHD$CHH{1H5$HT$H|$ JHHtHJRHq@eAUATUHPfnFdH%(HD$H1H5Ht$HD$HGfnȉD$(fbfD$ HoD$ HtwD$ +D$$wSLd$0Ll$LLtID$ 9D$(|sT$ LH|:Hu&H4HDH|$L1HT$HdH+%(u9HP]A\A]HHKDHt$ L軴x謗ff.AUATUHPfnFdH%(HD$H1HDZHt$ HD$(HGfnȉD$8fbfD$0|HD$HoHt{D$0+D$4tuH|$ a1H|$HtH/tHT$HdH+%(HP]A\A]ÐHD$6qHD$ÿHHs1Ll$ HT$H5LIHzHt$L~eT$HLgrHF@:D@AVAUATUHXfnFdH%(HD$H1HHt$HD$HGfnȉD$(fbfD$ HoD$ HD$ +D$$w}Ll$0Ld$LLCtsLt$<LL*tZD$ 9D$(}Ht$ Lot?L$ LLH Hu#H4HfH|$|1HT$HdH+%(u%HX]A\A]A^fDHHATUHXHVdH%(HD$H1ACHD$HdH+%(HXHH]H=M5A\@BtHfnHt$ HD$(HGfnȉD$8fbfD$0HoD$H0D$0+D$4uLd$ Ht$LHt$LHt$ LѰHt$L輰Ht$L觰Ht$L蒰D$09D$8}Ht$Lst~D$HPD$ PDL$$DD$ L$T$t$jXZHuJH4H?fDHD$HdH+%(HX]A\H5wDA1HT$HdH+%(u_HX]A\HD$HdH+%(u@HX]A\@諻HHiDH|$ 1{ff.AVAUATUSHPfnFdH%(HD$H1HЫHt$HD$HGfnȉD$(fbfD$ uUHoHt!D$ +D$$tOH|$;1HT$HdH+%(HP[]A\A]A^軺HHuƐLd$8Ll$LL6t~D$8LHDt$@fpfD$f~譝~D$f~;D$8u-;\$ATUHHdH%(HD$8HFtnHHt$HD$HGD$ D$$D$(uyHoH1HT$8dH+%( HH]A\fDHD$8dH+%(HHHH]H=C5A\CH51fD#HtHhHtD$ +D$$t H|$D[Ld$Ht$L֧:Ht$L%Ht$ L謧L$ T$Ht$} H@mff.fATUHXdH%(HD$HHFtnHHt$HD$HGD$ D$$D$(HoH1HT$HdH+%(HX]A\fHHt$HD$HGD$ D$$D$((HoHtLd$H:H4HD+%HHH2DsHHhHD$ +D$$H|$1P+HHxHD$$9D$ gH|$11I1fkHL1LƅfDAVAUATUSHPdH%(HD$HHFtzHYHt$HD$HGD$ D$$D$(HoH@1HT$HdH+%(HP[]A\A]A^DHHt$HD$HGD$ D$$D$(HHt3HRHuHuzH51e裭HRHhHED$ +D$$t H|$1DLd$8Ll$LLq~D$8LHDt$@fpfD$f~yB~D$f~9D$8uq;\$聑tH]D&@UH@dH%(HD$81H=Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5f=|$HtHt+HH5 HPt蒩HuHH1yHuqff.fUSHHdH%(HD$81H=Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$GtHl$H='H׏tHH=ďu蛨HuHcN@HH=l<虏tH]$p@ATH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH;Z4WIMtoI$H5LPtZuHuLhFIHoHbLo1HHP@L8fE1H"DIjyofSH0fnFdH%(HD$(1HEH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11N1HT$(dH+%(u3H0[fDۗHHuӐXtHHuHcn@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐK膥HuHj4Hmff.@H8fnFdH%(HD$(1HͩH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8KHHuҐM趤HuH4Hmff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fD{HHuӐ?HuHc藖PlSH0fnFdH%(HD$(1HQH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uuH0[fD軔HHuӐt$WhfH~HufHnn@@HH0H;4u_hfH~ffH~RkfSH0fnFdH%(HD$(1H^H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uUH0[fD軓HHuӐt_d$HuHcהDHH H;4tЉrjfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uUH0[fDےHHuӐt_pDHuHcDHHHH;Dž4tЉifUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uXH@]f.HHuϐHt$H|$8tD$HH:HuH4HhUH@fnFdH%(HD$81HӤHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(u_H@]f.HHuϐH5դHT$H|$躋|$HtH訴CHuH'4Hgff.UH@fnFdH%(HD$81HڣHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(u_H@]f.HHuϐH5գHT$H|$躊|$HtH,CHuH'4Hfff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(ufH8 HHuҐHHH; Oy4u-dt GdUHuH94HefH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11菹1HT$(dH+%(ucH8HHuҐHHH; _x4u-Gdt GddHuHH4Hf1dDUH@fnFdH%(HD$81H(Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒸1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$t$ t19udtHEudHWHuH;4HDHEHH;w4u;udtˉudHfHc@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDۋHHuϐHt$H|$1tD$$D$t?f.EhztHEEhHHuH~4Hzf.HEH(H;v4uf.EhztEhHH4b@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD苊HHuϐHt$ H|$q~tD$$t$ t19uptHEupHǘHuH}4HDHEH@H;~4u;uptˉupHfH`@ATUSH@fnFdH%(HD$81H&,Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$趴1HT$8dH+%(H@[]A\;HHuːHt$H|$6tD$$Ld$uXHELH@H;y4ulH=ݛ~tLH=Μ}~u)THeHcZfDLLH=+A~tL븐HЉ_fU1H=H<1H=5HHH48Hmt H]fDHHD$9HD$H]AUH CHATL%5H5L5ULt5t L]A\A]ÐiH-5L-5HH5΀HH5˱HH5SLtH-=510HHtHH5*LHmtOHHtHH5LHmtLH(HtD$9D$t;H11o1HT$(dH+%(uLH8HHuҐu$H8^HuHBx4H@#a[f.f9wdtHwdGdf.GhzufHGhfGhfD9wptHwpGpWlUH=Hyu]ÐHH=җytHH=A&nytH]1gUH@dH%(HD$81H%Ht$HD$HFHD$$D$ t0H|$謮1HT$8dH+%(uhH@]@HT$H|$H5V% ~|$HtHt+HH5HPt肑HuHu01iHuYff.fUH@dH%(HD$81HkHt$HD$HFHD$$D$ t0H|$̭1HT$8dH+%(uFH@]@H|$HT$H5c*}|$HtH賐HuH/Yff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5ڦL||$ Ht#D$ 9D$(|Vt$ H:dHHtU1HT$8dH+%(uMHH]A\H|$蜬f.Ht$ L3uuDH.XfUH0dH%(HD$(1H9!H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDcJHI1MuH .WfUH0dH%(HD$(1H#H4$HD$HFHD$D$t*H11膫1HT$(dH+%(u-H0]fD30H苎I1MuHy-VfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fD8HI1MuH,bVfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11f1HT$(dH+%(u-H0]fDFHkI1MuHY,UfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11֩1HT$(dH+%(u-H0]fD胩HیI1MuH+BUfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11F1HT$(dH+%(u-H0]fDHKI1MuH9+TfUH0dH%(HD$(1HxH4$HD$HFHD$D$t*H11趨1HT$(dH+%(u-H0]fDCH軋I1MuH*"TfUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/*tHl$H=,HrtHH=ruۊHuHc}@HH=qtH$S@ATUSH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\k{HHuːHt$H|$(tD$$Ld$uXHELH@H;>l4ulH=ҟptLH=Opu)脉HeHc3|ZfDLLH=DqptL5븐HЉQfUH0fnFdH%(HD$(1HyH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莥1HT$(dH+%(uVH0]fDzHHuӐtHoP胈HuHv'@HH8H;f4tHPATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11譤E1HD$(dH+%(H0LA\@3yHHufHHRxH;w4跭IMtoI$H5LPtZeHuLX&IHoHbLO1HHP@Ld8fE1H"DIjiOfATUHHdH%(HD$8HFLd$Ht$HۜHD$HHT$ LH5-D$(HD$ D$ r|$ Ht9D$ 9D$(}Ht$ Lktt$ HjZH2HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=v5A\_H5 蚠H$1NATL%35H \H›H55Lc5ux9LH5oLA\ATIUH]Ht HH5kLHtHmtH]A\HH]A\'UH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(ucH0]fDuHHuӐu,HH[HuHHx w MHfDL@UH@fnFdH%(HD$81Ho$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uzH@]f.tHHuϐH5&HT$H|$o|$HtD$$u(HEH6HuHh4H@HxKUH@fnFdH%(HD$81Hn$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uzH@]f.sHHuϐH5HT$H|$n|$HtD$$u(HEH&HuH g4H@H8rJH8fnFdH%(HD$(1HP\H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(uLH8rHHuҐu$HNHuH2f4H@Iff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uzH@]f.qHHuϐH5*HT$H|$l|$HtD$$u(HEH@6HuHe4H@HȃHHGP'UH=Hfu]ÐHH=ftHH=ftH]UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5jk|$HtHt+HH5HPt~HuH1~Hu=Gff.fUH@dH%(HD$81H˔Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uFH@]@H|$HT$H5Ôj|$HtH~HuHFff.@ATUHHdH%(HD$81H Ht$HD$HFHD$$D$ D$ wcLd$HT$ H5:Li|$ Ht#D$ 9D$(|Vt$ HYHb}HtU1HT$8dH+%(uMHH]A\H|$f.Ht$ LbuDHyEfUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$b1HT$8dH+%(HH[]DHt$H|$tHl$H= HgctHH=Tcu+|HuHcn@HH=)ctHtD@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@lHHufHHRxH;m4WIMtoI$H5ϜLPtZ{HuLIHoHbLDC1HHP@LX8fE1zH"DIj CfSH0fnFdH%(HD$(1H*H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ޖ1HT$(dH+%(u6H0[fDkkHHuӐfyHulABUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDjHHuӐtHoXyHuH@HH@H;We4tHaAUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(u_H@]f.iHHuϐH5VHT$H|$zd|$HtH'xHuH\4Hl@ff.UH@fnFdH%(HD$81HęHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(u_H@]f.hHHuϐH5VHT$H|$zc|$HtHwHuH[4Hl?ff.UH@fnFdH%(HD$81H՘Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uVH@]f.gHHuϐHt$ H|$Att$ HH vHuHu>DATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$61HT$8dH+%(H@[]A\fHHuːHt$H|$AtD$$Ld$uXHELH@H;Q4ulH=\tLH=[u)tHeHcgZfDLLH=[tL븐HЉ=fATUHHdH%(HD$8HFLd$Ht$H{HD$HDrHT$ LH5͊D$(HD$ D$ k`|$ Ht9D$ 9D$(}Ht$ LjYtt$ HOHsHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=V5A\sH5:HX;ATL%35H HH55LQ5u'LH5]LA\ATIUHHt HH5LHtHmtH]A\HH]A\UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fDcHHuӐu,HHqHuHHxdHfD苅D:@UH@fnFdH%(HD$81H9]$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.bHHuϐH5ƇHT$H|$Z]|$HtD$$u(HEHpHuHU4H@Hx 19UH@fnFdH%(HD$81H9\$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.aHHuϐH5HT$H|$J\|$HtD$$u(HEHoHuHT4H@H!8H8fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8`HHuҐu$HnHuHS4H@L7ff.UH0fnFdH%(HD$(1HÐH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fD_HHuӐu$HPH nHuH @CHi6fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uzH@]f.^HHuϐH5Vq*HT$H|$zY|$HtD$$u(HEHHlHuHQ4H@H/Q5UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uzH@]f.]HHuϐH5FHT$H|$jX|$HtD$$u(HEH8kHuHP4H@HA4HGXUH=OHRu]ÐHH=3RtHH=Q~RtH]A闐UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$輇1HT$8dH+%(uhH@]@HT$H|$H5fW|$HtHt+HH5ٗHPtjHuH 1yjHu2ff.fUH@dH%(HD$81H{Ht$HD$HFHD$$D$ t0H|$܆1HT$8dH+%(uFH@]@H|$HT$H5s:V|$HtKHiHuH/2ff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5LU|$ Ht#D$ 9D$(|Vt$ HzbHiHtU1HT$8dH+%(uMHH]A\H|$謅f.Ht$ LCNuDH)1fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H=7HOtHH=~OugHuHcZ@HH=NtH$0@ATUSH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kXHHuːHt$H|$tD$$Ld$uXHELH@H;]4ulH=ݓMtLH=O}Mu)fHeHc3YZfDLLH=DqMtL5븐HЉ.fH8fnFdH%(HD$(1HQH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11菂1HT$(dH+%(u9H8WHHuҐeHuHjJ4H-ff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辁1HT$(dH+%(u8H0]fDKVHHuӐBHdHuHX-ff.@SH0fnFdH%(HD$(1HΑH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD{UHHuӐtcHuHcVHHH;H4tЉ-,ff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.{THHuϐH5gHT$H|$:O|$HtHbHuHG4H,+ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$~1HT$8dH+%(uWH@]f.{SHHuϐHt$H|$1_tHt$HHaHuH4*@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$}1HT$8dH+%(uNH@]ÐRHHuؐHt$H|$tHt$H`H`HuHD)@ATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@QHHufHHRxH;rW4GIMtoI$H5LPtZ_HuLIHoHdbL(1HHP@LW=8fE1x_H"DIj'fATUHHdH%(HD$8HFLd$Ht$HKuHD$H]HT$ LH5uD$(HD$ D$ ;K|$ Ht9D$ 9D$(}Ht$ L:Dtt$ H XH^HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=4A\^H5|t yH(&ATL%C4H H=H54Lf<4uLH4iHLA\ATIUH}.Ht HH5LHstHmtH]A\HH]A\aUH@fnFdH%(HD$81HH$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$y1HT$8dH+%(uzH@]f.[NHHuϐH5sHT$H|$I|$HtD$$u(HEH\HuHzA4H@Hh5$UH@fnFdH%(HD$81HG$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$x1HT$8dH+%(uzH@]f.KMHHuϐH5vrHT$H|$ H|$HtD$$u(HEH[HuHj@4H@Hx#fD闀UH=lHLBu]ÐHH=q1BtHH=BtH]f.UH@dH%(HD$81HJHt$HD$HFHD$$D$ t0H|$Lw1HT$8dH+%(uhH@]@HT$H|$H5F|$HtHt+HH56HPt"ZHuH1 ZHu}"ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$bv1HT$8dH+%(HH[]DHt$H|$tHl$H=THg@tHH=T@u+YHuHcK@HH=)@tHt!@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Nu1HT$(dH+%(uuH0[fDIHHuӐt$W@fH~=XHufHn@HHH;74u_@fH~ffH~r fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Nt1HT$(dH+%(uuH0[fDHHHuӐt$WPfH~=WHufHn@HHH;'<4u_PfH~ffH~rfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Bs1HT$8dH+%(uXH@]f.GHHuϐHt$H|$tD$H/GVHuH:4HUH@fnFdH%(HD$81HKHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Rr1HT$8dH+%(uXH@]f.FHHuϐHt$H|$tD$H*UHuH:4HATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$Vq1HT$8dH+%(H@[]A\EHHuːHt$H|$atD$$Ld$uXHELH@H;;4ulH=0;tLH=;u)SHeHcFZfDLLH=:tL븐HЉ"fATH0fnFdH%(HD$(1H\H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11oE1HD$(dH+%(H0LA\@DHHufHHRxH;74IMtoI$H5ɈLPtZRHuLIHoHDbL1HHP@L708fE1XRH"DIjfATL%4H D1AHL$HH9uD1DHL$(HL$HH9uD1HL$ HL$HH9uzDLH;!HT$ D1H$HT$(DH PHvHuHuff.AWAVAUATUHSH8fnFdH%(H$(1HHt$PHD$XHGfnȉD$hfbfD$`Hm(H\$P1HH|$p4AHcP=HL$pHD$HL$ Et IcHHD$H_4H$AHc =H$HD$HT$(Et IcHHD$H4H$AHcHuLf.t$ HIff.fAUATUH`fnFdH%(HD$X1H+Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ Z1HT$XdH+%()H`]A\A]fD3/HHufLd$@Ll$ LLFtD$4L$HD$@T$Pt`f(1HD$P)\$@f.D$@~f.L$Hzvutf.T$Pzluj%=H>Hc/3HEHXH;54tT$HLD$L$T$D$L$q54H=H|$ r)1H$dH+%(H]A\A]@Ll$@Hl$ LHtLd$`HLt|$PLLfoL$`foT$pf(D$@fo$|$fo$fo$)$ fo$fo$)$0fo$fo$)$@fo$)$Pfo$)$`fo$fD$)$)$p)$)$)$)$)$)$$f($f.D$@zoumt$f.t$Hz_u]|$f.|$PzOuM1H$ Af.z[uYHH=u HMH3H? HuL1Hf. HuLH f.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$&1HT$8dH+%(uhH@]@HT$H|$H5Z|$HtHt+HH5vHPt HuHŨ1 Hu-ff.fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$&1HT$8dH+%(HH[]DHt$H|$/tHl$H=uHtHH=QuHuHc@HH=ztHH=tH芄UH@dH%(HD$81H8uHt$HD$HFHD$$D$ t0H|$ %1HT$8dH+%(ugH@]@Ht$ H|$tы|$ ,HHuHt"HH5a3aH+fH3H>ff.SH0fnFdH%(HD$(1HkOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11$1HT$(dH+%(uZH0[fDHHuӐ!tHuHcH!HH;Z3tЉMff.fSH0fnFdH%(HD$(1HjNH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11#1HT$(dH+%(uZH0[fDHHuӐ tHuHcH HH;3tЉ]ff.fSH0fnFdH%(HD$(1HXMH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11."1HT$(dH+%(uZH0[fDHHuӐt"HuHcHHH;4tЉmff.fSH0fnFdH%(HD$(1HyLH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>!1HT$(dH+%(uZH0[fDHHuӐt2HuHcHHH; 3tЉ}ff.fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11M E1HD$(dH+%(H0LA\@HHufHHRxH;3规IMtoI$H5oLPtZHuLIHoHjbLD1HHP@L8fE1H"DIj fATUSH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\KHHuːHt$H|$ѠtD$$Ld$u`HELH@H;3H=YntLH=)Ju-`HaHcVf.LLH=ItLH= 6tL|fDHЉrfAWAVAUATUSHfnFdH%(H$1HHHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$31H$dH+%(H[]A\A]A^A_HHu뾐Lt$0Ll$LLƦtLd$PHLL警tT$8D$$LH$\$@HHD$0HfI~$uHEHH;3LLD$D$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH=@u0HH3H HuL1L$fHuHLLD$LLHD$,'AWAVAUATUSHfnFdH%(H$1HtFHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(NH[]A\A]A^A_[HHu뾐Lt$0Ll$LLvtLd$PLL]tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$fo$fo$)$ D$$fo$)$0fo$)$@D$0fo$)$Pfo$)$`fo$)$p)$)$)$)$)$uHEHxH;3LLD$YD$f.D$0zkuifHnf.d$8z\uZfInf.l$@zMuK1H$Af.zSuQHH=u0HH3H HuL1L$fHuLLD$LLHD$)'ATL%4H H]hH54L4uRLHΚ4LA\ATIUHmHt HH5hLHtHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1H H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$.1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LLtL$LL褠tH$L耑jL$LLeOH$LHHD$P*H$LH0 HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc H HIcHLILRLD$LHyAXZT$h\$`L$mHuHھL辫yH*HT$L蔫ZHLLl2H(L1LG$LUT$|LF\ff.AWAVAUATUSHxfnFdH%(HD$h1H=Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L辌tLt$8H5B$LLS|$8ItLH5=L7|$8ItLH5Y'L|$8kH<LLH$H|$8GLHLHD$|$8)L<LLHD$L|$8HLLH $LD$L<LL$L\$,LLLL$LLD$HL$L$X|$,L$HL$LD$ILL$LLLL$LD$H $>qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H oH!HO3HfDHHf.RLLHAVPS}H 蒻fUH0fnFdH%(HD$(1H[;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u|H0]fDHHuӐuk4H}AHcHDžLuEtIcIHH+L%LuE1MtHEI9tL訽HPHtHXH9t苽HEdH+%(HeL[A\A]A^A_]fDkHHfDHLHHrUDHL\?HLHHH0LHHHLHH{DLLފ xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創H8Hf.0f.8f.@zHyE~LHIc1HH9Af.zt䉝)HHHcLuIf.E1H[HL=딉HrH1L赕WHLLHHHAVH=HHD1AHH9uHHL]%LmHHD1HH9uH7DHھLƔDLL讔YHm HJ ff.AWAVAUATUSHfnFdH%(HD$x1H'Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@L.vtL\$HH5z$LLL\$|$HL\$ItLH5y&L|$HL\$IhL5BC'LLLu|$HL\$CLLLHD$R|$HL\$ LLLHD$/|$HL\$L5&LLHD$ L|$HL\$HLLL|$HL\$HL$LD$ILL$ L%LLLL$(LLD$ HL$L\$|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$KLP%*HT$?LL<|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0HHb3HfHHcf.HLHRLPt$ AVSu>H0蚤f.AVAUATUSH`fnFdH%(HD$X1H$Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ [1HT$XdH+%(;H`[]A\A]A^HHuƐLd$ Ht$LtLl$@LLtHT$H5Lm|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHc;fDHLPD$VHuLLl赢DUH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f. HHuϐHt$ H|$tD$$t$ u)HEHHLHuH?xDHH覡fDUH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHHkktH].Sf.@gUH@dH%(HD$81HCHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$!tы|$ xHHuHt"HH5/H軂fHI3HΞff.AUATUSHHdH%(H$81HBHt$ HD$(HFHD$4D$0tEH|$ 1H$8dH+%(IHH[]A\A]f.Ll$@Ld$ LLV|tHl$`-LH=|tH$-Hf(D$@HT$PHHLfD$)$T$|Tf($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH=huHHȹ3HHuL1L܉f.Hu-HL豉f.AUATUH`dH%(H$X1H@Ht$ HD$(HFHD$4D$0t>H|$ 1H$XdH+%(BH`]A\A]@Ld$@Hl$ LHztLl$`HLuztT$PLLf(D$@foL$`fo$fo$T$fo$foT$pH$fD$fo$)$fo$H$P)$)$)$)$)$ )$0)$@ٜf($f.D$@L$f.L$HT$f.T$PD$`f.$$f.D$h$f.D$pD$xf.$~$f.$f`$f.$HB$f.$*$$f.$ $f.$ $f.$($f.$0$f.$8$f.$@zzux$f.$Hzdub$f.$PzNuLHH3HfDH0L1HHuLH2fUH@dH%(HD$81H*dHt$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5c芼|$HtHt+HH5WSHPtHuHn1Hu]ff.fUSHHdH%(HD$81HcHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_ntHl$H=uRHGtHH=4u HuHc@HH= tHH=btHJAUH@dH%(HD$81Hh;Ht$HD$HFHD$$D$ t0H|$<1HT$8dH+%(ugH@]@Ht$ H|$tы|$ H,HuHt"HH5c'H[zfH3Hnff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fD˾HHuӐ t2HuHcH HH;3tЉ}ff.fSH0fnFdH%(HD$(1HxH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fD۽HHuӐtBHuHcHHH;B3tЉ荔ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uZH0[fDHHuӐ tRHuHcH HH;3tЉ蝓ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDHHuӐtbHuHcHHH;±3tЉ譒ff.fAUATUH`fnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ n1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLptD$4L$HD$@T$PtXH]f(\1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukH?Hc蕻4HEHXH;F3tT$HLD$L$T$D$L$|f{HuL1L}tڐf.ATH0fnFdH%(HD$(1H \H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@3HHufHHRxH;z3ǫIMtoI$H5JLPtZeHuLXfIHoH.bL褏1HHP@L8fE1H"DIjifATUSH@fnFdH%(HD$81HZHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\諷HHuːHt$H|$1etD$$Ld$u`HELH@H;&3H='ItLH=u-HaHcoVf.LLH=J詬tLH=iY薬tLZAfDHЉҍfAWAVAUATUSH8fnFdH%(H$(1H9 Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$(dH+%(H8[]A\A]A^A_ HHu뾐Lt$0Ll$LL&ktLd$P-LL ktT$8D$$LH$\$@-HD$0HfI~$uHEHH;M3LLD$&CD$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH=huHHp3HkHuL1LxfKHu-LLaxD$LLHD$,臋AWAVAUATUSHXfnFdH%(H$H1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$C1H$HdH+%(HX[]A\A]A^A_軳HHu뾐Ll$0Ld$LLhtLt$PLLhtT$8\$@fod$PH$fol$`fot$pfH~fI~H$@D$$fo$)$fo$fo$D$0)$fo$)$)$)$)$ )$0uHEHxH;3OLLD$D$f.D$0fHnf.l$8fInf.t$@D$Pf.$$f.D$Xxr$f.D$`]WD$hf.$B<D$pf.$'!D$xf.$ $f.$$f.$$f.$$f.$$f.$ zzux$f.$(zdub$f.$0zNuL$f.$8z8u6$f.$@z"u [HH;3Hf;HuֹLLQtH"L1L(t D$LLHD$Off.@ATL%b4H |HAH5c4Lb4u8LHb4 LA\ATIUHMHt HH5ALHGtHmtH]A\HH]A\aAWAVAUATUSH8fnFdH%(H$(1H@[H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$N1H$(dH+%(dH8[]A\A]A^A_ˮHHuÐL$L$LLctL$LLctH$LTjL$LLTOH$LHHD$pc*H$LHPc HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ˺HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc+H HIc̬HLILRLD$LHAXZT$h\$`L$mȹHuHھLny褹H*HT$LnzHLLnRH(L1Lgn$L&Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L :H$4AHcʦH$H$Et IcHH$L94H$AHc臦HD$L$Et IcIHD$H,D$P+D$TLL$E1MtH$I9tLDH$HtH$H9t%H$dH+%(vHL[]A\A]A^A_fHHf.Ht$8LӘRHD$`LHHD$Y0DHLYHt$.ktH].f.@>AUATUHPdH%(H$H1HHt$ HD$(HFHD$4D$0t>H|$ 蒶1H$HdH+%(HP]A\A]@Ld$@Hl$ LH>@tLl$`HL%@tT$PLLf(D$@fo$foL$`fo$T$fo$foT$pfD$fo$fo$)$)$)$)$)$)$)$ )$0蹢f($f.D$@L$f.L$HT$f.T$PD$`f.$$f.D$h$f.D$pyD$xf.$d^$f.$F@$f.$("$f.$ $f.$$f.$$f.$$f.$ $f.$(zxuv$f.$0zbu`$f.$8zLuJH2H{3H$@ۖHPL1HK9賖HuLHK_fAUATUHdH%(H$1HHt$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(H]A\A]@Ld$@Hl$ LHHc~3HEHXH;.3tT$HLD$L$T$D$L$q蛋HuL1L@uSf.ATH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ͧE1HD$(dH+%(H0LA\@S|HHufHHRxH;j3G/IMtoI$H5|LPtZ腊HuLx)IHoHbLR1HHP@Lh8fE1(H"DIjRfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$F1HT$8dH+%(H@[]A\zHHuːHt$H|$Q(tD$$Ld$u`HELH@H;3H=ptLH= pu-HaHc{Vf.LLH=jnotLH=otLzfDHЉPfAWAVAUATUSHfnFdH%(H$1HDHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$賤1H$dH+%(fH[]A\A]A^A_+yHHu뾐Ll$0Ld$LLF.tLt$PLL-.tH$T$8\$@fod$PH$D$$fH~fol$`fot$pfI~)$D$0)$)$uHEHxH;e3sLLD$D$f.D$0fHnf.|$8fInf.|$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$zwuuD$xf.$zdub$f.$zNuLHHj3HfD˅H&L1L:装HuLL:D$LLHD$Mff.@AWAVAUATUSHHfnFdH%(H$81H9Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$蓡1H$8dH+%(fHH[]A\A]A^A_ vHHu뾐Ll$0Ld$LL&+tLt$PLL +tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$D$$fo$D$0)$fo$)$)$)$)$)$ uHEHH;}3?LLD$~D$f.D$0fHnf.l$8fInf.t$@D$Pf.$$f.D$X$f.D$`uoD$hf.$ZTD$pf.$?9D$xf.$$$f.$$f.$$f.$$f.$$f.$$f.$ztur$f.$ z^u\$f.$(zHuFɁHHf3H諁HZL1L6C胁HuLL6D$LLHD$Iff.@ATL%s)4H HH5*4Lv_)4uLH>*4ykLA\ATIUH]Ht HH5LH tHmtH]A\HH]A\q#AVAUATUSHPfnFdH%(HD$H1HcHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$ۜ1HT$HdH+%(HP[]A\A]A^[qHHuƐLd$0Ll$LLv&t\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuE@H,fHnHLL$L$fH~f~HuL1L4]Gff.fAWAVAUATUSH8fnFdH%(H$(1HH$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_{oHHuÐL$L$LL$tL$LLt$tH$LPjL$LL5OH$LHHD$ $*H$LH$ HT$|LHHT$b$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ{{HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuczH zHIc|mHLILRLD$LH AXZT$h\$`L$mxzHuHھL/yTzH*HT$Ld/*zHLL1HT$(dH+%(u|H0]fDgHHuӐuff.AWAVAUATUHSHfnFdH%(H$1H3%Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@LH$4AHczgH$H$Et IcHH$L4H$AHc7gHD$L$Et IcIHD$H,D$P+D$TLyL$E1MtH$I9tLLH$HtH$H9tLH$dH+%(vHL[]A\A]A^A_feHHf.Ht$8LYRHD$`LHHD$0DHLHt$fo$ILfo$fo$LL$$)$L$$)$ $$)$0$d$0$l$$t$H|$ L$T$@\$(d$l$8}$f.$$f.$$f.$ z$f.$(b\$f.$0D>$f.$8& t$f.$|vT$0f.$a[l$Hf.$F@|$f.$\$ f.$t$@f.$L$f.$d$(f.$zwuu|$8f.$zdubOQHAQHH$F$FƄ$GlQHL1H'PHuLHzPH+LHPHLHD$XHY UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$l1HT$8dH+%(uhH@]@HT$H|$H5:<|$HtHt+HH5 HPtOHuH1OHu ff.fUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$k1HT$8dH+%(HH[]DHt$H|$tHl$H=+H5tHH=r5uNHuHcnA@HH=5tH}@ATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEHj1HT$XdH+%(u\Hh]A\f[?HHuΐLd$ HL{tLHllMHuH23HATUSH@fnFdH%(HD$81HFHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$i1HT$8dH+%(H@[]A\[>HHuːHt$H|$tD$$Ld$uXHELH@H;>.3ulH=3tLH=+3u)tLHeHc#?ZfDLLH=4a3tL%븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}hE1HD$(dH+%(H0LA\@=HHufHHRxH;63XIMtoI$H5LPtZ5KHuL(IHoHIJbLt1HHP@L(8fE1JH"DIj9fAT1UHHNdH%(H$1HGAfnH%fnA)fbAAu\H Ht$0HL$8T$HfD$@HHo(Ht>D$@+D$DH|$0f1fDH5NDd1H$dH+%(HĘ]A\DL Ht$0LL$8L$@T$DT$HHjHo(HtD$@+D$DH|$0AH5D\1HT$hdH+%(Hp]A\A]A^A_ÐL PHt$0LL$8L$@T$DT$HH Ho(Ht{D$@+D$Dt|H|$0`^1@H Ht$0HL$8T$HfD$@HHo(Ht%D$@+D$DH|$0^1,Ll$PLd$0LLtD$PT$XLH\$`D$fI~fI~MOD$f.D$P;5fInf.d$X$fInf.l$` @HSHr%3HvfLl$Ld$0LL Lt$ LLL|$(LLLLLHg @H?H?HQD$(LH9K1HH[1+1HH1?HL1LD$ LxH]D$1LcH:fAW1AVAUATUHpHNdH%(HD$h1HGAfnH%fnA)fbAt>AH5LDY1HT$hdH+%(Hp]A\A]A^A_ÐL Ht$0LL$8L$@T$DT$HH Ho(Ht{D$@+D$Dt|H|$0 [1@H Ht$0HL$8T$HfD$@HHo(Ht%D$@+D$DH|$0Z1,Ll$PLd$0LLtD$PT$XLH\$`D$fI~fI~]D$f.D$P;5fInf.d$X$fInf.l$` R=HSH2"3HvfLl$Ld$0LLLt$ LLL|$(LLLLLH2u<$f.$z(u&7HH3H{7HuйL1LD$0Lo@rD$(LW@LD$ L?@&D$L'@D$1L@hATL%3H HH53L&3uLH3)!LA\ATIUHHt HH5LH3tHmtH]A\HH]A\!AWAVAUATUSHfnFdH%(HD$x1HHt$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ R1HT$xdH+%(HĈ[]A\A]A^A_fD'HHufLd$@Hl$ LHtLl$`HLtD$4T$HD$@\$Pd$hl$`$t$p\$fI~fH~D$t$ILLLD$f.D$@$f.T$Hd$f.d$PfHnf.|$`zbu`fInf.\$hzSuQl$f.l$pzCuA\4HH<3HLLLD$W4HuLH13H[L1HDNff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtMAAH5DN1HT$XdH+%(Hh[]A\A]A^A_DLHt$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ O1yH QHt$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ >O1L Ht$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ N1D#HH[1k#HHu1@S#HHTfLl$@Lt$ LLf0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$Pz,1HL1LA@Ld$ Ht$LHt$LkHt$L|VD$L$T$4T$f(HEfمHH;"3D$@L$HHT$PHt$@fH~Ő[0HfHnL|$Ll$ L5s#LLL|$ILLLe|$HL$4uGHELH/HcH3HyHL(fH~ILH)\$@HfH~"f.H(fdH%(HD$1H)$HT$HD$dH+%(uH(@;UH=PHu]ÐHH=tHH=tH]鱪UH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,K1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPt.HuH1-Hu]ff.fUH@dH%(HD$81HCHt$HD$HFHD$$D$ t0H|$LJ1HT$8dH+%(uFH@]@H|$HT$H5C|$HtۢH3-HuH&ff.@ATUHHdH%(HD$81H)CHt$HD$HFHD$$D$ D$ wcLd$HT$ H5ZCL |$ Ht#D$ 9D$(|Vt$ HJH,HtU1HT$8dH+%(uMHH]A\H|$If.Ht$ LuDH fUHAWAVAUATISHXfnFdH%(HE1HH0H8HGfnȉHfbfօ@Md$(H01HHH4AHcHHDžHEtIcHHH贰4HPAHcϭHPHDžHEtIcHHHb4HAHc HHDžHEtIcHHH4HpHc&HpHDžHtHcHHH躯4HHcЬHHDžHtHcHHHd4HPHc HPHDžHtHcHHH4H}HcHDžHMHtHcHHH辮4HHc֫HcHHDžt HHMU @+D @H EHE1HtHH9tHH}HEH9t HtHPHtHXH9tHHH9t HtHpHxH9t HtHHH9t HtHPHXH9t HtoHHH9t HtRHEdH+%( HeL[A\A]A^A_]D3IHfHHDJHH, HHDqHHDaHH2@HHHHHHoHHE~wHHHFH9 AE DH1HfHH9uDHAtHHEHHHVHH)HAFDH1HoHH9uDHAtAHLH4A4HA9~LALA9~ DADE~wHHHFH9AG DH1Hf$$HH9uDHAtHH‹HHHVHH)HSBAH1Ho,,HH9uHtBLLHA4A4H9~ALAL9~ ADADHHHVHH)H\BJH1Ho44HH9uHtBLLHA4A4H9~ALAL9~ ADAD~}HHHFH9lBZH1Hf<<HH9uHЃtHH‹~}HHHFH9BH1HfHH9uHЃtHH‹HHSHH)HBH1HoHH9uHt8L4HA4H9~LAL9~ DADS,LLLHHzH E~QHHIc1HDHH9f.ztH!HE~MHHIc1LHH9O<9HtHH=1tuKHuHc @HH=ItH @UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11n61HT$(dH+%(u4H0]fD HHuӐHhPgHuHZH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H1151HT$(dH+%(u9H8; HHuҐKHuH2Hff.@H8fnFdH%(HD$(1H[H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H1141HT$(dH+%(u9H8k HHuҐHuH2H?ff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1141HT$(dH+%(uUH0[fDHHuӐt_XHuHc DHH8H;w3tЉRfAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ HD$Ho(HtbD$ +D$$wrLl$HT$H5L|$It/D$ 9D$(D$HL Ht\@1HT$8dH+%(umH@]A\A]@H|$2f.;HH;DHc`fDHt$L;bff.ATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$11HT$8dH+%(H@[]A\;HHuːHt$H|$tD$$Ld$uXHELH@H;3ulH=DtLH=+}u)THeHcZfDLLH=AtL븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]0E1HD$(dH+%(H0LA\@HHufHHRxH; 3IMtoI$H5LPtZHuLIHoHzbLT1HHP@L8fE1H"DIjfU1IH@fnFdH%(HD$8HG~H%fn)fbt* u}HD$8dH+%(H@L]@H Ht$HL$T$(fD$ HIh(Ht7D$ +D$$tFH|$.1fDH5,1HT$8dH+%(u`H@]@H5HT$H|$|$HtHاsHuHW2H말LIHPDUHAWAVAUATISHfnFdH%(HE1H4HpHxHGfnȉfbfօMd$(HpHHX/H4AHcJHHDž0HEtIcHH0HXݕ4HAHcHHDžHHEtIcHHHHX苕4HAHc覒HHDž(HEtIcHH(HX94HPHcOHHDž HtHcHH HX4HPHcHPHDž@HtHcHH@HX荔4H}Hc6HDž8HUHtHcHH8HX=4HTHcUHcTHHDžt HHMd +/HX+HE1HtHH9tHH}HEH9t HtHPHtHXH9tbHHH9t HtEHHH9t Ht(HHH9t Ht HHH9t HtHEdH+%(/ HeL[A\A]A^A_]fIHppf.HXHlHHXDHHXD衳HHXDrPHHXQHHXA0HHX THXHcEHH0HVHH)HAEDHX1HoHH9uDHXAtAHL0H4A4HA9~LALA9~ DADE~zHHHHFH9AFDHX1HfHH9uDHXAtHHHEHH(HVHH)HAGDHX1Ho$$HH9uDHXAtAHL(H4A4HA9~LALA9~ DADPHH HVHH)HPBHX1Ho,,HH9uHXP@tBLL HA4A4H9~ALAL9~ ADADHH@HFH9BHX1Hf.f44HH9uHXȃtHH@HH8HFH9GB5HX1HDf<<HH9uHXȃtHH8THHSHH)HTBtHX1H@oHH9uHXT@t8L4HA4H9~LAL9~ DADHlLLLHSHcAH E~IH0HIc1LXHH9<9H(HtD$9D$t;H11_1HT$(dH+%(uLH8HHuҐu$HNHuH22H@f.fGXUH=óH u]ÐHH=tHH=tH]xwUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Əz|$HtHt+HH5HPtHuH1HuMff.fUSHHdH%(HD$81HtHt$HD$HFHD$$D$ HD$t6H|$21HT$8dH+%(utHH[]fHt$H|$OtHl$H=H7tHH=$uHuHc@HvWH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(u9H8HHuҐ&HuH 2Hff.@H8fnFdH%(HD$(1HtH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(u9H8HHuҐ{VHuH:2Hff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐ `HuHc7UH0fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD[HHuӐtHo`HuH趖@HHH;2tHSH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD{HHuӐtHuHcfHHH;/2tЉ2fUH@fnFdH%(HD$81HsHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.HHuϐHt$ H|$qtt$ H1HuH2HEDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5ثHT$H|$Z|$HtHxHuH2HLff.AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HD$ +D$$woLd$Ht$LtmHT$H5Lu|$ItOD$ 9D$(|yL$ t$HL>Hu&HcH|$1HT$8dH+%(u9H@]A\A]HH+DHt$ Lrff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\+HHuːHt$H|$豑tD$$Ld$uXHELH@H;2u\H='tLH=@mu)DHeHcZfDLLn@HЉ肺fAUATUHfnFdH%(H$1HٶHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$H1H$dH+%((HĠ]A\A]fHHuɐLd$Ht$ LtLl$0LL՗tfoT$0t$ HLfo\$@fod$P)T$`)\$p)$D$0f.D$`zvutD$hf.D$8zfudD$@f.D$pzVuTD$Hf.D$xzFuDD$Pf.$z3u1D$Xf.$z uqHHc SHuعLLi貸fAUATUHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$x 1H$dH+%((HĠ]A\A]fHHuɐLd$Ht$ LtLl$0LLtfoT$0t$ HLfo\$@fod$P)T$`)\$p)$ND$0f.D$`zvutD$hf.D$8zfudD$@f.D$pzVuTD$Hf.D$xzFuDD$Pf.$z3u1D$Xf.$z uHHcPHuعLL虣fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@CHHufHHRxH;2gIMtoI$H5FLPtZuHuLhIHoHUbL贵1HHP@L8fE1H"DIjyfAVAUATUSH`fnFdH%(HD$X1H3H4$HD$HGfnȉD$fbfD$HLw(11HqH|$ 4AHcLl$ EurMD$+D$H H|$ E1HtHD$(H9tHD$XdH+%(H`L[]A\A]A^fDIcI\fD[HH=H1E1BqH|$ 4HcH|$ IrLE1gDDLHBDE~YIEH9AD$D1HfATHH9uDAt ADLLAE~,Ic1 fHH9tADf.ztHt#HIcH|$ IDL1HڟD1ADHH9ubHff.fAWAVAUATUSHhfnFdH%(HD$X1H+Ht$HD$HGfnȉD$(fbfD$ 'Hl$Lw(11HjoH|$04AHclLl$0ED$ M&D$ +D$$tDLH趟pHt$H[HT$H5)H|$I9D$ 9D$(EIUHH)HAD$D1HfAoTHH9uDAt4AtH4HA9~ALLA9~ ADDDD$ T$LLLŤAE~=Ic1fDHH9t' A9LtxHuDL1H[Hu8IcH|$0I.@IcI\jHH|$0E1HtHD$8H9trHD$XdH+%(HhL[]A\A]A^A_@SHHH|$1E18mH|$04HcVjLl$0LtD$ LE1qHt$ H"HfDD1ATHH9u软HHGI~H)ǃt!t<t/HH51HHH=3L^fDLLhAV1IAUATUSHfnFdH%(H$HG~H%fn)fbătEH5(1H$dH+%(HĐ[]A\A]A^H MHt$@HL$HT$XfD$PHIh(Ht%D$P+D$TH|$@1yHHt$@H\$HT$XfD$PHHl$@1Mp(1HkH|$`4AHc,hLl$`EubMD$P+D$THH|$`1HT$hH9HHD$莽HD$@IcI\fDLd$@Ht$LnHt$ L|Ht$(Lt|Ht$0L_|Ht$8LJ|\$8T$0HL$(D$ t$gHHcDLHbHt$HHt$ H{Ht$(H{Ht$0H{Ht$8H{EIUHH)HoAD$aD1Hf.Aol,HH9uDAt4AtH4HA9~ALLA9~ ADD\$8T$LLT$0L$(D$ zAE~.Ic1fDHH9t A9LtHHIcH|$`L0IHH|$@1hH|$`4Hc6eH|$`1I5L1+f.LIHH1D1ATHH9u襪DL1H1Hy@AW1AVAUATUHSHfnFdH%(H$HG~H%fn)fbƃ1H ƦHt$PHL$XT$hfD$`H Hm(Ld$P1LfH|$p4AHccH\$pHD$Et IcHHD$Lf4H$AHcCH$L$Et IcIH$HD$`+D$dLL$E1H$I9t MtLH|$pHHD$xH9H Ht$PHL$XT$hfD$`H{Ld$P1Hm(1LeH$4AHcbL$EtIcIHD$`+D$drLH5E1H$dH+%(LHL[]A\A]A^A_DH ǤHt$PHL$XT$hfD$`H,Ld$PHm(1LdH$4AHc~L$EtIcIH(D$`+D$dLH$E1H$H9!HDH Ht$PHL$XT$hfD$`HHm(HD$`+D$dH|$PE1?f.HHHHHHH|$PcH$4HcHH$ItuLE1fDH`HH0 H@HHqH|$P1(cH$4HcC`H$IuE1@DLL芓dHt$LOHt$ Lt:Ht$(Lt%Ht$0LtHt$8LtHt$@LtHt$HLtE~IVHH)H]AEPD1HAoHH9uDAt3A4H4HA9~ALLA9~ ADDl$Hd$@LH\$8T$0L$(D$ T$E~'Ic1 HH9t A9 tHHHcLd$PHt$L6Ht$ LQsHt$(LtH]<W-UH@dH%(HD$81HzSHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&Sګ|$HtHt+HH5$&HPtRHuHE^19Hu譇ff.fUSHHdH%(HD$81HRHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$]tHl$H=#&H藥tHH=WR脥u[HuHc@H0:跆H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HG(HtL$9L$t;H111HT$(dH+%(uH(HtD$9D$t;H111HT$(dH+%(u9H8苭HHuҐkHuHڠ2H_ff.@UH0fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11.1HT$(dH+%(u8H0]fD軬HHuӐH@HHh0#HuHF菃ff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11^1HT$(dH+%(u9H0[fDHHuӐH@HHX8SHuH{u辂ff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐ苘脹HuHc7UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD[HHuӐtHo0øHuH@HHH;2tHUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uKH0]fD{HHuӐHHuHHx葪HW(HtD$9D$t;H111HT$(dH+%(uqH8;HHuҐHzHHHPH;2u9HG8Hcw@HHHHXzHuH^2HuUSHHfnFdH%(HD$81HaHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$1HT$8dH+%(HH[]@+HHuАHl$HHtHt$HϩtH$HC81HC@HT$HC0H{HHKHqHtHH5y~HvXRH 2HAtff.USHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ HD$H_(Ht]D$ +D$$wmHl$HHŨt9D$ 9D$(H{HHT$H4$HHЉCHtVfD1HT$8dH+%(ueHH[]H|$f{HHHDHc蠝fDHt$H`Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$ItD$$Ld$uXHELH@H;2u\H=&АtLH==轐u)蔩HeHcCZfDLLX%@HЉqfATH0fnFdH%(HD$(1H =H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@3HHufHHRxH;R2IMtoI$H5 &LPtZeHuLXGIHoHbLp1HHP@L8fE1H"DIjipfUSHHfnFdH%(HD$81HHt$HD$HGfnЉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$11HT$8dH+%(<HH[]@軘HHuАHt$H|$qtHt$Hx H{HH;w0|H=R1fHH@0HD$$HHH?HH@HHH4HHHVH)H9H@@HHT1HHHHHo oHHffHBH9uHHtHcH)HHDH2HH H0 HH2H@K?HH~H4HHHVH)H9H@@t~H~xHT1HHHHHo oHHffHBH9u3@H1H:H4HHHT$H5vxL|$Ht Ht$Hx HEHH;p0|8H=w|s1DLIHp1DHCHuH'w2HHHpHR0HHD$q+I Ht-Ht7HHv2Hl$@HHT$L3뿋L$LL(ZHDff.AV1IAUATUSHĀfnFdH%(HD$xHG~H%fn)fbHvHt$ H\$(L$8fD$0HLl$ IX(L|H|$@LcLHl$@Ht(D$0+D$4L菭Hl$@1HT$HH9tdHt_HHD$ iHD$KDHD$xdH+%(4HHH=R3L[]A\A]A^ސfDH5u1HT$xdH+%(H[]A\A]A^fL蘁IHH|$ }H|$@Hc1Hl$@,@Ht$L# DHL}HL$LLH{HLd$HG8Ml$LHpD$4.oL M~aIT$HH9L11H@oTHTHH9uLHHHHTI9tHEHLc0Lk8Lk8ID$HC0Hl$@H#LnL M~IT$HvPH9tKL11Hfo\H\HH9u[1ҐHLHLHL9uc1fDHLHLHI9uCVHATL%J3H H4%H5>L3Lvl8K3u踰LH~K3yxLA\ATIUHxHt HH5%LHtHmtH]A\HH]A\q0HG0H9w0tHHw0ff.DHG8HcO@HHHHHXf.DgSHH|]HǃHǃ[@UH=%Hsu]ÐHH= stH]@UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5zx|$HtHt+HH5qHPtHuH*1ًHuMTff.fUSHHdH%(HD$81HtHt$HD$HFHD$$D$ HD$t6H|$21HT$8dH+%(utHH[]fHt$H|$O*tHl$H=pH7rtHH=$ruHuHc}@HWSUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11.1HT$(dH+%(u4H0]fD{HHuӐHh0'HuH)RUH0fnFdH%(HD$(1HWH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11n1HT$(dH+%(u4H0]fDzHHuӐHh8gHuHZ(QUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11讥1HT$(dH+%(u8H0]fD;zHHuӐH@8Hh0裈HuH|Qff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ޤ1HT$(dH+%(u1HT$(dH+%(uUH0[fDvHHuӐt15HuHcwfDHHH;7h2tЉMfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11^1HT$(dH+%(uUH0[fDuHHuӐt1UHuHcwfDHHH;x2tЉLfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD uHHuӐtrHuHc%vHHhH;:{2tЉKff.fSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11蒟1HT$(dH+%(u_H0[f.tHtHx(HtˋD$t9H-1fH`HuHcuJT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11袞1HT$(dH+%(u_H0[f.+sHtHx(HtˋD$t9H=1fHpHuHc#tIT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11貝1HT$(dH+%(u_H0[f.;rHtHx(HtˋD$t9HM1fH耀HuHc3sHT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11œ1HT$(dH+%(u_H0[f.KqHtHx(HtˋD$t9H]1fHHuHcCrGT$qUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Λ1HT$(dH+%(u|H0]fD[pHHuӐuHHH;{2u~HuHc2HfH~HuHtHH5KH*tFff.UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$踚1HT$8dH+%(utH@]KoHtHh(HtՋD$$tXH|$[1Ht$ H|$ctHEHt$ Ht}HuHg|ET$ S@UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$訙1HT$8dH+%(utH@];nHtHh(HtՋD$$tXH|$K1Ht$ H|$btHEHt$ Hd|HuHW|DT$ S@USHHfnFdH%(HD$81H|Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$葘1HT$8dH+%(~HH[]@mHHuАHt$ H|$atHcD$ x HS8H;B0|H=|^\1f.HR@H,C{HyHbonCAVAUATUHHVdH%(HD$81HU0'Ht$HD$HGfnfnȉD$(fbfD$ uLHo(HttnH|$rf1HT$8dH+%(HH]A\A]A^fDkHtHh(HtŋD$$H|$1Ll$Ht$ L_tLt$ H5_LL{f|$ ImLH5J$L[f|$ HMLEHt$ LAHyH(Hcl6BT$ ff.fATUSH@fnFdH%(HD$81HV Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kjHHuːHt$H|$tD$$Ld$uXHELH@H;^^2u\H=a^_tLH= _u)xHeHc3kZfDLLH@HЉ@fATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝔E1HD$(dH+%(H0LA\@#iHHufHHRxH;v2BIMtoI$H5 ]LPtZUwHuLHIHoHbL?1HHP@LT8fE1vH"DIjY?fAUATUHpVdH%(HD$h1HOHt$0HD$8HGfnfnȉD$HfbfD$@uFHo(HtthH|$0$1HT$hdH+%(0Hp]A\A]@gHtHh(HtɋD$DH|$01Ld$0Ht$,Ln[tLl$PLLyHT$+H5[Lb|$+HWf(D$PHEHL\$`t$,fD$)$\$f($f.D$Pz=u;T$f.T$Xz-u+\$f.\$`zuEuHHcg*uHu۹LL@*=T$@AVAUATUSH`fnFdH%(HD$X1HuH4$HD$HGfnȉD$fbfD$HLw(11HH|$ 4AHcLl$ EurMD$+D$HH|$ E1HtHD$(H9tLHD$XdH+%(H`L[]A\A]A^fDIcI\fDkeHH=H1E1RH|$ 4HcH|$ IrLE1gDDLHRDL$EIEH9AD$D1HAoTHH9uDAt ITHÅuIHH;p2ug1 @HA9~H I9LtrHtyrH|$ E1HL%W2I$uIHH;o2tLLEf.D1ITHHH9uJDL1Hdr:H5ff.AWAVAUATUSHxVdH%(HD$h1HCHt$@HD$HHGfnfnȉD$XfbfD$PuQHo(Ht tsH|$@ 菎1HT$hdH+%( Hx[]A\A]A^A_ cHtHh(HtŋD$TH|$@1L|$@Ht$0LtLt$8H5 #LL]|$8ImLH5OLs]|$8IMLH5%LS]|$80H0LLH$H/]|$8 LHLHD$]|$8LLLHD$L\|$8HLLmH $LD$LLL$L\$,LLLL$LLD$HL$L$\|$,L$HL$LD$ILL$WLLLL$LD$H $vU6T$,HELHRLAVt$HSLL$0LD$(HL$ D$P8H oHHT2H8T$Pf.AWAVAUATUSHVdH%(HD$x1HHt$PHD$XHGfnfnȉD$hfbfD$`uNHo(Ht tpH|$P ̋@1HT$xdH+%(oHĈ[]A\A]A^A_K`HtHh(HtŋD$dCH|$PW1H|$PHt$@H|$<H|$tL\$HH5 #LL\$Z|$HH|$L\$IZLH5|Z|$HH|$L\$I3L5C%LLyZ|$HH|$L\$ LLHD$TZ|$HH|$L\$LLHD$ /Z|$HH|$L\$L5LHD$(LZ|$HH|$L\$HLLY|$HH|$L\$IpLLLY|$HH|$L\$HL$ILD$ LL$(7LLL$ LD$HL$hjH|$HL$LcLD$LL$ HT$?LLL$LD$HL$9Y|$?HL$LD$LL$HHHELHRLt$XAWAVSD$p0H0lHHlQ2H}4T$`PDAWAVAUATUSHfnFdH%(H$1HIHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HaH|$`4AHc^Ll$`EutMD$0+D$4HhH|$`E1HD$hH9t HtCH$dH+%(gHĨL[]A\A]A^A_IcI\fD\HH6H|$ E1H|$`4HcK]H|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9gAD$YD1HfDfATHH9uDAt ADËD$4uIHH;Se2t$f.t$@|$f.|$H|$f.|$PE~3Ic1fHH9tADf.ztiHt=iH|$`E1HL%pN2I$fDLLLCDLH}CiHeL1HXND1ADHH9uy1Hff.fAWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHcZLl$`EutMD$0+D$4HH|$`E1HD$hH9t Htl@H$dH+%(gHĨL[]A\A]A^A_IcI\fD;YHH6H|$ E1H|$`4HcYH|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9gAD$YD1HfDfATHH9uDAt ADËD$4uIHxH;O2t$f.t$@|$f.|$H|$f.|$PE~3Ic1fHH9tADf.zt"fHt=fH|$`E1HL%J2I$fDLLLCDLHeHeL1HND1ADHH9u-H陖ff.fAWAVAUATUSHfnFdH%(H$1HHt$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HaH$4AHc WL$Eu~MD$du}|$`H`H$E1H$H9t HtDHھL[$HCHVAWAVAUATUSHHVdH%(H$81HH$H$HGfnfn؉$fbfք$uWHo(Ht }H$w1H$8dH+%(?HH[]A\A]A^A_sLHtHh(Ht$ H$y1DL$L$LL`rL$LL@RH$L:L$LLH$LHHD$H$ LHH$LHHT$h?$HHEL$IL$$T$pH$f($d$P$8$l$`$t$h$0|$($(fL$@)L$xd$ l$Ht$X|$0T$8HT$RLLD$$@f($AXZf.$NHd$8f.$3-T$hf.$l$Xf.$mgt$Hf.$RL|$`f.$71VXHdT$f.$d$ f.$l$@f.$t$(f.$ zvut|$Pf.$(zcuaL$0f.$0zPuNWHWHIc_JvWHL1L pWHuHھL OWHJHT$L_ .%WHLL7 $LN4$L_I$wff.fUHAWAVAUATSHhHfnFdH%(HE1H HHHGfnȉfbfօKHH@(HLLHP4AHc@HHPHDžEtIcHHLN4H}AHcGHDžLuEtIcIHH~L/rLuE1MtHEI9tL-HPHXH9t Ht-HEdH+%(IHeL[A\A]A^A_]L設fDkFHHfDHLHHrKDHL\5HLHH9H0LHHHLHHDLL xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAHHHLHLHHHAV f.XZf.xf. ~E~IHIc1fDHH9Gf.zt創QHQHef.0f.8f.@QHE~DHIc1 HH9Af.zt䉝9QHO+QHHcCLuIf.E1PHcHLE딉PHtH1LYLYL HHD1AHH9uHcHHD1HH9uHDHھLDLLDHrH}ff.AUATUHHNdH%(H$1HGfnAH%HfnfbA)tdAH H4$HL$D$fD$HHo(HtvD$+D$Hk1QL PH4$LL$L$D$D$HH(HtD$9D$\H11pk1H$dH+%(HĐ]A\A]f.H5D1i1D?HH(DLd$ ILLtfoT$ fo\$0LHfod$@)T$P)\$`)d$p'D$ f.D$PD$Xf.D$(D$0f.D$`D$8f.D$hD$@f.D$pD$Hf.D$xzrupkMHHK22HfdHCMHH=?>HHLjf.LHL1LkVfDAV1IAUATUSHĀfnFdH%(HD$xHG~H%fn)fbtCH5&6g1HT$xdH+%(H[]A\A]A^H &Ht$ HL$(T$8fD$0H\Ih(Ht|D$0+D$4"H|$ h1f.HM&Ht$ H\$(T$8fD$0HtIx(HtD$49D$0}H|$ 11gh1,H %Ht$ HL$(T$8fD$0HHl$ Mp(1HH|$@4AHcQLl$@EugMD$0+D$4HgH|$@1HT$HH9HHD$S#HD$ufIcI\fDL8HuH1>Hu ff.fUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$Z1HT$8dH+%(HH[]DHt$H|$tHl$H=;H$tHH=h$u=HuHcn0@HH=r$tHH=y$tHjATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$Y1HT$8dH+%(H@[]A\;.HHuːHt$H|$tD$$Ld$u`HELH@H;72H=̈́#tLH=y#u-P3L83uLH~3$LA\ATIUH蝚Ht HH5ZLHtHmtH]A\HH]A\闶UH=H u]ÐHH=5 tHH=n tHH=^ tH]Nf.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$U1HT$8dH+%(uhH@]@HT$H|$H5v*%|$HtHt+HH5pHPt8HuH18Huff.fUSHHdH%(HD$81H$Ht$HD$HFHD$$D$ HD$t6H|$T1HT$8dH+%(utHH[]fHt$H|$tHl$H=oHtHH=u7HuHc^*@H耳ATH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11SE1HD$(dH+%(H0LA\@c(HHufHHRxH;72WIMtoI$H5nLPtZ6HuLIHoH$bL1HHP@L8fE186H"DIjfSH0fnFdH%(HD$(1H}H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nR1HT$(dH+%(u7H0[fD&HHuӐd5HuHc(UH0VdH%(HD$(1HmH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11Q1HT$(dH+%(u`H0]f.;&HtHx(HtˋD$t:HM1fHH4HuH(T$pfSH0VdH%(HD$(1H8lH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11P1HT$(dH+%(u_H0[f.K%HtHx(HtˋD$t9H]1fH3Hu[T$qSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_(HtD$9D$t:H11O1HT$(dH+%(uMH0[fD[$HHuӐHHHChC02HuH2Hf.SH0fnFdH%(HD$(1HzjH4$HD$HGfnȉD$fbfD$u=H_(HtD$9D$t:H11N1HT$(dH+%(uMH0[fD{#HHuӐHHHChC01HuH2H:f.UH@fnFdH%(HD$81HWHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$N1HT$8dH+%(u_H@]f."HHuϐH5<&HT$H|$J|$HtHh0HuH2HuHHShShK0 eHqHcH>fDHHHuHPfD1(HHHHHtIf!"H5mqHcH>!"wHH5qHcH>Pu"b"uf蛤CHl$ HƳH5fHדHǾu HH5_軓s0HHH5&術HHH9HH1oHWf Hl$ H6H5ofHGHǾuzHH5l_+s0H`HH5&HHQHGH1kf.(fDfDfDuHHH;B2u!ShHCHHx0H@@H(HShIXIXf.Df.UH=^HL u]ÐHH=1 tH]@'UH@dH%(HD$81HjHt$HD$HFHD$$D$ t0H|$lB1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5YoHPtB%HuH51)%Huff.fUSHHdH%(HD$81HĸHt$HD$HFHD$$D$ HD$t6H|$A1HT$8dH+%(HH[]DHt$H|$tHl$H=wnH tHH=t uK$HuHc@HH=I tH @H8fnFdH%(HD$(1H`H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o@1HT$(dH+%(u9H8HHuҐf#HuHJ2Hff.@H8fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(u9H8+HHuҐ{ "HuHz2Hff.@H8fnFdH%(HD$(1HdH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11>1HT$(dH+%(u9H8[HHuҐ!HuH2H/ff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11=1HT$(dH+%(uKH0]fDHHuӐH HuHHx4Lff.UH@fnFdH%(HD$81H9 "Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$=1HT$8dH+%(u_H@]f.HHuϐH5jHT$H|$Z |$HtHHuH2HLff.UH@fnFdH%(HD$81HiHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$<1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ HHHuH UDSH@fnFdH%(HD$81HhHt$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$";1HT$8dH+%(uWH@[f.HHuϐHt$H|$atHD$HHC0Hud@USHHfnFdH%(HD$81HgHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$1:1HT$8dH+%(uHH[]HHuАHt$H|$qtHD$HHC0HhHuHtHH5l>vH6@H2HqKff.USHHfnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$91HT$8dH+%(u~HH[] HHuАHt$H|$QtHl$HC01HHHxfHt JHC0HH@HuH2Hr,ff.ATUHHfnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ HD$Ho(HtpD$ +D$$wLLd$HLdtLD$ 9D$(|~HT$H4$HBHu'H1HfDH|$71HT$8dH+%(uAHH]A\f. HHIDHt$Lmff.USHHfnFdH%(HD$81H~dHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$61HT$8dH+%(HH[]@; HHuАHl$HHtHt$HtH$H|$HHC00HHHfHH(HtD$9D$t;H11/"1HT$(dH+%(uLH8HHuҐu$HHuH1H@3|ff.H8fnFdH%(HD$(1H*aH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O!1HT$(dH+%(uLH8HHuҐu$H>HuH"1H@iff.H8fnFdH%(HD$(1H\`H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o 1HT$(dH+%(uLH8HHuҐu$Hx^HuHB1H@ff.H8fnFdH%(HD$(1Ho_H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$H(~HuHb1H@mff.H8fnFdH%(HD$(1H^H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8;HHuҐu$H0HuH1H@ff.AWAVAUATUSHfnFdH%(H$1H9Ht$0HD$8HGfnЉD$HfbfD$@u]Lw(Mt!D$@+D$DtWH|$01H$dH+%(HĘ[]A\A]A^A_+HHu뾐Ld$PHl$0LHFtLl$pHL-tHt$(H qHT$'H5H|$'HOD$D\$XL$Pd$`l$xt$p$$D$(d$fI~fH~L$|$ILLL8L$f.L$P$$f.d$Xt$f.t$`fHnf.\$pz[uYfInf.l$xzLuJ|$f.$z9u7IH]H)1HOLLLBL$WHuLH(HiL1HRLff.AVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11H̃H|$04AHcyLl$0EuoMD$ +D$$HH|$0E1HtHD$8H9tWHD$hdH+%(HpL[]A\A]A^IcI\fD+HH>H|$1E1H|$04HcH|$0IsLE1hDLHGHT$H5H|$I%E~WIEH9AD$D1HDfATHH9uDAt ADËD$$ILLL0E~,Ic1 fHH9tADf.ztHt'xH|$0E1HlL%P1I$[DL1Hv@LLLDD1ADHH9u:H1.DAW1IAVAUATUSHfnFdH%(H$HG~H%fn)fbH {Ht$PHL$XT$hfD$`HJHl$PMp(1HҀH$4AHc|L$EMOD$`+D$dHH$1H$H9Ht}H$FH$nH Ht$PHL$XT$hfD$`H$M`(Mt%D$`+D$dH|$PN1f.H5]41H$dH+%(H[]A\A]A^A_fIcI\LIHH|$P}H$4Hc(H$1IL1fL$Hl$PLHcD$dL$H$L$I$LL@IfHnf.$fInf.$fInf.$HL0L|$pHL裟Ht$HH~HT$GH5k&H|$GH$H$HHHD$FDLH0it$x|$pt$ $|$($t$8$|$$t$|$0E~[IEH9BAD$4D1HffAl,HH9uDAt ADËT$dD$HIHL$MLH$LHt$(f.t$pIqk|$ f.|$xYSl$8f.$>8t$f.$|$f.$t$0f.$E~2Ic1 @HH9tADf.ztHHLH$fDLIH1 DLL}IDKH,L1H`&H5HT$H6HL1HHL$H$MLL9D1ADHH9uDLH軪H'DSH0fnFdH%(HD$(1H}H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD[HHuӐu$HpHuHcoDf.UH@fnFdH%(HD$81H>Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.kHHuϐHt$ H|$QtD$$t$ u)HEHhHHuH蟒DH0HfDAW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtWA-AH52D 1H$dH+%( H[]A\A]A^A_fHHt$pH\$x$$$HL(Mt+$+$H|$p=1dfDHHt$pH\$x$$$HL(Mt$+$IH|$p1fDHHt$pH\$x$fք$HuZL(MP$+$tjH|$pf1HH1nHHu1Z@HH1>L$Hl$pLHHt$XH辈L$HL讗yH\$hH5d&HH/|$hHD$RLt$`HL:HT$PHHHT$HH/ LL$THLLL$H$D$X$LL$H$L$0$$$T$($\$@l$t$ |$8IMAQLSLLL$ LHL$(A_IXL$(f.$T$0f.$sm\$@f.$XRl$ f.$t$f.$|$8f.$H HHHjT$TH4TL$Hl$pLHk6Ht$XHF!L$HL6Lt$`HLH\$THHLL$hHLLL$مD$LL$$D$X$E$$\$($$L$0l$ t$|$T$ILILLLT$\$(L$0If.$71f.$"f.$ l$f.$t$ f.$|$f.$HHsHID$hH1@L$Hl$pLHKHt$XH&L$HLH\$hH5_&HH|$hHD$Lt$`HLgLL$THLLL$zHH藃rD$D$X$$$E$$LL$L$ $T$\$8l$@t$(|$0VIMLSLHL$L _AXIL$f.$T$ f.$qk\$8f.$VPl$(f.$ t$@f.$|$0f.$HHHvHL^[HdLHmJ3HL1HHLILLLL$0\$(T$IgHT$`HËHLH۞HL1H趞PMLLSHL$LYZYIT$TH认wı?HLHQHL1H,AQMLLSLL$ LHL$A[[IHT$`H謊 D$hH$T$THHT$`HgcD$hHgT$PH詣C@AW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtgAHHt$`H\$hT$xfD$pHL(MD$p+D$tH|$`W1YHHt$`H\$hL$pT$tT$xHL(Mt%D$p+D$tH|$`1H$dH+%(H[]A\A]A^A_ÐH5<D1DcHHDL$Hl$`LHsL$HLS_H\$XH5Y&HH|$XHD$8Ll$PHL LL$LHLLL$HH}$DD$t$LL$$|$ E$$T$$L$8|$l$(D$0IHLLSMHL$L^_T$D$0L$8f.$f.$f.$~t$f.$A;T$ f.$& d$(f.$ HxHHD$XHf.L$Hl$`LHCOL$HL#/Ll$PHLH\$LHHLL$XHLLL${D$tLL$$$$$$L$0$d$(l$t$|$ D$RIILLLLD$L$0f.$f.$l$(f.$T$f.$d$f.$zturt$ f.$zau_HHHHH1H+HHEnHuLH諗}qH.L1H膗ILLLL]L$0D$D$XH9ET$LHc!HT$PH܃HLHHtL1Hϖ]HLMLSHL$L菳ZYL$8D$0T$HT$PHDqT$LH螜i贩@AW1AVAUATUSHHHNdH%(H$81HGAfnH%fnA)fbAACAH~H$H$$$$H,Lw(Mg$+$@H$1fA urH}H$H$$fք$HH_(H$+$ H$ 1H5}D1H$8dH+%(~ HH[]A\A]A^A_H|H$H$$$$HHo(Ht2$+$k H$@1YfHM|H$H$$$$Hu_H_(Ht$+$H$h1 HH41HHu1@HH1HH%1xL$H$LHL$HL蠄H$HxuH$HHHD$XuL$HLHpH$ HHH\$#KH$HH0$$$$$T$P$$\$H$$d$p$$l$h$(t$X$ |$`$0T$8\$0d$@l$ t$|$(0 ASILMSLLL$ LHL$A^XT$Hf.$  \$Pf.$  d$pf.$  l$Xf.$V P t$hf.$; 5 |$`f.$  H T$0f.$\$8f.$d$@f.$l$f.$ TNt$ f.$(93|$(f.$0HDHHcDL$H$LHhL$HLHpH$H rXL$HLr=L$HLH$ HHHD$ЀH$HHHL$pH$HHHT$ $$$$$T$H$$\$@$d$x$$$l$X$(t$P$ |$p$0T$(\$ d$hl$8t$0|$`HHt$Lt$ MLLLL$ ^_T$@f.$F@\$Hf.$+%d$xf.$ l$Pf.$t$Xf.$|$pf.$-H"T$ f.$\$(f.$d$hf.$l$0f.$ t$8f.$(|$`f.$0}HoH~H$HAyd@L$H$LH}L$HL}H$HnL$HLnL$HLu}H$ HHHD$P}xH$HHHL$XH$HHHT$8H$H5|I&H$$$$$$T$X$$\$ $d$x$$$l$h$(t$@$ |$p$0T$0\$(d$`l$Ht$8|$PQLHMPLLLt$t$0LL$0AH T$ f.$qk\$Xf.$VPd$xf.$;5l$@f.$t$hf.$|$pf.$HT$(f.$;5\$0f.$ d$`f.$l$8f.$ z*u(t$Hf.$(zu|$Pf.$0fH^HT$HB@L$L$LL`zL$ LL@zhL$H5#LL辿$@LH5LHD$虿$I$HL$u HELLHfDLLH\HHT$HH_LHƇEHLH螇dH_L1HyHAPLMLSLL$ LHL$QAYAZ薚H5LH#$H:$H$H-HaLH讆GtHL1H艆t$LLHt$ MLLL$ S~ZYV%HLH7$H $HRH6LHمHL1H贅RHMLPLLt$t$0LL$0 H '釶UH=#,HLu]ÐHH=^k1tHH=imtHH=c tH]Kf.@'qUH@dH%(HD$81HLHt$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uJH@]@Ht$H|$1tD$<v )1<@HuH苗ff.SH@dH%(HD$81H_KHt$HD$HFHD$$D$ HD$t/H|$s1HT$8dH+%(uH(HtD$9D$t;H11/1HT$(dH+%(u9H8軺HHuҐ_&HuH 1H菑ff.@SH0fnFdH%(HD$(1HEH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11^1HT$(dH+%(u5H0[fDHHuӐHXHWHuH{yfH8fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8+HHuҐ+oHuHz1Hff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uKH0]fD[HHuӐk8HHuHHxqcff.UH@fnFdH%(HD$81H !Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.kHHuϐH5BHT$H|$*|$HtHHuH1Hff.SH@fnFdH%(HD$81HCBHt$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$1HT$8dH+%(ubH@[f.kHHuϐHt$H|$!tHC0HHP0HD$HuH1HfSH@fnFdH%(HD$81HK Ht$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@[f.kHHuϐHt$H|$!tHC0HHP0HD$Hucff.UH@fnFdH%(HD$81HN@Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.kHHuϐHt$H|$tt$HH?HHuHԶff.fUSHHfnFdH%(HD$81H\?Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$1HT$8dH+%(u^HH[]kHHuАHt$H|$!tHC8HT$HH@0H,HuHӵff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(unHH]A\fDkHHuѐLd$Ht$L辿tHt$L tt$HT$H=HHuH´ ff.USHHfnFdH%(HD$81H\=Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$1HT$8dH+%(HH[]@[HHuАHt$H|$豾tHCHL$HPD$$uPHHC0HH@0H HH9t_8uqHgH \H~3HC0HH@0HHH9t8uf1藇ATUHXfnFdH%(HD$H1H;Ht$ HD$(HGfnȉD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ `1HT$HdH+%(HX]A\fHHuѐLd$ Ht$L螻tHt$L-tHt$L|tT$HL$HHt$ HsH1Henff.AVAUATUHHfnFdH%(HD$81Ho:Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$tff.@AVAUATUHHVdH%(HD$81H:Ht$HD$HGfnfnȉD$(fbfD$ uDHo(HttfH|$b1HT$8dH+%(HH]A\A]A^HtHh(HtˋD$$H|$1Lt$Ll$LH5$L脙|$ItLH5Lh|$HhHMLHHHJHő1HQtL&븐HЉrfATUHHdH%(HD$8HFLd$Ht$H HD$HԧHT$ LH5]D$(HD$ D$ |$ Ht9D$ 9D$(}Ht$ Ltt$ HJhHbHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=f2A\鏩H5<HGaqATL%C21H5H5ӆ2L+ͅ2u\LH2.LA\ATIUH}uHt HH5F5LH31tHmtH]A\HH]A\!KUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fD+HHuӐu$HXH苧HuH讛@ HofUH@fnFdH%(HD$81Hْ!Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.;HHuϐH5fHT$H|$|$HtD$$u(HEHvHuHZ1H@HhnUH@fnFdH%(HD$81Hّ!Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.+HHuϐH5VHT$H|$|$HtD$$u(HEHfHuHJ1H@H8mH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8+HHuҐu$H莤HuHr1H@clff.UH0fnFdH%(HD$(1H؈H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fDKHHuӐu,HH諣HuHHxY;aHfD;k@ fDgUH=0H\u]ÐHH=AtHH=7.tH]UH@dH%(HD$81Hz6Ht$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&6ڎ|$HtHt+HH59$HPtRHuHEA19Hujff.fUSHHdH%(HD$81H5Ht$HD$HFHD$$D$ HD$t6H|$蒾1HT$8dH+%(utHH[]fHt$H|$@tHl$H=W$H藈tHH=W5脈u[HuHc@H0iATH0fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11荽E1HD$(dH+%(H0LA\@HHufHHRxH;1kIMtoI$H5,$LPtZEHuL8?IHoHbLh1HHP@L}8fE1H"DIjIhfH8VdH%(HD$(1Hd;H4$HD$HGfnfnȉD$fbfD$u4H(HttOH11#1HT$(dH+%(uQH8@賐HtHx(HtҋD$t2H1HHuH1HkgT$DH8VdH%(HD$(1H:H4$HD$HGfnfnȉD$fbfD$u4H(HttOH11C1HT$(dH+%(uQH8@ӏHtHx(HtҋD$t2H1H"HuH1HfT$DSH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uUH0[fDHHuӐt_0THuHcDHHH;׎1tЉefSH0fnFdH%(HD$(1H8H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uUH0[fD HHuӐt_4tHuHc'DHHH;1tЉdfUH0fnFdH%(HD$(1H)H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螸1HT$(dH+%(uVH0]fD+HHuӐtHo8蓛HuH:@HHH;w1tHcSH0VdH%(HD$(1H;7H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11·1HT$(dH+%(u^H0[f.KHtHx(HtˋD$t8H]1fH萚HuDbT$r@SH0VdH%(HD$(1HHH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11Ҷ1HT$(dH+%(u_H0[f.[HtHx(HtˋD$t9Hm1fH蠙HuHcS bT$qUH0VdH%(HD$(1Ho5H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.kHtHx(HtˋD$t:H}1fHH诘HuH7aT$pfUH0VdH%(HD$(1H4H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.{HtHx(HtˋD$t:H1fHH迗HuH6+`T$pfSH0VdH%(HD$(1H3H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.苈HtHx(HtˋD$t9H1fHЖHuHc胉<_T$qUH@fnFdH%(HD$81H2Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD苇HHuϐHt$ H|$q{tD$$t$ t19u0tHEu0HǕHuHz1HDHEHH;1u;u0tˉu0HfH]@H8fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11ϱ1HT$(dH+%(H8@[HHuҐHtAHH;1uI0t G0衔HuHy1HHH;R1t@\fH8fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11述1HT$(dH+%(H8@KHHuҐHtAHH; 1uIG0t G0萓HuHtx1HfDHH;s1t@1[DATUSH@fnFdH%(HD$81H'Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$薯1HT$8dH+%(H@[]A\HHuːHt$H|$1tD$$Ld$uXHELH@H;~1u\H=-$pytLH=0&]yu)4HeHcZfDLL @HЉrZfATL%r21H$H5#t2L;ps2u}LHcs2>|LA\ATIUHHt HH5V$LHCtHmtH]A\HH]A\14H8fnFdH%(HD$(1H-H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11语1HT$(dH+%(uLH8;HHuҐu$H螐HuHu1H@Xff.H8fnFdH%(HD$(1HtH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Ϭ1HT$(dH+%(uLH8[HHuҐu$H辏HuHt1H@qXff.UH@fnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.kHHuϐH5HT$H|$*{|$HtD$$u(HEH覎HuHs1H@H WHG89w0tHw0G0G4XUH=|$H,uu]ÐHH=!utH] @HHH;+z1u!0tG0fDHHH;y1u!W0tG0D1@GUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$̩1HT$8dH+%(uhH@]@HT$H|$H5v *y|$HtHt+HH55HPt袌HuH+1艌HuTff.fUSHHdH%(HD$81H$ Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$*tHl$H=4HrtHH=b-ru請HuHc^~@HH=|rtHmS@SH0fnFdH%(HD$(1H74H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Χ1HT$(dH+%(uuH0[fD[|HHuӐt,:fH~躊HufHn (fH:HH;Gv1fH~tfH~RfSH0fnFdH%(HD$(1HH3H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Φ1HT$(dH+%(uiH0[fD[{HHuӐt$ffH~辉HufHn'DHffH~HH;Ή1tfH~Qff.SH0fnFdH%(HD$(1HY2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Υ1HT$(dH+%(uuH0[fD[zHHuӐt$WPfH~轈HufHn&@HHH;1u_PfH~ffH~PfUH@fnFdH%(HD$81Hb1Ht$HD$HGfn؉D$(fbfD$ uLHo(Ht!D$ +D$$tFH|$¤1HT$8dH+%(H@]fDKyHHuϐHt$H|$atD$$D$t_fUPf/ 7]f(f.ztHEEPH]HbH=l1HT@HEHH;|1u\fUPf/w- -7]f(f.ztEPHDf(f.f([HdAOATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@wHHufHHRxH;2~1IMtoI$H5.LPtZՅHuL$IHoHdbLN1HHP@LWc8fE1xH"DIjMfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$薡1HT$8dH+%(H@[]A\vHHuːHt$H|$#tD$$Ld$uXHELH@H;x1ulH=9-pktLH=%]ku)4HeHcvZfDLLH=!ktL븐HЉbLfATL%h2H lH,H5Nj2L&bHi2uELHi2)nLA\ATIUH蝚Ht HH5R,LH3 tHmtH]A\HH]A\!&AWAVAUATUSHfnFdH%(HD$x1H$Ht$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ 膟1HT$xdH+%(HĈ[]A\A]A^A_fDtHHufLd$@Hl$ LH)tLl$`HL(tD$4T$HD$@\$Pd$hl$`$t$p\$fI~fH~D$t$ILLLD$f.D$@$f.T$Hd$f.d$PfHnf.|$`zbu`fInf.\$hzSuQl$f.l$pzCuA\HH1L Ht$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ 1DpHH[1kpHHu1@SpHHTfLl$@Lt$ LLf%0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$Pz,~HL1LA3@Ld$ Ht$LHt$LkHt$L|VD$L$T$4T$f(HEfمHH;o1D$@L$HHT$PHt$@fH~Ő[}HfHnL|$Ll$ L5s"LLLi|$ILLLei|$HL$4uGHELH|HcHa1HyHLOfH~ILH4)\$@HfH~"Df.fWPf/w- m,]f(f.zu@HGPff(f.f,GPfDUH=$Hbu]ÐHH=_btHH=btH]UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Zg|$HtHt+HH5+HPtzHuH1zHu-Cff.fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H=*HatHH=yOauyHuHcl@HH=z_`tHH= `tHBSH0fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD{jHHuӐ)txHuHckH)HH;m1tЉ-Aff.fSH0fnFdH%(HD$(1HJH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDiHHuӐt1wHuHcjfDHHH;wb1tЉB@fSH0fnFdH%(HD$(1H'H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDhHHuӐt1wHuHcifDHHH;?`1tЉb?fSH0fnFdH%(HD$(1HPwH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fDgHHuӐt2vHuHchHHH;k1tЉ}>ff.fSH0fnFdH%(HD$(1HvH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11N1HT$(dH+%(uUH0[fDfHHuӐt1EuHuHcgfDHHhH;gx1tЉ=fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`1HT$8dH+%(u|HH]A\fDeHHuѐHt$ H|$YtD$$E1uHEHH;xd1u)tHuLf.t$ HI}1HT$XdH+%()H`]A\A]fDdHHufLd$@Ll$ LLtD$4L$HD$@T$PtXHqf(i1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukrH?Hcee4HEHXH;nV1tT$HLD$L$T$D$L$|fKrHuL1Ld't:f.AUATUH`fnFdH%(HD$X1HGHt$HD$HGfnȉD$(fbfD$ Hl$Lg(H.H|$04AHcKH|$0H|$Mt+D$ +D$$H9H|$0E1HtHD$8H9tIHD$XdH+%(H`L]A\A]@bHHSH|$H|$04HcfDHt$HcVrHt$DH&ZD$$uI$t$HH;c1uSpHt)pH|$0E1H"L%lU1I$fHT$DH[fHT$L8H鷢AUATUH`fnFdH%(HD$X1HEHt$HD$HGfnȉD$(fbfD$ Hl$Lg(H>H|$04AHc[H|$0H|$Mt+D$ +D$$HIH|$0E1HtHD$8H9tGHD$XdH+%(H`L]A\A]@`HHSH|$H|$04HcfDHt$HsTrHt$DH$ZD$$uI$t$HH;%Q1uSnHt)nH|$0E1H"L%|S1I$fHT$DHkfHT$L6HATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝊E1HD$(dH+%(H0LA\@#_HHufHHRxH;Y1IMtoI$H5LPtZUmHuLH IHoHbL51HHP@LJ8fE1lH"DIjY5fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\]HHuːHt$H|$! tD$$Ld$u`HELH@H;VK1H=RtLH=NARu-kHaHc_^Vf.LLH=:QRtLH=YRtLJfDHЉ3fATL%#S2H HEH5T2LIS2u8LHS2ULA\ATIUHmCHt HH5LHtHmtH]A\HH]A\ AWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHcN\Ll$`EutMD$0+D$4H訆H|$`E1HtHD$hH9t,BH$dH+%(WHĨL[]A\A]A^A_IcI\fDZHH6H|$ E1H|$`4Hc[H|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztgHt'gH|$`E1HL%L1I$DLHĐgHL1HmLLL:fDD1ADHH9u/Hff.fAWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1H1H|$`4AHcXLl$`EutMD$0+D$4H8H|$`E1HtHD$hH9t>H$dH+%(WHĨL[]A\A]A^A_IcI\fDWHH6H|$ E1mH|$`4HcXH|$`IkLE1`L|$@HLk ;DLHU %\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztdHt'xdH|$`E1HL%PI1I$DLHsĐ;dHL1HPmLLL@DD1ADHH9uY,H鴖ff.fAVAUATUSH`fnFdH%(HD$X1H:Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$  1HT$XdH+%(;H`[]A\A]A^THHuƐLd$ Ht$LnHtLl$@LL tHT$H5HLO|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6LuIf.E1KH[HL=딉TKHrH1LeWHLLHHHAVHOHHD1AHH9uHHL %LSmHHD1HH9uH7DHھLvDLL^YH}H}ff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ Ef1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5r!LL5|$8ItLH5CLg5|$8ItLH5$LK5|$8kH(LLH$H'5|$8GLHLHD$ 5|$8)LLLHD$L4|$8HLLEH $LD$LLL$L\$,LLLL$LLD$HL$L$4|$,L$HL$LD$ILL$LLLL$LD$H $n-qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H GH!H,1HfD8HHf.RLLHAVPS^H fAWAVAUATUSHfnFdH%(HD$x1HwHt$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P c1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LtL\$HH5!LLL\$2|$HL\$ItLH5iL2|$HL\$IhL52$LLLe2|$HL\$CLLLHD$B2|$HL\$ LLLHD$2|$HL\$L5LLHD$ L1|$HL\$HLLL1|$HL\$HL$LD$ILL$ LLLLL$(LLD$ HL$L\$1|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$;BL@*HT$?LL,1|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0rDHHR)1Hf5HHcf.HLHRLPt$ AVS H0 f.UH@fnFdH%(HD$81HNjHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R`1HT$8dH+%(uuH@]f.4HHuϐHt$ H|$(tD$$t$ u)HEHHCHuHDH:Hv fDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N_1HT$(dH+%(uMH0[fD3HHuӐu$HH(HtD$9D$t;H11o^1HT$(dH+%(uLH82HHuҐu$H^AHuHB&1H@D ff.UH0fnFdH%(HD$(1H{H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11]1HT$(dH+%(u|H0]fD2HHuӐuH|$ b[1H$dH+%(Hİ]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@d$PLLfoL$`foT$pfD$)$d$)$)$@f($f.D$@\$f.\$Hd$f.d$PzyuwD$`f.$$f.D$hzsuq$f.D$pz`u^D$xf.$zMuKV=HH6"1HD3=H{L1HHd =HuLH!jf.AUATUHdH%(H$1HgHt$ HD$(HFHD$4D$0t>H|$ RY1H$dH+%(Hİ]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@d$PLLfoL$`foT$pfD$)$d$)$)$.;f($f.D$@\$f.\$Hd$f.d$PzyuwD$`f.$$f.D$hzsuq$f.D$pz`u^D$xf.$zMuKF;HH& 1HD#;H{L1H8d:HuLHZf.UH@dH%(HD$81HJHt$HD$HFHD$$D$ t0H|$LW1HT$8dH+%(uhH@]@HT$H|$H5&|$HtHt+HH5 HPt":HuH1 :Hu}ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$bV1HT$8dH+%(HH[]DHt$H|$tHl$H=9 Hg tHH=T u+9HuHc+@HH=) tHH= tHڴaSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>U1HT$(dH+%(uZH0[fD)HHuӐ#t28HuHc*H#HH;1tЉ}ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11NT1HT$(dH+%(uUH0[fD(HHuӐt1E7HuHc)fDHHH;41tЉfSH0fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nS1HT$(dH+%(uZH0[fD'HHuӐtb6HuHc)HHH;b81tЉff.fSH0fnFdH%(HD$(1H}H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11~R1HT$(dH+%(uUH0[fD 'HHuӐt1u5HuHc((fDHHH;11tЉfATUHHfnFdH%(HD$81H}Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$Q1HT$8dH+%(u|HH]A\fD&HHuѐHt$ H|$tD$$E1uHEHH;"1uY4HuLLf.t$ HIff.fATUHHfnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$pP1HT$8dH+%(u|HH]A\fD$HHuѐHt$ H|$tD$$E1uHEHH;$1u93HuL,f.t$ HIff.fAUATUH`fnFdH%(HD$X1HzHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ NO1HT$XdH+%(H`]A\A]fD#HHufLd$@Ll$ LLtD$4L$HD$@T$PtPHD$Pf1)\$@f.D$@z|uzf.L$Hzrupf.T$Pzhuf1HJHc$?HEHXH;+1tT$HLD$L$T$D$L$@k1HuL1Lyf.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@#"HHufHHRxH;21%IMtoI$H5NLPtZU0HuLHIHoHbL1HHP@L 8fE1/H"DIjYfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$L1HT$8dH+%(H@[]A\ HHuːHt$H|$!tD$$Ld$u`HELH@H;*1H=tLH=ywu-.HaHc_!Vf.LLH=:tLH=YtLJfDHЉfAWAVAUATUSHfnFdH%(H$1H)vHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$J1H$dH+%(HĨ[]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$PLLtT$8\$@fod$Pfol$`D$$D$0fH~fI~)d$p)$uHEHH;R1LLD$.D$f.D$0fHnf.t$8z~u|fInf.|$@zoumD$Pf.D$p}D$xf.D$Xzoum$f.D$`z\uZD$hf.$zIuGJ,HH*1H+,HuL1LDr,HuLLD$LLHD$?ff.@AWAVAUATUSHfnFdH%(H$1HsHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$G1H$dH+%(HĨ[]A\A]A^A_kHHu뾐Ll$0Ld$LLtLt$PLLmtT$8\$@fod$Pfol$`D$$D$0fH~fI~)d$p)$uHEHxH;b 1LLD$)D$f.D$0fHnf.t$8z~u|fInf.|$@zoumD$Pf.D$p}D$xf.D$Xzoum$f.D$`z\uZD$hf.$zIuG)HH1H)HuL1Lrs)HuLLD$LLHD$ff.@ATL%#2H HH52Lf2uLH2iLA\ATIUH]Ht HH5LHstHmtH]A\HH]A\aAWAVAUATUSH8fnFdH%(H$(1HH$H$HGfn$fbfք$uaHo(Ht*$+$tUH$D1H$(dH+%(dH8[]A\A]A^A_+HHuÐL$L$LL@tL$LL$tH$LjL$LLOH$LHHD$*H$LH HT$|LHHT$S $$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ+%HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc$H }$HIc,HLILRLD$LH&AXZT$h\$`L$m($HuHھL>y$H*HT$L#HLL#H(L1L$L,UT$|Lff.AWAVAUATUSHxfnFdH%(HD$h1HQkHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ ?1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L>tLt$8H5¾!LL|$8ItLH5jL|$8ItLH5b$L|$8kHxjLLH$Hw|$8GLHLHD$Y|$8)LCjLLHD$L4|$8HLL H $LD$LjLL$L\$,LLLL$LLD$HL$L$ |$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!H1HfDKHHf.RLLHAVPS H fAVAUATUSHPfnFdH%(HD$H1HcHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$<1HT$HdH+%(HP[]A\A]A^[HHuƐLd$0Ll$LLvt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuE@H,fHn荼HLL$)L$fH~fHuL1L]ff.fUH0fnFdH%(HD$(1HgH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.;1HT$(dH+%(u|H0]fDHHuӐu1HT$(dH+%(u^H0]fDHHuӐt$HoX3HuH1HHH;_0tHyfUH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u^H0]fDHHuӐt$HopCHuHAHHH;1tHfSH0fnFdH%(HD$(1HQH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uuH0[fDHHuӐt$WPfH~MHufHn螝@HHH;o0u_PfH~ffH~fUH@fnFdH%(HD$81H[Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDHHuϐHt$H|$tD$$D$t?f.EPztHEEPHHuH0Hzf.HEHH;0uf.EPztEPHH4@ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$tD$$Ld$uXHELH@H;F0ulH= tLH=Ku)HeHcCZfDLLH=TtLEy븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@#HHufHHRxH;0觠IMtoI$H5LPtZUHuLHIHoHcbL1HHP@L8fE1H"DIjYfAV1AUATUSHpHNdH%(HD$h1HGAfnH%fnA)fbAtgAH Ht$0HL$8T$HfD$@HHo(HD$@+D$DH|$01YL Ht$0LL$8L$@T$DT$HHHo(Ht%D$@+D$DH|$01HT$hdH+%(Hp[]A\A]A^ÐH5#Da1DHH&DLd$0Ht$LtHt$ LHt$(LlT$(L$ HD$HDH0H6Ld$PLl$0LL薠 D$Pd$XLHl$`D$fH~fI~QQD$f.D$PzSuQfHnf.t$XzDuBfInf.|$`z5u3nH]HH]f.;HuùL1LTff.fAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH EHt$ HL$(T$8fD$0HHo(HttH]ifHVf(HH;V0ff(u4f.GXzuf.g`zuf.Whz u GXWhf.@UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5j|$HtHt+HH5HPtHuHՊ1Hu=ff.fUSHHdH%(HD$81HdHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?tHl$H=H'tHH="uHuHc@HH=~tHf4@ATUSH@fnFdH%(HD$81Hf~Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$tD$$Ld$uXHELH@H;F0ulH=tLH=!u)HeHcCZfDLLH=T}tLEe븐HЉ±fATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@#HHufHHRxH;0IMtoI$H5BLPtZUHuLHIHoHObL蔰1HHP@L8fE1H"DIjYfATL%1H HH5~1Lx1uȡLH1LA\ATIUHHt HH5<LH#ptHmtH]A\HH]A\UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fDHHuӐu$HH{HuH@cHٮfSH0fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD;HHuӐu$HHu Dcf.UH=2Hlu]ÐHH=QtHH=y>tH]acUH@dH%(HD$81HzxHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&x|$HtHt+HH5HPtRHuHE19Hu譬ff.fUSHHdH%(HD$81HwHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$诂tHl$H=HtHH=u[HuHc@HH=,wYtH_褫@UH0fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H11~1HT$(dH+%(uEH0]fD HHuӐHhHHt HUHmHPHfHuHYҪfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.+HHuϐH5VHT$H|$|$HtHXsHuHW0Hܩff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.+HHuϐHt$ H|$tt$ H!HyHuHlDATUSH@fnFdH%(HD$81HtHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\+HHuːHt$H|$~tD$$Ld$uXHELH@H;0ulH=tLH=mu)DHeHcZfDLLH=s1tLZ븐HЉrfATH0fnFdH%(HD$(1HrH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@HHufHHRxH;0\IMtoI$H5pLPtZHuL|IHoHEbLD1HHP@L臻8fE1H"DIj fATL%#1H \HH51Lƻ1uȲLH1LA\ATIUHaHt HH5jLHetHmtH]A\HH]A\w[UH= Hu]ÐHH=6tHH=ptH]qXUH@dH%(HD$81HoHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5oJ|$HtHt+HH5HPtHuHz1Huff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uFH@]@H|$HT$H5j|$Ht;HHuHy_ff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5L|$ Ht#D$ 9D$(|Vt$ H:HBHtU1HT$8dH+%(uMHH]A\H|$f.Ht$ LsuDHxYfSH@dH%(HD$81HHt$HD$HFHD$$D$ HD$t/H|$C1HT$8dH+%(uHt$HD$HFHD$$D$ t4H|$1HT$8dH+%(u~H@]A\A]@Ll$ Ld$LH58L|$ HtHt$LtLLtT$ t$HN]HuHA0HrßAUATUHPdH%(HD$H1HkHt$ HD$(HFHD$4D$0HD$t;H|$ 1HT$HdH+%(HP]A\A]Ll$Hl$ LH58H|$ItHt$HtHt$HtHt$HutHt$ HһkHt$H轻VLH誻CHLD$PDL$ DD$HL$(T$t$/XZH HӺ0HUDAUATUH@dH%(HD$81HHt$HD$HFHD$$D$ HD$t;H|$?1HT$8dH+%(H@]A\A]Ll$Hl$LH5H|$ItHH藺tHt$H&ttLHwtL$HT$L4$HH_HsTHHfDHt$ H|$衶tЋ|$ HuH0HxUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11v1HT$(dH+%(u-H0]fD3pH{I1MuHiofUH0dH%(HD$(1H%H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDHI1MuHnRfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11V1HT$(dH+%(u-H0]fDQH[I1MuHIn—fUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fD8HI1MuHm2fUH0dH%(HD$(1HH4$HD$HFHD$D$t*H1161HT$(dH+%(u-H0]fD賆H;I1MuH)m袖fUH0dH%(HD$(1H H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fD7HI1MuHlfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDkHI1MuH l肕fUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDHI1MuHykfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDC7HI1MuHjbfUH0dH%(HD$(1H H4$HD$HFHD$D$t*H11f1HT$(dH+%(u-H0]fDHkI1MuHYjғfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDSHI1MuHiBfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11F1HT$(dH+%(u-H0]fD胅HKI1MuH9i貒fUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fD胑HI1MuHh"fUH0dH%(HD$(1H%H4$HD$HFHD$D$t*H11&1HT$(dH+%(u-H0]fDàH+I1MuHh蒑fUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDC\HI1MuHgfUH0dH%(HD$(1H'H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fD#H I1MuHfrfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11v1HT$(dH+%(u-H0]fDH{I1MuHiffUH0dH%(HD$(1H+H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDHI1MuHeRfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H11V1HT$(dH+%(u-H0]fDH[I1MuHIeŽfUH0dH%(HD$(1H,H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDHI1MuHd2fUH0dH%(HD$(1HH4$HD$HFHD$D$t*H1161HT$(dH+%(u-H0]fD.H;I1MuH)d袍fUH0dH%(HD$(1H>H4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fD#HI1MuHcfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDӴHI1MuH c肌fUH0dH%(HD$(1HBH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDHI1MuHybfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDsHI1MuHabfUH0dH%(HD$(1H?H4$HD$HFHD$D$t*H11f1HT$(dH+%(u-H0]fDHkI1MuHYaҊfUH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u-H0]fDHI1MuH`BfSH0dH%(HD$(1H:H4$HD$HFHD$D$t*H11F1HT$(dH+%(u,H0[fD)LI1MuHc賉USHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$_tHl$H=LH觧tHH=gT蔧ukHuHc@H@<LjATH0fnFdH%(HD$(1HSH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@#HHufHHRxH;b0IMtoI$H5!LPtZUHuLH^IHoH&bL蔇1HHP@Lל8fE1H"DIjYfH8fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u>H(tD$9D$t=H1111HT$(dH+%(u@H8f.軯HHuА!HuH0H芆f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(tD$9D$t=H11a1HT$(dH+%(u=H8f.HHuА1)THuH80H轅ff.fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐە膼HuHj0Hff.@H8fnFdH%(HD$(1H5H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8KHHuҐ趻HuH0Hff.@SH0fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD{HHuӐt1HuHc蘭fDHHH;W0tЉ2fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD蛫HHuӐtHuHc赬HHH;0tЉMff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD諪HHuӐt_8HuHcǫDHHH;Ϟ0tЉbfUH0fnFdH%(HD$(1HްH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uVH0]fD˩HHuӐtHo03HuH&W@HHH;_0tH聀UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uVH0]fDHHuӐtHoHSHuHFV@HHH;g0tHUH0fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uKH0]fD HHuӐ諏HsHuHHx!~ff.UH@fnFdH%(HD$81HhHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐHT$H|$H5ڡ|$tT$$uHUHH;٫0uRHuH60HHH}UH@fnFdH%(HD$81HtHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f. HHuϐHT$H|$H5ʠ|$tT$$uHUHH;)0uBHuH&0HHH|H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uYH8 HHuҐHt!nHuHR0H@HH; 0t{ff.@ATUSH@fnFdH%(HD$81HFHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$v1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$uXHELH@H;60u\H=PtLH=F=u)HeHcäZfDLL-@HЉRzfATUHHdH%(HD$8HFLd$Ht$HHD$HHT$ LH5D$(HD$ D$ 軝|$ Ht9D$ 9D$(}Ht$ L躖tt$ HH"HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=&1A\OH5HO!yU1H=HV1H=1HHH08Hmt H]fDHHD$+SHD$H]U1H=^H7V1H=1HHH108Hmt H]fDHHD$RHD$H]U1H=HU1H=1HHHѫ08Hmt H]fDHHD$kRHD$H]AVH H)AUH531ATL%1ULSB1t[L]A\A]A^H-\1H}1HHk1覙HHp1HH5H7tH-1H-h1H`HH1]HH5ZH{7tH-/1yH-1HHH1HH5#H57tH-I1#L-|}0M IM9t?A}'HHtIuHH6HmuHIPM9uL-|0MIM9t?A}HHtIuHH6HmuHIPM9uL-|0Mu@A}PHHtIuHH=6Hmt&IM9uL[L]A\A]A^fHPfDHPHOzHO$AUATIUSH`HtHH5LH5u\Hz0Lk0Hc{xHHtH3HLr5HmtHL9uH[]A\A]HXOfDHmuHAOff.@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.+HHuϐHt$ H|$tD$$t$ u)HEH0HlHuH菟DH@HsfDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u|H@]f.HHuϐH5|HT$H|$ږ|$HtD$$u(HEH(THuHcDHxrff.@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEH HH(HtD$9D$t;H111HT$(dH+%(uLH8+HHuҐu$H莣HuHr0H@Okff.UH0fnFdH%(HD$(1H؇H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辿1HT$(dH+%(ucH0]fDKHHuӐu,HH諢HuHHxY{HfD;j@UH@fnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$¾1HT$8dH+%(uzH@]f.KHHuϐH5 HT$H|$ |$HtD$$u(HEH膡HuHj0H@HH~iUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辽1HT$(dH+%(ucH0]fDKHHuӐu,HH諠HuHHxYaHfD;h@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$¼1HT$8dH+%(uzH@]f.KHHuϐH5MHT$H|$ |$HtD$$u(HEH膟HuHj0H@HhgHGHG8HG0fDf.f.H1fUH=H܅u]ÐHH=2tH]@釕UH@dH%(HD$81H9Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(u=H@]@Ht$ H|$聃tы|$ HHuH.1HUSHHdH%(HD$81H.Ht$HD$HFHD$$D$ HD$t6H|$¶1HT$8dH+%(utHH[]fHt$H|$8tHl$H=HǀtHH=-贀u苙HuHc>@H`aATUSH@fnFdH%(HD$81H-Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$覵1HT$8dH+%(H@[]A\+HHuːHt$H|$7tD$$Ld$uXHELH@H;0u\H=LtLH=@,mu)DHeHcZfDLL@HЉ`fATH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@HHufHHRxH;:07IMtoI$H5 LPtZHuL6IHoHbLT_1HHP@Lt8fE1踖H"DIj_fATL%31H H\H51Lt1uLH1ـLA\ATIUH=Ht HH5LHtHmtH]A\HH]A\8UH=H|u]ÐHH=)|tH]@UH@dH%(HD$81H)Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5(z|$HtHt+HH5HPtHuH31ٔHuM]ff.fUH@dH%(HD$81H۪Ht$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uFH@]@H|$HT$H5Ӫ蚀|$HtuH#HuH3\ff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5JL|$ Ht#D$ 9D$(|Vt$ H1HT$(dH+%(uNH0]fD|HHuӐu$HXH+HuHN@ClHSfUH@fnFdH%(HD$81Hyv Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(uzH@]f.{HHuϐH5HT$H|$v|$HtD$$u(HEHHuHn0H@HqRUH@fnFdH%(HD$81Hyu Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uzH@]f.zHHuϐH5HT$H|$u|$HtD$$u(HEHHuHm0H@H(aQH8fnFdH%(HD$(1H0cH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(uLH8yHHuҐu$H.HuHm0H@SPff.UH0fnFdH%(HD$(1HxlH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(ucH0]fDxHHuӐu,HHKHuHHxy4HfDۚO@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(u|H@]f.wHHuϐH51u#HT$H|$r|$HtD$$u(HEHp$HuHcxDH(Nff.@UH@fnFdH%(HD$81HֺHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u}H@]f.vHHuϐH5t#HT$H|$q|$HtD$$u(HEHhHHuH#@HH^Mff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(u}H@]f.uHHuϐH5r#HT$H|$jp|$HtD$$u(HEHPHHuH"@HhoH>Lff.AVAUATUHHfnFdH%(HD$81H|Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$tH(HtD$9D$t;H11o1HT$(dH+%(H8@gHHuҐHtAH@H;a0uIGPt GP@vHuH$[0HfDHXH; Y0t@1>DH8fnFdH%(HD$(1H7H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(H8@fHHuҐHtAH@H;`0uIPt GP1uHuHZ0HHPH;2b0t@r=fH8fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(H8@eHHuҐHtAH H;g0uIGTt GT tHuHY0HfDH8H;n0t@1e<DH8fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(H8@dHHuҐHtAH H;f0uITt GTsHuHW0HH0H;[0t@R;fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\cHHuːHt$H|$!tD$$Ld$uXHELH@H;6`0ulH=XtLH=`#Xu)qHeHccdZfDLLH=tXtLe븐HЉ9fATL%c1H H*H51LO1uXLH.1[LA\ATIUHHt HH5ӥLHtHmtH]A\HH]A\SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDaHHuӐu$H pHubfDj8f.SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uMH0[fD`HHuӐu$H,oHuHcaD7f.UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uNH0]fD_HHuӐu$HHKnHuH> @sH6fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uNH0]fD _HHuӐu$HHkmHuH^ @H5fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螉1HT$(dH+%(uMH0[fD+^HHuӐu$HlHuHc?_D4f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11迈1HT$(dH+%(uLH8K]HHuҐu$HkHuHP0H@[ 4ff.H8fnFdH%(HD$(1H"H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11߇1HT$(dH+%(uLH8k\HHuҐu$HjHuHO0H@Cl,3f.f9wTtHwTGT9wPtHwPGP)UH= HH(HtD$9D$t;H111HT$(dH+%(uQH8THHuҐuHHH;sF0ucHuHG0Hfg+H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(uaH8SHHuҐuHH8H;?0u)_bHuHF0Hw*UH@fnFdH%(HD$81H$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B~1HT$8dH+%(u_H@]f.RHHuϐH5HT$H|$M|$HtHaHuHE0H|)ff.UH@fnFdH%(HD$81H1Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B}1HT$8dH+%(u^H@]f.QHHuϐH5} HT$H|$L|$HtHH`HuHcR}(ff.fUH@fnFdH%(HD$81H<Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B|1HT$8dH+%(uUH@]f.PHHuϐHt$ H|$Dtt$ H!_HuHcQ'fDUH@fnFdH%(HD$81H_Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R{1HT$8dH+%(uVH@]f.OHHuϐHt$ H|$Ctt$ HH)^HuH&DUH@fnFdH%(HD$81H|Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$bz1HT$8dH+%(uVH@]f.NHHuϐHt$ H|$Btt$ HsH9]HuH,%DUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ry1HT$8dH+%(u^H@]f.MHHuϐH5 HT$H|$H|$HtH(kA\HuHcN$ff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rx1HT$8dH+%(u^H@]f.LHHuϐH5 HT$H|$G|$HtHA[HuHcM#ff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rw1HT$8dH+%(u^H@]f.KHHuϐH5 HT$H|$F|$HtH訳AZHuHcL"ff.fUH@fnFdH%(HD$81HĴHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rv1HT$8dH+%(u^H@]f.JHHuϐH5 HT$H|$E|$HtHLAYHuHcK!ff.fUH@fnFdH%(HD$81HϳHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ru1HT$8dH+%(u^H@]f.IHHuϐH5\QHT$H|$D|$HtH踹AXHuHcJ ff.fUH@fnFdH%(HD$81H޲Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rt1HT$8dH+%(u^H@]f.HHHuϐH5 HT$H|$C|$HtHAWHuHcIff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$is1HT$8dH+%(uMH@]ÐGHHuؐHt$H|$tHt$HIVHuHcHDUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$yr1HT$8dH+%(uMH@]Ð GHHuؐHt$H|$tHt$HpYUHuHc HDUH@fnFdH%(HD$81H+Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$q1HT$8dH+%(uMH@]ÐFHHuؐHt$H|$tHt$HiTHuHcGDUH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$p1HT$8dH+%(uMH@]Ð+EHHuؐHt$H|$tHt$HpcySHuHc,FDUH@fnFdH%(HD$81HoHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$o1HT$8dH+%(uMH@]Ð;DHHuؐHt$H|$tHt$HRHuHcL2|$ ItLL+tT$ HLlEHpHc48e f.ATUHHfnFdH%(HD$81H:Ht$HD$HGfnȉD$(fbfD$ uRHD$Ho(Ht!D$ +D$$tKH|$a1HT$8dH+%(uvHH]A\D36HHufLd$Ht$LtHt$L)tT$Ht$H9aDHuHc7z f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11`1HT$(dH+%(uaH8+5HHuҐuHHHH;C)0u)*uCHuHY(0H H8fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(uaH8;4HHuҐuHH`H;c$0u)1}BHuHl'0HfD H8fnFdH%(HD$(1HWH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11^1HT$(dH+%(uaH8K3HHuҐuHHH;<0u)1 #AHuH|&0HfD H8fnFdH%(HD$(1HvH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11]1HT$(dH+%(uaH8[2HHuҐuHHPH;10u)1]@HuH%0HfD H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11\1HT$(dH+%(uaH8k1HHuҐuHHH;C50u)1?HuH$0HfDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11[1HT$(dH+%(uaH8{0HHuҐuHH(H;00u)>HuH#0H'H8fnFdH%(HD$(1HԚH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Z1HT$(dH+%(uaH8/HHuҐuHHH;70u)j=HuH"0H7H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Z1HT$(dH+%(uaH8.HHuҐuHH0H;K0u)1=H(HtD$9D$t;H11Y1HT$(dH+%(uaH8-HHuҐuHH H;&0u)1;HuH 0HfDWH8fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/X1HT$(dH+%(uaH8,HHuҐuHHXH;;%0u);HuH0HgH8fnFdH%(HD$(1HRH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?W1HT$(dH+%(uaH8+HHuҐuHHH;0u):HuH0HwH8fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11OV1HT$(dH+%(uaH8*HHuҐuHH@H;0u)16(9HuH 0HfDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_U1HT$(dH+%(uaH8)HHuҐuHHH;-0u)J58HuH0HATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LtKD$ 9D$(|}T$ t$H`7Hu'HD0HfDH|$T1HT$8dH+%(uAHH]A\f.(HHIDHt$ Lkn\ff.ATUHHfnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LtKD$ 9D$(|}T$ t$HՒ 6Hu'H0HfDH|$R1HT$8dH+%(uAHH]A\f.K'HHIDHt$ L+nff.ATUHHfnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LtKD$ 9D$(|}T$ t$H4Hu'H0HfDH|$Q1HT$8dH+%(uAHH]A\f. &HHIDHt$ Lnff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LCtKD$ 9D$(|}T$ t$H3Hu'H0HfDH|$DP1HT$8dH+%(uAHH]A\f.$HHIDHt$ Lnff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LtKD$ 9D$(|}T$ t$HU`2Hu'HD0HfDH|$O1HT$8dH+%(uAHH]A\f.#HHIDHt$ Lkn\ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LtKD$ 9D$(|}T$ t$H. 1Hu'H0HfDH|$M1HT$8dH+%(uAHH]A\f.K"HHIDHt$ L+nff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$LtKD$ 9D$(|}T$ t$H5/Hu'H0HfDH|$L1HT$8dH+%(uAHH]A\f. !HHIDHt$ Lnff.AVAUATUHHfnFdH%(HD$81HUHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$K1HT$8dH+%(HH]A\A]A^f. HHuŐLl$Ld$LH5L|$ItHL+tLL+tHL$H$LH3.H^H0HPDAWAVAUATUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t9H|$UJ1HT$8dH+%(HH[]A\A]A^A_L|$Lt$LH5L|$ItHLLH|$ItLHLm|$HzLLH!,H^H0HPKHH55DATUHHfnFdH%(HD$81H‰Ht$HD$HGfnȉD$(fbfD$ Ho(D$ HD$ +D$$waLd$Ht$Lt_Ht$LtND$ 9D$(|xL$ T$Ht$+Hu&H0HDH|$H1HT$8dH+%(u9HH]A\fHH9DHt$ Lsff.AWAVAUATUHPfnFdH%(HD$H1H}Ht$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4t:H|$ G1HT$HdH+%(HP]A\A]A^A_fLt$Ll$ L=#LLL|$ItLLL|$tHt$LHD$'tLL'sLD$HL$LHHT$**HKH 0H=HH$uDAWAVAUATUHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4t:H|$ 6F1HT$HdH+%(HP]A\A]A^A_fLt$Ll$ L=ΈLLL|$ItLLLi|$tHt$LHD$@&tLLsHL$HT$LHD$.4(HJH 0H<HH$DAVAUATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0uVHo(Ht!D$0+D$4tPH|$ D1HT$HdH+%(HX]A\A]A^f.KHHuŐLt$Ld$ LH5KL|$ItHL$tHt$L$zHt$L$eLLRD$H$LHLD$HL$o*'H%H 0Hff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$FC1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$uXHELH@H;6 0ulH= tLH=B[ u)%HeHcZfDLLH= tL蕡븐HЉfATH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11AE1HD$(dH+%(H0LA\@sHHufHHRxH;0IMtoI$H5SLPtZ$HuLIHoH4bL1HHP@L'8fE1H$H"DIjfAVAUATUSHPfnFdH%(HD$H1HhH4$HD$HGfnȉD$fbfD$HLw(11H/H|$ 4AHcLLl$ EurMD$+D$H6@H|$ E1HtHD$(H9tHD$HdH+%(HPL[]A\A]A^fDIcI\fDHH=H1E1rH|$ 4Hc营H|$ IrLE1gDDLHDEIUHH)HAD$D1HAoTHH9uDAt4AtH4HA9~ALLA9~ ADDLLQE~)Ic1DHH9t A9Lt!Ht'!H|$ E1HoL%0I$^DL1H#f.D1ATHH9ufHUAWAVAUATUHSHfnFdH%(H$1H~Ht$ HD$(HGfnȉD$8fbfD$0~Hm(Ld$ LpH|$@HcI萣LH\$@NHcH|$`InD$L|$`H;D$0+D$4HT$H5*L |$HD$DHLtsDLLstaD$09D$8DD$LHHHt$Ȗ# L|$`E1Hu0L%0I$"Lf.Ht$LD$09D$8Ht$Lff.AV1AUATUHXHNdH%(HD$H1HGAfnH%fnA)fbA~`Au_H gHt$ HL$(T$8fD$0HVHo(HtAD$0+D$4\H|$ h&1@E;H5gDL$1HT$HdH+%(HX]A\A]A^f.L UgHt$ LL$(L$0T$4T$8HZHo(HD$HD$HtD$0+D$4woLl$ HT$ H5hLF|$ I\D$09D$8HL$HT$E1LHwH(H/H@H|$ L%1DHHf.Ll$Ld$ LH5gL|$IHt$LiLLVHt$ LqmDD$ HL$LHT$fKHH>f.Ht$LD$09D$8Ht$Lff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtEAH5eD!1HT$XdH+%(tHh[]A\A]A^A_HdHt$0H\$8L$@T$DT$HH"Ho(HtD$@+D$Dt|H|$0H#1@HdHt$0H\$8T$HfD$@HHo(HKD$@+D$DH|$0"1!Ll$(Ld$0L5LLLQ|$(ILLL5|$(IHLLH|$(LHLHD$|$(IHL$LLH#nHlL|$(Ll$0L5BLLL|$(I?LLL|$(&Ht$LHD$X Ht$ LCLL0LL$(LD$ LHHL$HT$YHH/HHH;fHHvDU1H=~ HW1H=!1HHHQ08Hmt H]fDHHD$HD$H]U1H= H1H=1HHH/8Hmt H]fDHHD$苦HD$H]U1H=H藩1H=1HHH/8Hmt H]fDHHD$+HD$H]U1H=^H71H=1HHH1/8Hmt H]fDHHD$˥HD$H]U1H=Hר1H=1HHH/8Hmt H]fDHHD$kHD$H]AVH H bAUL-1H5L!1ATLUS"1t[L]A\A]A^H-|1L%]1HHK1HH 1HH5LtH-51/H-1H`HH1]HH5_L{tH-O1H-1HHH1HH5_L5tH-i1H-1HHH1HH5u_LtH-1-H-1HHH1HH5?_L詉tH-1HP/LHL9t7{HHtH3HLYHmuHHVL9uʐH/Ls0{HHtH3HLHmHL9uH/Ls`fDHL9t7{HHtH3HLɈHmuHHƢL9uʐ HHtHH5:^L茈Hm HHtHH5^L]HmtvH//Ls@{HHtH3HL-Hmt&HL9uL[L]A\A]A^fHfDHHfDHءBHȡH踡H訡pH蘡H舡ATIUHMHt HH5^LHCtHmtH]A\HH]A\1UH@fnFdH%(HD$81H\Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.+HHuϐH52HT$H|$|$HtD$$u(HEHfHuHJ/H@HȸUH@fnFdH%(HD$81H[Ht$HD$HGfnȉD$(fbfD$ Ho(D$ Ht`T$ D$$)w>;T$({HEHHu%H/HH|$1G1HT$8dH+%(uUH@]HH_DHt$ H|$tD$$t$ jHjff.UH@fnFdH%(HD$81HZHt$HD$HGfnȉD$(fbfD$ Ho(D$ Ht`T$ D$$)w>;T$({HEHaHu%HE/HH|$11HT$8dH+%(uUH@]HH_DHt$ H|$qtD$$t$ jH jKff.UH@fnFdH%(HD$81HTHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$ 1HT$8dH+%(uiH@]ÐHHuؐHt$H|$!tċD$$Ht$u(HEHHuH/H@H`9fUH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(urH@]f.HHuϐHt$ H|$qtD$$t$ u)HEHHuH/HDHN)fUH@fnFdH%(HD$81H)Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.{HHuϐH59-HT$H|$:|$HtD$$u(HEHHuH/H@HuUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.kHHuϐH5),HT$H|$*|$HtD$$u(HEHHuH/H@HXH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8kHHuҐu$HHuH/H@,f.ff.ǭ]f.1@Qf.1Qf.1-f.1=f.1 f.1]f.1@UH=SHH(HtD$9D$t;H111HT$(dH+%(u9H8[HHuҐHuH/H/ff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuH/H_ff.@SH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u7H0[fDHHuӐM$Hu7 萪SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u7H0[fDHHuӐ[IdHuw ЩSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fD;HHuӐkHuHcWUH0fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fD{HHuӐHHuH~Off.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐ[eHHuH~ff.@UH0fnFdH%(HD$(1HёH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u8H0]fDHHuӐ諷HCHuH6}详ff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u8H0]fD HHuӐHsHuHf|ߥff.@SH0fnFdH%(HD$(1HVH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(utHT$H5L6|$HrHEHt$HHRH/HDT$ f.ATUHHVdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uHHo(HttjH|$1HT$8dH+%(HH]A\[HtHh(HtNjD$$~H|$g+1Ld$Ht$LtHT$H5VL|$HrHEHt$HaHRHA/HDÚT$ f.ATUSH@fnFdH%(HD$81HeHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$v1HT$8dH+%(H@[]A\HHuːHt$H|$ptD$$Ld$uXHELH@H;/ulH=!PtLH==u)HeHcZfDLLH=dtLL븐HЉBfATH0fnFdH%(HD$(1H|dH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;:/IMtoI$H5i!LPtZHuLnIHoHd7bL1HHP@LW8fE1xH"DIjٗfATUHHdH%(HD$8HFLd$Ht$HKHD$HHT$ LH5D$(HD$ D$ ;|$ Ht9D$ 9D$(}Ht$ L:tt$ HHHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=F1A\H5| H(m衖U1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt<H5j1HUdH+%(z He[A\A]A^A_]H }jH0H8Hfօ@HH0Mp(1HHRH}4AHcqLeE$MDDE+@HH}1HUH9HH(H@H iH0H8Hfօ@HH0Mp(1HHQH}4AHc艾LeEuPMDue@H%DIcI@IcIH$Hl$L(IH H0&fDLIHH0PH}4Hc蒽H}1IgL1]LPHLq-HHH5SHHH HH(abHHHH HpHHH"qzHDLq`XP`xpmE~^ID$H9AEDH1HfA$$HH9uDHAt AAPILLLATL(H H^If.P_ f.Xf.`HDf.pf.xf.]E~;HIc1 HH9t$Af.ztHZHLHcLkH}ULPHLn%HHH5KHHHH5;$HHH HH(+_HHHH֬nHpHHHmDHDLm*XP`xp]E~aID$H9 AEDH1HfA  HH9uDHAt AILATL(LL HHf.PIXZf.Xf.`HEf.pf.xf.}E~0HHHa/8Hmt H]fDHHD$YHD$H]AV1H!H50AUATL%?0ULSU0t [L]A\A]A^jH-0L50HH0>HH0;HH5jLY?t H-m0tcH/Lk0{XHHtH3HL"?Hmt#HL9uLʠ[L]A\A]A^fDHYfDHXff.ATIUHmHt HH5c!LH>tHmtH]A\HH]A\XUH@fnFdH%(HD$81HQHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.苦HHuϐHt$ H|$qtD$$t$ u)HEH0H̴HuHDH!H&}fDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.{HHuϐHt$ H|$atD$$t$ u)HEH H輳HuHRDH=H|fDAU1ATUHpHNdH%(HD$h1HGAfnH%fnA)fbAtBAH5fD1HT$hdH+%(Hp]A\A]fL fHt$LL$L$ T$$T$(HJHo(HD$ +D$$|H|$x1zH .fHt$HL$T$(fD$ HHo(D$Ht%D$ +D$$H|$1fLd$0Ll$LLFhtHD$@foT$0T$$HD$`HE)T$P1LHD$P9D$0D$T9D$4D$89D$XD$<9D$\D$@9D$`D$d9D$D薱HDHv/HVDLd$0Ll$LL~g Ht$Ly|HD$@fo\$0T$HD$`D$$)\$PHELHD$P9D$0u1D$T9D$4u'D$X9D$8uD$\9D$H(HtD$9D$t;H111HT$(dH+%(uLH8{HHuҐu$HީHuHŽ/H@H(HtD$9D$t;H111HT$(dH+%(uLH8蛚HHuҐu$HHuH/H@sp\qff.H8fnFdH%(HD$(1HۍH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(uLH8軙HHuҐu$HHuH/H@u|pff.UH0fnFdH%(HD$(1HFH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(ucH0]fDۘHHuӐu,HH;HuHHxKHfD˺o@UHAWAVAUATSHfnFdH%(HE1HZH0H8HGfnȉHfbfօ@H0Lo(1HH+H}4AHc蟘LuEuvM@+DHH}E1HtHEH9tx~HEdH+%(tHeL[A\A]A^A_]IcIKHH-H0E1++H}4HcڗH}IpLE1eLPHL%L;HHH5裑H HH lHH(<HHHH\HpHHHrKHDLXKnXP`xp]E~_IFH9<AD$.DH1HfAHH9uDHAt AËD(H IEHLLLLAVHf.PIXZf.Xf.`)Hgf.pf.xf.eE~?HIc1 @HH9t$Af.ztH蔢H膢H[LuAH}INdH-HL1uW;HcHHEWAHLLLLHAVm^HD1AHH9uHH]}HDLViHAWAVAUATUH@fnFdH%(HD$81HUHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$趽1HT$8dH+%(H@]A\A]A^A_fLl$Ht$LtL|$L5fLLL|$ItLLL،|$HtD$$Ht$uQLELHAKH\H+/HNf諑HH4f.LHe~hff.UH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uzH@]f.ːHHuϐH5HT$H|$芋|$HtD$$u(HEHHuH/H@HXRagAUATUHfnFdH%(H$1HRHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$(1H$dH+%(PHĠ]A\A]f諏HHuɐLd$Ht$L^tLl$0LLDtfoT$0fo\$@fod$PD$$Ht$)T$`)\$p)$HELHD$0f.D$`D$hf.D$8zvutD$@f.D$pzfudD$Hf.D$xzVuTD$Pf.$zCuAD$Xf.$z0u.9HH/HLHid HuȹLL!Rjef.AUI1ATUH`H~dH%(HD$X1I@fnljH%fn)fbtBH5EPD1HT$XdH+%(H`]A\A]@H=PHt$0H|$8T$HfD$@HIh(Ht#H|$0ָfD1@H=OHt$0H|$8T$HfD$@HIh(Ht˃ H|$0~15H eOHt$HL$T$(fD$ HIh(HoD$ +D$$H|$1L踌H/Hh(H"L$Du4L$@FL舌HHh(HD$DH|$01cDLHIH@1CDLd$Ht$LHt$L Ht$ LlT$$HEL$ T$t$HxH;/u1,H#H9Ld$0L%H5RLHǾs HH5ƌ#H?HLHH5HHA`HH5H5SLsHH5k#dL-mHLvL2;HLHrLܹH1=3L1fDLd$0Ht$LfHT$ H5E $LZ|$ HHEHt$H՘HH}/HJ@Ht$H|$0HEHHt$pH臘H[17Ld$0L$H5L.HǾsa HH5#H=HLHH5HH^HH5H5LHH5#L-HLtLtN9HLH@HH=hutHH=vutHH=6"cutH' Vff.ATUSH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f1HT$8dH+%(H@[]A\~HHuːHt$H|$q,tD$$Ld$u`HELH@H;fm/H=w@UH@fnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$貒1HT$8dH+%(uWH@]f.;gHHuϐHt$H|$rtHt$HpHuHuHi=@UH@fnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$‘1HT$8dH+%(uWH@]f.KfHHuϐHt$H|$rtHt$H=HtHuHh=@UH@fnFdH%(HD$81H-kHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Ґ1HT$8dH+%(uWH@]f.[eHHuϐHt$H|$qtHt$HHsHuHg<@UHPfnFdH%(HD$H1HLjHt$ HD$(HGfnȉD$8fbfD$0utHD$Ho(HtsD$0+D$4tmH|$ ُ1H|$HtH/tHT$HdH+%(u{HP]ÐHD$HD$CdHH{1H5x"HT$H|$ JHHtH:HrHpHfe:ATUHHfnFdH%(HD$81H5iHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$谎1HT$8dH+%(umHH]A\fD;cHHuѐLd$Ht$LWtHt$LntHT$t$HBHpqHuHe9ff.ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11譍E1HD$(dH+%(H0LA\@3bHHufHHRxH;f/';IMtoI$H5fLPtZepHuLXIHoHbL81HHP@LM8fE1pH"DIji8fATL%01HfH50L+N0umLHӭ0.ZLA\ATIUH Ht HH5eLH3tHmtH]A\HH]A\!9UH=yeH1HT$(dH+%(u7H0[fD[HHuӐ 4jHuG2UHPfnFdH%(HD$H1HWDHt$ HD$(HGfnȉD$8fbfD$0uH(HtD$9D$t;H11}1HT$(dH+%(u9H8kRHHuҐ+`HuHE/H?)ff.@H8fnFdH%(HD$(1HEH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11}1HT$(dH+%(u9H8QHHuҐ+``HuHD/Ho(ff.@H8fnFdH%(HD$(1HDH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?|1HT$(dH+%(u9H8PHHuҐ[6_HuHD/H'ff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n{1HT$(dH+%(uVH0]fDOHHuӐtHoXc^HuHR@HHH;w?/tH&ATUHHfnFdH%(HD$81HCgHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$z1HT$8dH+%(ukHH]A\fD OHHuѐLd$HLZtHt$LZtHT$H4$HzHB]HuHeQ%ff.AVAUATUHHfnFdH%(HD$81H6fHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$ly1HT$8dH+%(HH]A\A]A^f.MHHuŐLt$Ll$LH5l!LH|$ItLLYtHT$HL\HoHcNdy$fATUHXfnFdH%(HD$H1HdHt$ HD$(HGfnȉD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ @x1HT$HdH+%(HX]A\fLHHuѐLd$ Ht$L~XtHt$LmXtHt$L\XtHL$HT$HHt$!ZHsH?/HeN#ff.ATUHHfnFdH%(HD$81HcHt$HD$HGfnȉD$(fbfD$ Ho(D$HtUD$ +D$$weLd$Ht$LWt/D$ 9D$(T$Ht$H ZHt\@1HT$8dH+%(umHH]A\fDH|$vf.;KHHIDHc`LfDHt$L ?b!ff.AVAUATUHHfnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$u1HT$8dH+%(HH]A\A]A^f.;JHHuŐILd$LLUtLt$LLUtHLL+HoXHtBeXHt [XHfHzL[DHT$L@H$1L ATUHfnFdH%(H$1HaHt$ HD$(HGfnȉD$8fbfD$0Lg(fHD$)D$@)D$P)D$`)D$p)$Mt8D$0+D$4tqH|$ E1*tHD$HHt H|$@H$dH+%(HĨL]A\ÐHE1HH\f.Hl$ Ht$H>TtbHt$H-TtQHT$@Ht$H't;HL$HT$LHt$|+VHuL%;/HD$HI$7@HD$HE1&fDATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$r1HT$8dH+%(H@[]A\;GHHuːHt$H|$tD$$Ld$uXHELH@H;H/u\H=^HHuӐt1EMHuHc?fDHHH;./tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11ni1HT$(dH+%(uUH0[fD=HHuӐt1eLHuHc?fDHHH;?H/tЉfSH0fnFdH%(HD$(1HړH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11h1HT$(dH+%(uUH0[fD=HHuӐt1KHuHc8>fDHHH;?H/tЉfATUHHfnFdH%(HD$81HܓHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$g1HT$8dH+%(u|HH]A\fD+Ht HH5_LHtHmtH]A\HH]A\qAWAVAUATUHSHfnFdH%(H$1H!Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@LH$4AHc:7H$H$Et IcHH$LM4H$AHc6HD$L$Et IcIHD$H,D$P+D$TL9aL$E1MtH$I9tLH$HtH$H9tH$dH+%(vHL[]A\A]A^A_fk5HHf.Ht$8LC)RHD$`LHHD$a0DHLKHt$ xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創J0H8<0Hf.0f.8f.@/HyE~LHIc1HH9Af.zt䉝/H{/HHc&"LuIf.E1C/H[HLQ=딉/HrH1LWHLLHHHAVHHHD1AHH9uHHL%Lc7mHHD1HH9uH7DHھL&DLLYTHcHcff.AWAVAUATUSHxfnFdH%(HD$h1HuHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ I1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5"LL3|$8ItLH5tL|$8ItLH5‘"L|$8kHtLLH$H|$8GLHLHD$|$8)LtLLHD$L|$8HLLk)H $LD$LgtLL$L\$,LLLL$LLD$HL$L$8|$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H O+H!H//HfDHHf.RLLHAVPS= H rfAWAVAUATUSHfnFdH%(HD$x1H'sHt$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 2G1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LtL\$HH5RLLL\$^|$HL\$ItLH5rL=|$HL\$IhL5"LLL|$HL\$CLLLHD$|$HL\$ LLLHD$|$HL\$L5qLLHD$ L|$HL\$HLLL|$HL\$HL$LD$ILL$ LWqLLLL$(LLD$ HL$L\$9|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$%Lp*HT$?LL|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0"(HH /Hf{HHcf.HLHRLPt$ AVSeH0:f.AVAUATUSH`fnFdH%(HD$X1H*pHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ C1HT$XdH+%(;H`[]A\A]A^{HHuƐLd$ Ht$L^ tLl$@LLtHT$H5} L |$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6,&HHcfDHL% D$%HuLL UD1f1f1f1f1f1f'+UH=V?Hl u]ÐHH= Q tHH=> tH]AWAVAUATUSHdH%(H$1H]GHt$HD$HFHD$$D$ D$tDH|$hA1H$dH+%(H[]A\A]A^A_DLd$@Hl$LHntLl$`HLUtL$HL9yL|$4HL\Ht$HGH$HH'DD$ILLH$LLfo$H$)$t$9$un$9$u^$9$uN$9$u>$9$u.$9$u#H~H/Hp#HuعHھHW$`AWAVAUATUHdH%(H$1HYEHt$HD$HFHD$$D$ D$tEH|$I?1H$dH+%(wH]A\A]A^A_Ld$@Hl$LHNtLl$`HL5tLt$4HL{Ht$HfL$HLFL$MLLH$Lfo$H$)$X5$9$un$9$u^$9$uN$9$u>$9$u.$9$u#!HH/H!HuعLH["d@AWAVAUATUSHfnFdH%(H$1HeCHt$ HD$(HGfnȉD$8fbfD$0u]H_(Ht!D$0+D$4tWH|$ #=1H$dH+%(H[]A\A]A^A_HHu뾐Ld$`Hl$ LHtL$HLtLt$@HLfL|$PHLIHD$pfoT$`MLfnd$DLLHH$H$fo$fnl$@)$H$D$Hfnt$Tfn|$P)$D$D$Xf~d$D$f~l$f~t$f~|$ l$9D$`3$9D$d"$9D$h$9D$l$9D$p$9D$t$9$8$9$$$9$$9$$9$$9$D$9D$@D$9D$DD$9D$HD$ 9D$PuWD$9D$TuMD$9D$XuCHH/HwHL1HHuLH}HpLHVUHLHff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$91HT$8dH+%(uhH@]@HT$H|$H5F|$HtHt+HH5?HPtrHuHe1YHuff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$81HT$8dH+%(utHH[]fHt$H|$ϺtHl$H=?HtHH=wu{HuHc.@HPSH0fnFdH%(HD$(1H=H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1171HT$(dH+%(u7H0[fD; HHuӐK)HuBUH0fnFdH%(HD$(1H?=H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1161HT$(dH+%(u^H0]fD{ HHuӐt$HopHuHaHHH;W/tH)fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$51HT$8dH+%(uUH@]f.{ HHuϐHt$ H|$att$ H*HuHc} 6fDATUHHfnFdH%(HD$81Hr;Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$51HT$8dH+%(ukHH]A\fD HHuѐLd$Ht$LntHt$ L]tT$ t$HٮHuHcu .ff.ATUHHfnFdH%(HD$81Hq:Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$31HT$8dH+%(ukHH]A\fD{HHuѐLd$Ht$L^tHt$ LMtT$ t$H2HuHce ff.ATUHHfnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$21HT$8dH+%(ukHH]A\fDkHHuѐLd$Ht$LNtHt$ L=tT$ t$HyHuHcUff.ATUHHfnFdH%(HD$81H8Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$11HT$8dH+%(ukHH]A\fD[HHuѐLd$Ht$L>tHt$ L-tT$ t$HYHuHcEff.ATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$01HT$8dH+%(H@[]A\;HHuːHt$H|$tD$$Ld$uXHELH@H;.u\H=6tLH=P}u)THeHcZfDLL@HЉfATH0fnFdH%(HD$(1H̦H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11m/E1HD$(dH+%(H0LA\@HHufHHRxH; .IMtoI$H55LPtZ%HuLIHoHybLd1HHP@L8fE1H"DIj)fAWAVAUATUSHfnFdH%(H$1H4Ht$ HD$(HGfnȉD$8fbfD$0 Ho(Ht!D$0+D$4tCH|$ -1H$dH+%(2H[]A\A]A^A_@Ld$@Lt$ LLtL$LLtH\$L=XLHL|$rHLLHD$|$IQHD$PHL$LLfoT$@Hfo$HD$pH$)T$`H$)$D$`9D$@D$d9D$DD$h9D$HD$l9D$LD$p9D$PD$t9D$T$9$$9$$9$$9$$9$u{$9$ukNH6H..H(DHH f. H?L1L`(HuLL9q?ff.@AWAVAUATUSHfnFdH%(H$1H1Ht$0HD$8HGfnȉD$HfbfD$@iHo(Ht!D$@+D$DtCH|$0*1H$dH+%(H[]A\A]A^A_@Ld$PLt$0LLtL$LLtL|$/HULLH|$/rL!LLHD$L|$/MLHLHD$|$/L!(LLLHD$|$/HHD$`HL$LHfoT$PLD$HH$H$fo$)T$xLL$ H$)$RL+iXZD$P9D$pD$t9D$TD$x9D$XD$|9D$\$9D$`$9D$d$9$$9$$9$$9$$9$uw$9$ug HH.H[HHf. HCL1L , HuLL uff.@AWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0u]L(D$Mt!D$0+D$4tRH|$ '1H$dH+%(mH[]A\A]A^A_HHuÐLd$PHl$ LHtL$HLztLt$@HLakHt$H\VHD$`LLLfoT$Pfnd$DLH$H$DD$\$@)T$pfo$H$D$Hf~d$)$D$ +LH蓐tHmtH]A\HH]A\遪HGp7UH=*Hu]ÐHH=DqtH]4@7UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$#1HT$8dH+%(uhH@]@HT$H|$H5V |$HtHt+HH5;HPtHuHu1iHuff.fHGI~H)ǃuHH=7\0LHH5 ` 1HÐAU1IATUH@fnFdH%(HD$8HG~H%fn)fbueHFHt$HT$L$(fD$ HHD$Ih(Ht;D$ +D$$H|$""1fDH5EF 1HT$8dH+%(H@]A\A]@HD$8dH+%(H@HH=FZ0L]A\A]ifLXIHCf.Ld$Ht$LΣjLl$LLRHt$HLHvHtlH'H[T$L西ff.USHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$ 1HT$8dH+%(utHH[]fHt$H|$迢tHl$H=8HtHH=gukHuHc@H@SH0fnFdH%(HD$(1Hl0H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u3H0[fD+HHuӐX4HuHcK@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8kHHuҐ{HuH.H?ff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuH.Hoff.@SH0fnFdH%(HD$(1HAH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u7H0[fDHHuӐ蛽4HuHcUH0fnFdH%(HD$(1H&AH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u8H0]fD HHuӐkVHsHuHff.@UH@fnFdH%(HD$81Hh@Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.+HHuϐHt$H|$tHt$H]{HuH_.H@UH@fnFdH%(HD$81Ht'Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.;HHuϐH52HT$H|$|$HtH舖HuHg.Hff.UH@fnFdH%(HD$81H>Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.;HHuϐHt$ H|$!tt$ HHuHp.HDUH@fnFdH%(HD$81H)Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.KHHuϐHt$ H|$1tt$ HHHuH茚DUH@fnFdH%(HD$81H_<Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.[HHuϐHt$ H|$Att$ HaHHuH蜙DUH@fnFdH%(HD$81H'Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.kHHuϐH5HT$H|$*|$HtHhTHuHcdff.fUH@fnFdH%(HD$81H:Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uSH@]ÐkHHuؐHt$H|$tHt$HHuH.Hff.@UH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uPH@]ÐkHHuؐHt$H|$tHt$1HHuH.H"fUH@fnFdH%(HD$81H%Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uSH@]Ð{HHuؐHt$H|$tHt$HHT$ۯHHuH趕/ff.@UH@fnFdH%(HD$81H7Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uSH@]Ð{HHuؐHt$H|$tHt$HHT$;HHuH趔/ff.@UH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uYH@]Ð{HHuؐHt$H|$tHt$HHT$19H@HuHcp)fAVAUATUHHfnFdH%(HD$81H5Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$tHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.+HHuϐH5HT$H|$|$HtD$$u(HEHfHuHJ.H@HHUH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(urH@]f.HHuϐHt$ H|$tD$$t$ u)HEH_HuHC.HDHP蹦fUH@fnFdH%(HD$81H 8Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$y1HT$8dH+%(uiH@]Ð HHuؐHt$H|$|tċD$$Ht$u(HEHNHuH2.H@H{詥fH8fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8 HHuҐu$HnHuHR.H@C̤f.fHGH'UH=dH,u]ÐHH=otH]W@UH@dH%(HD$81HZoHt$HD$HFHD$$D$ t0H|$\1HT$8dH+%(uhH@]@HT$H|$H5o|$HtHt+HH5նHPt2HuH%z1Hu荣ff.fHGI~H)ǃuHH=g80LOHH5C1HÐUSHHdH%(HD$81HdnHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(utHH[]fHt$H|$?ytHl$H=H'tHH=muHuHc@HUGSH0fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐ苂HuHc耡SH0VdH%(HD$(1H&BH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11b1HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H01fH0HuHc蜠T$qSH0VdH%(HD$(1HBAH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11r1HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H 01fH@HuHc謟T$qSH0VdH%(HD$(1HZ@H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f. HtHx(HtˋD$t9H/1fHPHuHc輞T$qSH0VdH%(HD$(1Hw?H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H-.1fH`HuHc̝T$qSH0VdH%(HD$(1H>H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.+HtHx(HtˋD$t9H=-1fHpHuHc#ܜT$qUH0VdH%(HD$(1H=H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.;HtHx(HtˋD$t:HM,1fHHHuHT$pfSH0VdH%(HD$(1H<H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.KHtHx(HtˋD$t9H]+1fHHuHcCT$qSH0VdH%(HD$(1H;H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.[HtHx(HtˋD$t9Hm*1fHHuHcS T$qUH0VdH%(HD$(1H]H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.kHtHx(HtˋD$t:H})1fHHHuHoT$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.{HtHx(HtˋD$t9H(1fHHuHcs,T$qUH@VdH%(HD$81H)9Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(upH@]HtHh(HtՋD$$tTH|$'1Ht$ H|$QtHEHt$ HuHch!T$ WUH@VdH%(HD$81H38Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(u}H@]{HtHh(HtՋD$$taH|$&1H5HT$H|$|$HtHEHHuH.HsT$ Jff.UH@VdH%(HD$81H$7Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(utH@][HtHh(HtՋD$$tXH|$k%1Ht$H|$tHEHHt$HuHc7|T$ S@UH@VdH%(HD$81H%6Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@CHtHh(Ht͋D$$tdH|$S$1H55HT$H|$|$HtHEHdHsHchɓT$ ?UH@fnFdH%(HD$81H)5Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.HHuϐH54HT$H|$ڶ|$HtH訡aHuHc͒ff.fUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(H0]fD+HtHx(HtˋD$tjH="1fHHoHuHt%HH5Ԗ"HuyfH).H`諑T$@fUH@VdH%(HD$81H3Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$x1HT$8dH+%(H@]@HtHh(Ht͋D$$tdH|$!1H5HT$H|$袴|$HtHEH$HsHcӺh艐T$ ?UH@fnFdH%(HD$81H 2Ht$HD$HGfnȉD$(fbfD$ u|Ho(D$ Ht;D$$uSD$ wr;D$(HEHkHf1HT$8dH+%(u{H@]H|$@諸HHsDH|$11Ht$ H|$qtt$ e@Hc蘹uNff.UH@VdH%(HD$81He3Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@裷HtHh(Ht͋D$$~H|$1Ht$ H|$itHEHt$ HH{HtHH5-Hq\fH.HJ T$ !fUH@VdH%(HD$81H1Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@cHtHh(Ht͋D$$~H|$o1Ht$ H|$)tHEHt$ HH{HtHH5Hp\fHI.HJˌT$ !fAVAUATUHHVdH%(HD$81H\.Ht$HD$HGfnfnȉD$(fbfD$ uDHo(HttfH|$1HT$8dH+%(HH]A\A]A^HtHh(HtˋD$$H|$'1Lt$Ll$LH5L贯|$ItLH5 L蘯|$HhHMLH HJH.H$$$\$0d$8l$HE~UIEH9AD$D1HfATHH9uDAt ADILL$LLLD$HL$L$$$t$(|$ \$@0d$8Af.$ l$0f.$\$Hf.$E~4Ic1fDHH9tADf.zt肥HtHt$ f.$zXuV|$(f.$zEuCd$@f.$z2u0-Htn#HIcҗH$IHuHT$HZڤHL1HYD$XHǭzT$TH_!D1ADHH9uDLHYlHff.fAWAVAUATUSHHVdH%(H$81HRAH$H$HGfnfn؉$fbfք$uWHo(Ht }H$f1H$8dH+%(?HH[]A\A]A^A_HtHh(Ht$ H$1DL$L$LLIrL$LLIRH$L::L$LLm:H$LHHD$XIH$ LH8IH$LHHT$؇$HHEL$IL$$T$pH$f($d$P$8$l$`$t$h$0|$($(fL$@)L$xd$ l$Ht$X|$0T$8HT$RLLD$$`f($AXZf.$NHd$8f.$3-T$hf.$l$Xf.$mgt$Hf.$RL|$`f.$71ƠHdT$f.$d$ f.$l$@f.$t$(f.$ zvut|$Pf.$(zcuaL$0f.$0zPuN.H HIcϒvHL1LUHuHھLT迟HJHT$LT.蕟HLLT$LZ4$Lcg$wff.fATL%/1HzH5/Lk} /uLHS/nLA\ATIUH荴Ht HH5BzLHs'tHmtH]A\HH]A\aAAWAVAUATUSHhfnFdH%(HD$X1HHt$0HD$8HGfnȉD$HfbfD$@Ho(Ht!D$@+D$D t9H|$0 ź1HT$XdH+%(Hh[]A\A]A^A_Lt$,L|$0LH55L|$,ItLH5GL|$,ItLLtHT$+H5 LHT$Ɖ|$+HT$aH5LHD$袉|$+HT$=H5J"LHD$~|$+HT$HH5SL\|$+HT$H5:IL:|$+HT$LD$LL$H5LLL$LD$HD$|$+LD$LL$LT$HD$DL$,uYHERLLARHAVSH WHYH7.HKfD賍HH-fRLLHARAVS\H dAWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ E1HT$hdH+%(Hx[]A\A]A^A_Lt$?L|$@LH5L蔇|$?ItLH5Lx|$?ItLH5K L\|$?|LH5LHD$:|$?ZLH5!LHD$|$?8H5LLHD$|$?H5H LLֆ|$?LH5LHD$ 贆|$?LH5SLHD$(蒆|$?HL$LD$LL$HLT$ L\$(D$TucHERLLASHARSH HcH~.HU;HH5f.RLLHASARSLH bSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11޵1HT$(dH+%(uXH0[fDkHHuӐu,HfH~ɘHufHn6.fH~aff.@AUATUHHVdH%(H$1HGfnAH%HfnfbA)AuRAHeH4$HT$D$fD$HHo(Ht2A9H跴1H5HeD衲1H$dH+%(HĐ]A\A]LeH4$LT$T$D$D$HH(HtD$9D$t@H1141ۈHtHh(HxD$H_HHxHH=H HH5tdFH>Cf[HHLf.Ld$ ILLh=foT$ HELHfo\$0fod$@)T$P)\$`)d$ppD$ f.D$PD$Xf.D$(zyuwD$0f.D$`ziugD$hf.D$8zYuWD$@f.D$pzIuGD$Hf.D$xz9u7H(Hz.Hf H˕HuL1LJ-^DL$AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$8L,tLt$4H5w6LL#|$4ItLH5(L|$4ItLH5:L|$4kLLHD$yHL$NHT$3H5LHL$HT$襀|$3HT$ H5M!LHD$聀|$3HT$HLVLL\|$3HT$HL$LL$IH54LHT$LL$ HL$!|$3HT$LHD$LL|$3HT$LnLLHD$(|$3HT$HL$LL$ LT$(?H5LLT$ LL$HL$HD$(|$3HL$LL$LT$ HL\$(D$TDD$4D$8u\HERLLASHARt$ AVSXH0ԒHHw.H3HHhfRLLHASARt$ AVSH0Zff.AWAVAUATUSHfnFdH%(H$1HHt$`HD$hHGfnȉD$xfbfD$pHo(Ht!D$p+D$t tCH|$` 诮1H$dH+%(HĘ[]A\A]A^A_@Lt$_L|$`LH5hL}|$_ItLH5)3L}|$_ItLH5L}|$_rLH5LHD$}|$_PLH5YLHD$x}|$_HL$LD$$H!LLLD$HHL$HD$ ?}|$_HL$LD$LL$ HD$LHLLL$(LD$ HL$}|$_HD$HLL||$_HL$LD$ LL$(HLLLLL$0LLD$(HL$ ||$_HL$ LD$(LL$0HD$FLH5wLLL$8LD$0HL$(d||$_LGHD$ LLL?||$_L"LLLHD$@||$_LH5LHD$H{|$_HL$(LD$0LL$8HLT$@L\$HD$tuiHERLLASHARt$8t$8St$@t$@PH@7HOHt.HAfD蓀HH#fRLLHASARt$8t$8St$@t$@>H@QWUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(u|H@]f.HHuϐH5HT$H|$jz|$HtD$$u(HEHHuHc藀DH?Vf.DGXUH=(iHtu]ÐHH=d!ttH]T @yAVAUATUSH`fnFdH%(HD$X1HIHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HYH|$04AHcvLl$0EulMD$ +D$$H`H|$0E1HtHD$8H9tdHD$XdH+%(H`L[]A\A]A^IcI\fD}HH>H|$E1H|$04HcH|$0IsLE1hHt$HcqKDLHA5Ht$ H8q EIUHH)HAD$D1HfAoTHH9uDAt4AtH4HA9~ALLA9~ ADDL$ t$LLEAE~AIc1f.HH9t' A9Lt؊HuDLH0車H"Icj}H|$0IDD1ATHH9u^RHRfUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ܦ1HT$8dH+%(uhH@]@HT$H|$H5:v|$HtHt+HH5:HPt貉HuH(1虉Hu Rff.fUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$(tHl$H=XHotHH=ou軈HuHcn{@HQH8fnFdH%(HD$(1HmH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8{yHHuҐHuHl.HOPff.@H8fnFdH%(HD$(1H\EH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8xHHuҐ{HuHk.HOff.@SH0fnFdH%(HD$(1HCH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u7H0[fDwHHuӐDHuHcxNSH0fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莢1HT$(dH+%(u7H0[fDwHHuӐ 脅HuHc7xMSH0fnFdH%(HD$(1H`H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Ρ1HT$(dH+%(u7H0[fD[vHHuӐkĄHuHcww0MSH0fnFdH%(HD$(1HkBH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDuHHuӐsHuHcvpLSH0fnFdH%(HD$(1H@H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u7H0[fDtHHuӐkDHuHcuKSH0fnFdH%(HD$(1H@H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莟1HT$(dH+%(uUH0[fDtHHuӐt_@脂HuHc7uDHHH;?q.tЉJfSH0fnFdH%(HD$(1HL?H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11讞1HT$(dH+%(uUH0[fD;sHHuӐt_D褁HuHcWtDHHH;c.tЉIfSH0fnFdH%(HD$(1HS?H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Ν1HT$(dH+%(uUH0[fD[rHHuӐt_HĀHuHcwsDHHH;Wy.tЉIfUH0fnFdH%(HD$(1HeH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uKH0]fD{qHHuӐmHHuHHxr胓yHuHclfBfDUH@fnFdH%(HD$81H?Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uVH@]f.jHHuϐHt$ H|$^tt$ HA8H yHuHuADUH@fnFdH%(HD$81HP6Ht$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$91HT$8dH+%(uMH@]ÐiHHuؐHt$H|$QtHt$HP xHuHcj@DATUHHfnFdH%(HD$81Hl5Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$P1HT$8dH+%(uxHH]A\fDhHHuѐLd$Ht$ L\tHT$ H5(Lc|$ Htt$ HPS wHuH[.Hxq?ATUHHfnFdH%(HD$81H/lHt$HD$HGfnȉD$(fbfD$ Ho(D$ HtqD$ +D$$wMLd$Ht$L[tKD$ 9D$(|}T$ t$HU@vHu'H$[.HfDH|$1HT$8dH+%(uAHH]A\f.kgHHIDHt$ LK[n<>ff.ATUSH@fnFdH%(HD$81Hf Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{fHHuːHt$H|$tD$$Ld$uXHELH@H;l.u\H=.[tLH=[u)tHeHcCgZfDLLX@HЉH|$E1-H|$04HcKH|$0IsLE1hHt$ HVKDLH}'5EIUHH)HAD$D1HfDAoTHH9uDAt4AtH4HA9~ALLA9~ ADDt$ LLOE~-Ic1fHH9t A9LtpHt'~pH|$0E1HUL%VU.I$DDLHqD1ATHH9u^8HATL%/H HnH5~/LVNx/u蘒LH/YZLA\ATIUH Ht HH5LHctHmtH]A\HH]A\QUH0fnFdH%(HD$(1HƅH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11΋1HT$(dH+%(ucH0]fD[`HHuӐu,HHnHuHHxia HfDK7@G@GDGHYUH=HLUu]ÐHH=1UtH]@UH@dH%(HD$81HzHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&Y|$HtHt+HH5[HPtRmHuHE 19mHu5ff.fHGI~H)ǍGwHH=/Llm@HH5G訇1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(utHH[]fHt$H|$_ tHl$H=)HGStHH=4Su lHuHc^@Hg4SH0VdH%(HD$(1HFH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11B1HT$(dH+%(u_H0[f.\HtHx(HtˋD$t9H1fHkHuHc]|3T$qSH0VdH%(HD$(1H"H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11R1HT$(dH+%(u_H0[f.[HtHx(HtˋD$t9H1fH jHuHc\2T$qSH0VdH%(HD$(1HDH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11b1HT$(dH+%(u_H0[f.ZHtHx(HtˋD$t9H1fH0iHuHc[1T$qUH0VdH%(HD$(1HsMH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11r1HT$(dH+%(u`H0]f.YHtHx(HtˋD$t:H 1fHH?hHuHb\0T$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11肄1HT$(dH+%(u_H0[f. YHtHx(HtˋD$t9H1fHPgHuHcZ/T$qSH0VdH%(HD$(1H?BH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11蒃1HT$(dH+%(udH0[f.XHtHx(HtˋD$t>H-1fHfH~]fHufHn.T$lff.UH0VdH%(HD$(1HJH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11蒂1HT$(dH+%(uoH0]f.WHtHx(HtˋD$tIH-1fHH_eHuHHx Xy-T$aUH@VdH%(HD$81HPHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$舁1HT$8dH+%(u}H@]VHtHh(HtՋD$$taH|$+1H5cHT$H|$P|$HtHEH0>dHuH"I.Hs,T$ Jff.UH@VdH%(HD$81HOHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$h1HT$8dH+%(u}H@]THtHh(HtՋD$$taH|$ 1H5CHT$H|$O|$HtHEH8cHuHH.Hs+T$ Jff.ATUH8VdH%(HD$(1H>H4$HD$HGfnfnȉD$fbfD$u9H(Htt\H11P1HT$(dH+%(H8]A\fSHtHx(Ht͋D$tzH1fHHbHuHt5HHHIHxLHcHF.HRK*T$2fUH@VdH%(HD$81H<Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$~1HT$8dH+%(H@]@RHtHh(Ht͋D$$H|$诹1H5<HT$H|$BM|$HtHEHH`HrHt%HH5$.H SfHyE.H:(T$ fUH@VdH%(HD$81HX;Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$|1HT$8dH+%(H@]@SQHtHh(Ht͋D$$H|$_1H5;HT$H|$K|$HtHEHHs_HrHt%HH5,覸H SfH)D.H:'T$ fUH@VdH%(HD$81H:Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$x{1HT$8dH+%(H@]@PHtHh(Ht͋D$$H|$1H59HT$H|$J|$HtHEHH#^HrHt%HH5+VHN SfHB.H:[&T$ fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$z1HT$8dH+%(H@[]A\NHHuːHt$H|$!tD$$Ld$uXHELH@H;<.u\H=CtLH=Cu)\HeHccOZfDLLx@HЉ$fATH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11xE1HD$(dH+%(H0LA\@SMHHufHHRxH;X.G&IMtoI$H5LPtZ[HuLxIHoHbL#1HHP@L98fE1([H"DIj#fAWAVAUATUSHxfnFdH%(HD$h1H5Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcLLl$0EuzMD$$uy|$ H wH|$0E1HtHD$8H9t2HD$hdH+%(HxL[]A\A]A^A_f.IcI\yH舲fDKKHH H|$E1-H|$04HcKH|$0IWLE1LHT$H55HE|$I"DLH E~WIEH9AD$D1HDfATHH9uDAt ADILLLE~EIc1fDHH9t/ADf.ztXHuDLH fXH|$0E1HFL%c=.I$5fD1ADHH9uR HXff.fAWAVAUATUSHxfnFdH%(HD$h1H2Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1H'H|$04AHcILl$0EuzMD$$uy|$ H,tH|$0E1HtHD$8H9t/HD$hdH+%(HxL[]A\A]A^A_f.IcI\yH訯fDkHHH H|$E1MH|$04HcHH|$0IWLE1LHT$H5`2HB|$I"DLH0 E~WIEH9AD$D1HDfATHH9uDAt ADILLLE~EIc1fDHH9t/ADf.ztUHuDLH fUH|$0E1HFL%:.I$5fD1ADHH9uRH陌ff.fAWAVAUATUSHxfnFdH%(HD$h1H0Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HGH|$04AHcFLl$0EuzMD$$uy|$ HLqH|$0E1HtHD$8H9t,HD$hdH+%(HxL[]A\A]A^A_f.IcI\yHȬfDEHH H|$E1mH|$04HcFH|$0IWLE1LHT$H5/H @|$I"DLHP E~WIEH9AD$D1HDfATHH9uDAt ADILLLE~EIc1fDHH9t/ADf.ztRHuDLHfRH|$0E1HFL%7.I$5fD1ADHH9uRHډff.fAU1ATUH`HVdH%(HD$X1HGAfnH%fnA)fbA~zAuyAHG-Ht$ HT$(L$8fD$0HHo(HtAbH|$ n1HT$XdH+%(H`]A\A]fDEyH5,DTl1L,Ht$ LT$(T$0L$4L$8Hu~Ho(D$Htt$4uLD$0v|H|$ 1m1h@BHTHh(HGD$4oH|$ 蟩1,[BHHq1 ;D$8HEHHPHHHH5ЩHLd$ Ht$L5Ll$@LL{D$@HELHT$Ht$$T$$f.D$@zQuOT$f.T$HzAu?OH#H4.HHt$H|$ A5t$OHuLL DL$0AW1AVAUATUSHHVdH%(HD$x1HGfnAH%fn)fb7Hf*Ht$ H\$(L$8fD$0HKHl$ Lw(1HcH|$@4AHcALl$@EMMT$4|$0H`kH|$@1HT$HH9tlHtgHD$&HD$VfH)Ht$ H\$(L$8fD$0HHo(HtA H|$ j1HT$xdH+%(HĈ[]A\A]A^A_DH5/)h1fDIcI\Hh#+?HHH|$ H|$@4Hc?H|$@1IL1f>H=Hh(H0D$4H|$ ߥ1Ld$ Ht$L2HT$H5(LR9|$HHEt$H(fH~LHfHnHt$H#2 HT$H5[(H8|$IDLH+E~ZIEH9AD$D1HfATHH9uDAt ADIt$LLL E~,Ic1 fHH9tADf.ztKHtGKIH|$@1MH0.H D1ADHH9urDLHDD$0HԂfDATL%c/1H$H5/L)/umLH3/5LA\AUATIUSHڣHtHH5ŴLHu\H%.Lk0Hc{h=HHtH3HLbHmtHL9uH[]A\A]HHfDHmuH1f.DUH=H<1u]ÐHH=!1tH]@OUH@dH%(HD$81H(:Ht$HD$HFHD$$D$ t0H|$\f1HT$8dH+%(u=H@]@Ht$ H|$.tы|$ HLIHuH?UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$e1HT$8dH+%(uhH@]@HT$H|$H5V 5|$HtHt+HH5Ի"HPtHHuHu1iHHuff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$d1HT$8dH+%(HH[]DHt$H|$tHl$H="H.tHH=U-.uGHuHc>:@HH=\.tHM@UH0fnFdH%(HD$(1H7H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11c1HT$(dH+%(u4H0]fD;8HHuӐHhpFHuHH8fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11b1HT$(dH+%(u>H8{7HHuҐEEHuH*.HJf.H8fnFdH%(HD$(1HH6H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11b1HT$(dH+%(u>H86HHuҐ)EHuH).Hz f.H8fnFdH%(HD$(1H5H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Oa1HT$(dH+%(u>H85HHuҐ#ADHuH%).H f.H8fnFdH%(HD$(1H7H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11`1HT$(dH+%(u>H8 5HHuҐ6qCHuHU(.H f.H8fnFdH%(HD$(1H 4H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(u>H8;4HHuҐ$fBHuH'.H f.H8fnFdH%(HD$(1HY3H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11^1HT$(dH+%(u>H8k3HHuҐAHuH&.H: f.H8fnFdH%(HD$(1HT5H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11^1HT$(dH+%(u>H82HHuҐ"AHuH%.Hj f.H8fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?]1HT$(dH+%(u>H81HHuҐ1@HuH%.Hf.H8fnFdH%(HD$(1H 1H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o\1HT$(dH+%(u>H80HHuҐ&a?HuHE$.Hf.H8fnFdH%(HD$(1Hn0H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11[1HT$(dH+%(u>H8+0HHuҐ V>HuHu#.Hf.H8fnFdH%(HD$(1H/H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Z1HT$(dH+%(u>H8[/HHuҐI=HuH".H*f.H8fnFdH%(HD$(1Hl1H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Y1HT$(dH+%(u>H8.HHuҐ H(HtD$9D$t;H11/Y1HT$(dH+%(u>H8-HHuҐ!H(HtD$9D$t;H11_X1HT$(dH+%(u>H8,HHuҐQ;HuH5 .Hf.H8fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11W1HT$(dH+%(u>H8,HHuҐF:HuHe.Hf.H8fnFdH%(HD$(1H|.H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11V1HT$(dH+%(u>H8K+HHuҐFv9HuH.Hf.H8fnFdH%(HD$(1H#+H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11U1HT$(dH+%(u>H8{*HHuҐ8HuH.HJf.H8fnFdH%(HD$(1Hi*H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11U1HT$(dH+%(u>H8)HHuҐ8HuH.Hzf.H8fnFdH%(HD$(1H)H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11OT1HT$(dH+%(u>H8(HHuҐA7HuH%.Hf.H8fnFdH%(HD$(1Hd+H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11S1HT$(dH+%(u>H8 (HHuҐH6q6HuHU.Hf.H8fnFdH%(HD$(1H.(H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11R1HT$(dH+%(u>H8;'HHuҐf5HuH.H f.H8fnFdH%(HD$(1H)H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Q1HT$(dH+%(u>H8k&HHuҐ4HuH.H:f.H8fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Q1HT$(dH+%(u>H8%HHuҐG4HuH.Hjf.H8fnFdH%(HD$(1H%H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?P1HT$(dH+%(u>H8$HHuҐ*13HuH.Hf.H8fnFdH%(HD$(1H'H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11oO1HT$(dH+%(u>H8#HHuҐ!&a2HuHE.Hf.H8fnFdH%(HD$(1Hf$H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11N1HT$(dH+%(u>H8+#HHuҐDV1HuHu.Hf.H8fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11M1HT$(dH+%(u>H8["HHuҐ膿0HuH.H*f.H8fnFdH%(HD$(1H"H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11L1HT$(dH+%(u>H8!HHuҐ趾/HuH.HZf.H8fnFdH%(HD$(1H?"H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/L1HT$(dH+%(u>H8 HHuҐ!/HuH.Hf.H8fnFdH%(HD$(1H!H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_K1HT$(dH+%(u;H8HHuҐ1T.HuH8.Hff.fH8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11J1HT$(dH+%(u>H8HHuҐ F-HuHe.Hf.H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11I1HT$(dH+%(u>H8KHHuҐ v,HuH.Hf.H8fnFdH%(HD$(1HVH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11H1HT$(dH+%(u>H8{HHuҐ覺+HuH.HJf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11H1HT$(dH+%(u>H8HHuҐֹ+HuH.Hzf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11OG1HT$(dH+%(u>H8HHuҐ A*HuH%.Hf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11F1HT$(dH+%(u>H8 HHuҐ6q)HuHU.Hf.H8fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11E1HT$(dH+%(u>H8;HHuҐf(HuH .H f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11D1HT$(dH+%(u>H8kHHuҐ薶'HuH .H:f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11D1HT$(dH+%(u>H8HHuҐ Ƶ'HuH .Hjf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?C1HT$(dH+%(u>H8HHuҐ1&HuH .Hf.H8fnFdH%(HD$(1HSH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11oB1HT$(dH+%(u>H8HHuҐ&a%HuHE .Hf.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$A1HT$8dH+%(uVH@]f.HHuϐHt$ H|$ tt$ H1l$HuHP .HDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$@1HT$8dH+%(u_H@]f.+HHuϐH53 HT$H|$|$HtHs#HuHW.Hff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$?1HT$8dH+%(u_H@]f.+HHuϐH5aHT$H|$|$HtH:s"HuHW.Hff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$>1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;-ulH="ptLH=]u)4!HeHcZfDLLH=!tL븐HЉbfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11==E1HD$(dH+%(H0LA\@HHufHHRxH;" .%IMtoI$H5G"LPtZHuLIHoH脇bL41HHP@Lw8fE1H"DIjfATL%S/H lH"H5ވ/L؇/uHLH/ LA\ATIUH} Ht HH5A"LHçtHmtH]A\HH]A\AWAVAUATUSHfnFdH%(H$1HfHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HѣH|$`4AHc~Ll$`EutMD$0+D$4H:H|$`E1HtHD$hH9t\H$dH+%(WHĨL[]A\A]A^A_IcI\+HH6H|$ E1 H|$`4HcH|$`IkLE1`L|$@HL ;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt"Ht'H|$`E1HL%.I$DLHĐHuL1HqLLL:BDD1ADHH9uHSff.fAWAVAUATUSHfnFdH%(H$1H4cHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HaH|$`4AHc Ll$`EutMD$0+D$4Hh7H|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\fD HH6H|$ E1蝟H|$`4HcK H|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztHt'H|$`E1HL%-I$DLHĐkHL1HmLLLڠDD1ADHH9uHOff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N41HT$(dH+%(uMH0[fDHHuӐu$Hh<HuHc D>f.UH0fnFdH%(HD$(1H[_H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n31HT$(dH+%(u|H0]fDHHuӐuHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^;HHuƐLd$ Ht$LtLl$@LLEtHT$H5=L|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHcfDHLeD$HuLL̩DUH@fnFdH%(HD$81HW<Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.kHHuϐHt$ H|$QtD$$t$ u)HEHHHuH蟒DHrHfDUH@fnFdH%(HD$81H<Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.[HHuϐHt$ H|$AtD$$t$ u)HEHHHuH菑DH`{HfDSH0fnFdH%(HD$(1H :H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD[HHuӐu$HHuHcoDf.SH0fnFdH%(HD$(1H:9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uMH0[fD{HHuӐu$HHuHcDC:f.UH0fnFdH%(HD$(1H]H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(u|H0]fDHHuӐuH(HtD$9D$t;H111HT$(dH+%(uLH8 HHuҐu$HnHuHR-H@C̳ff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD+HHuӐu$HHuHc?Df.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDKHHuӐu$HHuHc_D f.SH0fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDkHHuӐu$HHuHcDG*f.SH0fnFdH%(HD$(1H[0H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDHHuӐu$HHuHcDJf.UH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$Z|$HtD$$u(HEHHuH-H@Hx1UH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$J|$HtD$$u(HEHHuH-H@H^!GUH=X"Hu]ÐHH="tHH=AyntH]1aUH@dH%(HD$81HxHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5fx|$HtHt+HH5mHPtHuH腃1yHuff.fUSHHdH%(HD$81HxHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$tHl$H=HtHH=wuHuHcN@Hp_H8VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u4H(HttOH111HT$(dH+%(uQH8@cHtHx(HtҋD$t2Hu;1HHuH-HT$DH8VdH%(HD$(1HkH4$HD$HGfnfnȉD$fbfD$u4H(HttOH111HT$(dH+%(uQH8@HtHx(HtҋD$t2H:1HHuH-H;T$DSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H91fHHuHcLT$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11"1HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H81fHHHuH~[T$pfATUSH@fnFdH%(HD$81HsHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$!~tD$$Ld$uXHELH@H;&-u\H=tLH=ru)HeHccZfDLLxZ@HЉfATH0fnFdH%(HD$(1H,rH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@SHHufHHRxH;-GIMtoI$H5`LPtZHuLx|IHoHEbLĥ1HHP@L8fE1(H"DIj艥fUH@HWdH%(HD$8HFH1ҁfnfnAAfbA)t`AHsHt$HD$T$(fD$ HHo(HtoA'H|$31OLHt$LT$D$ T$$T$(HH(HtEH|$111HT$8dH+%(H@]fDH5D1DSHtHh(HtT$$H|$_41#HtHx(HD$$uDL$ VHHgHLHVzAH5ݶHT$H|$|$HHEHHH-H|DL$ qfATL%3N/1HH5O/L;N/u}LHO/>LA\ATIUHHt HH5JLHCctHmtH]A\HH]A\1}UH=HLu]ÐHH=n1tH]U@AVAUATUSH`fnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$HLw(11H_H|$ 4AHcLl$ EurMD$+D$HH|$ E1HtHD$(H9t蚱HD$XdH+%(H`L[]A\A]A^fDIcI\fDkHH=H1E1R^H|$ 4HcH|$ IrLE1gDDLHRDE~YIEH9AD$D1HfATHH9uDAt ADLLVE~/Ic1DHH9tADf.ztHt'H|$ E1HL%-I$DL1H@D1ADHH9ub H8ff.fUH@dH%(HD$81HjHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5jJ|$HtHt+HH5xAHPtHuHu1Huff.fUSHHdH%(HD$81HDjHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$utHl$H=@HtHH=iuHuHc~@HQ'UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHo0HuHs@HHH;-tHASH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐt_@HuHcDHHH;׿-tЉbfUH@fnFdH%(HD$81H+Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(u_H@]f.HHuϐH5HT$H|$z|$HtHnHuH-Hlff.UH@VdH%(HD$81H1Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$81HT$8dH+%(u}H@]HtHh(HtՋD$$taH|$*1H5HT$H|$j|$HtHEHHuHҶ-HsTT$ Jff.UH@fnFdH%(HD$81H.Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$聶tD$$t$ t19u@tHEu@HHuH-HDHEHH;f-u;u@tˉu@HfH@ATUSH@fnFdH%(HD$81H6dHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\KHHuːHt$H|$ntD$$Ld$uXHELH@H;V-u\H=,:蠶tLH=`c荶u)dHeHcZfDLL(K@HЉ袗fAWAVAUATUHPVdH%(HD$H1H9Ht$ HD$(HGfnfnȉD$8fbfD$0uJHo(HttlH|$ p1HT$HdH+%(%HP]A\A]A^A_@HtHh(HtŋD$4H|$ &1L|$Lt$ LH5ȩL茺|$ItLH58Lp|$IbLH5LP|$ELH52!LH$/|$$LH5 LHD$ |$IHELD$LLH $H~HH^-HT$0AWAVAUATUHPVdH%(HD$H1H"Ht$ HD$(HGfnfnȉD$8fbfD$0uJHo(HttlH|$ 1HT$HdH+%(%HP]A\A]A^A_@#HtHh(HtŋD$4H|$ /%1L|$Lt$ LH5L輸|$ItLH56L蠸|$IbLH5L耸|$ELH5*1!LH$_|$$LH59LHD$=|$IHELD$LLH $HHH-HT$0ATH0fnFdH%(HD$(1H<_H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@cHHufHHRxH;z-WIMtoI$H5K5LPtZHuLiIHoH$2bLԒ1HHP@L8fE18H"DIj虒fAWAVAUATUHPVdH%(HD$H1HHt$ HD$(HGfnfnȉD$8fbfD$0uJHo(HttlH|$ `1HT$HdH+%(JHP]A\A]A^A_@HtHh(HtŋL$4H|$ !1L|$Lt$ LH5L||$ItLH53L`|$IbLL7OL|$H5uLL(|$-LH5-!LH$|$ LH5LHD$|$HHHELHRLLL$LD$HL$(XZIHH)-H諐T$0yfATL%C>/1H2H5?/Lk>/uLH?/nLA\ATIUHIHt HH5U2LHsPtHmtH]A\HH]A\ajUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.[HHuϐH5YHT$H|$|$HtD$$u(HEHHuHz-H@HhHG0G@9w@tHw@ǐUH=0H,u]ÐHH=YtH]A@UH@dH%(HD$81HZYHt$HD$HFHD$$D$ t0H|$\1HT$8dH+%(uhH@]@HT$H|$H5Y躱|$HtHt+HH5HPt2HuH%d1Hu荍ff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uFH@]@H|$HT$H5ڰ|$Ht+qHcHuHVcόff.@ATUHHdH%(HD$81HYHt$HD$HFHD$$D$ D$ wcLd$HT$ H5L:|$ Ht#D$ 9D$(|Vt$ H芤HHtU1HT$8dH+%(uMHH]A\H|$Lf.Ht$ LuDHPbɋfUSHHdH%(HD$81HVHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$atHl$H= H跩tHH=F褩u{HuHc.@HH=LVytH=>Ċ@H8VdH%(HD$(1HuH4$HD$HGfnfnȉD$fbfD$u4H(HttOH111HT$(dH+%(uQH8@3HtHx(HtҋD$t2HE1HHuHf-HT$DUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.KHtHx(HtˋD$t:H]1fH8HHuH貴T$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.[HtHx(HtˋD$t9Hm1fHH蠿HuHcS T$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.kHtHx(HtˋD$t:H}1fHH课HuHҲT$pfUH0VdH%(HD$(1H9H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.{HtHx(HtˋD$t:H1fHhH追HuH\+T$pfUH0fnFdH%(HD$(1HXH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD苮HHuӐtHoXHuH[@HHH;-tHAUH@fnFdH%(HD$81HٞHt$HD$HGfnȉD$(fbfD$ u|Ho(D$ Ht;D$$uSD$ wr;D$(HEH@H*H1HT$8dH+%(u{H@]H|$@kHHsDH|$11Ht$ H|$1tt$ e@Hȯuff.UH@fnFdH%(HD$81H[oHt$HD$HGfnȉD$(fbfD$ u|Ho(D$ Ht;D$$uSD$ wr;D$(HEHXHH1HT$8dH+%(u{H@]H|$f@+HHsDH|$1W1Ht$ H|$tt$ e@HXYu΂ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$D$ HtWT$$uED$ w|;D$(HEH`H蘹HuHXfH|$&1HT$8dH+%(uzHH]A\@ӪHHaDH|$11Ld$Ht$L薞tD$ 9D$(}Ht$ L{tT$ t$=eDAUATUHpVdH%(HD$h1H-lHt$0HD$8HGfnfnȉD$HfbfD$@uFHo(HtthH|$041HT$hdH+%(Hp]A\A]@軩HtHh(HtɋD$DH|$01Ll$PLd$0LL^tHT$/H5͓L>|$/Hlf(D$PHELH\$`fD$)$\$xf($f.D$Pz@u>T$f.T$Xz0u.\$f.\$`z upHHP-HRHuعL1LklT$@ff.ATUSH@fnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f1HT$8dH+%(H@[]A\HHuːHt$H|$qUtD$$Ld$uXHELH@H;-ulH=@tLH=-u)HeHc賨ZfDLLH=ItL1븐HЉ2~fATH0fnFdH%(HD$(1HlIH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@蓦HHufHHRxH;-IMtoI$H5ULPtZŴHuLSIHoHTbL}1HHP@LG8fE1hH"DIj|fATUHHdH%(HD$8HFLd$Ht$H;HD$HHT$ LH5D$(HD$ D$ +|$ Ht9D$ 9D$(}Ht$ L*tt$ HjH蒳HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=1/A\鿳H5lHR{ATL%,/1H{H5C./L[=-/ufLH-/^LA\ATIUH Ht HH5LHc;tHmtH]A\HH]A\QUSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD[HHuӐu$H輱HuHcoDzf.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fD{HHuӐu,HH۰HuHHx艣k#HfDk$y@UH@fnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.{HHuϐH5HT$H|$:|$HtD$$u(HEH趯HuH-H@HxUH@HNdH%(HD$81HGfnAH%HfnfbA)t6A|H5RD1HT$8dH+%(H@]ÐL &Ht$LL$L$ D$$D$(H*H(HtD$$9D$ twH|$111DH ֧Ht$HL$D$(fD$ HHo(HbD$ +D$$tRH|$>1<HoPOHH>MfHt$ H|$術D$$t$ HEHHH;-umH[HH3f.;HH}f.HHH;ύ-1H+HHu@SH0fnFdH%(HD$(1Hf`H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uXH0[fDKHHuӐu,HfH~詬HufHnITfH~tff.@AVAUATUSHPHNdH%(HD$H1HGfnAH%HfnfbA)t?AH5rD1HT$HdH+%(UHP[]A\A]A^L =Ht$LL$L$ D$$D$(HH(HtoD$$9D$ toH|$11i1DH Ht$HL$D$(fD$ H<Ho(Ht!D$ +D$$tfH|$17`HHHuHHH5xRHJWDLd$0Ll$LLQtT$8\$@D$$D$0fH~fI~ޅHED$LHD$f.D$0fHnf.d$8fInf.l$@IHH)-H,諛HH1苛HHE1LHD$ D$F@DH軩HdL1L^MrfDAUATUHHNdH%(H$1HGfnAH%HfnfbA)tDAH5vD1H$dH+%(HĐ]A\A]DL `vH4$LL$L$D$D$HH(HteD$9D$thH111H vH4$HL$D$fD$HHo(HtD$+D$tgH51=fDHH?HuHHH5urHjTDLd$ ILLNtfoT$ fo\$0fod$@D$)T$P)\$`)d$pHELHD$ f.D$PD$Xf.D$(D$0f.D$`D$hf.D$8D$@f.D$pD$Hf.D$x}u{&HH-HD胘HHj1kHH 1LH ˀHo諦HwL1L[`ofDUH0fnFdH%(HD$(1HּH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fDkHHuӐu,HH˥HuHHxykHfD[n@UH@fnFdH%(HD$81HPYHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.kHHuϐH5!HT$H|$*|$HtD$$u(HEHP覤HuH-H@HmHGPHGXgUH=ŽH\u]ÐHH=AtHH=8.tH]w'UH@dH%(HD$81HZ7Ht$HD$HFHD$$D$ t0H|$\1HT$8dH+%(uhH@]@HT$H|$H57躏|$HtHt+HH5HPt2HuH%B1Hukff.fUSHHdH%(HD$81H6Ht$HD$HFHD$$D$ HD$t6H|$r1HT$8dH+%(utHH[]fHt$H|$AtHl$H=#HwtHH=76du;HuHc@HjH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o1HT$(dH+%(u9H8HHuҐ{fHuHJ-Hiff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11蟽1HT$(dH+%(u9H8+HHuҐ/薠HuHz-Hhff.@SH0fnFdH%(HD$(1H`H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11μ1HT$(dH+%(u7H0[fD[HHuӐ;WğHuHcw0hUH@fnFdH%(HD$81HxHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.苐HHuϐHt$H|$AtHt$H耤۞HuH-HDg@UH@fnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.蛏HHuϐHt$H|$QtHt$HHuHς-HTf@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uVH@]f.諎HHuϐHt$ H|$葂tt$ HDHuH-HeeDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uWH@]f.軍HHuϐHt$H|$qtHt$H@ HuH-Htd@ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@1HT$8dH+%(ujHH]A\fDˌHHuѐLd$HL耘tHt$LotHT$H4$H HuHc趍ocff.@ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(ujHH]A\fD軋HHuѐLd$HLptHt$L_tHT$H4$HHuHc覌_bff.@ATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$  1HT$HdH+%(HX]A\f諊HHuѐLd$ Ht$L^tHt$LMtHt$L9_ATUSH@fnFdH%(HD$81H*Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$膳1HT$8dH+%(H@[]A\ HHuːHt$H|$5tD$$Ld$uXHELH@H;-u\H= `}tLH= *M}u)$HeHcӈZfDLL@HЉb^fAUATUHpfnFdH%(HD$h1H,Ht$0HD$8HGfnȉD$HfbfD$@uPHo(Ht!D$@+D$DtRH|$0.1HT$hdH+%(Hp]A\A]fD賆HHufLd$0Ht$(L^tLl$PLL;tf(D$P\$`LHHt$(fD$)$\$$f($f.D$PzHuFT$f.T$Xz8u6\$f.\$`z(u&葔H*Hqy-HkHuйLLI\f.ATH0fnFdH%(HD$(1H'H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝰E1HD$(dH+%(H0LA\@#HHufHHRxH;-IMtoI$H5(LPtZUHuLH2IHoHbL[1HHP@Lp8fE1H"DIjY[fAWAVAUATUSHfnFdH%(H$1HHt$0HD$8HGfnȉD$HfbfD$@Hl$0Lw(1HH|$p4AHc~Ll$pEutMD$@+D$DHخH|$pE1HtHD$xH9t\jH$dH+%(_HĸL[]A\A]A^A_IcI\fD+HH6H|$0E1 H|$p4Hc軃H|$pIkLE1`Ht$(H裎CL|$PHL7&DLH7\$Xd$Pl$`\$d$l$E~[IEH9"AD$D1HffATHH9uDAt ADHt$(LLLt$f.t$P|$f.|$X|$f.|$`E~DIc1DHH9t/ADf.zt HuDLH"EfH|$pE1HL%t-I$fD1ADHH9u 虏HWLHD=WHADAT1USH`HNdH%(HD$X1HGAfnH%fnA)fbA~cAucH5Ht$0H\$8T$HfD$@HiHo(HtED$@+D$DoH|$0苫1A2H5җDk1HT$XdH+%(H`[]A\@HHt$0H\$8L$@T$DT$HHHo(D$HtD$@+D$DLd$0Ht$LkxHt$ LVcHt$(LAND$@9D$HKDD$HL$(HHT$ Ht$躍HHr-HH|$0\1D~HHf.Ld$0Ht$L螊Ht$L艊Ht$ LtHt$ LrlH\$(LHGTDD$ HL$ IHHT$Ht$PˌHHT$(L.#~HHEfHt$LrTAW1IAVAUATUSHfnFdH%(H$HG~H%fn)fbtCH5֦1H$dH+%(Hĸ[]A\A]A^A_H gHt$0HL$8T$HfD$@H,Ih(Ht%D$@+D$DH|$0V1{H Ht$0HL$8T$HfD$@HtHl$0Mp(1HH|$p4AHci}Ll$pEu_M}D$@+D$DHçH|$p1HT$xH9HHD$;cHD$IcI\fDHt$(H|$0Ht$(H|?腊HHc4}kHt$(H談`L|$PHL0CDLH0-\$Xd$Pl$`\$d$l$E~SIEH9AD$D1HfATHH9uDAt ADHt$(LLLt$f.t$PA |$f.|$X|$f.|$`E~8Ic1f.HH9tADf.ztHHIc{H|$pfLXzIHxH|$0=H|$p4HczH|$p1IL1LzIH1ihHLHz=D1ADHH9uDLHC=PHff.fATL%/H HH5>/L6f8/uxLH~/9rLA\ATIUH{Ht HH5BLHCtHmtH]A\HH]A\1*UH=HLnu]ÐHH=1ntH]@7MUH@dH%(HD$81HjHt$HD$HFHD$$D$ t0H|$l1HT$8dH+%(uhH@]@HT$H|$H5r|$HtHt+HH5HPtBHuH5%1)HuNff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$肢1HT$8dH+%(HH[]DHt$H|$$tHl$H=HltHH=ytluKHuHcw@HH=IltH M@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o1HT$(dH+%(u9H8uHHuҐfHuHJi-HLff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螠1HT$(dH+%(u8H0]fD+uHHuӐH蓃HuH"Kff.@SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Ο1HT$(dH+%(uUH0[fD[tHHuӐt_\ĂHuHcwuDHHH;w-tЉKfUH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD{sHHuӐtHohHuH @HHH;Wy-tH1JSH0fnFdH%(HD$(1HhH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDrHHuӐt_XHuHcsDHHH;n-tЉRIfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uUH0[fDqHHuӐt_`$HuHcrDHHH;q-tЉrHfATUH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uCH(HtD$9D$tHH11L1HT$(dH+%(H8]A\fDpHHuftDHop3HuHtQHHHIHu)9LH @HHH;}-tHfDHc-HNCGUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDoHHuϐHt$ H|$ctD$$t$ t19u`tHEu`H}HuHb-HDHEHH;.-u;u`tˉu`HfHF@H8fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11ߙ1HT$(dH+%(H8@knHHuҐHtAHH;K-uIG`t G`|HuHa-HfDHH;o-t@1DDH8fnFdH%(HD$(1HjH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Ϙ1HT$(dH+%(H8@[mHHuҐHtAHH;;~-uI`t G`{HuH`-HHH;k-t@CfAVAUATUSHPfnFdH%(HD$H1H\Ht$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$諗1HT$HdH+%(HP[]A\A]A^+lHHuƐLl$0Ld$LLF!tD$0T$8HL\$@D$fH~fI~8D$f.D$0zEuCfHnf.d$8z6u4fInf.l$@z'u% zHsHHX-HDLHfDMDDM1A  HHH9u1A  HHH9ugHLL1uLHL1;fATL%s.H |HH5.LP.uHXLH>.\LA\ATIUH?Ht HH5LHtHmtH]A\HH]A\UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uzH@]f.bHHuϐH5HT$H|$]|$HtD$$u(HEHqHuHU-H@HOa9UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uzH@]f.aHHuϐH5HT$H|$z\|$HtD$$u(HEHoHuHT-H@H3Q8AWAVAUATUHSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ Hm(H\$1HH|$04AHcaH$L|$0Et IcIH$H4H|$pAHcCaHD$Ld$pEt IcIHD$HkD$ +D$$H舋Ld$pE1MtHD$xI9tL GH|$0HD$8H9t HtFH$dH+%(~HĸL[]A\A]A^A_@_HHf.DLHbDLHLE~]IGH9$AED1HffAH $HH9uDAt AE~\ID$H9D$UAFHD1HDfAHL$HH9uDAt AD$$HELLHE~KIc1 @HH9t7H $Af.ztlHuDL1H "f.E~2Ic1 @HH9tHL$Af.ztlHt1lHHcC_Ld$pIfDE1DLH!LLH2TDD1AHL$HH9ufD1AH $HH9uIf4HHf.@G`9w`tHw`GXG\HGpHGh1AUATIULopHMtpHtSL;RtdLCLLhLLLHEpHHEH]A\A]H@L8CHEpfDHu]A\A]f.UH= HQu]ÐHH=QtHH=Q~QtH]AHHH;l-u!`tG`fDHHH;{l-u!W`tG`D1@UH@dH%(HD$81HJHt$HD$HFHD$$D$ t0H|$L1HT$8dH+%(uhH@]@HT$H|$H5U|$HtHt+HH5EHPt"iHuH1 iHu}1ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$b1HT$8dH+%(utHH[]fHt$H|$tHl$H=6DHgOtHH='TOu+hHuHcZ@H0H8VdH%(HD$(1HyH4$HD$HGfnfnȉD$fbfD$u4H(HttOH11c1HT$(dH+%(uQH8@XHtHx(HtҋD$t2H1HBgHuH&L-H/T$DH8VdH%(HD$(1HZAH4$HD$HGfnfnȉD$fbfD$u4H(HttOH11胃1HT$(dH+%(uQH8@XHtHx(HtҋD$t2H%1HbfHuHFK-H.T$DSH0VdH%(HD$(1H xH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11袂1HT$(dH+%(u_H0[f.+WHtHx(HtˋD$t9H=1fHpeHuHc#X-T$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11貁1HT$(dH+%(u`H0]f.;VHtHx(HtˋD$t:HM1fHHdHuHX,T$pfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$覀1HT$8dH+%(H@[]A\+UHHuːHt$H|$tD$$Ld$uXHELH@H;Z-u\H=L?JtLH=@mJu)DcHeHcUZfDLL@HЉ+fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@SHHufHHRxH;\-,IMtoI$H5 >LPtZbHuLIHoHbLT*1HHP@L?8fE1aH"DIj*fAUATUH`HWdH%(HD$XHFH1ҁfnfnAAfbA)tjtHH=qtH]aHHQ*-H5H81Hff.AUAATL%.UHSH(dH%(HD$1HD$HD$L9gHT$H5XHHL9eHT$H5H.HAAtEH|$HtNH/tXHcZHT$dH+%(H([]A\A]H;H0SH|$HuH|$HtH/u롐H_L9ePHEAiH;H0AaHL(-HlH(-H5(H8B1LFfDUHHHtJH]1UHHHt*H]UHHHt H]UHHHtH]6HtSHYo[1ff.fHtSH)o[1ff.fHt'SHoHSHP[1ff.fATUH-3HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1LH|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$HCIHt Ao$HHI.ff.ATUH-2HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1LH|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$HBIHtAo$HHI>ff.ATUH-3HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1KH|$HtH/tHD$8dH+%(ugHHL]A\fHT$H|$HAIHt,Ao$HHID$HFIyBfUH@dH%(HD$81H:Ht$HD$HFHD$$D$ t0H|$H(HtD$9D$t;H11A1HT$(dH+%(u9H8 HHuҐ v$HuHZ -Hff.@H8fnFdH%(HD$(1H=H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11@1HT$(dH+%(u9H8;HHuҐ#HuH-Hff.@UH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11?1HT$(dH+%(u8H0]fDkHHuӐ{H"HuH?ff.@UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11?1HT$(dH+%(u8H0]fDHHuӐ۫H"HuHoff.@SH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>>1HT$(dH+%(uZH0[fDHHuӐt2!HuHcHHH;r-tЉ}ff.fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N=1HT$(dH+%(uVH0]fDHHuӐtHohC HuH6@HH8H;-tHUH0fnFdH%(HD$(1H) H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n<1HT$(dH+%(uVH0]fDHHuӐtHopcHuHV@HH@H;?-tHUH@fnFdH%(HD$81HU Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$;1HT$8dH+%(u_H@]f. HHuϐH5HT$H|$ |$HtHhSHuH7-Hff.UH@fnFdH%(HD$81HoHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$:1HT$8dH+%(u_H@]f. HHuϐH5HT$H|$ |$HtHSHuH7-Hff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$91HT$8dH+%(u_H@]f. HHuϐH5HT$H|$|$HtHH6SHuH7-Hff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$81HT$8dH+%(uWH@]f. HHuϐHt$H|$tHt$H`[HuH?-H@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$71HT$8dH+%(uWH@]f. HHuϐHt$H|$tHt$H`HhHuH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$61HT$8dH+%(u_H@]f.+ HHuϐH5^HT$H|$|$HtH(qHu@Aff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$51HT$8dH+%(u_H@]f.+ HHuϐH5HT$H|$|$HtH qHu@@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$41HT$8dH+%(u_H@]f.+ HHuϐH5HT$H|$|$HtHqHu@?ff.UH@fnFdH%(HD$81H#Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$31HT$8dH+%(uWH@]f.+HHuϐHt$H|$tHt$HHxHuH @UH@fnFdH%(HD$81HCHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uWH@]f.;HHuϐHt$H|$tHt$HrHHuH @UH@fnFdH%(HD$81HcHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$11HT$8dH+%(uRH@]DKHHuԐHt$H|$tt$HuHHuH苳@ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(uyHH]A\fD[HHuѐLd$Ht$LtHT$H5L|$HtHt$HHuHn,HwAWAVAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$/1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5LLL|$ItLLL|$HtLHzoHuHS,Hvf.HH/TDUHPfnFdH%(HD$H1HXHt$ HD$(HGfnȉD$8fbfD$0utHD$Ho(HtsD$0+D$4tmH|$ y.1H|$HtH/tHT$HdH+%(u{HP]ÐHD$VHD$HH{1H5< HT$H|$ $HHtH H"HpHAeATUHHfnFdH%(HD$81H1Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$P-1HT$8dH+%(ukHH]A\fDHHuѐLd$HL tHt$L tHT$H4$HHHuH5~ff.ATUHHfnFdH%(HD$81H+Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@,1HT$8dH+%(upHH]A\fDHHuѐLd$HL tHt$Lo tHT$H4$HjHHuHifATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&+1HT$8dH+%(H@[]A\HHuːHt$H|$1tD$$Ld$uXHELH@H;,ulH=dtLH=$u) HeHcsZfDLLH=tLu븐HЉfATH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11)E1HD$(dH+%(H0LA\@SHHufHHRxH;,!IMtoI$H5LPtZ HuLxIHoHtbL1HHP@L8fE1( H"DIjfAVAUATUHfnFdH%(HD$x1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lg(H H|$@4AHcH|$@H|$Mt+D$0+D$4H(H|$@E1HtHD$HH9tHD$xdH+%(HĈL]A\A]A^f{HHPH|$ `H|$@4HcfDHt$H oLt$HLWHt$DHK?Ht$HL$LLni HtT_ Ht*U H|$@E1HL%-,I$HT$DH諚fHT$HwHDff.AVAUATUSHpfnFdH%(HD$h1H#Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcLl$0EulMD$ +D$$H%H|$0E1HtHD$8H9ttHD$hdH+%(HpL[]A\A]A^IcI\fDKHH>H|$E1-H|$04HcH|$0IsLE1hHHMHt$H8DLH "E~YIEH9AD$D1HfATHH9uDAt ADHT$H4$LLE~KIc1 @HH9t7ADf.ztHuDLH躼f.{H|$0E1HRL%S,I$AfD1ADHH9uJHBff.fATUHHdH%(HD$8HFLd$Ht$H HD$HHT$ LH5]D$(HD$ D$ |$ Ht9D$ 9D$(}Ht$ Ltt$ H躸HbHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=f.A\H5< HaAUATUHHNdH%(H$1HGfnAH%HfnfbA)tDAH5DC 1H$dH+%(+HĐ]A\A]DL H4$LL$L$D$D$HH(HteD$9D$thH11!1H hH4$HL$D$fD$HUHo(HtD$+D$tWH!1=fD#[HHuHHH5]HưLd$ ILLtfoT$ fo\$0LHfod$@)T$P)\$`)d$phD$ f.D$PD$Xf.D$(D$0f.D$`D$hf.D$8~u|D$@f.D$pznulD$Hf.D$xz^u\HH,HfDHH1HH<1KHuL1Ldf.AU1ATUHpHNdH%(HD$h1HGAfnH%fnA)fbAtBAH5?D1HT$hdH+%(Hp]A\A]fL Ht$0LL$8L$@T$DT$HHHo(HtwD$@+D$DttH|$01@H Ht$0HL$8T$HfD$@H<Ho(Ht!D$@+D$DtvH|$01,Ht$(H|$0!tHt$(H耹HHuHHH5ZHfDLd$0Ht$(LtLl$PLLkf(D$P\$`LHHt$(fD$)$\$f($f.D$PzturT$f.T$Xzdub\$f.\$`zTuRHH,H%@SHH1 ;HHE1HuLL蹵fAU1ATUHĀHNdH%(HD$x1HGAfnH%fnA)fbAtBAH5D1HT$xdH+%(H]A\A]fL fHt$@LL$HL$PT$TT$XH*Ho(Ht{D$P+D$Tt|H|$@p1@H Ht$@HL$HT$XfD$PHHo(Ht%D$P+D$TH|$@1(Ld$@Ht$8LvtLl$`LLͥtf(D$`t$pLHHt$8fD$)$t$}mf($f.D$`D>l$f.l$h,&t$f.t$pHBHq,HaLd$@Ht$ LHt$(LHt$0LHt$8LϕL$(D$0D$TT$8f(Ht$ f؅HT$`HL$`D$hT$pml2;HH;1HH1qHLL蕲HT$`H)\$`T$pkff.AU1ATUHHNdH%(H$1HGAfnH%fnA)fbAtDAH5UD1H$dH+%(HĐ]A\A]DL Ht$PLL$XL$`T$dT$hHrHo(Ht{D$`+D$dt|H|$P1@H Ht$PHL$XT$hfD$`HHo(Ht%D$`+D$dH|$P1&Ld$PHt$@LtHt$HL tLl$pLLdtHT$HHt$@LH$f(D$pt$fD$)$f($f.D$pz)u'l$f.l$xzut$f.$z1HLLCfDLd$PHt$(LFHt$0L1Ht$8L|Ht$@LgHt$HLRL$8D$@D$dT$Hf(HT$0Ht$(f؅HL$pHL$pD$x$x;HDH,HafHH1G{HH}1'HL$pH)\$p$FfDATL%#.11H51L.uLLA\fATL%C.H H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuH,H@Ylff.UH@fnFdH%(HD$81HRHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$2 1HT$8dH+%(u|H@]f.HHuϐH5HT$H|$z|$HtD$$u(HEHHu@@HhUOff.@UH@fnFdH%(HD$81HBHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u|H@]f.HHuϐH5HT$H|$Z|$HtD$$u(HEHHu@@Ho/ff.@UH@fnFdH%(HD$81He%Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uzH@]f.{HHuϐH5hHT$H|$:|$HtD$$u(HEHHuH,H@HUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uzH@]f.kHHuϐH5HT$H|$*|$HtD$$u(HEHHuH,H@H航UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.[HHuϐH5HT$H|$|$HtD$$u(HEHHuHz,H@HUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fD[HHuӐu$HHHuH@HfUH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.kHHuϐH5HT$H|$*|$HtD$$u(HEHHuH,H@HKUH0fnFdH%(HD$(1H*1H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fDkHHuӐu$HHHuH@H)fUH@fnFdH%(HD$81HkHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.{HHuϐH5HT$H|$:|$HtD$$u(HEHHuH,H@HHATUHHfnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(HH]A\fkHHuѐLd$Ht$LtHT$H5L|$HtD$$Ht$u/HEHHtHm,Hf@HYAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAtH(HtD$9D$t;H111HT$(dH+%(uLH8;HHuҐu$HHuH,H@f.fHGhHGpfDGUH=HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHo@HuH@HHH;o,tHAUH0fnFdH%(HD$(1HcH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHo0HuH6@HHH;w,tHaUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uVH0]fDHHuӐtHo83HuHV@HHH;',tH聚UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDHHuϐHt$H|$tD$$Ht$t0H9u@tHEHu@HHuH,HfHEHH;f,uH;u@tHu@HHD@UH@fnFdH%(HD$81H}Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$H|$QtD$$Ht$t0H9u0tHEHu0HHuH,HfHEHH;N,uH;u0tHu0HH@UH@fnFdH%(HD$81HGHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD[HHuϐHt$H|$tD$$Ht$t0H9u8tHEHu8HHuHx,HfHEHH;v,uH;u8tHu8HHĖ@ATH0fnFdH%(HD$(1HaH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@#HHufHHRxH;b,PIMtoI$H5{LPtZUHuLHlIHoH4bL蔕1HHP@Lת8fE1H"DIjYfATL%3m.H H̸H5n.Lm.uXLHm.LA\ATIUH=PHt HH5uLH#UtHmtH]A\HH]A\oH9w0tHHw0ff.DHG0H9w8tHHw8ff.DHG8H9w@tHHw@ff.DHG@NUH=kHlu]ÐHH=$_QtH]G@ATUHHLgMt%I|$Ht蚁I<$Ht茁L脁HH]A\eDGWUH@dH%(HD$81H*^Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5]芶|$HtHt+HH5HPtHuHh1Hu]ff.fAUATUH-˺SHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tbH|$E1;H|$HtH/t+HD$8dH+%(HHL[]A\A]f lfHT$H|$HIHt0H|$ 1H$(dH+%(H0]A\A]@Ld$@Hl$ LHnctLl$` HLUctL$PLLf(D$@fo$foT$pfo$L$foL$`fo$fD$fo$)$)$)$)$)$)$)$ f($f.D$@|$f.|$H{L$f.L$PicD$`f.$vp$f.D$h[U$f.D$p@:D$xf.$%$f.$$f.$$f.$$f.$$f.$$f.$zuus$f.$z_u]$f.$zIuGzHHZ,Hq[HL1Hpox3Hu LHIo蒂fUH@dH%(HD$81HMHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H56M|$HtHt+HH5HPtbHuHUX1IHu轁ff.fUSHHdH%(HD$81HLHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$WtHl$H=/H觟tHH= 蔟ukHuHc@HH= itHH=)LVtH4血UH@dH%(HD$81H$Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$!tы|$ tJH茷HuHt"HH5HcfHI,Hff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD+HHuӐt蒶HuHcEHHH; ,tЉ~ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD;HHuӐt袵HuHcUHHH;Ұ,tЉ}ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDKHHuӐt貴HuHceHHH;*,tЉ|ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD[HHuӐt³HuHcuHHH;,tЉ |ff.fAUATUH`fnFdH%(HD$X1HKHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDSHHufLd$@Ll$ LLfYtD$4L$HD$@T$PtXHf(1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukFH?Hc4HEHXH;,tT$HLD$L$T$D$L$|f۱HuL1Lft:zf.ATH0fnFdH%(HD$(1HlEH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@蓢HHufHHRxH;,w7IMtoI$H5tLPtZŰHuLOIHoHTbLy1HHP@LG8fE1hH"DIjxfATUSH@fnFdH%(HD$81HCHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\ HHuːHt$H|$NtD$$Ld$u`HELH@H;.,H=\tLH=Iu- HaHcϡVf.LLH= tLH=BtL*fDHЉ2wfAWAVAUATUSH(fnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(H([]A\A]A^A_kHHu뾐Ll$0Ld$LLTtLt$P LLmTtT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$D$$)$fo$D$0)$)$)$)$)$uHEHxH;6,LLD$D$f.D$0fHnf.d$8~xfInf.l$@gaD$Pf.$tn$f.D$XYS$f.D$`>8D$hf.$#D$pf.$D$xf.$$f.$$f.$$f.$$f.$zyuw$f.$zcua$f.$zMuKvHJHV,H<DSHL1Lh`z+Hu LLA`D$LLHD$gsAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$#1H$dH+%(HĨ[]A\A]A^A_蛛HHu뾐Lt$0Ll$LLPtLd$P$LLPtT$8D$$LH$p\$@$HD$0HfI~$uHEHH;,LLD$&LD$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH= u HH,HHuL1L^fۨHu$LL]D$LLHD$,qATL%P.H lHH5Q.LֆP.u1LHP.ْLA\ATIUHM Ht HH5LH0tHmtH]A\HH]A\JUH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u|H0]fDۘHHuӐuH|$ "1H$dH+%(H]A\A]@Ll$@Hl$ LH*tLd$`HL*t|$PLLfoL$`foT$pf(D$@fo$|$fo$fo$)$ fo$fo$)$0fo$fo$)$@fo$)$Pfo$)$`fo$fD$)$)$p)$)$)$)$)$)$gf($f.D$@zoumt$f.t$Hz_u]|$f.|$PzOuM1H$ Af.z[uYHH=u訂HMHg,H?胂HuL1H7f.[HuLHq7Jf.AUATUHdH%(H$1HHt$ HD$(HFHD$4D$0t>H|$ 袞1H$dH+%(*H]A\A]@Ld$@Hl$ LHN(tLl$`HL5(tf(D$@t$PLLfoL$`foT$pfo$fD$fo$)$t$)$)$)$)$,f($f.D$@#l$f.l$H t$f.t$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$$f.$zwuu$f.$zau_$f.$zKuIHHd,H HL1H4HuLH4 Hf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Zk|$HtHt+HH5}HPt~HuH1~Hu-Gff.fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H=|HetHH=ySeu}HuHcp@HH=zcdtHH=dtHFSH0fnFdH%(HD$(1H)H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD{nHHuӐt|HuHcoHHH;z,tЉ-Eff.fSH0fnFdH%(HD$(1H[H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDmHHuӐ t{HuHcnH HH;Rd,tЉ=Dff.fSH0fnFdH%(HD$(1HZH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDlHHuӐ t{HuHcmH HH; h,tЉMCff.fATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@kHHufHHRxH;b,7IMtoI$H5xLPtZyHuLIHoHdbLB1HHP@LWW8fE1xyH"DIjAfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$薕1HT$8dH+%(H@[]A\jHHuːHt$H|$tD$$Ld$u`HELH@H;fW,H=Pwl_tLH=MY_u-0xHaHcjVf.LLH=]_tLH= _tLfDHЉB@fAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(NH[]A\A]A^A_{hHHu뾐Lt$0Ll$LLtLd$PLL}tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$fo$fo$)$ D$$fo$)$0fo$)$@D$0fo$)$Pfo$)$`fo$)$p)$)$)$)$)$uHEHH;8r,LLD$yZD$f.D$0zkuifHnf.d$8z\uZfInf.l$@zMuK1H$Af.zSuQHH=uPuHH0Z,H+uHuL1LD*f uHuLL!*D$LLHD$)G=AWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(H[]A\A]A^A_{eHHu뾐Ll$0Ld$LLtLt$PLL}tT$8\$@fod$Pfol$`fot$pD$$fH~fI~fo$D$0)$)$)$)$uHEHxH;[,LLD$QD$f.D$0fHnf.T$8fInf.\$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$D$xf.$z{uy$f.$zeuc$f.$zOuM rHHW,HqHL1L'qHuLL&D$LLHD$i:ff.@ATL%.H LHdpH5.LO.uxLH.[LA\ATIUHmHt HH5 pLHtHmtH]A\HH]A\UH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u|H0]fDaHHuӐuHuLHIHoHbL1HHP@L8fE1=H"DIjYfATUHHdH%(HD$8HFLd$Ht$HSHD$H;HT$ LH5TD$(HD$ D$ )|$ Ht9D$ 9D$(}Ht$ L"tt$ HH"=HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=&-A\O=H5RWH!ATL%C-H HzGH5-L-u LH-&LA\ATIUHHt HH5#GLHtHmtH]A\HH]A\ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]XE1HD$(dH+%(H0LA\@,HHufu\H8I;;HuL.IHtH΢tL1HHP@LfIafDBUH=EH!u]ÐHH=>!tHH=E!tHH=H!tHH=Qx!tHH=8e!tH](UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$V1HT$8dH+%(uhH@]@HT$H|$H5V &|$HtHt+HH5HHPt9HuHu1i9Huff.fATH@dH%(HD$81HNHHt$HD$HFHD$$D$ t?H|$UE1HD$8dH+%(H@LA\f.Ld$Ht$LtHt$ L}tt$ |$<,I8HuLIHtH'wL1HHP@LMHGI~H)ǃuHH=g-L8HH5+GR1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$bT1HT$8dH+%(utHH[]fHt$H|$tHl$H=aFHgtHH='Tu+7HuHc)@HATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]SE1HD$(dH+%(H0LA\@'HHufHHRxH;b,IMtoI$H56ELPtZ6HuLIHoH褝bLT1HHP@L8fE15H"DIjfH8VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u4H(HttOH11Q1HT$(dH+%(uQH8@&HtHx(HtҋD$t2H蕍1H4HuH,H;T$DUH0VdH%(HD$(1HCH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11Q1HT$(dH+%(u`H0]f.%HtHx(HtˋD$t:H譌1fHH3HuH(KT$pfUH0VdH%(HD$(1HWH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11"P1HT$(dH+%(u`H0]f.$HtHx(HtˋD$t:H轋1fHH2HuH'[T$pfUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H112O1HT$(dH+%(u`H0]f.#HtHx(HtˋD$t:H͊1fHH1HuH"&kT$pfUH0VdH%(HD$(1HAH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11BN1HT$(dH+%(u`H0]f."HtHx(HtˋD$t:H݉1fHH1HuH2%{T$pfSH0VdH%(HD$(1H(@H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11RM1HT$(dH+%(u_H0[f.!HtHx(HtˋD$t9H1fH 0HuHc"T$qSH0VdH%(HD$(1HGH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11bL1HT$(dH+%(u_H0[f. HtHx(HtˋD$t9H1fH0/HuHc!T$qUH0VdH%(HD$(1HX>H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11rK1HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H 1fHH?.HuHb"T$pfUH0VdH%(HD$(1H|=H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11J1HT$(dH+%(u`H0]f. HtHx(HtˋD$t:H1fHHO-HuHBT$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11I1HT$(dH+%(u^H0[f.HtHx(HtˋD$t8H-1fH`,HuT$r@UH@VdH%(HD$81H;Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$H1HT$8dH+%(uuH@]+HtHh(HtՋD$$tYH|$;1Ht$H|$(tHEHt$H V+HuH:,H{T$ RUH@VdH%(HD$81H:Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$G1HT$8dH+%(u}H@]HtHh(HtՋD$$taH|$+1H5:HT$H|$|$HtHEH>*HuH",HsT$ Jff.UH@VdH%(HD$81H9Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$hF1HT$8dH+%(uxH@]HtHh(HtՋD$$t\H|$ 1Ht$ H|$tHEHt$ fH~")HufHnsxT$ OUH@VdH%(HD$81H8Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$XE1HT$8dH+%(uuH@]HtHh(HtՋD$$tYH|$1Ht$H|$%tHEHHt$0H(HuH6{|T$ RATUHHVdH%(HD$81H7Ht$HD$HGfnfnȉD$(fbfD$ uHHo(HttjH|$FD1HT$8dH+%(HH]A\HtHh(HtNjD$$tsH|$1Ld$HL`$tHt$LO$tHEHT$HH4$(&HaH ,HSBT$ *fAUATUH`VdH%(HD$X1Hw6Ht$ HD$(HGfnfnȉD$8fbfD$0uFHo(HtthH|$ C1HT$XdH+%(H`]A\A]@HtHh(HtɋD$4H|$ ~1Ld$@Ll$ LLtf(D$@HELH\$PfD$)$\$f($f.D$@zIuGT$f.T$Hz9u7\$f.\$Pz)u'b%H%HB ,Hf;%HuϹL1LTT$0@AUATUH`VdH%(HD$X1H4Ht$ HD$(HGfnfnȉD$8fbfD$0uFHo(HtthH|$ dA1HT$XdH+%(H`]A\A]@HtHh(HtɋD$4H|$ |1Ld$@Ll$ LLtf(D$@HELH\$PfD$)$\$f($f.D$@zIuGT$f.T$Hz9u7\$f.\$Pz)u'#H%H,Hf#HuϹL1LT$0@ATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$?1HT$8dH+%(H@[]A\;HHuːHt$H|$tD$$Ld$uXHELH@H;!,u\H=1 tLH=P} u)T"HeHcZfDLL@HЉfATL%-1H 1H5C-L[=-uDLH-^ LA\ATIUH]Ht HH50LHctHmtH]A\HH]A\QAVAUATUHHfnFdH%(HD$81H<1Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$=1HT$8dH+%(HH]A\A]A^f.;HHuŐLd$Ht$LtLl$LLtLt$LLtD$$t$uFHELLHN HtQD Ht/: HEH,H7LLH=T$L@HT$L_ff.@AUATUH@fnFdH%(HD$81H/Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$<1HT$8dH+%(H@]A\A]fDHHufLd$Ll$LLKtD$$u?HELHHt5HyH,HkLHHT$1L f.UH=v-H|u]ÐHH=4atH]$@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$:1HT$8dH+%(uhH@]@HT$H|$H5V |$HtHt+HH5<-HPtHuHu1iHuff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$91HT$8dH+%(utHH[]fHt$H|$߻tHl$H=Z,HtHH=uHuHc>@H`ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH118E1HD$(dH+%(H0LA\@C HHufHHRxH;R,7IMtoI$H5/+LPtZuHuLhIHoHbL1HHP@L8fE1H"DIjyfH8VdH%(HD$(1HDH4$HD$HGfnfnȉD$fbfD$u4H(HttOH11S71HT$(dH+%(uQH8@ HtHx(HtҋD$t2Hr1H2HuH+HT$DH8VdH%(HD$(1HCH4$HD$HGfnfnȉD$fbfD$u4H(HttOH11s61HT$(dH+%(uQH8@ HtHx(HtҋD$t2Hr1HRHuH6+HT$DSH0VdH%(HD$(1HwH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H1151HT$(dH+%(u_H0[f. HtHx(HtˋD$t9H-q1fH`HuHc T$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H1141HT$(dH+%(u`H0]f.+ HtHx(HtˋD$t:H=p1fHHoHuHbT$pfSH0VdH%(HD$(1H&H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H1131HT$(dH+%(u_H0[f.;HtHx(HtˋD$t9HMo1fHHuHc3 T$qUH0VdH%(HD$(1H1@H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H1121HT$(dH+%(u`H0]f.KHtHx(HtˋD$t:H]n1fHHHuH肴T$pfUH0VdH%(HD$(1HI?H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H1111HT$(dH+%(u`H0]f.[HtHx(HtˋD$t:Hmm1fHHHuH T$pfSH0VdH%(HD$(1H%H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H1101HT$(dH+%(u_H0[f.kHtHx(HtˋD$t9H}l1fHHu;T$qSH0VdH%(HD$(1H%H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11/1HT$(dH+%(u_H0[f.{HtHx(HtˋD$t9Hk1fHHu:,T$qSH0VdH%(HD$(1H<H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11/1HT$(dH+%(u^H0[f.HtHx(HtˋD$t8Hj1fHHu=T$r@SH0VdH%(HD$(1H;H4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11.1HT$(dH+%(u_H0[f.HtHx(HtˋD$t9Hi1fHHuHcLT$qUH@VdH%(HD$81H:Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$-1HT$8dH+%(utH@]HtHh(HtՋD$$tXH|$h1Ht$ H|$qtHEt$ HHuH+H|=T$ S@UH@VdH%(HD$81H9Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$,1HT$8dH+%(u}H@]HtHh(HtՋD$$taH|$g1H5HT$H|$:|$HtHEHHuH+Hs$T$ Jff.UH@VdH%(HD$81H8Ht$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$*1HT$8dH+%(u}H@]{HtHh(HtՋD$$taH|$f1H5tHT$H|$|$HtHEH HuH+HsT$ Jff.UH@VdH%(HD$81H7Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$)1HT$8dH+%(H@]@SHtHh(Ht͋D$$tdH|$ce1H5LHT$H|$|$HtHEHt HsHc#hT$ ?UH@VdH%(HD$81Hr6Ht$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$(1HT$8dH+%(H@]@3HtHh(Ht͋D$$teH|$Cd1H5,HT$H|$|$HtHEHT Hs@b3gT$ >ff.@ATUSH@fnFdH%(HD$81H֞Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f'1HT$8dH+%(H@[]A\HHuːHt$H|$qtD$$Ld$uXHELH@H;+u\H=@tLH=-u) HeHcZfDLLȅ@HЉBfATL%c-1HUH5-L -uM,LH3-LA\ATIUHHt HH5LHtHmtH]A\HH]A\UH=Hu]ÐHH=ԜtH]Ą@駻UH@dH%(HD$81H:Ht$HD$HFHD$$D$ t0H|$<%1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5U?HPtHuH1Humff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$\$1HT$8dH+%(uFH@]@H|$HT$H5|$HtkHCHuH6ff.@ATUHHdH%(HD$81H9Ht$HD$HFHD$$D$ D$ wcLd$HT$ H5jL|$ Ht#D$ 9D$(|Vt$ HzHHtU1HT$8dH+%(uMHH]A\H|$,#f.Ht$ LuDH0fUH0dH%(HD$(1HE=H4$HD$HFHD$D$t*H11"1HT$(dH+%(u-H0]fDâHI1MuH虤fUH0dH%(HD$(1H<H4$HD$HFHD$D$t*H11"1HT$(dH+%(u-H0]fD胸HI1MuH fUH0dH%(HD$(1H7<H4$HD$HFHD$D$t*H11!1HT$(dH+%(u-H0]fD|HI1MuHyfUH0dH%(HD$(1HqH4$HD$HFHD$D$t*H11 1HT$(dH+%(u-H0]fDcHI1MuHbfUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$R 1HT$8dH+%(HH[]DHt$H|$otHl$H=s:HWtHH=DuHuHc@HH=tHH=ٖtH~QUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u8H0]fDHHuӐH#HuHFff.@UH0fnFdH%(HD$(1H<9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(u8H0]fDHHuӐKHSHuHFff.@SH0fnFdH%(HD$(1H8H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐ|Hu(UH0fnFdH%(HD$(1H7H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fD[HHuӐ[HHuH/ff.@UH0fnFdH%(HD$(1H5H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐHHuH_ff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fDHHuӐt"HuHcHHH;+tЉmff.fUH0fnFdH%(HD$(1HQ5H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u^H0]fDHHuӐt$H0HuH辖@HH H;'+tHyfSH0fnFdH%(HD$(1H5fH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uUH0[fDHHuӐtAHuHHHH;_+tЉfSH0fnFdH%(HD$(1HV H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uUH0[fDHHuӐtaHuHHH;+tЉfSH0fnFdH%(HD$(1Hf H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐtHu5HH`H;7+tЉfUH0fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD;HHuӐtH`HuH蓘뵐HHxH;+tHUH0fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD[HHuӐtH HuH賗뵐HHH;+tHUH0fnFdH%(HD$(1H-0H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD{HHuӐtHXHuHӖ뵐HHpH;+tH1UH0fnFdH%(HD$(1H]/H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHPHuH뵐HHhH;?+tHQSH0fnFdH%(HD$(1H.H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uUH0[fDHHuӐt!HuHHXH;+tЉrfSH0fnFdH%(HD$(1H-H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uUH0[fDHHuӐt@HuS뵐HH@H;/+tЉ蒽fSH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uUH0[fDHHuӐt9`Hus뵐HHH;W+tЉ貼fUH0fnFdH%(HD$(1H&,H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtH0HuHs뵐HHH;'+tHѻUH@fnFdH%(HD$81H[+Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.+HHuϐH5ݎHT$H|$|$HtHhsHuHW+Hܺff.UH@fnFdH%(HD$81Hk*Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.+HHuϐHt$ H|$att$ Hqx|HuH`+HDUH@fnFdH%(HD$81H)Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uVH@]f.;HHuϐHt$ H|$qtt$ HHuHp+HDUH@fnFdH%(HD$81H(Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u_H@]f.KHHuϐH5&(HT$H|$ |$HtHhVHuHw+Hff.UH@fnFdH%(HD$81H'Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u_H@]f.KHHuϐH5HT$H|$ |$HtHHuHw+Hff.UH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u_H@]f.KHHuϐH5HT$H|$ |$HtH蘰HuHw+Hff.UH@fnFdH%(HD$81H?Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uWH@]f.KHHuϐHt$H|$tHt$HHHuH苋@UH@fnFdH%(HD$81H$Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uTH@]f.[HHuϐHt$ H|$葷tt$ HHu^UH@fnFdH%(HD$81H%Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.kHHuϐH5#HT$H|$*|$HtHhHu@ff.ATUH8fnFdH%(HD$(1H&#H4$HD$HGfnȉD$fbfD$uCH(HtD$9D$tHH111HT$(dH+%(H8]A\fDsHHuftLHHHuHtVHnhHHIHuƣLHv|fDHHH;+tHfDHY+HF۱ff.ATUH8fnFdH%(HD$(1H"H4$HD$HGfnȉD$fbfD$uCH(HtD$9D$tHH111HT$(dH+%(H8]A\fD3HHuftLH@HuHtVH.gHHIpHu膢LH{u|fDHHH;g+tHfDH+HF蛰ff.AVAUATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$\1HT$8dH+%(HH]A\A]A^f.HHuŐLt$Ll$LH5L|$ItLLotHT$LH[HqH+HchATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(uyHH]A\fDHHuѐLd$Ht$LntHT$H5 Lf|$HtHt$H菍HuH+HwPH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(ufH8HHuҐHH8H; +u-u ƇHuH+H듾bfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(ucH8HHuҐHH8H; '+u-t ƇHuH+H1uDATUHHfnFdH%(HD$81HHHt$HD$HGfnȉD$(fbfD$ Ho(D$HtXD$ +D$$whLd$Ht$Lt2D$ 9D$(T$Ht$HPH:Ht]D1HT$8dH+%(umHH]A\fDH|$f.kHHIDHЁfDHt$L_,ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$HtXD$ +D$$whLd$Ht$Lft2D$ 9D$(T$Ht$HgHHt]D1HT$8dH+%(umHH]A\fDH|$|f.HHIDH耀fDHt$L蛬_ܩff.ATUHHfnFdH%(HD$81HQHt$HD$HGfnȉD$(fbfD$ Ho(D$HtXD$ +D$$whLd$Ht$Lt2D$ 9D$(T$Ht$HOHHt]D1HT$8dH+%(umHH]A\fDH|$,f.HHIDH0fDHt$LK_茨ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$HtXD$ +D$$whLd$Ht$Lt2D$ 9D$(T$Ht$HsHJHt]D1HT$8dH+%(umHH]A\fDH|$f.{HHIDH}fDHt$L_H(HtD$9D$t;H111HT$(dH+%(H8@KHHuҐHtAHH;3+uI9t Ƈ9HuHr+H@HH;+t@1դDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$1HT$8dH+%(H@]Ð+HHuԐHt$H|$tD$$t$t8@8tHE@H^HuHB+H@HEH8H;.+u$@8t@HfH脣@UH@fnFdH%(HD$81HmHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$M1HT$8dH+%(H@]ÐHHuԐHt$H|$qtD$$t$t8@89tHE@9HHuH+H@HEHH;n+u$@89t@9HfH4@H8fnFdH%(HD$(1H.H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtAHH;+uI9u Ƈ9HuH½+H@HH;+t@"fATUHXfnFdH%(HD$H1H*Ht$ HD$(HGfnȉD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 1HT$HdH+%(HX]A\f{HHuѐLd$ Ht$L.tHt$ LMtHt$LD$ +D$$H|$:1fDH5D!1HT$8dH+%(H@]DL `Ht$LL$L$ D$$D$(HH(HtD$$9D$ tH|$111D[HH7yf.Ht$H|$XHt$HHH:H/fD#YHkHۿHHEŖDAW1AVAUATUSHXHNdH%(HD$H1HGAfnH%fnA)fbAtEAH5D1HT$HdH+%(HX[]A\A]A^A_HkHt$H\$L$ T$$T$(HHo(Ht{D$ +D$$t|H|$(1@HHt$H\$T$(fD$ HHo(Ht%D$ +D$$H|$1%Ld$8Ll$LLtLH\$8Dt$FAHt1FAHt$FALhHDž@HEHHH+HfMDMGDLH1@A  HHH9u1A  HHH9ujLHL1uLHL1貌fAUATUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uWHD$Ho(Ht!D$ +D$$tHH|$t1HT$8dH+%(HH[]A\A]HHu͐Ht$H|$btD$$Ld$lHEHH;*+LHMM{LL0LpLALhHLIL$HHHH)HHHL1HAoHH9uLLHH :IFAHt1FAHt$FALHDžHHEH{HH[+HfMDMGDLH1@A  HHH9u1A  HHH9ujLHL1uLHL1RfATL%-H HH5>-L8-uLH~-LA\ATIUH=[Ht HH5LH#HtHmtH]A\HH]A\bUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fDHHuӐu,HH{HuHHx)VHfD Ć@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5FHT$H|$ک|$HtD$$u(HEHVHuH:+H@H豅UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f. HHuϐH56HT$H|$ʨ|$HtD$$u(HEHFHuH*+H@Hm衄SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uMH0[fD HHuӐu$HlHuHcD#ʃf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8+HHuҐu$H莺HuHr+H@cNff.U1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt< H5V1HUdH+%(\ He[A\A]A^A_]H VH0H8Hfօ@HDH0Mx(1HH?H}4AHc豫LeE,MB@+D.HH}1HUH9(HHxH@H UH0H8Hfօ@HH0Mx(1HH+>H}4AHc٪LeEuhM@+DrH,H}1HXHUH9,FIcI@IcILPHL^HHH5;HHH |HH(IOaHHHHHIc1 HH9t$Af.ztHHֱHqLH}f@L0IHH07H}4Hc£H}1IL1LآIHH06H}4HcjH}1IL1H}HL1fbӰHHHeATLLLHHXHD1@AHH9uH!HkHDL=e-H4HL1eAPLLLLHAT v豯HAHHdxHD1AHH9uHHDLndHjeHHDAVAUATUSHPfnFdH%(HD$H1HHbHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$K1HT$HdH+%( HP[]A\A]A^˟HHuƐLd$0Ll$LLTtT$8\$@D$$D$0fH~fI~ޅufHED$HLD$Hf.D$0z_u]fHnf.d$8zPuNfInf.l$@zAu?貭H.Hѡ#@HLD$臉D$H@sHuL1LbuDAWAVAUATUH@fnFdH%(HD$81H`Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$1HT$8dH+%(H@]A\A]A^A_fLl$Ht$LީtL|$L5FLLLИ|$ItLLL踘|$HtD$$Ht$uQLELHA+H\H +HNf苝HH4f.LH ^tff.ATUHHfnFdH%(HD$81H_Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$ 1HT$8dH+%(HH]A\f諜HHuѐLd$Ht$L^tHT$H5ƐLV|$HtD$$Ht$u/HEHͪHtH+Hf@H!sAV1IAUATUHfnFdH%(HD$xHG~H%fn)fbtAH5]E1 HD$xdH+%(HĈL]A\A]A^H o]Ht$ HL$(T$8fD$0HIh(Ht%D$0+D$4bH|$ E1}fDH ]Ht$ HL$(T$8fD$0HHl$ M`(H.H|$@4AHcsH|$@H|$Mt'D$0+D$4t?HH|$@E1HHD$HH9聁@Ht$HKtLt$HL7tHt$DH2tHt$HL$LLz?赨HC觨H虨H|$@E1H[L%q+I$JLd$ Ht$L讥HT$H5L袔|$HvD$4Ht$HEHHJL%+I$LhIHLHIH0H|$ --H|$@4HccHmHT$DHHT$HGIoHEUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(utH@]f.HHuϐHt$H|$ѣtD$$Ht$u(HEH\HuHcDHnAU1IATUH`fnFdH%(HD$XHG~H%fn)fbtFH5Y1HT$XdH+%(H`]A\A]H eYHt$0HL$8T$HfD$@HIh(HtD$@+D$DH|$01f.H YHt$0HL$8T$HfD$@HIh(HGD$@+D$DVH|$01H XHt$HL$T$(fD$ HuXIh(HD$ +D$$tvH|$b1LIHLIHuLȕIH oLd$Ht$L螉NHt$L艉9Ht$ Lt$T$$HEL$ T$t$HxH;+7 1;Ht$H|$0L$DHt$HEHpHkHHZBDLd$0Ht$L莠nHT$ H5m L肏|$ HLD$DHt$+HEHH Hч+HH1HPLd$0Ls.H5LHǾsHH5phH@HHLUHH5TFHHhHH5=,H5LHH5L-HLLL:CHLH{LH1輌;L1蝎hH 3FLd$0Lq-H5L HǾsHH5nf H>GHLS HH5RD HHgHH5;* H5L HH5 L-HLJ~LtNBHLHzLH1辋:HHgBH芹BHx1iHHfAU1ATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtAAH5SD1HT$XdH+%(Hh[]A\A]L wSHt$ LL$(L$0T$4T$8HHo(Ht{D$0+D$4t|H|$ 耼1@H SHt$ HL$(T$8fD$0H|Ho(Ht%D$0+D$4H|$ &1)Ht$H|$ 艜tߋT$4Ht$THEHXHHuHHH5plBH:KDLd$ Ht$LpLl$@LLqESD$4L$HD$@\$PHt$ $fH~D$HELH` $D$f.D$@f.L$H}u{fHnf.d$Pznul'HH+HfD胏HHs1kHH1HH軝HLLRlLHD$ $eH8fnFdH%(HD$(1HcH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Ϲ1HT$(dH+%(uLH8[HHuҐu$H辜HuH+H@Xeff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.kHHuϐH5ҀHT$H|$*|$HtD$$u(HEH覛HuH+H@HdUH0fnFdH%(HD$(1HӛH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11޷1HT$(dH+%(uNH0]fDkHHuӐu$HHH˚HuH@ H)cfUH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fD苋HHuӐu$HPHHuH@CHIbfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(urH@]f.蛊HHuϐHt$ H|$dtD$$t$ u)HEHPߘHuH}+HDH@9afUH@fnFdH%(HD$81H $Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.苉HHuϐH5~HT$H|$J|$HtD$$u(HEH8ƗHuH|+H@H踾!`SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD苈HHuӐu$HHuHc蟉DJ_f.H@@8tH@f.D@DDDHP@HX@H`@H @H0@@89tH@9f.D9@H@@HH@fDDGHAUATIUL@HMtuHtXLX|tiLmLLhLLLH@H>HEH]A\A]HfDLPmHDž@Hu]A\A]DAUATIULHHMtuHtXL{tiLlL4LhL8LLHHH#>HEH]A\A]HfDLlHDžHHu]A\A]DUH=HH,{u]ÐHH={{tHH=ztHH='ztH]f.@HHH;#+u!9tƇ91@HHH;+u!9uƇ9AUATUHH0dH%(HD$(1u'HD$(dH+%(H01]A\A]ILH5|LHǾsHH5Hb8HLwHH5v|hHH YHH5_|NH5|L?HH570L-9|HLnoLu74HL貲H1|,L~fD3HLH}kfZHL~Hߢf.DUH@dH%(HD$81H*%Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5$}|$HtHt+HH5HPtHuH/1Hu]Yff.fUSHHdH%(HD$81H$Ht$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_/tHl$H=HGwtHH=ğ4wu HuHc辂@HH=# wtH TX@ATH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-E1HD$(dH+%(H0LA\@賀HHufHHRxH;B{+GIMtoI$H5LPtZHuL-IHoHtbL$W1HHP@Lgl8fE1舎H"DIjVfSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辪1HT$(dH+%(uWH0[fDKHHuӐ1ۅt赍Hu‰iH1H`H;Ml+tЉVUH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ީ1HT$(dH+%(uVH0]fDk~HHuӐtHo8ӌHuH+@HHH;?+tH!USH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD}HHuӐt_@Hu~fDHHH;G+tЉBTfUH0fnFdH%(HD$(1H}H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD|HHuӐtHo0HuH*@HH0H;gr+tHaSUH0fnFdH%(HD$(1HAoH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u|H0]fD{HHuӐuHHHH;{z+u$HuHo+HfHHuHtHH5kW=H56t[Rff.UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u|H0]fDzHHuӐuHH@H;q+uHuHm+HfHHuHtHH5[V-H%5tKQff.ATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDyHHuѐHt$ H|$StD$$E1uHEHhH;p+uهHuL&f.t$ HI-Pff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.{xHHuϐHT$H|$H5:s|$tT$$uHUHH;p+u貆HuHk+HHHOUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKHo(Ht!D$ +D$$tEH|$1HT$8dH+%(u{HH[]kwHHuАHT$H|$H5z*r|$tT$$1ۅuHUHH;_c+u蠅Hu賭낐HH҉Mff.@USHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKHo(Ht!D$ +D$$tEH|$1HT$8dH+%(uHH[]KvHHuАHT$H|$H5Z q|$t\$$t1蔄HuHcGwDHUHH;ކ+tHH҉Lff.ATUHHfnFdH%(HD$81H'Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$蠠1HT$8dH+%(HH]A\f+uHHuѐLd$Ht$L^OtHt$ LMOtHT$H55iLo|$tT$$E1u+HULpL;`+tT$ t$HHAA#HJA1>KAUATUH`fnFdH%(HD$X1HU6Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ N1HT$XdH+%(!H`]A\A]fDsHHufLd$@Ll$ LL(tD$4L$HD$@T$PtXHD$Pf)\$@f.D$@|f.L$Hzturf.T$PzjuhˁHDHf+H6fHEHXH;f+tT$LHD$L$T$D$L$ucHuL1L|6wIfAUATUHfnFdH%(H$1HNH4$HD$HGfnȉD$fbfD$uSHo(HtD$+D$tMH苝1H$dH+%(XHĐ]A\A]D rHHuƐLd$ ILL('tfoT$ fo\$0fod$@D$)T$P)\$`)d$pf)D$ )D$0)D$@D$ f.D$PD$Xf.D$(D$0f.D$`z~u|D$8f.D$hznulD$@f.D$pz^u\D$Hf.D$xzNuLHHd+HfDHEHPH;.~+ALHGcHuL1L|4GDATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$膛1HT$8dH+%(H@[]A\ pHHuːHt$H|$tD$$Ld$uXHELH@H;{+ulH=`etLH=ݍMeu)$~HeHcpZfDLLH=etL븐HЉRFfATL%I-H H[H5>K-L\8J-ufLH~J-hLA\ATIUH]Ht HH5LH#tHmtH]A\HH]A\ SH0fnFdH%(HD$(1HuH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莙1HT$(dH+%(uMH0[fDnHHuӐu$H||HuHc/oDSDf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11讘1HT$(dH+%(uMH0[fD;mHHuӐu$H{HuHcOnD#Cf.UH@fnFdH%(HD$81HjHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$—1HT$8dH+%(urH@]f.KlHHuϐHt$ H|$1`tD$$t$ u)HEHzHuHs_+HDHpBfH8fnFdH%(HD$(1H'H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11迖1HT$(dH+%(uLH8KkHHuҐu$HyHuH^+H@D Bff.H8fnFdH%(HD$(1H@H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11ߕ1HT$(dH+%(uLH8kjHHuҐu$HxHuH]+H@M,Aff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDiHHuӐu$HwHuHcjDJ@f.SH0fnFdH%(HD$(1H1;%H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDhHHuӐu$H wHuDCj?f.SH0fnFdH%(HD$(1H$H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uMH0[fDgHHuӐu$H,vHu?D>f.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uNH0]fDfHHuӐu$H8HKuHuHni@'H=fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uNH0]fD fHHuӐu$HHktHuHh@`HhHuH"M+H0UHAWAVLAUATSHdH%(HE1HHHHHGLHDžLx8HHcIVLHHcHIYHLHpHcHPIYHPLHhHcH}IiYHEH`+HxÃE1H}HtHEH9tI?HPHtHXH9t,?HHtHH9t?HHH9t Ht>HEdH+%(LHeL[A\A]A^A_]DHHxHHX ;HHxHHP,HHxHHH DLxHLHpDLk HhDLQ H`DL7 |H`HLhLp8HHHP@HXDDDLXZD9D9D9fInf.zHuF8f.z4u2@f.z udHHcDWIwdHuHHHxNdHrHPHxeP,H騢HHVH3ff.UH@dH%(HD$81H8Ht$HD$HFHD$$D$ t0H|$\1HT$8dH+%(u^H@]@Hl$Ht$ HHtH5yHT$ HO|$ Ht|$ .cHuHH+H+USHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=_HItHH=rtIuKbHuHcT@HH=xIItHH= 6ItH*SH0fnFdH%(HD$(1H>H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^~1HT$(dH+%(uZH0[fDRHHuӐtRaHuHcTHHH;O+tЉ)ff.fSH0fnFdH%(HD$(1HyEH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n}1HT$(dH+%(uZH0[fDQHHuӐtb`HuHcSHHH;J=+tЉ(ff.fSH0fnFdH%(HD$(1HXH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~|1HT$(dH+%(uZH0[fD QHHuӐtr_HuHc%RHHH;:N+tЉ'ff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11{1HT$(dH+%(u^H0]fDPHHuӐt$H8^HuH@HHH;?K+tH&fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11z1HT$(dH+%(u^H0]fD+OHHuӐt$H ]HuHO@HHH;G>+tH%fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11y1HT$(dH+%(u^H0]fD;NHHuӐt$H\HuHN@HHH;;+tH$fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11x1HT$(dH+%(ubH0[fDKMHHuӐuHH`H;+N+u)[HuHcJNЉ#DUH0fnFdH%(HD$(1H[H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11w1HT$(dH+%(H0]f[LHHuӐtT<D+8+@HHcH苇L+HHHZHuHN@HHHH;7V+tH"fAUATUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$v1HT$8dH+%(H@]A\A]fD#KHHufLd$Ht$LVtLHT$H53?E|$ItT$$Ll$HEuHH; UB+u;H8LLH5YHHH=+H:fDLLHn!ff.AUATUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$.u1HT$8dH+%(H@]A\A]fDIHHufLd$Ht$L^UtLHT$H5=VD|$ItT$$Ll$HEuHH; C+u;H8LLHPWHBH<+H4LLHff.AWAVAUATUSHhfnFdH%(HD$X1HHt$ HD$(HGfnȉD$8fbfD$0uSHo(Ht!D$0+D$4tMH|$ s1HT$XdH+%(Hh[]A\A]A^A_@;HHHuȐLl$ HT$H5LB|$ItL|$@LL8tHD$PLLHH\$@Lt$HHD$"dH;\$@u;L;t$Hu4HD$H9D$Pu(3VHAH;+H3f. VHuιLLHjf.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=rE1HD$(dH+%(H0LA\@FHHufHHRxH;rA+dIMtoI$H5LPtZTHuLIHoH脼bL41HHP@Lw28fE1TH"DIjfAVAUATUHxfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$p1HT$hdH+%(.Hx]A\A]A^f.;EHHuŐLl$HT$H5L?|$ItLt$0LL tfoT$0HLLHD$@)T$PHD$`HŋD$P9D$0udD$49D$TuZD$X9D$8uPD$\9D$|$ItL|$HLLtD$PHLLDt$L\$HD$ H;\$HuDD;t$Lu=D$ 9D$Pu3fQHDHtHHH5虪H%@3QHuùLLRH5+H{ff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$6m1HT$8dH+%(H@[]A\AHHuːHt$H|$AtD$$Ld$u`HELH@H;~3+H= 7tLH=c`6u-OHaHcBVf.LLH=[f6tLH=y6tLjfDHЉfAWAVAUATUSHXfnFdH%(HD$H1H(Ht$HD$HGfnȉD$(fbfD$ uSLg(Mt!D$ +D$$tMH|$k1HT$HdH+%(1HX[]A\A]A^A_@+@HHuȐLl$8Lt$LLtD$$D|$<\$8T$@A$DA+$@ЃA+$HA$8HHcHDA+$@HHA$<)ȃHH)HH9\$8uYD9|$HHuŐLd$(ILLtD$Dt$,\$(D|$0D+@8ND+HHcHHD+@HcHЋ<)ʅNHcH‰)HcH,9\$(u[D9t$,uTD9|$0uMLH H/@f.HEHpH;E+NHLHKHuL1LM%DSH0dH%(HD$(HFt1tlH5>f1HT$(dH+%(H0[fHH4$HD$HGD$D$D$u]H(Hu41HD$(dH+%(upH0HH[H=~'-iKf[JHuHc=Vf;EHt$L)0Ht$LD$L$L$4T$f(fمHEHH;|$+vf. zuf.(zuf.0z H(0Ld$@H|$ LypT$4HEf(D$@HH;#+T$Pf(f(ff(f. zuf.(zuf.0ztD H0+?HH $+Hf0HHf.HH;-+f(D$@HH; #+T$Pf(f(ff(;f(HnfDf. zuf.(zuf.0z@HE H0LHff.fAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH Ht$ HL$(T$8fD$0HHo(HtH(HtD$9D$t;H11P1HT$(dH+%(uLH8%HHuҐu$H3HuH+H@SOLff.UH@fnFdH%(HD$81H,Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$P1HT$8dH+%(uzH@]f.$HHuϐH5IHT$H|$Z|$HtD$$u(HEH2HuH+H@H 1UH@fnFdH%(HD$81H*Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$O1HT$8dH+%(uzH@]f.#HHuϐH5HHT$H|$J|$HtD$$u(HEH1HuH+H@H舕!UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11M1HT$(dH+%(ucH0]fD"HHuӐu,HH0HuHHx#{HfD{D4@AVAUATUHXfnFdH%(HD$H1H)H4$HD$HGfnȉD$fbfD$ILo(1LµH|$ HcIHl$ Mt(D$+D$LLHl$ E1HtHD$(H9tHVHD$HdH+%(HXL]A\A]A^;!HH\H1E1"H|$ HcEHl$ fDDHLmD$u:IEHLU/HGL%5+Hl$ I$9fDHL51H,nfAV1AUATUHHNdH%(HD$x1HGAfnH%fnA)fbAtEAH5DtI1HT$xdH+%(rHĈ]A\A]A^LHHt$ LT$(L$0T$4T$8HHo(Ht{D$0+D$4t|H|$ J1@H Ht$ HL$(T$8fD$0H<Ho(Ht%D$0+D$4 H|$ J1%Ll$ HT$H5L|$ItLt$@LLtfod$@HD$PD\$4HD$p)d$`EHELLHpD$`9D$@D$D9D$dD$h9D$HD$l9D$LD$p9D$PD$t9D$Tz,HH+H:@Lt$Ld$ LH5L|$IHt$L!Ht$ L Ht$LHt$LHt$LwLLdDL$DD$L$ T$|$t$fAnfAnfnfnfbHEDT$4fnfnfbfbflEWHVLxXZ;HH1HH=1{+HxLL,^LLH)D$`HT$`LHfL$pp"AT1UHHHNdH%(HD$81HGAfnH%fnA)fbAAuZH Ht$HL$T$(fD$ HHo(Ht@H@f~DAW1AVAUATUSHXHNdH%(HD$H1HGAfnH%fnA)fbAtMAEH5D{=1HT$HdH+%(HX[]A\A]A^A_fDH޽Ht$H\$L$ T$$T$(HHo(HtD$ +D$$H|$>|H~Ht$H\$L$ T$$T$(HH(HBD$$9D$ /H|$11>1!f.HHt$H\$T$(fD$ HuPHo(HD$ +D$$tfH|$B>1HHfHHufDHH-wfLd$Ht$L[Ht$LyFHt$ Ld1D$$L$ T$t$$HEH0HfH8H HHHH5yHfLd$8Ll$LLfT$$Dt$<\$8D|$@uhHEHL(H;\$8uD;t$HrHT$(H[fDH\$(Hl$0HH5HH\|$(ILl$PHLsL|$HL[LD$ HLLD$>HH+HD$`fo\$PLD$H$D$D)\$p^I$ILLLLD$p9D$PD$t9D$TD$x9D$XD$|9D$\$9D$`$9D$dH;HH6HWH*HiD HH1L HH1,ILLLL/JHL1H%H/LHwILLLLΓHT$ HǺHT$H谺jHT$ H虺HT$H肺HT$(HkUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$41HT$8dH+%(H@]fDK HHuϐH5HT$H|$ |$HtD$$u0HEHHHuH|@HХHfDAWAVAUATUSHHfnFdH%(HD$81HʲH4$HD$HGfnȉD$fbfD$uTHo(HtD$+D$tNH31HT$8dH+%(HH[]A\A]A^A_HHuŐLd$ ILL8tD$Lt$(H\$ L|$0uMHELHH;\$ uFL;t$(u?L9|$0u83H^H*HPf.LHHuL1L]ff.fAW1AVAUATUSHxLNdH%(HD$h1HGEfAnH%fnA)fbALKc L>HHt$0H\$8DL$@T$DT$HH Lg(MD$@+D$D+H|$011DHT$hdH+%(PHx[]A\A]A^A_DHyHt$0H\$8T$HfD$@HdLg(MD$@+D$D^H|$0R11{HHt$0H\$8DL$@T$DT$HHH(HD$D9D$@H|$01101!HD$hdH+%(pHxHH[H=,]A\A]A^A_l@HHt$0H\$8DL$@T$DT$HHLg(Mt%D$@+D$DwH|$0c01H5-DM.1vfDHH1XHH18HH1HH>1Ll$Hl$0LH+@Lt$ HL(L|$(HLt$D\I$LLLL|HnHp`HKRHH2*H9fHl$0HT$(H5cHw|$(IvLt$PHL贛YT$DHD$`L|$XH\$PHD$yI $LLLHD$H;\$PuL9|$Xu H9D$`DH6LHHHWHH葶<@H\$(Hl$0HH5hH||$(I{Lt$HLNcL|$ HL6KHH#8L$DI$ILLLLHHH%HT$(HZD+rHLLLU~HD$LLLLILLLLfHT$(HHT$ HӱyHT$1H迱WHT$H許HT$ H葱UH@HNdH%(HD$81HGfnAH%HfnfbA)Au\H Ht$HL$D$(fD$ HHo(Ht>D$ +D$$H|$+1fDH5D)1HT$8dH+%($H@]DL _Ht$LL$L$ D$$D$(HH(HtD$$9D$ twH|$119+1DHH7yf.H5$HT$H|$|$HKD$$udHEHu\H HHcfDKHH5f.H@K'fUH@HNdH%(HD$81HGfnAH%HfnfbA)Au\H Ht$HL$D$(fD$ HHo(Ht>D$ +D$$H|$)1fDH5D'1HT$8dH+%('H@]DL mHt$LL$L$ D$$D$(HH(HtD$$9D$ twH|$119)1DHH7yf.H5"HT$H|$|$HKD$$udHEHfH~u\HfH~ HfHn6KHH5f.HfH~볐fH~ff.@UH@HNdH%(HD$81HGfnAH%HfnfbA)Au\H Ht$HL$D$(fD$ HHo(Ht>D$ +D$$H|$'1fDH5D%1HT$8dH+%('H@]DL nHt$LL$L$ D$$D$(HH(HtD$$9D$ twH|$11)'1DHH7yf.H5 HT$H|$z|$HKD$$udHEHfH~u\HfH~ HfHn&;HH5f.HfH~볐KfH~ff.@AU1ATUHĀHNdH%(HD$x1HGAfnH%fnA)fbAtBAH5D#1HT$xdH+%(H]A\A]fLHt$ L\$(L$0T$4T$8H:Ho(Ht{D$0+D$4t|H|$ `%1@H gHt$ HL$(T$8fD$0HHo(Ht%D$0+D$4H|$ %1(Ld$@Ll$ LL.tfoT$@HD$PDD$4HD$p)T$`EHELHD$`9D$@yD$D9D$dkD$h9D$H]D$l9D$LOD$p9D$PAD$t9D$T3~H?H^*H^DLd$ Ht$LHt$ LHt$LHt$LHt$LzHt$Le|$4D$DL$DD$L$T$ t$LUHHPAY^DHH#1yHH1aLH腴yKHL1LHHP~XZfAWAVAUATUSHhfnFdH%(HD$X1HҡHt$HD$HGfnȉD$(fbfD$ Ll$Lw(LH|$0HcI9Hl$0Mt(D$ +D$$L,"Hl$0E1HtHD$8H9tHHD$XdH+%(THhL[]A\A]A^A_HHPH|$E1mH|$0Hc萇Hl$0fHt$LC_L|$LL+GH\$ LH/DHL蝺D$$t$uQIIHLLOHtbEHt@;HL%*Hl$0I$@IHLLWDT$ LODT$L7PHB@AWAVAUATUHSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hm(Lt$ LH|$@HcIHD$@LHD$虈4H|$`AHc超Ll$`1EtIcI\H)D$0+D$4LLl$`E1MtHD$hI9tLH|$@HD$HH9t HtH$dH+%(HĘL[]A\A]A^A_fHHf.Ht$LeHt$LPHt$L;Ht$DL#DLL EIUHH)HAD$D1H@AoTHH9uDAt4AtH4HA9~ALLA9~ ADDD$4L$T$t$uxHELD$MHxE~+Ic1HH9t A9LtHtaLl$`E1HL%*I$@E1LD$MHhD1ATHH9uFDLLH?H?AWAVAUATUSHhfnFdH%(HD$X1H:Ht$ HD$(HGfnȉD$8fbfD$0uSHo(Ht!D$0+D$4tMH|$ 1HT$XdH+%(fHh[]A\A]A^A_@HHuȐLd$ Ht$LtHt$LtHt$LtHT$H5L|$HmLl$@LLPD$4T$HD$@\$PL$T$fI~֋t$fI~D$u_HEMIHXD$f.D$@zTuRfInf.d$HzEuCfInf.l$Pz6u4HH}*HMIH薼D$iHu¹LLAVAUATUHXfnFdH%(HD$H1H>Ht$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4tEHt$L)0Ht$ L|$$L$ T$t$HEH(<DLd$H(HtD$9D$t;H11/1HT$(dH+%(uLH8HHuҐu$HHuH*H@|ff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(uLH8HHuҐu$H>HuH"*H@蜻ff.UH@fnFdH%(HD$81H:Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(utH@]f.HHuϐHt$H|$tD$$Ht$u(HEH,HuHcDH@b臺UHAWAVAUATSHfnFdH%(HE1HH0H8HGfnȉHfbfօ@H0Lo(1HHvH}4AHcLuEuvM@+DH H}E1HtHEH9txHEdH+%(tHeL[A\A]A^A_]IcIKHH-H0E1+vH}4HcH}IpLE1eLPHL%;HHH5H HH lHH(豇HHHH\HpHHHrHDLXnXP`xp]E~_IFH9<AD$.DH1HfAHH9uDHAt AËD(H IEHLLLLAVHf.PIXZf.Xf.`)Hgf.pf.xf.eE~?HIc1 @HH9t$Af.ztHHH[LuH}INdH-HL1u;HcHHEAHLLLLHAVjb^HD1AHH9uHH}HDL趡H,U1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt< H51HUdH+%(\ He[A\A]A^A_]H ͈H0H8Hfօ@HDH0Mx(1HHqH}4AHcLeE,MB@+D.HH}1HUH9(HHH@H H0H8Hfօ@HH0Mx(1HH;pH}4AHcLeEuhM@+DrH<H}1HXHUH9,FIcI@IcILPHL͐HHH5KHHH |HH(YaHHHHHIc1 HH9t$Af.ztHHHqLH}f@L@IHH0#iH}4HcH}1IL1LIHH0hH}4HczH}1IL1H}HL1$bHHHATLLLHHhHD1@AHH9uH!H虝HDLM-H4HL1$APLLLLHAT8HAHH˖HD1AHH9uHHDL~H蒜eH H DAV1AUATUSHpHNdH%(HD$h1HGAfnH%fnA)fbAtgAH "Ht$0HL$8T$HfD$@HHo(HD$@+D$DH|$0/1YL œHt$0LL$8L$@T$DT$HHHo(Ht%D$@+D$DH|$01HT$hdH+%(Hp[]A\A]A^ÐH5MD1DCHH&DLd$0Ht$LNwtHt$ L=wHt$(L(wlD$L$ T$DT$(f(HEfم^H H;*TD$PL$XHT$`Ht$PHf.Ld$PLl$0LL覅l$Xt$`D$DD$PfH~fI~HED$HLD$Hf.D$Pzu}fHnf.|$XzpunfInf.\$`zau_jH]HR@HH 6f.HLD$D$Hz HuL1L$)\$PHHbLff.AUATUHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$1H$dH+%(PHĠ]A\A]fHHuɐLd$Ht$L>tLl$0LL蕃tfoT$0fo\$@fod$PD$$Ht$)T$`)\$p)$HELHD$0f.D$`D$hf.D$8zvutD$@f.D$pzfudD$Hf.D$xzVuTD$Pf.$zCuAD$Xf.$z0u.HH*HLHdHuȹLLJf.AT1UHHHNdH%(HD$81HGAfnH%fnA)fbAtDAAH5%D!1HT$8dH+%(HH]A\LHt$LT$L$ T$$T$(HHo(HtD$ +D$$H|$1L Ht$LL$L$ T$$T$(HHo(HLD$ +D$$LH|$H1"H 5Ht$HL$T$(fD$ HuPHo(HD$ +D$$tfH|$1HHf{HHufDcHH-fLd$HL@gHt$L+RHt$L=|$$L$T$4$ HEHxH[HHJxDHt$H|$DD$$Ht$EHEHpH@Ld$Ht$L>HT$H5LL2|$HsD$$Ht$u?HEHHKH*H=@HHHHRH٠fAU1ATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtAAH5nD1HT$XdH+%(Hh[]A\A]L 7Ht$ LL$(L$0T$4T$8H Ho(HtwD$0+D$4ttH|$ @1@H ߊHt$ HL$(T$8fD$0HHo(Ht!D$0+D$4tnH|$ 1-Ht$H|$ QtT$4Ht$HEHXH;*HILd$ Ht$LtLl$@LLU}sD$4L$HD$@\$PHt$ $fH~D$ HELH` $D$f.D$@f.L$HfHnf.d$PHHߺ*HfDLxHL`HLD#HHS1 HH1sHfLL腊LLHdD$ $谝UH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fDHHuӐu$HPH{HuH@sHٜfUH@fnFdH%(HD$81HJ#Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.+HHuϐH5HT$H|$|$HtD$$u(HEH8fHuHJ*H@HfDH(fdH%(HD$1H)$HT$HT$dH+%(uH(d@fDHD+@A+HHcH8H‹Q+@HcHЋ<)HcH‹)HcHfDDFA+@+HH8ANHcH‹V+@HcHЋ<)ʅNHcH‹)HcHfH8@f. f(fz"u f.(zuf.0z uH 0H @f.f(fz"u f.zuf.z uHH@fDHATLxL`LA\Ð<D+8+@HcHH‹L+HHcHf.@,ATIUHHH8HLHH]A\ATIUHSHH8L[HH]A\^f.@UH=iH,u]ÐHH={tHH=tHH=ctH]Kf.@fHVf(HH;*ff(uDf. z"u f.(zuf.0z u 0f.@fHVf(HH;*ff(uDf.z"u f.zuf.z uf.@f.>UH@dH%(HD$81H bHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5aj|$HtHt+HH5UHPtHuHl1Hu=ff.fUSHHdH%(HD$81HdaHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?ltHl$H=sH'tHH=nuHuHc螿@HH=`tHH4@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u4H0]fD蛽HHuӐHhPHuHjsSH0fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11N1HT$(dH+%(uUH0[fDۼHHuӐt1EHuHcfDHHH;*tЉ蒓fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDHHuӐtbHuHcHHH;¦*tЉ譒ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uUH0[fD HHuӐt_XtHuHc'DHHH;W*tЉ‘fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH52jHT$H|$ڴ|$HtHcHuHG*H̐ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH52iHT$H|$ڳ|$HtHh6cHuHG*H̏ff.ATUH8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uCHW(HtD$9D$tHH111HT$(dH+%(H8]A\fD#HHufRXH-t!H-tH-MHHD\HuHDHHIAHnSLHHSY螎ff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o1HT$(dH+%(ufH8HHuҐHHH; *u-Xt GXEHuH)*H袍fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(ucH8 HHuҐHHH; *u-GXt GXTHuH8*Hf1赌DH8fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(ufH8HHuҐHHH; *u-Xt GXeHuHI*H‹fH8fnFdH%(HD$(1HܤH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(ufH8+HHuҐHHH; *u-Xt GXuHuHY*HҊfATUSH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$`tD$$Ld$uXHELH@H;*ulH=ptLH=b]u)4HeHcZfDLLH=T!tL<븐HЉbfATH0fnFdH%(HD$(1HTH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@ñHHufHHRxH;*0IMtoI$H5hLPtZHuL^IHoH'bL41HHP@Lw8fE1蘿H"DIjfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDKHHuϐHt$ H|$1tD$$t$ tI9O1H9uXtHEuXHvH{HV*HmDHEHH;v*u$9O1҅H9uXtuXHH蔆@U1H=.Hd1H=,HHH*8Hmt H]fDHHD$`HD$H]AVH HAUH5,ATL%,ULSR,t[L]A\A]A^H-,,L5,HH{,֧HH@,HH5LEt H-,tcH*Lk@{PHHtH3HLEHmt#HL9uLb[L]A\A]A^fDH_fDH_fDATIUHzHt HH5LHCEtHmtH]A\HH]A\1_UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fD;HHuӐu,HH蛻HuHHxI$HfD+@AWAVAUATUSHfnFdH%(HD$x1H\Ht$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ 1HT$xdH+%(HĈ[]A\A]A^A_fD#HHufLd$@Hl$ LH6atLl$`HLatD$4T$HD$@\$Pd$hl$`$t$p\$fI~fH~D$t$ILLLD$f.D$@$f.T$Hd$f.d$PfHnf.|$`zbu`fInf.\$hzSuQl$f.l$pzCuA|HH\*HLLL½D$W;HuLHQnH[L1H(nDnff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtMAAH5 ZD:1HT$XdH+%(Hh[]A\A]A^A_DLYHt$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ 1yH qYHt$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ ^1L YHt$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ 1D裨HH[1苨HHu1@sHHTfLl$@Lt$ LL]0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$PzLHL1Lak@Ld$ Ht$LMHt$LMkHt$LMVD$L$T$4T$f(HEfمHH; *D$@L$HHT$PHt$@fH~Ő{HfHnRL|$Ll$ L5QLLL衡|$ILLL腡|$HL$4uGHELHHcHڙ*HyHLeUfH~ILHl)\$@HfH~"}f.9O1H9wXtHwXf.f.D1ffDGX$UH=hHu]ÐHH=UtHH=GtH]/WUH@dH%(HD$81H*GHt$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5F芟|$HtHt+HH5ˢHPtHuHQ1Hu]{ff.fUSHHdH%(HD$81HFHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_QtHl$H=HGtHH=S4u HuHc辤@HH=E tH-Tz@UH0fnFdH%(HD$(1HxH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u^H0]fD転HHuӐt$Ho`#HuH!HHH;W*tHiyfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uuH0[fDˡHHuӐt$WXfH~-HufHn~M@HHH;*u_XfH~ffH~bxfUH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uVH0]fDˠHHuӐtHoP3HuH&N@HHH;*tHwUH@fnFdH%(HD$81HÞHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fD۟HHuϐHt$H|$EtD$$D$t?f.EXztHEEXHHuH*Hzf.HEHH;*uf.EXztEXHH4v@ATUSH@fnFdH%(HD$81HfAHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$LtD$$Ld$uXHELH@H;>*ulH=oГtLH=KN轓u)蔬HeHcCZfDLLH=T@聓tLE(븐HЉtfATH0fnFdH%(HD$(1H?H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@#HHufHHRxH;ڇ*IMtoI$H5LPtZUHuLHJIHoHbLs1HHP@L׈8fE1H"DIjYsfAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH gHt$ HL$(T$8fD$0HHo(HttHH=0tH]fHVf(HH;>}*ff(u4f.G`zuf.ghzuf.Wpz u G`Wpf.@jUH@dH%(HD$81H/Ht$HD$HFHD$$D$ t0H|$̸1HT$8dH+%(uhH@]@HT$H|$H5v/*|$HtHt+HH5MHPt袛HuH:1艛Hucff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H11η1HT$(dH+%(uEH0]fD[HHuӐHhHHt HUHmHPH趚HuH9"cfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.{HHuϐH5;HT$H|$:|$HtHYÙHuH~*H,bff.USHHdH%(HD$81HT-Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/8tHl$H=HtHH=yuۘHuHc莋@HH=,tH$a@ATUSH@fnFdH%(HD$81HV,Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$6tD$$Ld$uXHELH@H;u*ulH=A~tLH="~u)脗HeHc3ZfDLLH=D+q~tL5븐HЉ_fATH0fnFdH%(HD$(1H*H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11荳E1HD$(dH+%(H0LA\@HHufHHRxH; *'dIMtoI$H5LPtZEHuL85IHoHbL^1HHP@Ls8fE1H"DIjI^fATL%|,H LHAH5},Lt|,ukLH|, LA\ATIUHjHt HH5LHtHmtH]A\HH]A\8bUH=H|u]ÐHH=v|tHH=({tH]UH@dH%(HD$81H:(Ht$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uhH@]@HT$H|$H5'蚀|$HtHt+HH55HPtHuH31Hum\ff.fHGI~H)ǃuHH=,L/HH5zh1HÐUSHHdH%(HD$81HD'Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$2tHl$H=4HztHH=&yu˒HuHc~@H'[UH0fnFdH%(HD$(1HeH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD苃HHuӐtHo0HuH0@HHH;*tHAZATUSH@fnFdH%(HD$81Hv%Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\苂HHuːHt$H|$0tD$$Ld$uXHELH@H;΀*u\H=n2wtLH=$wu)褐HeHcSZfDLLh @HЉXfATH0fnFdH%(HD$(1H$H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11转E1HD$(dH+%(H0LA\@CHHufHHRxH;*7ZIMtoI$H5-1LPtZuHuLh.IHoHbLW1HHP@Ll8fE1H"DIjyWfAWAVAUATUSHVdH%(H$1HE0Ht$0HD$8HGfnfnȉD$HfbfD$@uSLw(MttuH|$091H$dH+%(HĘ[]A\A]A^A_fDHtLp(MtD$DtH|$01Ld$PHl$0LH4tLl$pHL4df(D$PILL|$`T$xL\$pfD$$)$fI~|$(fH~d$ f($f.D$Pt$f.t$X|$(f.|$`zrupfHnf.l$pzBu@fInf.t$xz3u1T$ f.$z uHHq*HHuعLHAƌHuL1HAo%UT$@ff.AW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtWAAH5D1H$dH+%(HĘ[]A\A]A^A_fL ЉHt$0LL$8L$@T$DT$HHHo(HD$@+D$DLH|$0X1oH pHt$0HL$8T$HfD$@HHo(Ht%D$@+D$DH|$01LHt$0LT$8L$@T$DT$HHu~Ho(HtNjD$@+D$D<H|$0蠧1f;|HH1|HH31v{HHq1VLd$0Ht$L!Ht$ L!Ht$(L!L$D$ Le8D$DT$(f(f؅L$pD$xHt$pLH$wȉHL{DLd$pH|$0LQ0[Lm8LHLwwrH;Ll{ELl$PLd$0LL/Lt$pLL/D$pLLH$l$xD$fH~fI~vD$f.D$pzAu?fHnf.|$xz2u0fInf.$z u計HqHm*H}芈HuعLL=)\$p~Pff.@ATL%q,1H)H5r,Lfq,uݪLHq,rLA\ATIUH=JHt HH5)LHtHmtH]A\HH]A\*AW1AVAUATUHĀHVdH%(HD$x1HGAfnH%fnA)fbAtNAAH5(D 1HT$xdH+%(H]A\A]A^A_L(Ht$@L\$HT$PL$TL$XHHo(HD$P+D$TH|$@舣1xHA(Ht$@HT$HL$XfD$PHHo(Ht%D$P+D$TH|$@.1L'Ht$@LT$HT$PL$TL$XHunHo(AHtAH|$@Ԣ1DswHHD[wHHC1;wHTHh(HGt$T:H|$@?1OLd$@Ht$(LHt$0L Ht$8LD$(L$0T$TT$8f(HEfمHH;dw*D$`L$hHT$pHt$`fH~ԄHmfHn!"@L|$8Ll$@L5 LLLp|$8I-LLLp|$8HL$Tu7HELHRHH2i*HfLH5<Ld$`Ll$@LL*f(L$`HEHLLt$pfL$) $f( $f.L$`fH~z%u#l$f.l$hzufInf.t$pz蝃HL1L8)\$`HfH~KDL$P3DATUHfnFdH%(H$1HH4$HD$HGfnȉD$fbfD$uUHo(HtD$+D$tOH蝟1H$dH+%(Hĸ]A\ftHHuĐLd$ HL;)tD$u/HELHZHuH>g*HzDLHUbJff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uzH@]f.rHHuϐH5HT$H|$m|$HtD$$u(HEH6HuHf*H@HhSIAW1AVAUATUH`HNdH%(HD$X1HGAfnH%fnA)fbAtNAAH5~Dk1HT$XdH+%(H`]A\A]A^A_L q~Ht$ LL$(L$0T$4T$8H*Ho(HtD$0+D$4H|$ 1|DL~Ht$ LT$(L$0T$4T$8HHo(HBD$0+D$4H|$ 舜1H }Ht$ HL$(T$8fD$0Hu@Ho(HD$0+D$4H|$ .1pHHufDpHH=fpHHof.Ld$@H|$ L%LH@"fH~~H(fHn@Ld$ Ht$LNHt$L9Ht$L$L$D$D$4T$f(f؅L$@D$HT$PHt$@HLL|$Ll$ L5SLLLaj|$IXLLLEj|$H@UH@fnFdH%(HD$81HoHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(H@]fDfHHuϐHt$H|$ tD$$D$t?f.EpztHEEpHuHuHY*Hzf.HEHH;.d*uf.EpztEpHH4=@ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{eHHuːHt$H|$tD$$Ld$uXHELH@H;m*ulH=.ZtLH=KZu)sHeHcCfZfDLLH=TZtLE븐HЉ;fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝏E1HD$(dH+%(H0LA\@#dHHufHHRxH;Bi*w(IMtoI$H5݁LPtZUrHuLHIHoHbL:1HHP@LO8fE1qH"DIjY:fAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH WHt$ HL$(T$8fD$0HHo(HtV@HH=\JtHM+@UH0fnFdH%(HD$(1HyH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u^H0]fD;THHuӐt$HoXbHuHTHH H;E*tH*fUH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uVH0]fDKSHHuӐtHoPaHuH@HHH;X*tH*SH0fnFdH%(HD$(1H.xH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11}1HT$(dH+%(uUH0[fDkRHHuӐt_p`HuHcSDHHH;?@*tЉ")fUH@fnFdH%(HD$81HkwHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$|1HT$8dH+%(H@]fD{QHHuϐHt$ H|$aEtD$$t$ t19uptHEupH_HuHD*HDHEHH;N\*u;uptˉupHfH'@H8fnFdH%(HD$(1HIvH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11{1HT$(dH+%(H8@KPHHuҐHtAHH;k[*uIpt Gp^HuHuC*HHH;BG*t@&fH8fnFdH%(HD$(1HUuH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11z1HT$(dH+%(H8@;OHHuҐHtAHH;[Z*uIGpt Gp]HuHdB*HfDHH;J*t@1%DATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$y1HT$8dH+%(H@[]A\ NHHuːHt$H|$tD$$Ld$uXHELH@H;[*ulH=r`CtLH=MCu)$\HeHcNZfDLLH=CtL븐HЉR$fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-xE1HD$(dH+%(H0LA\@LHHufHHRxH;E*IMtoI$H5qLPtZZHuLIHoHtbL$#1HHP@Lg88fE1ZH"DIj"fAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH IqHt$ HL$(T$8fD$0HHo(Htff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtMAAH5D l1HT$XdH+%(Hh[]A\A]A^A_DLHt$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ m1yH AHt$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ .m1L Ht$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ l1DsAHH[1[AHHu1@CAHHTfLl$@Lt$ LLV0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$PzOHL1L1@Ld$ Ht$LHt$LkHt$LlVD$L$T$4T$f(HEfمHH;@*D$@L$HHT$PHt$@fH~ŐKNHfHnL|$Ll$ L5cLLLq:|$ILLLU:|$HL$4uGHELHMHcH2*HyHLfH~ILH)\$@HfH~"f.HGP9wptHwpGpf.GXf(fzuf.O`zuf.Whz u H_XWhf.@HGXwUH=TcH3u]ÐHH=/3tHH=a3tH]QHHH; I*u!WptGpD1@HHH;H*u!ptGpfDfHVf(HH;6*ff(u4f.GXzuf.g`zuf.Whz u GXWhf.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$g1HT$8dH+%(uhH@]@HT$H|$H5:7|$HtHt+HH5(tHPtJHuH1JHu ff.fUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$f1HT$8dH+%(HH[]DHt$H|$tHl$H=FsH0tHH=r0uIHuHcn<@HH=0tH}@H8fnFdH%(HD$(1HrH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11e1HT$(dH+%(u9H8k:HHuҐ HHHuH-*H?ff.@SH0fnFdH%(HD$(1HrH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11e1HT$(dH+%(uUH0[fD9HHuӐt_hHHuHc:DHHH;;*tЉRfAVAUATUHHfnFdH%(HD$81HCqHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$d1HT$8dH+%(HH]A\A]A^f.8HHuŐLt$Ll$LH5LT3|$ItLLtD$LHFHpH+*Hb'UH@fnFdH%(HD$81H+pHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(H@]fD{7HHuϐHt$ H|$a+tD$$t$ t19uhtHEuhHEHuH**HDHEHH;A*u;uhtˉuhHfH @H8fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11a1HT$(dH+%(H8@K6HHuҐHtAHH;@*uIGht GhDHuHt)*HfDHH; (*t@1 DH8fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11`1HT$(dH+%(H8@;5HHuҐHtAHH;?*uIht GhCHuHe(*HHH;"A*t@ fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$_1HT$8dH+%(H@[]A\ 4HHuːHt$H|$tD$$Ld$uXHELH@H;v2*ulH=k`)tLH=M)u)$BHeHc4ZfDLLH=)tLս븐HЉR fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-^E1HD$(dH+%(H0LA\@2HHufHHRxH;'*IMtoI$H5[jLPtZ@HuLIHoHtbL$ 1HHP@Lg8fE1@H"DIjfAV1AUATUHHHNdH%(HD$81HGAfnH%fnA)fbAAuVH Ht$HL$T$(fD$ HHo(Ht8D$ +D$$H|$\1H5o DqZ1HT$8dH+%(IHH]A\A]A^L 7 Ht$LL$L$ T$$T$(HHo(HtD$ +D$$H|$[10HH-if.Lt$Ll$LH5LD+|$I5LL{"D$L4H5RHT$H|$*|$UuHH謨w>HHW#*HfD/HHff.fATL%S1,H H|gH52,Lv1,uHLH2,y(LA\ATIUH aHt HH5%gLHtHmtH]A\HH]A\qUH0fnFdH%(HD$(1HSH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Y1HT$(dH+%(ucH0]fD{.HHuӐu,HHN1HT$(dH+%(uuH0[fD"HHuӐt$WXfH~-1HufHn~@HHH;0*u_XfH~ffH~bfUH0fnFdH%(HD$(1HgH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>M1HT$(dH+%(uVH0]fD!HHuӐtHoP30HuH&@HHH;!*tHUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$RL1HT$8dH+%(H@]fD HHuϐHt$H|$tD$$D$t?f.EXztHEEXH/HuH*Hzf.HEHH;*uf.EXztEXHH4@ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$J1HT$8dH+%(H@[]A\{HHuːHt$H|$tD$$Ld$uXHELH@H; *ulH=dtLH=Ku)-HeHcC ZfDLLH=TtLE븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11IE1HD$(dH+%(H0LA\@#HHufHHRxH;)*藷IMtoI$H54cLPtZU,HuLHIHoHbL1HHP@L 8fE1+H"DIjYfAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH gHt$ HL$(T$8fD$0HHo(Ht1HT$XdH+%(Hh[]A\A]A^A_DLHt$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ ?1yH Ht$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ ?1L AHt$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ 4?1DHH[1HHu1@HHTfLl$@Lt$ LL0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$Pz|!HL1L@Ld$ Ht$LHt$LkHt$L̸VD$L$T$4T$f(HEfمHH;<*D$@L$HHT$PHt$@fH~Ő HfHnL|$Ll$ L5üLLL |$ILLL |$HL$4uGHELH* HcH *HyHLfH~ILH)\$@HfH~"Mff.fUH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11<1HT$(dH+%(ucH0]fDHHuӐu,HH HuHHxK0HfD2T@HGPf.GXzufHGXfGXfDf.G`f(fzuf.Ohzuf.Wpz u H_`Wpf.@HG`GUH=TH,u]ÐHH=tHH=ѱtH]fHVf(HH;*ff(u4f.G`zuf.ghzuf.Wpz u G`Wpf.@'UH@dH%(HD$81HʰHt$HD$HFHD$$D$ t0H|$91HT$8dH+%(uhH@]@HT$H|$H5v* |$HtHt+HH5]HPtHuH蕻1Huff.fUSHHdH%(HD$81H$Ht$HD$HFHD$$D$ HD$t6H|$81HT$8dH+%(HH[]DHt$H|$tHl$H=\HtHH=buHuHc^@HH=|tHm@UH0fnFdH%(HD$(1H[\H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1171HT$(dH+%(u^H0]fD[ HHuӐt$HohHuH HHH;o)tH fUH0fnFdH%(HD$(1H{[H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1161HT$(dH+%(u^H0]fDk HHuӐt$HoXHuH HHH;*tHfUH0fnFdH%(HD$(1HZH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1151HT$(dH+%(uVH0]fD{ HHuӐtHoPHuHַ@HHH;*tH1ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$41HT$8dH+%(H@[]A\{ HHuːHt$H|$tD$$Ld$uXHELH@H;)ulH=XtLH=Ku)HeHcC ZfDLLH=TtLE븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH113E1HD$(dH+%(H0LA\@#HHufHHRxH;*G IMtoI$H5ZWLPtZUHuLHIHoH}bL1HHP@L8fE1H"DIjYfAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAAuZH VHt$HL$T$(fD$ HHo(HtH(HtD$9D$t;H11/ 1HT$(dH+%(u9H8HHuҐ$&HuH )Hff.@SH0fnFdH%(HD$(1H #H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11^1HT$(dH+%(u=H0[fDHHuӐHTHu1H@f.UH0fnFdH%(HD$(1HMH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u^H0]fDHHuӐt$Ho8HuHHHH;G*tHfUH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u^H0]fD+HHuӐt$HoPHuHHHH;*tHfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD;HHuӐt_0HuHcWDHHH;O)tЉfUH0fnFdH%(HD$(1HJH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD[HHuӐtHHuH賝뵐HHH;W)tHUH0fnFdH%(HD$(1H JH4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H111HT$(dH+%(uVH0]fD{HHuӐH0HHPHDHHuHH5>WH1UH0fnFdH%(HD$(1H:IH4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H111HT$(dH+%(uSH0]fDHHuӐH0HPhH8HDHHuHH5a3VH+T@UH@fnFdH%(HD$81HkHHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$j|$HtH8lHuH)H\ff.USHHfnFdH%(HD$81HGHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$!1HT$8dH+%(uVHH[]HHuАHt$ H|$tHcT$ HH,HuHd@AUATUHPfnFdH%(HD$H1HFHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$.1HT$HdH+%(HP]A\A]fDHHufLl$0Ld$LLƠtHT$H5BELN|$HtHLiSfH~HhfHn[2fAWAVSH`fnFdH%(HD$X1H#Ht$ HD$(HGfnȉD$8fbfD$0uPH_(Ht!D$0+D$4tRH|$ 1HT$XdH+%(H`[A^A_fDHHufHt$@H|$ 蜟tHT$@d$HH\$PHfI~fI~XPhXp`\$l$t$HVfIn1f/|$fIn1f/|$fHnP1f/|$D$(f/C@v1KXf/r&D$0f/CHvK`1f/@ 1HLHANff.USHHfnFdH%(HD$81H?H4$HD$HGfnЉD$fbfD$uLH_(HtD$+D$tFH1HT$8dH+%(HH[]HHu͐Ht$ H辙tKhD$ f/rQf/rCD$(f/Cpr6f/r(D$0f/Cxr1f/@ 1HDH@9fDATH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@SHHufHHRxH;b)dIMtoI$H5<LPtZHuLxIHoHYbLĹ1HHP@L8fE1(H"DIj艹fATUHhfnFdH%(HD$X1H6Ht$0HD$8HGfnD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$0P 1HT$XdH+%(Hh]A\fHHuѐLd$0HLtHt$L߇tHt$L·tHt$L轇tHt$ L謇tHt$(L藇_l$(d$ H\$T$L$$pH&H)HAVAUATUSHpfnFdH%(HD$h1H;Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(11HtH|$04AHcaLl$0EuoMD$ +D$$H H|$0E1HtHD$8H9t'HD$hdH+%(HpL[]A\A]A^IcI\fDHH>H|$1E1sH|$04Hc^`H|$0IsLE1hDLHwGHT$H5Hf|$I%E~TIEH9AD$D1HDAoTHH9uDAt ITHLLLE~*Ic1DHH9tH I9LtgHt']H|$0E1HL%5)I$pDL1HKfD1ITHHH9ub|H,AWAVAUATUSHfnFdH%(H$1H1:Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HqH|$`4AHcn^Ll$`EutMD$0+D$4HH|$`E1HtHD$hH9t|H$dH+%(HĨL[]A\A]A^A_IcI\fDKHH6H|$ E1-qH|$`4Hc]H|$`IkLE1`HT$H5H|$HD$4L|$@HLHt$HDLHtHt$HE~SIEH9AD$D1H@AoTHH9uDAt ITHDL$L$MLHt$L+AE~)Ic1 @HH9tH I9Lt_HtAUH$IcH|$`ID1fITHHH9urDLH&H*AW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtGAH55DN1H$dH+%(HĘ[]A\A]A^A_H5Ht$0H\$8L$@T$DT$HH:Ho(HD$@+D$D|H|$01uH*5Ht$0H\$8T$HfD$@HHo(Ht%D$@+D$DH|$0n1Ll$pLd$0LL6tL|$,H53LL|$,ItLLtL$,LLH0fH~&HufHnwfLl$PLd$0LL趎PLt$pLL虎3H\$,H53LH|$,IHL!f(L$pHLLDD$,LH$fL$) ${cf( $f.L$pfH~}u{\$f.\$xzmukfHnf.$z[uY,HfHny@HH31|kHH1\HuLL2fATL%+H H1H5+L+u8 LH+LA\ATIUH=PHt HH51LHotHmtH]A\HH]A\G0H@HG8HGPXUH=1Hu]ÐHH=ytH]ta@gUH@dH%(HD$81HxHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5xJ|$HtHt+HH5OHPtHuH赃1Huff.fUSHHdH%(HD$81HDxHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=NHtHH= ,uHuHc~@HH=ȰtHH=tHH=vwtHg_ff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDKHHuӐHuHcg SH0fnFdH%(HD$(1H@LH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;)tЉ=ff.fSH0fnFdH%(HD$(1HlKH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;)tЉMff.fSH0fnFdH%(HD$(1HJH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐtHuHcfHHH;)tЉbfSH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uUH0[fDHHuӐt1HuHcfHHH;)tЉ肧fUH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uVH0]fDHHuӐtHPHuHC}뵐HHH;)tH衦H8fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uYH8 HHuҐHt!0nHuHR)H@H H;)t迥ff.@AUATUHPfnFdH%(HD$H1H=GHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$~1HT$HdH+%(HP]A\A]fDHHufLd$Ht$LttLl$0LLtHT$H5L|$HqD$LH` HRH)HDkff.UH@fnFdH%(HD$81HFHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$t$ t99tHEHHuHտ)H|@HEHH;)u;tƉHHff.H8fnFdH%(HD$(1HDH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@{HHuҐHtIHH;)uQtLJHuH)HfHH;r)t@f.H8fnFdH%(HD$(1HCH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@[HHuҐHtIHH;)uQtLJHuH~)HHH;:)t@1ݠff.fUH@fnFdH%(HD$81HBHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD+HHuϐHt$ H|$tD$$t$ tQ9O9L9tHEHMHrH-)Hd@HEHH;~)u49O9L9tHH\ff.AVAUATUHXfnFdH%(HD$H1HHAHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$1HT$HdH+%(HX]A\A]A^f.HHuŐLl$0Ld$LL|tLt$LL2tHt$LQtL$LLH軃Ht!HWH)HIHT$LnwAVAUATUHXfnFdH%(HD$H1HU@Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$1HT$HdH+%(HX]A\A]A^f.;HHuŐLd$HLPltLl$0LLG{tLt$LL#lt$HLL,HTHtJHUHiJ@D$L=薜fDATH0fnFdH%(HD$(1HgH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mE1HD$(dH+%(H0LA\@HHufHHRxH;")7IMtoI$H5>LPtZ%HuLrIHoH:bLd1HHP@L觰8fE1H"DIj)fATUSH@fnFdH%(HD$81HVfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$ptD$$Ld$u`HELH@H;^)H=<輸tLH=詸u-HaHc/Vf.LLH=hitLH=nVtLH=eCtLMHЉ肙fATL%+H lH;H5+LF+uLH+ILA\ATIUHMHt HH5v;LHSYtHmtH]A\HH]A\AsATUHHfnFdH%(HD$81HNH4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEH1HT$8dH+%(}HH]A\D;HHuΐLd$ HL[vtD$u/HEHLHwHuHHLUHH˗ff.AUATUHPfnFdH%(HD$H1HHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$HdH+%(HP]A\A]fDHHufLd$Ht$LtLl$0LLutD$$Ht$u4HELH/HhH)HZfDLH-~ff.AVAUATUHXfnFdH%(HD$H1H7Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$<1HT$HdH+%(HX]A\A]A^f.軾HHuŐLl$0Ld$LLstLt$LLRtD$$u>HEHLLHt7H]Hc聿R@HLLQfDHT$L~nAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAtAH5De1HT$hdH+%(9Hp]A\A]A^A_ÐL Ht$LL$L$ T$$T$(HHo(HtD$ +D$$t|H|$1@H RHt$HL$T$(fD$ HLHo(HRD$ +D$$H|$1(Ll$HT$H5L|$ILt$0LLH(HtD$9D$t;H11O1HT$(dH+%(uLH8۫HHuҐu$H(>HuH")H@賛蜂ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`1HT$8dH+%(HH]A\fHHuѐLd$Ht$ LΞtHT$ H5p,L薥|$ HtD$$t$ u0HEH8HuH)HgDH!aATUHHfnFdH%(HD$81H#H4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEH31HT$8dH+%(}HH]A\D軩HHuΐLd$ HL^tD$u/HEHLHHuHHL%HKff.AV1IAUATUSHpfnFdH%(HD$hHG~H%fnfb)H фHt$HL$T$(fD$ H%Hl$1Mp(1HH(HtD$9D$t;H11/1HT$(dH+%(uLH8軤HHuҐu$H0HuH)H@h|{f.f9O9L9tHf.DfDfDD9tHDf.DDH@H0HATLgXLpLA\@xUH=Hu]ÐHH=tHH=~ΘtHH=O軘tHH={E記tH]k-f.HHH;)u!tLJHHH;S)u)tLJ1f.fUH@dH%(HD$81HZDHt$HD$HFHD$$D$ t0H|$\1HT$8dH+%(uhH@]@HT$H|$H5D躜|$HtHt+HH5uHPt2HuH%O1Huxff.fUSHHdH%(HD$81HCHt$HD$HFHD$$D$ HD$t6H|$r1HT$8dH+%(HH[]DHt$H|$NtHl$H=HwtHH=c|du;HuHc@HH=L9tHH=B&tH*qwATUHHVdH%(HD$81HH4$HD$HGfnfnȉD$fbfD$uAHo(Htt[HI1HT$8dH+%(uzHH]A\ӟHtHh(Ht̋D$tUH1뺐Ld$ HLTtHEHLHHuH"vhvT$Off.@ATUHHVdH%(HD$81HH4$HD$HGfnfnȉD$fbfD$uAHo(Htt[H)1HT$8dH+%(uzHH]A\賞HtHh(Ht̋D$tUH1뺐Ld$ HLStHEHLH߬HuHvHuT$Off.@AUATUHPVdH%(HD$H1HHt$HD$HGfnfnȉD$(fbfD$ uFHo(HtthH|$1HT$HdH+%(HP]A\A]@苝HtHh(HtɋD$$|H|$1Ld$Ht$LtLl$0LLuRyHEHt$LH蓫HVHs)HHsT$ ff.AVAUATUHXVdH%(HD$H1HHt$HD$HGfnfnȉD$(fbfD$ uDHo(HttfH|$1HT$HdH+%(HX]A\A]A^;HtHh(HtˋD$$H|$G1Ll$0Ld$LL6QtLt$LL貧xHEHLL@Ht6HKHc@HT$LKrT$ ff.ATH0fnFdH%(HD$(1H=H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@ӚHHufHHRxH;B)sIMtoI$H5HLPtZHuLGIHoHbLDq1HHP@L臆8fE1訨H"DIj qfATUSH@fnFdH%(HD$81H6<Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\KHHuːHt$H|$FtD$$Ld$u`HELH@H;)H=蜎tLH=t艎u-`HaHcVf.LLH=DItLH= ;6tL"fDHЉrofAT1UHhHVdH%(HD$X1HGAfnAH%fnA)fbAtaAHNHt$ HT$(L$8fD$0HHo(HtwAXH|$ 1WLHt$ LT$(T$0L$4L$8HHo(HtAH|$ 1HT$XdH+%(NHh]A\DH5D1D3HtHh(HtT$4H|$ ?1HtHh(H~D$4uDL$0NLd$@H|$ LLFHEHLH!H%H@Ld$ Ht$L<Ht$L<Ht$L|<HEHT$L$D$H蝤Hw mDL$0AW1AVAUATUHpHVdH%(HD$h1HGAfnAH%fnA)fbAtCAH5[D1HT$hdH+%(Hp]A\A]A^A_fDL"Ht$LT$T$ L$$L$(HHo(HtpAOH|$k1HʬHt$HT$L$(fD$ Hu`Ho(HtAuH|$12f軔HtHh(HtT$$:H|$1苔HtHh(HtD$$uDL$ Ll$Ld$LH5L,|$IuL|$0LLiIXLLEHEHHL$LLoHtq1SLl$HT$H5L觎|$ILt$0LLHHEHLLHHc豔gjDL$ $ff.fATL%+1HH5#+L+uLHc+LA\ATIUH]Ht HH5LH#*tHmtH]A\HH]A\DkUH=HH,u]ÐHH=ntHH=I>tHH=4tH]f.@UH@dH%(HD$81H4Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H53z|$HtHt+HH5<HPtHuH>1ٟHuMhff.fUSHHdH%(HD$81Ht3Ht$HD$HFHD$$D$ HD$t6H|$21HT$8dH+%(utHH[]fHt$H|$O>tHl$H=ZH7tHH=2$uHuHc讑@HWgATUSH@fnFdH%(HD$81H2Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\蛏HHuːHt$H|$!=tD$$Ld$uXHELH@H;>)u\H=tLH=1݄u)贝HeHccZfDLLx@HЉefUSH8fnFdH%(HD$(1HwH4$HD$HGfnȉD$fbfD$u)u\H==GytLH=KSyu)蔒HeHcCZfDLLX@HЉZfUH@fnFdH%(HD$81HMFHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袮1HT$8dH+%(u_H@]f.+HHuϐH5-HT$H|$}|$HtHsHuHWv)HYff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袭1HT$8dH+%(u^H@]f.+HHuϐH5-HT$H|$||$HtHH)qHuHc$Xff.fUH@fnFdH%(HD$81H"Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袬1HT$8dH+%(u^H@]f.+HHuϐH5-HT$H|${|$HtHH(qHuHc$Wff.fAVAUATUHHfnFdH%(HD$81HMCHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$蜫1HT$8dH+%(HH]A\A]A^f.HHuŐLt$ Ll$LH5Lz|$ ItLLstT$ LHGHrH's)HdVfAVAUATUHHfnFdH%(HD$81H$BHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$tHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t;H|$跦1HT$8dH+%(H@[]A\A]A^@Lt$Ll$LH5@Lv|$ItLH5=Lu|$HtLH3lHuHc|uf.zHH.SQDAVAUATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4tHt HH5&:LHctHmtH]A\HH]A\Q(AWAVAUATUH@fnFdH%(HD$81HpHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$趡1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5CLLLq|$ItLLLp|$HtD$$uWHMLHbHsHBi)HefuHHDf.LHU]Lff.AWAVAUATUH@fnFdH%(HD$81HoHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$F1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5әLLLo|$ItLLLyo|$HtD$$uWHMLHHsHg)HefKtHHDf.LHKf.@ATUH>HIL(GHL]A\HL8HVfDUH=6HLiu]ÐHH=B1itH]@闒UH@dH%(HD$81HjHt$HD$HFHD$$D$ t0H|$l1HT$8dH+%(uhH@]@HT$H|$H5m|$HtHt+HH5DHPtBHuH5 1)HuIff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$肝1HT$8dH+%(HH[]DHt$H|$tHl$H=CHgtHH=etguKHuHcr@HH=eIgtHH=5~6gtHH=#gtHnHff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\pHHuːHt$H|$1tD$$Ld$u`HELH@H;>g)H=!BetLH=ceu-~HaHcoqVf.LLH=ccetLH=|etLH=VetLGHЉFfSH0fnFdH%(HD$(1H>H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螚1HT$(dH+%(uZH0[fD+oHHuӐt}HuHcEpHHH;u)tЉEff.fSH0fnFdH%(HD$(1H>H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11讙1HT$(dH+%(uUH0[fD;nHHuӐt1|HuHcXofDHHH;q)tЉDfSH0fnFdH%(HD$(1H>=H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Θ1HT$(dH+%(u}H0[fD[mHHuӐt,fH~{HufHn fHHH;/Y)ufH~fDfH~Cf.SH0fnFdH%(HD$(1HE<H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辗1HT$(dH+%(uUH0[fDKlHHuӐtzHuHcdmfHHH;'X)tЉCfSH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ޖ1HT$(dH+%(uUH0[fDkkHHuӐtyHuHclfHHH;k)tЉ"BfSH0fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDjHHuӐtxHuHckfHH`H;GZ)tЉBAfUH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDiHHuӐtHxHuH뵐HHH;m)tHa@UH0fnFdH%(HD$(1HdH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uVH0]fDhHHuӐtH0wHuH#뵐HH(H;p)tH?UH0fnFdH%(HD$(1HcH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uVH0]fDgHHuӐtHPvHuHC뵐HH0H;'b)tH>SH0fnFdH%(HD$(1H_7H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD gHHuӐt,fH~juHufHnfHHH;Od)ufH~fDfH~=f.SH0fnFdH%(HD$(1H_6H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uUH0[fDeHHuӐtatHuHcgfHHHH;^)tЉH(HtD$9D$t;H111HT$(dH+%(unH8{^HHuҐHHxH; S)u5tLJlHuHQ)HD5f.H8fnFdH%(HD$(1Ha.H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(ukH8{]HHuҐHHxH; R)u5tLJkHuHP)H@14ff.fUH@fnFdH%(HD$81Hy-Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDk\HHuϐHt$H|$tD$$D$t?f.ztHEHjHuH}O)Ht@HEHH;Y)u$f.ztHDH2ff.UH@fnFdH%(HD$81H0,Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$肆1HT$8dH+%(H@]fD [HHuϐHt$ H|$NtD$$t$ t99tHEHAiHuH%N)H|@HEHH;b)u;tƉHHl1ff.UH@fnFdH%(HD$81H*Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDYHHuϐHt$ H|$MtD$$t$ t99tHEHgHuHL)H|@HEH@H;F_)u;tƉHH0ff.UH@fnFdH%(HD$81H)Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDkXHHuϐHt$ H|$QLtD$$t$ t99tHEHfHuHK)H|@HEHXH;L)u;tƉHH.ff.UH@fnFdH%(HD$81H(Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒂1HT$8dH+%(H@]fDWHHuϐHt$ H|$KtD$$t$ t99tHEHQeHuH5J)H|@HEHH;I)u;tƉHH|-ff.H8fnFdH%(HD$(1H['H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(H8@UHHuҐHtIHXH;[J)uQtLJdHuHH)HHpH;RK)t@1],ff.fH8fnFdH%(HD$(1HP&H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(H8@THHuҐHtIHH;G)uQtLJbHuHG)HfHH;O)t@:+f.H8fnFdH%(HD$(1HK%H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@SHHuҐHtIHH;F)uQtLJaHuHF)HHH;E)t@1*ff.fH8fnFdH%(HD$(1HG$H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11}1HT$(dH+%(H8@{RHHuҐHtIHXH;F)uQtLJ`HuHE)HfHhH;"`)t@(f.UH@fnFdH%(HD$81H:#Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$|1HT$8dH+%(H@]fDKQHHuϐHt$ H|$1EtD$$t$ tQO1H9tHEHp_HuHPD)HgHEHxH;E)u,O1҅H9tHfH'@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]{E1HD$(dH+%(H0LA\@OHHufHHRxH;"R)nIMtoI$H5d!LPtZ^HuLIHoHbLT&1HHP@L;8fE1]H"DIj&fATL%n+H |H H5~p+L;xo+uLHo+GLA\ATIUHIHtHH5^ LHu_1OHHtHH5LHmtgOHHtHH5LHmt$H]A\@HmuHHH]A\ifHXfDATH0fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11xE1HD$(dH+%(H0LA\@SMHHufu\HI[HuLIHtH>tL#1HHP@L59f0I#H8fnFdH%(HD$(1H^H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11w1HT$(dH+%(uLH8;LHHuҐu$HZHuH?)H@cT"f.fH@H@H@9tHDf.DDD9tHDf.DDO1H9tH@f.D1ffDDf.z uH9tHDf.DD9tHDf.DDH@hUH=H\?u]ÐHH=<A?tHH=<.?tHH=V?tHH=?tH]f.HHH;C<)u)tLJ1f.fHHXH;=)u!tLJHHXH;K=)u)tLJ1f.fHHH;c;)u!tLJWlUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$s1HT$8dH+%(uhH@]@HT$H|$H5zB|$HtHt+HH5! HPtUHuH1UHuMff.fUSHHdH%(HD$81HtHt$HD$HFHD$$D$ HD$t6H|$2r1HT$8dH+%(utHH[]fHt$H|$OtHl$H=? H7H(HtD$9D$t;H11/n1HT$(dH+%(u9H8BHHuҐ;&QHuH 6)Hff.@SH0fnFdH%(HD$(1HSQH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^m1HT$(dH+%(uUH0[fDAHHuӐtQPHuHcCfHHH;G?)tЉfSH0fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~l1HT$(dH+%(uUH0[fD AHHuӐtqOHuHc$BfHHH;-)tЉfUH0fnFdH%(HD$(1H4H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11k1HT$(dH+%(uVH0]fD+@HHuӐtHNHuH뵐HHH;B)tHSH0fnFdH%(HD$(1H73H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11j1HT$(dH+%(uUH0[fDK?HHuӐtMHuHcd@fHHH;70)tЉfSH0fnFdH%(HD$(1H]2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11i1HT$(dH+%(uUH0[fDk>HHuӐtLHuHc?fHHH;-)tЉ"fUH0fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11h1HT$(dH+%(uVH0]fD=HHuӐtHKHuH뵐HHH;_0)tHAUH0fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11h1HT$(dH+%(uVH0]fDg1HT$(dH+%(uUH0[fD;HHuӐt1JHuHcfH~;HkfHna^wAVAUATUHhfnFdH%(HD$X1H H4$HD$HGfnȉD$fbfD$ILo(1LH|$ HcI,Hl$ Mt(D$+D$LWHl$ E1HtHD$(H9tHHD$XdH+%(HhL]A\A]A^{+HH\H1E1bH|$ Hc,Hl$ fDDHLzmHLw9HTL%)Hl$ I$FH*zfAVAUATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$ILo(1L肾H|$ HcI2+Hl$ Mt(D$+D$LUHl$ E1HtHD$(H9tHHD$XdH+%(HhL]A\A]A^)HH\H1E1H|$ Hc*Hl$ fDDHLmHL79"8HTL%)Hl$ I$F~HxfAVAUATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$ILo(1LH|$ HcI)Hl$ Mt(D$+D$LTHl$ E1HtHD$(H9tHHD$XdH+%(HhL]A\A]A^{(HH\H1E1bH|$ Hc)Hl$ fDDHLzmHLL6HTL%)Hl$ I$FHlwfAVAUATUHhfnFdH%(HD$X1H/H4$HD$HGfnȉD$fbfD$ILo(1L肻H|$ HcI2(Hl$ Mt(D$+D$LRHl$ E1HtHD$(H9tHHD$XdH+%(HhL]A\A]A^&HH\H1E1H|$ Hc'Hl$ fDDHLmHL"5HTL%)Hl$ I$F~H vfATUHXfnFdH%(HD$H1HˀHt$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ @Q1HT$HdH+%(HX]A\f%HHuѐLd$ Ht$LtHt$LtHt$LtHt$L{tt$T$HL$D$9[3HYHc&N7ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$O1HT$8dH+%(H@[]A\{$HHuːHt$H|$tD$$Ld$uXHELH@H;N )u\H=tLH=u)2HeHcC%ZfDLLX@HЉfATUHhfnFdH%(HD$X1HUHt$0HD$8HGfnD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$0N1HT$XdH+%(Hh]A\f+#HHuѐLd$0Ht$L>tHt$L-tHt$ LtHt$(L tHt$ Lrt$ \$(HT$ L$D$1H>Hc#3|ff.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11MME1HD$(dH+%(H0LA\@!HHufHHRxH;%)EIMtoI$H54LPtZ0HuLIHoH蔗bLD1HHP@L 8fE1/H"DIj fAVAUATUSH`fnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$HLw(11H菴H|$ 4AHcHt$@HD$HHGfnD$XfbfD$PuJHo(Ht!D$P+D$TtDH|$@F1HT$hdH+%(Hx]A\f;HHuѐLd$@Ht$LNtHt$L=tHt$ L,tHt$(LtHt$0L rHt$8L]Ht$ LHt$ l$8Hd$0\$(T$ L$D$(HHcVfDATUHxfnFdH%(HD$h1HHt$@HD$HHGfnD$XfbfD$PuJHo(Ht!D$P+D$TtDH|$@ E1HT$hdH+%(Hx]A\fHHuѐLd$@Ht$L辿tHt$L譿tHt$ L蜿tHt$(L苿tHt$0LzrHt$8Le]Ht$ L Ht$ l$8Hd$0\$(T$ L$D$xa'HHcfDAWAVAUATUSHxfnFdH%(HD$h1H Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HD$ ?H|$04AHcLl$0E.MD$ +D$$!HT$H51 H|$IHt$H D$ 9D$(E~SIEH9AD$D1HfATHH9uDAt ADËL$ T$MLLnAE~5Ic1HH9tADf.zt%HC%Hu9Ic?H|$0I/DIcI\HBH|$0E1HtHD$8H9tHD$hdH+%(HxL[]A\A]A^A_@HHH|$D$ E1]H|$04Hc H|$0IuLE1jHt$ H# MD$ 9D$(QDLH?;$fD1ADHH9ujDLHkHeDAT1UHHNdH%(H$1HGAfnH%fnA)fbAAu\H Ht$0HL$8T$HfD$@HHo(Ht>D$@+D$DH|$0B@1fDH5D)>1H$dH+%(HĘ]A\DL Ht$0LL$8L$@T$DT$HHzHo(HtD$@+D$DH|$0?1KHHaf.Ld$0HLP?Ht$L;*Ht$L&Ht$LHt$ LHt$(Ll$(d$ \$T$L$$Jf.Ht$PH|$0l$xd$p\$hT$`L$XD$PH !HQH)HCf. HHu!DAV1AUATUSHHNdH%(H$1HGAfnH%fnA)fbAA;HHt$@H\$HT$XfD$PHGHo(Ht%D$P+D$TMH|$@=1H$dH+%(HĐ[]A\A]A^HHt$@H\$HL$PT$TT$XHHl$@Lw(11HեH|$`4AHcRLl$`EMD$P+D$TjHL14DD1ADHH9u H^ff.fAV1IAUATUSHfnFdH%(H$HG~H%fn)fbÃtEH5hX71H$dH+%(HĐ[]A\A]A^H hHt$0HL$8T$HfD$@HLIh(Ht%D$@+D$DH|$081yH 2hHt$0HL$8T$HfD$@HHl$0Mp(1H+LoHH5-1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B/1HT$8dH+%(HH[]DHt$H|$_tHl$H=HGtHH=4u HuHc@HH=ܥ tH͍T@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/.1HT$(dH+%(u9H8HHuҐ&HuH (Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_-1HT$(dH+%(u9H8HHuҐVHuH:(Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11,1HT$(dH+%(u9H8HHuҐHuHj(Hff.@H8fnFdH%(HD$(1HQH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11+1HT$(dH+%(u9H8KHHuҐHuH(Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11*1HT$(dH+%(u9H8{HHuҐ苕 HuH(HOff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11*1HT$(dH+%(u9H8HHuҐ[ HuH(Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O)1HT$(dH+%(u9H8HHuҐ諤F HuH*(Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11(1HT$(dH+%(u9H8 HHuҐ*v HuHZ(Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11'1HT$(dH+%(u9H8;HHuҐ' HuH(Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11&1HT$(dH+%(u9H8kHHuҐ[ HuH(H?ff.@SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11&1HT$(dH+%(u7H0[fDHHuӐ HuHcpSH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N%1HT$(dH+%(uUH0[fDHHuӐtAHuHcfHHxH;7(tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n$1HT$(dH+%(uUH0[fDHHuӐtaHuHcfHHpH;_(tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11#1HT$(dH+%(uUH0[fDHHuӐtHuHc4fHHH;)tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11"1HT$(dH+%(uUH0[fD;HHuӐtHuHcTfHHH;')tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11!1HT$(dH+%(uUH0[fD[HHuӐt HuHctfHH`H;/(tЉfUH0fnFdH%(HD$(1HTH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uVH0]fD{HHuӐtHHuHӢ뵐HHH;O(tH1SH0fnFdH%(HD$(1HaH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uUH0[fDHHuӐtHuHcfHHH;(tЉRfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uUH0[fDHHuӐt!HuHcfHHH;(tЉrfUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uVH0]fDHHuӐtH@HuH3뵐HHH;g(tHSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u}H0[fDHHuӐt,(fH~ZHufHn諝fHHH;W(u(fH~fDfH~f.UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uYH0]fDHHuӐ;HSHuHtHH5XH肫H(Hff.UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ HaH(HtD$9D$t;H11?1HT$(dH+%(H8@HHuҐHtIHH;K(uQtLJ HuH(HHH;J(t@1Mff.fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtIHXH;(uQ tLJ HuH(HfHHH;:(t@*f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@HHuҐHtIHH;s(uQtLJHuH(HHH;R(t@1 ff.fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@kHHuҐHtIHH;(uQtLJHuH(HfHH;z(t@f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@KHHuҐHtIHH;3(uQtLJHuHo(HfHH;R(t@ʨf.H8fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@+HHuҐHtIHXH;k(uQ tLJ jHuHN(HHPH;(t@1譧ff.fATUHXfnFdH%(HD$H1HUHt$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ p1HT$HdH+%(HX]A\fHHuѐLd$ Ht$LvtHt$LutHt$LutT$L$HD$辝HnHcc|ff.AWAVAUATUSHXfnFdH%(HD$H1H7Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t9H|$51HT$HdH+%(HX[]A\A]A^A_H\$Lt$L=XZHLL|$ItLl$0LLƒtHLLP|$HtLLHhHcHcX3HH=ff.fAWAVAUATUSHXfnFdH%(HD$H1HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t9H|$1HT$HdH+%(HX[]A\A]A^A_H\$Lt$L=XHLL!|$ItLl$0LLbtHLL|$HtLLHqHcHc XHH=轣ff.fAVAUATUHXfnFdH%(HD$H1H+xHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$|1HT$HdH+%(HX]A\A]A^f.HHuŐLd$HLrtLl$0LLtLt$LLqt$HLL|HHt HUH)J@D$LVfDAWAVAUATUHPfnFdH%(HD$H1HQHt$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4t:H|$ 1HT$HdH+%(HP]A\A]A^A_fLt$Ll$ LH55VLd|$ItLLotL|$L5LLL1|$tLLLHD$|$IcHL$T$HL赆HH>H3HHՠDAWAVAUATUSHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4t9H|$ 1HT$HdH+%(HX[]A\A]A^A_L|$Lt$ LH5TL|$ItLH5L|$ItHLLH|$yLHLHD$|$IXHL$HLL HH4H!)@cHH Mff.fAUATUHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$1H$dH+%(0HĠ]A\A]fHHuɐLd$Ht$ LntLl$0LL|tfoT$0t$ LHfo\$@fod$P)T$`)\$p)$n9D$0f.D$`|uzD$hf.D$8zlujD$pf.D$@z\uZD$Hf.D$xzLuJD$Pf.$z9u7D$Xf.$z&u$/HH(HfD HuҹLL!jf.AUATUHfnFdH%(H$1HəHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$(1H$dH+%(0HĠ]A\A]fHHuɐLd$Ht$ L莹tLl$0LLztfoT$0t$ LHfo\$@fod$P)T$`)\$p)$>7D$0f.D$`|uzD$hf.D$8zlujD$pf.D$@z\uZD$Hf.D$xzLuJD$Pf.$z9u7D$Xf.$z&u$OHH/(HfD+HuҹLLA芛f.ATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$F1HT$8dH+%(H@[]A\HHuːHt$H|$QqtD$$Ld$uXHELH@H;(ulH= tLH=Xo u)HeHcZfDLLH=eѸtLM븐HЉfATH0fnFdH%(HD$(1HLeH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@sHHufHHRxH; (gIMtoI$H5YLPtZHuLoIHoH48bL1HHP@L'8fE1HH"DIj詘fAVAUATUSH`fnFdH%(HD$X1HcH4$HD$HGfnȉD$fbfD$HLw(11H/UH|$ 4AHcLl$ EurMD$+D$H6H|$ E1HtHD$(H9t躧HD$XdH+%(H`L[]A\A]A^fDIcI\fDHH=H1E1rTH|$ 4Hc H|$ IrLE1gDDLHruDE~YIEH9AD$D1HfATHH9uDAt ADLL1;E~/Ic1DHH9tADf.ztHt'H|$ E1HL%(I$DL1H@D1ADHH9ub)H~ff.fAVAUATUSH`fnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$HLw(11HRH|$ 4AHcLLl$ EurMD$+D$HH|$ E1HtHD$(H9t*HD$XdH+%(H`L[]A\A]A^fDIcI\fDHH=H1E1QH|$ 4Hc萾H|$ IrLE1gDDLHrDE~YIEH9AD$D1HfATHH9uDAt ADLLApE~/Ic1DHH9tADf.ztHt'xH|$ E1HL%P(I$DL1Hv@D1ADHH9ub虓H ff.fAWAVAUATUSHhfnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HPH|$04AHc$MLl$0EurMD$ +D$$HH|$0E1HtHD$8H9t蒢HD$XdH+%(HhL[]A\A]A^A_@IcI\fDcHH8H|$E1EOH|$04HccLH|$0ImLE1bHT$ H5 Hܵ|$ I0DLHHt$ HˮEIUHH)HAD$D1H@AoTHH9uDAt4AtH4HA9~ALLA9~ ADDL$ LLLE~=Ic1fDHH9t' A9LtxHuDLH[H|$0E1HL%3(I$fD1ATHH9u^荐H$ AVAUATUSH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1H MH|$04AHc&JLl$0EulMD$ +D$$HH|$0E1HtHD$8H9t蔟HD$XdH+%(H`L[]A\A]A^IcI\fDkHH>H|$E1MLH|$04HckIH|$0IsLE1hHt$HKDLH|5Ht$ H EIUHH)HAD$D1HfAoTHH9uDAt4AtH4HA9~ALLA9~ ADDL$ t$LLNE~DIc1DHH9t/ A9LtHuDLHkH|$0E1H"L%C(I$fD1ATHH9uV蝍HUAWAVAUATUSHxfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11HJH|$04AHcǶLl$0E9D$MD$ +D$$'DLH k#HT$H5.H荰|$ID$ 9D$(E~XAD$IEH9D1HfDfATHH9uDAt ADL$LLLE~3Ic1DHH9tADf.ztrH+dH|$0E1HuAL%@(I$3fIcI\HH|$0E1HtHD$8H9trHD$hdH+%(HxL[]A\A]A^A_@SHHH|$1E18HH|$04HcLl$0LtD$LE1tf.Ht$H裍ZHfDD1ADHH9uDL1H^w褊H}U1IH@fnFdH%(HD$8HG~H%fn)fbt:H51HT$8dH+%(H@]fHHt$HT$L$(fD$ HIh(HtD$ +D$$tFH|$1fDHD$8dH+%(uyH@HH=*L]Ht$H|$QDHt$H@H'Hc蔳L@IHH*f.AW1IAVAUATUSHHfnFdH%(HD$8HG~H%fn)fbtAH5 1HT$8dH+%(WHH[]A\A]A^A_HHt$H\$L$(fD$ HIh(HtD$ +D$$tVH|$1fDHD$8dH+%(HHHH=*L[]A\A]A^A_@L|$Lt$LH5<Lī|$IHLLH衫|$ILHL腫|$HHLL@HHH L`IHJf.UH@HNdH%(HD$81HGfnAH%HfnfbA)Au\H QKHt$HL$D$(fD$ HHo(Ht>D$ +D$$H|$1fDH5JD1HT$8dH+%(H@]DL JHt$LL$L$ D$$D$(HH(HtD$$9D$ tH|$11i1D HH7yf.Ht$ H|$Xt$ H^HEH;H4\0uHHH;(u!1D胮HH=fHd@AV1AUATUSHHNdH%(H$1HGAfnH%fnA)fbAtIAH5oD@1H$dH+%(9HĐ[]A\A]A^HoHt$0H\$8L$@T$DT$HHHl$0Lw(11HAH|$P4AHc2Ll$PEMD$@+D$D"HH|$P1H:HT$XH9,HD$HD$fDHnHt$0H\$8T$HfD$@HHo(Ht!D$@+D$Dt.H|$01IcI\7Ld$0Ht$LRtHt$ LRtHt$(LRtT$(L$ HD$趂H辺HuH>@DLHZaE~YAD$?IEH92D1HfAd$HH9uDAt ADLLIE~IIc1f.HH9t/ADf.ztHuDL1H oDӹHLH|$P+HHC1* HHeH|$01>H|$P4Hc衫H|$P1IL1DD1ADHH9u虁Hff.fAW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtGAH5UD^1H$dH+%(HĘ[]A\A]A^A_HUHt$0H\$8L$@T$DT$HHHl$0Lw(11H=H|$P4AHcRLl$PEMD$@+D$DJHH|$P1HL14D$8Hϵ_D1DADHH9uDLHaD$8L{tH.DATL%C*H HʸH5*L膊*u#LH*艖LA\ATIUHHt HH5sLH4tHmtH]A\HH]A\NH8fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8苜HHuҐu$H8HuHҏ(H@pLsff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD諛HHuӐu$H( HuHc远Djrf.AV1IAUATUSHpfnFdH%(HD$hHG~H%fn)fbt;H5N1HT$hdH+%(Hp[]A\A]A^H Ht$ HL$(T$8fD$0HIh(Ht%D$0+D$4H|$ 1fH +Ht$ HL$(T$8fD$0HlHl$ 1Mp(1HG.H|$@4AHcd+Ll$@EubMuD$0+D$4HNH|$@1HT$HH9HHD$ƀHD$@IcI\fDLd$ Ht$L覍HT$H5DLj|$HD$4t$HEH8ڧHH(HEDLH],Ht$HHT$H5H|$HEIUHH)HcAD$UD1H@AoTHH9uDAt4A|HH(HtD$9D$t;H111HT$(dH+%(uLH8苖HHuҐu$H0HuH҉(H@Lmff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8諕HHuҐu$H(HuH(H@8llff.H8fnFdH%(HD$(1HݳH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(uLH8˔HHuҐu$H.HuH(H@bkff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(uzH@]f.ۓHHuϐH5βHT$H|$蚎|$HtD$$u(HEHHuH(H@H{qjUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(urH@]f.˒HHuϐHt$ H|$豆tD$$t$ u)HEHHuH(HDH.iifUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uzH@]f.軑HHuϐH5HT$H|$z|$HtD$$u(HEHHuHڄ(H@H8QhUH@fnFdH%(HD$81H,Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uzH@]f.諐HHuϐH5HT$H|$j|$HtD$$u(HEHHuHʃ(H@HH(HtD$9D$t;H11?1HT$(dH+%(uLH8˄HHuҐu$H(.HuHx(H@#[ff.H8fnFdH%(HD$(1HaH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(uLH8HHuҐu$H0NHuH2w(H@Zff.AUATUHPfnFdH%(HD$H1H<_Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$n1HT$HdH+%(HP]A\A]fDHHufLd$Ht$L(tLl$0LL7tHT$H5vL}}|$HqD$$D$u1HELH`HEHu(H7LHU}>Yff.AUATUHPfnFdH%(HD$H1H]Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$HdH+%(HP]A\A]fD胁HHufLd$Ht$ L^utLl$0LL6tHT$ H5}uL ||$ HqD$$t$ u3HELHX~HGH^t(H9DLH5\Wff.AVAUATUHXfnFdH%(HD$H1H;,Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$茫1HT$HdH+%(HX]A\A]A^f. HHuŐLd$HL &tLl$0LL5tLt$LL%tD$$$uBHEHLLPHHt: HHH,=HLLrHDD$L>Vff.ATUHHfnFdH%(HD$81H*H4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEH1HT$8dH+%(}HH]A\D~HHuΐLd$ HL3tD$u/HEHLHHnjHuHHL襕HUf.'UH=Hsu]ÐHH=pYqstHH=)^stHH= KstH]f.@75UH@dH%(HD$81HzHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&w|$HtHt+HH5DHPtRHuHE*19HuSff.fHGI~H)ǃuHH=ǿ*LoHH5訥1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_)tHl$H=HGqtHH=4qu HuHc|@HH=o qtHH=ptHARSH0fnFdH%(HD$(1HYH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDzHHuӐt1HuHc{fDHHH;}(tЉbQfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>1HT$(dH+%(uUH0[fDyHHuӐt15HuHczfDHHH;o(tЉPfSH0fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uZH0[fDxHHuӐtRHuHczHHH;R(tЉOff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDwHHuӐtbHuHcyHHH;y(tЉNff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD wHHuӐDtrHuHc%xHDHH;w(tЉMff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$耡1HT$8dH+%(u|HH]A\fD vHHuѐHt$ H|$itD$$E1uHEHH;m(uIHuL<#f.t$ HILff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`1HT$8dH+%(u|HH]A\fDtHHuѐHt$ H|$htD$$E1uHEHH;g(u)HuL"f.t$ HI}Kff.fAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uHHo(Ht!D$ +D$$tBH|$>1HT$8dH+%(utH@]A\A]fsHHuӐLl$1H5(,!LڕIHtHt$ LgtT$ HLHu@ |cJAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$.1HT$8dH+%(H@]A\A]fDrHHufLl$Ld$LLftHt$ LzftT$ HLwWHt#րHo@cT$1L <#IATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(HH]A\f{qHHuѐLd$Ht$L^etHt$LMetHt$ LHcp3HEHXH;>q(tT$HLD$L$T$D$L$q}HuL1L2u:Ff.ATH0fnFdH%(HD$(1HlH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@nHHufHHRxH;rw(&IMtoI$H5LPtZ|HuLIHoHTbLE1HHP@LGZ8fE1h|H"DIjDfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$膘1HT$8dH+%(H@[]A\ mHHuːHt$H|$tD$$Ld$u`HELH@H;f{(H=$\btLH=Ibu- {HaHcmVf.LLH=` btLH=atLfDHЉ2CfAVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcflLl$0EulMD$ +D$$HH|$0E1HtHD$8H9tDRHD$hdH+%(HpL[]A\A]A^IcI\fDkHH>H|$E1H|$04HckH|$0IsLE1hHt$ H^KDLH5E~\IEH9AD$D1Hf.fATHH9uDAt ADËt$ LL AE~0Ic1fDHH9tADf.ztxHt$xxHA膠H|$0IqDLHv-@D1ADHH9uZ@H8ff.fUSHHHNdH%(HD$81HGfnAH%HfnfbA)t5AtH5Dp1HT$8dH+%(HH[]HHt$H\$L$ D$$D$(H*H(HtD$$9D$ twH|$11 1DHdHt$H\$D$(fD$ HHo(H_D$ +D$$tbH|$讓19HvHHHH5 DH"DHt$ H|$\Hc\$ H,,dvHHcifDgHH+fgHHzf.HZ(Hb{>ff.ATL%S*H HH5ަ*L6Tإ*uhLH*9`LA\ATIUH Ht HH5aLHCtHmtH]A\HH]A\1AWAVAUATUSHfnFdH%(H$1H9Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HQH|$`4AHcfLl$`EutMD$0+D$4HXH|$`E1HtHD$hH9tLH$dH+%(WHĨL[]A\A]A^A_IcI\fDeHH6H|$ E1H|$`4Hc;fH|$`IkLE1`L|$@HL;DLHu%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztrHt'rH|$`E1HL%pW(I$DLH'Đ[rHL1Hp'mLLLDD1ADHH9uy:H9ff.fAWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHccLl$`EutMD$0+D$4HH|$`E1HtHD$hH9tlIH$dH+%(WHĨL[]A\A]A^A_IcI\fD;bHH6H|$ E1H|$`4HcbH|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt2oHt'(oH|$`E1HL%T(I$DLH#$ĐnHL1H$mLLL:DD1ADHH9u 7Hff.fAVAUATUSHPfnFdH%(HD$H1HCHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$車1HT$HdH+%(HP[]A\A]A^;_HHuƐLd$0Ll$LLVt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuE mH,fHnm HLL$OL$fH~flHuL1L!=5ff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fD]HHuӐuKtLt$ H5vKLLR|$ ItLH5uLQ|$ HtD$$t$ uQLEHLAHYeHXHcXMVHH 2f.HLQ-ff.AWAVAUATUSH8fnFdH%(H$(1H H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$.1H$(dH+%(dH8[]A\A]A^A_UHHuÐL$L$LL tL$LL tH$LjL$LLeOH$LHHD$P *H$LH0  HT$|LHHT$H$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQaHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc aH `HIcSHLILRLD$LH AXZT$h\$`L$m`HuHھLy`H*HT$LZ`HLLl2`H(L1LG$LiUT$|LF\(ff.AWAVAUATUSHxfnFdH%(HD$h1HѧHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ |1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5BLLSK|$8ItLH5L7K|$8ItLH5LK|$8kHLLH$HJ|$8GLHLHD$J|$8)LæLLHD$LJ|$8HLL[H $LD$LLL$L\$,LLLL$LLD$HL$L$XJ|$,L$HL$LD$ILL$LLLL$LD$H $>CqL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H o]H!HOB(HfDNHHf.RLLHAVPS\H %fAWAVAUATUSHfnFdH%(HD$x1HGHt$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P Ry1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LtL\$HH5rLLL\$~H|$HL\$ItLH59L]H|$HL\$IhL5LLL5H|$HL\$CLLLHD$H|$HL\$ LLLHD$G|$HL\$L5ǣLLHD$ LG|$HL\$HLLLG|$HL\$HL$LD$ILL$ LwLLLL$(LLD$ HL$L\$YG|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$ XL*HT$?LLF|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0BZHH"?(HfKHHcf.HLHRLPt$ AVSH0Z"f.AWAVAUATUSHfnFdH%(H$1H Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HH$4AHc{KL$Eu~MD$`+D$dHuH$E1HtH$H9tP1H$dH+%(HL[]A\A]A^A_@IcI\uJHH&H|$PE1H$4HcJH$I^LE1Sf.L|$LHL=&HD$pHHH$H$HHHD$DLH\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(VHd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztVH VH$E1HL%:(I$HL$H$MLL UHH$H UHBHT$H &D1@ADHH9u2T$L1HTDLHX HfUHAWAVAUATSHhHfnFdH%(HE1HkHHHGfnȉfbfօ;HH@(HLLHP4AHcFHPHDžEtIcHHL4H}AHc\FHDžLuEtIcIHH+LpLuE1MtHEI9tL,HPHtHXH9t+HEdH+%(HeL[A\A]A^A_]fDDHHfDHLHHUDHL?HLHHk8H0LHHHLHHTDLLN xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創ZPH8LPHf.0f.8f.@OHyE~LHIc1HH9Af.zt䉝OHOHHc6BLuIf.E1SOH[HLa=딉OHrH1L%WHLLHHHAVHXHHD1AHH9uHHL %LsWmHHD1HH9uH7DHھL6DLLYdHHǑff.AVAUATUSH`fnFdH%(HD$X1H:Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$  j1HT$XdH+%(;H`[]A\A]A^>HHuƐLd$ Ht$Ln2tLl$@LLtHT$H52L9|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6fDHLUD$LHuLLeDH8fnFdH%(HD$(1H0&H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?h1HT$(dH+%(uLH81tHH=+1tH]f.@bAUATUH`dH%(HD$X1HɾHl$Ht$HD$HFHHD$$D$ H|$0HcI/D$ +D$$Ll$0tUH+fE1H|$0HD$8H9t Ht!HD$XdH+%(H`L]A\A]fDHt$H.tHt$Hz.tHt$ Hi.tDLHtT$ t$L|$k+HHPHcc;ICHf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$d1HT$8dH+%(uhH@]@HT$H|$H5Z4|$HtHt+HH5HPtGHuH1GHu-ff.fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$d1HT$8dH+%(HH[]DHt$H|$/tHl$H=H.tHH=.uFHuHc9@HH=z,-tHH=-tHSH0fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11b1HT$(dH+%(uZH0[fD{7HHuӐHtEHuHc8HHHH; D(tЉ-ff.fSH0fnFdH%(HD$(1H(H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11a1HT$(dH+%(uZH0[fD6HHuӐtDHuHc7HHH;:=(tЉ= ff.fSH0fnFdH%(HD$(1HZH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11a1HT$(dH+%(uZH0[fD5HHuӐ tDHuHc6H HH;ZC(tЉM ff.fSH0fnFdH%(HD$(1HYH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11`1HT$(dH+%(uZH0[fD4HHuӐtCHuHc5HHH;*%(tЉ] ff.fSH0fnFdH%(HD$(1H@CH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11._1HT$(dH+%(uZH0[fD3HHuӐt"BHuHc4HHH;.(tЉm ff.fAUATUH`fnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ .^1HT$XdH+%()H`]A\A]fD2HHufLd$@Ll$ LLtD$4L$HD$@T$PtXHaf(Y1HD$P)\$@f.D$@uf.L$Hzwuuf.T$Pzmuk@H?HcU34HEHXH;.'(tT$HLD$L$T$D$L$|f;@HuL1LTtf.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11m\E1HD$(dH+%(H0LA\@0HHufHHRxH;"0(XIMtoI$H5DLPtZ%?HuLIHoH账bLd1HHP@L8fE1>H"DIj)fATUSH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$Z1HT$8dH+%(H@[]A\k/HHuːHt$H|$tD$$Ld$u`HELH@H;$(H=$tLH=I$u-=HaHc/0Vf.LLH= #i$tLH=)V$tLfDHЉfAVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHc.Ll$0EulMD$ +D$$H YH|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fD{-HH>H|$E1]H|$04Hc .H|$0IsLE1hHt$ H#!KDLHM5E~\IEH9AD$D1Hf.fATHH9uDAt ADËt$ LLAE~0Ic1fDHH9tADf.zt:Ht$:HAbH|$0IqDLH@D1ADHH9uZH~ff.fAVAUATUSHpfnFdH%(HD$h1HZHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HiH|$04AHc,Ll$0EulMD$ +D$$HpVH|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fD*HH>H|$E1譾H|$04Hc[+H|$0IsLE1hHt$ HsKDLH5E~\IEH9AD$D1Hf.fATHH9uDAt ADËt$ LLśAE~0Ic1fDHH9tADf.zt28Ht$(8HA6`H|$0IqDLH&@D1ADHH9uZIH6|ff.fATUHHdH%(HD$8HFt6tyH5KR1HT$8dH+%(<HH]A\DH^Ht$HD$HGD$ D$$D$(Ho(Hu71HD$8dH+%(HHHH]H=q*A\c7Ld$Ht$LNtHt$L=tHt$ L,tL$ T$Ht$6HmHc<)'HKHh(H>D$ +D$$dH|$S1@USHHHNdH%(HD$81HGfnAH%HfnfbA)t5AtH5DP1HT$8dH+%(HH[]HԪHt$H\$L$ D$$D$(H*H(HtD$$9D$ twH|$11)R1DHHt$H\$D$(fD$ HHo(H_D$ +D$$tbH|$Q19+H4HHHH5@H DHt$ H|$!Hc\$ H,4HHc3'fD%HH+f%HHzf.H(Hbff.AW1AVAUATUH@HNdH%(HD$81HGAfnH%fnA)fbAt>AH5DuN1HT$8dH+%(PH@]A\A]A^A_ÐL mHt$LL$L$ T$$T$(HHo(HtD$ +D$$t|H|$P1@H Ht$HL$T$(fD$ HTHo(HRD$ +D$$~H|$O1(Ll$1H5 LbFIHHt$ LT$ HL{2HDILd$LLLt$LLL|$LLxHt$ LcDD$ HLLLS1H1Htq1HtT1H@Yf+#HHf. #HH%T$L뙋T$Ly$1L]f.ATL%Sf*H ,H%H5g*Lvf*u訇LHg*yLA\ATIUH=MHt HH5γLH胹tHmtH]A\HH]A\qAWAVAUATUSHfnFdH%(H$1HyxHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1H葵H|$`4AHc>"Ll$`EutMD$0+D$4HLH|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\ HH6H|$ E1ʹH|$`4Hc{!H|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt-Ht'-H|$`E1HL%(I$DLHĐ-HL1HmLLLZDD1ADHH9uHqff.fAWAVAUATUSHfnFdH%(H$1HtHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1H!H|$`4AHcLl$`EutMD$0+D$4H(IH|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\fD{HH6H|$ E1]H|$`4Hc H|$`IkLE1`L|$@HL[;DLHE%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztr*Ht'h*H|$`E1HL%@(I$DLHcĐ+*HL1H@mLLLDD1ADHH9uIHxnff.fAVAUATUSHPfnFdH%(HD$H1HHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$E1HT$HdH+%(HP[]A\A]A^{HHuƐLd$0Ll$LLt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuE`(H,fHnHLL$?L$fH~f(HuL1L4}ff.fUH0fnFdH%(HD$(1H;pH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ND1HT$(dH+%(u|H0]fDHHuӐu1HT$8dH+%(HH]A\A]A^fDLl$Ht$ L~tLt$ H5LLC |$ ItLH51L' |$ HtD$$t$ uQLEHLAH HXHcHMHH 2f.HLff.AWAVAUATUSH8fnFdH%(H$(1H`H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$n<1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LLtL$LLtH$LjL$LL襶OH$LHHD$*H$LHp HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucKH =HIcHLILRLD$LH/AXZT$h\$`L$mHuHھLyH*HT$LHLLrH(L1L$L\$UT$|Lff.AWAVAUATUSHxfnFdH%(HD$h1HcHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ U71HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5LL|$8ItLH5SbLw|$8ItLH5"L[|$8kH8bLLH$H7|$8GLHLHD$|$8)LbLLHD$L|$8HLLH $LD$LaLL$L\$,LLLL$LLD$HL$L$|$,L$HL$LD$ILL$LLLL$LD$H $~qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!H'HfD HHf.RLLHAVPSH fAWAVAUATUSHfnFdH%(HD$x1H`Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 41HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@L.tL\$HH5LLL\$|$HL\$ItLH5y_L|$HL\$IhL5B|LLLu|$HL\$CLLLHD$R|$HL\$ LLLHD$/|$HL\$L5_LLHD$ L|$HL\$HLLL|$HL\$HL$LD$ILL$ L^LLLL$(LLD$ HL$L\$|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$KLP^*HT$?LL<|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0HHb'HfHHcf.HLHRLPt$ AVSH0f.AWAVAUATUSHfnFdH%(H$1H`]Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HH$4AHcL$Eu~MD$`+D$dH1H$E1HtH$H9tH$dH+%(HL[]A\A]A^A_@IcI\u[HH&H|$PE1=H$4HcH$I^LE1Sf.L|$LHL&HD$pHHH$H$HHHD$DLHԹ\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(0Hd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztZHLH$E1HL%!'I$HL$H$MLLy1HH$HHBHT$H&D1@ADHH9u2T$L1HTDLHHtUfUHAWAVAUATSHhHfnFdH%(HE1HXHHHGfnȉfbfօ;HH@(HLL5HP4AHcHPHDžEtIcHHL4H}AHcHDžLuEtIcIHH+L+LuE1MtHEI9tLXHPHtHXH9t;HEdH+%(HeL[A\A]A^A_]fDHHfDHLHH"UDHL ?HLHHH0LHHŴHLHH蔥DLL莴 xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創 H8 Hf.0f.8f.@* HyE~LHIc1HH9Af.zt䉝 H HHcvLuIf.E1 H[HL衿=딉T HrH1LeWHLLHHHAVHHHD1AHH9uHHL %LmHHD1HH9uH7DHھLvDLL^YHxNHUNff.AVAUATUSH`fnFdH%(HD$X1HzQHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ K%1HT$XdH+%(;H`[]A\A]A^HHuƐLd$ Ht$LtLl$@LLծtHT$H5L]|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6|HHc+fDHLD$FHuLL\DH8fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11#1HT$(dH+%(uLH8 HHuҐu$HnHuHR'H@#ff.UH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHH\HuHODH0HfDUH@fnFdH%(HD$81HMHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$!1HT$8dH+%(uuH@]f. HHuϐHt$ H|$tD$$t$ u)HEHHLHuH?DHиHfDHfDfDfD fDfDHEpf(=pHF1wUH=Hu]ÐHH=1LtHH=~tHH=>ktH].f.@bSH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uHL[]A\A]A^A_Ht$HtHt$H"tpDLHZDLHDE~SIFH9rAD$dD1HfA  HH9uDAt AE~`IGH9D$AED1Hf.fAHL$HH9uDAt AD$|$LLIc1E &HH9tAf.ztCHIc1E-fDHH9tHL$Af.ztHtjHL%ܿ'I$D1DAHL$HH9u9D1DAHH9uDLH贏DLH蟏0H="HP"ff.fAUATUS1HxdH%(HD$h1HcHl$Ht$HD$HFHHD$$D$ l_H|$04AHcLl$0EtIcI\D$ +D$$tZHxE1H|$0HtHD$8H9tHD$hdH+%(JHxL[]A\A]f.Ht$HӾtHt$HptDLHtE~SIEH9AD$D1HfAL HH9uDAt ADD$|$L=Ic1EFfDHH9t7ADf.ztHuDLH認f.kHL%K'I$D1ADHH9uZ詠HA ff.fUH@dH%(HD$81HkHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H56k|$HtHt+HH5]aHPtbHuHUv1IHu轟ff.fUSHHdH%(HD$81HjHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$utHl$H={`H觽tHH=gj蔽ukHuHc@H@RǞATUSH@fnFdH%(HD$81HiHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\ HHuːHt$H|$ttD$$Ld$uXHELH@H;'u\H=1_`tLH= iMu)$HeHcZfDLLP@HЉbfAWAVAUATUHSH8fnFdH%(H$(1H^Ht$@HD$HHGfnȉD$XfbfD$PvHm(Lt$@LYH|$pHcD$$HD$pLHD$Y4H$AHcbHD$H$Et IcHHD$LsY4H$AHcHD$L$Et IcIHD$HD$P+D$TL_L$E1MtH$I9tLګH$H$H9t Ht軫H|$pHD$xH9t Ht被H$(dH+%(H8L[]A\A]A^A_fD{HHyxf.HD$`LHHD$(/T$$Ht$LmyDHLWyHt$SLQt H-*tS $HHtHH5SLQHmtLXL]A\A]HkfDHkff.ATIUHͣHtHH5ZRLH3Qu7uHHtHH5RL QHmt$H]A\@HmuHjHH]A\jw'UH=QHu]ÐHH=[tH]C@AUATUH`dH%(HD$X1H<Hl$Ht$HD$HFHHD$$D$ LH|$0HcIID$ +D$$Ll$0tMHE1H|$0HD$8H9t HtoHD$XdH+%(usH`L]A\A]fHt$HStHt$ HBtDLH|tt$ |$L2HqHcDIdHnff.UH@dH%(HD$81HYHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Y:|$HtHt+HH5-dHPtHuHd1Hu ff.fHFuHHH=6 *HH5b:1HUSHHdH%(HD$81HXHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$ctHl$H= cH跫tHH=D 褫u{HuHc.@HH=ytHH=9XftH*@豌SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐFtHuHc5HFHH;b'tЉ͋ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD+HHuӐtHuHcEHHH;'tЉ݊ff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD;HHuӐtHuHcUHHH;J'tЉff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDKHHuӐtHuHceHHH;"'tЉff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD[HHuӐt1ſHuHcxfDHHH;'tЉfATUHHfnFdH%(HD$81HUHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDkHHuѐHt$ H|$QtD$$E1uHEHH;'u詾HuL]f.t$ HIff.fATUHHfnFdH%(HD$81HV3Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(HH]A\fKHHuѐLd$Ht$L.tHt$LtHt$ L tL$ T$Ht$dmHtHci҅fAUATUH`fnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fD#HHufLd$@Ll$ LL6ctD$4L$HD$@T$Pt`f((1HD$P)\$@f.D$@~f.L$Hzvutf.T$PzlujH>HcĮ3HEHXH;'tT$HLD$L$T$D$L$q諻HuL1Lpu f.ATH0fnFdH%(HD$(1HH|$E1AH5Q(D%1HT$8dH+%(PH@]A\A]A^A_ÐL (Ht$LL$L$ T$$T$(HHo(HtD$ +D$$t|H|$1@H 'Ht$HL$T$(fD$ HTHo(HRD$ +D$$~H|$R1(Ll$1H5`\ LIHHt$ LɗT$ HL/+HDILd$LL腗Lt$LLmL|$LLUxHt$ L@cDD$ HLLL肦蛱H荱Htq胱HtTyH@fۢHHf.転HH%T$Lyl뙋T$Lfly$1LTl]jyf.ATL%C)H H1OH5)L&)uXLH))LA\ATIUH}Ht HH5NLH39tHmtH]A\HH]A\!SAWAVAUATUSHfnFdH%(H$1H)Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HA5H|$`4AHcLl$`EutMD$0+D$4HHH|$`E1HtHD$hH9ṫH$dH+%(WHĨL[]A\A]A^A_IcI\fD蛠HH6H|$ E1}4H|$`4Hc+H|$`IkLE1`L|$@HL{U;DLHeU%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt蒭Ht'舭H|$`E1HL%`'I$DLHbĐKHL1H`bmLLLڶDD1ADHH9uiuH"ff.fAWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1H1H|$`4AHc~Ll$`EutMD$0+D$4HH|$`E1HtHD$hH9t\H$dH+%(WHĨL[]A\A]A^A_IcI\fD+HH6H|$ E1 1H|$`4Hc軝H|$`IkLE1`L|$@HL R;DLHQ%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt"Ht'H|$`E1HL%'I$DLH_Đ۩HL1H^mLLLZ DD1ADHH9uqHff.fAVAUATUSHPfnFdH%(HD$H1H3=Ht$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^+HHuƐLd$0Ll$LLFOt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHn]EHLL$/L$fH~f˧HuL1L\-pff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fD苘HHuӐu4 xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創JH8DLL>YTQHHff.AVAUATUSH`fnFdH%(HD$X1H*Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^{yHHuƐLd$ Ht$L^mtLl$@LL.tHT$H5}mL t|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6,HHcyfDHL:D$HuLL H(HtD$9D$t;H11/1HT$(dH+%(uLH8wHHuҐu$HHuHk'H@s|Nff.UH@fnFdH%(HD$81H~Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uuH@]f.vHHuϐHt$ H|$jtD$$t$ u)HEHH HuH#DHHfMfDFfDfDfDfD1f1ff(HF1fDwUH="H\ku]ÐHH=AktHH=i.ktHH=ktH]f.@gAUATUHpdH%(HD$h1H$Hl$Ht$HD$HFH1HD$$D$  H|$0HcID$ +D$$Ll$0tPHE1H|$0HD$8H9t Ht[HD$hdH+%(u_HpL]A\A]DDLH tHt$HAtHt$LP.H؂HuHvIx>KHfAUATUS1HxdH%(HD$h1H#Hl$Ht$HD$HFHHD$$D$ H|$04AHcYLl$0EtIcI\D$ +D$$tZHE1H|$0HtHD$8H9tlZHD$hdH+%(GHxL[]A\A]f.HHtDLHs tHt$H~tE~RIEH9AD$D1HAoDHH9uDAt ITHHT$H<$L6Ic1EBf.HH9t/H I9LtHuDLHsHL%e'I$fD1ITHHH9uZIHUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5jl|$HtHt+HH5 HPtHuH1Hu=Hff.fH8dH%(HD$(1Hi H4$HD$HFHD$D$t#H1171HT$(dH+%(uH8KHu߿qGDH8dH%(HD$(1HH4$HD$HFHD$D$t#H11跛1HT$(dH+%(uH8~Hu߿|q5GDUSHHdH%(HD$81HdHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?tHl$H=H'etHH=eu}HuHcp@HH=cdtHH=dtH!FUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u7H0]fDnHHuӐH|HuHq`EUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u8H0]fDmHHuӐxH3|HuHVpDff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDlHHuӐGtb{HuHcnHGHH;g'tЉCff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD lHHuӐtrzHuHc%mHHH;h'tЉBff.fSH0fnFdH%(HD$(1HzH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莖1HT$(dH+%(uZH0[fDkHHuӐtyHuHc5lHHH;Rs'tЉAff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螕1HT$(dH+%(uZH0[fD+jHHuӐtxHuHcEkHHH;U'tЉ@ff.fSH0fnFdH%(HD$(1HؿH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11讔1HT$(dH+%(uZH0[fD;iHHuӐtwHuHcUjHHH;rl'tЉ?ff.fAVAUATUHhfnFdH%(HD$X1H=H4$HD$HGfnȉD$fbfD$ILo(1LrH|$ HcIHl$ Mt(D$+D$L腓Hl$ E1HtHD$(H9tHOHD$XdH+%(HhL]A\A]A^gHH\H1E1H|$ HcUHl$ fDDHLmHLIvHl$ HQL)jHl$ I?g>HMff.ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-E1HD$(dH+%(H0LA\@fHHufHHRxH;m'IMtoI$H5LPtZtHuLIHoHtbL$=1HHP@LgR8fE1tH"DIjH|$E1H|$04HcH|$0IsLE1hHt$HnKDLH 5E~YIEH9AD$D1Hf.AoTHH9uDAt ITHHt$LLGE~(Ic1 HH9tH I9LtpHt'pH|$0E1HL%}U'I${DLHbfDD1ITHHH9ub8H˺ATL%S)H L$fH~ffHuL1L=/ff.fAVAUATUSHPfnFdH%(HD$H1HxHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%( HP[]A\A]A^{WHHuƐLl$0Ld$LL tT$8\$@D$$D$0fH~fI~ޅufHED$HLXD$f.D$0z`u^fHnf.d$8zQuOfInf.l$@zBu@ceH/HcX$DHLD$D$D#eHuL1L<-DUH0fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(u|H0]fDUHHuӐutL\$HH5LLL\$@|$HL\$ItLH5L@|$HL\$IhL5RLLL@|$HL\$CLLLHD$b@|$HL\$ LLLHD$?@|$HL\$L5LLHD$ L@|$HL\$HLLL?|$HL\$HL$LD$ILL$ LǛLLLL$(LLD$ HL$L\$?|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$[PL`*HT$?LLL?|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0RHHr7'HfCHHcf.HLHRLPt$ AVSH0f.AWAVAUATUSHfnFdH%(H$1HpHt$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1H!H$4AHcCL$Eu~MD$`+D$dH"nH$E1HtH$H9t)H$dH+%(HL[]A\A]A^A_@IcI\ukBHH&H|$PE1MH$4HcBH$I^LE1Sf.L|$LHL6&HD$pHHH$H$HHHD$DLH\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(@OHd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztjNH\NH$E1HL%13'I$HL$H$MLLNHH$H MHBHT$H&D1@ADHH9u2T$L1HTDLHH鞘fUHAWAVAUATSHhHfnFdH%(HE1HHHHGfnȉfbfօ;HH@(HLLEHP4AHc>HPHDžEtIcHHL4H}AHc>HDžLuEtIcIHH+LhLuE1MtHEI9tLh$HPHtHXH9tK$HEdH+%(HeL[A\A]A^A_]fD+=HHfDHLHH2UDHL?HLHH0H0LHHHLHHDLL xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創HH8HHf.0f.8f.@:HHyE~LHIc1HH9Af.zt䉝GHGHHc:LuIf.E1GH[HL=딉dGHrH1LuWHLLHHHAVHSHHD1AHH9uHHL%LOmHHD1HH9uH7DHھLDLLnYH频Hff.AVAUATUSH`fnFdH%(HD$X1HHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ [b1HT$XdH+%(;H`[]A\A]A^6HHuƐLd$ Ht$L*tLl$@LLtHT$H5*Lm1|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6DHHc;7fDHL%D$VDHuLLl DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11`1HT$(dH+%(uLH85HHuҐu$H~CHuHb('H@3 ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$_1HT$8dH+%(uuH@]f.+4HHuϐHt$ H|$(tD$$t$ u)HEHHlBHuH_DHH fDUH@fnFdH%(HD$81HΊHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$^1HT$8dH+%(uuH@]f.3HHuϐHt$ H|$'tD$$t$ u)HEHH\AHuHODHH fDGfDfDfDfDfDgUH=H'u]ÐHH=a'tHH=O&'tHH=n'tH]^f.@"UHPdH%(HD$H1HHt$ HD$(HFHD$4D$0t0H|$ \1HT$HdH+%(uuHP]@Hl$ Ht$H=tHt$H =tHt$H\tD$Ht$H|$fH~?HufHn{UHPdH%(HD$H1HHt$ HD$(HFHD$4D$0t0H|$ [1HT$HdH+%(uuHP]@Hl$ Ht$H>HufHn{AUATUHpdH%(HD$h1HHl$Ht$HD$HFH1HD$$D$ H|$0HcIBD$ +D$$Ll$0tPHZE1H|$0HD$8H9t HtbHD$hdH+%(u_HpL]A\A]DDLHtHt$H;tHt$L H=HuH1IxHfAUATUS1HxdH%(HD$h1H[Hl$Ht$HD$HFHHD$$D$ H|$04AHcLl$0EtIcI\D$ +D$$tZHYE1H|$0HtHD$8H9t,HD$hdH+%(GHxL[]A\A]f.HH9tDLH3tHt$H9tE~RIEH9AD$D1HAoDHH9uDAt ITHHT$H<$LIc1EBf.HH9t/H I9Lt;HuDLH-;HL% 'I$fD1ITHHH9uZHAUATUS1HxdH%(HD$h1HHl$Ht$HD$HFH1HD$$D$ H|$04AHc,-Ll$0EtIcI\D$ +D$$tUHWE1H|$0HD$8H9t HtHD$hdH+%(/HxL[]A\A]DDLH*tHt$H7tE~\IEH9AD$D1Hf.fAL HH9uDAt ADHt$LGBIc1E&HH9tADf.zt9HtG9HL%'I$fDD1ADHH9uzDL1HH,ff.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$U1HT$8dH+%(uhH@]@HT$H|$H5f%|$HtHt+HH5{HPt8HuH1y8Huff.fH8dH%(HD$(1HH4$HD$HFHD$D$t#H11T1HT$(dH+%(uH87Hu߿*eDH8dH%(HD$(1HH4$HD$HFHD$D$t#H11gT1HT$(dH+%(uH8{7Hu߿,*DUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$S1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=du6HuHcN)@HH=:tHH=YtHJUH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11R1HT$(dH+%(u7H0]fD;'HHuӐH5HuH)UH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Q1HT$(dH+%(u8H0]fD{&HHuӐ/H4HuH)Off.@SH0fnFdH%(HD$(1H{|H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Q1HT$(dH+%(uZH0[fD%HHuӐEt4HuHc&HEHH;B 'tЉ]ff.fSH0fnFdH%(HD$(1Hi{H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11.P1HT$(dH+%(uUH0[fD$HHuӐt1%3HuHc%fDHHH;)'tЉrfSH0fnFdH%(HD$(1HzH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11NO1HT$(dH+%(uZH0[fD#HHuӐtB2HuHc$HHH;'tЉff.fSH0fnFdH%(HD$(1Hp2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^N1HT$(dH+%(uZH0[fD"HHuӐtR1HuHc$HHH;'tЉff.fSH0fnFdH%(HD$(1HxH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nM1HT$(dH+%(uZH0[fD!HHuӐtb0HuHc#HHH;:2'tЉff.fATUHHfnFdH%(HD$81HwHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$pL1HT$8dH+%(u|HH]A\fD HHuѐHt$ H|$tD$$E1uHEHH;$'u9/HuL,f.t$ HIff.fAVAUATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$ILo(1LH|$ HcI蒠Hl$ Mt(D$+D$L%KHl$ E1HtHD$(H9tHHD$XdH+%(HhL]A\A]A^HH\H1E1rH|$ HcHl$ fDDHL芷mHLgI-Hl$ HQL!Hl$ I?H}yff.ATH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11IE1HD$(dH+%(H0LA\@SHHufHHRxH;'IMtoI$H5nLPtZ,HuLxIHoHbL1HHP@L 8fE1(,H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$FH1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$u`HELH@H;'H=tLH=s u-*HaHcVf.LLH=jtLH=tLzfDHЉfAVAUATUSHpfnFdH%(HD$h1HTHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HyH|$04AHcLl$0EulMD$ +D$$HFH|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDHH>H|$E1轮H|$04Hc;H|$0IsLE1hHt$HS&KDLH譲5E~YIEH9AD$D1Hf.AoTHH9uDAt ITHHt$LL/E~(Ic1 HH9tH I9LtO(Ht'E(H|$0E1HL% 'I${DLH0fDD1ITHHH9ubdHsATL%u)H \HH5^w)LXv)uH~LHv)LA\ATIUHMJHtHH58LH#u7HHtHH5#LHmt$H]A\@HmuHHH]A\AWAVAUATUSHfnFdH%(H$1HnHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHcLl$`EutMD$0+D$4HBH|$`E1HtHD$hH9t|H$dH+%(WHĨL[]A\A]A^A_IcI\fDKHH6H|$ E1-H|$`4HcH|$`IkLE1`L|$@HL+;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztB$Ht'8$H|$`E1HL% 'I$DLH3Đ#HL1HmLLL&DD1ADHH9uHoff.fAWAVAUATUSHfnFdH%(H$1HTkHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1H聨H|$`4AHc.Ll$`EutMD$0+D$4H?H|$`E1HtHD$hH9t H$dH+%(WHĨL[]A\A]A^A_IcI\fDHH6H|$ E1轧H|$`4HckH|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt Ht' H|$`E1HL%'I$DLHĐ HL1HmLLL=DD1ADHH9uHlff.fAVAUATUSHPfnFdH%(HD$H1HHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$[<1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LLt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHn HLL$_L$fH~f{HuL1Lff.fAVAUATUSHPfnFdH%(HD$H1HfHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$:1HT$HdH+%( HP[]A\A]A^HHuƐLl$0Ld$LL6tT$8\$@D$$D$0fH~fI~ޅufHED$HLXD$f.D$0z`u^fHnf.d$8zQuOfInf.l$@zBu@H/Hc$DHLD$D$DHuL1L%DUH0fnFdH%(HD$(1HdH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1181HT$(dH+%(u|H0]fD HHuӐu xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創JH8<Hf.0f.8f.@HyE~LHIc1HH9Af.zt䉝H{HHc&LuIf.E1CH[HLQ=딉HrH1LWHLLHHHAVH?HHD1AHH9uHHL轹%LcmHHD1HH9uH7DHھL&DLLYTHJHJff.AVAUATUSH`fnFdH%(HD$X1H*FHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^{HHuƐLd$ Ht$L^tLl$@LL腣tHT$H5}L |$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6,HHcfDHLEbD$HuLL UDH8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(uLH8HHuҐu$HHuH&H@C|ff.UH@fnFdH%(HD$81H~CHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHH HuHDHHffDEfDfDfDfD1f1fUH=>H|u]ÐHH=BatHH=NtHH=;tH]tf.@AUATUHPdH%(HD$H1H\HH4$HD$HFH1HD$D$%~H|$ HcIE{D$+D$Ll$ tSHAE1H|$ HD$(H9t HtHD$HdH+%(uHHPL]A\A]DLHBtL}HuHcIxHEff.AUATUH`dH%(HD$X1HlHl$Ht$HD$HFHHD$$D$ }H|$0HcI/zD$ +D$$Ll$0tUH+E1H|$0HD$8H9t HtHD$XdH+%(H`L]A\A]fDHt$HtHt$HztHt$ HitDLHtT$ t$L|$˿HPHccICHCf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Z|$HtHt+HH5HPtHuHŔ1Hu-ff.fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H=HtHH==uHuHc@HH=ztHH=tHpSH0fnFdH%(HD$(1HK<H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD{HHuӐItHuHcHIHH;j&tЉ-ff.fSH0fnFdH%(HD$(1H(;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;z&tЉ=ff.fSH0fnFdH%(HD$(1HZ:H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐ tHuHcH HH;R&tЉMff.fSH0fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;&tЉ]ff.fSH0fnFdH%(HD$(1Hi8H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11. 1HT$(dH+%(uZH0[fDHHuӐt"HuHcHHH;B&tЉmff.fAUATUH`fnFdH%(HD$X1H7Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ . 1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLƕtD$4L$HD$@T$PtXHf(1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukH?HcU4HEHXH;&tT$HLD$L$T$D$L$|f;HuL1LTt蚶f.ATH0fnFdH%(HD$(1H́H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11m E1HD$(dH+%(H0LA\@HHufHHRxH;&IMtoI$H5LPtZ%HuLIHoHTbLd1HHP@L8fE1H"DIj)fATUSH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$tD$$Ld$u`HELH@H;&H=TtLH=I4u-HaHc/Vf.LLH= itLH=)VtLgfDHЉ蒳fAVAUATUSHpfnFdH%(HD$h1H`Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HpH|$04AHcLl$0EulMD$ +D$$H H|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fD{HH>H|$E1]oH|$04Hc H|$0IsLE1hHt$ H#KDLHM5E~\IEH9AD$D1Hf.fATHH9uDAt ADËt$ LLAE~0Ic1fDHH9tADf.ztHt$HAH|$0IqDLH֝@D1ADHH9uZH5ff.fAVAUATUSHpfnFdH%(HD$h1HZkHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HimH|$04AHcLl$0EulMD$ +D$$HpH|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDHH>H|$E1lH|$04Hc[H|$0IsLE1hHt$ HsKDLH蝍5E~\IEH9AD$D1Hf.fATHH9uDAt ADËt$ LLAE~0Ic1fDHH9tADf.zt2Ht$(HA6H|$0IqDLH&@D1ADHH9uZIHO3ff.fSH0dH%(HD$(HFt1tlH5N1HT$(dH+%(H0[fHH4$HD$HGD$D$D$umH(Hu41HD$(dH+%(|H0HH[H=>)uD+HjHuHcNf.;HtHx(HtD$9D$tH11g1 ff.ATUHHdH%(HD$8HFt6tyH5_Y1HT$8dH+%(<HH]A\DH.YHt$HD$HGD$ D$$D$(Ho(Hu71HD$8dH+%(HHHH]H==)A\3Ld$Ht$LtHt$L tHt$ LtL$ T$Ht$$]HmHc HKHh(H>D$ +D$$dH|$1t@USHHHNdH%(HD$81HGfnAH%HfnfbA)t5AtH5WD`1HT$8dH+%(HH[]HWHt$H\$L$ D$$D$(H*H(HtD$$9D$ twH|$111DHTWHt$H\$D$(fD$ HHo(H_D$ +D$$tbH|$19HHHHH5:HڍDHt$ H|$Hc\$ H蜹,THHcfDHH+fHHzf.H&Hbkff.AW1AVAUATUH@HNdH%(HD$81HGAfnH%fnA)fbAt>AH5qUDE1HT$8dH+%(PH@]A\A]A^A_ÐL =UHt$LL$L$ T$$T$(HHo(HtD$ +D$$t|H|$1@H THt$HL$T$(fD$ HTHo(HRD$ +D$$~H|$r1(Ll$1H5L2IHHt$ LT$ HLR=KHDILd$LLLt$LLL|$LLuxHt$ L`cDD$ HLLL"HHtqHtTH@fHHf.HH%T$L虙뙋T$L膙y$1Lt]芦f.ATL%C2)H HH53)LF2)ux4LH3)ILA\ATIUHYHt HH5ALHSftHmtH]A\HH]A\AAWAVAUATUSHfnFdH%(H$1HI%Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HabH|$`4AHcLl$`EutMD$0+D$4HhH|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\HH6H|$ E1aH|$`4HcKH|$`IkLE1`L|$@HL蛂;DLH腂%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztHt'H|$`E1HL%&I$DLH裏ĐkHL1H耏mLLLDD1ADHH9u艢H'ff.fAWAVAUATUSHfnFdH%(H$1H!Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1H^H|$`4AHcLl$`EutMD$0+D$4HH|$`E1HtHD$hH9t|H$dH+%(WHĨL[]A\A]A^A_IcI\fDKHH6H|$ E1-^H|$`4HcH|$`IkLE1`L|$@HL+;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztBHt'8H|$`E1HL%&I$DLH3ĐHL1HmLLLzDD1ADHH9uHa$ff.fAVAUATUSHPfnFdH%(HD$H1HSjHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^KHHuƐLd$0Ll$LLf|t\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuE0H,fHn}rHLL$菖L$fH~fHuL1LMff.fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐu1H$(dH+%(dH8[]A\A]A^A_軽HHuÐL$L$LLrtL$LLrtH$LcjL$LLucOH$LHHD$`r*H$LH@r HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH  HIc輻HLILRLD$LH٬AXZT$h\$`L$mHuHھL}yH*HT$L}jHLL|}BH(L1LW}$L,UT$|LVlff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ %1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L^tLt$8H5RcLLc|$8ItLH5#LG|$8ItLH5+L+|$8kHLLH$H|$8GLHLHD$|$8)LLLHD$LIJ|$8HLLH $LD$LLL$L\$,LLLL$LLD$HL$L$h|$,L$HL$LD$ILL$LLLL$LD$H $NqL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!H_&HfD۶HHf.RLLHAVPS]H 袍fAWAVAUATUSHfnFdH%(HD$x1HW Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P b1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@L[tL\$HH5`LLL\$莰|$HL\$ItLH5I Lm|$HL\$IhL5)LLLE|$HL\$CLLLHD$"|$HL\$ LLLHD$|$HL\$L5 LLHD$ Lկ|$HL\$HLLL贯|$HL\$HL$LD$ILL$ L LLLL$(LLD$ HL$L\$i|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$L *HT$?LL |$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0RHH2&Hf諳HHcf.HLHRLPt$ AVS5H0jf.AWAVAUATUSHfnFdH%(H$1H0 Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HFH$4AHc苳L$Eu~MD$`+D$dHH$E1HtH$H9t`H$dH+%(HL[]A\A]A^A_@IcI\u+HH&H|$PE1 FH$4Hc踲H$I^LE1Sf.L|$LHL&HD$pHHH$fH$HHHD$fDLHf\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(Hd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.zt*HH$E1HL%&I$HL$H$MLL*ϽHH$Hr覽HBHT$Hr&D1@ADHH9u2T$L1HxTDLHhr讅H] fUHAWAVAUATSHhHfnFdH%(HE1H{HHHGfnȉfbfօ;HH@(HLLBHP4AHc谮HPHDžEtIcHHLA4H}AHclHDžLuEtIcIHH+LLuE1MtHEI9tL(HPHtHXH9t HEdH+%(HeL[A\A]A^A_]fDHHfDHLHHaUDHLa?HLHH{H0LHHaHLHHdRDLL^a xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創jH8\Hf.0f.8f.@HyE~LHIc1HH9Af.zt䉝詷H蛷HHcFLuIf.E1cH[HLql=딉$HrH1L5lWHLLHHHAVH?(HHD1AHH9uHHLq%L胿mHHD1HH9uH7DHھLFkDLL.kYt~HaH>ff.AVAUATUSH`fnFdH%(HD$X1HJHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^蛦HHuƐLd$ Ht$L~tLl$@LL[tHT$H5L-|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6LHHcfDHL腄D$HuLL,iu|DH8fnFdH%(HD$(1H@H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(uLH8ۤHHuҐu$H>HuH"&H@{ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uuH@]f.HHuϐHt$ H|$їtD$$t$ u)HEHH,HuHQDH HzfDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(uuH@]f.ۢHHuϐHt$ H|$tD$$t$ u)HEHHHuHPDHJHvyfDIfDfDfD fDfDHuDf(]DHF1UH=\H|u]ÐHH=atHH=NtHH=D;tH]+f.@DAVAUATUSHpdH%(HD$h1HfHt$ HD$(HFHD$4D$0t9H|$ e1HT$hdH+%(0Hp[]A\A]A^fLd$PHl$ LHVtLl$@HLUtf(D$Pl$`LLL$@T$HfD$)$fH~fI~l$f($f.D$Pz_u]d$f.d$XzOuMl$f.l$`z?u=fHnf.\$@zPuNfInf.t$HzAu?誮H H&H苮HuL1HcfkHuLHcvf.AVAUATUSHpdH%(HD$h1HHt$ HD$(HFHD$4D$0t9H|$ 1HT$hdH+%(0Hp[]A\A]A^fLd$PHl$ LHfTtLl$@HLMTtf(D$Pl$`LLL$@T$HfD$)$fH~fI~l$,qf($f.D$Pz_u]d$f.d$XzOuMl$f.l$`z?u=fHnf.\$@zPuNfInf.t$HzAu?H Hڑ&H۬HuL1Haf軬HuLHauf.AWAVAUATUSHdH%(H$1H%XH$H$HFHDŽ$$tEH$1H$dH+%(HĨ[]A\A]A^A_L$H$LHRtL$HLtRtL$ HLXRrL$@HL8RRH$`HHR2H$HHH$QH$HHHL$BH$HHHT$B$IL$$LL$$(d$$ $H$$0f($t$0$P$$@$$`$$h\$x$pd$($l$ $fL$p)$t$h|$8T$@\$`d$Pl$XHT$$t$HRLt$LL$f($D$XZf.$|$pf.$$f.$D$f.$uo$f.$WQ$f.$93$f.$ l$0f.$(t$xf.$0|$ f.$@ztD$(f.$H_YL$hf.$PD>T$@f.$`\$8f.$hd$`f.$pl$Xf.$t$Pf.$ztur|$Hf.$zau_ħH趧H#訧HD$Ds芧H*L1H\eHuH$Hz\|@H-HھHR\HLH*\H;LH\!ȦHLH[$H误$H蔯nf.AWAVAUATUSHdH%(H$1HRH$H$HFHDŽ$$tEH$1H$dH+%(HĨ[]A\A]A^A_L$H$LH`LtL$HLDLtL$ HL(LrL$@HLLRH$`HHK2H$HHH$KH$HHHL$<H$HHHT$t<$IL$$LL$$(d$$ $H$$0f($t$0$P$$@$$`$$h\$x$pd$($l$ $fL$p)$t$h|$8T$@\$`d$Pl$XHT$$t$HRLt$LL$T$@f.$`\$8f.$hd$`f.$pl$Xf.$t$Pf.$ztur|$Hf.$zau_蔡H膡H#xHD$>sZH*L1HoV5HuH$HJV|H-HھH"VHLHUH;LHU!蘠HLHU$H$Hdhf.AWAVAUATUSH(dH%(H$1HKH$H$HFHDŽ$$tEH$莼1H$dH+%(H([]A\A]A^A_L$H$LH0FtL$HLFtL$HLErL$HLERH\$pHH6:LL$xHLL $6$L $IL$LL$f($|$hL$$L$@$$T$$$fD$8$)D$ \$`d$Hl$t$X|$0L$T$Pʠf(D$ f.$VPt$8f.$;5|$hf.$ \$f.$smt$@f.$XR\$`f.$=7d$f.$L$Hf.$d$Xf.$l$f.$T$0f.$zquol$Pf.$z^u\ߜHќHÜHHcr訜HL1HQ胜HuLHQbH4LHtQ:HLHLQD$pH$)D$xH bdfAWAVAUATUSHdH%(H$1H Ht$ HD$(HFHD$4D$0tAH|$ M1H$dH+%(0H[]A\A]A^A_fLd$@Hl$ LHAtLl$`HLAtL$HLAtL$HLA`H\$HH}2HLL$HLLL$`2+LL$ILLLL舚Ht%~Ht0tHHc#D$HkD$HVbff.@UH@dH%(HD$81H-Ht$HD$HFHD$$D$ t0H|$蜶1HT$8dH+%(uhH@]@HT$H|$H5F-|$HtHt+HH5EHPtrHuHe81YHuaff.fAWAVAUATUSHdH%(H$HF%PHl$ H EHt$ HHL$(1ۉD$0HD$4OH$4AHcL$EtIcI\D$0+D$4`Lt$@HL;?UL|$`HL?8H$HHH$>HD$HHHD$/D$09D$8E~VIEH9%AD$D1H@fAL HH9uDAt ADHL$H$MLLTfI~苗HIc1E-fDHH9tADf.ztRHDHfIn4@H5+C1H$dH+%(H[]A\A]A^A_Ld$`Hl$ Ht$ HBLHD$8HD$(HsHD$0i=tL$HLM=kL$HL-=KLLLfH~MH*fHn3DH1H$H$H9HH$anH$DLH<D1ADHH9uD$H軞DLHJ5]H ff.fUSHHdH%(HD$81H)Ht$HD$HFHD$$D$ HD$t6H|$ұ1HT$8dH+%(HH[]DHt$H|$3tHl$H=@H{tHH=ez{u蛔HuHcN@HH=l({tH]\@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辰1HT$(dH+%(uZH0[fDKHHuӐt貓HuHceHHH;Zz&tЉ[ff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11ί1HT$(dH+%(uUH0[fD[HHuӐt1ŒHuHcxfDHHH;7&tЉ[fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD{HHuӐtHuHc蕄HHH;&tЉ-Zff.fSH0fnFdH%(HD$(1HJH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD苂HHuӐt1HuHc訃fDHHH;'r&tЉBYfATUHHfnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fD蛁HHuѐHt$ H|$utD$$E1uHEHH;u&uُHuL.f.t$ HI-Xff.fATUHHfnFdH%(HD$81HeHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fD{HHuѐHt$ H|$attD$$E1uHEHH;m&u蹎HuL-f.t$ HI Wff.fAUATUH`fnFdH%(HD$X1HKHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ Ϊ1HT$XdH+%()H`]A\A]fDSHHufLd$@Ll$ LLf4tD$4L$HD$@T$Pt`~1HD$P)\$@f.D$@~f.L$Hzvutf.T$PzlujEH>Hc3HEHXH;Nw&tT$HLD$L$T$D$L$qیHuL1LAu:Uf.ATUSH@fnFdH%(HD$81Hf Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{}HHuːHt$H|$+tD$$Ld$uXHELH@H;&ulH=7rtLH=^qru)蔋HeHcC~ZfDLLH=TrtLE븐HЉSfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝧E1HD$(dH+%(H0LA\@#|HHufHHRxH;&wIMtoI$H5h6LPtZUHuLH)IHoHbLR1HHP@Lg8fE1H"DIjYRfAWAVAUATUSHxfnFdH%(HD$h1HHt$ HD$(HGfnȉD$8fbfD$0uSLw(Mt!D$0+D$4tMH|$ 1HT$hdH+%(Hx[]A\A]A^A_@zHHuȐLd$PHl$ LH/tLl$@HL/tT$X\$`d$@l$HD$4D$PfI~\$fH~l$uIHH;&LLD$e`D$f.D$PzguefInf.|$XzXuVT$f.T$`zHuFfHnf.t$@zYuW|$f.|$HzIuG"HHm&HfHuL1H=fۇHuLH<D$LLLD$-PAWAVAUATUSHxfnFdH%(HD$h1HjHt$ HD$(HGfnȉD$8fbfD$0uSLw(Mt!D$0+D$4tMH|$ ٣1HT$hdH+%(Hx[]A\A]A^A_@[xHHuȐLd$PHl$ LHv-tLl$@HL]-tT$X\$`d$@l$HD$4D$PfI~\$fH~l$uIHxH;u&LLD$JD$f.D$PzguefInf.|$XzXuVT$f.T$`zHuFfHnf.t$@zYuW|$f.|$HzIuGHHj&Hf軅HuL1H:f蛅HuLH:D$LLLD$-MATL%(H (Lc8(u(LH~(oLA\ATIUH vHt HH50LH tHmtH]A\HH]A\'AWAVAUATUSH8fnFdH%(H$(1H!H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$ޠ1H$(dH+%(dH8[]A\A]A^A_[uHHuÐL$L$LLp*tL$LLT*tH$L0jL$LLOH$LHHD$**H$LH) HT$|LHHT$h$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ[HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc軀H 譀HIc\sHLILRLD$LHYAXZT$h\$`L$mXHuHھLn5y4H*HT$LD5 HLL5H(L1L4$L̈UT$|L: Hff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ ś1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LntLt$8H5LLk|$8ItLH5Lj|$8ItLH5Lj|$8kHLLH$Hj|$8GLHLHD$j|$8)LsLLHD$Ldj|$8HLL;{H $LD$L7LL$L\$,LLLL$LLD$HL$L$j|$,L$HL$LD$ILL$LLLL$LD$H $bqL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H }H!Ha&HfD{nHHf.RLLHAVPS݈H BEfUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDmHHuӐuff.AWAVAUATUSHfnFdH%(HD$x1H7Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P B1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LtL\$HH5bLLL\$nT|$HL\$ItLH5)LMT|$HL\$IhL5LLL%T|$HL\$CLLLHD$T|$HL\$ LLLHD$S|$HL\$L5LLHD$ LS|$HL\$HLLLS|$HL\$HL$LD$ILL$ LgLLLL$(LLD$ HL$L\$IS|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$cL*HT$?LLR|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H02fHHK&HfWHHcf.HLHRLPt$ AVSEZH0J.f.AVAUATUSH`fnFdH%(HD$X1H:Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$  1HT$XdH+%(;H`[]A\A]A^VHHuƐLd$ Ht$LnJtLl$@LL tHT$H5JLQ|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6H(HtD$9D$t;H11_n1HT$(dH+%(H8@BHHuҐHtAHH;1&uIG8t G80QHuH6&HfDHH;6&t@1uDH8fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Om1HT$(dH+%(H8@AHHuҐHtAHH; 0&uI8t G8!PHuH5&HHH;0&t@bfUH@fnFdH%(HD$81H,Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$2l1HT$8dH+%(H@]fD@HHuϐHt$ H|$4tD$$t$ t91H9uHtHEuHHNHuH3&H{HEHH;.G&u$1҅H9uHtÉuHHf.H@UH@fnFdH%(HD$81HHt$HD$HGfn؉D$(fbfD$ uLHo(Ht!D$ +D$$tFH|$j1HT$8dH+%(H@]fDk?HHuϐHt$H|$tD$$D$t_fU@f/ ']f(f.ztHEE@H}MHbH]2&HT@HEHH;G&u\fU@f/w- m']f(f.ztE@HDf(f.f([HdaATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&i1HT$8dH+%(H@[]A\=HHuːHt$H|$1tD$$Ld$uXHELH@H;3&u\H=K3tLH=2u)KHeHcs>ZfDLL@HЉfATL%C(1HH5Ӭ(L)ͫ(u nLH(5LA\ATIUHHt HH5tLHtHmtH]A\HH]A\H8fnFdH%(HD$(1H0%H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?g1HT$(dH+%(uLH8;HHuҐu$H .JHuH/&H@)ff.H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_f1HT$(dH+%(uLH8:HHuҐu$HNIHuH2.&H@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$re1HT$8dH+%(uzH@]f.9HHuϐH5XHT$H|$4|$HtD$$u(HEH6HHuH-&H@HHG01H9wHtHwH@f.D1ffDGHGL9w8tHw8G8fW@f/w- }!]f(f.zu@HG@ff(f.f,!G@fDHGPgUH=H-u]ÐHH=-tH]t@HHH;;&&u!W8tG8D1@HHH;%&u!8tG8fDf.f.Ht'SH oSP[f.1ff.fATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1bH|$HtH/tHD$8dH+%(ufHHL]A\fHT$H|$HXIHtAo$HHAD$FIz3 'JUHHHt*H]*UHHt HRHufHEDžt,tH5_1]H1]DffH=[@H]H:&H5&H8ZATL%(H H(H5n*L(uL5.LA\ff.@ATIUHHt HH5LH3tHmtH]A\HH]A\!Ht7SH@iooKoS o[0HP X0[D1ff.fATUH-1HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1^_H|$HtH/tHD$8dH+%(uHHL]A\;fHT$H|$HUIHt@lAo$HHAoL$HAoT$ P Ao\$0X0Iaj f.WGUHHHtZH]A'UHHt HOHufHEDžt,tH5K\1]H1]uD@fH=H@@ @0]#H8&H5#H8 ATL%(H H%(H5*L(uLe+LA\ff.@ATIUHM Ht HH5LHctHmtH]A\HH]A\QgdAWAVAUATUS1HdH%(H$1HHl$0Ht$0HD$8HFHHD$DD$@H|$p4AHc/2Ld$pEtIcIċD$@+D$DtaH\E1H|$pHtHD$xH9tH$dH+%(HĸL[]A\A]A^A_Lt$PHLtHT$.H5OH+|$.IvHT$/H5HH+|$/HD$RDLH<T$X\$Pd$`T$$d$E~UID$H9AED1HDfA  HH9uDAt AHT$LLL;,$f.l$Pzvutt$f.t$Xzfud|$f.|$`zVuTIc1E "HH9tAf.zt>Hto >HAL%"&I$3=HuL1Hf.D1AHH9u!DLHyHfDAWAVAUATUS1HdH%(H$1HHl$0Ht$0HD$8HFHHD$DD$@H|$p4AHc?/Ld$pEtIcIċD$@+D$DtaHYE1H|$pHtHD$xH9t#H$dH+%(HĸL[]A\A]A^A_Lt$PHL+tHT$.H5LH(|$.IvHT$/H5"H(|$/HD$RDLH<T$X\$Pd$`T$$d$E~UID$H9AED1HDfA  HH9uDAt AHT$LLL,$f.l$Pzvutt$f.t$Xzfud|$f.|$`zVuTIc1E "HH9tAf.zt#;Hto;HAL%&I$3:HuL1H f.D1AHH9u!DLHyHfDUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$V1HT$8dH+%(uhH@]@HT$H|$H5Z&|$HtHt+HH5iHPt9HuH19Hu-ff.fHFuHHH=V(:HH5>T1HUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$U1HT$8dH+%(utHH[]fHt$H|$tHl$H=GHtHH=u8HuHcN+@HpATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$T1HT$8dH+%(H@[]A\;)HHuːHt$H|$tD$$Ld$uXHELH@H;&u\H=tLH=P}u)T7HeHc*ZfDLL@HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mSE1HD$(dH+%(H0LA\@'HHufHHRxH;#&GZIMtoI$H5LPtZ%6HuLIHoH贝bLd1HHP@L8fE15H"DIj)fATL%(H H H5(L(u(XLHΞ(LA\ATIUH1Ht HH5LHtHmtH]A\HH]A\XUH=lHu]ÐHH=tH]餰@wUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$Q1HT$8dH+%(uhH@]@HT$H|$H5z |$HtHt+HH5-HPt3HuH13HuMff.fUSHHdH%(HD$81HtHt$HD$HFHD$$D$ HD$t6H|$2P1HT$8dH+%(HH[]DHt$H|$OtHl$H=KH7tHH=D$u2HuHc%@HH={tHH=tHH=tHH=tH脮 ff.ATUSH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$N1HT$8dH+%(H@[]A\K#HHuːHt$H|$tD$$Ld$u`HELH@H;.&H=tLH=u-`1HaHc$Vf.LLH=byItLH=56tLH=n#tLH=tLԬxDHЉgGATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@!HHufHHRxH;+&ǵIMtoI$H5LPtZ/HuLIHoHdbL1HHP@LW 8fE1x/H"DIjfATL%s(H HaH5(L (u$LH>(LA\ATIUH(Ht HH5 LH裷tHmtH]A\HH]A\AVAUATUHXfnFdH%(HD$H1H7Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$J1HT$HdH+%(HX]A\A]A^f.{HHuŐLl$0Ld$LLtLt$LL+tD$$u>HEHLL-Ht7-H]HcA R@HLL*fDHT$L>AT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAtHt$L)Ht$LD$L$T$4T$f(HEfمHH;#&D$@L$HHT$PHt$@H4fDkHHf.KHH-f.HLHD)\$@|HHf.fH(fdH%(HD$1H)$HT$HT$dH+%(uH(@UH=0Hu]ÐHH=!tHH=rtHH=tHH=tHH=tH]xUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$E1HT$8dH+%(uhH@]@HT$H|$H5J|$HtHt+HH5NHPt(HuH1(Huff.fUH@dH%(HD$81H>Ht$HD$HFHD$$D$ t0H|$ E1HT$8dH+%(uFH@]@H|$HT$H5>j|$HtH'HuH_ff.@ATUHHdH%(HD$81H=Ht$HD$HFHD$$D$ D$ wcLd$HT$ H5>L|$ Ht#D$ 9D$(|Vt$ HZHB'HtU1HT$8dH+%(uMHH]A\H|$Cf.Ht$ Ls uDHYfHGI~H)ǃuHH=(L'HH5[XA1HÐHGI~H)ǃuHH='(L&HH5<[A1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$tHl$H= H tHH==Z uk%HuHc@HH=&i tHH=;V tHH=C tHff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$FA1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$u`HELH@H;&H=~ tLH=X u-#HaHcVf.LLH= tLH=X: tLH=v tLgHЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11?1HT$(dH+%(u6H0[fDKHHuӐ;"Huh!SH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fDHHuӐ t!HuHcH HH; &tЉ=ff.fUH@fnFdH%(HD$81H/Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$>1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ H聽 HuH&HEDUH@fnFdH%(HD$81HKHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$=1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ H葡HuH&HUDUH@fnFdH%(HD$81HTHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"<1HT$8dH+%(uUH@]f.HHuϐHt$ H|$tt$ HHuHcffDUH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$2;1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ H聊H HuHuDUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B:1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ H!HHuH DATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$P91HT$8dH+%(uxHH]A\fD HHuѐLd$Ht$ LtHT$ H52L|$ Htt$ H HuH&HxqATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11M8E1HD$(dH+%(H0LA\@ HHufHHRxH;B&藅IMtoI$H5 LPtZHuLIHoH蔂bLD1HHP@L8fE1H"DIj fATUHHdH%(HD$8HFLd$Ht$H{0HD$HDHT$ LH50D$(HD$ D$ k|$ Ht9D$ 9D$(}Ht$ Ljtt$ HHHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=(A\H5/:4HXATL%(H HH5~(Lx(uXLH(LA\ATIUH荍Ht HH5[LH裡tHmtH]A\HH]A\鑻UH@fnFdH%(HD$81HMHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$51HT$8dH+%(H@]fD HHuϐH5HT$H|$J|$HtD$$u@HEHHhH;%u1茧HHyH裶nfDHH@UH@fnFdH%(HD$81HZLHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$31HT$8dH+%(H@]fD[HHuϐH5HT$H|$|$HtD$$u@HEHHpH;3 &u1HzHc4 oHЉD fD駀UH=HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R&1HT$8dH+%(uUH@]f.HHuϐHt$ H|$tt$ H}* HuHcfDATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`%1HT$8dH+%(uxHH]A\fDHHuѐLd$Ht$ LtHT$ H5L|$ Htt$ HPHuH%HxATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]$E1HD$(dH+%(H0LA\@HHufHHRxH;%藿IMtoI$H5LPtZHuLIHoHnbLT1HHP@L8fE1H"DIjfATUHHdH%(HD$8HFLd$Ht$HHD$HTHT$ LH5D$(HD$ D$ {|$ Ht9D$ 9D$(}Ht$ Lztt$ Hj}HHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=&{(A\H5J HhATL%w(H HH5y(Lx(uhoLHNx(LA\ATIUH{Ht HH5wLH賍tHmtH]A\HH]A\顧UH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$!1HT$8dH+%(H@]fDHHuϐH5HT$H|$Z|$HtD$$u@HEHHhH;%u1蜓HHyH賢nfDHH@UH@fnFdH%(HD$81Hj8Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDkHHuϐH5HT$H|$*|$HtD$$u@HEHHpH;k%u1HzHcDoHЉDfD駺UH=HLu]ÐHH=61tHH=ێtHH= tHH=˕tH]}f.金WUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5j|$HtHt+HH52HPtHuH՟1Hu=ff.fHGI~H)ǍGwHH=z(L@HH581HÐHGI~H)ǍGwHH={(L@HH5z1HÐUSHHdH%(HD$81HēHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$蟞tHl$H=HtHH=ltuKHuHc@HH=ItHH=6tHH=#tHznff.UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uWH@]f.HHuϐHt$H|$qtHt$HP HuH%Ht@UH@fnFdH%(HD$81H=Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u_H@]f.HHuϐH52HT$H|$|$HtHXHuH%H|ff.UH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u_H@]f.HHuϐH52HT$H|$|$HtH(HuH%H|ff.UH@fnFdH%(HD$81HHHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uWH@]f.HHuϐHt$H|$tHt$HHuH%H@UH@fnFdH%(HD$81HhHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.HHuϐH5)HT$H|$|$HtH#HuH%Hff.UH@fnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.HHuϐH5)HT$H|$|$HtHH HuHCff.UHPfnFdH%(HD$H1HhHt$ HD$(HGfnȉD$8fbfD$0utHD$Ho(HtsD$0+D$4tmH|$ I1H|$HtH/tHT$HdH+%(u{HP]ÐHD$&HD$HH{1H5 HT$H|$ HHtHzHsH%HeWUHPfnFdH%(HD$H1H<Ht$ HD$(HGfnȉD$8fbfD$0utHD$Ho(HtsD$0+D$4tmH|$ 1H|$HtH/tHT$HdH+%(u{HP]ÐHD$HD$HH{1H5HT$H|$ HHtH*HHpHe'ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ukHH]A\fD{HHuѐLd$HL0tHt$LtHT$H4$H:HHuH襔ff.ATUHhfnFdH%(HD$X1HHt$0HD$8HGfnȉD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$01HT$XdH+%(uHh]A\fDkHHuѐLd$0HL tHt$LtHL$H$Ld$HLRI1MuLH=tqf.AUATUH`fnFdH%(HD$X1HHt$0HD$8HGfnȉD$HfbfD$@uPHo(Ht!D$@+D$DtRH|$01HT$XdH+%(H`]A\A]fDCHHufLd$0HLtHt$LtLl$H5_LL|$IxHL$H$HLBMI1MSLH= ?覻fDATUHXfnFdH%(HD$H1HRHt$ HD$(HGfnȉD$8fbfD$0Ho(HD$0+D$4waLd$ Ht$Lt_Ht$LtND$019D$8|~HT$Ht$H_Hu&HC%HDH|$ 1HT$HdH+%(uNHX]A\f.HH9DHT$H5LD|$H`Off.@AUATUH`fnFdH%(HD$X1HHt$0HD$8HGfnȉD$HfbfD$@HD$ Ho(HD$@+D$DwnLl$0HT$ H5 LIHtaHt$(L`tPD$@19D$HHT$(LHHu&H%HDH|$0 1H|$ HtH/t2HT$XdH+%(u]H`]A\A] HH1HD$NHD$HT$H54L|$HtA踸AUATUH`fnFdH%(HD$X1H`Ht$0HD$8HGfnȉD$HfbfD$@HD$(Ho(HD$@+D$DwNLl$0Ht$ L1H|$(HtH/tZHT$XdH+%(H`]A\A]@H|$0 f.HH[1HD$HD$HT$(H5LIH\D$@19D$H|4Ht$ LHH2H%H$fDHT$H5L|$HAVAUATUHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHD$Ho(HD$P+D$Tw|Lt$@HT$H5LIHtoHt$Lt^D$PE1Ll$ 9D$XHL$LHLI1Mu(LH=sH|$@< 1H|$HtH/t:HT$hdH+%(ucHx]A\A]A^fDHH1HD$HD$LH5LV|$ It3bfAUATUHpfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHD$Ho(HD$P+D$TwNLl$@Ht$L1H|$HtH/tZHT$hdH+%(Hp]A\A]@H|$@f.kHH[1HD$讎HD$HT$H5L\HH\D$PE1Ld$ 9D$X|>HT$HLyI1M)LH=LLH5&LHL$|$ HL$I蟳ff.@ATH0fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mE1HD$(dH+%(H0LA\@HHufHHRxH;z%IMtoI$H5uLPtZ%HuLIHoHQbLd1HHP@L8fE1H"DIj)fAVAUATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0HD$Lg(HD$MD$0+D$4wsLt$ L-HT$LLHHtcLHT$LIHtKD$019D$8LHLKHu#L%%I$H|$ \E1H|$HtH/tYH|$HtH/tYHD$HdH+%(|HXL]A\A]A^fDHHE1f.ffHT$H5LL|$HRT@AVAUATUHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHD$Lg(HD$M D$P+D$TLt$@H-&HT$HLIHtwHT$HLHHt_D$PE1Hl$ 9D$XLLHE1L]Hu1HH=YIfDH|$@tE1H|$HtH/tQH|$HtH/tQHD$hdH+%(|HxL]A\A]A^fDHHE1ff fHH5LHL$i|$ HL$IRlff.ATUSH@fnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\HHuːHt$H|$1tD$$Ld$u`HELH@H;v%H="tLH=u-HaHcoVf.LLH= tLH=8tLH=VxtLG`HЉ¬fH81fnFIdH%(HD$(HG~H%fnfb)t.tqH51HT$(dH+%(H8fHVH4$HT$L$fD$HuyIx(HtD$9D$t>H11b1fDHD$(dH+%(uYHH=^^(LH8ffVH`H6%HRDLIHs2蚫f.U1IH0fnFdH%(HD$(HG~H%fnfb)t-tpH5R1HT$(dH+%(H0]H*H4$HT$L$fD$HuyIx(HtD$9D$t>H1121fDHD$(dH+%(uYH0HH=J^(L]PH#H^HBSDLIHs3jf.AT1UHHHNdH%(HD$81HGAfnH%fnA)fbAAuZH +Ht$HL$T$(fD$ HHo(HtH1121fDHD$(dH+%(uYH0HH= ](L]KH#H^HBSDLIHs3jf.USHHdH%(HD$81HnHt$HD$HFHD$$D$ HD$t6H|$R1HT$8dH+%(HH[]DHt$H|$oytHl$H=HWtHH=DuHuHc@HH=}tHH=tHH=mtHU>ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$J|$HtH3HuH%HHT$HLbiI1M)LH=<LH5LHL$艱|$ HL$I菍ff.@ATH0fnFdH%(HD$(1HXH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@HHufHHRxH;2%VIMtoI$H5LPtZHuLcIHoH+bLT1HHP@L藡8fE1H"DIjfAVAUATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0HD$Lg(HD$MD$0+D$4wsLt$ L-HT$LLHHtcLHT$LIHtKD$019D$8LHL9OHu#L%%I$H|$ LE1H|$HtH/tYH|$HtH/tYHD$HdH+%(|HXL]A\A]A^fD諳HHE1f.dfdfHT$H5L<|$HRD@AVAUATUHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHD$Lg(HD$M D$P+D$TLt$@H-HT$HLIHtwHT$HLHHt_D$PE1Hl$ 9D$XLLHE1蜜Hu1HH=IIfDH|$@dE1H|$HtH/tQH|$HtH/tQHD$hdH+%(|HxL]A\A]A^fDñHHE1f cfbfHH5LHL$Y|$ HL$IR\ff.ATUSH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\蛰HHuːHt$H|$!^tD$$Ld$u`HELH@H;v%H=ftLH=٥u-谾HaHc_Vf.LLH=虥tLH=(膥tLH=FRstL7:HЉ貆fH81fnFIdH%(HD$(HG~H%fnfb)t.tqH5o1HT$(dH+%(H8fHFH4$HT$L$fD$HuyIx(HtD$9D$t>H11R1fDHD$(dH+%(uYHH=>(LH8ҽf˟FH`H&%HRDL蠮IHs2芅f.ATL%c9(H LHzH5:(LF9(ugLH.:(ILA\ATIUHHt HH5#LHSEtHmtH]A\HH]A\A_UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.;HHuϐHt$H|$tD$$Ht$u(HEHH{HuH螯@H8HփfDMUH=HLu]ÐHH=ۥ1tHH=tHH= tHH=NtH]6f.UH@dH%(HD$81H:NHt$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uhH@]@HT$H|$H5M蚦|$HtHt+HH5HPtHuHY1Humff.fSH0fnFdH%(HD$(1HgH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>1HT$(dH+%(uUH0[fD˪HHuӐt15HuHcfDHHH;W%tЉ肁fUSHHdH%(HD$81HLHt$HD$HFHD$$D$ HD$t6H|$r1HT$8dH+%(HH[]DHt$H|$WtHl$H=HwtHH=du;HuHc@HH= L9tH3脀@ATUSH@fnFdH%(HD$81HKHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$F1HT$8dH+%(H@[]A\˨HHuːHt$H|$QVtD$$Ld$uXHELH@H;%ulH= tLH= u)HeHc蓩ZfDLLH=JѝtL2븐HЉfATH0fnFdH%(HD$(1HLJH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@sHHufHHRxH;Z%gIMtoI$H5oLPtZ襵HuLTIHoH4bL}1HHP@L'8fE1HH"DIj}fATL%C7(1HH58(Lk7(u3LH8(nLA\ATIUHm Ht HH5iLHs=tHmtH]A\HH]A\aW1fUH=Hlu]ÐHH=QtHH=H>tH]0UH@dH%(HD$81HzGHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&Gڟ|$HtHt+HH5uHPtRHuHER19Hu{ff.fUSHHdH%(HD$81HFHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$QtHl$H=H藙tHH=脙u[HuHc@HH=rYtHH=EFtHH=~O3tHH=E tH-kzff.ATUSH@fnFdH%(HD$81HEHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\諢HHuːHt$H|$1PtD$$Ld$u`HELH@H;v%H=tLH= u-HaHcoVf.LLH=詗tLH=}薗tLH=M胗tLH=CDptL4,xDHЉgxAU1ATUH`HNdH%(HD$X1HGAfnH%fnA)fbAtBAH5D1HT$XdH+%(H`]A\A]fL GHt$ LL$(L$0T$4T$8HHo(HtD$0+D$4t|H|$ 1@H Ht$ HL$(T$8fD$0H4Ho(HND$0+D$4H|$ 1$Ld$@H|$ LUT$4Iu"HEHH;H%tLHI胮HL袢DLd$ Ht$LFHt$LEHt$LEkD$4IuHEHH;%uWH:L/fD[HHf.;HHET$L$HD$I vfATH0fnFdH%(HD$(1HHEHLL\Ht7RH]HcR@HLLVfDHT$LKrH@H@ןUH=Hܐu]ÐHH=tHH=讐tHH=v蛐tHH=F舐tHH=H=utH]8%BUH@dH%(HD$81H<Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5V< |$HtHt+HH5HPt肨HuHuG1iHupff.fUSHHdH%(HD$81H<Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$FtHl$H=HǎtHH=t贎u苧HuHc>@HH=D艎tHH=I;vtH:#oSH0fnFdH%(HD$(1HHH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD+HHuӐt葦HuHcDfHHH;Ϥ%tЉnfSH0fnFdH%(HD$(1HAH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDKHHuӐt,fH~誥HufHnBfHHH;%ufH~fDfH~mf.SH0fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD;HHuӐt衤HuHcTfHHH;g%tЉlfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD[HHuӐtHuHctfHHH;%tЉlfUH@fnFdH%(HD$81HޱHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.kHHuϐHt$ H|$Qtt$ H!H蹢HuHA%kDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD{HHuϐHt$ H|$atD$$t$ t99tHEH象HuH%H|@HEHH;&%u;tƉHHiff.UH@fnFdH%(HD$81HįHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袽1HT$8dH+%(H@]fD+HHuϐHt$H|$A8tD$$D$t?f.ztHEHYHuH=%Ht@HEHH;%u$f.ztHDH|hff.UH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(H@]fDːHHuϐHt$ H|$豄tD$$t$ t99tHEHHuH%H|@HEHH;%u;tƉHH,gff.ATUHXfnFdH%(HD$H1HխHt$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 1HT$HdH+%(HX]A\f{HHuѐLd$ Ht$L5tHt$L}5tHt$Ll5tT$L$HD$~藝HnHcFceff.AUATUHfnFdH%(H$1HIbHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$踹1H$dH+%(0HĠ]A\A]f;HHuɐLd$Ht$ LtLl$0LLECtfoT$0t$ LHfo\$@fod$P)T$`)\$p)$^D$0f.D$`|uzD$hf.D$8zlujD$pf.D$@z\uZD$Hf.D$xzLuJD$Pf.$z9u7D$Xf.$z&u$ߛHH%HfD軛HuҹLLPdf.AUATUHfnFdH%(H$1Hy`Ht$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$ط1H$dH+%(0HĠ]A\A]f[HHuɐLd$Ht$ L>tLl$0LLeAtfoT$0t$ LHfo\$@fod$P)T$`)\$p)$NsD$0f.D$`|uzD$hf.D$8zlujD$pf.D$@z\uZD$Hf.D$xzLuJD$Pf.$z9u7D$Xf.$z&u$HH~%HfDۙHuҹLLN:bf.ATH0fnFdH%(HD$(1Hl-H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@蓊HHufHHRxH;:%g2IMtoI$H5LPtZŘHuL7IHoHTbLa1HHP@LGv8fE1hH"DIj`fATUSH@fnFdH%(HD$81H+Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$膴1HT$8dH+%(H@[]A\ HHuːHt$H|$6tD$$Ld$u`HELH@H;օ%H=X\~tLH=HdI~u- HaHcωVf.LLH=T4 ~tLH=*}tLfDHЉ2_fAWAVAUATUSHxfnFdH%(HD$h1HZHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11HH|$04AHcgLl$0E9D$MD$ +D$$'DLH<#HT$H5zH-|$ID$ 9D$(E~XAD$IEH9D1HfDfATHH9uDAt ADL$LLLUE~3Ic1DHH9tADf.ztH+H|$0E1HuAL%y%I$3fIcI\H莱H|$0E1HtHD$8H9tmHD$hdH+%(HxL[]A\A]A^A_@HHH|$1E1H|$04Hc膆Ll$0LtD$LE1tf.Ht$HC_ZHfDD1ADHH9uDL1HHD\HhAW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtGAH5/D1H$dH+%(HĨ[]A\A]A^A_HHt$@H\$HL$PT$TT$XHHl$@Lw(1HRH|$`4AHcLl$`EMD$P+D$T_HUH|$`1H9HT$hH9+HD$jHD$H2Ht$@H\$HT$XfD$PHHo(Ht!D$P+D$Tt.H|$@Ү1IcI\:Ld$@Ht$LVwtHt$ Lu)tHt$(Ld)tHt$0LS)tLl$8LL?)tT$0t$HLL$(D$ ʹHbHTHIHsfDHt$0HvDLH7L|$8HL(pE~\AD$HIEH9;D1Hf.fAd$HH9uDAt ADËt$0LLLwIE~1Ic1 HH9tADf.ztRHDH6HLUH|$`蓁HH1{HHH|$@`H|$`4HcH|$`1I>L14D$8H还_D1DADHH9uDLHDD$8LkWHDATL%3(H H,H5(Lvm(uxLH(yyLA\ATIUH}~Ht HH5LHtHmtH]A\HH]A\q1ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(HH]A\fkHHuѐLd$Ht$ LNstHT$ H5Lz|$ HtD$$t$ u0HEH8莍HuHnr%HgDH踯UH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11迩1HT$(dH+%(uLH8K~HHuҐu$H0讌HuHq%H@3 Uff.AUATUHPfnFdH%(HD$H1HYHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$Ψ1HT$HdH+%(HP]A\A]fDS}HHufLd$Ht$ L.qtLl$0LLU2tHT$ H5MqLw|$ HqD$$t$ u3HELHXNHGH.p%H9DLHSff.AUATUHPfnFdH%(HD$H1H,XHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$^1HT$HdH+%(HP]A\A]fD{HHufLd$Ht$L!tLl$0LL0tHT$H5oLmv|$HqD$$D$u1HELH`܉HEHn%H7LHUr.Rff.AVAUATUHXfnFdH%(HD$H1H&Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$1HT$HdH+%(HX]A\A]A^f.kzHHuŐLd$HL tLl$0LLw/tLt$LLS tD$$$uBHEHLLPHwHt:mHHH|=HLL":HDD$LEPff.AU1ATUH`HNdH%(HD$X1HGAfnH%fnA)fbAtBAH5$Dy1HT$XdH+%(&H`]A\A]fL $Ht$ LL$(L$0T$4T$8HHo(HtD$0+D$4t|H|$ 1@H d$Ht$ HL$(T$8fD$0HDHo(HND$0+D$4~H|$ 袣1$Ld$@H|$ Lq-D$4HEHLHH腆HHzLd$ HLHt$LHt$L}Ll$LLeT$L$HL$BWHHWD$L?f;wHHf.wHH5f.HL襊HMH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11迡1HT$(dH+%(uLH8KvHHuҐu$H(讄HuHi%H@ Mff.AV1IAUATUSHpfnFdH%(HD$hHG~H%fnfb)t>H5Q1HT$hdH+%(BHp[]A\A]A^fDH `QHt$HL$T$(fD$ HIx(HtD$$9D$ H|$111H QHt$HL$T$(fD$ HHl$1Mp(1HH|$04AHcuLl$0EubMD$ +D$$HH|$01HT$8H9HHD$n[HD$@IcI\fDHhHǂHHHH5$PH.zfDLHB)TE~YIEH9hAD$ZD1HfATHH9uDAt ADËD$$ILLpE~3Ic1DHH9tADf.ztҁHāIH|$01MHf%HLsIHH|$1H|$04HcsH|$01I=L13fLrIHh1DLLUsHGHe%HD1ADHH9uDL1H5DIH9tHDf.DD9tHDf.DDf.z uHDWUH=۶Hfu]ÐHH=LftHH=ftHH=nftH]^f.@wUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$̛1HT$8dH+%(uhH@]@HT$H|$H5v*k|$HtHt+HH5HPt~HuH1~HuFff.fUSHHdH%(HD$81H$Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$tHl$H=!HdtHH=du}HuHc^p@HFH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11ߙ1HT$(dH+%(u9H8knHHuҐ+|HuHa%H?Eff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8mHHuҐ |HuH`%HoDff.@SH0fnFdH%(HD$(1H3|H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uUH0[fDlHHuӐt1{HuHcmfHHH;~%tЉCfSH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uUH0[fDkHHuӐtQzHuHcmfHHH;|%tЉBfSH0fnFdH%(HD$(1H^H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uUH0[fD kHHuӐtqyHuHc$lfHHH;h%tЉAfSH@fnFdH%(HD$81H^Ht$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$蒕1HT$8dH+%(uTH@[f.jHHuϐHt$ H|$^tD$ nxHuHR]%H@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11讔1HT$(dH+%(|H0]f;iHHuӐuHHH;p%u)Ho`wHuHH5DH#fHfwHuHuHE\%Hp?UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螓1HT$(dH+%(|H0]f+hHHuӐuHHH;o%u)HoxvHuHH5CH"fHVvHuHuH5[%Hp>UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莒1HT$(dH+%(|H0]fgHHuӐuHHH;sQ%u)Ho0puHuHH5BH!fHFuHuHuH%Z%Hp=UH0fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(|H0]f fHHuӐuHHH;sa%u)HoH`tHuHH5AH fH6tHuHuHY%Hp<UH@fnFdH%(HD$81HȿHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uVH@]f.dHHuϐHt$ H|$Xtt$ HQH9sHuH,;DAVAUATUHHfnFdH%(HD$81HJXHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$l1HT$8dH+%(HH]A\A]A^f.cHHuŐLt$ Ll$LH5WL^|$ ItLLWtT$ HL謇rHpHcdez:f.ATUHXfnFdH%(HD$H1HHt$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ @1HT$HdH+%(HX]A\fbHHuѐLd$ Ht$LtHt$LtHt$LtH5SHT$LT]|$HvT$L$HD$lQfH~pHIfHn<%9DATUHXfnFdH%(HD$H1H{Ht$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 1HT$HdH+%(HX]A\f{aHHuѐLd$ Ht$LtHt$L}tHt$LltHt$L+Utt$T$HL$D$oHYHc1bN7ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$見1HT$8dH+%(H@[]A\+`HHuːHt$H|$ tD$$Ld$uXHELH@H;K%u\H=UtLH=@mUu)DnHeHc`ZfDLL@HЉ6fATUSH@fnFdH%(HD$81HSH4$HD$HGfn؉D$fbfD$uJH_(HtD$+D$tDHR1HT$8dH+%(H@[]A\^HHuϐLd$ HLHtL$ D$0f(d$ T$(f.C@c0z-f.z'f.z!lHqHQ%HclHuչL1H!=5ff.fATUSH@fnFdH%(HD$81HCRH4$HD$HGfn؉D$fbfD$uJH_(HtD$+D$tDH1HT$8dH+%(H@[]A\]HHuϐLd$ HLHtL$ D$0f(d$ T$(f.Cpc`z-f.z'f.z!kHqHP%HckHuչL1H 3ff.fATUSH@fnFdH%(HD$81HQH4$HD$HGfn؉D$fbfD$uJH_(HtD$+D$tDH貇1HT$8dH+%(H@[]A\;\HHuϐLd$ HLHXtL$ D$0f(d$ T$(f.cxz*f.z$f.zYjHnH9O%H`;jHuعL1HT2ff.fATUSH@fnFdH%(HD$81HOH4$HD$HGfn؉D$fbfD$uJH_(HtD$+D$tDHb1HT$8dH+%(H@[]A\ZHHuϐLd$ HLHtL$ D$0f(d$ T$(f.CXcHz-f.z'f.z! iHqHM%HchHuչL1HM1ff.fATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@YHHufHHRxH;D%IMtoI$H56LPtZgHuLIHoHdbL01HHP@LWE8fE1xgH"DIj/fATUHhfnFdH%(HD$X1H:MHt$0HD$8HGfnD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$0蠃1HT$XdH+%(Hh]A\f+XHHuѐLd$0HL@tHt$L/tHt$LtHt$L tHt$ LtHt$(L_l$(d$ H\$T$L$$\eH&HJ%Ha.AVAUATUSH`fnFdH%(HD$X1HKH4$HD$HGfnȉD$fbfD$HLw(11HH|$ 4AHcWLl$ EurMD$+D$HH|$ E1HtHD$(H9tz=HD$XdH+%(H`L[]A\A]A^fDIcI\fDKVHH=H1E12H|$ 4HcVH|$ IrLE1gDDLH2 DE~YIEH9AD$D1HfATHH9uDAt ADLL:E~/Ic1DHH9tADf.ztcHt'cH|$ E1HL%H%I$DL1H@D1ADHH9ub+Hpff.fAVAUATUSH`fnFdH%(HD$X1H0H4$HD$HGfnȉD$fbfD$HLw(11H_H|$ 4AHc ULl$ EurMD$+D$HfH|$ E1HtHD$(H9t:HD$XdH+%(H`L[]A\A]A^fDIcI\fDSHH=H1E1H|$ 4HcPTH|$ IrLE1gDDLHDE~YIEH9AD$D1HfATHH9uDAt ADLL E~/Ic1DHH9tADf.ztBaHt'8aH|$ E1HL%F%I$DL1H6@D1ADHH9ubY)Hff.fAVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11HH|$04AHcyRLl$0EuoMD$ +D$$H|H|$0E1HtHD$8H9tW8HD$hdH+%(HpL[]A\A]A^IcI\fD+QHH>H|$1E1H|$04HcQH|$0IsLE1hDLHGHt$ HD2E~\IEH9AD$D1Hf.fATHH9uDAt ADËT$ LL~AE~0Ic1fDHH9tADf.zt^Ht#^H|Ic7QH|$0IoDL1HD1ADHH9uZ&Hrff.fAWAVAUATUSHxfnFdH%(HD$h1HqHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$@4AHc"Ll$@EurMD$0+D$4HzH|$@E1HtHD$HH9t5HD$hdH+%(~HxL[]A\A]A^A_@IcI\fDsNHH8H|$ E1UH|$@4Hc!H|$@ImLE1bHT$H5HH|$H$/L|$HLAHD$HHHD$ADLHJEIUHH)H#AD$D1HATHH9uDAt@ADHHA9~"ADDA9~ ADDHL$H4$MLL}[Htps[HE~/Ic1fDHH9tAD.zt;[Ht~1[H|$@E1HL% @%I$T$HWzD1DADHH9u5T$HNDLHuj#Hff.@AT1UHHNdH%(H$1HGAfnH%fnA)fbAAu\H zHt$0HL$8T$HfD$@HHo(Ht>D$@+D$DH|$0v1fDH5Dt1H$dH+%(HĘ]A\DL Ht$0LL$8L$@T$DT$HHzHo(HtD$@+D$DH|$0 v1JHHaf.Ld$0HL?Ht$L*Ht$LHt$LqHt$ L\Ht$(LGl$(d$ \$T$L$$Jf.Ht$PH|$0 l$xd$p\$hT$`L$XD$PHȵXHQH<%HCf.kIHHu!U DAW1IAVAUATUSHfnFdH%(H$HG~H%fn)fbÃtCH56r1H$dH+%(HĘ[]A\A]A^A_H rHt$0HL$8T$HfD$@HIh(Ht%D$@+D$DH|$0s1{HHt$0H\$8T$HfD$@HHl$0Mp(1HH|$P4AHcHLl$PEu_MD$@+D$DH#sH|$P1HT$XH9HHD$.HD$IcI\fDLd$0Ht$LHt$ LHt$(LLt$H5LLB|$ILL;T$T$(LHL$ D$;fH~iUHzfHnHt$HHt$ HHt$(HDLHHT$H5AHGA|$IHt$HL:qE~[AD$LIEH9?D1HffAd$HH9uDAt ADËL$T$(LLL$ D$LfI~E~5Ic1HH9tADf.zt THSHfInIH|$PLPEIHH|$05H|$P4HcEH|$P1IEL1;LDIHX1D1ADHH9uDLH^(H鴣ff.fATL%'H HGH5~'LV1x'uuLH'Y=LA\ATIUHBHt HH5LHctHmtH]A\HH]A\QDHG0HGHHG`HGxDDUH=6H8u]ÐHH=8tH]@MUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$n1HT$8dH+%(uhH@]@HT$H|$H5z=|$HtHt+HH5HPtPHuH1PHuMff.fUSHHdH%(HD$81HtHt$HD$HFHD$$D$ HD$t6H|$2m1HT$8dH+%(utHH[]fHt$H|$OtHl$H=H77tHH=$7uOHuHcB@HWH8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/l1HT$(dH+%(u9H8@HHuҐ+&OHuH 4%Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_k1HT$(dH+%(u9H8?HHuҐ{3VNHuH:3%Hff.@SH0fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11j1HT$(dH+%(uUH0[fD?HHuӐt_8MHuHc7@DHHH;?=%tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11i1HT$(dH+%(uUH0[fD;>HHuӐt_tLHuHcW?DHHH;9%tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11h1HT$(dH+%(uUH0[fD[=HHuӐt_pKHuHcw>DHHH;=%tЉfSH0fnFdH%(HD$(1HFH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11g1HT$(dH+%(uUH0[fD{HuH#%H|@HEHH;V@%u;tƉHHff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Z1HT$(dH+%(H8@;/HHuҐHtIHH;k?%uQtLJz=HuH^"%HHH;-%t@1ff.fH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11Y1HT$(dH+%(H8@.HHuҐHtAHH;S*%uItt GtaH(HtD$9D$t;H11X1HT$(dH+%(H8@ -HHuҐHtIHH;;=%uQtLJK;HuH/ %HfHH;4%t@f.H8fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_W1HT$(dH+%(H8@+HHuҐHtAHH;k-%uIpt Gp1:HuH%HHH;%%t@rfH8fnFdH%(HD$(1HzH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11OV1HT$(dH+%(H8@*HHuҐHtAHH;[,%uIGpt Gp 9HuH%HfDHH; %t@1eDH8fnFdH%(HD$(1HwH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?U1HT$(dH+%(H8@)HHuҐHtAHH;&%uIGtt Gt8HuH%HfDHH;5%t@1UDATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$T1HT$8dH+%(H@[]A\(HHuːHt$H|$!tD$$Ld$uXHELH@H;3%u\H=htLH=u)6HeHcc)ZfDLLx@HЉfAVAUATUSHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0Ho(Ht!D$0+D$4t;H|$ R1HT$HdH+%(HP[]A\A]A^@Ll$ Ht$L.tLt$H5wLL!|$ItLH5L!|$tLH5OLHD$!|$IdHL$t$LH.05H@Hc'5f.&HHuDATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11MQE1HD$(dH+%(H0LA\@%HHufHHRxH;z2%/IMtoI$H5LPtZ4HuLIHoH蔛bLD1HHP@L8fE13H"DIj fAT1UHHHNdH%(HD$81HGAfnH%fnA)fbAt/HT$H5L2|$HHt$HwH1HH%f #HH_f."HH?DAU1ATUHHNdH%(H$1HGAfnH%fnA)fbAtlAH ڕHt$@HL$HT$XfD$PHHo(HD$P+D$TH|$@lM1^L xHt$@LL$HL$PT$TT$XHHo(Ht%D$P+D$TPH|$@ M1H$dH+%(H]A\A]fDH5DJ1Ds!HHDLd$@Ht$L~tHt$LmyHt$ LXdHt$(LCOHt$0L.:Ht$8L%Ht$ Lt$ l$8Hd$0\$(T$ L$D$|/HfLl$`Ld$@LLHt$8LQfo|$`T$8LHfo$foL$p)$)$)$荰D$`f.$$f.D$h$f.D$p|D$xf.$zkui$f.$zUuS$f.$z?u=-HH%HSHH]f-HuL1Lff.fAWH1AVAUATUSHhHvdH%(HD$X1HGAfnH%fnA)fbAtJAAH5FDG1HT$XdH+%(Hh[]A\A]A^A_fHHT$0H\$8t$@L$DL$HHHo(HtD$@+D$D H|$0lI1DHD$XdH+%(xHhHH=>'[]A\A]A^A_,HxHT$0H\$8L$HfD$@HuXHo(HD$@+D$DtVH|$0H1HxHH"HXHHuLl$0Ht$$L6Lt$(H5sLL|$(IrLH5L|$(UL=sLLHD$L|$(0LLLHD$|$(L=~sLLHD$Lo|$(HLLF(HT$#LL>|$#HHLPt$8SLL$8LD$0HL$(t$D H H*HLl$0Ht$(L_Lt$$H52LL|$$I:LH5:L|$$Ht$(HLrH*HH9ff.@AW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtWAAH5vDDD1H$dH+%((Hĸ[]A\A]A^A_fLvHt$PL\$XL$`T$dT$hHLw(MD$`+D$d|H|$PE1oH NvHt$PHL$XT$hfD$`HHo(Ht%D$`+D$dH|$P^E1LuHt$PLT$XL$`T$dT$hHu~Ho(HtNjD$`+D$d<H|$PE1fHH1{HH31v[HHq1VL|$PHt$8L$Ht$@L$Ht$HL$Ld$pLL'L$LLHt$4L f(D$pHHM$L$M$fD$L$ $)D$(\$D$71HT$(dH+%(u8H0]fD HHuӐ[H3HuH&ff.@UH0fnFdH%(HD$(1HVH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n61HT$(dH+%(uVH0]fD HHuӐtHo0cHuHV@HHH;%tHUH0fnFdH%(HD$(1HlH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H1151HT$(dH+%(uVH0]fD HHuӐtHoHHuH @HHH;%tHHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ u=HG(HtL$$9L$ t:H|$1141HT$8dH+%(uIHHD; HHuՐHP8oHHP8)$HuHH=9sff.AVAUATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$31HT$8dH+%(HH]A\A]A^f.;HHuŐLt$Ll$LH5L|$ItLLtHT$LH"fHqHF$HcATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH112E1HD$(dH+%(H0LA\@#HHufHHRxH; %IMtoI$H5LPtZUHuLHIHoH|bL1HHP@L8fE1H"DIjYfATL%'H H0H5~'Lx'uX7LH'LA\ATIUH}Ht HH5LH#tHmtH]A\HH]A\HG0HGHUH=oH u]ÐHH=ħtH]鴏@ǿUH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,01HT$8dH+%(uhH@]@HT$H|$H5֦|$HtHt+HH5HPtHuH1Hu]ff.fUH@dH%(HD$81H(Ht$HD$HFHD$$D$ t0H|$L/1HT$8dH+%(uFH@]@H|$HT$H5(|$HtˮH3HuH&ff.@ATUHHdH%(HD$81H)(Ht$HD$HFHD$$D$ D$ wcLd$HT$ H5Z(L |$ Ht#D$ 9D$(|Vt$ H芁HHtU1HT$8dH+%(uMHH]A\H|$.f.Ht$ LuDH fUSHHdH%(HD$81HĤHt$HD$HFHD$$D$ HD$t6H|$-1HT$8dH+%(HH[]DHt$H|$蟯tHl$H=HtHH= tuKHuHc@HH= ItHH=&6tHH=#tHnff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?,1HT$(dH+%(u9H8HHuҐm6HuH$Hff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n+1HT$(dH+%(u8H0]fDHHuӐkHcHuHVff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11*1HT$(dH+%(uUH0[fD+HHuӐt1 HuHcHfDHHH;w%tЉfSH0fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11)1HT$(dH+%(uZH0[fDKHHuӐ#t HuHceH#HH;$tЉff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11(1HT$(dH+%(uXH0]fD[HHuӐ1t HuHfDH1HPH;U%tHff.@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$'1HT$8dH+%(u_H@]f.[HHuϐH5HT$H|$|$HtHh HuH$H ff.USHHfnFdH%(HD$81H:RHt$HD$HGfnȉD$(fbfD$ uKHo(Ht!D$ +D$$tEH|$&1HT$8dH+%(uyHH[][HHuАHt$H|$t\$$t1 HuHcaHEHH;&$tHt$HЉATUHHfnFdH%(HD$81H`gHt$HD$HGfnȉD$(fbfD$ Ho(D$HD$HtUD$ +T$$w5;D$(mHHu$H$HfDH|$1w%1HT$8dH+%(udHH]A\DHHaDLd$Ht$LtD$ 9D$(}Ht$LtT$Ht$Tff.ATH0fnFdH%(HD$(1HܛH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}$E1HD$(dH+%(H0LA\@HHufHHRxH;%gIMtoI$H5اLPtZ5HuL(IHoHnbLt1HHP@L8fE1H"DIj9fATUSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$"1HT$8dH+%(H@[]A\{HHuːHt$H|$tD$$Ld$u`HELH@H;$H=EtLH=u-HaHc?Vf.LLH=ytLH=ftLH=&StLHЉfAU1ATUHĀHNdH%(HD$x1HGAfnH%fnA)fbAtBAH5NDy1HT$xdH+%(pH]A\A]fL NHt$@LL$HL$PT$TT$XHHo(Ht{D$P+D$Tt|H|$@!1@H 6NHt$@HL$HT$XfD$PHHo(Ht%D$P+D$TH|$@ 1(Ll$`Ld$@LLntHt$8Ltf(D$`T$8LHl$pfD$)$l$f($f.D$`d$f.d$hl$f.l$p"HCH$HbfLd$@Ht$(L螚Ht$0L艚Ht$8LtHt$$L/t$$T$8HL$0D$(_]@HHk1HH1CHL1LXff.ATUHHdH%(HD$8HFLd$Ht$H HD$HHT$ LH5]D$(HD$ D$ |$ Ht9D$ 9D$(}Ht$ Ltt$ HjqHbHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=Ơ'A\H5<HaU1H=Hצ1H='HHH$8Hmt H]fDHHD$kHD$H]AVH HAUH5ӝ'ATL%'ULS"'t[L]A\A]A^賶H-'L5]'HHK'HH'HH5Lt H-'tcH$Lk@{HHtH3HL芈Hmt#HL9uL2[L]A\A]A^fDHhfDHXfDATIUHHt HH5LHtHmtH]A\HH]A\ATUHHfnFdH%(HD$81HQHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$p1HT$8dH+%(HH]A\fHHuѐLd$Ht$LtHT$H5L|$HtD$$Ht$u/HEHHtH$Hf@HqATUHHfnFdH%(HD$81H/Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@1HT$8dH+%(HH]A\fHHuѐLd$Ht$L~tHT$H5Lv|$HtD$$Ht$u/HEHHtH$Hf@HxAAU1IATUH`fnFdH%(HD$XHG~H%fn)fbtFH5)(1HT$XdH+%( H`]A\A]H Ht$0HL$8T$HfD$@HIh(HtD$@+D$D:H|$01f.H Ht$0HL$8T$HfD$@HIh(HGD$@+D$DnH|$0J1H 5Ht$HL$T$(fD$ HuXIh(HD$ +D$$tvH|$1LIHLpIHuLXIH oLd$Ht$L.NHt$L9Ht$ L$D$$%HEL$ T$t$HxH;$v18HH'fHt$H|$0at$DE1u&HEHpH;$tHt$HIDHrL˜gDLd$0Ht$LFHT$ H5lL|$ H$L$DHt$HEHYHH9$HLd$0LH5|LeHǾs7lHH5dHHLdHH5dHHkHH5dH5}LdHH5dL-HLL:\HLHLH1iHH"H H豿HGHGf#fD1f1f1f1fǢUH=8Hu]ÐHH=tHH=tHH= {tHH=;htH]+rf.UH@dH%(HD$81HbHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$!tы|$ NHHuHt"HH5NH軡fHI$Hνff.AUATUHPdH%(H$H1HaHt$ HD$(HFHD$4D$0t>H|$ 1H$HdH+%(*HP]A\A]@Ll$@Hl$ LH^tLd$`HLEt\$PLLfoL$`foT$pf(D$@fo$\$fo$fo$)$Pfo$fo$)$`fo$fo$)$pfo$)$fo$)$fo$)$fo$ )$fo$0fD$)$)$)$)$)$)$)$)$ fo$@)$0f($f.D$@zturT$f.T$Hzdub\$f.\$PzTuR1H$PAf.zSuQHH=uHH$HHuL1HfHuLHѧf.AUATUHdH%(H$1H_Ht$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(zH]A\A]@Ld$@Hl$ LH讘tLl$` HL蕘tf(D$@|$PLLfoL$`foT$pfo$fD$fo$fo$)$|$)$)$)$)$)${cf($f.D$@b\t$f.t$HJD|$f.|$P2,D$`f.$?9$f.D$h$$f.D$p D$xf.$$f.$$f.$$f.$$f.$zzux$f.$zdub$f.$zNuLHH$HfDHL1HHu LHѤf.UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5j|$HtHt+HH5{HPtHuHՍ1Hu=ff.fUSHHdH%(HD$81HdHt$HD$HFHD$$D$ HD$t6H|$" 1HT$8dH+%(HH[]DHt$H|$?tHl$H=H'tHH=uHuHc@HH=tHH=tHi!UH@dH%(HD$81HHZHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(ugH@]@Ht$ H|$tы|$ H HuHt"HH5qCFH;fH$HNff.SH0fnFdH%(HD$(1H{4H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;$tЉ]ff.fSH0fnFdH%(HD$(1HX3H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fDHHuӐt"HuHcHHH;Z$tЉmff.fSH0fnFdH%(HD$(1Hy2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fDHHuӐt2HuHcHHH;$tЉ}ff.fSH0fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fDHHuӐtBHuHcHHH; $tЉ荱ff.fAUATUH`fnFdH%(HD$X1H0Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ N1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$PtXHTf(yT1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukH?Hcu4HEHXH;6$tT$HLD$L$T$D$L$|f[HuL1Ltt躯f.ATH0fnFdH%(HD$(1HzH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;"$'IMtoI$H5ޑLPtZEHuL8IHoHMbL脮1HHP@L8fE1H"DIjIfATUSH@fnFdH%(HD$81HvyHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;f$H=KtLH=>u-HaHcOVf.LLH=*tLH=IxvtL:`fDHЉ責fAWAVAUATUSHfnFdH%(H$1H,Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$s1H$dH+%(H[]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$P LLtT$8\$@fod$Pfol$`fot$pfH~ӋD$$fI~fo$D$0)$fo$)$)$)$)$uHEHxH;$LLD$TD$f.D$0^XfHnf.\$8GAfInf.d$@0*D$Pf.$=7$f.D$X"$f.D$`D$hf.$D$pf.$D$xf.$$f.$$f.$z~u|$f.$zhuf$f.$zRuPCHH#$Hf.HL1L0Hu LL D$LLHD$*/ff.@AWAVAUATUSHHfnFdH%(H$81H(Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$8dH+%(HH[]A\A]A^A_[HHu뾐Lt$0Ll$LLvtLd$PLL]tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$@fo$fo$)$Pfo$)$`D$0fo$)$pfo$)$fo$)$fo$)$fo$)$fo$ )$fo$0)$)$)$)$)$)$ D$$uHEHH;$LLD$jD$f.D$0zpunfHnf.|$8zau_fInf.|$@zRuP1H$@fDAf.z[uYHH=uHH$HHuL1Lf.HuLLD$LLHD$ATL%c}'H HψH5~'L覻}'uXfLH.~'LA\ATIUHMMHt HH5xLHetHmtH]A\HH]A\UH0fnFdH%(HD$(1H %H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐu1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LLztL$LLztH$LkjL$LLukOH$LHHD$`z*H$LH@z HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH  HIcHLILRLD$LHAXZT$h\$`L$mHuHھL΅yH*HT$L褅jHLL|BH(L1LW$L,UT$|LVlff.AWAVAUATUSHfnFdH%(H$1H0Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HTH$4AHcL$Eu~MD$`+D$dHH$E1HtH$H9t`H$dH+%(HL[]A\A]A^A_@IcI\u+HH&H|$PE1 TH$4HcH$I^LE1Sf.L|$LHL&HD$pHHH$tH$HHHD$tDLHt\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(Hd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.zt*HH$E1HL%$I$HL$H$MLL HH$HHBHT$H趀&D1@ADHH9u2T$L1H谆TDLHh讓H@fUHAWAVAUATSHhHfnFdH%(HE1H{HHHGfnȉfbfօ;HH@(HLLPHP4AHc谼HPHDžEtIcHHLO4H}AHclHDžLuEtIcIHH+LLuE1MtHEI9tL(HPHtHXH9t HEdH+%(HeL[A\A]A^A_]fDHHfDHLHHoUDHLo?HLHH{H0LHHoHLHHd`DLL^o xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創jH8\Hf.0f.8f.@HyE~LHIc1HH9Af.zt䉝HHHcFLuIf.E1cH[HLqz=딉$HrH1L5zWHLLHHHAVHoHHD1AHH9uHHL%LmHHD1HH9uH7DHھLFyDLL.yYtHDH!ff.AVAUATUSH`fnFdH%(HD$X1HJ Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^蛴HHuƐLd$ Ht$L~tLl$@LLitHT$H5L-|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6LHHcfDHLED$HuLL,wuDUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uuH@]f.˲HHuϐHt$ H|$豦tD$$t$ u)HEHH HuH_DH@HffDUH@fnFdH%(HD$81Hn Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uuH@]f.軱HHuϐHt$ H|$补tD$$t$ u)HEHHHuH^DH HVfDAUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(HDH|$04AHcAH|$0H|$Mt+D$ +D$$HH|$0E1HtHD$8H9tmHD$XdH+%(H`L]A\A]@SHHSH|$8DH|$04HcXAfDHt$HrHt$DHtZD$$t$HT$uBI$LPHt;FH|$0E1H$L%$I$@LXfDHT$DHHtHiAUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(HBH|$04AHc @H|$0H|$Mt+D$ +D$$HH|$0E1HtHD$8H9t}HD$XdH+%(H`L]A\A]@cHHSH|$HBH|$04Hch?fDHt$H#rHt$DHrZD$$t$HT$uBI$L`Ht;VH|$0E1H$L%.$I$@LxfDHT$DH G脄H fDfDfDfDH%(f((HF1GHHHHH-UH=fHlu]ÐHH=ƐQtHH=ߠ>tHH=N+tH]6f.@BUH@dH%(HD$81HZNHt$HD$HFHD$$D$ t0H|$\1HT$8dH+%(uhH@]@HT$H|$H5N躦|$HtHt+HH5tHPt2HuH%Y1Hu荂ff.fUSHHdH%(HD$81HMHt$HD$HFHD$$D$ HD$t6H|$r1HT$8dH+%(HH[]DHt$H|$XtHl$H=sHwtHH=Zdu;HuHc@HH= M9tH4脁@UH0fnFdH%(HD$(1HOsH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(u^H0]fDHHuӐt$HohSHuHQHHH;$tH虀fUH0fnFdH%(HD$(1HhrH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u^H0]fDHHuӐt$HoPcHuHaHHH;7$tHfSH0fnFdH%(HD$(1HqH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u}H0[fD HHuӐt,fH~jHufHnSfHH(H;_$ufH~fDfH~~f.UH@fnFdH%(HD$81HpHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(H@]fDHHuϐHt$H|$MtD$$D$t?f.ztHEHHuH$Ht@HEH H;$u$f.ztHDH<}ff.ATUSH@fnFdH%(HD$81HfHHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$StD$$Ld$uXHELH@H;$ulH=nКtLH=KU轚u)蔳HeHcCZfDLLH=TG聚tLE/븐HЉ{fATH0fnFdH%(HD$(1HFH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@#HHufHHRxH;$9IMtoI$H5lLPtZUHuLHQIHoHbLz1HHP@L׏8fE1H"DIjYzfAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH lHt$ HL$(T$8fD$0HHo(HtQ'L8P'ulLH~P'LA\ATIUH@Ht HH5dLH3tHmtH]A\HH]A\LAWAVAUATUSHfnFdH%(HD$x1HfKHt$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ V1HT$xdH+%(HĈ[]A\A]A^A_fDӚHHufLd$@Hl$ LHOtLl$`HLOtD$4T$HD$@\$Pd$hl$`$t$p\$fI~fH~D$t$ILLLD$f.D$@$f.T$Hd$f.d$PfHnf.|$`zbu`fInf.\$hzSuQl$f.l$pzCuA,HH $HLLLRD$WHuLH]çH[L1H\Dpff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtMAAH5HD1HT$XdH+%(Hh[]A\A]A^A_DLHHt$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ h1yH !HHt$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ 1L GHt$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ 1DSHH[1;HHu1@#HHTfLl$@Lt$ LL6L0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$PzHL1LZ@Ld$ Ht$Lv<Ht$La<kHt$LL<VD$L$T$4T$f(HEfمHH;$D$@L$HHT$PHt$@fH~Ő+HfHnxAL|$Ll$ L5C@LLLQ|$ILLL5|$HL$4uGHELH誣HcH$HyHL:fH~ILH}[)\$@HfH~"kf.f.GPf(fzuf.OXzuf.W`z u H_PW`f.@HGPf.Ghf(fzuf.Opzuf.Wxz u H_hWxf.@HGhf.z uHg)UH=\Hgff.@ATUHHdH%(HD$81HiHt$HD$HFHD$$D$ D$ wcLd$HT$ H5LJ|$ Ht#D$ 9D$(|Vt$ H芪HžHtU1HT$8dH+%(uMHH]A\H|$\f.Ht$ LuDH`=ffUSHHdH%(HD$81H2Ht$HD$HFHD$$D$ HD$t6H|$º1HT$8dH+%(HH[]DHt$H|$@HH=\1艄tHMe@H8fnFdH%(HD$(1HcH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11诹1HT$(dH+%(u9H8;HHuҐ I覜HuH$Heff.@SH0fnFdH%(HD$(1HZbH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11޸1HT$(dH+%(uH(HtD$9D$t;H11O1HT$(dH+%(H8@HHuҐHtAHPH;ۅ$uIGXt GX HuHs$HfDHhH;R$t@1eVDH8fnFdH%(HD$(1HhTH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(H8@~HHuҐHtAHH;;$uIxt GxHuHq$HHH;:$t@RUfH8fnFdH%(HD$(1HpSH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(H8@}HHuҐHtAHPH;$uIXt GXHuHp$HH`H;p$t@BTfH8fnFdH%(HD$(1HkRH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u{H8|HHuҐHt9HpH;ss$uA|t G|HuHo$HfHH;"y$t@1=Sff.fH8fnFdH%(HD$(1HjQH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(H8@{HHuҐHtAHH; |$uIGxt GxHuHn$HfDHH; o$t@1%RDH8fnFdH%(HD$(1HsPH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u~H8zHHuҐHt9HpH;Sq$uA|u G|ԈHuHm$HfHH;u$t@Qf.UH@fnFdH%(HD$81HpOHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$ݤ1HT$8dH+%(H@]ÐkyHHuԐHt$H|$StD$$t$t0@8u|tHE@u|H複HuHl$HfHEHpH;o$u@8u|t@u|HHO@ATUHXfnFdH%(HD$H1H=NHt$ HD$(HGfnD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 蠣1HT$HdH+%(HX]A\f+xHHuѐLd$ HL@tHt$L/tHt$LtHt$L t\$T$HL$$V5H\Hk$HNNAUATUSHXfnFdH%(HD$H1HMHt$HD$HGfnȉD$(fbfD$ uOHo(Ht!D$ +D$$tQH|$]1HT$HdH+%(HX[]A\A]@vHHufLd$0Ll$LL+tD$0T$8HLD$fH~D$f.D$0z0u.fHnf.\$8z!uHTHcwI@˄Hu׹L1L9-Mff.fAUATUHĀfnFdH%(HD$x1HKHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$xdH+%(H]A\A]fDsuHHufLd$Ht$ LNitLl$0LLu*tfoT$0t$ HLfo\$@)T$P)\$`輊D$0f.D$PzTuRD$Xf.D$8zDuBD$@f.D$`z4u2D$Hf.D$hz$u"EHHcu#HuԹLL98KfAUATUHĀfnFdH%(HD$x1HJHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$N1HT$xdH+%(H]A\A]fDsHHufLd$Ht$ LgtLl$0LL(tfoT$0t$ HLfo\$@)T$P)\$` D$0f.D$PzTuRD$Xf.D$8zDuBD$@f.D$`z4u2D$Hf.D$hz$u"襁HHcTt胁HuԹLL6IfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$覝1HT$8dH+%(H@[]A\+rHHuːHt$H|$tD$$Ld$uXHELH@H;^$ulH=?FgtLH=mgu)DHeHcrZfDLLH=1gtL븐HЉrHfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@pHHufHHRxH;i$w6IMtoI$H5DLPtZHuLIHoHbLDG1HHP@L\8fE1~H"DIj GfAVAUATUSHpfnFdH%(HD$h1HEHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHc6pLl$0EulMD$ +D$$H萚H|$0E1HtHD$8H9tVHD$hdH+%(HpL[]A\A]A^IcI\fDnHH>H|$E1H|$04Hc{oH|$0IsLE1hHt$ HbKDLH#5E~\IEH9AD$D1Hf.fATHH9uDAt ADËt$ LL9E~3Ic1fHH9tADf.ztR|Ht'H|H|$0E1HL% a$I$nDLHC1ĐD1ADHH9uZiDHff.fAVAUATUSHĀfnFdH%(HD$x1HBHt$ HD$(HGfnЉD$8fbfD$0 Hl$ Lw(1HH|$@4AHcmLl$@EhD$ MD$0+D$4SHt$HPHt$H;Ht$H\`&DLH!D$09D$8E~WAD$IEH9D1HDfA\HH9uDAt ADËL$ t$LLL$D$U E~7Ic1fHH9tADf.ztzH#yH|$@E1HuAL%^$I$3fIcI\H~H|$@E1HtHD$HH9tRHD$xdH+%(HL[]A\A]A^fDjHHH|$ E1H|$@4HcskLl$@LtD$ LE1n@Ht$ H^KHD1ADHH9uDLH-9AHff.fAVAUATUSHĀfnFdH%(HD$x1H?Ht$ HD$(HGfnЉD$8fbfD$0 Hl$ Lw(1HH|$@4AHcVjLl$@EhD$ MD$0+D$4SHt$HPHt$Hq;Ht$H,]&DLHVD$09D$8E~WAD$IEH9D1HDfA\HH9uDAt ADËL$ t$LLL$D$hE~7Ic1fHH9tADf.ztvH#vH|$@E1HuAL%[$I$3fIcI\HNH|$@E1HtHD$HH9tNHD$xdH+%(HL[]A\A]A^fDgHHH|$ E1H|$@4HcChLl$@LtD$ LE1n@Ht$ HS[KHD1ADHH9uDLH* >Hff.fATUHHdH%(HD$8HFLd$Ht$HkHD$H4sHT$ LH5D$(HD$ D$ [a|$ Ht9D$ 9D$(}Ht$ LZZtt$ H芀HtHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=F#'A\tH5*HH<AT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAtH(HtD$9D$t;H11菍1HT$(dH+%(uLH8bHHuҐu$H~pHuHbU$H@S8ff.UH@fnFdH%(HD$81H[Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袌1HT$8dH+%(uzH@]f.+aHHuϐH5VHT$H|$[|$HtD$$u(HEHfoHuHJT$H@HH7UH@fnFdH%(HD$81HZHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒋1HT$8dH+%(uzH@]f.`HHuϐH5FHT$H|$Z|$HtD$$u(HEHVnHuH:S$H@H6fDHGh9wXtHwXGX@8w|tH@w|ff.DG|9wxtHwxGx$UH=.3HlTu]ÐHH=QTtHH=>TtH]HHH; _$u!WxtGxD1@HHPH;[d$u!XtGXfDHHPH;d$u!WXtGXD1@HHpH;T$u!|uG|fHHpH;cT$u!|tG|f1@HHH;]$u!xtGxfD'jAUATUHdH%(H$1HHt$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(*H]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@t$PLLfoL$`foT$pfo$fD$fo$)$t$)$)$)$)$f($f.D$@#l$f.l$H t$f.t$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$$f.$zwuu$f.$zau_$f.$zKuIDiHH$N$H #iHL1H8hHuLHZ1f.AUATUHdH%(H$1HWHt$ HD$(HFHD$4D$0t>H|$ B1H$dH+%(Hİ]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@d$PLLfoL$`foT$pfD$)$d$)$)$.uf($f.D$@\$f.\$Hd$f.d$PzyuwD$`f.$$f.D$hzsuq$f.D$pz`u^D$xf.$zMuK6gHHL$HDgH{L1H(dfHuLHJ/f.UH@dH%(HD$81H:Ht$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uhH@]@HT$H|$H5R|$HtHt+HH5QHPtfHuH1eHum.ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$R1HT$8dH+%(HH[]DHt$H|$otHl$H=PHWLtHH=JDLueHuHcW@HH=LtHd-@SH0fnFdH%(HD$(1HyH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>1HT$(dH+%(uUH0[fDUHHuӐt15dHuHcVfDHHH;X$tЉ,fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uZH0[fDTHHuӐtRcHuHcVHHH;j\$tЉ+ff.fSH0fnFdH%(HD$(1H˪H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDSHHuӐtbbHuHcUHHH;A$tЉ*ff.fSH0fnFdH%(HD$(1HʩH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~~1HT$(dH+%(uZH0[fD SHHuӐtraHuHc%THHH;Z@$tЉ)ff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$}1HT$8dH+%(u|HH]A\fD RHHuѐHt$ H|$EtD$$E1uHEHH;_$uI`HuLHcQ3HEHXH;nX$tT$HLD$L$T$D$L$qk^HuL1Lu&f.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$z1HT$8dH+%(H@[]A\ OHHuːHt$H|$tD$$Ld$uXHELH@H;K$ulH=H`DtLH=BMDu)$]HeHcOZfDLLH=DtL븐HЉR%fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-yE1HD$(dH+%(H0LA\@MHHufHHRxH;E$ZIMtoI$H5kGLPtZ[HuLIHoHtbL$$1HHP@Lg98fE1[H"DIj#fAWAVAUATUSHfnFdH%(H$1H4Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$w1H$dH+%(HĨ[]A\A]A^A_LHHu뾐Ll$0Ld$LL6tLt$PLLtT$8\$@fod$Pfol$`D$$D$0fH~fI~)d$p)$uHEHxH;W$LLD$SgD$f.D$0fHnf.t$8z~u|fInf.|$@zoumD$Pf.D$p}D$xf.D$Xzoum$f.D$`z\uZD$hf.$zIuGjYHHJ>$HKYHuL1Ldr#YHuLL9D$LLHD$_!ff.@AWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$u1H$dH+%(H[]A\A]A^A_IHHu뾐Ll$0Ld$LLtLt$PLLtT$8\$@fod$Pfol$`fot$pD$$fH~fI~fo$D$0)$)$)$)$uHEHH; A$LLD$D$f.D$0fHnf.T$8fInf.\$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$D$xf.$z{uy$f.$zeuc$f.$zOuM0VHH;$H VHL1L UHuLL D$LLHD$iff.@ATL%'H H@H5>'L38'uhLH~'?LA\ATIUHrHt HH5@LHtHmtH]A\HH]A\UH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Nq1HT$(dH+%(u|H0]fDEHHuӐuHH 2f.HLEff.AWAVAUATUSH8fnFdH%(H$(1H`H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$ni1H$(dH+%(dH8[]A\A]A^A_=HHuÐL$L$LLtL$LLtH$LjL$LLOH$LHHD$*H$LHp HT$|LHHT$1$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQIHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucKIH =IHIc;HLILRLD$LHyAXZT$h\$`L$mHHuHھLyHH*HT$LHHLLrHH(L1L$L\QUT$|Lff.AWAVAUATUSHfnFdH%(H$1H`Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HH$4AHc9L$Eu~MD$`+D$dHdH$E1HtH$H9tH$dH+%(HL[]A\A]A^A_@IcI\u[8HH&H|$PE1=H$4Hc8H$I^LE1Sf.L|$LHL+&HD$pHHH$H$HHHD$DLH\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(0EHd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztZDHLDH$E1HL%!)$I$HL$H$MLLCHH$HCHBHT$H&D1@ADHH9u2T$L1HTDLH H龕fUHAWAVAUATSHhHfnFdH%(HE1HHHHGfnȉfbfօ;HH@(HLL5HP4AHc4HPHDžEtIcHHL4H}AHc4HDžLuEtIcIHH+L^LuE1MtHEI9tLXHPHtHXH9t;HEdH+%(HeL[A\A]A^A_]fD3HHfDHLHH"UDHL ?HLHH&H0LHHHLHHDLL xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創>H8>Hf.0f.8f.@*>HyE~LHIc1HH9Af.zt䉝=H=HHcv0LuIf.E1=H[HL=딉T=HrH1LeWHLLHHHAVH_HHD1AHH9uHHL %LEmHHD1HH9uH7DHھLvDLL^YHŽH韎ff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ EX1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5rLL'|$8ItLH5CLg'|$8ItLH5LK'|$8kH(LLH$H''|$8GLHLHD$ '|$8)LLLHD$L&|$8HLL7H $LD$LLL$L\$,LLLL$LLD$HL$L$&|$,L$HL$LD$ILL$LLLL$LD$H $nqL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H 9H!H$HfD*HHf.RLLHAVPSH fAWAVAUATUSHfnFdH%(HD$x1HwHt$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P U1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LtL\$HH5LLL\$$|$HL\$ItLH5iL$|$HL\$IhL52LLLe$|$HL\$CLLLHD$B$|$HL\$ LLLHD$$|$HL\$L5LLHD$ L#|$HL\$HLLL#|$HL\$HL$LD$ILL$ LLLLL$(LLD$ HL$L\$#|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$;4L@*HT$?LL,#|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0r6HHR$Hf'HHcf.HLHRLPt$ AVSH0f.AVAUATUSH`fnFdH%(HD$X1Hz~Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ KR1HT$XdH+%(;H`[]A\A]A^&HHuƐLd$ Ht$LtLl$@LLtHT$H5L]!|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6|4HHc+'fDHLXD$F4HuLL\DUH@fnFdH%(HD$81H|Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rP1HT$8dH+%(uuH@]f.$HHuϐHt$ H|$tD$$t$ u)HEHH<3HuH/DH HfDfDfDfD1f1ff(4HF1fD71HHѹHH?UH=H|u]ÐHH=atHH=!NtH]1Ht%SHGH9to[fff.@ATUH-$HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1NNH|$HtH/tHD$8dH+%(u`HHL]A\+fHT$H|$HDIHt\HL9t Ao$HIyfAWAVAUATUS1HdH%(HD$x1HHl$Ht$HD$HFH1HD$$D$ H|$04AHc5Lt$0EtIcIH4H|$PAHcHD$L|$PEt IcIHD$D$ +D$$txHLE1H|$PHD$XH9t HtjH|$0HD$8H9t HtQHD$xdH+%(jHĈL[]A\A]A^A_DLHtDLHrEIVHH)HAD$D1HAoHH9uDAt3A4H4HA9~ALLA9~ ADDEHD$IWH)HAED1HfDAo HL$ HH9uDAt6HωA4H4HA9~ALLA9~ ADDLLIc1E7HH9t' A9 t1.HuDL1H/@Ic1E%@HH9tH\$ A9 t-Htl-HL%$I$D1AH|$HH9u8fDD1AHH9u}DLH.|H!H.fDAUATUS1HhdH%(HD$X1HQHl$Ht$HD$HFH1HD$$D$ oH|$04AHc茯Ll$0EtIcI\D$ +D$$tUH{IE1H|$0HD$8H9t HtHD$XdH+%(PHhL[]A\A]DDLHztHt$ HtEIUHH)HAD$D1HfDAoDHH9uDAt4AtH4HA9~ALLA9~ ADDt$ LIc1E!@HH9t A9Lt+Ht>v+HL%V$I$@D1ATHH9uDL1H,H#~f.AUATUH`dH%(HD$X1H Ht$ HD$(HFHD$4D$0HD$tcH|$ G1H|$HtH/t%HT$XdH+%(H`]A\A]HD$NHD$Ld$ L- HT$LL=HHtHt$LxT$Ld$@HL賑*I1MSLL1Ckff.AUATUH`dH%(HD$X1Hq Ht$ HD$(HFHD$4D$0HD$tcH|$ OF1H|$HtH/t%HT$XdH+%(H`]A\A]HD$HD$Ld$ L-HT$LLH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H11?1HT$(dH+%(u?H8+HHuҐfo$"HuHt$HfUH0fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11>1HT$(dH+%(uHH0]fD[HHuӐP9 1H 9H@!HuHfff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11=1HT$(dH+%(u?H0]fD{HHuӐ HuHH5U'zHHUH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11=1HT$(dH+%(u?H0]fDHHuӐ HuHH5WyHOxUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$A<1HT$8dH+%(uuHH[]HHuАHl$Ht$HtHt$ HtD$T$ HHPHuH$H{eDUSHHfnFdH%(HD$81HoHt$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$1;1HT$8dH+%(uuHH[]HHuАHl$Ht$HtHt$ HtD$T$ HH)PHuH$H{UDSHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ :1H|$HtH/tHT$HdH+%(HP[DHD$HD${HHs1HT$H|$ H50HtPSPS@ C H`H$HR@USHHfnFdH%(HD$81H$Ht$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$81HT$8dH+%(uuHH[]k HHuАHl$Ht$HNtHt$ H=tD$T$ HH)PHuH$H{DSHPfnFdH%(HD$H1H Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$71HT$HdH+%(HP[fD[ HHuϐHt$ H|$AtD$ fo)D$0HcH<7G)tHD$0H9t o)T$0t0wiI1M[Ht$0H= :"ESHPfnFdH%(HD$H1HSHt$ HD$(HGfnȉD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ 61H|$HtH/tHT$HdH+%(HP[DHD$^HD$ HHs1HT$H|$ H5 ,Ht))S@)C)C (HfH#HXf.ATUSH0fnFdH%(HD$(1HC H4$HD$HGfnȉD$fbfD$uJH_HtD$+D$tDHR51HT$(dH+%(H0[]A\ HHuϐLd$ HLHXtSC L$$t$ fnfnfbfD$ 9u 9uHuH#HrfHuڹL1HDMff.fUSHXfnFdH%(HD$H1H Ht$ HD$(HGfnȉD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ 41H|$HtH/tHT$HdH+%(HX[]HD$޹HD$kHHt1HT$H|$ H5 r*HtpP@ 9N9J;DCD9?DKDS E92D9AOD9AL9@D9AO9L9 @VHH ff.AVAUATUSHPfnFdH%(HD$H1H<H4$HD$HGfnȉD$fbfD$HLw11H?H|$ 4AHc\Ll$ EurMD$+D$HF2H|$ E1HtHD$(H9tHD$HdH+%(HPL[]A\A]A^fDIcI\fDHH=H1E1肚H|$ 4Hc蠗H|$ IrLE1gDDLHDEIUHH)HAD$D1HAoTHH9uDAt4AtH4HA9~ALLA9~ ADDAEIcAAEAFAEAFAEAF 1E<H|$ E1H|L%#I$kfHH9tNj A9LtHuDL1H롐D1ATHH9uVHfH8IHdH%(HD$(HFt<ǃHD$(dH+%(LH=P&H8HAH4$HD$HGD$D$D$umHGHu41HT$(dH+%(|H8fH5t-1΋)PP)P @HuHg#H럐HtH@HtL$9L$tH11/nff.fATUHhdH%(HD$XHFt?H5,1HT$XdH+%(Hh]A\f.HIHt$ HD$(HGD$0D$4D$8HGH1Ht$ HT$H|$ HH-D$8HD$(HHHD$HD$0$Ht#Ld$@HL蔦I1MH|$H H/HD$ϳHD$D@@ H?H#Hf.+HH@H L$49L$0tH|$ 11M-1fDLHUOff.ATUHhdH%(HD$XHFt?H5*1HT$XdH+%(Hh]A\f.HtHt$ HD$(HGD$0D$4D$8HGH1Ht$ HT$H|$ HH-;D$8HD$(HHHD$HD$0 #Ht#Ld$@HL?I1MH|$H H/HD$HD$Dhh H?H#Hf.KHH@H L$49L$0tH|$ 11m+1fDLHuOff.AUATUSHXdH%(HD$HHFt<H5;)1HT$HdH+%(HX[]A\A]@H:Ht$ HD$(HGD$0D$4D$8HGH1Ht$ HT$Hv:HD$(HH|$ H5OD$8HD$0HD$,!HtXD(h D`e H1H|$HH/HD$HD$fDXD(h D` HBD)D){HcHxv@cHH@H\$49\$0tH|$ 11)1{fDD)D){HcHx!L-; CfD+ AUATUH`dH%(HD$XHFt<H5&1HT$XdH+%(H`]A\A]DHHt$ HD$(HGD$0D$4D$8hHoH1Ld$ Ht$ HT$H0L-KLD$8HD$(H<LHD$HD$0HHHt$LHt$LL$T$Ld$@HL( I1Mu{LLn@Ld$ Ht$Lf#Ht$LQD$HT+T$T HH#Ht1H|$H]H/SHD$LHD$?fHHhHD$0+D$4Ht迷HHdff.fUHHHtڱH]UHHt H{ HuVHEDžt,tH5`1]H1]DH=/]H鶏fDH#H5RH8AWAVAUATUH dH%(H$HFtJ  H5E1(H$dH+%([H L]A\A]A^A_DHyHl$PfHt$PHD$XHT$8HHH5)D$pHD$`D$hHD$8HD$@HD$H)$)$)$)$)$)$)$)$)$. IHrHt$ H]Ht$(HHHT$pHt$@H薜.Ht$0HH$Ht$HHdDD$ t$HLLD$8LLPAPt$XDL$H肭H HHcvIH|$8Ht H/H|$xt H|$p*H$#H$fHLl$PfHt$PHD$XH-HLHT$ HD$hHD$`HD$ HD$(HD$0HD$8HD$@HD$H)D$p)$)$)$)$)$)$)$)$)$H IH$HT$(HL, IHHT$0HL IHHT$8HL HHD$Ht$LHt$LHT$pHt$@LZHt$LetyHt$LTthH$Ht$HLtOt$HD$$LLLPD$(Pt$XDL$4DD$0HL$(8H }HuHc0IE1H|$ HtH/tEH|$(HtH/t%H|$0HH/}sffE1H˘JaATL%&H lH&H5N&L&uL5LA\ff.@ATIUH]Ht HH5LH3~tHmtH]A\HH]A\!׷UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5V |$HtHt+HH5HPtHuHu1iHuݼff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$ߒtHl$H=7HtHH=)uHuHc>@HH=\tHMoԻ@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H111HT$(dH+%(uEH0]fD;HHuӐHhHHt HUHmHPHHuH艑fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.[HHuϐH5dHT$H|$|$HtH舱HuH#H ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uVH@]f.[HHuϐHt$ H|$Att$ HQHHuH蜏DATUSH@fnFdH%(HD$81HFHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$ 1HT$8dH+%(H@[]A\[HHuːHt$H|$tD$$Ld$uXHELH@H;#ulH=tLH=u)tHeHc#ZfDLLH=4atL%k븐HЉ袷fATH0fnFdH%(HD$(1H܂H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11} E1HD$(dH+%(H0LA\@HHufHHRxH;#IMtoI$H5LPtZ5HuL(IHoHUbLt1HHP@L8fE1H"DIj9fATL%s&H \HH5&L&uLH>&LA\ATIUHHt HH5LHvtHmtH]A\HH]A\駯UH=|H u]ÐHH=ftHH=tH]hwCAWAVAUATUSHdH%(H$1HvHt$@HD$HHFHD$TD$PtAH|$@ 1H$dH+%(YH[]A\A]A^A_fLd$`Hl$@LH趒tL$HL蚒tL$HL~yT$`\$h$d$p$f.$\$0l$$t$$|$ fI~$T$(fH~d$8|$@f.6f.,L$f.$l$f.$|$ f.$fHnf.$z{uyfInf.$ziugL$f.$zVuTHIfHnfIn\D$\L$YD$(YL$0XL$\L$ YL$8X襇;HuLHQH?LH%%HL1HFfDUH@dH%(HD$81H:}Ht$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uhH@]@HT$H|$H5||$HtHt+HH5HPtHuH1Humff.fAWAVAUATUSHhdH%(H$X1H H$H$HGHDŽ$$tIH$B1H$XdH+%(XHh[]A\A]A^A_L$H$LHtL$HLĎtL$HL討nL$ HL舎NH$HH]3H$@HHHD$H$IL$$LL$$L$`Lf($$LL$$$T$($($ d$@$0$@l$$P$$HfD$X)D$0t$x|$HL$T$p\$Pd$ l$h f(D$0f.$\$Xf.$|v$f.$^Xt$(f.$l$`f.$$f.$|$f.$_Yt$@f.$D>t$xf.$)#L$f.$ |$Hf.$(|$pf.$09HT$ f.$@zhuf\$Pf.$HzUuSL$hf.$PzBu@HwHclHL1HHuHT$HƙHHLH衙.gHLHy?HVLHQ<$H&|ff.USHHdH%(HD$81HwHt$HD$HFHD$$D$ HD$t6H|$b1HT$8dH+%(HH[]DHt$H|$tHl$H=HgtHH=Tu+HuHc@HH=v)tH^t@UH0fnFdH%(HD$(1HeH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u^H0]fDHHuӐt$HohCHuHAHHH;_#tH艪fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(u^H0]fDHHuӐt$HoPSHuHQHHH;#tH虩fUH@fnFdH%(HD$81HUHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uXH@]f.HHuϐHt$H|$xtD$H诵:HuH#H裨ATUSH@fnFdH%(HD$81HsHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f1HT$8dH+%(H@[]A\HHuːHt$H|$q~tD$$Ld$uXHELH@H;#ulH=@tLH=-u)HeHcZfDLLH=rtLZ븐HЉ2fATH0fnFdH%(HD$(1HlrH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@HHufHHRxH;#4IMtoI$H5oLPtZHuL|IHoHTEbL1HHP@LG8fE1hH"DIjɥfAWAVAUATUSHHVdH%(H$1Aу~<uUH@dH%(HD$81H*EHt$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5D芝|$HtHt+HH5qHPtHuHO1Hu]yff.fUSHHdH%(HD$81HDHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_OtHl$H=HGtHH=Q4u HuHc辢@HH=C tH+Tx@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u7H0[fD軠HHuӐ $HuHcסwUH0fnFdH%(HD$(1HMH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uVH0]fDHHuӐtHoPcHuHVM@HHH;#tHvUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHoX胭HuHvL@HHH;'#tHuUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.+HHuϐH5HHT$H|$|$HtHHsHuHW#Htff.AUATUHfnFdH%(H$1HH4$HD$HGfnȉD$fbfD$uSHo(HtD$+D$tMH1H$dH+%(pHİ]A\A]DHHuƐLd$ ILL8RtfoT$ fo\$0LHfod$@fol$Pfot$`fo|$p)$)$fo$fo$)$fo$)$fo$)$ fo$)$0fo$)$@)$P)$`)$p)$)$1H$DAf.z3u1HH=u耪HH`#H[HuѹL1Lt_rff.fATUSH@fnFdH%(HD$81H=Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$v1HT$8dH+%(H@[]A\HHuːHt$H|$HtD$$Ld$uXHELH@H;#ulH=PtLH=J=u)HeHcÛZfDLLH=<tL$븐HЉBqfATH0fnFdH%(HD$(1H|<H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@裙HHufHHRxH;"#4IMtoI$H5DLPtZէHuLFIHoHdbLp1HHP@LW8fE1xH"DIjofAT1UHHHNdH%(HD$81HGAfnH%fnA)fbAtAH5FD腿1H$dH+%(HĘ]A\ÐL EHt$0LL$8L$@T$DT$HHHo(HtD$@+D$Dt|H|$01@H EHt$0HL$8T$HfD$@HDHo(HRD$@+D$DtjH|$01,Ld$PH|$0LJLHB詣HH#HLd$0HL0;Ht$L;Ht$L;Ht$L:Ht$ L:oHt$(L:Zl$(d$ H\$T$L$$8ߢH6KHHf.+HH5kDATL%d&H HսH5^f&LրXe&udLHe&ٌLA\ATIUHXHt HH5~LH*tHmtH]A\HH]A\DUH@fnFdH%(HD$81H[Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uzH@]f.˒HHuϐH5HT$H|$芍|$HtD$$u(HEHHuH#H@HHaiAWAVAUATUSHfnFdH%(HD$x1H6BHt$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ &1HT$xdH+%(HĈ[]A\A]A^A_fD裑HHufLd$@Hl$ LHFtLl$`HLFtD$4T$HD$@\$Pd$hl$`$t$p\$fI~fH~D$t$ILLLD$f.D$@$f.T$Hd$f.d$PfHnf.|$`zbu`fInf.\$hzSuQl$f.l$pzCuAHH܃#HLLL'D$W軞HuLHS蓞H[L1HSDfff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtMAAH5?D躸1HT$XdH+%(Hh[]A\A]A^A_DLQ?Ht$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ 81yH >Ht$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ ޹1L >Ht$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ 脹1D#HH[1 HHu1@HHTfLl$@Lt$ LLC0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$Pz̛HL1LP@Ld$ Ht$LF3Ht$L13kHt$L3VD$L$T$4T$f(HEfمHH;#D$@L$HHT$PHt$@fH~ŐHfHnH8L|$Ll$ L57LLL!|$ILLL|$HL$4uGHELHzHcHZ#HyHLfH~ILHMR)\$@HfH~"bf.HGPHGX&UH=4Hu]ÐHH=_;рtHH=-辀tH]GxUH@dH%(HD$81H,Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5,Z|$HtHt+HH5G~HPtҘHuH71蹘Hu-aff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uFH@]@H|$HT$H5}z|$HtK8HHuH6o`ff.@ATUSHdH%(H$1HHt$HD$HFHD$$D$ t?H|$S1H$dH+%( HĠ[]A\fDLd$0Hl$LH=tH5zHT$H膃|$HtfoL$0foT$@Lfo\$P)L$`)T$p)$D$0f.D$`zxuvD$8f.D$hzhufD$@f.D$pzXuVD$Hf.D$xzHuFD$Pf.$z5u3D$Xf.$z"u 胖HHc2DcHuֹL1H|K^DUSHHdH%(HD$81H)Ht$HD$HFHD$$D$ HD$t6H|$貲1HT$8dH+%(HH[]DHt$H|$4tHl$H={H|tHH=|u{HuHc.@HH=7y|tHH=9)f|tH*]SH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莱1HT$(dH+%(u7H0[fDHHuӐ;脔HuHc7\SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ΰ1HT$(dH+%(u7H0[fD[HHuӐ{ēHuHcw0\UH@fnFdH%(HD$81HxHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.苄HHuϐH5@HT$H|$J|$HtH1ђHuHc脅=[ff.fATUSH@fnFdH%(HD$81Hf&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$1tD$$Ld$u`HELH@H;&#H=wxtLH=xu-萑HaHc?Vf.LLH=3yxtLH=9%fxtL* fDHЉYfAVAUATUSHpfnFdH%(HD$h1HQHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11H,H|$04AHcقLl$0EuoMD$ +D$$H3H|$0E1HtHD$8H9thHD$hdH+%(HpL[]A\A]A^IcI\fD苁HH>H|$1E1pH|$04HcH|$0IsLE1hDLHr6GHt$ Hu2E~\IEH9AD$D1Hf.fATHH9uDAt ADËT$ LL5AE~0Ic1fDHH9tADf.ztHt#H|Ic藁H|$0IoDL1HCD1ADHH9uZ WHfff.fATH0fnFdH%(HD$(1H,"H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ͪE1HD$(dH+%(H0LA\@SHHufHHRxH;#glIMtoI$H5rLPtZ腍HuLx,IHoHbLU1HHP@Lk8fE1(H"DIjUfAV1IAUATUSHĀfnFdH%(HD$xHG~H%fn)fbt;H5n1HT$xdH+%(H[]A\A]A^H Ht$ HL$(T$8fD$0HIh(Ht%D$0+D$4H|$ 1fH Ht$ HL$(T$8fD$0HHl$ 1Mp(1HgH|$@4AHc~Ll$@EubMD$0+D$4HnH|$@1HT$HH9HHD$cHD$@IcI\fDH5HT$H|$ w|$HH'HHp#HrfDDLH1THt$Hep?E~TIEH9&AD$D1HffATHH9uDAt ADËT$LLEE~7Ic1fHH9tADf.ztBH4IH|$@1MH o#HzL{IHH|$ 1pH|$@4Hc|H|$@1I5L1+fL8{IHX1 D1ADHH9uDL1H>8QHjATL%#O&H HnH5P&LgO&u?LHO&sLA\ATIUHHt HH5TnLHtHmtH]A\HH]A\+wgUH= nHou]ÐHH=otHH=*otHH=N{otH]>f.@-UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$謤1HT$8dH+%(uhH@]@HT$H|$H5V t|$HtHt+HH5HPt肇HuHu&1iHuOff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袣1HT$8dH+%(uWH@]f.+xHHuϐHt$H|$tHt$H {HuH_k#HN@USHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$Ң1HT$8dH+%(HH[]DHt$H|$$tHl$H=HltHH=Hlu蛅HuHcNx@HH=κltHH=YltHJMATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$薡1HT$8dH+%(H@[]A\vHHuːHt$H|$#tD$$Ld$u`HELH@H;j#H=lktLH=Yku-0HaHcvVf.LLH=NktLH=ktLfDHЉBLfATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@tHHufHHRxH; #w(IMtoI$H53LPtZՂHuL!IHoHdbLK1HHP@LW`8fE1xH"DIjJfATL%3K&H HH5L&L`K&uLHK&lLA\ATIUH3Ht HH5-LH tHmtH]A\HH]A\$''UH=Hhu]ÐHH=htHH=~htHH=>khtH].f.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$蜝1HT$8dH+%(uhH@]@HT$H|$H5Fl|$HtHt+HH5gHPtrHuHe1YHuHff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$貜1HT$8dH+%(HH[]DHt$H|$tHl$H=fHftHH=fu{HuHc.r@HH=xLyftHH=fftHH=&SftHGff.SH0fnFdH%(HD$(1H3H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDoHHuӐtb~HuHcqHHH;#tЉFff.fSH0fnFdH%(HD$(1HkH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD oHHuӐtr}HuHc%pHHH;e#tЉEff.fUH0fnFdH%(HD$(1HڳH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莙1HT$(dH+%(u^H0]fDnHHuӐt$H|HuH4@HHH;i#tHDfUH0fnFdH%(HD$(1H}|H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螘1HT$(dH+%(uVH0]fD+mHHuӐtH{HuH뵐HH H;{#tHCSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辗1HT$(dH+%(uUH0[fDKlHHuӐtzHuHcdmfHHH;]#tЉCfUH@fnFdH%(HD$81HRHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Җ1HT$8dH+%(H@]fD[kHHuϐHt$ H|$A_tD$$t$ tAN9tHEHyHuHk^#HrfHEHH;^a#u,N9tHfHA@ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@jHHufHHRxH;b#'IMtoI$H5_LPtZ5xHuL(IHoHbLt@1HHP@LU8fE1wH"DIj9@fATUSH@fnFdH%(HD$81Hf Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{hHHuːHt$H|$tD$$Ld$u`HELH@H;^p#H=]]tLH=Ҿ]u-vHaHc?iVf.LLH=xCy]tLH=f]tLH=& S]tLHЉ>fAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAAuZH ŬHt$HL$T$(fD$ HHo(Ht&u8LH>&\LA\ATIUHgHt HH5IYLHtHmtH]A\HH]A\ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(HH]A\fbHHuѐLd$Ht$ LVtHT$ H5@Lf]|$ HtD$$t$ u0HEH8pHuHU#HgDH19H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8aHHuҐu$H(oHuHT#H@[\8ff.H8fnFdH%(HD$(1H1H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(uLH8`HHuҐu$H0oHuHT#H@y|7ff.H8fnFdH%(HD$(1H@IH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(uLH8_HHuҐu$H >nHuH"S#H@6ff.AWAVAUATUSHhfnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$Y1HT$XdH+%(Hh[]A\A]A^A_@^HHuȐLl$@Ld$LLtL|$0LL=#tD$8Dt$4\$0D$ D$$uxHEHLLH;\$0u4D;t$4u-D$ 9D$8u#lHAH5ΡDe1HT$XdH+%(H`]A\A]A^A_ÐL Ht$ LL$(L$0T$4T$8H:Ho(HtD$0+D$4t|H|$ 1@H BHt$ HL$(T$8fD$0HHo(HRD$0+D$4H|$ 蒆1(Ld$ Ht$L&O Ll$@LLIL|$H5=OLLU|$ILLNT$4DD$t$:HELLH@Ld$ HLNkHt$LVHt$LAHt$Ly,Lt$H5}NLL U|$ILLND$4L$T$L$D$4$u~HELHKhHH+M#HfYHH+f.YHHeLLH,JLHX0AUATUHPfnFdH%(HD$H1H5Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$HdH+%(HP]A\A]fDXHHufLd$Ht$ L~LtLl$0LL tHT$ H5LL-S|$ HqD$$t$ u3HELHXfHGH~K#H9DLHu.ff.ATUHHfnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEH賂1HT$8dH+%(}HH]A\D;WHHuΐLd$ HL[ tD$u/HEHLHweHuHYHL5H-ff.AVAUATUHXfnFdH%(HD$H1HnHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$茁1HT$HdH+%(HX]A\A]A^f. VHHuŐLl$0Ld$LL& tLt$LLatD$$u>HEHLL,dHt7"dH]HcVR@HLL:qfDHT$LW,AT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH 1Ht$ HL$(T$8fD$0HHo(Ht'ff.AW1AVAUATUHpHNdH%(HD$h1HGAfnH%fnA)fbAt>AH5gDy1HT$hdH+%(9Hp]A\A]A^A_ÐL ZgHt$LL$L$ T$$T$(HHo(HtD$ +D$$t|H|$z1@H gHt$HL$T$(fD$ HLHo(HRD$ +D$$H|$Bz1(Ll$HT$H5mLI|$ILt$0LLT$$HEHLL\HHcOLl$Ld$LH5mL$I|$IqL|$0LLaTLLYAD$$HL$unHEHLL\MHHfMHH5f.HLLHLL]/q$AV1AUATUHhHNdH%(HD$X1HGAfnH%fnA)fbAt@AH5 DWv1HT$XdH+%(Hh]A\A]A^DL  Ht$ LL$(L$0T$4T$8H Ho(HtD$0+D$4t|H|$ w1@H ' Ht$ HL$(T$8fD$0HHo(HPD$0+D$4H|$ w1&Ld$ Ht$LFLl$@LL9Lt$LLT$4D$-HEHLLPH,ZHD$L0cLd$ Ht$LgLl$@LLJHt$Lt5Lt$LL\D$4L$D$HEHLLHqYHt~gYHHMJHH[f.JHHHLLQHHLLVHxD$LajQ!AT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAt|$ Ht#D$ 9D$(|Vt$ H,HRHtU1HT$8dH+%(uMHH]A\H|$nf.Ht$ LC7uDH)fUSHHdH%(HD$81HT Ht$HD$HFHD$$D$ HD$t6H|$n1HT$8dH+%(HH[]DHt$H|$/tHl$H=6aH8tHH=na8uPHuHcC@HH={g7tHH= 7tHUH0fnFdH%(HD$(1HPH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11l1HT$(dH+%(uVH0]fD{AHHuӐtHOHuH뵐HH(H;'-#tH1ATH0fnFdH%(HD$(1HPH4$HD$HGfnȉD$fbfD$u#tIfDE1&fDATH0fnFdH%(HD$(1H\ H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11jE1HD$(dH+%(H0LA\@?HHufHHRxH;4#bIMtoI$H5]LPtZMHuLIHoHDbL1HHP@L7+8fE1XMH"DIjfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$vi1HT$8dH+%(H@[]A\=HHuːHt$H|$tD$$Ld$u`HELH@H;E#H=h\L3tLH=\93u-LHaHc>Vf.LLH=b2tLH= 2tLfDHЉ"fAU1ATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtaAH Ht$ HL$(T$8fD$0HHo(Ht~D$0+D$4H|$ g1WL gHt$ LL$(L$0T$4T$8H Ho(Ht%D$0+D$4hH|$ lg1HT$XdH+%(XHh[]A\A]H5D9e1D;HH,DLd$ Ht$LGtLl$@LLy\$PT$4L$HD$@Ht$fH~ۅMHED$ $H`H;8>#HLHxhH( $D$f.D$@.(f.L$HfHnf.d$PhIHHH.#HHt$H|$ FD$4Ht$u$HEHXH;4#tHHfDHHxhH HHH?H:/f;:HHf.HD$L $HxhH(D$ $iHHLL{LH $D$fATUHHdH%(HD$8HFLd$Ht$H^HD$HEHT$ LH5m^D$(HD$ D$ 4|$ Ht9D$ 9D$(}Ht$ L -tt$ HJ"HrGHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=&A\GH5L]aHqATL%S&1HWH5&L;%&u=aLH#&>1LA\ATIUH Ht HH5VLHCtHmtH]A\HH]A\1UH@fnFdH%(HD$81H1Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uzH@]f.+7HHuϐH5V\HT$H|$1|$HtD$$u(HEHfEHuHJ*#H@H UH@fnFdH%(HD$81H0Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$a1HT$8dH+%(uzH@]f.6HHuϐH5F[HT$H|$0|$HtD$$u(HEHVDHuH:)#H@H UH0fnFdH%(HD$(1H(H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11`1HT$(dH+%(ucH0]fD5HHuӐu,HH{CHuHHx)6+HfD W @UH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$_1HT$8dH+%(uzH@]f.4HHuϐH5RHT$H|$.|$HtD$$u(HEH VBHuH:'#H@H7 H8fnFdH%(HD$(1H;'H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11^1HT$(dH+%(uLH83HHuҐu$H~AHuHb&#H@D ff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11]1HT$(dH+%(uLH8;2HHuҐu$H@HuH%#H@ff.UH0fnFdH%(HD$(1HVH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11\1HT$(dH+%(ucH0]fD[1HHuӐu,HH?HuHHxi2WHfDKS@UH0fnFdH%(HD$(1H[H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11[1HT$(dH+%(uNH0]fDk0HHuӐu$HhH>HuH@CH)fU1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt< H50 Y1HUdH+%(\ He[A\A]A^A_]H H0H8Hfօ@HDH0Mx(1HHCH}4AHc/LeE,MB@+D.H@ZH}1HUH9(HHH@H % H0H8Hfօ@HH0Mx(1HHkH}4AHc/LeEuhM@+DrHlYH}1HXHUH9,FIcI@IcILPHLHHH5!{(HHH D9|HH(aHHHH4!HIc1 HH9t$Af.ztH$6H6HqL5*H}f@Lp'IHH0SH}4Hc(H}1IL1L'IHH0H}4Hc'H}1IL1C5H}HL1Tb5HHHATLLLHHXHD1@AHH9uH!HHDL}-C4H4HL1TAPLLLLHAT;3HAHHAHD1AHH9uHHDLHeH|H鏇DAV1AUATUSHpHNdH%(HD$h1HGAfnH%fnA)fbAt?AH5RDM1HT$hdH+%(Hp[]A\A]A^L Ht$0LL$8L$@T$DT$HHHo(Ht{D$@+D$Dt|H|$00O1@H Ht$0HL$8T$HfD$@HHo(Ht%D$@+D$DH|$0N1+Ld$PLl$0LLtl$Xt$`L$DD$PfH~fI~bHED$HLD$Hf.D$PWQfHnf.|$X@:fInf.\$`)#N1H?Hm%dLd$0Ht$LHt$ LHt$(LL$D$ HET$Df(T$(Hf؅L$PD$XHT$`Ht$PHD "HHK1!HH1HLD$D$H+0HL1L@)\$POyfUH@fnFdH%(HD$81H`Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$BL1HT$8dH+%(uzH@]f. HHuϐH5?HT$H|$|$HtD$$u(HEH8/HuH#H@H8?aH8fnFdH%(HD$(1H0 H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?K1HT$(dH+%(uLH8HHuҐu$H..HuH#H@f.fHHxhH(HHxhH H@HHt HPhHB8HcJ@HHHf.1f.wBUH==Hlu]ÐHH==QtHH=C>tHH= +tH]f.@'RUH@dH%(HD$81HZ Ht$HD$HFHD$$D$ t0H|$\I1HT$8dH+%(uhH@]@HT$H|$H5 |$HtHt+HH51HPt2,HuH%1,Huff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$rH1HT$8dH+%(HH[]DHt$H|$tHl$H=OHwtHH=*cdu;+HuHc@HH= 9tH@ATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$FG1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$uXHELH@H;,#ulH= tLH=a u))HeHcZfDLLH= tL蕥븐HЉfATH0fnFdH%(HD$(1HL H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11EE1HD$(dH+%(H0LA\@sHHufHHRxH;R #NIMtoI$H5LPtZ(HuLIHoH4bL1HHP@L'8fE1H(H"DIjfATL%#%H HH5%Lf%uLH%iLA\ATIUH/Ht HH5LHstHmtH]A\HH]A\aUH0fnFdH%(HD$(1HL_H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11C1HT$(dH+%(uNH0]fDkHHuӐu$HH&HuH@H)fSH0fnFdH%(HD$(1Hv^H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11B1HT$(dH+%(uMH0[fDHHuӐu$H%HuMD#Jf.JUH=H u]ÐHH=g] tHH=a tH]QUH@dH%(HD$81Hʸ Ht$HD$HFHD$$D$ t0H|$A1HT$8dH+%(uhH@]@HT$H|$H5v *|$HtHt+HH5JHPt$HuH1$Huff.fUSHHdH%(HD$81H$ Ht$HD$HFHD$$D$ HD$t6H|$@1HT$8dH+%(HH[]DHt$H|$tHl$H=hH tHH=4 u#HuHc^@HH=| tHm@H8fnFdH%(HD$(1H}H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(u9H8[HHuҐ+C"HuH#H/ff.@SH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u7H0[fDHHuӐ+!HuHc`SH0fnFdH%(HD$(1H{H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>>1HT$(dH+%(u7H0[fDHHuӐ{4!HuHcSH0fnFdH%(HD$(1H˃H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~=1HT$(dH+%(u7H0[fD HHuӐ(t HuHc'H8fnFdH%(HD$(1HTH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11<1HT$(dH+%(uYH8KHHuҐHt!HuH#H@HH;#tff.@ATUSH@fnFdH%(HD$81H& Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$;1HT$8dH+%(H@[]A\;HHuːHt$H|$tD$$Ld$uXHELH@H;#ulH=tLH=.}u)THeHcZfDLLH= AtL븐HЉfATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]:E1HD$(dH+%(H0LA\@HHufHHRxH;#תIMtoI$H5LPtZHuLIHoH褄bLT1HHP@L8fE1H"DIjfAVAUATUSHpfnFdH%(HD$h1HDHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11H蜡H|$04AHcILl$0EuoMD$ +D$$H8H|$0E1HtHD$8H9t'HD$hdH+%(HpL[]A\A]A^IcI\fD HH>H|$1E1H|$04Hc H|$0IsLE1hDLHGHt$ H2E~\IEH9AD$D1Hf.fATHH9uDAt ADËT$ LLUAE~0Ic1fDHH9tADf.ztbHt#XH|Ic H|$0IoDL1HZD1ADHH9uZyHVnff.fAVAUATUSHpfnFdH%(HD$h1H|Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(11HH|$04AHc Ll$0EuoMD$ +D$$H5H|$0E1HtHD$8H9twHD$hdH+%(HpL[]A\A]A^IcI\fDK HH>H|$1E10H|$04Hc H|$0IsLE1hDLH2GHt$ H2E~\IEH9AD$D1Hf.fATHH9uDAt ADËT$ LL%AE~0Ic1fDHH9tADf.ztHt#H|IcW H|$0IoDL1HD1ADHH9uZHkff.fAVAUATUSHpfnFdH%(HD$h1HyHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11HH|$1E1耛H|$04Hc.H|$0IsLE1hDLH肼GHt$ H-2E~\IEH9AD$D1Hf.fATHH9uDAt ADËT$ LLeAE~0Ic1fDHH9tADf.ztHt#H|IcH|$0IoDL1HD1ADHH9uZH8iff.fAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAtH(HtD$9D$t;H11)1HT$(dH+%(uLH8HHuҐu$H HuH"H@lf.fHgUH=MnHu]ÐHH=tHH=q tH]aUH@dH%(HD$81Hڞ Ht$HD$HFHD$$D$ t0H|$'1HT$8dH+%(uhH@]@HT$H|$H5 :|$HtHt+HH5xHPt HuH襩1 Hu ff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H11&1HT$(dH+%(uEH0]fDkHHuӐHhHHt HUHmHPH HuH蹨2fUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$&1HT$8dH+%(u_H@]f.HHuϐH5+|HT$H|$J|$HtHHuH"HH(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐyHuH"H_ff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(u9H8HHuҐk&HuH "Hff.@H8fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(u9H8HHuҐ+VHuH:"Hff.@H8fnFdH%(HD$(1HH(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐ軯HuHj"Hff.@H8fnFdH%(HD$(1HZmH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8KHHuҐHuH"Hff.@SH0fnFdH%(HD$(1HlH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u=H0[fD{HHuӐH`Hu1H@"Jf.H8fnFdH%(HD$(1HkH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐ{HuH"Hff.@UH0fnFdH%(HD$(1HkH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u8H0]fDHHuӐHCHuH6ff.@UH0fnFdH%(HD$(1HRjH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u8H0]fD HHuӐKHsHuHfff.@UH0fnFdH%(HD$(1HiH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fD;HHuӐHHuH薖ff.@UH0fnFdH%(HD$(1HhH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDkHHuӐ{HHuH?ff.@UH0fnFdH%(HD$(1HhH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐpHHuH&off.@UH0fnFdH%(HD$(1HGgH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u8H0]fDHHuӐkH3HuH&蟽ff.@UH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u8H0]fDHHuӐ軷HcHuHϼff.@UH0fnFdH%(HD$(1HeH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fD+HHuӐۛHHuHff.@SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD[HHuӐt1HuHcxfDHHH;"tЉfUH@fnFdH%(HD$81H#dHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.kHHuϐH5VHT$H|$*|$HtHxHuH"Hff.UH@fnFdH%(HD$81H-cHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u_H@]f.kHHuϐH5UHT$H|$*|$HtHHuH"Hff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uWH@]f.kHHuϐHt$H|$!tHt$HЭHuH"H$@UH@fnFdH%(HD$81HFaHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u_H@]f.{HHuϐH5THT$H|$:|$HtHHuH"H,ff.UH@fnFdH%(HD$81HO`Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(u_H@]f.{HHuϐH5SHT$H|$:|$HtHfHuH"H,ff.SH@fnFdH%(HD$81HSjHt$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uiH@[f.{HHuϐHt$H|$1tH`H@0HHP0HD$HuH"H"fUH@fnFdH%(HD$81HE Ht$HD$HGfnȉD$(fbfD$ u|Ho(D$ HtLD$ +T$$w,1;D$(lHLUHu#H"HDH|$11HT$8dH+%(uAH@]KHHsDHt$ H|$)tt$ xATUHHfnFdH%(HD$81HF]Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ukHH]A\fDkHHuѐLd$HL tHt$LtHT$H4$H*~HuH"Hff.ATUHHfnFdH%(HD$81HL\Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ukHH]A\fD[HHuѐLd$HLtHt$LtHT$H4$HiHuHy"Hff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ujHH]A\fDKHHuѐLd$HLtHt$LtHT$H4$H*aHuHc6ff.@ATUHHfnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(uxHH]A\fD;HHuѐLd$Ht$LtHT$H5҃L|$HtHt$HUhHuHcxѯATUHHfnFdH%(HD$81HXHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ulHH]A\fD+HHuѐLd$Ht$LtHt$LtT$Ht$HhJaHuHcͮff.fATUHHfnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uRHD$Ho(Ht!D$ +D$$tKH|$1HT$8dH+%(utHH]A\DHHufLd$HLtHt$LtHT$H4$HzCHuHc|謭ff.USHHfnFdH%(HD$81H2/Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$q1HT$8dH+%(HH[]@HHuАHt$H|$tHhH\$1HE0HHHxfHt 裼HE0HH@HuH"Hg聬ATUHHfnFdH%(HD$81HAHt$HD$HGfnȉD$(fbfD$ Ho(D$HD$HtUD$ +T$$w5;D$(mH襦`Hu$HD"HfDH|$11HT$8dH+%(udHH]A\DHHaDLd$Ht$L>tD$ 9D$(}Ht$LStT$Ht$TH|$E1]H|$04Hc;JH|$0IsLE1hHt$HSKHt$Hn6DLHa E~TIEH9AD$D1HDAoTHH9uDAt ITHËT$Ht$LLE~FIc1HH9t/H I9Lt7HuDLH?H|$0E1HZL%"I$ID1ITHHH9uZLH+AVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1H[H|$04AHcFHLl$0EulMD$ +D$$HH|$0E1HtHD$8H9tTHD$hdH+%(HpL[]A\A]A^IcI\fD+HH>H|$E1 [H|$04HcGH|$0IsLE1hHt$HKHt$H辺6DLH^ E~TIEH9AD$D1HDAoTHH9uDAt ITHËT$Ht$LL#gE~FIc1HH9t/H I9LtHuDLHcH|$0E1HZL%;"I$ID1ITHHH9uZ蜜H)AVAUATUSHpfnFdH%(HD$h1HFHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HYH|$04AHcELl$0EulMD$ +D$$H H|$0E1HtHD$8H9t褫HD$hdH+%(HpL[]A\A]A^IcI\fD{HH>H|$E1]XH|$04HcDH|$0IsLE1hHt$H#KHt$ H6DLH8\ E~TIEH9AD$D1HDAoTHH9uDAt ITHËT$ t$LLIE~DIc1DHH9t/H I9LtHuDLHHZLH|$0IMDD1ITHHH9uZHs&AWAVAUATUSHxfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Ll$H_(LiVH|$04AHcBHl$0Ht(D$ +D$$LyHl$0E1HtHD$8H9tHHD$hdH+%(HxL[]A\A]A^A_@HHPH|$E1UH|$04Hc=BHl$0fDHt$LcbDHLYLH`HD$HJ0HHI0D4L$$u%A H5CAHc H>fDA H5CAHc H>fHPHR8HyHHHR0Hc4hIUHtpKHl$0HAHl$0IHHH@HX{@E1E1DLL=xCH#ATUHHdH%(HD$8HFLd$Ht$H HD$Ht HT$ LH5 D$(HD$ D$ 蛺|$ Ht9D$ 9D$(}Ht$ L蚳tt$ HHHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=%A\/H5 jHlAU1ATUHpHNdH%(HD$h1HGAfnH%fnA)fbAtBAH5m?D1HT$hdH+%( Hp]A\A]fL 5?Ht$0LL$8L$@T$DT$HHHo(HtwD$@+D$DttH|$0p1@H >Ht$0HL$8T$HfD$@H$Ho(Ht!D$@+D$Dt^H|$01,Ht$,H|$0豱tt$,H8HH1fLl$PLd$0LLrtHt$,LUtf(D$PT$,HL\$`fD$)$\$nf($f.D$PHz~u|T$f.T$Xznul\$f.\$`z^u\oHH莿Bf˼HH1!諼HHU1HuL1L,uDAV1IAUATUSHĀfnFdH%(HD$xHG~H%fn)fbH Ht$ HL$(T$8fD$0H2Hl$ Mp(1HOH|$@4AHcWfDHD$XDd$`L=+9HD$HD$dHD$fD$XHD$IhHcHHA00HHfFIHDH$@I`IuHG0HH@0<0 Z0IcL>fDIPH8HH0Hc4HxHH ^HcH0H9zH;xpH;xfIL9,$pHD$HD$H9D$ D$f.KHHc|$IH[@I@K@IX;@IPH8HH0Hc4HxHH9]HcH0H9tnH;xthH;xtbIL9,$HD$HD$H9D$NfIHI@{@IXk@HcH9t H;xtH;xuIcH9tH;xtH;xr@D$HcH9tH;xt H;xIcH9tH;xtH;xjifATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uIHo(Ht!D$ +D$$tCH|$/1HT$8dH+%(H@[]A\軳HHuҐHt$H|$qtH`H\$L$$HB0HH@0u< H 5HcH>D< H 5HcH>HPHR8HxHHHHR0H@0Hc4L$HZM~9HhNLJ0fDHHHL Hryf:HL9u?HH"HfDHPHR8HxHHHHR0H@0Hc4L$HJZM~HhNLJ0fDHHHL Hryf:HL9ucHH{@H@k@HH@H@@HX@HX+迈ff.@AWAVAUATUSHHfnFdH%(HD$81Ho Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$y1HT$8dH+%(zHH[]A\A]A^A_@HHuȐHt$H|$豼tH`H\$L$$HB0HH@0u< H s3HcH>D< H }3HcH>HPHB8HyHHHH@0HR0HcL,Hp)XIM~{HhO4Lx0fI,$HLUH}AՅtG1 fH9~9H9uB9}!HcH)HtHHHAfDmIM9uAHH!"HHPHB8HyHHHH@0HR0HcL,HpRWIM~HhO4Lx0I,$HLUH}AՅtO1f.H9~9H9uB9~!HcH)HtHHhAfDmIM9uHH4H@(HHEH@9HX-HX蔅@USHHfnFdH%(HD$81HW/Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$a1HT$8dH+%(HH[]@HHuАHl$HH蠹tHt$H菹tH`HT$t$$H,$HA0HH@0u8< wH50HcH>1HWH蠮L< wH50HcH>HPHA8H~HHHH0HHc4H@0HHTH~1HH9{H9,umHPHA8H~HHHH0HHc4H@0HHTH)1DHH9H9,uHHH@HH@H@ HX_HX'ATUSHPfnFdH%(HD$H1H,Ht$ HD$(HGfnȉD$8fbfD$0uIH_(Ht!D$0+D$4tCH|$ 1HT$HdH+%(HP[]A\{HHuҐHl$ Ht$H.tHt$HtHt$H tH`HT$t$4Hl$HA0Ld$HH@0u< H5d.HcH>fD< wiH5q.HcH>HPHA8H~HHHH0HHc4H@0HHzRH~1HHH9tL9 uH(HH֝"HDHPHA8H~HHHH0HHc4H@0HHRH~1fHHH9tL9 u{HH$H@HHH@HXHXf貀fAVH SHN+AUL-%H5|%ATLUSpr%t[L]A\A]A^cnH "L5%H%LcpHL9t7Hc{nHHtH3HLh@HmuHHeZL9uL[L]A\A]A^ff.ATIUHHt HH5p*LH@tHmtH]A\HH]A\YUH0fnFdH%(HD$(1H{)H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(ucH0]fDHHuӐu,HHH[HuHHx KHfD~@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uzH@]f.HHuϐH5& HT$H|$躡|$HtD$$u(HEH6HuH"H@Hh}UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uzH@]f.HHuϐH5 HT$H|$誠|$HtD$$u(HEH&HuH "H@H|UH0fnFdH%(HD$(1HxH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(ucH0]fDHHuӐu,HHKHuHHxHfD{@SH0fnFdH%(HD$(1H%H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uMH0[fDHHuӐu$H@\HuHcDӪzf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDHHuӐu$H8|HuHc/Ds yf.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD;HHuӐu$H0蜰HuHcOD胼xf.H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8[HHuҐu$H辯HuH"H@3^xff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD{HHuӐu$HܮHuHc菡DC:wf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8蛟HHuҐu$HHuH"H@\vff.H8fnFdH%(HD$(1HcaH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(uLH8軞HHuҐu$HHuH"H@À|uff.AV1IAUATUSHĀfnFdH%(HD$xHG~H%fn)fbt;H5_^1HT$xdH+%(H[]A\A]A^H _Ht$ HL$(T$8fD$0HIh(Ht%D$0+D$4bH|$ 1fHa_Ht$ H\$(T$8fD$0HLl$ IX(LV1H|$@4AHcHl$@Ht$D$0+D$4tLLjHl$@1HT$HH9HHHD$߃HD$DHt$L裨tHt$L@tDHL4tHhHD$HHB0LpfD$H3H HHHˏ"Hl$@H:DLd$ Ht$LHT$H5jL|$HvD$4Ht$HEHiHJHI"HLțIH1DL訛IH0H|$ /H|$@4Hc Hl$@1^HEuDLL T$L詵/rH-AW1IAVAUATUSHfnFdH%(HD$xHG~H%fn)fbt>H5\ 1HT$xdH+%(HĈ[]A\A]A^A_ÐH o\Ht$ HL$(T$8fD$0HIh(Ht%D$0+D$4RH|$ 1H\Ht$ H\$(T$8fD$0HLl$ IX(L-H|$@4AHcsHl$@Ht$D$0+D$4tLL Hl$@1HT$HH9HHHD$HD$DHt$LCtHt$L2tDHL1tH`HD$HJ0HHI0D4L$4A H5AHc H>Ld$ Ht$L辤HT$H5"L貓|$H|$4Ht$;HEH!HZH"HLxIH1DLXIH@H|$ =,H|$@4Hc1Hl$@nHPHR8H~HHHJ0HHcHR0HHpHT$?I^HPHt~FHl$@HAHHH@HXuHD$E1E1fDHYA wH5?AHc H>DLL jHT$LGInH8ff.fAWAVAUATUH@fnFdH%(HD$81H'YHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$1HT$8dH+%(H@]A\A]A^A_fLl$Ht$LtL|$L5vLLL|$ItLLL|$HtD$$Ht$uQLELHA[H\H;"HNf軕HH4f.LHqlff.AUATUHfnFdH%(H$1HWHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$H1H$dH+%(PHĠ]A\A]f˔HHuɐLd$Ht$L~tLl$0LLItfoT$0fo\$@fod$PD$$Ht$)T$`)\$p)$HELHD$0f.D$`D$hf.D$8zvutD$@f.D$pzfudD$Hf.D$xzVuTD$Pf.$zCuAD$Xf.$z0u.YHH9"HLHEd+HuȹLLAWjf.UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(utH@]f.ےHHuϐHt$H|$葞tD$$Ht$u(HEHHuHcϓDH0&wiATUHHfnFdH%(HD$81HTHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@1HT$8dH+%(HH]A\fˑHHuѐLd$Ht$L~tHT$H5aLv|$HtD$$Ht$u/HEHHtḦ́"Hf@H0AhAU1IATUH`fnFdH%(HD$XHG~H%fn)fbt4H5)S(1HT$XdH+%('H`]A\A]HRHt$0HT$8L$HfD$@HIh(HtD$@+D$DH|$0讻1f.HRHt$HT$L$(fD$ HupIh(HKD$ +D$$H|$N1!HD$XdH+%(AH`HH=^%L]A\A]L踏IHuL蠏IHHt$H|$0IT$DHt$HEHpH˝HjH<_DLd$Ht$L>Ht$L )Ht$ LD$$0HEL$ T$t$HxH;"u1\@HОHHLd$0L(H5TLHǾsHH5ȏHBHLHH5HHCcHH5H5ULuHH5mfL-oHLyL-4>HLHuL޼H1?6L1`Ld$0L'H5_LHǾsHH5ӎHAHLHH5HHNbHH5H5`LHH5xqL-zHLxLtNC=HLHtLH1#N5 HHl=HfL$HL=Ff(L$pLLL$D$HL$fL$($$)L$|$8T$ \$d$0cf(L$f.L$pzu}t$(f.t$xzoum|$8f.$z\uZl$f.$zquoD$ f.$z^u\t$0f.$zKuI\HfHc [fD;HuLHQKHuLH)Kr^fUHAWAVAUATS1HdH%(HE1HxJHHHFHDžHHHxHP4AHc譇LPEtIcIHx4H}AHcwHDžpL}EtIcIHp+ttHx辱E1H}HEH9t HtDmHPHtHXH9t'mHEdH+%(HeL[A\A]A^A_]fHxHytHxDL';qHHxHHh:GHxHy,HxDL:HHxHH`:HxHs+HHxHHXY:E~eIFH9^AD$PDHx1HfA  HH9uDHxAt Afofofo) )0)@E~mAEHpIGH9DHx1HffAHH9uDHxAtAHpHXML(HL`8Hh0P@!B$HxX1ZIcE7fDHH9Af.ztHx訑H f.(f.0f.8f.{@f.e_f.HICIc1E~FHpHxDHH9 Af.ztHx谐HHf. (f.8f.Pf.zLuJ0f.z8u6@f.z$u"HHc$轂I HuHXHxDHx!Hx 诏HHhHxDH#H`HxDHpHxD1AHH9uHxHxD1AHH9uHxpWHxDL D5HxDLCHHAWAVAUATUS1HXdH%(H$H1HCCHl$PHt$PHD$XHFHHD$dD$`H$4AHclL$EtIcI\D$`+D$dtjHȪE1H$H$H9t HtFfH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLK4tHt$LHrzDLH$4dL$HL4DH$HHH$3 T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0>l$f.l$pD$8t$f.t$x|$f.$Ic1E (HH9tADf.zt袋H$f.$ $f.$$f.$$f.$$f.$$f.$z~u||$ f.$zIuGt$(f.$z6u4T$0f.$z#u!诊HD$8'I莊HuH$H?lHvLH~?\DHnL1HY?WD1ADHH9ujDLH?MaRHDAWAVAUATUS1HXdH%(H$H1H>Hl$PHt$PHD$XHFHHD$dD$`H$4AHc{L$EtIcI\D$`+D$dtjHE1H$H$H9t HtvaH$HdH+%(HXL[]A\A]A^A_f.Lt$pHL{/tHt$LH*nzDLHT/dL$HL4/DH$HHH$/ T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0~l$f.l$pD$<t$f.t$x|$f.$Ic1E*HH9tADf.zt҆H$f.$ $f.$$f.$$f.$$f.$$f.$z}u{|$ f.$zHuFt$(f.$z5u3T$0f.$z"u ߅HHc|$AD$0D1HDfAL HH9uDAt ADT$H|$LL\$@d$P$fI~d$cMIc1EGHH9t7ADf.ztHuDLH*8f.fInf.l$@z@u>4$f.t$Hz1u/|$f.|$Pz!u轂HVL%g"I$H螂Hu׹LH7fD1ADHH9uJHff.fAVAUATUHxdH%(HD$h1H7Ht$0HD$8HFHD$DD$@t:H|$0趞1HT$hdH+%(Hx]A\A]A^@Ld$/Ll$0LH5fLn|$/HtLH5בLm|$/ItLt$PLL)({f(D$PLLHT$`fD$)$T$'`f($f.D$PzJuHL$f.L$Xz:u8T$f.T$`z*u(HHe"Hf.ۀHuιLL5:If.UH@dH%(HD$81H* Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5 l|$HtHt+HH55HPtHuH1Hu]Hff.fAWAVAUATUSHdH%(H$HF4H4Hl$0Ht$01HD$8HHD$HHD$@H|$p4AHcXLl$pED$@+D$DH1H|$pHtHT$xH9tH$hWH$@H$dH+%(vHĸ[]A\A]A^A_Ll$,Hl$0Ht$0H3LH5cHHD$8HQkD$HHD$@j|$,I1zf.H5e3"1[IcI\D$@+D$DHT$+H5jH{j|$+IHt$,HcDLHL|$PHL$E~YIEH9AD$D1Hf.Ao\HH9uDAt ITHd$Xt$,LLl$Pt$`Ld$,$t$AIc1E%HH9tH I9Lt}H<$f.|$P.(|$f.|$Xd$f.d$`|HALH5ՌHh|$,ILl$pHL##f(D$pLLLH$fD$)$f($f.D$pAzEuCL$f.L$xz5u3fHnf.$z#u!{HA D{HuչLH0{HLH0D1ITHHH9uDLHmeCHfAVAUATUSHĀdH%(HD$xHF]AHt$ HT$H0HD$(H>}H|$ H5)D$8HD$00g|$tHzHp1HT$xdH+%(qH[]A\A]A^DOH/Hl$ Ht$ 1HD$(HHgD$8HD$0H|$@4AHcCLl$@EtIcI\D$0+D$4`HΖ1H|$@H@HT$HH92HD$FRHD$@Ll$Hl$ Ht$ H.LH5^HHD$(Hw D$8HD$0e|$IH5LHe|$HLJyHY@H5G.Dl@H/.Ht$ HD$(HGD$0D$4D$8@H(H#n5xHxfHT$H5Hd|$IHt$H^{DLH+eE~WIEH9AD$D1HAoDHH9uDAt ITHËt$LLAIc1E+fHH9tH I9LtwH}wHAǟfiHHx(HD$49D$0H|$ 1191D1DITHHH9u:DLHNik?HAWAVAUATUSHdH%(H$HF4t?H5+葑1H$dH+%(Hĸ[]A\A]A^A_fDHl$0Ht$0Ht+HD$8Ht HT$,HH5D$HHD$@b|$,ItLl$pHLjf(D$pLLH$fD$)$xf($f.D$pT$f.T$xfHnf.$uHHZ"HH*Hl$0Ht$01HD$8HHD$HHD$@H|$p4AHcdLl$pEtIcI\D$@+D$DH1H|$pHPHT$xH9BH$hMH$0H$dH+%( HĸHH[H= d%]A\A]A^A_.ufDHT$+H5H`|$+IgHt$,HYRDLH#(JsHuLH(D1ITHHH9uDLHd3,;HiUSHHdH%(HD$81HT Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H='HYtHH=WYuqHuHcd@HH= XtH$:@SH0fnFdH%(HD$(1H( H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDbHHuӐtpHuHccHHH;s"tЉ=9ff.fSH0fnFdH%(HD$(1Hk H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDaHHuӐtpHuHcbHHH;"P"tЉM8ff.fSH0fnFdH%(HD$(1HY H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD`HHuӐt1oHuHcafDHHH;'b"tЉb7fSH0fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>1HT$(dH+%(uUH0[fD_HHuӐt15nHuHc`fDHHhH;_P"tЉ6fSH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uUH0[fD^HHuӐtPmHuc뵐HHH;c"tЉ5fSH0fnFdH%(HD$(1Hʴ H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uUH0[fD ^HHuӐtHG8X0plHuHc#_뵐HHH;f"tЉ4fATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$萈1HT$8dH+%(u|HH]A\fD]HHuѐHt$ H|$QtD$$E1uHEHH;H]"uYkHuLL f.t$ HI3ff.fUH@fnFdH%(HD$81H9 Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(u^H@]f.[HHuϐH51PHT$H|$V|$HtHAjHuHc\2ff.fAVAUATUHHfnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$l1HT$8dH+%(HH]A\A]A^f.ZHHuŐLt$Ll$LH5OLU|$ItLLtD$HLiHnHc[cx1UH@fnFdH%(HD$81H5Ht$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$=1HT$8dH+%(H@]ÐYHHuԐHt$H|$a3tD$$t$t8@8tHE@HgHuHL"H@HEHH;S"u$@8t@HfH$0@ATUSH@fnFdH%(HD$81HV Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kXHHuːHt$H|$tD$$Ld$uXHELH@H;Z"ulH=MtLH=NLMu)fHeHc3YZfDLLH=D qMtL5븐HЉ.fATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11荂E1HD$(dH+%(H0LA\@WHHufHHRxH;2f"IMtoI$H5WLPtZEeHuL8IHoHbL-1HHP@LB8fE1dH"DIjI-fAWAVAUATUSH(fnFdH%(H$1H H$H$HGfnȉ$fbfք$uaHo(Ht*$+$tUH$1H$dH+%(H([]A\A]A^A_kUHHuÐL$L$LL tL$LLd tLt$pLL@jH$LH0 JLL$xLLLL$-H$LHHD$ $HL$$LI$$T$HLH$\$pLL$$d$`$$l$ $$t$h$|$8T$(\$Xd$Pl$0t$@D$t$QMAXZD$f.$NHd$@f.$3-l$hf.$|$f.$mgt$Xf.$RL|$`f.$71aHKT$ f.$d$0f.$l$Pf.$FaH\$(f.$zhuft$Hf.$zUuS|$8f.$zBu@`HIcS`HL1L`HuHT$L`HHHھL.t`HLLD$pL^iD$xLFi(ff.AWAVAUATUSHdH%(H$HFtBH5gz1H$dH+%(Hĸ[]A\A]A^A_H.Ht$0HD$8HGD$@D$DD$HH(Hk1HHl$0Ht$01HD$8HHizD$HHD$@H|$p4AHcLl$pEuZD$@+D$DtbH{1H|$pHHT$xH9HD$#7HD$fIcI\D$@+D$DuHT$'H5nHJ|$'ItHt$(H[tDLHkL|$PHLNE~UIEH9AD$D1HfDAoL HH9uDAt ITHT$XLLL\$Pd$`Ht$(T$\$d$xSfI~Ic1E)HH9tH I9Ltg]H%l$f.l$Pt$f.t$X|$f.|$`]H-fIn^ ffH~\H}fHn.f;NHWHx(HJD$D9D$@tH|$011]y1\HbLHHD1fITHHH9ujDLHFN$HATL%sE%H HH5F%LV:E%uLH>F%YFLA\ATIUHNHt HH5LHctHmtH]A\HH]A\QAWAVAUATUSHfnFdH%(H$1HD Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HqH|$`4AHcMLl$`EutMD$0+D$4HxwH|$`E1HtHD$hH9t2H$dH+%(WHĨL[]A\A]A^A_IcI\fDKHH6H|$ E1H|$`4Hc[LH|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztXHt'XH|$`E1HL%="I$DLH Đ{XHL1H mLLLDD1ADHH9u Hff.fAWAVAUATUHSHfnFdH%(H$1HcHt$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@LH$4AHcIH$H$Et IcHH$L4H$AHcgIHD$L$Et IcIHD$H,D$P+D$TLsL$E1MtH$I9tL$/H$HtH$H9t/H$dH+%(vHL[]A\A]A^A_fGHHf.Ht$8L;RHD$`LHHD$0DHLHt$&@HH=*tHH=I vtH:SH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11O1HT$(dH+%(u7H0[fD+$HHuӐk2HuZUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u8H0]fDk#HHuӐ[H1HuH?ff.@SH0fnFdH%(HD$(1HO2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fD"HHuӐt1HuHc#HHhH;"tЉMff.fSH0fnFdH%(HD$(1H{x H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11M1HT$(dH+%(uZH0[fD!HHuӐ*t0HuHc"H*HH;"tЉ]ff.fSH0fnFdH%(HD$(1H@0H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.L1HT$(dH+%(uZH0[fD HHuӐt"/HuHc!HHH;"tЉmff.fSH0fnFdH%(HD$(1H/H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>K1HT$(dH+%(uZH0[fDHHuӐt2.HuHc HHH;"tЉ}ff.fAUATUH`fnFdH%(HD$X1Hu Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ >J1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$PtXHq f(i 1HD$P)\$@f.D$@uf.L$Hzwuuf.T$Pzmuk,H?Hce4HEHXH;~"tT$HLD$L$T$D$L$|fK,HuL1Ldtf.AUATUHpfnFdH%(HD$h1HHt$0HD$8HGfnЉD$HfbfD$@uPHo(Ht!D$@+D$DtRH|$0nH1HT$hdH+%(Hp]A\A]fDHHufLl$PLd$0LLtHt$(Ltf(L$Pd$`HLD$(fL$) $d$ԛf( $f.L$PzEuC\$f.\$Xz5u3d$f.d$`z%u#*H'Hc}*HuӹL1L ff.fAUATUH`fnFdH%(HD$X1HIHt$HD$HGfnȉD$(fbfD$ Hl$Lg(H莯H|$04AHc諬H|$0H|$Mt+D$ +D$$HFH|$0E1HtHD$8H9tHD$XdH+%(H`L]A\A]@HHSH|$H|$04HcfDHt$HrHt$DHKZD$$uI$t$HH;"uS(Ht)(H|$0E1H"L% "I$fHT$DH軳fHT$LHhAUATUH`fnFdH%(HD$X1Hg Ht$HD$HGfnȉD$(fbfD$ Hl$Lg(H螭H|$04AHc軪H|$0H|$Mt+D$ +D$$HDH|$0E1HtHD$8H9t-HD$XdH+%(H`L]A\A]@HHSH|$H|$04HcfDHt$H rHt$DH[ZD$$uI$t$HH;]$"uS'Ht)'H|$0E1H"L% "I$fHT$DH˱fHT$L/H~ATH0fnFdH%(HD$(1H\ H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11BE1HD$(dH+%(H0LA\@HHufHHRxH;"IMtoI$H5VLPtZ%HuLIHoHDbL1HHP@L78fE1X%H"DIjfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$vA1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H; "H=L tLH= 9 u-$HaHcVf.LLH=  tLH= tL誟fDHЉ"fATL%C%H LHH5%L%u蘬LH% LA\ATIUHmHt HH5LHtHmtH]A\HH]A\UH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^?1HT$(dH+%(u|H0]fDHHuӐuH|$ E1HtHD$(H9tHD$XdH+%(H`L[]A\A]A^fDIcI\fD[HH=H1E1BH|$ 4HcH|$ IrLE1gDDLHBDE~VIEH9AD$D1HAoTHH9uDAt ITHËD$ugILLE~)Ic1 @HH9tH I9LtHtYH|$ E1HL%"I$LLD1ITHHH9ubDL1HHuwff.AWAVAUATUSHfnFdH%(H$1H9g Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HQH|$`4AHcLl$`EutMD$0+D$4HX;H|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\fDHH6H|$ E1荣H|$`4Hc;H|$`IkLE1`L|$@HL;DLHu%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztHt'H|$`E1HL%p"I$DLHĐ[HL1HpmLLL#DD1ADHH9uyH%tff.fAWAVAUATUSHfnFdH%(H$1Hc Ht$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHc Ll$`EutMD$0+D$4H7H|$`E1HtHD$hH9tlH$dH+%(WHĨL[]A\A]A^A_IcI\fD; HH6H|$ E1H|$`4Hc H|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.zt2Ht'(H|$`E1HL%!I$DLH#ĐHL1HmLLLDD1ADHH9u Hpff.fAVAUATUSH`fnFdH%(HD$X1H` Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 41HT$XdH+%(;H`[]A\A]A^; HHuƐLd$ Ht$LtLl$@LLEtHT$H5= L|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHc fDHLD$HuLLDAWAVAUATUHSHfnFdH%(H$1HHt$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L萛H$4AHc:H$H$Et IcHH$LM4H$AHcHD$L$Et IcIHD$H,D$P+D$TL92L$E1MtH$I9tLH$HtH$H9tH$dH+%(vHL[]A\A]A^A_fkHHf.Ht$8LCRHD$`LHHD$a0DHLKHt$ xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創JH8<Hf.0f.8f.@HyE~LHIc1HH9Af.zt䉝H{HHc&LuIf.E1CH[HLQ=딉HrH1LWHLLHHHAVHOHHD1AHH9uHHL轺%LcmHHD1HH9uH7DHھL&DLLYTHWHWff.AWAVAUATUSHxfnFdH%(HD$h1HF Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L螕tLt$8H5"LL3|$8ItLH5E L|$8ItLH5bL|$8kHE LLH$H|$8GLHLHD$|$8)LE LLHD$L|$8HLLkH $LD$LgE LL$L\$,LLLL$LLD$HL$L$8|$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H OH!H/!HfDHHf.RLLHAVPS=H rfAWAVAUATUSHfnFdH%(HD$x1H'D Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 21HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LΒtL\$HH5RLLL\$^|$HL\$ItLH5C L=|$HL\$IhL5_LLL|$HL\$CLLLHD$|$HL\$ LLLHD$|$HL\$L5B LLHD$ L|$HL\$HLLL|$HL\$HL$LD$ILL$ LWB LLLL$(LLD$ HL$L\$9|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$LA *HT$?LL|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0"HH!Hf{HHcf.HLHRLPt$ AVS5H0:f.UH@fnFdH%(HD$81Hw@ Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.HHuϐHt$ H|$qtD$$t$ u)HEHHHuH迖DH@H&fDSH0fnFdH%(HD$(1H9? H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDHHuӐu$HHuHcDJf.UH@fnFdH%(HD$81HN? Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHHHuHϔDHYH6fDSH0fnFdH%(HD$(1HZ= H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDHHuӐu$HHuHcD胒Zf.H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/1HT$(dH+%(uLH8HHuҐu$HHuH!H@N|ff.UH0fnFdH%(HD$(1H;< H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u|H0]fDHHuӐu} 1HT$xdH+%(HĈ[]A\A]A^A_DLl$Ld$ Ht$ HLH5LHD$(HD$8HD$0|$HtLH5JUL|$IhLH5OLc|$HHLHH-Hc"DHMHl$ Ht$ 1HD$(HH D$8HD$0uH|$@4AHcLd$@EuRD$0+D$4tYH# 1H|$@HHT$HH9HD$HD$vIcIċD$0+D$4uHT$H5GHX|$ItHT$H5TH:|$IyHT$H5H|$HD$UDLHZ?E~WID$H9AED1HfA  HH9uDAt AHT$LLLSAIc1E&@HH9tAf.ztHtHIcDLHD1fAHH9uaHFfDUSHHdH%(HD$81H4 Ht$HD$HFHD$$D$ HD$t6H|$ 1HT$8dH+%(HH[]DHt$H|$tHl$H=_HtHH= uHuHcn@HH= tH}h@SH0fnFdH%(HD$(1H;4 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDkHHuӐtHuHcHHH;*!tЉff.fSH0fnFdH%(HD$(1H/ H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD{HHuӐt1HuHcfDHHhH;!tЉ2fSH0fnFdH%(HD$(1H82 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;!tЉMff.fSH0fnFdH%(HD$(1Hj1 H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDHHuӐt1HuHcfDHHH;!tЉbfSH0fnFdH%(HD$(1Hy0 H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>1HT$(dH+%(uUH0[fDHHuӐt15HuHcfDHHH;!tЉ肰fATUHHfnFdH%(HD$81H/ Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$P1HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;P!uHuL f.t$ HImff.fATUHHfnFdH%(HD$81Hl/ Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;!uHuLf.t$ HIMff.fATUSH@fnFdH%(HD$81Hvy Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;!ulH=EtLH=n u)HeHcSZfDLLH=dx tLU`븐HЉҬfATH0fnFdH%(HD$(1H x H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@3HHufHHRxH;!ǬIMtoI$H5LPtZeHuLXIHoHJbL褫1HHP@L8fE1H"DIjifATL%C$H HEH5$L&$uaLH$)LA\ATIUHMHt HH5LH3ktHmtH]A\HH]A\!AVAUATUSHPfnFdH%(HD$H1H* Ht$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%( HP[]A\A]A^ HHuƐLl$0Ld$LL&tT$8\$@D$$D$0fH~fI~ޅufHED$HLXD$f.D$0z`u^fHnf.d$8zQuOfInf.l$@zBu@H/Hc$DHLD$RD$DHuL1L̕DAWAVAUATUHSHfnFdH%(H$1HiHt$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@LeH$4AHc:H$H$Et IcHH$LMe4H$AHcHD$L$Et IcIHD$H,D$P+D$TL9L$E1MtH$I9tL贷H$HtH$H9t蕷H$dH+%(vHL[]A\A]A^A_fkHHf.Ht$8LCRHD$`LHHD$a0DHLKHt$t xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創JH8!ulH=\tLH=~ ݍu)账HeHccZfDLLH=t: 衍tLe"븐HЉnfATH0fnFdH%(HD$(1H: H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH;ڠ!IMtoI$H5 LPtZuHuLhDIHoH bLm1HHP@L8fE1H"DIjymfATL%$H lH\H5$L6$u#LH^$9LA\ATIUH[Ht HH5LHC-tHmtH]A\HH]A\1GAVAUATUSHPfnFdH%(HD$H1H Ht$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%( HP[]A\A]A^HHuƐLl$0Ld$LL6JtT$8\$@D$$D$0fH~fI~ޅufHED$HLXD$f.D$0z`u^fHnf.d$8zQuOfInf.l$@zBu@H/Hc貕$DHLD$D$DâHuL1LW%kDAWAVAUATUHSHfnFdH%(H$1H,Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L'H$4AHcJH$H$Et IcHH$L]'4H$AHcHD$L$Et IcIHD$H,D$P+D$TLIL$E1MtH$I9tLyH$HtH$H9tyH$dH+%(vHL[]A\A]A^A_f{HHf.Ht$8LSRHD$`LHHD$qG0DHL[GHt$tLt$ H5v LL|$ ItLH5֬L|$ HtD$$t$ uQLEHLAHYHXHcM軍HH 2f.HL5:dff.AWAVAUATUSH8fnFdH%(H$(1H 9 H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$.1H$(dH+%(dH8[]A\A]A^A_諌HHuÐL$L$LLAtL$LLAtH$L2jL$LLe2OH$LHHD$PA*H$LH0A HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ諘HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc H HIc謊HLILRLD$LH AXZT$h\$`L$m託HuHھLLy脗H*HT$LLZHLLlL2H(L1LGL$LUT$|LFR\_ff.AWAVAUATUSHfnFdH%(H$1H Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HH$4AHc{L$Eu~MD$`+D$dHҲH$E1HtH$H9tPnH$dH+%(HL[]A\A]A^A_@IcI\uHH&H|$PE1H$4Hc訇H$I^LE1Sf.L|$LHLz&HD$pHHH$;H$HHHD$;DLH;\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(Hd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztH H$E1HL%w!I$HL$H$MLLI迒HH$HG薒HBHT$HG&D1@ADHH9u2T$L1HMTDLHXGZHEfUHAWAVAUATSHhHfnFdH%(HE1Hk HHHGfnȉfbfօ;HH@(HLLHP4AHc蠃HPHDžEtIcHHL4H}AHc\HDžLuEtIcIHH+L蕭LuE1MtHEI9tLiHPHtHXH9thHEdH+%(HeL[A\A]A^A_]fDہHHfDHLHH6UDHL6?HLHHkuH0LHH6HLHHT'DLLN6 xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創ZH8LHf.0f.8f.@HyE~LHIc1HH9Af.zt䉝虌H苌HHc6LuIf.E1SH[HLaA=딉HrH1L%AWHLLHHHAVHHHD1AHH9uHHLF%LsmHHD1HH9uH7DHھL6@DLL@YdSHIH&ff.AWAVAUATUSHxfnFdH%(HD$h1H Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L!tLt$8H52&LLCv|$8ItLH5 L'v|$8ItLH5L v|$8kH LLH$Hu|$8GLHLHD$u|$8)L LLHD$Lu|$8HLL{H $LD$Lw LL$L\$,LLLL$LLD$HL$L$Hu|$,L$HL$LD$ILL$LLLL$LD$H $.nqL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H _H!H?m!HfDyHHf.RLLHAVPSH PfAWAVAUATUSHfnFdH%(HD$x1H7 Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P B1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LtL\$HH5b#LLL\$ns|$HL\$ItLH5) LMs|$HL\$IhL5LLL%s|$HL\$CLLLHD$s|$HL\$ LLLHD$r|$HL\$L5 LLHD$ Lr|$HL\$HLLLr|$HL\$HL$LD$ILL$ Lg LLLL$(LLD$ HL$L\$Ir|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$L *HT$?LLq|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H02HHj!HfvHHcf.HLHRLPt$ AVSNH0JMf.AVAUATUSH`fnFdH%(HD$X1H: Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$  1HT$XdH+%(;H`[]A\A]A^uHHuƐLd$ Ht$LnitLl$@LL*tHT$H5i Lp|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6itH]UH@dH%(HD$81Hp Ht$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uBH@]@Ht$ H|$gtы|$ 4HlHuH9IUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$̝1HT$8dH+%(uBH@]@Ht$ H|$Qftы|$ tH輀HuH:9#IAUATUH`dH%(H$X1H Ht$ HD$(HFHD$4D$0t>H|$ 1H$XdH+%(BH`]A\A]@Ld$@Hl$ LH&tLl$`HL&tT$PLLf(D$@foL$`fo$fo$T$fo$foT$pH$fD$fo$)$fo$H$P)$)$)$)$)$ )$0)$@Rf($f.D$@L$f.L$HT$f.T$PD$`f.$$f.D$h$f.D$pD$xf.$~$f.$f`$f.$HB$f.$*$$f.$ $f.$ $f.$($f.$0$f.$8$f.$@zzux$f.$Hzdub$f.$PzNuLO}HH/b!HfD+}H0L1H@2}HuLH2bEfAUATUHdH%(H$1Hg Ht$ HD$(HFHD$4D$0t>H|$ R1H$dH+%(H]A\A]@Ld$@Hl$ LH"tLl$`HL"tf(D$@d$PLLfoL$`foT$pH$fD$)$H$d$)$)${f($f.D$@\$f.\$Hd$f.d$PD$`f.$$f.D$h$f.D$pzxuvD$xf.$zeuc$f.$zOuM{HH_!HwzH[L1H0DzHuLH/"CfUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5 zf|$HtHt+HH5HPtyHuH1yHuMBff.fUSHHdH%(HD$81Ht Ht$HD$HFHD$$D$ HD$t6H|$21HT$8dH+%(HH[]DHt$H|$OtHl$H=H7`tHH=N $`uxHuHck@HH=^ _tHH= _tH1ASH0fnFdH%(HD$(1HZ H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDiHHuӐtxHuHcjHHH;p!tЉM@ff.fSH0fnFdH%(HD$(1HY H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDhHHuӐtwHuHciHHH; t!tЉ]?ff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fDgHHuӐt"vHuHchHHH;"n!tЉm>ff.fSH0fnFdH%(HD$(1Hh H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fDfHHuӐt2uHuHcgHHH;]!tЉ}=ff.fAUATUH`fnFdH%(HD$X1H Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ >1HT$XdH+%()H`]A\A]fDeHHufLd$@Ll$ LLtD$4L$HD$@T$PtXHf(1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmuksH?Hcef4HEHXH;R!tT$HLD$L$T$D$L$|fKsHuL1Ld(t;f.ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@dHHufHHRxH;jt!IMtoI$H5$LPtZ5rHuL(IHoHbLt:1HHP@LO8fE1qH"DIj9:fATUSH@fnFdH%(HD$81Hf Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{bHHuːHt$H|$tD$$Ld$u`HELH@H;Q!H=}WtLH=.F Wu-pHaHc?cVf.LLH=V yWtLH=9 fWtL*fDHЉ8fAWAVAUATUSHfnFdH%(H$1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$c1H$dH+%(Hĸ[]A\A]A^A_`HHu뾐Ll$0Ld$LLtLt$PLLtHD$pT$8\$@fod$PH$fol$`fH~ӋD$$D$0fI~)$)$uHEHxH;e!4LLD$nD$f.D$0fHnf.t$8fInf.|$@D$Pf.$$f.D$X$f.D$`znulD$hf.$z[uYD$pf.$zHuFmHMHR!H?mHeL1L"NmHuLL"D$LLHD$5ff.@AWAVAUATUSHXfnFdH%(H$H1H9 Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$蓉1H$HdH+%(HX[]A\A]A^A_ ^HHu뾐Ll$0Ld$LL&tLt$PLL tT$8\$@fod$PH$fol$`fot$pfH~fI~H$@D$$fo$)$fo$fo$D$0)$fo$)$)$)$)$ )$0uHEHH;f!OLLD$?D$f.D$0fHnf.l$8fInf.t$@D$Pf.$$f.D$Xxr$f.D$`]WD$hf.$B<D$pf.$'!D$xf.$ $f.$$f.$$f.$$f.$$f.$ zzux$f.$(zdub$f.$0zNuL$f.$8z8u6$f.$@z"u iHHN!HfiHuֹLLciH"L1Lx D$LLHD$1ff.@ATL%i$H HuH5~k$LVGxj$uLHj$YSLA\ATIUHHt HH5~uLHctHmtH]A\HH]A\Q UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11΄1HT$(dH+%(u|H0]fD[YHHuӐuH$HtH$H9te>H$dH+%(vHL[]A\A]A^A_f;WHHf.Ht$8LKRHD$`LHHD$1 0DHL Ht$HHcf.HLHRLPt$ AVSH0f.AVAUATUSH`fnFdH%(HD$X1H Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ h1HT$XdH+%(;H`[]A\A]A^ =HHuƐLd$ Ht$L0tLl$@LLtHT$H5 1 L7|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6JHHck=fDHLED$JHuLLDUH@fnFdH%(HD$81H' Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$f1HT$8dH+%(uuH@]f.;;HHuϐHt$ H|$!/tD$$t$ u)HEHH|IHuHoDH/HfDUH@fnFdH%(HD$81Hޑ Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$e1HT$8dH+%(uuH@]f.+:HHuϐHt$ H|$.tD$$t$ u)HEHHlHHuH_DHHfDAUATUH`fnFdH%(HD$X1H  Ht$HD$HGfnȉD$(fbfD$ Hl$Lg(HNH|$04AHckH|$0H|$Mt+D$ +D$$HYdH|$0E1HtHD$8H9tHD$XdH+%(H`L]A\A]@8HHSH|$H|$04HcfDHt$H,rHt$DH ZD$$t$HT$uBI$LFHt;FH|$0E1H$L%+!I$@LhfDHT$DHkH闡AUATUH`fnFdH%(HD$X1H' Ht$HD$HGfnȉD$(fbfD$ Hl$Lg(H^H|$04AHc{H|$0H|$Mt+D$ +D$$HibH|$0E1HtHD$8H9tHD$XdH+%(H`L]A\A]@6HHSH|$H|$04HcfDHt$H*rHt$DHZD$$t$HT$uBI$LDHt;DH|$0E1H$L%)!I$@LIfDHT$DH{ HȟfDfDfDfDHXf(XHF1HHHHCUH=PH*u]ÐHH=6 *tHH=O) *tHH=n *tH]^f.@wAUATUHdH%(H$1Hï Ht$ HD$(HFHD$4D$0t>H|$ _1H$dH+%(*H]A\A]@Ld$@Hl$ LHntLl$`HLUtf(D$@t$PLLfoL$`foT$pfo$fD$fo$)$t$)$)$)$)$|f($f.D$@#l$f.l$H t$f.t$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$$f.$zwuu$f.$zau_$f.$zKuIAHH%!H @HL1H@HuLH* f.AUATUHdH%(H$1H' Ht$ HD$(HFHD$4D$0t>H|$ ]1H$dH+%(Hİ]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@d$PLLfoL$`foT$pfD$)$d$)$)$=f($f.D$@\$f.\$Hd$f.d$PzyuwD$`f.$$f.D$hzsuq$f.D$pz`u^D$xf.$zMuK?HH#!HD>H{L1Hd>HuLHf.UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ [1HT$8dH+%(uhH@]@HT$H|$H5 j*|$HtHt+HH5RHPt=HuH1=Hu=ff.fUSHHdH%(HD$81Hd Ht$HD$HFHD$$D$ HD$t6H|$"Z1HT$8dH+%(HH[]DHt$H|$?tHl$H=QH'$tHH=" $uV1HT$(dH+%(uUH0[fD*HHuӐt159HuHc+fDHHH;$!tЉfATUHHfnFdH%(HD$81Hŀ Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$PU1HT$8dH+%(u|HH]A\fD)HHuѐHt$ H|$tD$$E1uHEHH;&!u8HuL f.t$ HImff.fUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$2T1HT$8dH+%(|H@]fD(HHuϐHt$ H|$tt$ HQH 7HuHtHH5n @H8fDH!HpKff.AUATUH`fnFdH%(HD$X1H~ Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ S1HT$XdH+%()H`]A\A]fD'HHufLd$@Ll$ LLtD$4L$HD$@T$Pt`f(@ 1HD$P)\$@f.D$@~f.L$Hzvutf.T$Pzluj5H>Hc4(3HEHXH;!tT$HLD$L$T$D$L$q5HuL1L4uzf.ATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$6Q1HT$8dH+%(H@[]A\%HHuːHt$H|$AtD$$Ld$uXHELH@H;6!ulH=HtLH= u)3HeHc&ZfDLLH= tL腯븐HЉfATH0fnFdH%(HD$(1H< H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11OE1HD$(dH+%(H0LA\@c$HHufHHRxH;b3!׻IMtoI$H5|GLPtZ2HuLIHoH$bL1HHP@L8fE182H"DIjfAWAVAUATUSHfnFdH%(H$1Hy Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$SN1H$dH+%(H[]A\A]A^A_"HHu뾐Ll$0Ld$LLtLt$PLLtT$8\$@fod$Pfol$`fot$pD$$fH~fI~fo$D$0)$)$)$)$uHEHH;@!LLD$ѫD$f.D$0fHnf.T$8fInf.\$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$D$xf.$z{uy$f.$zeuc$f.$zOuMp/HHP!HK/HL1L`#/HuLL9D$LLHD$i_ff.@AWAVAUATUSHfnFdH%(H$1Hv Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$K1H$dH+%(HĨ[]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$PLLtT$8\$@fod$Pfol$`D$$D$0fH~fI~)d$p)$uHEHxH;$!LLD$c+D$f.D$0fHnf.t$8z~u|fInf.|$@zoumD$Pf.D$p}D$xf.D$Xzoum$f.D$`z\uZD$hf.$zIuG,HH!H,HuL1Lr,HuLLD$LLHD$ff.@ATL%C2$H H@H53$L 2$uLH3$LA\ATIUHmHt HH5@LH蓴tHmtH]A\HH]A\AWAVAUATUSHxfnFdH%(HD$h1Hs Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ G1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5LL#|$8ItLH5r L|$8ItLH5L|$8kHr LLH$H|$8GLHLHD$|$8)Lr LLHD$L|$8HLL['H $LD$LWr LL$L\$,LLLL$LLD$HL$L$(|$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H ?)H!H!HfDHHf.RLLHAVPS'H bfUH0fnFdH%(HD$(1H+q H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>E1HT$(dH+%(u|H0]fDHHuӐu1HT$8dH+%(HH]A\A]A^fDLl$Ht$ LntLt$ H5 LL3|$ ItLH52L|$ HtD$$t$ uQLEHLAH!HXHc8MHH 2f.HLff.AWAVAUATUSH8fnFdH%(H$(1HP H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$^=1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LLtL$LLtH$L谷jL$LL蕷OH$LHHD$*H$LH` HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc;H -HIcHLILRLD$LHAXZT$h\$`L$mHuHھLyH*HT$LHLLbH(L1Lw$LL%UT$|Lvff.AWAVAUATUSHfnFdH%(H$1HPd Ht$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HH$4AHc L$Eu~MD$`+D$dH8H$E1HtH$H9tH$dH+%(HL[]A\A]A^A_@IcI\uK HH&H|$PE1-H$4Hc H$I^LE1Sf.L|$LHL&HD$pHHH$H$HHHD$DLH\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L( Hd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztJH<H$E1HL% I$HL$H$MLLHH$HHBHT$H&D1@ADHH9u2T$L1HTDLHH sfUHAWAVAUATSHhHfnFdH%(HE1H_ HHHGfnȉfbfօ;HH@(HLL%HP4AHcHPHDžEtIcHHLޛ4H}AHcHDžLuEtIcIHH+L2LuE1MtHEI9tLHHPHtHXH9t+HEdH+%(HeL[A\A]A^A_]fD HHfDHLHHUDHL?HLHHH0LHH赻HLHH脬DLL~ xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創H8|Hf.0f.8f.@HyE~LHIc1HH9Af.zt䉝HHHcfLuIf.E1H[HL=딉DHrH1LUWHLLHHHAVHHHD1AHH9uHHL%LmHHD1HH9uH7DHھLfDLLNYH lHkff.AWAVAUATUSHfnFdH%(HD$x1H'X Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 2,1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LΦtL\$HH5RLLL\$^|$HL\$ItLH5W L=|$HL\$IhL5sLLL|$HL\$CLLLHD$|$HL\$ LLLHD$|$HL\$L5V LLHD$ L|$HL\$HLLL|$HL\$HL$LD$ILL$ LWV LLLL$(LLD$ HL$L\$9|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$ LU *HT$?LL|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0" HH Hf{HHcf.HLHRLPt$ AVS%vH0:f.AVAUATUSH`fnFdH%(HD$X1H*U Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ (1HT$XdH+%(;H`[]A\A]A^{HHuƐLd$ Ht$L^tLl$@LL腲tHT$H5} L |$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6, HHcfDHLD$ HuLL UDUH@fnFdH%(HD$81H^S Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"'1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHH HuHߨDHHFfD fDfDfD1f1ff(u HF1fDgHH遄HH!UH=H,u]ÐHH= tHH=ќ tH](AWAVAUATUSHdH%(HD$x1H1u Ht$ HD$(HFHD$4D$0tDH|$ 0%1HT$xdH+%([HĈ[]A\A]A^A_Ld$@Hl$ LH֮tLl$`HL轮tf(D$@t$PLLL$hT$`\$pfD$)$fI~fH~t$fI~Af($f.D$@zturl$f.l$Hzdubt$f.t$PzTuRfHnf.d$`zeucfInf.|$hzVuTfInf.l$pzGuEPHH0 H+HuL1HDf HuLH!jf.AWAVAUATUSHdH%(HD$x1Hes Ht$ HD$(HFHD$4D$0tDH|$ P#1HT$xdH+%([HĈ[]A\A]A^A_Ld$@Hl$ LHtLl$`HLݬtf(D$@t$PLLL$hT$`\$pfD$)$fI~fH~t$fI~yf($f.D$@zturl$f.l$Hzdubt$f.t$PzTuRfHnf.d$`zeucfInf.|$hzVuTfInf.l$pzGuEpHHP HKHuL1Hdf+HuLHAf.UH@dH%(HD$81Hz Ht$HD$HFHD$$D$ t0H|$|!1HT$8dH+%(uhH@]@HT$H|$H5& |$HtHt+HH5 HPtRHuHE19Huff.fUSHHdH%(HD$81Hԗ Ht$HD$HFHD$$D$ HD$t6H|$ 1HT$8dH+%(HH[]DHt$H|$询tHl$H= HtHH=$L u[HuHc@HH= YtHH= FtH SH0fnFdH%(HD$(1HJ H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDHHuӐtbHuHcHHH;j!tЉff.fSH0fnFdH%(HD$(1HI H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD HHuӐtrHuHc%HHH; tЉff.fSH0fnFdH%(HD$(1HH H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDHHuӐt1HuHc8fDHHH; tЉfSH0fnFdH%(HD$(1HG H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD;HHuӐt1HuHcXfDHHH; tЉfATUHHfnFdH%(HD$81H5G Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDKHHuѐHt$ H|$1tD$$E1uHEHH;` uHuL|f.t$ HIff.fATUHHfnFdH%(HD$81HF Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fD+HHuѐHt$ H|$tD$$E1uHEHH; uiHuL\f.t$ HIff.fAUATUH`fnFdH%(HD$X1HD Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ ~1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$Pt`~01HD$P)\$@f.D$@~f.L$Hzvutf.T$PzlujH>Hc3HEHXH; tT$HLD$L$T$D$L$qHuL1L褰uf.ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH; IMtoI$H5LPtZuHuLhIHoHbbL1HHP@L8fE1H"DIjyfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$61HT$8dH+%(H@[]A\HHuːHt$H|$AtD$$Ld$u`HELH@H;6 H= tLH=A u-HaHcVf.LLH=Z tLH=y tLjtfDHЉfAWAVAUATUSHfnFdH%(HD$x1HL@ Ht$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ 1HT$xdH+%(HĈ[]A\A]A^A_fD#HHufLd$@Hl$ LH6tLl$`HLtT$H\$Pd$hl$`t$pD$4fI~\$D$@$$fH~t$uIHH; LLD$zD$f.D$@zturfInf.T$Hzeucd$f.d$PzUuSfHnf.|$`znul$f.\$hz_u]l$f.l$pzOuMHHh HcHuL1H|f.;HuLHQD$LLLD$wAWAVAUATUSHfnFdH%(HD$x1H= Ht$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ 61HT$xdH+%(HĈ[]A\A]A^A_fDHHufLd$@Hl$ LHƛtLl$`HL譛tT$H\$Pd$hl$`t$pD$4fI~\$D$@$$fH~t$uIHxH; LLD$JhD$f.D$@zturfInf.T$Hzeucd$f.d$PzUuSfHnf.|$`znul$f.\$hz_u]l$f.l$pzOuMHH HHuL1H f.HuLHD$LLLD$ATL%c#H HH5#L#uILH.#LA\ATIUH]Ht HH5LH{tHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1H H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LL蠘tL$LL脘tH$L`jL$LLEOH$LHHD$0*H$LH HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH HIcHLILRLD$LH詽AXZT$h\$`L$mHuHھL螣ydH*HT$Lt:HLLLH(L1L'$LUT$|L&tHH=d +tH]Lf.@'UH@dH%(HD$81HP= Ht$HD$HFHD$$D$ t0H|$\1HT$8dH+%(ugH@]@Ht$ H|$tы|$ QHLHuHt"HH5 )H{|fH H莘ff.AUATUSH8dH%(H$(1Hr< Ht$ HD$(HFHD$4D$0tEH|$ q1H$(dH+%(IH8[]A\A]f.Ll$@Ld$ LLvtHl$`<LHutH$@<Hf(D$@HT$PHHLfD$)$T$|f($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH=uHH HHuL1L蜃f.[Hu<HLq躖f.AUATUHdH%(H$1H: Ht$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(Hİ]A\A]@Ll$@Hl$ LHNttLd$`HL5ttl$PLLfoL$`foT$pf(D$@fo$l$fo$fo$)$fo$fo$)$fo$fo$)$ fo$fD$)$)$0)$@)$P)$`)$p)$)$vZf($f.D$@zquod$f.d$Hzau_l$f.l$PzQuO1H$DAf.z[uYHH=uHHmH( H_#HuL1HfDHЉŠfAWAVAUATUSH(fnFdH%(H$1H) Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(H([]A\A]A^A_HHu뾐Lt$0Ll$LLhtLd$P<LLgtT$8D$$LH$0\$@<HD$0HfI~$uHEHH;U LLD$VD$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH=uHH` H[HuL1Ltuf;Hu<LLQuD$LLHD$,wAWAVAUATUSHfnFdH%(H$1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$31H$dH+%(.HĨ[]A\A]A^A_諰HHu뾐Lt$0Ll$LLetLd$PLLetT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$fo$fo$)$D$$fo$)$fo$)$ D$0fo$)$0)$@)$P)$`)$p)$uHEHxH; LLD$KD$f.D$0zmukfHnf.T$8z^u\fInf.\$@zOuM1H$Af.zSuQHH=u蠽H4H H&{HuL1Lrf[HuLLqrD$LLHD$'藅ATL%#H HRH5>#LV8#uLH~#YLA\ATIUH Ht HH5LHcEtHmtH]A\HH]A\Q_AWAVAUATUSH8fnFdH%(H$(1HY H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LL0btL$LLbtH$LRjL$LLROH$LHHD$a*H$LHa HT$|LHHT$C$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc{H mHIcHLILRLD$LHIXAXZT$h\$`L$mHuHھL.myH*HT$LmʷHLLl袷H(L1Ll$LUT$|Lrff.AWAVAUATUSHxfnFdH%(HD$h1HA Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L.NtLt$8H5RLLâ|$8ItLH5 L觢|$8ItLH5RL苢|$8kHh LLH$Hg|$8GLHLHD$I|$8)L3 LLHD$L$|$8HLLH $LD$L LL$L\$,LLLL$LLD$HL$L$ȡ|$,L$HL$LD$ILL$LLLL$LD$H $讚qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H ߴH!H HfD;HHf.RLLHAVPSmH }fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDkHHuӐu`ff.AUATUH0dH%(H$(1H# Ht$ HD$(HFHD$4D$0t>H|$ "1H$(dH+%(H0]A\A]@Ld$@Hl$ LH=tLl$` HL=tL$PLLf(D$@fo$foT$pfo$L$foL$`fo$fD$fo$)$)$)$)$)$)$)$ f($f.D$@|$f.|$H{L$f.L$PicD$`f.$vp$f.D$h[U$f.D$p@:D$xf.$%$f.$$f.$$f.$$f.$$f.$$f.$zuus$f.$z_u]$f.$zIuGڔHHy Hq軔HL1HIx蓔Hu LHI\fAUATUHdH%(H$1H Ht$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(H]A\A]@Ld$@Hl$ LH:tLl$`HLu:tf(D$@l$PLLfoL$`foT$pfo$fD$)$l$)$)$)$f($f.D$@d$f.d$Hl$f.l$PD$`f.$$f.D$h$f.D$pD$xf.$z|uz$f.$zfud$f.$zPuN聒HfHaw HX[H<L1HpG%3HuLHIGZfUH@dH%(HD$81H% Ht$HD$HFHD$$D$ t0H|$茮1HT$8dH+%(uhH@]@HT$H|$H56% }|$HtHt+HH5uHPtbHuHU01IHuYff.fUSHHdH%(HD$81H$ Ht$HD$HFHD$$D$ HD$t6H|$袭1HT$8dH+%(HH[]DHt$H|$/tHl$H=HwtHH=4 wukHuHc@HH= v iwtHH=)$ VwtH XSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD HHuӐtrHuHc%HHH;" tЉWff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莫1HT$(dH+%(uZH0[fDHHuӐt肎HuHc5HHH;r tЉVff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螪1HT$(dH+%(uZH0[fD+HHuӐt蒍HuHcEHHH;B tЉUff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11让1HT$(dH+%(uUH0[fD;~HHuӐt1襌HuHcXfDHHH;׈ tЉTfATUHHfnFdH%(HD$81H5 Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDK}HHuѐHt$ H|$1qtD$$E1uHEHH; r u艋HuL|*f.t$ HISff.fAUATUH`fnFdH%(HD$X1H Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 螧1HT$XdH+%()H`]A\A]fD#|HHufLd$@Ll$ LL61tD$4L$HD$@T$Pt`f( 1HD$P)\$@f.D$@~f.L$Hzvutf.T$PzlujH>Hc|3HEHXH; tT$HLD$L$T$D$L$q諉HuL1L>u Rf.ATH0fnFdH%(HD$(1H< H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ݥE1HD$(dH+%(H0LA\@czHHufHHRxH;d qIMtoI$H5LPtZ蕈HuL'IHoH$bLP1HHP@Lf8fE18H"DIjPfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\xHHuːHt$H|$a&tD$$Ld$u`HELH@H;vn H=,ntLH= nu-HaHcyVf.LLH=zl mtLH= mtLfDHЉOfAWAVAUATUSHfnFdH%(H$1HT Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$â1H$dH+%(6H[]A\A]A^A_;wHHu뾐Ll$0Ld$LLV,tLt$PLL=,tT$8\$@fod$Pfol$`fot$pD$$fH~fI~D$0)$)$)$uHEHxH; SLLD$D$f.D$0fHnf.|$8fInf.|$@D$Pf.$$f.D$X$f.D$`D$hf.$zrupD$pf.$z_u]D$xf.$zLuJ-H1H i H#@ HFL1L 9/HuLL8D$LLHD$Lff.@AWAVAUATUSH(fnFdH%(H$1Hy Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$ӟ1H$dH+%(H([]A\A]A^A_KtHHu뾐Ll$0Ld$LLf)tLt$P LLM)tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$D$$)$fo$D$0)$)$)$)$)$uHEHH;> LLD$oD$f.D$0fHnf.d$8~xfInf.l$@gaD$Pf.$tn$f.D$XYS$f.D$`>8D$hf.$#D$pf.$D$xf.$$f.$$f.$$f.$$f.$zyuw$f.$zcua$f.$zMuKVHJH6e H<D3HL1LH5z Hu LL!5D$LLHD$GHATL%C#H HH5Ε#L^Ȕ#u8LH# jLA\ATIUH- Ht HH5RLHtHmtH]A\HH]A\"AWAVAUATUSH8fnFdH%(H$(1H@ H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$N1H$(dH+%(dH8[]A\A]A^A_oHHuÐL$L$LL$tL$LL$tH$LjL$LLOH$LHHD$p$*H$LHP$ HT$|LHHT$b$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ{HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc+{H {HIcmHLILRLD$LHiFAXZT$h\$`L$mzHuHھL/yzH*HT$L/zzHLL/RzH(L1Lg/$Lff.AWAVAUATUHSHfnFdH%(H$1HHt$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L H$4AHcgH$H$Et IcHH$L4H$AHcgHD$L$Et IcIHD$H,D$P+D$TLɑL$E1MtH$I9tLDMH$HtH$H9t%MH$dH+%(vHL[]A\A]A^A_feHHf.Ht$8LYRHD$`LHHD$0DHLHt$ kCtH].f.@+UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$x1HT$8dH+%(ugH@]@Ht$ H|$!Atы|$ $H[HuHt"HH5( ôHfHI@ H#ff.AUATUSHHdH%(H$81H Ht$ HD$(HFHD$4D$0tEH|$ w1H$8dH+%(IHH[]A\A]f.Ll$@Ld$ LLVtHl$`-LH=tH$-Hf(D$@HT$PHHLfD$)$T$\*f($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH=huYHH> HYHuL1Lf.YHu-HL!f.AUATUH`dH%(H$X1H Ht$ HD$(HFHD$4D$0t>H|$ u1H$XdH+%(BH`]A\A]@Ld$@Hl$ LHtLl$`HLutT$PLLf(D$@foL$`fo$fo$T$fo$foT$pH$fD$fo$)$fo$H$P)$)$)$)$)$ )$0)$@if($f.D$@L$f.L$HT$f.T$PD$`f.$$f.D$h$f.D$pD$xf.$~$f.$f`$f.$HB$f.$*$$f.$ $f.$ $f.$($f.$0$f.$8$f.$@zzux$f.$Hzdub$f.$PzNuLVHH: HfDUH0L1H UHuLH 2fUH@dH%(HD$81H* Ht$HD$HFHD$$D$ t0H|$,r1HT$8dH+%(uhH@]@HT$H|$H5 A|$HtHt+HH5ѕHPtUHuH1THu]ff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$Bq1HT$8dH+%(HH[]DHt$H|$_tHl$H=HG;tHH=Ԝ 4;u THuHcF@HH=9 ;tHH= :tHAUH@dH%(HD$81Hh Ht$HD$HFHD$$D$ t0H|$o1HT$(dH+%(uZH0[fDCHHuӐ t2RHuHcDH HH;I tЉ}ff.fSH0fnFdH%(HD$(1Hx H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Nn1HT$(dH+%(uZH0[fDBHHuӐtBQHuHcCHHH;: tЉff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^m1HT$(dH+%(uZH0[fDAHHuӐtRPHuHcCHHH;L tЉff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nl1HT$(dH+%(uZH0[fD@HHuӐtbOHuHcBHHH;r, tЉff.fAUATUH`fnFdH%(HD$X1H Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ nk1HT$XdH+%()H`]A\A]fD?HHufLd$@Ll$ LLtD$4L$HD$@T$PtXH f( 1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukMH?Hc@4HEHXH;< tT$HLD$L$T$D$L$|f{MHuL1Ltf.ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11iE1HD$(dH+%(H0LA\@3>HHufHHRxH;J) IMtoI$H54LPtZeLHuLXIHoHbL1HHP@L)8fE1LH"DIjifATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&h1HT$8dH+%(H@[]A\HuHھLy>H*HT$Lz>HLLR>H(L1Lg$L1HT$8dH+%(uuH@]f.+HHuϐHt$ H|$tD$$t$ u)HEHHl!HuH_DHHfDUH@fnFdH%(HD$81Hi Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$=1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHH\ HuHODHpHfDfDfD fDfDHų f( HF1WHHHHUH=T`Hu]ÐHH=1h tHH= ~tHH=> ktH].f.@7&AWAVAUATUSHdH%(H$1HHt$PHD$XHFHD$dD$`tAH|$P;1H$dH+%(Hĸ[]A\A]A^A_fLd$HHl$PL-; LHL |$HItLLH |$HItLHtLl$pHLfL$HLFf(L$pLLL$D$HL$fL$($$)L$|$8T$ \$d$0f(L$f.L$pzu}t$(f.t$xzoum|$8f.$z\uZl$f.$zquoD$ f.$z^u\t$0f.$zKuI,HfHc[fD HuLH!HuLHBfUHAWAVAUATS1HdH%(HE1HHHHHFHDžHHHxҡHP4AHc}LPEtIcIHx虡4H}AHcGHDžpL}EtIcIHp+ttHx8E1H}HEH9t HtHPHtHXH9tHEdH+%(HeL[A\A]A^A_]fHxHtHxDLqHHxHHhGHxHr,HxDLHHxHH`nHxHCHHxHHX)E~eIFH9^AD$PDHx1HfA  HH9uDHxAt Afofofo) )0)@E~mAEHpIGH9DHx1HffAHH9uDHxAtAHpHXML(HL`8Hh0P@$HxX1ZIcE7fDHH9Af.ztHxxH f.(f.0f.8f.{@f.e_f.HICIc1E~FHpHxDHH9 Af.ztHxHHf. (f.8f.Pf.zLuJ0f.z8u6@f.z$u"HHc$ I HuHXHxHx!Hx HHhHxOH#H`HxYHpHxD1AHH9uHxHxD1AHH9uHx@HxDL5HxDLHJtHUtAWAVAUATUS1HXdH%(H$H1HHl$PHt$PHD$XHFHHD$dD$`蒚H$4AHc<L$EtIcI\D$`+D$dtjH1E1H$H$H9t HtH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLtHt$LHzDLHdL$HLԺDH$HHH$谺 T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0xl$f.l$pD$8t$f.t$x|$f.$Ic1E (HH9tADf.ztrH$f.$ $f.$$f.$$f.$$f.$$f.$z~u||$ f.$zIuGt$(f.$z6u4T$0f.$z#u!HD$8ˮI^HuH$Hs<HvLHN\HnL1H)WD1ADHH9ujDLHM1HoDAWAVAUATUS1HXdH%(H$H1HUHl$PHt$PHD$XHFHHD$dD$`•H$4AHclL$EtIcI\D$`+D$dtjH,E1H$H$H9t HtFH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLKtHt$LHzDLH$dL$HLDH$HHH$ T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0l$f.l$pD$<t$f.t$x|$f.$Ic1E*HH9tADf.zt H$f.$ $f.$$f.$$f.$$f.$$f.$z}u{|$ f.$zHuFt$(f.$z5u3T$0f.$z"u HHc|$<\I HuH$Hm HwLH]E HmL1HZVD1ADHH9urDLH#UiHkff.fAVAUATUHxdH%(HD$h1HHt$0HD$8HFHD$DD$@t:H|$0F(1HT$hdH+%(Hx]A\A]A^@Ld$/Ll$0LH55 L|$/HtLH5gLx|$/ItLt$PLL蹱{f(D$PLLHT$`fD$)$T$跡f($f.D$PzJuHL$f.L$Xz:u8T$f.T$`z*u( HHsHf.k HuιLL聿f.UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$&1HT$8dH+%(uhH@]@HT$H|$H5f |$HtHt+HH5]HPt HuH腨1y Huff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$%1HT$8dH+%(HH[]DHt$H|$tHl$H=\HtHH=dQ uHuHcN@HH=: tHH=Y tHJSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11$1HT$(dH+%(uUH0[fD;HHuӐt1HuHcXfDHHhH;tЉfSH0fnFdH%(HD$(1H O H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11#1HT$(dH+%(uUH0[fD[HHuӐt1HuHcxfDHHH;_tЉfSH0fnFdH%(HD$(1HN H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11"1HT$(dH+%(uZH0[fD{HHuӐtHuHcHHH; tЉ-ff.fSH0fnFdH%(HD$(1H[M H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11!1HT$(dH+%(uZH0[fDHHuӐ$tHuHcH$HH;btЉ=ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11!1HT$(dH+%(uUH0[fDHHuӐtHu,뵐HHH;OtЉRfSH0fnFdH%(HD$(1HzK H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11. 1HT$(dH+%(ueH0[fDHHuӐt,HG8H@0HH?HHHuHcHHH; tЉbfATUHHfnFdH%(HD$81HJ Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;huHuLf.t$ HIMff.fUH@fnFdH%(HD$81HٶHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.HHuϐH5 HT$H|$Z|$HtHHuHcMff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$ 1HT$8dH+%(H@]ÐHHuԐHt$H|$1tD$$t$t8@8tHE@HHuHH@HEHH;u$@8t@HfH@ATH0fnFdH%(HD$(1H, H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@SHHufHHRxH;IMtoI$H5RLPtZHuLxIHoHfbL1HHP@L8fE1(H"DIjfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$F1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$u`HELH@H;H=QtLH=E u-HaHcVf.LLH=j tLH= tLzxfDHЉfAWAVAUATUSH(fnFdH%(H$1HH$H$HGfnȉ$fbfք$uaHo(Ht*$+$tUH$1H$dH+%(H([]A\A]A^A_HHuÐL$L$LL0tL$LLtLt$pLLjH$LHJLL$xLLLL$賒-H$LHHD$螡$HL$$LI$$T$HLH$\$pLL$$d$`$$l$ $$t$h$|$8T$(\$Xd$Pl$0t$@D$t$AXZD$f.$NHd$@f.$3-l$hf.$|$f.$mgt$Xf.$RL|$`f.$71UHKT$ f.$d$0f.$l$Pf.$H\$(f.$zhuft$Hf.$zUuS|$8f.$zBu@HIc^HL1L詭oHuHT$L胭LHHHھL^.$HLL6D$pLD$xLLff.ATL%##H |HKH5#L#u8NLH# LA\ATIUHͤHt HH5iKLHtHmtH]A\HH]A\AWAVAUATUHSHfnFdH%(H$1HHt$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L |H$4AHcH$H$Et IcHH$L{4H$AHcHD$L$Et IcIHD$H,D$P+D$TLL$E1MtH$I9tLDH$HtH$H9t%H$dH+%(vHL[]A\A]A^A_fHHf.Ht$8LRHD$`LHHD$0DHLۛHt$L |$8kH! LLH$H|$8GLHLHD$|$8)L! LLHD$L|$8HLL{H $LD$Lw! LL$L\$,LLLL$LLD$HL$L$H|$,L$HL$LD$ILL$LLLL$LD$H $.qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H _H!H?HfDHHf.RLLHAVPSH 肠fAWAVAUATUSHfnFdH%(HD$x1H7 Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P B1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LntL\$HH5bsLLL\$n|$HL\$ItLH5) LM|$HL\$IhL5;LLL%|$HL\$CLLLHD$|$HL\$ LLLHD$|$HL\$L5 LLHD$ L|$HL\$HLLL|$HL\$HL$LD$ILL$ Lg LLLL$(LLD$ HL$L\$I|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$L *HT$?LL|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H02HHHfHHcf.HLHRLPt$ AVS%H0Jf.AVAUATUSH`fnFdH%(HD$X1H: Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$  1HT$XdH+%(;H`[]A\A]A^HHuƐLd$ Ht$LntLl$@LLztHT$H5 L|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6ff.AUATUSHdH%(H$1H"< Ht$ HD$(HFHD$4D$0tEH|$ !1H$dH+%(IH[]A\A]f.Ll$@Ld$ LLutHl$`'LHutH$'Hf(D$@HT$PHHLfD$)$T$f($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH=8uXHH8H3HuL1LLf. Hu'HL!jf.AUATUH@dH%(H$81Hg: Ht$ HD$(HFHD$4D$0t>H|$ R1H$8dH+%(H@]A\A]@Ld$@Hl$ LHstLl$` HLstL$PLLf(D$@foT$pfo$fo$H$)$fo$L$fo$foL$`fD$H$0)$)$)$)$)$)$ Zf($f.D$@|$f.|$HL$f.L$PD$`f.$$f.D$h{u$f.D$p`ZD$xf.$E?$f.$'!$f.$ $f.$$f.$$f.$$f.$$f.$ zwuu$f.$(zau_$f.$0zKuIHQHHCHoL1HXHu LHfUH@dH%(HD$81H] Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5] J|$HtHt+HH5@HPtHuHh1Huff.fUSHHdH%(HD$81HD] Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$htHl$H=@HtHH= uHuHc~@HH=j ɯtHH=\ 趯tHzDUH@dH%(HD$81H(5 Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$聭tы|$ `HHuHt"HH5Q #!HtfHH.ff.SH0fnFdH%(HD$(1HJ H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD苸HHuӐtHuHc襹HHH;tЉ=ff.fSH0fnFdH%(HD$(1H8 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD蛷HHuӐtHuHc赸HHH;ʿtЉMff.fSH0fnFdH%(HD$(1H{ H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD諶HHuӐtHuHcŷHHH;tЉ]ff.fSH0fnFdH%(HD$(1Hi H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fD軵HHuӐt"HuHcնHHH;tЉmff.fAUATUH`fnFdH%(HD$X1H Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ .1HT$XdH+%()H`]A\A]fD賴HHufLd$@Ll$ LLitD$4L$HD$@T$PtXHHf(yH1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukH?HcU4HEHXH;tT$HLD$L$T$D$L$|f;HuL1LTwt蚊f.ATH0fnFdH%(HD$(1HU H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mE1HD$(dH+%(H0LA\@HHufHHRxH;J觶IMtoI$H5S8LPtZ%HuL`IHoH(bLd1HHP@L觞8fE1H"DIj)fATUSH@fnFdH%(HD$81HVT Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$^tD$$Ld$u`HELH@H;H=6輦tLH=I 試u-耿HaHc/Vf.LLH= itLH=)S VtL;fDHЉ蒇fAWAVAUATUSHfnFdH%(H$1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$S1H$dH+%(H[]A\A]A^A_˯HHu뾐Lt$0Ll$LLdtLd$P'LLdtT$8D$$LH$\$@'HD$0HfI~$uHEHH;LLD$D$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH=8uPHH0H+HuL1LDrf Hu'LL!rD$LLHD$,GAWAVAUATUSH8fnFdH%(H$(1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$(dH+%(NH8[]A\A]A^A_{HHu뾐Ll$0Ld$LLbtLt$P LL}btT$8\$@H$fod$Pfol$`fot$pfH~fI~H$ D$$fo$D$0)$fo$)$fo$)$)$)$)$uHEHxH;(LLD$ψD$f.D$0fHnf.d$8fInf.l$@D$Pf.$$f.D$Xys$f.D$`^XD$hf.$C=D$pf.$("D$xf.$ $f.$$f.$$f.$$f.$$f.$z{uy$f.$zeuc$f.$ zOuMXHH8H3HqL1LHnZ Hu LL!nD$LLHD$GATL%"H H/H5"L"u8LHN" LA\ATIUH Ht HH5m/LHAtHmtH]A\HH]A\[AWAVAUATUSH8fnFdH%(H$(1H@U H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$N1H$(dH+%(dH8[]A\A]A^A_˨HHuÐL$L$LL]tL$LL]tH$LNjL$LLNOH$LHHD$p]*H$LHP] HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ˴HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc+H HIc̦HLILRLD$LHiAXZT$h\$`L$mȳHuHھLhy褳H*HT$LhzHLLhRH(L1Lgh$L( k{tH].f.@AUATUHpdH%(H$h1H Ht$ HD$(HFHD$4D$0t>H|$ 蒰1H$hdH+%(bHp]A\A]@Ld$@Hl$ LH>:tLl$`HL%:t\$PfoL$`LLf(D$@foT$pfo$\$fo$fo$)$fo$fo$fD$fo$)$)$)$)$)$ )$0)$@)$Pf($f.D$@T$f.T$H\$f.\$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$$f.$ga$f.$IC$f.$+%$f.$  $f.$($f.$0$f.$8$f.$@$f.$Hz{uy$f.$Pzeuc$f.$XzOuM谐HHuH苐HL1HEcHuLHyEXfAUATUHdH%(H$1H Ht$ HD$(HFHD$4D$0t>H|$ 責1H$dH+%(*H]A\A]@Ld$@Hl$ LH^6tLl$`HLE6tf(D$@t$PLLfoL$`foT$pfo$fD$fo$)$t$)$)$)$)$\Bf($f.D$@#l$f.l$H t$f.t$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$$f.$zwuu$f.$zau_$f.$zKuIHHrH HL1HB軍HuLHBVf.UH@dH%(HD$81H ! Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5 jy|$HtHt+HH5HPtHuH+1ɌHu=Uff.fUSHHdH%(HD$81Hd Ht$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?+tHl$H=H'stHH= suHuHc~@HH=q rtHH= rtH!TSH0fnFdH%(HD$(1H( H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD|HHuӐtHuHc}HHH;ztЉ=Sff.fSH0fnFdH%(HD$(1HI H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fD{HHuӐt1HuHc|fDHHH;qtЉRRfSH0fnFdH%(HD$(1Hz H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fDzHHuӐt"HuHc{HHH;ltЉmQff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fDyHHuӐt2HuHczHHH;*qtЉ}Pff.fATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@1HT$8dH+%(u|HH]A\fDxHHuѐHt$ H|$ltD$$E1uHEHH;mu HuL%f.t$ HI]Off.fAUATUH`fnFdH%(HD$X1H Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDwHHufLd$@Ll$ LL,tD$4L$HD$@T$Pt`f(P 1HD$P)\$@f.D$@~f.L$Hzvutf.T$Pzluj蕅H>HcDx3HEHXH;vtT$HLD$L$T$D$L$q+HuL1LD:uMf.ATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@uHHufHHRxH;ڂIMtoI$H5 LPtZHuL#IHoHbLTL1HHP@La8fE1踃H"DIjLfATUSH@fnFdH%(HD$81HF Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$֟1HT$8dH+%(H@[]A\[tHHuːHt$H|$!tD$$Ld$u`HELH@H;fqH=IitLH=9 iu-pHaHcuVf.LLH=g YitLH= FitL fDHЉJfAWAVAUATUSHfnFdH%(H$1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$C1H$dH+%(H[]A\A]A^A_rHHu뾐Ll$0Ld$LL'tLt$PLL'tT$8\$@fod$Pfol$`fot$pD$$fH~fI~fo$D$0)$)$)$)$uHEHxH;~LLD$3D$f.D$0fHnf.T$8fInf.\$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$D$xf.$z{uy$f.$zeuc$f.$zOuM`HH@dH;HL1LP4HuLL)4D$LLHD$iOGff.@AWAVAUATUSHhfnFdH%(H$X1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$XdH+%(Hh[]A\A]A^A_{oHHu뾐Ll$0Ld$LL$tLt$PLL}$tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$fo$fo$)$D$$fo$D$0)$)$)$)$ )$0)$@uHEHH;^nLLD$D$f.D$0#fHnf.t$8 fInf.|$@D$Pf.$$f.D$X$f.D$`|vD$hf.$a[D$pf.$F@D$xf.$+%$f.$ $f.$$f.$$f.$$f.$ $f.$(z{uy$f.$0zeuc$f.$8zOuM$f.$@z9u7$f.$Hz#u!zHH_HzHuչLL/zHL1L/D$LLHD$Bff.@ATL%#"H HH5"LX"uLH"dLA\ATIUH}Ht HH5LHtHmtH]A\HH]A\AWAVAUATUSH8fnFdH%(H$(1H H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_kjHHuÐL$L$LLtL$LLdtH$L@jL$LL%OH$LHHD$*H$LH HT$|LHHT$]$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQkvHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucuH uHIclhHLILRLD$LHdAXZT$h\$`L$mhuHuHھL~*yDuH*HT$LT*uHLL,*tH(L1L*$L}UT$|L0=ff.AWAVAUATUSHxfnFdH%(HD$h1H Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ Ր1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L~ tLt$8H5LL`|$8ItLH5ӻ L_|$8ItLH5L_|$8kH LLH$H_|$8GLHLHD$_|$8)L LLHD$Lt_|$8HLLKpH $LD$LG LL$L\$,LLLL$LLD$HL$L$_|$,L$HL$LD$ILL$LLLL$LD$H $WqL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H /rH!HWHfDcHHf.RLLHAVPSH R:fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u|H0]fDbHHuӐu RHJkHfDHUHtK9ff.AWAVAUATUHSHfnFdH%(H$1H#Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@LH$4AHcjbH$H$Et IcHH$L}4H$AHc'bHD$L$Et IcIHD$H,D$P+D$TLiL$E1MtH$I9tLGH$HtH$H9tGH$dH+%(vHL[]A\A]A^A_f`HHf.Ht$8LsTRHD$`LHHD$0DHL{Ht$u]ÐHH=џ 1>tHH=< >tHH= >tH]f.@' UH@dH%(HD$81H0 Ht$HD$HFHD$$D$ t0H|$H|$ Rr1H$HdH+%(*HP]A\A]@Ll$@Hl$ LHtLd$`HLt\$PLLfoL$`foT$pf(D$@fo$\$fo$fo$)$Pfo$fo$)$`fo$fo$)$pfo$)$fo$)$fo$)$fo$ )$fo$0fD$)$)$)$)$)$)$)$)$ fo$@)$0!f($f.D$@zturT$f.T$Hzdub\$f.\$PzTuR1H$PAf.zSuQHH=uSHH8H{SHuL1Hf[SHuLHqf.AUATUHdH%(H$1H Ht$ HD$(HFHD$4D$0t>H|$ o1H$dH+%(zH]A\A]@Ld$@Hl$ LHNtLl$` HL5tf(D$@|$PLLfoL$`foT$pfo$fD$fo$fo$)$|$)$)$)$)$)$f($f.D$@b\t$f.t$HJD|$f.|$P2,D$`f.$?9$f.D$h$$f.D$p D$xf.$$f.$$f.$$f.$$f.$zzux$f.$zdub$f.$zNuLPHH5HfDPHL1H[PHu LHqf.UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$l1HT$8dH+%(uhH@]@HT$H|$H5V <|$HtHt+HH5HPtOHuHu1iOHuff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$k1HT$8dH+%(HH[]DHt$H|$tHl$H=H5tHH=T 5uNHuHc>A@HH=*4 5tHH=I v5tH:UH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$j1HT$8dH+%(ugH@]@Ht$ H|$A3tы|$ HMHuHt"HH5 HfHi2Hff.SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11i1HT$(dH+%(uZH0[fDK>HHuӐtLHuHce?HHH; 2tЉff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11h1HT$(dH+%(uZH0[fD[=HHuӐtKHuHcu>HHH;LtЉ ff.fSH0fnFdH%(HD$(1H; H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11g1HT$(dH+%(uZH0[fDktHH= +tH]f.@AUATUH0dH%(H$(1HS Ht$ HD$(HFHD$4D$0t>H|$ R41H$(dH+%(H0]A\A]@Ld$@Hl$ LHtLl$` HLtL$PLLf(D$@fo$foT$pfo$L$foL$`fo$fD$fo$)$)$)$)$)$)$)$jf($f.D$@|$f.|$H{L$f.L$PicD$`f.$vp$f.D$h[U$f.D$p@:D$xf.$%$f.$$f.$$f.$$f.$$f.$$f.$zuus$f.$z_u]$f.$zIuG HHHqHL1HxHu LH"fAUATUHdH%(H$1H' Ht$ HD$(HFHD$4D$0t>H|$ 11H$dH+%(H]A\A]@Ld$@Hl$ LH辺tLl$`HL襺tf(D$@l$PLLfoL$`foT$pfo$fD$)$l$)$)$)$f($f.D$@d$f.d$Hl$f.l$PD$`f.$$f.D$h$f.D$pD$xf.$z|uz$f.$zfud$f.$zPuNHfHHXH<L1H%cHuLHyfUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$.1HT$8dH+%(uhH@]@HT$H|$H5f |$HtHt+HH5ȪHPtHuH腰1yHuff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$-1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=dY uHuHcN@HH=: tHH=Y tHJSH0fnFdH%(HD$(1HW H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11,1HT$(dH+%(uUH0[fD;HHuӐt1HuHcXfDHHH;tЉfSH0fnFdH%(HD$(1HV H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11+1HT$(dH+%(uZH0[fD[HHuӐtHuHcuHHH;jtЉ ff.fSH0fnFdH%(HD$(1H*V H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11*1HT$(dH+%(uZH0[fDkHHuӐt HuHcHHH;ztЉff.fSH0fnFdH%(HD$(1HKU H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11)1HT$(dH+%(uZH0[fD{HHuӐt HuHcHHH;RtЉ-ff.fATUHHfnFdH%(HD$81HeT Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$(1HT$8dH+%(u|HH]A\fD{HHuѐHt$ H|$atD$$E1uHEHH;u HuL謪f.t$ HI ff.fAUATUH`fnFdH%(HD$X1HKS Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ '1HT$XdH+%()H`]A\A]fDSHHufLd$@Ll$ LLftD$4L$HD$@T$Pt`f(P 1HD$P)\$@f.D$@~f.L$Hzvutf.T$PzlujE H>Hc3HEHXH;tT$HLD$L$T$D$L$q HuL1Lu:f.ATH0fnFdH%(HD$(1Hl H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 &E1HD$(dH+%(H0LA\@HHufHHRxH;rIMtoI$H5LPtZHuL踧IHoHTpbL1HHP@LG8fE1hH"DIjfATUSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$$1HT$8dH+%(H@[]A\ HHuːHt$H|$葦tD$$Ld$u`HELH@H;> H=h\tLH=O Iu- HaHcVf.LLH= tLH=ɚ tL躂fDHЉ2fAWAVAUATUSHfnFdH%(H$1HN Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$"1H$dH+%(6H[]A\A]A^A_kHHu뾐Ll$0Ld$LL膬tLt$PLLmtT$8\$@fod$Pfol$`fot$pD$$fH~fI~D$0)$)$)$uHEHxH;ISLLD$ D$f.D$0fHnf.|$8fInf.|$@D$Pf.$$f.D$X$f.D$`D$hf.$zrupD$pf.$z_u]D$xf.$zLuJ]H1H=H#@;HFL1LP/HuLL)D$LLHD$Off.@AWAVAUATUSH(fnFdH%(H$1HK Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$ 1H$dH+%(H([]A\A]A^A_{HHu뾐Ll$0Ld$LL薩tLt$P LL}tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$D$$)$fo$D$0)$)$)$)$)$uHEHH;LLD$D$f.D$0fHnf.d$8~xfInf.l$@gaD$Pf.$tn$f.D$XYS$f.D$`>8D$hf.$#D$pf.$D$xf.$$f.$$f.$$f.$$f.$zyuw$f.$zcua$f.$zMuKHJHfH<DcHL1Lxz;Hu LLQD$LLHD$wATL%2"H HH54"L63"uhVLH^3"9LA\ATIUH-Ht HH5LHCtHmtH]A\HH]A\1AVAUATUSHPfnFdH%(HD$H1H# Ht$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LL6t\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHnMHLL$L$fH~fHuL1LԲff.fAWAVAUATUSH8fnFdH%(H$(1H H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_;HHuÐL$L$LLPtL$LL4tH$LjL$LLOH$LHHD$*H$LH HT$|LHHT$c$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ;HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH HIcY脪HDHvDff.AWAVAUATUSHfnFdH%(HD$x1H* Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P "1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LxtL\$HH5B}LLL\$N|$HL\$ItLH5 ) L-|$HL\$IhL5ELLL|$HL\$CLLLHD$|$HL\$ LLLHD$|$HL\$L5( LLHD$ L|$HL\$HLLLt|$HL\$HL$LD$ILL$ LG( LLLL$(LLD$ HL$L\$)|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$L' *HT$?LL|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0HHHfkHHcf.HLHRLPt$ AVSH0*f.AVAUATUSH`fnFdH%(HD$X1H' Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^kHHuƐLd$ Ht$LNtLl$@LLutHT$H5m L|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHcfDHLՙD$HuLLEDUH@fnFdH%(HD$81HN% Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHHHuHzDHIH6fDfDfDfD1f1ff($o HF1fD7HHHHaUH=+tHu]ÐHH=# tHH= tHH=n tH]Vf.@gqUH@dH%(HD$81HG Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(ugH@]@Ht$ H|$葿tы|$ 褷HHuHt"HH5a 33H+fHH>ff.AUATUSHHdH%(H$81H"F Ht$ HD$(HFHD$4D$0tEH|$ !1H$8dH+%(IHH[]A\A]f.Ll$@Ld$ LLtHl$`-LHtH$-Hf(D$@HT$PHHLfD$)$T$<`f($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH=huXHH8H3HuL1LLf. Hu-HL!jf.AUATUH`dH%(H$X1HgD Ht$ HD$(HFHD$4D$0t>H|$ R1H$XdH+%(BH`]A\A]@Ld$@Hl$ LH}tLl$`HL}tT$PLLf(D$@foL$`fo$fo$T$fo$foT$pH$fD$fo$)$fo$H$P)$)$)$)$)$ )$0)$@)f($f.D$@L$f.L$HT$f.T$PD$`f.$$f.D$h$f.D$pD$xf.$~$f.$f`$f.$HB$f.$*$$f.$ $f.$ $f.$($f.$0$f.$8$f.$@zzux$f.$Hzdub$f.$PzNuLHHoHfDkH0L1H耉CHuLHY袜fUH@dH%(HD$81Hg Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Fg |$HtHt+HH5rHPtrHuHer1YHu͛ff.fUSHHdH%(HD$81Hf Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$qtHl$H=rH跹tHH=D 褹u{HuHc.@HH= ytHH=9f ftH*N豚UH@dH%(HD$81H> Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$1tы|$ HHuHt"HH5 *H}fHYHޙff.SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD;HHuӐ tHuHcUH HH;btЉff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDKHHuӐtHuHceHHH;tЉff.fSH0fnFdH%(HD$(1H+ H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD[HHuӐtHuHcuHHH;btЉ ff.fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDkHHuӐtHuHcHHH;ʮtЉff.fAUATUH`fnFdH%(HD$X1H[ Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDcHHufLd$@Ll$ LLvstD$4L$HD$@T$PtXHq` f(Y` 1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukVH?Hc4HEHXH;tT$HLD$L$T$D$L$|fHuL1LtJf.ATH0fnFdH%(HD$(1H|_ H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@裼HHufHHRxH;aIMtoI$H5_jLPtZHuLiIHoHd2bL1HHP@LW8fE1xH"DIjْfATUSH@fnFdH%(HD$81H^ Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$htD$$Ld$u`HELH@H;H=hltLH= Yu-0HaHc߻Vf.LLH= tLH=\ tLDfDHЉBfAWAVAUATUSH8fnFdH%(H$(1H Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$(dH+%(H8[]A\A]A^A_{HHu뾐Lt$0Ll$LLntLd$P-LL}ntT$8D$$LH$\$@-HD$0HfI~$uHEHH;LLD$ND$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH=huHHHHuL1L{fHu-LL{D$LLHD$,AWAVAUATUSHXfnFdH%(H$H1HD Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$HdH+%(HX[]A\A]A^A_+HHu뾐Ll$0Ld$LLFltLt$PLL-ltT$8\$@fod$PH$fol$`fot$pfH~fI~H$@D$$fo$)$fo$fo$D$0)$fo$)$)$)$)$ )$0uHEHxH;ݠOLLD$ND$f.D$0fHnf.l$8fInf.t$@D$Pf.$$f.D$Xxr$f.D$`]WD$hf.$B<D$pf.$'!D$xf.$ $f.$$f.$$f.$$f.$$f.$ zzux$f.$(zdub$f.$0zNuL$f.$8z8u6$f.$@z"u HHHfHuֹLLwH"L1Lw D$LLHD$迊ff.@ATL%!H |HaH5>!Lv8!uLH~!yLA\ATIUHHt HH59aLHJtHmtH]A\HH]A\qdAWAVAUATUSH8fnFdH%(H$(1H^ H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_;HHuÐL$L$LLPgtL$LL4gtH$LXjL$LLWOH$LHHD$f*H$LHf HT$|LHHT$c$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQ;HL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeuc蛽H 荽HIcfUHAWAVAUATSHhHfnFdH%(HE1H HHHGfnȉfbfօ;HH@(HLL2HP4AHcHPHDžEtIcHHL14H}AHc|HDžLuEtIcIHH+LLuE1MtHEI9tL8HPHtHXH9tHEdH+%(HeL[A\A]A^A_]fDHHfDHLHHRUDHLQ?HLHH苐H0LHHQHLHHtBDLLnQ xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創zH8lHf.0f.8f.@ HyE~LHIc1HH9Af.zt䉝蹧H諧HHcVLuIf.E1sH[HL\=딉4HrH1LE\WHLLHHHAVHHHD1AHH9uHHLa%L蓯mHHD1HH9uH7DHھLV[DLL>[YnHB H ff.AWAVAUATUSHfnFdH%(HD$x1H Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P "1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LDHyH6hfDUH@fnFdH%(HD$81H> Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.苐HHuϐHt$ H|$qtD$$t$ u)HEHH̞HuH=DH05H&gfDfDfD fDfDH52 f(2 HF15HH%HHUH==Hu]ÐHH= tHH= tHH=1 ۄtH]f.@闶UH@dH%(HD$81H 1 Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H50 j|$HtHt+HH5'QHPtHuH;1ɜHu=eff.fUH0dH%(HD$(1HuDH4$HD$HFHD$D$t*H1161HT$(dH+%(u-H0]fDH;I1MuH);dfUH0dH%(HD$(1HDH4$HD$HFHD$D$t*H11覸1HT$(dH+%(u-H0]fDH諛I1MuH:dfUSHHdH%(HD$81HD/ Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$:tHl$H=%OHtHH=. u˚HuHc~@H'cSH0fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u3H0[fD苋HHuӐX4HuHc諌db@SH0fnFdH%(HD$(1H | H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11>1HT$(dH+%(u3H0[fDˊHHuӐX88HuHca@SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11~1HT$(dH+%(u3H0[fD HHuӐX0xHuHc+`@SH0fnFdH%(HD$(1HY@H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11辴1HT$(dH+%(u3H0[fDKHHuӐX<踗HuHck$`@H8fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8苈HHuҐkHuH{H__ff.@UH0fnFdH%(HD$(1H>H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11.1HT$(dH+%(uYH0]fD軇HHuӐHhH'HuHtHH5c ^HVB@HzHn^ff.UH@fnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(u^H@]f.軆HHuϐH5_IHT$H|$z|$HtH'HuHc贇m]ff.fUH@fnFdH%(HD$81HIHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(u^H@]f.軅HHuϐH5HHT$H|$z|$HtHHuHc贆m\ff.fUH@fnFdH%(HD$81H/HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(u^H@]f.軄HHuϐH5GHT$H|$z|$HtH HuHc贅m[ff.fATUSH@fnFdH%(HD$81H& Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\諃HHuːHt$H|$11tD$$Ld$uXHELH@H;ru\H=FytLH=% xu)đHeHcsZfDLL @HЉZfATH0fnFdH%(HD$(1H<% H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ݭE1HD$(dH+%(H0LA\@cHHufHHRxH;Zt跩IMtoI$H5DLPtZ蕐HuL/IHoH$bLX1HHP@Ln8fE18H"DIjXfATUSH@HNdH%(HD$81HGfnAH%HfnfbA)t;AH58Dz1HT$8dH+%(H@[]A\H7Ht$H\$L$ D$$D$(HBHG(Ht\$$9\$ twH|$111DH7Ht$H\$D$(fD$ HH_(H]D$ +D$$tZH|$趫17Hh@ώHHHH5,\ H:Ht$ H|$tk8Dd$ H[@xHAHcH1HT$(dH+%(uZH0[fD^HHuӐt2mHuHc_HHH;WtЉ}5ff.fUH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(u^H0]fD]HHuӐt$H@lHuH$@HH`H;WtH4fUH0fnFdH%(HD$(1H;N H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(u^H0]fD\HHuӐt$HPkHuH#@HH H;WtH3fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11n1HT$(dH+%(u=H0[fD[HHuӐ^jHuHc]2f.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螆1HT$(dH+%(uVH0]fD+[HHuӐtH0iHuH뵐HH8H;VtH1UH0fnFdH%(HD$(1HݠH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辅1HT$(dH+%(uVH0]fDKZHHuӐtH@hHuH뵐HHXH;OtH1UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ބ1HT$(dH+%(uVH0]fDkYHHuӐtH8gHuH뵐HHHH;htH!0UH0fnFdH%(HD$(1Hg H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(unH0]fDXHHuӐt4Hc HcHHcHfHuHZHHHH;?QtH)/fUH@fnFdH%(HD$81Hf Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.{WHHuϐH50vHT$H|$:R|$HtHeHuHJH,.ff.UH0fnFdH%(HD$(1HG H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(H0]fVHHuӐtl~hHcHD苇 ~bt HH苇~Jt HHdHpHXeHHPH;ftHfD1,ATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$谀1HT$8dH+%(HH]A\f;UHHuѐLd$Ht$L`tH5[I HT$LO|$HtD$$H|$uHEHH;Ou+H?JcHaH*HHSHHH+ff.ATUHHfnFdH%(HD$81HO Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`1HT$8dH+%(HH]A\fSHHuѐLd$Ht$L_tH5 H HT$LN|$HtD$$H|$uHEHH;eAu3H)[aH[HFHMHHHF*fDAVAUATUSH@fnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$uNH_(HtD$+D$tPH~1HT$8dH+%(H@[]A\A]A^RHHufHt$(HtLc Lcl$,Hcl$(Dd$0Hc`HuIcILHHTl#)ATH0fnFdH%(HD$(1H\H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11|E1HD$(dH+%(H0LA\@QHHufHHRxH;QGIMtoI$H5LPtZ_HuLIHoHDbL'1HHP@L7=8fE1X_H"DIj'fAVAUATUSH@fnFdH%(HD$81H H4$HD$HGfnȉD$fbfD$uNH_(HtD$+D$tPH~{1HT$8dH+%(H@[]A\A]A^PHHufHt$(H~t Lcl$,Lcd$(Lct$0:^HuENƒHcILNHcHL2RQx&ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$6z1HT$8dH+%(H@[]A\NHHuːHt$H|$AtD$$Ld$u`HELH@H;]H= DtLH=cmCu-\HaHcOVf.LLH=[s CtLH=yCtLjfDHЉ$fAWAVAUATUSHfnFdH%(H$1H4= Ht$@HD$HHGfnȉD$XfbfD$Pu]H_(Ht!D$P+D$TtWH|$@x1H$dH+%()Hĸ[]A\A]A^A_MHHu뾐Ld$pHl$@LH6tLl$`HL}tL$HLfD$pD$hHLT$xL$Lfnd$dD$8$$D|$`D$,$T$\$0f~d$(l$t$|$ {D$8f.D$p\$f.\$xl$0f.$D9|$`D$(9D$duD$,9D$huuT$f.$zCuAd$f.$z0u.t$ f.$zuZH5HcL*YHu۹LH YHuLH+[gYH:L1H# "ff.ATUHHdH%(HD$8HFLd$Ht$H{o HD$HDW HT$ LH5o D$(HD$ D$ kE|$ Ht9D$ 9D$(}Ht$ Lj>tt$ HHXHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=!A\XH5n :sHX AW1AVAUATUSHXHNdH%(HD$H1HGAfnH%fnA)fbAtmAH9 Ht$H\$T$(fD$ HHo(HD$ +D$$H|$mt1_fH9 Ht$H\$L$ T$$T$(HjHo(Ht%D$ +D$$H|$ t1HT$HdH+%(dHX[]A\A]A^A_H59 Dq1DsHHHDLd$Ht$LN!L08!ulLH~!HHuϐH5HT$H|$8|$HtD$$u(HEHPVLHuH:1H@H(UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$h1HT$8dH+%(uzH@]f. =HHuϐH5HT$H|$7|$HtD$$u(HEH@FKHuH*0H@H^UH@fnFdH%(HD$81H+Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rg1HT$8dH+%(uzH@]f.;HHuϐH5HT$H|$6|$HtD$$u(HEH06JHuH/H@HlAWAVAUATUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$Vf1HT$8dH+%(H@]A\A]A^A_fLl$Ht$LFtL|$L5/ LLL5|$ItLLLx5|$HtD$$Ht$uQLELHAHH\H-HNfK:HH4f.LH5ff.H8fnFdH%(HD$(1H# H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11d1HT$(dH+%(uLH8{9HHuҐu$HGHuH,H@[<ff.UH@fnFdH%(HD$81Hk Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$d1HT$8dH+%(utH@]f.8HHuϐHt$H|$ADtD$$Ht$u(HEHFHuHc9DH1'UHAWAVAUATSHfnFdH%(HE1H2 H0H8HGfnȉHfbfօ@H0Lo(1HHH}4AHc?8LuEuvM@+DHbH}E1HtHEH9tHEdH+%(tHeL[A\A]A^A_]IcI~@6HH-H0E1H}4Hcz7H}IpLE1eLPHL;HHH5* C1H HH BHH(QHHHH)HpHHHHDLnXP`xp]E~_IFH9<AD$.DH1HfAHH9uDHAt AËD(H IEHLLLLAVHf.PIXZf.Xf.`BHgf.pf.xf.eE~?HIc1 @HH9t$Af.ztH4BH&BH[LH}INBH-HL1AHcHHAHLLLLHAV*^HD1AHH9uHH}HDLV HU1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt< H5w[1HUdH+%(\ He[A\A]A^A_]H mH0H8Hfօ@HDH0Mx(1HHH}4AHca2LeE,MB@+D.H\H}1HUH9(HH(H@H H0H8Hfօ@HH0Mx(1HHH}4AHc1LeEuhM@+DrH[H}1HXHUH9,FIcI@IcILPHLmHHH5L$ *HHH ;|HH(aHHHH#HIc1 HH9t$Af.ztH8H8HqL,H}f@L)IHH0ýH}4Hcr*H}1IL1L)IHH0kH}4Hc*H}1IL17H}HL1b7HHHATLLLHHXHD1@AHH9uH!H9HDL-6H4HL1APLLLLHATKa6HAHHkHD1AHH9uHHDLH2eHיHDAV1AUATUSHpHNdH%(HD$h1HGAfnH%fnA)fbAtgAH Ht$0HL$8T$HfD$@HHo(HD$@+D$DH|$0Q1YL e Ht$0LL$8L$@T$DT$HHHo(Ht%D$@+D$DH|$0tQ1HT$hdH+%(Hp[]A\A]A^ÐH5 DAO1D%HH&DLd$0Ht$LtHt$ LtHt$(LpL$D$ HET$Df(T$(Hf؅KL$PD$XHT$`Ht$PH3HLd$PLl$0LLVl$Xt$`D$DD$PfH~fI~HED$HLD$Hf.D$Pzu}fHnf.|$XzpunfInf.\$`zau_3HmH9'b@{$HHFf.HLD$迭D$Hz2HuL1L)\$P fAUATUHfnFdH%(H$1HC Ht$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$N1H$dH+%(PHĠ]A\A]fK#HHuɐLd$Ht$L.tLl$0LLUtfoT$0fo\$@fod$PD$$Ht$)T$`)\$p)$HELHD$0f.D$`D$hf.D$8zvutD$@f.D$pzfudD$Hf.D$xzVuTD$Pf.$zCuAD$Xf.$z0u.0HHHLHe,d0HuȹLL f.AT1UHHHNdH%(HD$81HGAfnH%fnA)fbAtDAAH5 DJ1HT$8dH+%(HH]A\L Ht$LT$L$ T$$T$(HHo(HtD$ +D$$H|$lL1L U Ht$LL$L$ T$$T$(HHo(HLD$ +D$$LH|$L1"H Ht$HL$T$(fD$ HuPHo(HD$ +D$$tfH|$K1S HHf; HHufD# HH-fLd$HLgHt$LRHt$L=|$$L$T$4$ HEHxH.HH DHt$H|$A+DD$$Ht$EHEHpH@Ld$Ht$L*HT$H5ݠL|$HsD$$Ht$u?HEHe-HKHEH=@H (HH,HHfAV1AUATUSHpHNdH%(HD$h1HGAfnH%fnA)fbAtOAAH5" DlG1HT$hdH+%(Hp[]A\A]A^fL Ht$0LT$8L$@T$DT$HHHo(HD$@+D$DH|$0H1wH Ht$0HL$8T$HfD$@HHo(Ht%D$@+D$DH|$0H1L ' Ht$0LL$8L$@T$DT$HHu~Ho(HtNjD$@+D$DtH|$00H1fHH1HH31~HHq1^Ld$0Ht$ L^Ht$$LIHt$(L4Ll$PLLWf(D$PL$(MH|$`T$$t$ fD$)$|$lf($f.D$Pz&u$t$f.t$Xzu|$f.|$`z1$*H#LL6 Ht$(H|$0A'+T$DHt$(HEHXH)HHLd$0Ht$(L&Ll$PLL1D$DT$XD$P\$`Ht$(fH~fI~D$HELH`D$f.D$PzXuVfHnf.d$XzIuGfInf.l$`z:u8(H,H H@f.HH(HuLLLH4D$i@H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11D1HT$(dH+%(uLH8kHHuҐu$H'HuH H@,ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$C1HT$8dH+%(uzH@]f.{HHuϐH5n7HT$H|$:|$HtD$$u(HEH8&HuH H@H舊fDfDH@H0@H8@H@@H@fD~JBHHD‹ ~/t HcH‹~tHcHfD1DHc HcHHcHf.@IHHIHHH֋HaUH=.H< u]ÐHH=5! tHH=;  tHH=θ tH]龠f.@wUH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,A1HT$8dH+%(uhH@]@HT$H|$H5ַ|$HtHt+HH5HPt$HuH1#Hu]ff.fHGI~H)ǃuHH=wq!L$HH5*X>1HÐUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$?1HT$8dH+%(HH[]DHt$H|$tHl$H=oH tHH= ( u"HuHcn@HH= tHH=  tHH=59 tHH=S tHDff.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$>1HT$8dH+%(H@[]A\ HHuːHt$H|$tD$$Ld$u`HELH@H;!H=\tLH=o&Iu- !HaHcVf.LLH= tLH=ZtLH=7 tLH=tL蔜xDHЉgH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11<1HT$(dH+%(u9H8kHHuҐ;<HuHH?ff.@SH0fnFdH%(HD$(1HL H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11<1HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉMff.fUH@fnFdH%(HD$81H*8 Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$;1HT$8dH+%(u_H@]f.HHuϐH5J#HT$H|$Z |$HtH訕HuHHLff.ATUHHfnFdH%(HD$81HHHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$:1HT$8dH+%(uyHH]A\fDHHuѐLd$Ht$L讴tH5;HT$LF |$HtD$H莓HuHczw0AVAUATUHHfnFdH%(HD$81H"Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$81HT$8dH+%(HH]A\A]A^f.{ HHuŐLt$Ll$LH5L4|$ItLLtHT$HLHoHcSd fAVAUATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$71HT$8dH+%(HH]A\A]A^f.K HHuŐLt$Ll$LH5L|$ItLLtHT$HLktHoHc# dfAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uXHD$Ho(Ht!D$ +D$$tIH|$61HT$8dH+%(H@]A\A]D HHu̐Ll$HT$H5L|$ItHt$L耸tHT$HLlEHwHc lf.AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uXHD$Ho(Ht!D$ +D$$tIH|$e51HT$8dH+%(H@]A\A]D HHu̐Ll$HT$H5U}L|$ItHt$LPtHT$HLHwHc lzf.AVAUATUSH@fnFdH%(HD$81HaHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t;H|$741HT$8dH+%(H@[]A\A]A^@Lt$Ll$LH5^L|$ItLH5TLh|$HtLHsHuHc uf.KHH.S5DAVAUATUSH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t;H|$21HT$8dH+%(H@[]A\A]A^@Lt$Ll$LH5zLD|$ItLH5L(|$HtLHHuHc_uf. HH.SDATH0fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH111E1HD$(dH+%(H0LA\@SHHufHHRxH;gIMtoI$H5$LPtZHuLxIHoH|bL1HHP@L8fE1(H"DIjfATUHhfnFdH%(HD$X1HHt$0HD$8HGfn؉D$HfbfD$@uJHo(Ht!D$@+D$DtDH|$0P01HT$XdH+%(Hh]A\fHHuѐLd$0HLtHt$LߪtHt$LntHt$L轪tHt$ LLtHt$(L藪_T$(HL$ HL$HT$D$H4$GH'Hc_DATUHxfnFdH%(HD$h1H0Ht$@HD$HHGfnD$XfbfD$PuJHo(Ht!D$P+D$TtDH|$@.1HT$hdH+%(Hx]A\fkHHuѐLd$@HL tHt$LotHt$LtHt$LMtHt$ LtHt$(L'_Ht$0LJHt$8L5\$8LD$0HT$(HL$ L$HT$D$H4$ HHcpAVH #HlAUH5]!ATL%Z[!ULS0[!t[L]A\A]A^#HLL5-\!H\!Lk0Hc{AHHtH3HL;Hmt$HL9uL[L]A\A]A^HfDATIUHMHt HH5LHӘtHmtH]A\HH]A\UH@fnFdH%(HD$81HY Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$2,1HT$8dH+%(uzH@]f.HHuϐH5% HT$H|$z|$HtD$$u(HEHHuHH@HnQfDwUH=4Hu]ÐHH=tHH= tHH={tHH= % htHH=(UtH]qUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$*1HT$8dH+%(uhH@]@HT$H|$H56|$HtHt+HH5HPtb HuHU1I Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$)1HT$8dH+%(utHH[]fHt$H|$迫tHl$H=HtHH=guk HuHc@H@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11(1HT$(dH+%(uuH0[fD+HHuӐt$W0fH~ HufHnި@HHH;u_0fH~ffH~fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11'1HT$(dH+%(uuH0[fD+HHuӐt$W8fH~ HufHnާ@HHH;ou_8fH~ffH~fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$&1HT$8dH+%(H@]fDHHuϐHt$H|$1tD$$D$t?f.E0ztHEE0HO HuH3Hzf.HEHH;f uf.E0ztE0HHt@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B%1HT$8dH+%(H@]fDHHuϐHt$H|$tD$$D$t?f.E8ztHEE8HHuHHzf.HEHH;Nuf.E8ztE8HH$@ATUSH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$#1HT$8dH+%(H@[]A\kHHuːHt$H|$tD$$Ld$uXHELH@H;Vu\H=tLH=u)HeHc3ZfDLLH@HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11"E1HD$(dH+%(H0LA\@#HHufHHRxH;ghIMtoI$H5LPtZUHuLHIHoHlbL1HHP@L8fE1H"DIjYfATL%sS!H HH5T!LS!uX'LH>T!LA\ATIUHmHt HH5LH#tHmtH]A\HH]A\AWAVAUATUHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0(Ho(Ht!D$0+D$4t:H|$ v 1HT$HdH+%(HP]A\A]A^A_fL|$Lt$ LH5L|$ItLH5L|$ItHt$LtLH5 L{|$jLLHD$PRD$4LL$HL$LD$uQHEHLLfH~HfHn@#HHfHLL肴fH~fDf.G0zufHG0fG0fDf.G8zufHG8fG8fDdUH=<H u]ÐHH=ĕtH]}@7 UH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5֔|$HtHt+HH5>HPtHuH1Hu]ff.fUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$L1HT$8dH+%(uFH@]@H|$HT$H5 |$Ht+H3HuH&ff.@ATUHHdH%(HD$81H) Ht$HD$HFHD$$D$ D$ wcLd$HT$ H5Z L |$ Ht#D$ 9D$(|Vt$ HJHHtU1HT$8dH+%(uMHH]A\H|$f.Ht$ LuDH fHGI~H)ǃuHH=T!L_HH51HÐHGI~H)ǃuHH=T!LHH5H1HÐHGI~H)ǃuHH=T!LHH5,1HÐUSHHdH%(HD$81HԑHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$诜tHl$H=HtHH=& u[HuHc@HH=,YtHy@ATH0fnFdH%(HD$(1HܐH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5qLPtZ5HuL(IHoHcbLt1HHP@L8fE1H"DIj9fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u6H0[fDHHuӐHuqSH0fnFdH%(HD$(1H.( H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fDHHuӐtBHuHcHHH;tЉff.fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$F1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$uXHELH@H;ulH=2 tLH= u)HeHcZfDLLH=tLt븐HЉfATUHHdH%(HD$8HFLd$Ht$H HD$HTHT$ LH5 D$(HD$ D$ {|$ Ht9D$ 9D$(}Ht$ Lztt$ HHHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=&M!A\H5 JHhATL%H!H HrH5nJ!LhI!u(LHI!LA\ATIUHM{Ht HH5LHtHmtH]A\HH]A\顙H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@clff.UH0fnFdH%(HD$(1H6 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(ucH0]fDHHuӐu,HH+HuHHx{HfDt@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uzH@]f.HHuϐH5wHT$H|$|$HtD$$u(HEHxHuHH@HraUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(uzH@]f.HHuϐH5VHT$H|$z|$HtD$$u(HEHpHuHH@HhcQUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uzH@]f.HHuϐH5WHT$H|$j|$HtD$$u(HEHhHuHH@HAUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH56HT$H|$Z|$HtD$$u(HEH`HuHH@HH1UH@fnFdH%(HD$81H9 Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uzH@]f.HHuϐH5 HT$H|$J|$HtD$$u(HEHHuHH@H!UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uzH@]f.{HHuϐH5 HT$H|$:|$HtD$$u(HEHHuHH@HHH8fnFdH%(HD$(1HvH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11 1HT$(dH+%(uLH8{HHuҐu$HXHuHH@H(HtD$9D$t;H111HT$(dH+%(uLH8[HHuҐu$HHuHH@Pf.ffDUH=H|u]ÐHH=atHH=!|NtH]dGWUH@dH%(HD$81H{Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H56{|$HtHt+HH5HPtbHuHU1IHu软ff.fSH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uH(HtD$9D$t;H111HT$(dH+%(uLH8苲HHuҐu$HHuHҥH@cELf.fHG8HG0HG@/AUATIULo@HMtpHtSL{tdL还L>LhLLLHE@HiHEH]A\A]H@LxHE@fDHu]A\A]f.UH=Hu]ÐHH=SѦtH];@*UH@dH%(HD$81H SHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5Rj|$HtHt+HH5HPtHuH]1ɾHu=ff.fUSHHdH%(HD$81HdRHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?]tHl$H=H'tHH=( uHuHc螰@HH=QtH94@H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8蛮HHuҐXHuHHoff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u7H0[fD˭HHuӐ~4HuHc蠄SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(u7H0[fD HHuӐ+tHuHc'SH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDKHHuӐ+K贺HuHcg UH0fnFdH%(HD$(1H, H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD苫HHuӐtHo`HuHX@HHH;tHAUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.蛪HHuϐHt$ H|$聞tt$ HFHuHНHUDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(uVH@]f.諩HHuϐHt$ H|$葝tt$ H_HuHHeDATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(ulHH]A\fD軨HHuѐLd$Ht$L螜tHt$ L荜tT$ t$HgHuH؛H]ff.fATUSH@fnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\蛧HHuːHt$H|$!UtD$$Ld$uXHELH@H;ulH=tLH=i ݜu)贵HeHccZfDLLH=tI衜tLe1븐HЉ}fATH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH;*IMtoI$H5?LPtZuHuLhSIHoHbL|1HHP@L8fE1H"DIjy|fATL%!H tH](RUH@dH%(HD$81Hz?Ht$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&?ڗ|$HtHt+HH5&HPtRHuHEJ19Husff.fUSHHdH%(HD$81H>Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$ItHl$H=DH藑tHH=脑u[HuHc@HH=,>YtH&r@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uH0HfHn}=L$IDE1HT$(Ht$ LH D1AHL$HH9uD1DHL$(HL$HH9uD1HL$ HL$HH9uzDLHT!HT$ D1HtTHT$(DHZTgHH\Hoff.AWAVAUATUHSH8fnFdH%(H$(1HHHt$PHD$XHGfnȉD$hfbfD$`Hm(H\$P1H#H|$p4AHc蠐HL$pHD$HL$ Et IcHHD$H#4H$AHcYH$HD$HT$(Et IcHHD$He#4H$AHcHD$L$Et IcIHD$HD$`+D$dHQL$E1MtH$I9tLuH$H$H9t HtuH|$pHD$xH9t HtuH$(dH+%(H8L[]A\A]A^A_kHHYXf.Ht$ DHC7Ht$(DHhCDLHRC Ht$HH-4E~lHD$ HH9D$AD$D1HHL$ fHL$H)T$0H9uDAtHT$ E~kHD$(HH9D$AE D1HHL$(f$HL$$H)d$0H9uDAtHT$(E~^AFIGH9D$}D1HfA4HL$4HH9uDAt AD$dD$HHEHT$(LHHt$ E~=Ic1HH9t&HL$ HL$f.ztʚH[E~;Ic1DHH9t&HL$(HL$f.zt芚H2E~7Ic1DHH9t"HL$Af.ztNH@HHcL$IE1HT$(Ht$ LHk+D1AHL$HH9uD1DHL$(HL$HH9uD1HL$ HL$HH9uzDLHN!HT$ D1HNHT$(DHjNaHHHf.f?UH=Hu]ÐHH=ntHH=,tH]@UH@dH%(HD$81H ,Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5+j|$HtHt+HH5HPtHuH61ɗHu=`ff.fUSHHdH%(HD$81Hd+Ht$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?6tHl$H=%H'~tHH=%~uHuHc螉@HH=*}tH4_@ATUSH@fnFdH%(HD$81Hf*Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\{HHuːHt$H|$5tD$$Ld$uXHELH@H;ulH=|tLH=|u)蔕HeHcCZfDLLH=T)|tLE븐HЉ]fATH0fnFdH%(HD$(1H(H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝱E1HD$(dH+%(H0LA\@#HHufHHRxH;Ҋ;IMtoI$H5zLPtZUHuLH3IHoHbL\1HHP@Lq8fE1H"DIjY\fAUATUHPdH%(HD$HHFt<H5e1HT$HdH+%(HP]A\A]DLl$Ld$ Ht$ HLH5 LHD$(HD$8HD$0HD$|$HtHt$L/2rHt$Lzx]LLgxJL$T$E1HHt$CH迒H!HHH5`H>Ll$Hl$ Ht$ HLH5 HHD$(HD$8HD$0HD$~|$IHt$HK1Ht$ HwyHt$HwdLHnwQDD$L$LT$ Ht$HvH)7ZATL%3 H HH5 Lo u3LH {LA\ATIUHMHt HH5TLHtHmtH]A\HH]A\3w8UH= H xu]ÐHH=wtHH=$wtH] AWAVAUATUS1HdH%(H$1HHl$ Ht$ HD$(HFH1HD$4D$0H$4AHcoL$EtIcI\D$0+D$4teHˬE1H$HtH$H9tIhH$dH+%(IHL[]A\A]A^A_DDLHZ6tHt$HٌtLt$PHL06mL|$@HLPE~RAD$IEH9xD1HfAL HH9uDAt ADHD$@Ht$LLfoT$Pfo\$`LH$HD$H)T$pHD$)$5Ic1E0fHH9tADf.zt肎HD$Pf.D$pD$xf.D$Xzu}$f.D$`zlujD$hf.$zYuWH$H9D$@u+HD$H9D$HuH L%rI$Hu׹LHύHuLHBD1fDADHH9uDL1HBUHzUH@dH%(HD$81H Ht$HD$HFHD$$D$ t0H|$ܩ1HT$8dH+%(uhH@]@HT$H|$H5 :y|$HtHt+HH5oHPt貌HuH+1虌Hu Uff.fUSHHdH%(HD$81H4 Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$+tHl$H=HrtHH=r- ru軋HuHcn~@HH=rtH}T@UH0fnFdH%(HD$(1Hp H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ާ1HT$(dH+%(u^H0]fDk|HHuӐt$HoXӊHuH|HHH;tHSfSH0fnFdH%(HD$(1Ho H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{{HHuӐt$WPfH~݉HufHn.'@HHH;hu_PfH~ffH~RfUH@fnFdH%(HD$81Hn Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDkzHHuϐHt$H|$ tD$$D$t?f.EPztHEEPH蟈HuHmHzf.HEHH;vuf.EPztEPHHP@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝤E1HD$(dH+%(H0LA\@#yHHufHHRxH;jk׆IMtoI$H5LPtZUHuLH&IHoHbLO1HHP@Ld8fE1H"DIjYOfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\wHHuːHt$H|$!%tD$$Ld$uXHELH@H;}ulH=ltLH=k' lu)贅HeHccxZfDLLH=tltLe븐HЉMfAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH j Ht$ HL$(T$8fD$0HHo(Ht L`8 uCLH~ lLA\ATIUH]Ht HH5 LH# tHmtH]A\HH]A\$AWAVAUATUSHfnFdH%(HD$x1H" Ht$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ v1HT$xdH+%(HĈ[]A\A]A^A_fDqHHufLd$@Hl$ LH'tLl$`HL&tD$4T$HD$@\$Pd$hl$`$t$p\$fI~fH~D$t$ILLLD$f.D$@$f.T$Hd$f.d$PfHnf.|$`zbu`fInf.\$hzSuQl$f.l$pzCuALHH,dHLLL2\D$W HuLH!4~H[L1H3D>Gff.AW1AVAUATUSHhHNdH%(HD$X1HGAfnH%fnA)fbAtMAAH5 D 1HT$XdH+%(Hh[]A\A]A^A_DL Ht$ LT$(L$0T$4T$8H"Ho(HD$0+D$4H|$ 舚1yH A Ht$ HL$(T$8fD$0HHo(Ht%D$0+D$4zH|$ .1L  Ht$ LL$(L$0T$4T$8HuNHo(HtNjD$0+D$4thH|$ ԙ1DsnHH[1[nHHu1@CnHHTfLl$@Lt$ LLV#0l$Ht$Pt$4Ld$@fI~fH~HEHLfH~fInf.|$@z$u"fInf.\$HzufHnf.T$Pz|HL1L11@Ld$ Ht$LHt$LkHt$LlVD$L$T$4T$f(HEfمHH;mD$@L$HHT$PHt$@fH~ŐK{HfHnL|$Ll$ L5cLLLqg|$ILLLUg|$HL$4uGHELHzHcH_HyHLyfH~ILH2)\$@HfH~"Bf.f.GPzufHGPfGPfDf.GXf(fzuf.O`zuf.Whz u H_XWhf.@HGX'yUH=bH`u]ÐHH=? `tHH=q `tH]afHVf(HH;hff(u4f.GXzuf.g`zuf.Whz u GXWhf.@UH@dH%(HD$81Hz Ht$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5& d|$HtHt+HH5FHPtRxHuHE19xHu@ff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$蒔1HT$8dH+%(utHH[]fHt$H|$tHl$H=dH^tHH=W ^u[wHuHcj@H0?H8fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11菓1HT$(dH+%(u9H8hHHuҐ%vHuHj[H>ff.@SH0fnFdH%(HD$(1Hv H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辒1HT$(dH+%(u7H0[fDKgHHuӐ{uHuHcgh >SH0fnFdH%(HD$(1HjH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDfHHuӐt1tHuHcgfDHHH;]tЉB=fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDeHHuӐttHuHcfHHH;XtЉ]H(HtD$9D$t;H111HT$(dH+%(H8@KTHHuҐHtAHH;ZuIG8t G8bHuHtGHfDHH;BAt@1*DH8fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11~1HT$(dH+%(H8@;SHHuҐHtAHH;YuI8t G8aHuHeFHHH;"Lt@)fH8fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11}1HT$(dH+%(H8@+RHHuҐHtAHH;KuIGxt Gxp`HuHTEHfDHH;j=t@1(DH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11|1HT$(dH+%(H8@QHHuҐHtAHH;JuIxt Gxa_HuHEDHHH;Tt@'fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r{1HT$8dH+%(H@]fDOHHuϐHt$ H|$CtD$$t$ tI9O1H9uPtHEuPH&^H{HCHmDHEHH;?u$9O1҅H9uPtuPHHD&@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$z1HT$8dH+%(H@]fDNHHuϐHt$ H|$BtD$$t$ tI9O1H9u`tHEu`H\H{HAHmDHEHH;`u$9O1҅H9u`tu`HH$@AUATUSHXfnFdH%(HD$H1HuHt$HD$HGfnȉD$(fbfD$ uOHo(Ht!D$ +D$$tQH|$x1HT$HdH+%(HX[]A\A]@3MHHufLd$0Ll$LLFtD$0T$8LHD$fH~@eD$f.D$0z2u0fHnf.\$8z#u!<[HVH@HHuչL1L4}#ff.fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$6w1HT$8dH+%(H@[]A\KHHuːHt$H|$AtD$$Ld$uXHELH@H;Ju\H=AtLH=@u)YHeHcLZfDLL@HЉ"fATH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11uE1HD$(dH+%(H0LA\@sJHHufHHRxH;9g#IMtoI$H5LPtZXHuLIHoH4bL 1HHP@L'68fE1HXH"DIj fAU1ATUH`HNdH%(HD$X1HGAfnH%fnA)fbAAuXH Ht$ HL$(T$8fD$0HHo(Ht:D$0+D$4H|$ Ft1fH5D1r1HT$XdH+%(H`]A\A]ÐL Ht$ LL$(L$0T$4T$8H:Ho(HtD$0+D$4H|$ s1[HHH+if.Ld$ Ht$L^EHt$LI0L$D$HxVHHX;HLl$@Ld$ LLD$@L$HH$L$W$f.D$@z@L$u8f.L$Hz0u.UH{D[GHHiUHuȹL1L 'ATL% 1HoH53 L3- u-xLHs ?LA\ATIUHMZHt HH5LHtHmtH]A\HH]A\UH@fnFdH%(HD$81Hy@ Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Rq1HT$8dH+%(uzH@]f.EHHuϐH5.HT$H|$@|$HtD$$u(HEHPTHuH8H@HJqUH0fnFdH%(HD$(1HFjH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Np1HT$(dH+%(ucH0]fDDHHuӐu,HH;SHuHHxEkHfDf@9w8tHw8G89wxtHwxGx9O1H9wPtHwPf.f.D1ffDGP9O1H9w`tHw`f.f.D1ffDG`f.GXzufHGXfGXfDf.GhzufHGhfGhfDUH=)H\8u]ÐHH=A8tH]@HHH;3Iu!8tG8fDHHH;<u!xtGxfDHHH;;u!WxtGxD1@HHH;sHu!W8tG8D1@+UH@dH%(HD$81HzHt$HD$HFHD$$D$ t0H|$|l1HT$8dH+%(uhH@]@HT$H|$H5&;|$HtHt+HH5HPtROHuHE19OHuff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$k1HT$8dH+%(HH[]DHt$H|$tHl$H=H5tHH=5u[NHuHcA@HH=,Y5tH@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$fj1HT$8dH+%(H@[]A\>HHuːHt$H|$qtD$$Ld$uXHELH@H;;ulH=H@4tLH=-4u)MHeHc?ZfDLLH=3tL븐HЉ2fUSHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$i1HT$8dH+%(ucHH[]=HHuАHt$H|$AItHC0HP(HD$HHHlKHuH)~>7USHHfnFdH%(HD$81H-Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$h1HT$8dH+%(ucHH[]7UH@fnFdH%(HD$81HUHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$g1HT$8dH+%(H@]fD;HHuϐH5~ZHT$H|$J6|$HtD$$t(H}0HPIHuH.HHEHH;+tHUSHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$e1HT$8dH+%(HH[]@k:HHuАHt$H|$!FtHC0HT$HX H@(H,HHuHuKH} Ht HE H}(Ht HE(FHuH*HyDHt@ATL% H HH5~ L6$x u LH 90LA\ATIUHmlHt HH5LHCtHmtH]A\HH]A\1H0H`f SHH Ht HC H{(Ht tHC([f.UH=H+u]ÐHH={+tHH=+tH]f.7UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$`1HT$8dH+%(uhH@]@HT$H|$H5Z0|$HtHt+HH5PHPtCHuH1CHu- ff.fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$`1HT$8dH+%(HH[]DHt$H|$/tHl$H=nH*tHH=1*uBHuHc5@HH=$)tHH=)tH芾 SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11^1HT$(dH+%(u7H0[fD{3HHuӐAHuiP UH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.^1HT$(dH+%(u[H0]fD2HHuӐt"AHuHE5HHH;:3tHl ff.UH0fnFdH%(HD$(1HiH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>]1HT$(dH+%(uhH0]fD1HHuӐHt-@HuHP4fDHHHH;u0tHoff.@UH0fnFdH%(HD$(1HvH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>\1HT$(dH+%(u^H0]fD0HHuӐt$H0?HuH@HHxH;1tHyfUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N[1HT$(dH+%(uVH0]fD/HHuӐtH@>HuHc2뵐HHH;o;tHUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$bZ1HT$8dH+%(H@]fD.HHuϐHt$H|$:tD$$Ht$tPH9HLH9tHEHH=HwH!HifHEHH;)u,H9HLH9tHHDH$@ATH0fnFdH%(HD$(1H\H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11XE1HD$(dH+%(H0LA\@-HHufHHRxH;0 IMtoI$H53LPtZ;HuLIHoHDbL1HHP@L78fE1X;H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$vW1HT$8dH+%(H@[]A\+HHuːHt$H|$tD$$Ld$u`HELH@H;>=H=L!tLH=f9!u-:HaHc,Vf.LLH=D tLH= tL誵fDHЉ"fAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAAuZH UpHt$HL$T$(fD$ HHo(HtH(HtD$9D$t;H11Q1HT$(dH+%(uLH8[&HHuҐu$H(4HuHH@C@ff.H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11P1HT$(dH+%(uLH8{%HHuҐu$H03HuHH@#"HLH"H>LH$"HL1H$Hn+QLLHAPLLL$M^_A!"HLH3$H+A!H%LH !HL1HPLHRLQLAPLL$(MH Aff.AVAUATUSHpfnFdH%(HD$h1HDHt$HD$HGfnȉD$(fbfD$ Hl$Lw(11HlH|$04AHcLl$0EuoMD$ +D$$Hs=H|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDHH>H|$1E1谥H|$04Hc^H|$0IsLE1hDLHGHT$H5 H6 |$I%E~WIEH9AD$D1HDfATHH9uDAt ADËD$$ILLL0E~,Ic1 fHH9tADf.zt"Ht'H|$0E1HlL%I$[DL1H@LLLґDD1ADHH9u:!H΃DAW1IAVAUATUSHfnFdH%(H$HG~H%fn)fbH Ht$PHL$XT$hfD$`HJHl$PMp(1HrH$4AHcL$EMOD$`+D$d1Ho:H$1H$H9Ht}H$H$nH ]Ht$PHL$XT$hfD$`H4M`(Mt%D$`+D$dH|$P91f.H571H$dH+%(H[]A\A]A^A_fIcI\L8IHH|$PH$4HcH$1IL1fL$Hl$PLHD$dH$$L$I$$LLH@H;8$If.$fHnf.$fInf.$HqLfL|$pHL+Ht$HHHT$GH5H|$GH$H$HHHD$gDLHQl$xt$p$l$ $t$($|$8$l$t$|$0E~SIEH9IAD$;D1HfAd$HH9uDAt ADËT$dD$HIHL$MLH$LHl$(f.l$pIzt$ f.t$xhbt$8f.$MG|$f.$l$f.$|$0f.$E~2Ic1 @HH9tADf.ztJH#<HL[ H$fDL IH1D$LLH5L1H$IH&HT$H }HL1HHL$H$MLL&*D1@ADHH9uDLH;HO}Dfnfnfb9tHfև9u9uf.DH@H9HLH9tHHf.DfDHÐH@UH=sHu]ÐHH=.tHH=9tHH=tH]鞒f.@H~NLhfpf~L;f~u=9tfևf9u;uAD7駟UH@dH%(HD$81HZHt$HD$HFHD$$D$ t0H|$\21HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5(HPt2HuH%1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$r11HT$8dH+%(HH[]DHt$H|$菳tHl$H=FHwtHH=cdu;HuHc@HH=9tHH=&tHqSH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11N01HT$(dH+%(u7H0[fDHHuӐDHuW;UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11/1HT$(dH+%(u[H0]fDHHuӐtHuHHHH;Z tHff.SH0fnFdH%(HD$(1HcIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fD+HHuӐtHuHcEHHH; tЉff.fSH0fnFdH%(HD$(1HHH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11-1HT$(dH+%(uZH0[fD;HHuӐtHuHcUHHH;JtЉff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11,1HT$(dH+%(uhH0]fDKHHuӐHtHuHfDHHHH;tHff.@UH0fnFdH%(HD$(1H FH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11+1HT$(dH+%(u^H0]fDKHHuӐt$HHuH.@HHH;tHfSH0fnFdH%(HD$(1H'EH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11*1HT$(dH+%(uUH0[fD[HHuӐt HuHctfHHH;tЉfUH0fnFdH%(HD$(1H7H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11)1HT$(dH+%(uVH0]fD{HHuӐtH HuH뵐HHH;tH1UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$)1HT$8dH+%(uWH@]f.HHuϐHt$H|$A tHt$HPH HuHD@ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$(1HT$8dH+%(uyHH]A\fDHHuѐLd$Ht$LNtHT$H5LF|$HtHt$H_ HuHHw0UH@fnFdH%(HD$81HAHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$'1HT$8dH+%(H@]fDHHuϐHt$ H|$qtD$$t$ tAN9tHEH HuHHrfHEHH; u,N9tHfH@UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$%1HT$8dH+%(H@]fD+HHuϐHt$H|$tD$$Ht$tPH9HLH9tHEHHRHwH2HifHEHH;nu,H9HLH9tHHDHd@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=$E1HD$(dH+%(H0LA\@HHufHHRxH;rIMtoI$H5LPtZHuLIHoHnbL41HHP@Lw8fE1H"DIjfATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$"1HT$8dH+%(H@[]A\;HHuːHt$H|$tD$$Ld$u`HELH@H;H=XtLH=xyu-PHaHcVf.LLH=9tLH=&tLfDHЉbfAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAAuZH ;Ht$HL$T$(fD$ HHo(HtH5!1HT$hdH+%(RHp[]A\A]A^fDH Ht$HL$T$(fD$ HIx(HtD$$9D$ H|$111H @Ht$HL$T$(fD$ HHl$1Mp(1HH|$04AHcLl$0EubMD$ +D$$H&H|$01HT$8H9HHD$HD$@IcI\fD8HHhH;G!HHHHHvDDLHrTE~YIEH9xAD$jD1HfATHH9uDAt ADËD$$ILLpE~3Ic1DHH9tADf.ztHIH|$01MHHHoXHHH5-VHSfLIHH|$1H|$04HcH|$01I L1fLIH81DLL蕈D1ADHH9uDL1HdHYbATUHHfnFdH%(HD$81HX Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$ 1HT$8dH+%(HH]A\fHHuѐLd$Ht$ LtHT$ H50oLV|$ HtD$$t$ u0HEH8HuHHgDH8!H8fnFdH%(HD$(1HW H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$H(HuHH@3lLff.H8fnFdH%(HD$(1H!W H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$H0HuHH@lff.H8fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11?1HT$(dH+%(uLH8HHuҐu$H .HuHH@ff.AU1ATUHpHNdH%(HD$h1HGAfnH%fnA)fbAtBAH5Di1HT$hdH+%(VHp]A\A]fL Ht$0LL$8L$@T$DT$HHHo(HtD$@+D$Dt|H|$01@H VHt$0HL$8T$HfD$@HHo(HND$@+D$DH|$01$Ld$0Ht$(LVLl$PLLIHT$ H5=L|$ HD$DD$(HELH`Ld$0Ht$LΎ}Ht$L蹎hHt$ L褎SHt$(L菎>H5HT$L#|$H\$(T$ HL$D$HHpHHHkf.HHLH訾AU1ATUH`HNdH%(HD$X1HGAfnH%fnA)fbAtBAH5D1HT$XdH+%(VH`]A\A]fL Ht$ LL$(L$0T$4T$8HHo(HtD$0+D$4t|H|$ 1@H Ht$ HL$(T$8fD$0HHo(HND$0+D$4H|$ 1$Ld$ Ht$LFLl$@LLiHT$H5]L|$HD$4t$HELHXf.Ld$ Ht$L}Ht$LًhHt$LċSHt$L诋>HT$H5LC|$HT$L$HD$t$GZHHHf HHkf.HHLHxȻAV1AUATUHhHNdH%(HD$X1HGAfnH%fnA)fbAt@AH5D 1HT$XdH+%(Hh]A\A]A^DL ϏHt$ LL$(L$0T$4T$8H Ho(HtD$0+D$4t|H|$ 01@H wHt$ HL$(T$8fD$0HHo(HPD$0+D$4H|$ 1&Ld$ Ht$L薉Ll$@LL艘Lt$LLaT$4D$-HEHLLPH|HD$LLd$ Ht$LgLl$@LLJHt$LĈ5Lt$LL謈D$4L$D$HEHLLHHt~HHHH[f.HHHLLHHLLHxD$LKj衸AT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAtHt$HD$HFHD$$D$ D$ Hl$Ht$HHt$@H蓝Ld$0HLvD$ 9D$(|$Dt$L+|$@+t$HHL$LcDL$8~D$0HLcHfpfA~IIHDT$PDT$8Hc)H)HIf~D$HD$4)L$@L$09uxD9usE9unHu(HHH|$\1HT$XdH+%(uNHh]A\fHt$HfKHuLHn觮ATUHxdH%(HD$h1HHt$HD$HFHD$$D$ D$ Hl$Ht$0H؛Ht$PH辛Ld$@HL衛D$ 9D$(~T$X~D$P~L$@L$`fb~T$0L$8f~DD$HfpL$Hff~f~fpfD$@f~9uv9urD9umHu'HHfDH|$1HT$hdH+%(uNHx]A\fHt$ H3@fHuLHoATUHxdH%(HD$h1HZHt$HD$HFHD$$D$ D$ Hl$Ht$0H(Ht$PHLd$@HLD$ 9D$(~D$P~\$X~L$@L$8fo~D$0+L$`fbf~DD$Hfpf‰L$Hf~f~fpfD$@f~9ur9unD9uiTHu#H8HfH|$1HT$hdH+%(uNHx]A\fHt$ H@fHuLHAsGATUHXdH%(HD$H1HVH4$HD$HFHD$D$t7H=1HT$HdH+%(HX]A\HHt$(HStLd$8HL:tD$(L$,~D$8DD$@HQ1fpf~HыL$0fnȃfnHfbf~fL$8L$@9u(9u$D9uH4HH&Hu׹LHf.ATUHhdH%(HD$X1HhHt$HD$HFHD$$D$ D$ Hl$Ht$@HLd$0HLD$ 9D$(D$D+D$@H‹T$L+T$HH~D$0L$T+L$PfnDD$8Hfnf~fpfbf~׉L$8fL$09us9uoD9ujUHu$H9HH|$1HT$XdH+%(uNHh]A\fHt$ H6fHuLHArGATUHhdH%(HD$X1HHt$HD$HFHD$$D$ D$ Hl$Ht$@HxLd$0HL[D$ 9D$(~D$0D$DT$LL$T+D$@+T$Hf~fp+L$PDD$8D$0f~ωT$4L$89u|9uxD9usHu%HH@H|$t1HT$XdH+%(uVHh]A\f.Ht$ HFf[HuLHi跦ATUHdH%(H$1HfHt$HD$HFHD$$D$ D$ )Hl$Ht$0HLd$PHLœD$ 9D$(HD$`t$0L$<|$8DD$@fnDL$PH$D$4QL$DfnfoT$P9)T$pL9L׃fnD9fnALfbfbflfn)D$PfAnfbfD$`D9;D$t;|$x;T$|D9$uz;$uqHu+HH f.H|$l1H$dH+%(uKHĘ]A\@Ht$ HŐ[HuLHk跤AVAUATUSH`dH%(HD$X1Hv Ht$HD$HFHD$$D$ D$ Hl$Ht$8HHt$HHɑtyD$ 9D$(\$HT1H$dH+%(HĨ[]A\A]DLd$ HLH`tLl$`HLGtHD$0foD$ LLfoL$`HD$PHD$p)D$@H$)$ËD$@9D$ D$D9D$$D$H9D$(D$L9D$,D$P9D$0D$T9D$4$9D$`ue$9D$duXD$h9$uK$9D$lu>$9D$pu1$9D$tu$?HHcfHuҹLHqHXL1HHANff.AWAVAUATUSHxdH%(HD$h1HHt$ HD$(HFHD$4D$0t?H|$ 31HT$hdH+%(+Hx[]A\A]A^A_fDLd$HHl$ LH>tLl$XHL%tD$PLLDt$\~D$H\$XD$D$`fpfD$fA~ωD$y~D$D$f~;D$HusD9|$LulD$9D$Pub9\$Xu4D;t$\u-D$9D$`u#HHc|$3 fDcHuӹLH;HuL1H蝑ff.fUH@dH%(HD$81H\Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H56\|$HtHt+HH5KHPtbHuHUg1IHu轐ff.fHFuHHH=&L HH5a 1HAWAVAUATUSHdH%(H$HFtIXH5{ z1H$dH+%(HĘ[]A\A]A^A_HE{ Hl$@Ht$@HD$HHt$8HHD$XHD$PtLl$7L%HLL胳|$7IkLLHg|$7IOLd$xHL}2~D$xLLLH|$8D$fpfD$f~L~D$f~;D$xu;\$|uD9$HwLH]H-z Hl$@Ht$@HD$HHt$8HH'D$XHD$PywLl$7L%ݫHLLg|$7RLLHHD$I|$74HD$HD$hHHHD${LL$LT$Ld$xHLT$(LLL$ {~D$h$MHL$HT$(Ht$ H|$8fpD$fD$D|$pDl$|fA~֋\$x;!~D$f~;D$husD9t$lulD9|$pue;\$xu7D;l$|u0D$9$u#HKHީH=DHuӹLH1HuHT$Hu ff.fATUHhdH%(HD$X1H>Ht$HD$HFHD$$D$ D$ Hl$Ht$HmHt$@H#zLd$0HLzD$ 9D$(|$Dt$L+|$@+t$HHL$DL$8Lc~D$0HHfpfA~LcIIHDT$PDT$8Hc)H)HIf~D$HD$4)L$@L$09urA9umE9uhCHu"H'HH|$1HT$XdH+%(uNHh]A\fHt$HsfHuLH1t7USHHdH%(HD$81HdVHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(utHH[]fHt$H|$?atHl$H=H'tHH=UuHuHc螴@H=GATUSH@fnFdH%(HD$81HvUHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\苲HHuːHt$H|$`tD$$Ld$uXHELH@H;u\H=tLH=Tͧu)HeHcSZfDLLh<@HЉfATH0fnFdH%(HD$(1HTH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH;7IMtoI$H5^LPtZuHuLh^IHoH'bL贇1HHP@L8fE1H"DIjyfATL%= 1HH5C? L;=> u}LH> >LA\AUIATUSHڳHtHH5ULH@GudHuL @HL9t7Hc{HHtH3HLGHmuHH`L9uH[]A\A]DHmuH`釈UH=Hu]ÐHH=QѤtH]9@ATUHXdH%(HD$H1HΟH4$HD$HFHD$D$t7H 1HT$HdH+%(HX]A\HHt$0H#stLd$ HL st~D$ D$4T$z|$HtHt+HH5βHPtHuHI1٪HuMsff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uFH@]@H|$HT$H5蚖|$HtKH#HuHIrff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5JL|$ Ht#D$ 9D$(|Vt$ HHrHtU1HT$8dH+%(uMHH]A\H|$ f.Ht$ L裎uDHHqfUSHHdH%(HD$81H<Ht$HD$HFHD$$D$ HD$t6H|$r1HT$8dH+%(HH[]DHt$H|$GtHl$H=,HwtHH=du;HuHc@HH=9tHH=Ⱦ&tHH=;tH#^pff.SH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fD軘HHuӐt"HuHcՙHHH;tЉmoff.fSH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fD˗HHuӐt2HuHcHHH; tЉ}nff.fSH0fnFdH%(HD$(1H.H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fDۖHHuӐtBHuHcHHH;tЉmff.fUH0fnFdH%(HD$(1Ho> H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(u^H0]fDHHuӐt$H0PHuH\@HH@H;gtHlfSH0fnFdH%(HD$(1H= H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11n1HT$(dH+%(u=H0[fDHHuӐ,^HuHckf.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒿1HT$8dH+%(uWH@]f.HHuϐHt$H|$џtHt$H;kHuHOHj@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袾1HT$8dH+%(uWH@]f.+HHuϐHt$H|$tHt$Hr{HuH_Hi@UH@fnFdH%(HD$81H'Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$貽1HT$8dH+%(uWH@]f.;HHuϐHt$H|$tHt$H苠HuHoHh@UH@fnFdH%(HD$81H,Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$¼1HT$8dH+%(uWH@]f.KHHuϐHt$H|$tHt$H萣蛟HuHHh@UH@fnFdH%(HD$81HSHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$һ1HT$8dH+%(uWH@]f.[HHuϐHt$H|$tHt$H詞Hu@[g@UH@fnFdH%(HD$81HqHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.kHHuϐHt$H|$!tHt$Hz蹝Hu@k$f@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u1HT$8dH+%(H@]A\A]fDÊHHufLd$Ht$LntLHT$H5~f|$ItT$$Ll$HEuHH; 5u;H0LLHDu还HHH}H:fDLLHaff.ATH0fnFdH%(HD$(1H<,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ݴE1HD$(dH+%(H0LA\@cHHufHHRxH;WIMtoI$H5qLPtZ蕗HuL6IHoH$bL_1HHP@Lu8fE18H"DIj_fATUSH@fnFdH%(HD$81H*Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\ۇHHuːHt$H|$a5tD$$Ld$u`HELH@H;ցH=ޝ,}tLH=5}u-HaHc蟈Vf.LLH=C|tLH=h|tLH=)|tLwHЉ]fATUHHdH%(HD$8HFLd$Ht$HkHD$H4HT$ LH5D$(HD$ D$ [|$ Ht9D$ 9D$(}Ht$ LZztt$ HJH”HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=F" A\H5*HH3\AW1AVAUATUSHXHNdH%(HD$H1HGAfnH%fnA)fbAtmAHuHt$H\$T$(fD$ HHo(HD$ +D$$H|$]1_fHwuHt$H\$L$ T$$T$(HjHo(Ht%D$ +D$$H|$1HT$HdH+%(dHX[]A\A]A^A_H5tD1DcHHDLd$Ht$L>xtHt$L-xyHt$ LxdL$ T$Ht$wHBHWwH4fDLd$8Ll$LL^H LH\$8Dt$f|HH&f.Hl$@Ht$8H螈Ll$`HL1\$pD$TL$hD$`Ht$8fH~ۅ!I$D$ $H`H; sI$LHxhH( $D$f.D$`f.L$hfHnf.d$p{H.H[oH fHt$8H|$@衇T$THt$8tHt$/HT~'LL $D$Qff.ATL% H |HH5. Lg( u?LHn sLA\ATIUHHt HH5LHtHmtH]A\HH]A\+AVAUATUHXfnFdH%(HD$H1H H4$HD$HGfnȉD$fbfD$ILo(1L H|$ HcI Hl$ Mt(D$+D$LŤHl$ E1HtHD$(H9tHF`HD$HdH+%(HXL]A\A]A^+yHH\H1E1 H|$ Hc5 Hl$ fDDHL=mD$u:IEHLEHGL%%lHl$ I$9fDHLOHfSH0fnFdH%(HD$(1H: H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uMH0[fDwHHuӐu$HLHu_DNf.SH0fnFdH%(HD$(1HA9 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uMH0[fD wHHuӐu$HlHuDCMf.UH@fnFdH%(HD$81Hp Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒡1HT$8dH+%(uzH@]f.vHHuϐH5FHT$H|$p|$HtD$$u(HEHVHuH:iH@HhiLUH@fnFdH%(HD$81Ho Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$肠1HT$8dH+%(uzH@]f. uHHuϐH56HT$H|$o|$HtD$$u(HEHFHuH*hH@HxKUH0fnFdH%(HD$(1HgH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(ucH0]fD tHHuӐu,HHkHuHHxuKYHfDJ@AWAVAUATUSHHHNdH%(HD$81HGfnAH%HfnfbA)tEAH5,dD蔜1HT$8dH+%(HH[]A\A]A^A_HcH4$H\$L$D$D$HSH(HteD$9D$thH11$1HcH4$H\$D$fD$HHo(HtD$+D$tWH՝1H(HtD$9D$t;H11O1HT$(dH+%(uLH8kHHuҐu$H>zHuH"_H@c0Bff.ATUHHfnFdH%(HD$81HO- Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`1HT$8dH+%(HH]A\fjHHuѐLd$Ht$LvtHT$H5_Le|$HtD$$Ht$u/HEH yHtH]Hf@HhaAUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(utH@]f.iHHuϐHt$H|$qutD$$Ht$u(HEHwHuHcjDHW@AUATUHfnFdH%(H$1H+ Ht$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$1H$dH+%(PHĠ]A\A]fhHHuɐLd$Ht$LNttLl$0LLtfoT$0fo\$@fod$PD$$Ht$)T$`)\$p)$HELHD$0f.D$`D$hf.D$8zvutD$@f.D$pzfudD$Hf.D$xzVuTD$Pf.$zCuAD$Xf.$z0u.)vHH [HLHqduHuȹLL+Z>f.AT1UHHHNdH%(HD$81HGAfnH%fnA)fbAtDAAH55) D11HT$8dH+%(HH]A\L) Ht$LT$L$ T$$T$(HHo(HtD$ +D$$H|$輑1L ( Ht$LL$L$ T$$T$(HHo(HLD$ +D$$LH|$X1"H E( Ht$HL$T$(fD$ HuPHo(HD$ +D$$tfH|$1eHHfeHHufDseHH-fLd$HLPYgHt$L;YRHt$L&Y=|$$L$T$4$ HEHxHksHHZDHt$H|$pDD$$Ht$EHEHpH@Ld$Ht$LNpHT$H5-LB_|$HsD$$Ht$u?HEHrHKHWH=@H`HHHH:fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$貎1HT$8dH+%(uzH@]f.;cHHuϐH5.HT$H|$]|$HtD$$u(HEH8vqHuHZVH@H؃9fDHHt HPhHB8HcJ@HHHf.1f.HHxhH HHxhH(fDH0@fDH(dH%(HD$1HHt$ 8T$ ~ZBHHD‹T$~At HcH‹T$~*t HcHHT$dH+%(uH(fD18f.DzATIUHHH0HLHH]A\1LUH=qwHVu]ÐHH=VtHH=VtHH={VtHH=;hVtH]+f.)UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$蜋1HT$8dH+%(uhH@]@HT$H|$H5FZ|$HtHt+HH5HPtrnHuHe 1YnHu6ff.fUH0fnFdH%(HD$(1H_ H4$HD$HGfnȉD$fbfD$u=HG(HtT$9T$t:H11螊1HT$(dH+%(uEH0]fD+_HHuӐHhHHt HUHmHPHmHuHy 5fUH@fnFdH%(HD$81H^ Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$‰1HT$8dH+%(u_H@]f.K^HHuϐH5HT$H|$ Y|$HtHx,lHuHwQH4ff.USHHdH%(HD$81H$Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$ tHl$H=HRtHH=I] RukHuHc^^@HH=|RtHm3@ATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$趇1HT$8dH+%(H@[]A\;\HHuːHt$H|$ tD$$Ld$uXHELH@H;LulH=QtLH=[ }Qu)TjHeHc]ZfDLLH=AQtL븐HЉ2fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@ZHHufHHRxH;bl#IMtoI$H5PLPtZiHuLIHoHbLT11HHP@LF8fE1hH"DIj1fATL%H LHH5>LF8u=LH~RLA\ATIUHHt HH5JLHtHmtH]A\HH]A\ G"UH=HNu]ÐHH=FY NtHH=NtH]wUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5ZS|$HtHt+HH5+HPtfHuH1fHu-/ff.fSH0fnFdH%(HD$(1HޓH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDWHHuӐteHuHcXHHH;GtЉ=.ff.fUSHHdH%(HD$81HdHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?tHl$H=YH'LtHH= LudHuHcW@HH=SuKtHH=x{KtHH=KtH-ff.ATUSH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$ƀ1HT$8dH+%(H@[]A\KUHHuːHt$H|$tD$$Ld$u`HELH@H;dH=ˀJtLH=^ Ju-`cHaHcVVf.LLH=sIJtLH=y6JtLH=#JtLHЉb+fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@SHHufHHRxH;:YIMtoI$H5NLPtZaHuLIHoHbL4*1HHP@Lw?8fE1aH"DIj)fATL%H H~H5L?uLHKLA\ATIUHcHt HH5H~LHtHmtH]A\HH]A\fDUH=}HGu]ÐHH=v GtHH=pGtHH=w{GtHH=;hGtH]+f.^UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5FK|$HtHt+HH5HPtr_HuHe1Y_Hu'ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|${1HT$8dH+%(HH[]DHt$H|$tHl$H=6HEtHH=2Eu{^HuHc.Q@HH=LyEtH=&@SH0fnFdH%(HD$(1H‚H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11z1HT$(dH+%(uuH0[fD+OHHuӐt,AfH~]HufHnfHAH0H;_MfH~tfH~%fSH0fnFdH%(HD$(1HׁH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11y1HT$(dH+%(uuH0[fD+NHHuӐt,\ fH~\HufHnfH- H8H;IfH~tfH~$fUH0fnFdH%(HD$(1HA H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11x1HT$(dH+%(u^H0]fD+MHHuӐt$Hox[HuHMHHH;QtH#fUH0fnFdH%(HD$(1HYj H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11w1HT$(dH+%(u^H0]fD;LHHuӐt$HZHuHL@HHH;YtH"fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11v1HT$(dH+%(uuH0[fDKKHHuӐt$WhfH~YHufHn@HH@H;_Hu_hfH~ffH~!fSH0fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11u1HT$(dH+%(uuH0[fDKJHHuӐt$WpfH~XHufHn@HHHH;oWu_pfH~ffH~ fSH0fnFdH%(HD$(1H.}H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11t1HT$(dH+%(uUH0[fDKIHHuӐt_PWHuHcgJDHHpH;7>tЉ fSH0fnFdH%(HD$(1HZ|H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11s1HT$(dH+%(uuH0[fDkHHHuӐt$WXfH~VHufHn@HH H;Iu_XfH~ffH~fSH0fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11r1HT$(dH+%(uuH0[fDkGHHuӐt$W`fH~UHufHn@HHXH;7Tu_`fH~ffH~fUH@fnFdH%(HD$81HgzHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$q1HT$8dH+%(uXH@]f.[FHHuϐHt$H|$qtD$HϸTHuH9HUH@fnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$p1HT$8dH+%(uXH@]f.kEHHuϐHt$H|$tD$H_XSHuH8H#UH@fnFdH%(HD$81HxHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$o1HT$8dH+%(H@]fD{DHHuϐHt$H|$tD$$D$t?f.E`ztHEE`HRHuH7Hzf.HEHPH;Fuf.E`ztE`HH@UH@fnFdH%(HD$81HawHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$n1HT$8dH+%(H@]fD+CHHuϐHt$ H|$7tD$$t$ t19uPtHEuPHgQHuHK6HDHEHxH;v3u;uPtˉuPHfH@H8fnFdH%(HD$(1H.vH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11om1HT$(dH+%(H8@AHHuҐHtAHxH;2uIGPt GP@PHuH$5HfDHhH;Kt@1DH8fnFdH%(HD$(1H*uH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_l1HT$(dH+%(H8@@HHuҐHtAHxH;1uIPt GP1OHuH4HH`H;:t@rfUH@fnFdH%(HD$81H$tHt$HD$HGfn؉D$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Bk1HT$8dH+%(H@]fD?HHuϐHt$H|$tD$$D$t_ 2UXf/ Ȅ ]f(f.ztHEEXHMH^H2HPHEH(H;Gu\ 2UXf/w9 Y ]f(f.ztEXH듐f(of(f.HhATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$i1HT$8dH+%(H@[]A\ >HHuːHt$H|$tD$$Ld$uXHELH@H;@ulH=p`3tLH=M3u)$LHeHc>ZfDLLH=3tL븐HЉRfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-hE1HD$(dH+%(H0LA\@P1HT$(dH+%(u8H0]fD$HHuӐKH33HuHV'ff.@UH0fnFdH%(HD$(1HiH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nO1HT$(dH+%(u8H0]fD#HHuӐ+Hc2HuH&ff.@SH0fnFdH%(HD$(1H~_H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uZH0[fD+#HHuӐt1HuHcE$HHH;R tЉff.fUH0fnFdH%(HD$(1H hH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11M1HT$(dH+%(uVH0]fD;"HHuӐtHoP0HuH@HH8H;?tHUH@fnFdH%(HD$81HKgHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$L1HT$8dH+%(u_H@]f.K!HHuϐH5( HT$H|$ |$HtHx"/HuHwHff.UH@fnFdH%(HD$81HUfHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$K1HT$8dH+%(uWH@]f.K HHuϐHt$H|$,tHt$H.HuHH@UH@fnFdH%(HD$81HreHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$J1HT$8dH+%(uWH@]f.[HHuϐHt$H|$+tHt$H-HuHH@UH@fnFdH%(HD$81HdHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$I1HT$8dH+%(uWH@]f.kHHuϐHt$H|$!*tHt$H蠫,HuHH$@UH@fnFdH%(HD$81HcHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$H1HT$8dH+%(uNH@]Ð{HHuؐHt$H|$tHt$H+HuHH4@UH@fnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$H1HT$8dH+%(u_H@]f.HHuϐH50HT$H|$J|$HtHH*HuH$tHT$H5,L6|$HtHt$H&HuH Hw ATUHHfnFdH%(HD$81H]Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$B1HT$8dH+%(HH]A\f{HHuѐHt$H|$1#tHt$H5H%HuHt6HfHHIKHuLH賲pfDHq HZATUHhfnFdH%(HD$X1HHt$0HD$8HGfnȉD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$0A1HT$XdH+%(Hh]A\fKHHuѐLd$0Ht$L!tHt$L!tLd$ HL$HT$HL?z$I1Mt LHD$'HD$kfLH=9*1,H3ff.ATUHhfnFdH%(HD$X1H[Ht$0HD$8HGfnȉD$HfbfD$@uZHD$Ho(Ht!D$@+D$DtKH|$0g@1HT$XdH+%(Hh]A\fHHuʐLd$0Ht$L tHt$L]tLd$ HL$HT$HL#I1Mt LHD$S&HD$dfLH=(*ZHff.ATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ Ho(D$D$ HtVD$ +T$$w6;D$(nH7!"Hu%HHH|$1>1HT$8dH+%(ucHH]A\DSHHaDLd$Ht$L~tD$ 9D$(}Ht$ LtT$ t$Tff.fATUSH@fnFdH%(HD$81H&Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$=1HT$8dH+%(H@[]A\;HHuːHt$H|$tD$$Ld$uXHELH@H;~ ulH=>WtLH=7}u)T HeHcZfDLLH=AtL븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]H(HtD$9D$t;H11.1HT$(dH+%(uLH8HHuҐu$HHuHH@,Lff.UH@fnFdH%(HD$81H]IHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$.1HT$8dH+%(uzH@]f.HHuϐH5p HT$H|$Z|$HtD$$u(HEH@HuHH@H 1UH0fnFdH%(HD$(1H(H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11-1HT$(dH+%(ucH0]fDHHuӐu,HHHuHHxHfD#D@fDHGP鷰UH=MFHu]ÐHH=#&tHH=AntH]1uUH@dH%(HD$81H{Ht$HD$HFHD$$D$ t0H|$+1HT$8dH+%(uBH@]@Ht$ H|$1tы|$ dHHuHUH@dH%(HD$81H({Ht$HD$HFHD$$D$ t0H|$*1HT$8dH+%(uBH@]@Ht$ H|$tы|$ dtH HuHjSAUATUH0dH%(H$(1HCzHt$ HD$(HFHD$4D$0t>H|$ B*1H$(dH+%(H0]A\A]@Ld$@Hl$ LHtLl$` HLճtL$PLLf(D$@fo$foT$pfo$L$foL$`fo$fD$fo$)$)$)$)$)$)$)$کf($f.D$@|$f.|$H{L$f.L$PicD$`f.$vp$f.D$h[U$f.D$p@:D$xf.$%$f.$$f.$$f.$$f.$$f.$$f.$zuus$f.$z_u]$f.$zIuG HHHq HL1Hx Hu LHɿfAUATUHdH%(H$1HwHt$ HD$(HFHD$4D$0t>H|$ '1H$dH+%(Hİ]A\A]@Ld$@Hl$ LH记tLl$`HL蕰tf(D$@d$PLLfoL$`foT$pfD$)$d$)$)$f($f.D$@\$f.\$Hd$f.d$PzyuwD$`f.$$f.D$hzsuq$f.D$pz`u^D$xf.$zMuKHHHDH{L1HdHuLH f.AWAVAUATUSHdH%(H$1HXHt$pHD$xHFHDŽ$$tCH|$p$1H$dH+%(2H[]A\A]A^A_@L$Hl$pLH苮tL$HLotL$HLStL$HL3T$LL$$LLf($$\$`$$T$8$$\$ $d$XfH~$fL$0)L$l$@|$PT$(\$d$H|f(L$f.$D$h4.T$0f.$\$`f.$l$ f.$QKd$8f.$60|$Xf.$fHnf.$l$@f.$D$Pf.$|$f.$zkuit$(f.$zXuV|$Hf.$zEuC{H[D$hǢM]HL1Hr8HuLHNHULH);HLHGAWAVAUATUSHdH%(H$1HhTH$H$HFHDŽ$$tEH$!1H$dH+%(HĨ[]A\A]A^A_L$H$LHtL$HL褪tL$HL航rL$HLhRH$0HHH2H$PHHH$$$IL$$LL$$L$@L$$T$f($$\$x$ $8d$P$0$$l$$@t$pfo$P|$Hfo$`fD$8)D$ L$T$h\$Xd$0l$`)$p)$L $lf(D$ f.$$l$8f.$$f.$L$f.$nh|$@f.$SMT$xf.$82T$f.$l$Pf.$\$pf.$\$f.$|v|$Hf.$a[d$hf.$ F@d$0f.$0L$Xf.$8T$`f.$@$Pf.$p$xf.$Xzsuq$`f.$z]u[$hf.$zGuEDHHc$$H.L1H9HuH$HH+HھHHLHǴH9LH蟴eHLHwff.fAWAVAUATUSHXdH%(H$H1HNH$H$HFHDŽ$$tEH$1H$HdH+%( HX[]A\A]A^A_L$H$LH0tL$HLtL$HLrL$HLؤRH$0HH踤2$IL$$LL$$\$0L$f($d$x$$ l$8$8$$t$$0T$X$|$p$@fL$P)L$ T$@\$d$hl$Ht$|$`f(L$ f.$$t$Pf.$qk$f.$SMT$0f.$|$Xf.$\$xf.$\$f.$UOD$8f.$:4d$pf.$d$f.$t$@f.$l$hf.$ l$f.$0znul|$Hf.$8z[uYD$`f.$@zHuFtH$轘SHL1Hh.HuHھHD HRLH8HLHH`LHϯFDAWAVAUATUSHXdH%(H$H1HSJH$H$HFHDŽ$$tEH$1H$HdH+%( HX[]A\A]A^A_L$H$LH萠tL$HLttL$HLXrL$HL8RH$0HH2$IL$$LL$$\$0L$f($d$x$$ l$8$8$$t$$0T$X$|$p$@fL$P)L$ T$@\$d$hl$Ht$|$`蒗f(L$ f.$$t$Pf.$qk$f.$SMT$0f.$|$Xf.$\$xf.$\$f.$UOD$8f.$:4d$pf.$d$f.$t$@f.$l$hf.$ l$f.$0znul|$Hf.$8z[uYD$`f.$@zHuFH$HL1HȫHuHھH褫mHRLH8EHLHWH`LH/FuDAWAVAUATUSHHdH%(H$81HEH$H$HFHDŽ$$tEH$N1H$8dH+%(HH[]A\A]A^A_L$H$LHtL$HLԛtL$HL踛rL$HL蘛RH$ HHx2$IL$$LL$$d$xL$f($L$P$$T$$$\$p$(d$0$ l$$0fD$H)D$ t$h|$8 $T$`\$@d$l$XVof(D$ f.$\$Hf.$jdd$xf.$OIt$f.$d$Pf.$\$pf.$|$f.$QKl$0f.$60l$hf.$ $f.$t$8f.$t$`f.$T$f.$ zkui|$@f.$(zXuV|$Xf.$0zEuCEHH%H'HL1H<HuHھHHULH;HLH˦HdLH裦JfUH@dH%(HD$81HڄHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5:|$HtHt+HH5UHPtHuH襏1Hu ff.fUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$ 1HT$8dH+%(HH[]DHt$H|$tHl$H=THtHH=YuHuHcn@HH=ZtHH=ytHjkSH0fnFdH%(HD$(1H+7H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uZH0[fD[HHuӐ tHuHcuH HH;tЉ ff.fSH0fnFdH%(HD$(1H*6H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uZH0[fDkHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1H)5H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uZH0[fD{HHuӐtHuHcHHH;tЉ-ff.fAUATUH`fnFdH%(HD$X1Hk4Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDsHHufLd$@Ll$ LL膒tD$4L$HD$@T$PtXHLf(L1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukfH?Hc4HEHXH;tT$HLD$L$T$D$L$|fHuL1LtZf.ATH0fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-E1HD$(dH+%(H0LA\@HHufHHRxH;WPIMtoI$H5NLPtZHuL؈IHoHtQbL$1HHP@Lg8fE1H"DIjfATUSH@fnFdH%(HD$81H}Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\+HHuːHt$H|$豇tD$$Ld$u`HELH@H;FH=:M|tLH=޽iu-@HaHcVf.LLH=)tLH={tLcfDHЉRfAWAVAUATUSH(fnFdH%(H$1H/Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(H([]A\A]A^A_HHu뾐Ll$0Ld$LL覍tLt$P LL荍tT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$D$$)$fo$D$0)$)$)$)$)$uHEHH;FLLD$oD$f.D$0fHnf.d$8~xfInf.l$@gaD$Pf.$tn$f.D$XYS$f.D$`>8D$hf.$#D$pf.$D$xf.$$f.$$f.$$f.$$f.$zyuw$f.$zcua$f.$zMuKHJHvH<DsHL1L舙zKHu LLaD$LLHD$臬AWAVAUATUSHfnFdH%(H$1H+Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$C1H$dH+%(HĨ[]A\A]A^A_HHu뾐Ll$0Ld$LL։tLt$PLL轉tT$8\$@fod$Pfol$`D$$D$0fH~fI~)d$p)$uHEHxH;LLD$裵D$f.D$0fHnf.t$8z~u|fInf.|$@zoumD$Pf.D$p}D$xf.D$Xzoum$f.D$`z\uZD$hf.$zIuG HHHHuL1LrHuLLٖD$LLHD$ff.@ATL%sH H.FH5L趿uhjLH>LA\ATIUH Ht HH5ELHitHmtH]A\HH]A\鱃AVAUATUSHPfnFdH%(HD$H1HtHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LL趆t\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHn|HLL$L$fH~f;HuL1LT蝧ff.fAVAUATUSH`fnFdH%(HD$X1H'Ht$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ [1HT$XdH+%(;H`[]A\A]A^HHuƐLd$ Ht$LtLl$@LLtHT$H5Lm|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHc;fDHLtD$VHuLLl赥DUH0fnFdH%(HD$(1H{%H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐuyH*HT$LHLLH(L1LDž$LUT$|LƋܘff.AWAVAUATUSHfnFdH%(H$1HHt$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HQUH$4AHcL$Eu~MD$`+D$dHRH$E1HtH$H9tЧH$dH+%(HL[]A\A]A^A_@IcI\uHH&H|$PE1}TH$4Hc(H$I^LE1Sf.L|$LHL0&HD$pHHH$OuH$HHHD$*uDLHu\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(pHd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztHH$E1HL%aI$HL$H$MLL`?HH$HPHBHT$H&&D1@ADHH9u2T$L1H TDLH؀H=2fUHAWAVAUATSHhHfnFdH%(HE1HHHHGfnȉfbfօ;HH@(HLLuPHP4AHc HPHDžEtIcHHL.P4H}AHcܼHDžLuEtIcIHH+LLuE1MtHEI9tL蘢HPHtHXH9t{HEdH+%(HeL[A\A]A^A_]fD[HHfDHLHHbpUDHLLp?HLHHH0LHHpHLHH`DLLo xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創H8Hf.0f.8f.@jHyE~LHIc1HH9Af.zt䉝H HHc趸LuIf.E1H[HLz=딉HrH1LzWHLLHHHAVHYHHD1AHH9uHHLM%LmHHD1HH9uH7DHھLyDLLyYHA+H+ff.AWAVAUATUSHxfnFdH%(HD$h1HA Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L.[tLt$8H5_ LLï|$8ItLH5 L觯|$8ItLH5R(L苯|$8kHh LLH$Hg|$8GLHLHD$I|$8)L3 LLHD$L$|$8HLLH $LD$L LL$L\$,LLLL$LLD$HL$L$Ȯ|$,L$HL$LD$ILL$LLLL$LD$H $讧qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!HHfD;HHf.RLLHAVPS轳H fAWAVAUATUSHfnFdH%(HD$x1H Ht$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@L^XtL\$HH5\ LLL\$|$HL\$ItLH5Lͬ|$HL\$IhL5r%LLL襬|$HL\$CLLLHD$肬|$HL\$ LLLHD$_|$HL\$L57LLHD$ L5|$HL\$HLLL|$HL\$HL$LD$ILL$ LLLLL$(LLD$ HL$L\$ɫ|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL${L*HT$?LLl|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0貾HHHf HHcf.HLHRLPt$ AVS#H0ʆf.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHH\HuHO\DHH|$0H|$Mt+D$ +D$$H9H|$0E1HtHD$8H9t轓HD$XdH+%(H`L]A\A]@裬HHSH|$@H|$04Hc=fDHt$HcrHt$DHpZD$$t$HT$uBI$L蠺Ht;薺H|$0E1H$L%nI$@LxfDHT$DHKEĂHF!AUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(H>?H|$04AHc[H|$04Hc;fDHt$HsrHt$DHnZD$$t$HT$uBI$L谸Ht;覸H|$0E1H$L%~I$@LfDHT$DH[CԀHw fDfDfDH5f(-HF17HH!UHHъUH=H̞u]ÐHH=&豞tHH=?螞tHH=^K苞tH]N3f.@UH@dH%(HD$81HJHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5fJ|$HtHt+HH5HPt蒶HuHU1yHu~ff.fUSHHdH%(HD$81HJHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$TtHl$H=HלtHH=Ĝu蛵HuHcN@HH=lI虜tH]1}@ATUSH@fnFdH%(HD$81HIHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\+HHuːHt$H|$StD$$Ld$uXHELH@H;ulH=耛tLH=mu)DHeHcZfDLLH=H1tL/븐HЉr|fATH0fnFdH%(HD$(1HGH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@ӤHHufHHRxH;ҢIMtoI$H5TLPtZHuLQIHoHbLD{1HHP@L臐8fE1訲H"DIj {fATL%cVH HH5WLƐVu8LH.WɜLA\ATIUH}Ht HH5NLH:tHmtH]A\HH]A\TWUH=Hܘu]ÐHH=tHH=E讘tH]q-mUH@dH%(HD$81HDHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5DJ|$HtHt+HH5HPt°HuHO1詰Huyff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uFH@]@H|$HT$H5j|$Ht[HHuHN_xff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5Lʛ|$ Ht#D$ 9D$(|Vt$ H芏HBHtU1HT$8dH+%(uMHH]A\H|$f.Ht$ LsuDHMYwfUSHHdH%(HD$81HBHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_MtHl$H=&HGtHH= 4u HuHc辠@HH= tHH=ZtHH=tHH=AДtH)vff.ATUSH@fnFdH%(HD$81HFAHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\[HHuːHt$H|$KtD$$Ld$u`HELH@H;6H=謓tLH=y 虓u-pHaHcVf.LLH=Q YtLH=FtLH=3tLH=? tL'xDHЉgWtSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fD軜HHuӐt"HuHc՝HHH; tЉmsff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uVH0]fD˛HHuӐtH0HuHS뵐HHH;tHrUH@fnFdH%(HD$81H 1Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(uWH@]f.ۚHHuϐHt$H|$葦tHt$Hp)Hu@;q@UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uWH@]f.HHuϐHt$H|$补tHt$H7H8HuH[p@UH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(uWH@]f.HHuϐHt$H|$豤tHt$HHHHuHko@ATUHhfnFdH%(HD$X1H Ht$0HD$8HGfnȉD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$01HT$XdH+%(ufHh]A\fD HHuѐHt$H|$0tHT$Ld$HLإSI1MuLH=В *nUH@fnFdH%(HD$81Hv Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f. HHuϐHt$H|$tHEHHt$H`HPHuHsmff.ATUHHfnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ukHH]A\fD HHuѐLd$HLtHt$L诡tHT$H4$H蚝HBHuHelff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$p1HT$8dH+%(HH]A\fHHuѐLd$Ht$L讠tHT$H5}L規|$HtHEHt$HH"HyHHkk@ATH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@HHufHHRxH;]IMtoI$H5LPtZHuLAIHoH bLTj1HHP@L8fE1踡H"DIjjfATUHHdH%(HD$8HFLd$Ht$HHD$HTHT$ LH5ݷD$(HD$ D$ {|$ Ht9D$ 9D$(}Ht$ Lztt$ H*HHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=fJA\H5JHh?hATL%FH H<H5HL~GuLHNG詊LA\ATIUH- Ht HH5LH(tHmtH]A\HH]A\BATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(HH]A\f蛐HHuѐLd$Ht$LNtHT$H5LF|$HtD$$Ht$u/HEH轞HtHHf@HgfDH@ZUH=KHlu]ÐHH=1 QtHH=6 >tHH=x+tHH=tHH=1tH]GUH@dH%(HD$81H:1Ht$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uhH@]@HT$H|$H50蚉|$HtHt+HH5 HPtHuH<1Humeff.fSH0fnFdH%(HD$(1Hh H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uUH0[fDˍHHuӐt_H4HuHcDHHH;OxtЉdfUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(uVH@]f.یHHuϐHt$ H|$tt$ Hў,HuHHcDUSHHdH%(HD$81H.Ht$HD$HFHD$$D$ HD$t6H|$肷1HT$8dH+%(HH[]DHt$H|$9tHl$H= H臁tHH=tuKHuHc@HH=.ItH b@ATUSH@fnFdH%(HD$81H-Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\ۊHHuːHt$H|$a8tD$$Ld$uXHELH@H;&ulH=0tLH=Uu)HeHc裋ZfDLLH=,tL븐HЉ"afATH0fnFdH%(HD$(1H\,H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@胉HHufHHRxH;*WIMtoI$H5^LPtZ赗HuL6IHoHDbL_1HHP@L7u8fE1XH"DIj_fU1H=NH'=1H=BHHH!8Hmt H]fDHHD$9HD$H]AUH HVATL%@H5DULuuAt L]A\A]Ð{H-TBL-AHHAHHhCHH5LtH- B10HHtHH5LHmtOHHtHH5LHmtLlL]A\A]H8fDH8fDH8lATIUH}?Ht HH5LHCtHmtH]A\HH]A\18GHUH=H<|u]ÐHH=Y!|tHH=(|tH]KAWAVAUATUSHdH%(H$1H. Ht$@HD$HHFHD$TD$PtAH|$@=1H$dH+%(H[]A\A]A^A_fLd$`Hl$@LH:tL$HL:tL$HL:yL$HL:Y$T$`$L$p$f.l$h$$D$$fH~$D$$D$f(D$`fX$fX$f^')$f(XX^q'$f.f.f.$fD.$f.$f.$}fD.$mgf.$XRfHnf.$$f.$t$f.$HHvHd$8\$0DL$(|$ DD$t$֑t$DD$H|$ DL$(\$0d$8L1Hd$8\$0DL$(|$ DD$t$Fd$8\$0DL$(|$ DD$t$V?HLHQFHLH)F\$ |$DD$ܐDD$|$H\$ LH\$ |$DD$E\$ |$DD$Xff.AWAVAUATUSHdH%(H$1HHt$PHD$XHFHD$dD$`tAH|$Pݬ1H$dH+%(sH[]A\A]A^A_fLd$pHl$PLH6tL$HLj6tL$HLN6yHT$OH5H{|$OHWf(D$pLLL$$$fD$$$\$8$$)$fH~L$fI~\$0d$ t$(?uf($f.D$pT$f.T$x\$8f.$fHnf.$d$f.$t$0f.$fInf.$zkuil$ f.$zXuV|$(f.$zEuCHHrHHLL1HB5ōHuLHB褍HVLHBHLH ;fNfDAWAVAUATUSHdH%(H$1HlH$H$HFHDŽ$$tEH$>1H$dH+%(HĘ[]A\A]A^A_L$H$LH+tL$HL+tL$HL+rL$0HL+RH$PHHh+2H$pHHHD$C+ $IL$$LL$$T$L$ $8d$Pf($$@l$@$P$`|$H$p$$$$XL$p$0$$xfD$h)D$0L$$\$Xd$ $t$`|$(LL$$L$xhf(D$0f.$$|$hf.$$f.$T$f.$TN|$pf.$93$f.$\$@f.$T$Pf.$$f.$ d$f.$0\V\$Hf.$8A;$f.$@#l$ f.$Pd$Xf.$X$f.$`t$(f.$pzmukl$`f.$xzZuXT$xf.$zGuEfHHc$tFHIL1H[62!HuHT$H56HQHھH67րHLH5讀HYLH5?膀HLH5Hff.AWAVAUATUSHdH%(H$1H5Ht$pHD$xHFHDŽ$$tCH|$p跜1H$dH+%(H[]A\A]A^A_@L$Hl$pLH[&tL$HL?&tL$HL#&tL$HL&T$$f$fD$f$ff$fD$D$fD\$fD(fD\$$fD\DD$D$$f$$$D$$f\fA(fL~D$D$fA(fED$fAYDD$$$fYfEYDYf\E\f()$ffD(f(fE(D$YEYEYAXAXfEfD.QfA.fD(fEztfA^fA(^)$$f.f.$f.f.$fD.$fD.$f.$~fD.$nhf.$YSfHnf.$\$f.$l$f.$|HHtaHD\$@l$0DT$(t$ DL$$$P|$$DL$Ht$ DT$(l$0D\$@L1HD\$@l$0DT$(t$ DL$$$1l$0$$D\$@DT$(t$ DL$T{HLH0{HLH0t$ DL$$$W{$$DL$Ht$ LHt$ DL$$$E0t$ $$DL$yC|$hD\$`l$XDT$Pt$HDt$@)T$0DL$(d$ \$e|$hD\$`fEl$XDT$Pt$HDt$@f(T$0DL$(d$ \$ff.AWAVAUATUS1HdH%(H$1H$/Hl$0Ht$0HD$8HFHHD$DD$@H|$p4AHcLl$pEtIcI\D$@+D$Dt`H莖E1H|$pHtHD$xH9tRH$dH+%(HĸL[]A\A]A^A_fDHT$+H5 He|$+ItHt$,H^tDLHmL|$PHLPE~RIEH9AD$D1HAoDHH9uDAt ITHL$Xt$,LLT$P\$`LL$T$\$Ic1E'DHH9tH I9LtWxHd$f.d$PzAu?l$f.l$Xz1u/t$f.t$`z!uxHRL%\I$DwHu׹LH-D1fITHHH9uDLHiS@HAWAVAUATUSHHdH%(H$81H/H$H$HFHDŽ$$tEH$1H$8dH+%(aHH[]A\A]A^A_L$H$LHtL$HLttL$ HLXrL$HL8RH$HH2H$HHH$$L $IL$LL$$L$($$ L$Xf($$0T$($$\$x$$d$`$l$ $fD$h)D$0t$p|$L$PT$\$Hd$l$@jf(D$0f.$$d$hf.$xr$f.$ZTt$(f.$t$Xf.$L$xf.$|$ f.$ |$`f.$(jdT$pf.$0OIL$f.$ d$Pf.$T$f.$t$Hf.$\$f.$zZuX|$@f.$zGuEsHHc$PfosHL1H(asHuH$Hv(?sHeHھHQ(KsHLH)(rHLH(rH0LH';ff.@AWAVAUATUSHdH%(H$1H8Ht$`HD$hHFHD$tD$ptAH|$`1H$dH+%(XH[]A\A]A^A_fL$Hl$`LHtL$HLtL$HLkvL$HLKVH$HH+6$IL$$LL$$|$HL$$L$$$T$8$$D$ \$d$0,$t$(|$@L$T$P7D$ f.$D$\|$Hf.$\$f.$xrD$8f.$]Wd$f.$L$0f.$,$f.$T$(f.$t$f.$zjuh\$@f.$zWuUd$Pf.$zDuBoH\Hc|$\?bOuoHL1H$PoHuHھHf$/oHVLHA$<oHLH$nHLH#77AWAVAUATUSHdH%(H$1H[Ht$@HD$HHFHD$TD$PtAH|$@1H$dH+%(vHĸ[]A\A]A^A_fLd$`Hl$@LHtLl$pHLtL$HLtL$HLu`l$hLLLL$`T$pL\$xl$0$$L$$$T$\$(fH~$$l$ |$bCL$f.L$`D$8l$0f.l$hT$f.T$pt$(f.t$x$f.$|$ f.$fHnf.$zXuVt$f.$zEuCmlHD$8 OlHJL1Hd!3*lHuLH@! lHiLH!OkH LH 94fAUATUHdH%(H$1H#Ht$ HD$(HFHD$4D$0t>H|$ "1H$dH+%(H]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@l$PLLfoL$`foT$pfo$fD$)$l$)$)$)$Mf($f.D$@d$f.d$Hl$f.l$PD$`f.$$f.D$h$f.D$pD$xf.$z|uz$f.$zfud$f.$zPuNiHfHNHXiH<L1H%siHuLH1fAWAVAUATUSHdH%(HD$x1HHt$ HD$(HFHD$4D$0tDH|$ 1HT$xdH+%([HĈ[]A\A]A^A_Ld$@Hl$ LHftLl$`HLMtf(D$@t$PLLL$hT$`\$pfD$)$fI~fH~t$fI~f($f.D$@zturl$f.l$Hzdubt$f.t$PzTuRfHnf.d$`zeucfInf.|$hzVuTfInf.l$pzGuEgHHLHgHuL1HfgHuLH/f.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5JS|$HtHt+HH5HPtfHuH1fHu/ff.fHFuHHH=FfHH5.1HHFuHHH=ffHH51HUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$肂1HT$8dH+%(HH[]DHt$H|$tHl$H=VHLtHH=KtLuKeHuHcW@HH=ILtH -@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uHcK3HEHXH;7tT$HLD$L$T$D$L$q{XHuL1L u f.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$t1HT$8dH+%(H@[]A\IHHuːHt$H|$tD$$Ld$uXHELH@H;KulH=<p>tLH=<]>u)4WHeHcIZfDLLH=!>tL븐HЉbfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=sE1HD$(dH+%(H0LA\@GHHufHHRxH;RH IMtoI$H5LPtZUHuLIHoH脽bL41HHP@Lw38fE1UH"DIjfAWAVAUATUSHdH%(H$1HAHt$@HD$HHFHD$TD$PtAH|$@q1H$dH+%(BH[]A\A]A^A_fLd$`Hl$@LHtL$HLjtL$HLNyL$HL.YT$`fL$hD$\$`f|$hf$f(fD$p$fD$f\f.DD$pfD$f$fA\D$D$fA\fD\$D$D$D<$D$$fD(f$fEYfD(ffDYfL~D$YAYD|$fE\\D)$$f.fE.f.$fD.$fD.$f.$fD.$qkf.$\VfHnf.$$f.$d$f.$PRH:H07H,DT$8l$0DL$(D\$ t$d$ Rd$t$HD\$ DL$(l$0DT$8L1HDT$8l$0DL$(D\$ t$d$DT$8l$0DL$(D\$ t$d$QqQHLHIQHLH[l$ DL$t$Qt$DL$Hl$ LHl$ DL$t$l$ DL$t$-ff.fAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$l1H$dH+%(6H[]A\A]A^A_[AHHu뾐Ll$0Ld$LLvtLt$PLL]tT$8\$@fod$Pfol$`fot$pD$$fH~fI~D$0)$)$)$uHEHH;!CSLLD$D$f.D$0fHnf.|$8fInf.|$@D$Pf.$$f.D$X$f.D$`D$hf.$zrupD$pf.$z_u]D$xf.$zLuJMNH1H-3H#@+NHFL1L@/NHuLLD$LLHD$?ff.@AWAVAUATUSHfnFdH%(HD$x1HHt$ HD$(HGfnȉD$8fbfD$0uXLw(Mt!D$0+D$4tZH|$ i1HT$xdH+%(HĈ[]A\A]A^A_fDs>HHufLd$@Hl$ LHtLl$`HLmtT$H\$Pd$hl$`t$pD$4fI~\$D$@$$fH~t$uIHxH;a7LLD$zD$f.D$@zturfInf.T$Hzeucd$f.d$PzUuSfHnf.|$`znul$f.\$hz_u]l$f.l$pzOuMKHH0HKHuL1Hf.KHuLHD$LLLD$ATL%H LH H5.L)(uLHn5LA\ATIUH]Ht HH5LHtHmtH]A\HH]A\AVAUATUSHPfnFdH%(HD$H1HsHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$f1HT$HdH+%(HP[]A\A]A^k;HHuƐLd$0Ll$LLt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEPIH,fHnHLL$oiL$fH~f IHuL1L$mff.fAWAVAUATUSH8fnFdH%(H$(1HH$H$HGfn$fbfք$uaHo(Ht*$+$tUH$e1H$(dH+%(dH8[]A\A]A^A_9HHuÐL$L$LLtL$LLtH$L`jL$LLEOH$LHHD$0*H$LH HT$|LHHT$,$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQEHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucDH DHIc7HLILRLD$LHIAXZT$h\$`L$mDHuHھLydDH*HT$Lt:DHLLLDH(L1L'$LLUT$|L&< ff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ _1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5" LL3/|$8ItLH5L/|$8ItLH5§L.|$8kH؊LLH$H.|$8GLHLHD$.|$8)LLLHD$L.|$8HLLk?H $LD$LgLL$L\$,LLLL$LLD$HL$L$8.|$,L$HL$LD$ILL$LLLL$LD$H $'qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H OAH!H/&HfD2HHf.RLLHAVPSH r fUH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N]1HT$(dH+%(u|H0]fD1HHuӐu tH]wDAUATUS1HxdH%(HD$h1HIHl$Ht$HD$HFHHD$$D$ ,H|$04AHc詗Ll$0EtIcI\D$ +D$$tZH8BE1H|$0HtHD$8H9tHD$hdH+%(GHxL[]A\A]f.Ht$ H tDLHtHT$ H5HI|$ IsE~OIEH9AD$D1HAoDHH9uDAt ITHË|$ LL5Ic1E<@HH9t/H I9LtO$HuDLHW+$HL% I$D1ITHHH9ujlHUH@dH%(HD$81HZHt$HD$HFHD$$D$ t0H|$\@1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPt2#HuH%1#Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$r?1HT$8dH+%(HH[]DHt$H|$tHl$H=޶Hw tHH=d u;"HuHc@HH= 9 tH@SH0fnFdH%(HD$(1HiH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^>1HT$(dH+%(uZH0[fDHHuӐtR!HuHcHHH;tЉff.fSH0fnFdH%(HD$(1H!H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11n=1HT$(dH+%(uUH0[fDHHuӐt1e HuHcfDHHhH;tЉfSH0fnFdH%(HD$(1HgH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11<1HT$(dH+%(uZH0[fDHHuӐtHuHc5HHH;Z tЉff.fSH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11;1HT$(dH+%(uUH0[fD+HHuӐt1HuHcHfDHHH;'tЉfSH0fnFdH%(HD$(1H fH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11:1HT$(dH+%(uUH0[fDKHHuӐtHG8X0HuHcc뵐HHH;/tЉfATUHHfnFdH%(HD$81HEeHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$91HT$8dH+%(u|HH]A\fD[HHuѐHt$ H|$AtD$$E1uHEHH;8uHuL茻f.t$ HIff.fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$81HT$8dH+%(H@[]A\+ HHuːHt$H|$豺tD$$Ld$uXHELH@H;ulH=tLH=mu)DHeHc ZfDLLH=1tL븐HЉrfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11M7E1HD$(dH+%(H0LA\@ HHufHHRxH;b 8IMtoI$H5LPtZHuLIHoH蔁bLD1HHP@L8fE1H"DIj fATL%H \HH5LuXLHLA\ATIUH Ht HH5LHӡtHmtH]A\HH]A\AVAUATUSHPfnFdH%(HD$H1H`Ht$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$+51HT$HdH+%( HP[]A\A]A^ HHuƐLl$0Ld$LLƾtT$8\$@D$$D$0fH~fI~ޅufHED$HLXD$f.D$0z`u^fHnf.d$8zQuOfInf.l$@zBu@H/HcB $DHLD$臀D$DSHuL1LlDAWAVAUATUHSHfnFdH%(H$1H Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L0H$4AHcH$H$Et IcHH$L4H$AHcHD$L$Et IcIHD$H,D$P+D$TL2L$E1MtH$I9tLTH$HtH$H9t5H$dH+%(vHL[]A\A]A^A_f HHf.Ht$8LRHD$`LHHD$0DHLHt$4H}AHcHDžLuEtIcIHH+L%"LuE1MtHEI9tLHPHtHXH9tHEdH+%(HeL[A\A]A^A_]fDkHHfDHLHHrUDHL\?HLHHH0LHHHLHHDLLު xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創H8Hf.0f.8f.@zHyE~LHIc1HH9Af.zt䉝)HHHcLuIf.E1H[HL=딉HrH1L赵WHLLHHHAVHHHD1AHH9uHHL]%L mHHD1HH9uH7DHھLƴDLL讴YH'hHhff.AWAVAUATUSHxfnFdH%(HD$h1HQGHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L>tLt$8H5š LL|$8ItLH5FL|$8ItLH5bcL|$8kHxFLLH$Hw|$8GLHLHD$Y|$8)LCFLLHD$L4|$8HLL H $LD$LFLL$L\$,LLLL$LLD$HL$L$|$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!HHfDKHHf.RLLHAVPSH fAWAVAUATUSHfnFdH%(HD$x1HDHt$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P 1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@LntL\$HH5 LLL\$|$HL\$ItLH5CL|$HL\$IhL5`LLL|$HL\$CLLLHD$|$HL\$ LLLHD$o|$HL\$L5GCLLHD$ LE|$HL\$HLLL$|$HL\$HL$LD$ILL$ LBLLLL$(LLD$ HL$L\$|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$LB*HT$?LL||$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0HHHfHHcf.HLHRLPt$ AVSH0f.AVAUATUSH`fnFdH%(HD$X1HAHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ 1HT$XdH+%(;H`[]A\A]A^HHuƐLd$ Ht$LtLl$@LL%tHT$H5L|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHc{fDHLD$HuLL謬DUH@fnFdH%(HD$81H?Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.KHHuϐHt$ H|$1tD$$t$ u)HEHHHuHDHHfDfDfDHG8@0@1f1f1fgUH=cHu]ÐHH=tHH=tH]qwUH@dH%(HD$81HbHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(ugH@]@Ht$ H|$tы|$ HHuHt"HH5a3NH+fHH>ff.AUATUSHdH%(H$x1H"aHt$ HD$(HFHD$4D$0tEH|$ !1H$xdH+%(IHĈ[]A\A]f.Ll$@Ld$ LLƚtHl$`QLH譚tH$QHf(D$@HT$PHHLfD$)$T$,f($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH=uXHH8H3HuL1LLf. HuQHL!jf.AUATUH dH%(H$1Hg_Ht$ HD$(HFHD$4D$0t>H|$ R1H$dH+%(H ]A\A]@Ll$@Hl$ LHtLd$`HLtL$PLLfoT$pfo$f(D$@fo$L$fo$foL$`H$0)$Pfo$)$`fo$fo$)$@fo$fo$)$pfo$)$fo$)$fo$ fD$)$)$)$)$)$)$)$)$H$f($f.D$@zvut|$f.|$HzfudL$f.L$PzVuT1H$@f.Af.zSuQHH=uH%HHHuL1H褥fkHuLH聥ʸf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5f|$HtHt+HH5HPtHuH腎1yHuff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$ 1HT$8dH+%(HH[]DHt$H|$tHl$H=3HtHH=d7uHuHcN@HH=:tHH=YtHJjѶUH@dH%(HD$81HZHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(ugH@]@Ht$ H|$Qtы|$ THHuHt"HH5!FHfHyHff.SH0fnFdH%(HD$(1H+5H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(uZH0[fD[HHuӐtHuHcuHHH;BtЉ ff.fSH0fnFdH%(HD$(1H*4H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDkHHuӐ tHuHcH HH;2tЉff.fSH0fnFdH%(HD$(1H3H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD{HHuӐtHuHcHHH;ZtЉ-ff.fSH0fnFdH%(HD$(1H92H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;BtЉ=ff.fATH0fnFdH%(HD$(1Hl}H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@HHufHHRxH;"IMtoI$H5HLPtZHuL踇IHoHTPbL1HHP@LG8fE1hH"DIjɰfATUSH@fnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\ HHuːHt$H|$葆tD$$Ld$u`HELH@H;H=\tLH=/Iu- HaHcVf.LLH= tLH=ztLbfDHЉ2fAWAVAUATUSHxfnFdH%(H$h1H.Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$hdH+%(Hx[]A\A]A^A_kHHu뾐Lt$0Ll$LL膌tLd$PQLLmtT$8D$$LH$\$@QHD$0HfI~$uHEHH;LLD$ƋD$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH=uHHHHuL1LfHuQLLD$LLHD$,AWAVAUATUSHfnFdH%(H$1H4,Ht$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(nH[]A\A]A^A_HHu뾐Lt$0Ll$LL6tLd$PLLtT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$H$ )$0fo$)$@fo$H$D$$fo$)$Pfo$)$`D$0fo$)$pfo$)$fo$)$fo$)$)$)$)$)$)$uHEHxH;LLD$(D$f.D$0zjuhfHnf.l$8z[uYfInf.t$@zLuJ1H$0Af.zSuQHH=uHHHHuL1LĖfHuLL衖D$LLHD$*ǩATL%#H HyH5L膿u7LHLA\ATIUHHt HH5ByLHitHmtH]A\HH]A\遃AWAVAUATUSH8fnFdH%(H$(1H}H$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_KHHuÐL$L$LL`tL$LLDtH$L wjL$LLwOH$LHHD$*H$LHЅ HT$|LHHT$s$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQKHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH HIcLHLILRLD$LH@AXZT$h\$`L$mHHuHھL^y$H*HT$L4HLL H(L1L$LUT$|Lff.AWAVAUATUSHxfnFdH%(HD$h1Hq#Ht$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0L^rtLt$8H5v LL|$8ItLH5"L|$8ItLH5?L|$8kH"LLH$H|$8GLHLHD$y|$8)Lc"LLHD$LT|$8HLL+H $LD$L'"LL$L\$,LLLL$LLD$HL$L$|$,L$HL$LD$ILL$LLLL$LD$H $޾qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!HHfDkHHf.RLLHAVPSMjH 2fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐutLt$ H5vLL|$ ItLH5 L|$ HtD$$t$ uQLEHLAHYHXHcMHH 2f.HL赵茙ff.AWAVAUATUSHfnFdH%(H$1HPHt$PHD$XHGfnȉD$hfbfD$`Hl$PLw(1HVH$4AHcL$Eu~MD$`+D$dHH$E1HtH$H9t耨H$dH+%(HL[]A\A]A^A_@IcI\uKHH&H|$PE1-UH$4HcH$I^LE1Sf.L|$LHL&HD$pHHH$uH$HHHD$uDLHu\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L( Hd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztJHtL68su]LH~s9LA\ATIUHm^Ht HH5C LHC@H`9HvufDfDwUH= Hܓu]ÐHH=%tHH=P讓tHH=n@蛓tH]^(f.@鷛gGUH@dH%(HD$81H?Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5V? |$HtHt+HH5@`HPt肫HuHuJ1iHusff.fUH@dH%(HD$81HkHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uFH@]@H|$HT$H5c*|$Ht+(H質HuHIsff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5L芖|$ Ht#D$ 9D$(|Vt$ H* HHtU1HT$8dH+%(uMHH]A\H|$f.Ht$ L3uDHHrfUSHHdH%(HD$81HD=Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$HtHl$H=]HtHH=A u˨HuHc~@HH=3 ɏtHH=X趏tHH=v<裏tHg$pff.SH0fnFdH%(HD$(1H\H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDKHHuӐg货HuHcg pSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD苘HHuӐtHuHc襙HHH;btЉ=off.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD蛗HHuӐ tHuHc赘H HH;ŠtЉMnff.fAUATUH@fnFdH%(HD$81HXHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$8dH+%(H@]A\A]fD蓖HHufLd$Ht$L>tLHT$H56|$ItT$$Ll$HEuHH; u;H8LLH菤HHHoH:fDLLHlff.AUATUH@fnFdH%(HD$81HWHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$8dH+%(H@]A\A]fD#HHufLd$Ht$LΠtLHT$H53Ə|$ItT$$Ll$HEuHH; ]u;H8LLHNHBHH4LLHnkff.ATH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@ÓHHufHHRxH; 'IMtoI$H5VLPtZHuL@IHoH bL4j1HHP@Lw8fE1蘡H"DIjifATUSH@fnFdH%(HD$81H&5Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$趽1HT$8dH+%(H@[]A\;HHuːHt$H|$?tD$$Ld$u`HELH@H;ޙH= U茇tLH=N9 yu-PHaHcVf.LLH= 9tLH=ȶ&tLH=3tLHЉRhfATUHHdH%(HD$8HFLd$Ht$H˵HD$HHT$ LH5D$(HD$ D$ 軋|$ Ht9D$ 9D$(}Ht$ L躄tt$ HJH"HtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=eA\OH5芹H=!gATL%`H LH4SH5NbL|Hau0LHaLA\ATIUH Ht HH5RLH&tHmtH]A\HH]A\@UH0fnFdH%(HD$(1HRH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uNH0]fDHHuӐu$H HKHuH><@SeHefUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(utH@]f.HHuϐHt$H|$豙tD$$Ht$u(HEHH(HtD$9D$t;H111HT$(dH+%(uLH8諀HHuҐu$HHuHsH@[lWff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(utH@]f.HHuϐHt$H|$qtD$$Ht$u(HEHHuHc诀DH@pWVUHAWAVAUATSHfnFdH%(HE1HbAH0H8HGfnȉHfbfօ@H0Lo(1HHH}4AHcoLuEuvM@+DH©H}E1HtHEH9tHeHEdH+%(tHeL[A\A]A^A_]IcI~HH-H0E1H}4Hc~H}IpLE1eLPHL2;HHH5qsxH HH <HH(#HHHH,qHpHHHB2HDL(2nXP`xp]E~_IFH9<AD$.DH1HfAHH9uDHAt AËD(H IEHLLLLAVHf.PIXZf.Xf.`Hgf.pf.xf.eE~?HIc1 @HH9t$Af.ztHdHVH[LE(H}IN4H-HL1E> HcHH>AHLLLLHAV,^HD1AHH9uHHC}HDL=PHU1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt< H5$觢1HUdH+%(\ He[A\A]A^A_]H $H0H8Hfօ@HDH0Mx(1HH H}4AHcyLeE,MB@+D.HH}1HUH9(HHX_H@H #H0H8Hfօ@HH0Mx(1HH H}4AHcxLeEuhM@+DrH H}1HXHUH9,FIcI@IcILPHL,HHH5|krHHH |HH()aHHHHjHIc1 HH9t$Af.ztHHHqLsH}f@LqIHH0H}4HcqH}1IL1LpIHH0H}4HcJqH}1IL1~H}HL13b~HHH3ATLLLHH8HD1@AHH9uH!Hi9HDL3-}H4HL12APLLLLHAT }HAHH2EHD1AHH9uHHDLN2Hb8eHHDAT1UHHHNdH%(HD$81HGAfnH%fnA)fbAtDAAH5E0DA1HT$8dH+%(HH]A\L0Ht$LT$L$ T$$T$(HHo(HtD$ +D$$H|$̘1L /Ht$LL$L$ T$$T$(HHo(HLD$ +D$$LH|$h1"H U/Ht$HL$T$(fD$ HuPHo(HD$ +D$$tfH|$1lHHflHHufDlHH-fLd$HL``gHt$LK`RHt$L6`=|$$L$T$4$ HEHxH{zHHjDHt$H|$wT$$Ht$HEHpHfDLd$Ht$L^wHT$H5=LRf|$HsD$$Ht$u?HEHyHKH^H=@HPdHHHƌHAfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$•1HT$8dH+%(uzH@]f.KjHHuϐH5> HT$H|$ e|$HtD$$u(HEH8xHuHj]H@Hx@ fDfDGATIUHHH8HLHH]A\TATIUHSHH8L[HH]A\pf.@UH=c,H^u]ÐHH= ^tHH= ^tHH=-^tHH=K x^tH];f.<AWAVAUATUS1HdH%(HD$x1Hr9Hl$ Ht$ HD$(HFHHD$4D$0UH|$@4AHcLd$@EtIcIċD$0+D$4t\HbE1H|$@HtHD$HH9tNHD$xdH+%(HĈL[]A\A]A^A_DHt$HstDLHtLt$HLes{HT$H5 HYb|$IYHT$H5ZH7b|$I7E~SID$H9AED1HfDAoHH9uDAtIHH|$LLL~Ic1E fHH9tH I9 t8uHtG.uHt)$uHL%ZI${f.HT$HDLHfD1fIHHH9uI5=HfAWAVAUATUS1HdH%(H$1H6Hl$0Ht$0HD$8HFH1HD$DD$@H|$P4AHcBLd$PEtIcIċD$@+D$DtdHҐE1H|$PHtHD$XH9tVLH$dH+%(HĘL[]A\A]A^A_f.DLHbtLt$ HLptL|$(HLppHT$H5 H_|$HD$LHT$H5;XH_|$I*E~NID$H9AED1HAoHH9uDAtIHHL$LLLcIc1E'f.HH9tH I9 trHt_rHt)rHt7zrHoL%ZWI$aHT$ H>@HT$(H&DL1HDdD1DIHHH9u)}:HAWAVAUATUSHhdH%(HD$X1H74Ht$0HD$8HFHD$DD$@t?H|$0c1HT$XdH+%(Hh[]A\A]A^A_fDLt$(Ll$0L=v LLL]|$(HtLd$ LLntLLpntH\$LLHi]|$kHH5ULHD$G]|$IFHL$LLHv8pHt,pHt:pHHUH@HT$ Ln@HT$(LV8ff.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$̌1HT$8dH+%(uhH@]@HT$H|$H5v*\|$HtHt+HH5 HPtoHuH1oHu7ff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uFH@]@H|$HT$H5J[|$HtHnHuH ?7ff.@ATUHHdH%(HD$81HɄHt$HD$HFHD$$D$ D$ wcLd$HT$ H5LZ|$ Ht#D$ 9D$(|Vt$ HH"nHtU1HT$8dH+%(uMHH]A\H|$輊f.Ht$ LSSuDH 96fHFuHHH=<nHH5/N1HAWAVAUATUSHdH%(H$HFtIH5/E1H$dH+%(>HL[]A\A]A^A_Hz/Hl$ Ht$ 1HD$(HHjD$8HD$0?H$4AHcL$ED$0+D$4HEE1H$H:H$H9)DfDH.Hl$ Ht$ 1HD$(HHX D$8HD$0H|$@4AHcLt$@ENHY4H$AHcHD$L$EumD$0+D$4tyH^E1H$H$H9t HtCH|$@H7HD$HH9)CfDIcIHD$D$0+D$4uHt$HjhtDLHrDLH\E~TIFH9AD$D1HAo  HH9uDAtIHE~XIGH9D$$AED1HDAoHL$HH9uDAtIHH|$LL$Ic1E)HH9tH I9 tiHIc1E)HH9tHL$H I9 tiHiHL%NI$IcI@IcI\D$0+D$4HT$H5+OHU|$IDLHE~SAD$IEH9D1H@AoDHH9uDAt ITHLLeIc1E*HH9tH I9LthHhHL%yMI$ D1f.ITHHH9uzD1@IH|$HHH9uD1IHHH9uDLH'ZdDLHZ0DLHYM0HH'HfUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H= HNtHH=5*NufHuHcY@HH=v MtHH=0w MtHH=U}MtHH=sMtHd.ff.UH0fnFdH%(HD$(1H(H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11辂1HT$(dH+%(u7H0]fDKWHHuӐHXeHuH .UH0fnFdH%(HD$(1H4(H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u7H0]fDVHHuӐHPdHuH`-UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11>1HT$(dH+%(u7H0]fDUHHuӐH@4dHuH',UH0fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11~1HT$(dH+%(u7H0]fD UHHuӐHHtcHuHg+UH0fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u7H0]fDKTHHuӐHhbHuH +H8fnFdH%(HD$(1HFH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11~1HT$(dH+%(u9H8SHHuҐDaHuHFH_*ff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/~1HT$(dH+%(u9H8RHHuҐ3&aHuH FH)ff.@H8fnFdH%(HD$(1HEH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_}1HT$(dH+%(u9H8QHHuҐV`HuH:EH(ff.@SH0fnFdH%(HD$(1HnH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11|1HT$(dH+%(uZH0[fDQHHuӐt_HuHc5RHHH;TtЉ'ff.fUH@fnFdH%(HD$81H"Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|${1HT$8dH+%(uVH@]f.PHHuϐHt$H|$[tHt$HPi^HuHcQ&DATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$z1HT$8dH+%(ukHH]A\fD+OHHuѐLd$HLZtHt$LZtHT$H4$He]HuHIBH%ff.ATUHHfnFdH%(HD$81H BHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$y1HT$8dH+%(uxHH]A\fDNHHuѐLd$Ht$ LAtHT$ H5 LH|$ Htt$ HK\HuH/AHx$ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$x1HT$8dH+%(ukHH]A\fD MHHuѐLd$HLXtHt$LXtHT$H4$HE[HuH)@H#ff.ATUHHfnFdH%(HD$81HzHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$pw1HT$8dH+%(umHH]A\fDKHHuѐLd$Ht$LWtHt$L?tT$Ht$Hm3ZHuH?H"ff.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mvE1HD$(dH+%(H0LA\@JHHufHHRxH;:[IMtoI$H5: LPtZ%YHuLIHoHbLd!1HHP@L68fE1XH"DIj)!fAVAUATUSH`fnFdH%(HD$X1Hd=Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(11HH|$04AHcLl$0EuoMD$ +D$$HtH|$0E1HtHD$8H9t70HD$XdH+%(H`L[]A\A]A^IcI\fD IHH>H|$1E1H|$04HcH|$0IsLE1hDLHR GHT$H5= HvC|$I%EIUHH)HAD$D1HAoTHH9uDAt4AtH4HA9~ALLA9~ ADDLLL]E~&Ic1 fHH9t A9LtHVHt'>VH|$0E1HRL%;I$ADL1H|Wf.D1ATHH9uf]HdAVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcVLl$0EulMD$ +D$$HqH|$0E1HtHD$8H9td-HD$hdH+%(HpL[]A\A]A^IcI\fD;FHH>H|$E1H|$04HcH|$0IsLE1hHt$H9KHt$ H96DLH E~TIEH9AD$D1HDAoTHH9uDAt ITHËT$ t$LL IE~DIc1DHH9t/H I9LtSHuDLHEsSHZLGH|$0IMDD1ITHHH9uZHԽATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$fo1HT$8dH+%(H@[]A\CHHuːHt$H|$qtD$$Ld$u`HELH@H;F4H=' <9tLH=Z)9u-RHaHcDVf.LLH=b 8tLH=@b 8tLH=eh8tLH=8tLtxDHЉgATUHHdH%(HD$8HFLd$Ht$H[gHD$H$OHT$ LH5gD$(HD$ D$ K=|$ Ht9D$ 9D$(}Ht$ LJ6tt$ HzHPHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H= A\PH5fkH8UH@HNdH%(HD$81HGfnAH%HfnfbA)Au\H PHt$HL$D$(fD$ HHo(Ht>D$ +D$$H|$Zl1fDH5KPDAj1HT$8dH+%(+H@]DL PHt$LL$L$ D$$D$(HHG(HtT$$9T$ H|$11k1뒐{@HH7yf.Ht$H|$!LXHt$HcHNH:HtfHH5Hf.H`tNHHcfD?HHfH)3Hff.AV1IAUATUHfnFdH%(HD$xHG~H%fn)fbtAH5E1hHD$xdH+%(HĈL]A\A]A^H Ht$ HL$(T$8fD$0HIh(Ht%D$0+D$4bH|$ jE1}fDH 0Ht$ HL$(T$8fD$0HHl$ M`(HvH|$@4AHcH|$@H|$Mt'D$0+D$4t?HiH|$@E1HHD$HH9%@Ht$HItLt$HLItHt$DHtHt$HL$LLQ5LH'LH LH|$@E1H[L%0I$JLd$ Ht$L.IHT$H51L"8|$HvHt$HKH[L%0I$L^1HT$(dH+%(ucH0]fD2HHuӐu,HH+AHuHHx3KHfDTt @SH0fnFdH%(HD$(1HhH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N]1HT$(dH+%(uMH0[fD1HHuӐu$H<@HuHc2D#f.SH0fnFdH%(HD$(1H9 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n\1HT$(dH+%(uMH0[fD0HHuӐu$Hx\?HuHc2D f.SH0fnFdH%(HD$(1H8 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11[1HT$(dH+%(uMH0[fD0HHuӐu$Hp|>HuHc/1D'f.AWAVAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$Z1HT$8dH+%(H@]A\A]A^A_fLl$Ht$L:tL|$L5F#LLL)|$ItLLL)|$HtD$$Ht$uQLELHA+=H\H "HNf.HH4f.LH^ff.AVAUATUSHpfnFdH%(HD$h1H "Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcVLl$0EulMD$ +D$$HXH|$0E1HtHD$8H9tdHD$hdH+%(HpL[]A\A]A^IcI\fD;-HH>H|$E1H|$04Hc蛭H|$0IsLE1hHt$H8KHt$H 6DLH E~TIEH9AD$D1HDAoTHH9uDAt ITHËD$$T$Ht$ufILLPE~(Ic1 HH9tH I9Lt:HtY:H|$0E1HlL%]I$[LLuD1ITHHH9uZDLH>,Hff.SH0fnFdH%(HD$(1HiH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^V1HT$(dH+%(uMH0[fD*HHuӐu$HL9HuHc+Df.H8fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11U1HT$(dH+%(uLH8 *HHuҐu$Hn8HuHRH@Sff.H8fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11T1HT$(dH+%(uLH8+)HHuҐu$H7HuHrH@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$S1HT$8dH+%(utH@]f.;(HHuϐHt$H|$3tD$$Ht$u(HEH|6HuHc/)DH.UH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11R1HT$(dH+%(uNH0]fD;'HHuӐu$HhH5HuH@#HfATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$Q1HT$8dH+%(HH]A\fK&HHuѐLd$Ht$L1tHT$H5fL |$HtD$$Ht$u/HEHm4HtHMHf@HCAV1IAUATUHfnFdH%(HD$xHG~H%fn)fbtAH5GE1NHD$xdH+%(HĈL]A\A]A^H Ht$ HL$(T$8fD$0H Ih(Ht%D$0+D$4rH|$ .PE1}fDH Ht$ HL$(T$8fD$0HHl$ M`(H薸H|$@4AHcH|$@H|$Mt'D$0+D$4t?HOH|$@E1HHD$HH9! @Ht$H/tLt$HL/tHt$DH3tD$4Ht$HL$FI$LLhD2HR62H*(2H|$@E1HJL%I$9fDLd$ Ht$L>/HT$H5L2|$HfL$4Ht$HEH1H:L%I$L"IH L"IH H|$ 轶H|$@4Hc=SH(mLL HT$DH>HT$HMH؛AUATUHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ uRHo(Ht!D$ +D$$tLH|$M1H$dH+%(PHĠ]A\A]f!HHuɐLd$Ht$L>-tLl$0LLtfoT$0fo\$@fod$PD$$Ht$)T$`)\$p)$HELHD$0f.D$`D$hf.D$8zvutD$@f.D$pzfudD$Hf.D$xzVuTD$Pf.$zCuAD$Xf.$z0u./HHHLHd.HuȹLLJf.AU1IATUH`fnFdH%(HD$XHG~H%fn)fbtFH5)(I1HT$XdH+%(H`]A\A]H Ht$0HL$8T$HfD$@HIh(HtD$@+D$DH|$0J1f.H Ht$0HL$8T$HfD$@HIh(HGD$@+D$DVH|$0JJ1H 5Ht$HL$T$(fD$ HuXIh(HD$ +D$$tvH|$I1LIHLpIHuLXIH oLd$Ht$L.NHt$L9Ht$ L$D$$HEL$ T$t$HxH;Ǩ1;Ht$H|$0y)|$DHt$HEHpH+HHDLd$0Ht$L)nHT$ H5L|$ HLL$DHt$+HEH+H HaHHHPLd$0LH5LHǾsGHH5HHLHH5֖HH{HH5輖H5L譖HH5螖L-HLL:lHLHLKH1LwL1-hH֦Ld$0LH5LHǾsEHH5HHLHH5ԕHHyHH5躕H5L諕HH5蜕L-HLLtNnHLH LJH1NyHHg2HB HBHmHqfUH0fnFdH%(HD$(1H9 H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~E1HT$(dH+%(uNH0]fD HHuӐu$HPHk(HuH@#HfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$D1HT$8dH+%(uzH@]f.HHuϐH58 HT$H|$|$HtD$$u(HEH8V'HuH: H@HXAW1AVAUATUHSHfnFdH%(H$HG~H%fn)fbtSbH5J AE1H$dH+%(cHL[]A\A]A^A_fDH Ht$0HL$8T$HfD$@HlLd$0Hm(1L̫H$4AHcFL$EHrD$@+D$DLBH$E1H$H9qH Q Ht$0HL$8T$HfD$@HHm(HD$@+D$DH|$0E1GBfH Ht$0HL$8T$HfD$@HHm(Ld$0L趪H|$P4AHc3H$H\$PEL耪4H$AHcHD$L$EHD$@+D$D>LtAL$E1H$I9t MtLH|$PHD$XH9HfIcHH$3IcIHD$_IcI@HHHXBHpHHH|$0E1RH$4Hc͕H$ILE1HHH87Ht$LHt$ L DHLHt$(L{ DLLլiE~RHCH9$AED1HfoH $HH9uDAtHHE~]IGH9D$#AFD1Hf.Ao$HL$$HH9uDAtIHD$DLD$(HT$ t$HEMHHHHE~4Ic1HH9tH $H H9 t!HE~4Ic1HH9tH\$HI9t!Hw!HHL$I@Ht$ LzHt$(LeDLLOE~RAEkIFH9^D1HfDAoHH9uDAtIHË|$DHT$(t$ HELH8HE~-Ic1DHH9tH I9 t H HHH$ILd$0Ht$(LHT$ H5L |$ HwL$Dt$(u@HEH@H HMH2I@f.E1OHHLH D1fDIHHH9uMHHpDLLD1IHt$HHH9u D1HH4$HHH9uDLLHqDHھL0 HvH鋊H?ATUHHfnFdH%(HD$81H|Ht$HD$HGfnȉD$(fbfD$ Ho(D$HD$HteT$ D$$)wCA;T$(zHEDH0-Hu!HHH|$1:1HT$8dH+%(u}HH]A\DcHHQDLd$Ht$LtD$ 9D$(}Ht$L#tDD$Ht$D$$B@DH-DFfDUH=J H\u]ÐHH=rAtHH=J- .tHH=- tHH=3tHH=ȰtH]鸘UH@dH%(HD$81H:Ht$HD$HFHD$$D$ t0H|$<91HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5mHPtHuH1Humff.fUH@dH%(HD$81H1Ht$HD$HFHD$$D$ t0H|$\81HT$8dH+%(uFH@]@H|$HT$H51|$Ht9HCHuH6ff.@ATUHHdH%(HD$81H91Ht$HD$HFHD$$D$ D$ wcLd$HT$ H5j1L|$ Ht#D$ 9D$(|Vt$ HHHtU1HT$8dH+%(uMHH]A\H|$,7f.Ht$ LuDH0fUSHHdH%(HD$81HԭHt$HD$HFHD$$D$ HD$t6H|$61HT$8dH+%(HH[]DHt$H|$诸tHl$H=HtHH=) u[HuHc @HH=) YtHH=/FtHH=3tH~ff.SH0fnFdH%(HD$(1H.FH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N51HT$(dH+%(uZH0[fD HHuӐ$tBHuHc H$HH;"tЉff.fSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H11b41HT$(dH+%(u_H0[f.HtHx(HtˋD$t9Ho1fH`0HuHc T$qATUHHVdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uHHo(HttjH|$f31HT$8dH+%(HH]A\HtHh(HtNjD$$}H|$n1Ld$Ht$ LtHT$ H5Lv|$ HrHEt$ HXHSHHETT$ ff.ATUHHfnFdH%(HD$81HsHt$HD$HGfnȉD$(fbfD$ Ho(D$HD$HtVD$$uDD$ w{;D$(HEH0HuHHH|$m1HT$8dH+%(u{HH]A\@SHHaDH|$111Ld$Ht$LtD$ 9D$(}Ht$LtT$Ht$B@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH110E1HD$(dH+%(H0LA\@CHHufHHRxH;Z(IMtoI$H5LPtZuHuLhIHoH{bL1HHP@L8fE1H"DIjyfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$6/1HT$8dH+%(H@[]A\HHuːHt$H|$AtD$$Ld$u`HELH@H;H== tLH=" u-HaHcVf.LLH=#" tLH=H(tLH=ftLWHЉfAVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HYH|$04AHcւLl$0EutMD$$us|$ H^-H|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^fDIcI\fDHhfDHH&H|$E1腕H|$04HcH|$0I]LE1RHt$H -Ht$H.DLHXE~TIEH9AD$D1HDAoTHH9uDAt ITHIT$LLHt$PE~(Ic1 HH9tH I9LtHtIH|$0E1HVL%I$ED1fDITHHH9urDLHHBzAW1AVAUATUHSHH~dH%(H$1HEfnljH%fn)fbtWn H5(E1H$dH+%(\HL[]A\A]A^A_f.HQHt$0H\$8T$HfD$@HLd$0Hm(1LH$4AHcL$EHL$D|$@L *H$E1H$H9H@HHt$0H\$8T$HfD$@HHm(HNH|$0E1)fH 1Ht$0HL$8T$HfD$@HHm(Ld$0LH|$P4AHcs~H$H\$PEL4H$AHc:~HD$L$EutHD$D|$@tL(L$E1MtH$I9tL-H|$PHD$XH9DIcIHD${IcHH$+IcI@LdqLcHH&Hh(HT$DH|$0E1c@HxHH`_HXHH H|$0E1:H$4Hc|H$IbLE1WHt$LHt$ LtDHL^Ht$(LIDLLݓ3E~ZHCH9$PAECD1Hf.oH $HH9uDAtHHE~]IGH9D$AFD1Hf.Ao$HL$$HH9uDAtIHHELD$(MHHT$ t$HHHIc1E)@HH9tH $H H9 t HE~4Ic1HH9tHL$H I9 tH4HHL$I@Ht$ L HHt$(L3DLL E~RAE>IFH91D1HfDAoHH9uDAtIHHEHT$(LHt$ 8HIc1E*fHH9tH I9 tHHfHH$IYfLd$0Ht$(L]HT$ H5"L|$ H;HEHt$(@H+HHJI fE11D1IHHH9uDLL#D1IHt$HHH9u^D1HH4$HHH9uDLLDHھLcL$@~H)rHcrH8rATUHHdH%(HD$8HFLd$Ht$H+HD$HHT$ LH5}D$(HD$ D$ |$ Ht9D$ 9D$(}Ht$ Ltt$ HHHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=A\H5\HATL%c1H6H5LKuMLH3NLA\ATIUHHt HH5LHStHmtH]A\HH]A\AUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$ 1HT$8dH+%(uzH@]f.;HHuϐH5fHT$H|$|$HtD$$u(HEHvHuHZH@H$fDUH=HLu]ÐHH=M 1tHH= tHH= tHH=˖tH]~f.#UH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5֕|$HtHt+HH5HPtHuH1Hu]ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_tHl$H=HGtHH=84u HuHc@HH=ܔ tH|T@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$!tD$$Ld$uXHELH@H;ulH=tLH=7u)HeHccZfDLLH=ttLe{븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@CHHufHHRxH;zwIMtoI$H5tLPtZuHuLhIHoHfbL1HHP@L8fE1H"DIjyfATL%H HH5~L6xuLH9LA\ATIUH Ht HH5nLHCtHmtH]A\HH]A\1UH0fnFdH%(HD$(1H5H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fD;HHuӐu$HHHuH@HfSH0fnFdH%(HD$(1HF4H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD[HHuӐu$HHu#Df.gUH=dHu]ÐHH=73qtHH=1^tH]!w_AWAVAUATUSHdH%(HD$x1HgHt$ HD$(HFHD$4D$0tDH|$ 1HT$xdH+%([HĈ[]A\A]A^A_Ld$@Hl$ LH6tLl$`HLtf(D$@t$PLLL$hT$`\$pfD$)$fI~fH~t$fI~Af($f.D$@zturl$f.l$Hzdubt$f.t$PzTuRfHnf.d$`zeucfInf.|$hzVuTfInf.l$pzGuEHHHHuL1H褮fkHuLH聮f.AUATUSHxdH%(HD$h1HeHt$ HD$(HFHD$4D$0t;H|$ 1HT$hdH+%(Hx[]A\A]fDLd$PHl$ LHftLl$HHLMtf(D$Pd$`LLL$HfD$)$fH~d$ǭf($f.D$Pzpun\$f.\$Xz`u^d$f.d$`zPuNfHnf.T$Hz uH$HHHuعLH HuL1H7UH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5֊|$HtHt+HH5HPtHuH1Hu]ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$_tHl$H=HGtHH=4u HuHc@HH=܉ tHqT@SH0fnFdH%(HD$(1H=H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fDHHuӐt"HuHcHHH; tЉmff.fSH0fnFdH%(HD$(1Hy<H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11>1HT$(dH+%(uUH0[fDHHuӐt15HuHcfDHHH;tЉ肼fSH0fnFdH%(HD$(1H;H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11^1HT$(dH+%(uUH0[fDHHuӐt1UHuHcfDHHH;tЉ袻fSH0fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H11~1HT$(dH+%(uUH0[fD HHuӐt1uHuHc(fDHHH;GtЉºfATUHHfnFdH%(HD$81H:Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;uYHuLLf.t$ HI譹ff.fATUHHfnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$p 1HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;u9HuL,f.t$ HI荸ff.fAUATUH`fnFdH%(HD$X1H7Ht$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ N 1HT$XdH+%(H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$PtPHD$Pf1)\$@f.D$@z|uzf.L$Hzrupf.T$PzhufHJHc?HEHXH;tT$HLD$L$T$D$L$@kHuL1L脣yʶf.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$ 1HT$8dH+%(H@[]A\ HHuːHt$H|$葌tD$$Ld$uXHELH@H;vulH=`tLH=Mu)$HeHcZfDLLH=tLh븐HЉRfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11- E1HD$(dH+%(H0LA\@HHufHHRxH;PIMtoI$H5LPtZHuL؊IHoHtSbL$1HHP@Lg8fE1H"DIjfAWAVAUATUSHhfnFdH%(HD$X1H:3Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$1HT$XdH+%(hHh[]A\A]A^A_@+HHuȐLl$@Ld$LLFtLt$8LL-tT$H\$Pd$8D$$D$@fI~$fH~uHEHxH;LLD$聟D$f.D$@zMuKfInf.t$Hz>u<<$f.|$Pz/u-fHnf.l$8z>u LLL|$HL\$CLLLHD$r|$HL\$ LLLHD$O|$HL\$L5'!LLHD$ L%|$HL\$HLLL|$HL\$HL$LD$ILL$ L LLLL$(LLD$ HL$L\$|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$kLp *HT$?LL\|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0HHHfHHcf.HLHRLPt$ AVSH0躟f.AVAUATUSH`fnFdH%(HD$X1HHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ {1HT$XdH+%(;H`[]A\A]A^HHuƐLd$ Ht$L޻tLl$@LL}tHT$H5L|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6HHc[fDHLnD$vHuLL茊՝DUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fD;HHuӐuUH0fnFdH%(HD$(1HǜH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u H|u]ÐHH=4OatH]$7@UH@dH%(HD$81H'Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uBH@]@Ht$ H|$!tы|$ H茺HuH sUH@dH%(HD$81H'Ht$HD$HFHD$$D$ t0H|$1HT$8dH+%(uBH@]@Ht$ H|$qtы|$ DHܹHuHZrCAUATUHdH%(H$1HG&Ht$ HD$(HFHD$4D$0t>H|$ 21H$dH+%(*H]A\A]@Ld$@Hl$ LH_tLl$`HL_tf(D$@t$PLLfoL$`foT$pfo$fD$fo$)$t$)$)$)$)$\Vf($f.D$@#l$f.l$H t$f.t$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$$f.$zwuu$f.$zau_$f.$zKuI脷HHdH cHL1Hxl;HuLHQlf.AUATUHdH%(H$1H#Ht$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(H]A\A]@Ll$@Hl$ LH.]tLd$`HL]t|$PLLfoL$`foT$pf(D$@fo$|$fo$fo$)$ fo$fo$)$0fo$fo$)$@fo$)$Pfo$)$`fo$fD$)$)$p)$)$)$)$)$)$f($f.D$@zoumt$f.t$Hz_u]|$f.|$PzOuM1H$ Af.z[uYHH=uHMHH?HuL1Hif.軴HuLHi}f.UH@dH%(HD$81H HHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5Gj|$HtHt+HH5CHPtHuHR1ɳHu=|ff.fUSHHdH%(HD$81HdGHt$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$?RtHl$H=aH'tHH=uHuHc螥@HH=tHH=F֙tH.!{SH0fnFdH%(HD$(1HJH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD苣HHuӐ tHuHc襤H HH;RtЉ=zff.fSH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD蛢HHuӐtHuHc赣HHH;RtЉMyff.fSH0fnFdH%(HD$(1H{H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fD諡HHuӐ tHuHcŢH HH;tЉ]xff.fSH0fnFdH%(HD$(1HXH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uZH0[fD軠HHuӐt"HuHcաHHH;ҢtЉmwff.fATH0fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@ßHHufHHRxH;IMtoI$H5VLPtZHuLLIHoHbL4v1HHP@Lw8fE1蘭H"DIjufATUSH@fnFdH%(HD$81H&AHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\;HHuːHt$H|$KtD$$Ld$u`HELH@H;~H=ù茓tLH=yu-PHaHcVf.LLH=ڑ9tLH=?&tL'fDHЉbtfAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$#1H$dH+%(H[]A\A]A^A_蛜HHu뾐Ll$0Ld$LLQtLt$PLLQtT$8\$@fod$Pfol$`fot$pD$$fH~fI~fo$D$0)$)$)$)$uHEHxH;؜LLD$HD$f.D$0fHnf.T$8fInf.\$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$D$xf.$z{uy$f.$zeuc$f.$zOuM@HH HHL1L0^HuLL ^D$LLHD$i/qff.@AWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(NH[]A\A]A^A_[HHu뾐Lt$0Ll$LLvNtLd$PLL]NtT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$fo$fo$)$ D$$fo$)$0fo$)$@D$0fo$)$Pfo$)$`fo$)$p)$)$)$)$)$uHEHH;(LLD$D$f.D$0zkuifHnf.d$8z\uZfInf.l$@zMuK1H$Af.zSuQHH=u0HHH HuL1L$[fHuLL[D$LLHD$)'nATL%H \HײH5.L(u.LHnLA\ATIUHHt HH5LH-tHmtH]A\HH]A\GAWAVAUATUHSHfnFdH%(H$1Hc. Ht$@HD$HHGfnȉD$XfbfD$P6Hm(L|$@L*H$4AHc誖H$H$Et IcHH$L)4H$AHcgHD$L$Et IcIHD$H,D$P+D$TLL$E1MtH$I9tL$|H$HtH$H9t|H$dH+%(vHL[]A\A]A^A_f۔HHf.Ht$8L賈RHD$`LHHD$I0DHLIHt$H$HHHD$ >DLH=\$xd$p$$$\$($d$l$8t$ |$\$0E~WIEH9AD$D1HDfATHH9uDAt ADËD$d0IHL$MLH$L(PHd$f.d$p t$(f.t$xt$8f.$l$f.$|$ f.$|$0f.$E~5Ic1HH9tADf.ztzHlH$E1HL%AzI$HL$H$MLLYHH$H0JHBHT$HJ&D1@ADHH9u2T$L1HPTDLHI\HfUHAWAVAUATSHhHfnFdH%(HE1HHHHGfnȉfbfօ;HH@(HLLUHP4AHcHPHDžEtIcHHL4H}AHc輅HDžLuEtIcIHH+LLuE1MtHEI9tLxkHPHtHXH9t[kHEdH+%(HeL[A\A]A^A_]fD;HHfDHLHHB9UDHL,9?HLHHwH0LHH8HLHH)DLL8 xE~oHHCH9AD$DH1HDfHH9uDHAtH80@E~uHIFH9AEDH1Hf.fAHH9uDHAtAH:HHLHLHHHAV f.XZf.xf. E~CHIc1 HH9Of.zt創躏H8謏Hf.0f.8f.@JHyE~LHIc1HH9Af.zt䉝HHHc薁LuIf.E1賎H[HLC=딉tHrH1LCWHLLHHHAVH.HHD1AHH9uHHL-I%LӖmHHD1HH9uH7DHھLBDLL~BYUHHff.AWAVAUATUSHfnFdH%(HD$x1HWHt$PHD$XHGfnȉD$hfbfD$`Ho(Ht!D$`+D$d tFH|$P b1HT$xdH+%(HĈ[]A\A]A^A_f.L|$PHt$@L#tL\$HH5( LLL\$x|$HL\$ItLH5ILmx|$HL\$IhL5 LLLEx|$HL\$CLLLHD$"x|$HL\$ LLLHD$w|$HL\$L5LLHD$ Lw|$HL\$HLLLw|$HL\$HL$LD$ILL$ LLLLL$(LLD$ HL$L\$iw|$HL\$HL$LD$ HD$LL$(SLLLL$ LD$HL$L *HT$?LL w|$?HL$LD$LL$ Ht$dHD$HD$@ulHLULHRLPt$ AVSA0H0RHH2oHf{HHcf.HLHRLPt$ AVSH0jRf.AVAUATUSH`fnFdH%(HD$X1HZHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ +1HT$XdH+%(;H`[]A\A]A^zHHuƐLd$ Ht$LntLl$@LL/tHT$H5nL=u|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6\HHc {fDHL%D$&HuLL<=PDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(uuH@]f.xHHuϐHt$ H|$ltD$$t$ u)HEHHHuH&DH_HvOfDUH@fnFdH%(HD$81H~Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uuH@]f.wHHuϐHt$ H|$ktD$$t$ u)HEHH HuH$DH0HfNfDUH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u|H0]fDvHHuӐuH|$ 1H$dH+%(HĐ]A\A]@Ll$@Hl$ LH$tLd$`HL$td$PfoL$`LLfoT$pf(D$@fo$d$fo$fo$)$fo$fo$)$fo$fo$fD$)$)$)$ )$0)$@)$P)$`)$p1f($f.D$@zrup\$f.\$Hzbu`d$f.d$PzRuP1H$fDAf.z[uYHH=u|H}HaHo|HuL1H1f.{|HuLH1Df.AUATUHdH%(H$1HHt$ HD$(HFHD$4D$0t>H|$ ˜1H$dH+%(H]A\A]@Ld$@Hl$ LHn"tLl$`HLU"tf(D$@l$PLLfoL$`foT$pfo$fD$)$l$)$)$)$}-f($f.D$@d$f.d$Hl$f.l$PD$`f.$$f.D$h$f.D$pD$xf.$z|uz$f.$zfud$f.$zPuNazHfHA_HX;zH<L1HP/%zHuLH)/rBfUH@dH%(HD$81Hj Ht$HD$HFHD$$D$ t0H|$l1HT$8dH+%(uhH@]@HT$H|$H5 e|$HtHt+HH5HPtByHuH51)yHuAff.fUSHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$t6H|$肕1HT$8dH+%(HH[]DHt$H|$tHl$H=H_tHH=Mt_uKxHuHcj@HH=]I_tHH= 6_tH@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(uZH0[fDhHHuӐ tRwHuHcjH HH;otЉ?ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDgHHuӐtbvHuHciHHH;*ttЉ>ff.fSH0fnFdH%(HD$(1H۽H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uZH0[fD gHHuӐ truHuHc%hH HH;ptЉ=ff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莑1HT$(dH+%(uZH0[fDfHHuӐttHuHc5gHHH;JZtЉNLG8MuLH~MSLA\ATIUHmHt HH5p|LHtHmtH]A\HH]A\ UH0fnFdH%(HD$(1H[H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u|H0]fDYHHuӐuHHcf.HLHRLPt$ AVSuH0jf.AVAUATUSH`fnFdH%(HD$X1HZHt$ HD$(HGfnȉD$8fbfD$0uUHo(Ht!D$0+D$4tOH|$ +i1HT$XdH+%(;H`[]A\A]A^=HHuƐLd$ Ht$L1tLl$@LLtHT$H51L=8|$HtD$4T$HD$@\$Pt$fH~fI~D$uaHEHLD$f.D$@zVuTfHnf.d$HzGuEfInf.l$Pz8u6\KHHc >fDHLD$&KHuLL<DUH@fnFdH%(HD$81HǒHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Rg1HT$8dH+%(uuH@]f.;HHuϐHt$ H|$/tD$$t$ u)HEHHJHuHDHHvfDUH@fnFdH%(HD$81H~Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$Bf1HT$8dH+%(uuH@]f.:HHuϐHt$ H|$.tD$$t$ u)HEHH IHuHDHHffDAUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(HH|$04AHc H|$0H|$Mt+D$ +D$$HdH|$0E1HtHD$8H9t} HD$XdH+%(H`L]A\A]@c9HHSH|$HH|$04HchfDHt$H#-rHt$DHZD$$t$HT$uBI$L`GHt;VGH|$0E1H$L%.,I$@LfDHT$DH H|AUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(HH|$04AHcH|$0H|$Mt+D$ +D$$H cH|$0E1HtHD$8H9tHD$XdH+%(H`L]A\A]@s7HHSH|$XH|$04HcxfDHt$H3+rHt$DHZD$$t$HT$uBI$LpEHt;fEH|$0E1H$L%>*I$@L^fDHT$DH H魳 fDfD fDfDHf(^HF17kHHHHUH=WH|+u]ÐHH=a+tHH=)N+tHH=;+tH]f.@UH@dH%(HD$81HjHt$HD$HFHD$$D$ t0H|$l`1HT$8dH+%(uhH@]@HT$H|$H5/|$HtHt+HH5 HPtBCHuH51)CHu ff.fAVAUATUSHpfnFdH%(HD$h1H]Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HD$HH|$04AHc4Ll$0EusMD$ +D$$H_H|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDk3HH.H|$E1HD$DH|$04Hc3H|$0IcLE1XHt$H4Ht$H&DLH E~WIEH9AD$D1HDfATHH9uDAt ADËT$Ht$LLpAE~HIc1 HH9t7ADf.zt@HuDLHf.@H;Ic:3H|$0I.DD1ADHH9uRHDHGI~H)ǃuHH=W0L@HH50ZZ1HÐHGI~H)ǃuHH=0L/@HH5YhZ1HÐHGI~H)ǃuHH=0L?HH5YZ1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$[1HT$8dH+%(utHH[]fHt$H|$tHl$H= H%tHH=w%u{>HuHc.1@HPUH0fnFdH%(HD$(1H2H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Z1HT$(dH+%(u8H0]fD;/HHuӐkYH=HuHff.@SH0fnFdH%(HD$(1HWH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11Y1HT$(dH+%(u7H0[fDk.HHuӐKX1HT$(dH+%(uZH0[fD,HHuӐt2;HuHc-HH(H;R5tЉ}ff.fSH0fnFdH%(HD$(1HUH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11NW1HT$(dH+%(uUH0[fD+HHuӐt_@D:HuHc,DHH8H;+tЉfSH0fnFdH%(HD$(1HTH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nV1HT$(dH+%(uUH0[fD*HHuӐta9HuHc,fHH0H;)tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11U1HT$(dH+%(uUH0[fD*HHuӐt8HuHc4+fHHH;tЉfUH0fnFdH%(HD$(1HSH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11T1HT$(dH+%(uVH0]fD;)HHuӐtHox7HuH+@HHH;$tHUH@fnFdH%(HD$81HCRHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$S1HT$8dH+%(u_H@]f.K(HHuϐH5 HT$H|$ #|$HtHX6HuHwHff.UH@fnFdH%(HD$81HTQHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.K'HHuϐH5 HT$H|$ "|$HtH5HuHwHff.UH@fnFdH%(HD$81H^PHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$Q1HT$8dH+%(uNH@]ÐK&HHuؐHt$H|$tHt$H4HuHH@UH@fnFdH%(HD$81HwOHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$P1HT$8dH+%(uVH@]f.[%HHuϐHt$ H|$Att$ HaH3HuHDUH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$O1HT$8dH+%(uNH@]Ðk$HHuؐHt$H|$tHt$H H2HuH$@UH@fnFdH%(HD$81HMHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$N1HT$8dH+%(uNH@]Ð{#HHuؐHt$H|$tHt$H0H1HuH4@UH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$M1HT$8dH+%(uNH@]Ð"HHuؐHt$H|$tHt$HH0HuHD@UH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$ M1HT$8dH+%(uNH@]Ð!HHuؐHt$H|$!tHt$HH/HuHT@ATUH8fnFdH%(HD$(1H&KH4$HD$HGfnȉD$fbfD$uCH(HtD$9D$tHH11,L1HT$(dH+%(H8]A\fD HHuftDHoH/HuHtQH豭HHITHu LH@HHH;'tHfDHHN#ATUH8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uCH(HtD$9D$tHH11J1HT$(dH+%(H8]A\fDHHuftDHo0-HuHtQH聬HHISHuLHκ@HHH;tHfDHqHNATUH8fnFdH%(HD$(1HіH4$HD$HGfnȉD$fbfD$uCH(HtD$9D$tHH11I1HT$(dH+%(H8]A\fDSHHuftDHo8,HuHtQHQHHIRHuLH螹@HHH; tHfDHAHNATUHHfnFdH%(HD$81HGHt$HD$HGfnȉD$(fbfD$ uRHD$Ho(Ht!D$ +D$$tKH|$H1HT$8dH+%(uwHH]A\DHHufLd$Ht$LtHt$LtT$Ht$H-C+HuH'HyfATUHHfnFdH%(HD$81HFHt$HD$HGfnȉD$(fbfD$ uRHo(H$Ht!D$ +D$$tLH|$hG1HT$8dH+%(uwHH]A\fDHHufLd$HLptHt$LtD$H4$H$*HuHHyf.ATUHHfnFdH%(HD$81HEHt$HD$HGfnȉD$(fbfD$ uRHo(H$Ht!D$ +D$$tLH|$HF1HT$8dH+%(uvHH]A\fDHHufLd$HLPtHt$L详tHT$H4$H)HuH Hzkff.ATUHHfnFdH%(HD$81HDHt$HD$HGfnȉD$(fbfD$ uRHD$Ho(Ht!D$ +D$$tKH|$'E1HT$8dH+%(uwHH]A\DHHufLd$Ht$L.tHt$L} tT$Ht$HN'HuH HyIfATUHHfnFdH%(HD$81HtCHt$HD$HGfnȉD$(fbfD$ uRHD$Ho(Ht!D$ +D$$tKH|$D1HT$8dH+%(uyHH]A\DHHufLd$Ht$LtHt$L轈tD$Ht$H&HuH Hw'ATUHHfnFdH%(HD$81HdHt$HD$HGfnȉD$(fbfD$ uZHo(H$HD$Ht!D$ +D$$tCH|$B1HT$8dH+%(ujHH]A\DkHHuҐLd$HLtHt$LtHT$H4$H%HuH Hff.ATUHHfnFdH%(HD$81HQBHt$HD$HGfnȉD$(fbfD$ uZHo(H$HD$Ht!D$ +D$$tCH|$A1HT$8dH+%(ujHH]A\DKHHuҐLd$HLtHt$LtHT$H4$H H$HuHuff.ATUHHfnFdH%(HD$81H&@Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@1HT$8dH+%(HH]A\f;HHuѐHt$ H|$! tt$ HђH#HuHt7H'HHIiIHuLHtqH1HZATUHHfnFdH%(HD$81H?Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$?1HT$8dH+%(HH]A\f HHuѐHt$ H|$tt$ HEHY"HuHt7HHHI9HHuOLHDqHHZATUHHfnFdH%(HD$81H]|Ht$HD$HGfnȉD$(fbfD$ uZHD$Ho(Ht!D$ +D$$tKH|$G>1HT$8dH+%(HH]A\fHHuʐHt$H|$QtHt$HH!HuHt>H趟HHIFHz LHef.HHK;ff.AUATUH@fnFdH%(HD$81H:Ht$HD$HGfnȉD$(fbfD$ uXHo(H$Ht!D$ +D$$tJH|$<1HT$8dH+%(H@]A\A]fD{HHuːLd$HLtLl$LLtH4$HL HtHyHcWnfHT$LnUH@fnFdH%(HD$81H[;Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$;1HT$8dH+%(H@]fDKHHuϐHt$H|$tD$$Ht$t0H9uxtHEHuxHHuHhHfHEHH;uH;uxtHuxHH@UH@fnFdH%(HD$81H+:Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$:1HT$8dH+%(H@]fD HHuϐHt$ H|$tD$$t$ t19u@tHEu@HGHuH+HDHEH@H;&u;u@tˉu@HfHt@AUATUH@fnFdH%(HD$81H7Ht$HD$HGfnȉD$(fbfD$ uXHD$Ho(Ht!D$ +D$$tIH|$591HT$8dH+%(H@]A\A]D HHu̐Ld$Ht$L>tLl$LLtHt$HL֍Ht"HwHclT$L0AUATUH@fnFdH%(HD$81H7Ht$HD$HGfnȉD$(fbfD$ uXHD$Ho(Ht!D$ +D$$tIH|$71HT$8dH+%(H@]A\A]D{ HHu̐Ld$Ht$LtLl$LLJtHt$HLFHt"HwHcT lT$LAUATUH@fnFdH%(HD$81H4Ht$HD$HGfnȉD$(fbfD$ uXHo(H$Ht!D$ +D$$tJH|$61HT$8dH+%(H@]A\A]fD; HHuːLd$HLtLl$LLDLH8 E~TIEH9AD$D1HDAoTHH9uDAt ITHËT$Ht$LLAE~CIc1 @HH9t/H I9LtHuDLHoHCIcH|$0I6DD1ITHHH9uZHuAVAUATUSHpfnFdH%(HD$h1H Ht$HD$HGfnȉD$(fbfD$ Hl$Lw(1HD$H萋H|$04AHc xLl$0EusMD$ +D$$H"H|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDHH.H|$E1HD$ĊH|$04HcBwH|$0IcLE1XHt$H#4Ht$HnDLH蘎 E~TIEH9AD$D1HDAoTHH9uDAt ITHËT$Ht$LL3AE~CIc1 @HH9t/H I9Lt7HuDLH?HCIcH|$0I6DD1ITHHH9uZLHLsAVAUATUSH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HD$HH|$04AHc݅Ll$0EusMD$ +D$$HH|$0E1HtHD$8H9tKHD$XdH+%(H`L[]A\A]A^IcI\fDHH.H|$E1HD$H|$04HcH|$0IcLE1XHt$HS4Ht$HDLH( EIUHH)HAD$D1HfAoTHH9uDAt4AtH4HA9~ALLA9~ ADDT$Ht$LL(fAE~@Ic1fHH9t' A9Lt(HuDLH H IcH|$0IDD1ATHH9u^EHfpfAUATUSHHfnFdH%(HD$81HbHt$HD$HGfnȉD$(fbfD$ uWHD$Ho(Ht!D$ +D$$tHH|$1HT$8dH+%(HH[]A\A]{HHu͐Ht$H|$tD$$Ld$lHEHH;bLm8MMnLLxLL+~LhHL,VIL$HE8HH)HHHL1HfDAoHH9uLLHH :IH(HtD$9D$t;H111HT$(dH+%(uLH8{HHuҐu$HHuHH@H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@Slff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$)1HT$8dH+%(uiH@]ÐHHuؐHt$H|$AtċD$$Ht$u(HEHHuHH@H蠙YfUH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uiH@]ÐHHuؐHt$H|$1tċD$$Ht$u(HEHHuHH@HIfHG0HG8HGHDHGxH9wxtHHwxff.D9O1H9tH@f.D1ffDDG@9w@tHw@AUATIULo8HMtpHtSLtdLLqLhL ILLHE8HHEH]A\A]H@LHE8fDHu]A\A]f.UH=F Hu]ÐHH=tH]m@UH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5ք|$HtHt+HH5dRHPtHuH1Hu]ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B 1HT$8dH+%(utHH[]fHt$H|$_tHl$H=QHGtHH=4u HuHc@HkgATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$& 1HT$8dH+%(H@[]A\HHuːHt$H|$1tD$$Ld$uXHELH@H;u\H=8PtLH=u)HeHcsZfDLLj@HЉfH8fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11 1HT$(dH+%(u9H8kHHuҐ HuHH?ff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(u8H0]fDHHuӐHHuH&off.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11> 1HT$(dH+%(u7H0[fDHHuӐKg4HuG蠴UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uVH0]fD HHuӐtHo0sHuHf@HHH;'tHUH0fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fD+HHuӐtHo8HuH@HHH;tHUH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.;HHuϐHt$H|$tHt$HHuHoH@UH@fnFdH%(HD$81Hr Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.KHHuϐH5LHT$H|$ |$HtH蘱HuHwHff.ATH0fnFdH%(HD$(1H,|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@SHHufHHRxH;rGIMtoI$H5HLPtZHuLxIHoHObLį1HHP@L8fE1(H"DIj良fATL%#1H=HH5LKu LHNLA\ATIUHHt HH5GLHSotHmtH]A\HH]A\AHG0HG8װUH=wGHu<Cf.@z0u.C f.@ z"u 1C(f.@(@E1f苜HHHAH5H8貭1t趪fDATIUHhdH%(HD$X1HtHUHID$ǃt/H5j41HT$XdH+%(Hh]A\D0֝f(nMHf(pM@f(tM@ HD$XdH+%(yHhH=3]A\9vfLd$0H<Ld$0HH-3LD$HHl$8HD$@x@Ht$Lx+Ht$LxHt$L|xHt$ LgxHt$(LRx0Мf(hLl$(d$ \$HIT$L$f(IL@f(ML@ $ϋLH$unHD$XdH+%(u5HhLH=1]A\HH5H8Z1"^HOfATUH-d2HhdH%(HD$X1HFH4$Hl$D$HD$t7HM1HT$XdH+%(Hh]A\Ht$ Htſ0xf(Kl$Hd$@\$8HIT$0L$(f(J@f(J@ D$ vLHs[QHNDSH0fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H111HT$(dH+%(uHGHtL$9L$t;H111HT$(dH+%(uWH8 HHuҐf(XHf(]H@f(aH@ XHuH<HAVSHXfnFdH%(HD$H1HDHt$ HD$(HGfnȉD$8fbfD$0uJH_Ht!D$0+D$4tDH|$ 1HT$HdH+%(uhHX[A^fDHHuѐHt$H|$ tHcD$TfI~\$]HufIn\D$xSH@fnFdH%(HD$81H<-Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(ugH@[f.HHuϐHt$ H|$tT$ HuHeHufHnw@H\Ģ@UHPfnFdH%(HD$H1HE,Ht$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$ 1H|$HtH/tHT$HdH+%(u{HP]ÐHD$f|HD$HH{1H5+HT$H|$ HHtH芳5HsHHe藡UHPfnFdH%(HD$H1H+Ht$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$ Y1H|$HtH/tHT$HdH+%(uzHP]ÐHD$6{HD$HH{1H5*HT$H|$ HHtH*HqHcfhUHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$ )1H|$HtH/tHT$HdH+%(uzHP]ÐHD$zHD$HH{1H5)HT$H|$ HHtHj@HqHcf8UHPfnFdH%(HD$H1HwHt$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$ 1H|$HtH/tHT$HdH+%(uzHP]ÐHD$xHD$cHH{1H5k(HT$H|$ jHHtHnHqHcRfAVAUATUHhfnFdH%(HD$X1HvH4$HD$HGfnȉD$fbfD$ILo1LZH|$ HcIBHl$ Mt(D$+D$LHl$ E1HtHD$(H9tH&HD$XdH+%(HhL]A\A]A^ HH\H1E1YH|$ HcHl$ fDDHL {mHL2HTL%Hl$ I$F莜HCfATUSH@fnFdH%(HD$81H&H4$HD$HGfnD$fbfD$uJH_HtD$+D$tDHR1HT$8dH+%(H@[]A\HHuϐLd$ HLHytf(T$ fCK(\Kf(l$0ff(f;L$0f\f.f()D$ fz4u2f.z,u*f.z$u"HJHH<@HuԹL1ḢDATUSH@fnFdH%(HD$81H̷H4$HD$HGfnD$fbfD$uJH_HtD$+D$tDH1HT$8dH+%(H@[]A\kHHuϐLd$ HLHxtf(T$ fK(XKf(l$0Y >ff(f{fXfY>L$0f.f()D$ fz4u2f.z,u*f.z$u"UH:H5H,@3HuԹL1HL蕙DAWAVAUATUSHfnFdH%(H$1H##Ht$0HD$8HGfnȉD$HfbfD$@u]LwMt!D$@+D$DtWH|$0S1H$dH+%(HĘ[]A\A]A^A_HHu뾐Ld$PHl$0LHvtLl$pHLvtf(D$PLLL|$`T$x\$pfD$$)$|$(fI~T$d$ }f($f.D$Pt$f.t$X|$(f.|$`zzuxfInf.l$pzCuAt$f.t$xz3u1T$ f.$z uAHP#HuعLH9HzL1HcVfDAWAVAUATUSHfnFdH%(H$1H Ht$ HD$(HGfnȉD$8fbfD$0u]LMt!D$0+D$4tWH|$ 1H$dH+%(H[]A\A]A^A_苿HHu뾐Hl$ Ht$H>tLd$PHLttLl$@HL܃qfoT$PD$HLLfo\$`fod$pLHt$Dt$DD$ \$@)$)$)$$f.D$PID$Xf.$D$`f.$zturD$hf.$zau_D$pf.$zNuLD$xf.$z;u99\$@uTD9t$DuMD$ 9D$HuCHyLnHuLH蹁HuLHUH`dH%(HD$XHFt9H51HT$XdH+%(QH`]fDHH4$HD$HGD$D$D$HGHt@f/1HuHexHeH4$HHt$ HD$H D$HD$*r8D$(f/D$ rD$8f/D$0r1D$Hf/D$@@x裼HH@HL$9L$7H111@@ f/@1@(f/@@ >ff.UH@dH%(HD$8HFtqHHt$HD$HGD$ D$$D$(HoH1HT$8dH+%(FH@]@HHt$HD$HGD$ D$$D$(HHt]HuHHH5 1m#HZHhHMD$ +D$$t H|$<1'DHt$H|$a D$Hۏ6H]蛺HHxHD$$9D$ H|$11_ff.@USHXdH%(HD$HHFt0t{H5m1HT$HdH+%(:HX[]HHt$ HD$(HGD$0D$4D$8xH_H1HHt$ HD$(HGD$0D$4D$8H_HtHl$ Ht$H_tHt$H|_tHt$Hk_xCD$C D$C(D$HHqHcHHCHf.;HH{4蓸HHXHD$0+D$4H|$ 16KHHXHzD$49D$0gH|$ 11i1D$1HD$HD$HrȎUSHXdH%(HD$HHFt0t{H51HT$HdH+%(:HX[]HdHt$ HD$(HGD$0D$4D$8xHoH1HHt$ HD$(HGD$0D$4D$8H_HtHl$ Ht$H\tHt$H\tHt$H\xD$CD$CD$HHHH HHHH譶 HHXHD$0+D$4H|$  1>f軵HHhHzD$49D$0_H|$ 111D$1HD$HD$H8AUATUHĀdH%(HD$xHFt<H5 E1HT$xdH+%(tH]A\A]DHŠ Ht$@HD$HHGD$PD$TD$XHoH1Hr Ht$@HD$HHGD$PD$TD$XHoHtLd$@Ht$(L]ZtHt$0LLZtHt$8L;ZxT$8L$0HD$(a@Ld$`Ll$@LLi3f(D$`d$pLHfD$)$d$g@f($f.D$`\$f.\$hd$f.d$pHHH?f+HHhHD$P+D$TH|$@@1f۲HGHhH:D$P+D$TH|$@1f H2L1L vffDAUATUHĀdH%(HD$xHFt<H5Ն u1HT$xdH+%(tH]A\A]DH Ht$@HD$HHGD$PD$TD$XHoH1HR Ht$@HD$HHGD$PD$TD$XHoHtLd$@Ht$(LWtHt$0L|WtHt$8LkWxT$8L$0HD$(I@Ld$`Ll$@LL6f3f(D$`d$pLHfD$)$d$hf($f.D$`\$f.\$hd$f.d$pHHۣH?f[HHhHD$P+D$TH|$@p1f HGHhH:D$P+D$TH|$@ 1f;H2L1LPs薆fDATUHdH%(H$HFt@H55_1H$dH+%(OHĘ]A\DH^Ht$0HD$8HGD$@D$DD$HHoH1H^Ht$0HD$8HGD$@D$DD$H HoHtLd$0HLTtHt$LTtHt$LTzHt$LTeHt$ LkTPHt$(LVT;l$(d$ \$T$L$$IfHt$PH|$0cl$xd$p\$hT$`L$XD$PHg#HHH;f.{HHhHD$@+D$DH|$01f+H?HhH2D$@+D$DH|$0@1@AUATUHĀdH%(HD$xHFt|kH Ht$@HD$HHGD$PD$TD$XKHoHfD1HT$xdH+%(OH]A\A]H@ Ht$@HD$HHGD$PD$TD$XHoHtLd$`Ll$@LL%auD$`L$hHT$pD$T$L$QyD$f.D$`wqL$f.L$h_YT$f.T$pGAHHĞHH5H 1+HHhHD$P+D$Tt H|$@D1DLd$@Ht$(LQfHt$0LPQHt$8LP<T$8L$0HD$(*xH!kHHhHD$P+D$TEH|$@裸HL1Lmff.AUATUHĀdH%(HD$xHFt|kH Ht$@HD$HHGD$PD$TD$XKHoHfD1HT$xdH+%(OH]A\A]H\ Ht$@HD$HHGD$PD$TD$XHoHtLd$`Ll$@LL5^uD$`L$hHT$pD$T$L$6D$f.D$`wqL$f.L$h_YT$f.T$pGAHHԛHH5d 1;HHhHD$P+D$Tt H|$@T1DLd$@Ht$(LNfHt$0LNQHt$8LM<T$8L$0HD$(5H!{HHhHD$P+D$TEH|$@賵HL1Lj~ff.AUATUSHhdH%(HD$XHFt;H5M 1HT$XdH+%(Hh[]A\A]H Ht$ HD$(HGD$0D$4D$8H_H1H Ht$ HD$(HGD$0D$4D$8pH_HtHl$ Ht$H-LtHt$HLtHt$H LxD$ 1\$T$f/w5f/Cw.Cf/w#f/S wCf/w1f/[(@fDHH誦DLd$@Hl$ LHZD$@E1L$HT$Pf/w7f/Cw0[f/w%f/K w[f/wE1f/S(Af.f.f.EHaL裤H?HXH2D$0+D$4mH|$ 1[HHXHD$0+D$4H|$ p1Wf苲H8L1Hg!zfDATUSHdH%(H$HFt?H51H$dH+%(0H[]A\H`Ht$0HD$8HGD$@D$DD$HH_Hs1HHt$0HD$8HGD$@D$DD$H`H_HtHl$0HHItHt$HHtHt$HHzHt$HHeHt$ HHPHt$(HH;$CD$CD$C D$CD$ C(D$(詰H蛰H荰HiHCqHcH%D$(Hg fLd$PHl$0LHVkKfot$P[ L$XSfo|$`)$k(f.$fot$pT$`\$hc)$)$D$Pd$pl$x4.f.$f.$ f.$f.$f.$0HtHH苠HOHXHBD$@+D$D}H|$01f;HHXHD$@+D$DTH|$0P1[fkH-L1HcD$ HXD$H@D$H(D$HY$1H7RvfATL%H HH5L}uL%LA\ff.@ATIUHjHt HH5LH#6tHmtH]A\HH]A\PHtSHYio[1ff.fATUH-=HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1nH|$HtH/tHD$8dH+%(u[HHL]A\KOfHT$H|$HIHt|hAo$HHAItff.釱UHHHtbH]qUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11>1HT$(dH+%(u3H0]fD˜HHuӐH(8HuH+Js@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11~1HT$(dH+%(u4H0]fD HHuӐHhwHuH蚞rSH0fnFdH%(HD$(1HWH4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H111HT$(dH+%(u7H0[fDKHHuӐk贩Hug rUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.{HHuϐHt$H|$>tt$Hj˨HuHH4q@ATUHHfnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$uKHoHtD$+D$tEH1HT$8dH+%(u\HH]A\f苙HHuΐLd$,HLdtLH茨קHuHH@pUHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0utHD$HoHtsD$0+D$4tmH|$  1H|$HtH/tHT$HdH+%(u{HP]ÐHD$IHD$sHH{1H5/HT$H|$ zHHtH |赦HsHHeoATUHHdH%(HD$8HFtnHHt$HD$HGD$ D$$D$(uyHoH1HT$8dH+%(HH]A\fDHD$8dH+%(HHHH]H=*A\SH51fD3HtHhHtD$ +D$$t H|$T[Ld$Ht$LF:Ht$L1%Ht$ LT$ L$HD$:HHHwmAUATUH`dH%(HD$XHFt}HHt$ HD$(HGD$0D$4D$8HoH1HT$XdH+%(H`]A\A]HxHt$ HD$(HGD$0D$4D$8HHHtZOfD$@f~L$HHxHt$@H=:ϫdf.H5蒾1E3H2HhH%D$0+D$4t H|$ L1DLd$@Ll$ LLJf(D$@\$PLHfD$)$\$藐f($f.D$@T$f.T$Hzrup\$f.\$Pzbu`HjHˇH\fKHJHxH=D$49D$0H|$ 11i@苢HuL1LWjf.ATUSHH@dH%(HD$81HtH蔰HHCH-kH\$Hl$D$ HD$$HD$t[H|$E1贾H|$HtH/t$HD$8dH+%(~H@L[]A\@DfHT$H|$H>IHt]Ao$HHX6I|HIH5E1H8lniff.fATL%H HEH5~Lp8uL腋LA\ff.@ATIUH]Ht HH5 LH)tHmtH]A\HH]A\qCHt'SH \ooKH[1ff.fATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1込H|$HtH/tHD$8dH+%(uiHHL]A\BfHT$H|$HNIHt [Ao$HHAoL$H]4IwgHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ u=HHtD$$9D$ t:H|$11輻1HT$8dH+%(uCHHDKHHuՐ+H$HT$譞HuHH= 艦gfUHHHt UH]UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11辺1HT$(dH+%(u4H0]fDKHHuӐHh距HuHڑ#fUH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(u3H0]fD苎HHuӐH(HuH;de@UH0fnFdH%(HD$(1H& H4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H11>1HT$(dH+%(u8H0]fDˍHHuӐK6H3HuHVdff.@UH0fnFdH%(HD$(1He H4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H11n1HT$(dH+%(u8H0]fDHHuӐ$HcHuH膏cff.@SH0fnFdH%(HD$(1HV H4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H11螷1HT$(dH+%(u7H0[fD+HHuӐˣ蔚HuGcSH0fnFdH%(HD$(1HMH4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H11޶1HT$(dH+%(uH(HtD$9D$t;H11o1HT$(dH+%(u9H8HHuҐfHuHJvHYff.@SH0fnFdH%(HD$(1HHH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螭1HT$(dH+%(u7H0[fD+HHuӐ+*蔐Hu觸YUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11ެ1HT$(dH+%(u8H0]fDkHHuӐ7HӏHuH.?Xff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fD蛀HHuӐ+HHuH&oWff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u8H0]fDHHuӐuH3HuHVVff.@UH0fnFdH%(HD$(1H\H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(u8H0]fD~HHuӐۦHcHuHV,Uff.@SH0fnFdH%(HD$(1H~H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11螩1HT$(dH+%(uZH0[fD+~HHuӐ!t蒌HuHcEH!HH;Z~tЉTff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11讨1HT$(dH+%(uVH0]fD;}HHuӐtH蠋HuH*뵐HHH;?tHSHHfnFdH%(HD$81HH4$HD$HGfnȉD$fbfD$u>Hw(HtD$9D$t;H11ϧ1HT$8dH+%(HH@[|HHuҐtAH5D蕏1HT$XdH+%(H`]A\A]A^A_ÐL Ht$0LL$8L$@T$DT$HH"Ho(Ht%D$@+D$DH|$01H sHt$0HL$8T$HfD$@HHD$Ho(HD$ HD$(HD$@+D$DH|$0蟐1H|$Ht H/yH|$ Ht H/H|$(HH/HD$cHD$fH5HT$(H|$0_|$(HH?sHHXHcfDLt$0L=HT$LL贆IH)HT$ LL蘆IH HT$(LL|HHLLH"rHHWH@ dHHcHD$HD$ HD$(1DcHH1}HD$H|$ HD$sHD$HD$g:AW1AVAUATUH@HNdH%(HD$81HGAfnH%fnA)fbAtNAEH5D\1HT$8dH+%(H@]A\A]A^A_LHt$LT$L$ T$$T$(HHo(HtD$ +D$$XH|$܍1{DL KHt$LL$L$ T$$T$(HH(HAD$$9D$ H|$11聍1 f.H Ht$HL$T$(fD$ Hu@Ho(HD$ +D$$H|$1aHHufDaHHfaHH%nf. HoHNHCDLt$L=91LL_IH1LLFIH1LL-HHLLH#d^oHLt$L=1LLIH1LL΂IH1LL赂HHD$k1LL蚂IHRHL$LLHnH1HSH#(7AT1UHHNdH%(HD$x1HGAfnH%fnA)fbAtIA7EH5D1HT$xdH+%(HĈ]A\fDL^Ht$@LT$HL$PT$TT$XH*Ho(HD$(H%D$P+D$TH|$@w1H|$(HjH/`HD$cHD$LfL Ht$@LL$HL$PT$TT$XHH(HD$T9D$P?H|$@111f.H fHt$@HL$HT$XfD$PHuPHo(Ht@D$P+D$TtjH|$@薉13^HH1s^HHu1_@^HH-1CLd$@Ht$LtHt$LtHt$ LtHt$(L|fD$ft$HZL$(HT$hL$pfZD$hDHD$hHT$h1D$pC HD$0HT$8kI1MHt$0H=ssLd$@Ht$ L.HT$(H5L"HHt$ HHD$0HT$8JkI1MHt$0H={s3ATL%kH HH5NmLfIHluLHliULA\ATIUHHt HH5LHstHmtH]A\HH]A\a UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$҆1HT$8dH+%(uzH@]f.[[HHuϐH5HT$H|$V|$HtD$$u(HEH8iHuHzNH@Hh1UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$…1HT$8dH+%(uzH@]f.KZHHuϐH5HT$H|$ U|$HtD$$u(HEH0hHuHjMH@H0UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$貄1HT$8dH+%(uzH@]f.;YHHuϐH5HT$H|$S|$HtD$$u(HEH(vgHuHZLH@H/UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$袃1HT$8dH+%(uzH@]f.+XHHuϐH5HT$H|$R|$HtD$$u(HEH ffHuHJKH@HH.UH@fnFdH%(HD$81HQHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒂1HT$8dH+%(uzH@]f.WHHuϐH5F|HT$H|$Q|$HtD$$u(HEHVeHuH:JH@HR-UH@fnFdH%(HD$81HPHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$肁1HT$8dH+%(uzH@]f. VHHuϐH56{HT$H|$P|$HtD$$u(HEHFdHuH*IH@HJ,UH@fnFdH%(HD$81HOHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(u|H@]f.THHuϐH5=HT$H|$O|$HtD$$u(HEH4cHu@F@H+ff.@UH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u|H@]f.SHHuϐH5<HT$H|$N|$HtD$$u(HEHbHu@&@HHo*ff.@UH@fnFdH%(HD$81HsHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$2~1HT$8dH+%(uzH@]f.RHHuϐH5HT$H|$zM|$HtD$$u(HEH`HuHEH@HX3Q)H8fnFdH%(HD$(1H ;H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11/}1HT$(dH+%(uLH8QHHuҐu$H`HuHEH@|(f.f!fDH@oHHHWff.D$z,u*f.D$zuf.D$zuDHD$oL$HHf.@!UH=HH4u]ÐHH=dq4tHH=1^4tH]!AUIATUSH!LHHL9t7Hc{?HHtH3HLHmuHHL9uH[]A\A]f.f.f.f.Ht'SH ooKH[1ff.fHtSHio[1ff.fHtSH9o[1ff.fHtSH o[1ff.fHtSHHH[Ð1ff.fHtSHHH[Ð1ff.fHt'SHyoHSHP[1ff.fHtSH 9HHSP[1DHtSH HHSP[1DHtSHo[1ff.fHtSHHH[Ð1ff.fHtSHyHH[Ð1ff.fHt'SHIoHSHP[1ff.fHtSH HHSP[1DHtSH HHSP[1DHtSHHH[Ð1ff.fHtSHyHH[Ð1ff.fHtSHIo[1ff.fHtSH HHSP[1DHtSH HHSP[1DHt'SHoHSHP[1ff.fATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1dH|$HtH/tHD$8dH+%(upHHL]A\fH-HT$H|$HG[IHt Ao$HHAoL$HVIpfATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1cH|$HtH/tHD$8dH+%(ueHHL]A\fH-HT$H|$HGZIHtAo$HHaI{@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1bH|$HtH/tHD$8dH+%(ueHHL]A\fH-HT$H|$HWYIHtAo$HHqI{ @ATUHHdH%(HD$81H#Ht$HD$HFHD$$D$ HD$tUH|$E1aH|$HtH/tHD$8dH+%(ueHHL]A\fH-HT$H|$HgXIHtAo$HHI{ @ATUHHdH%(HD$81H3Ht$HD$HFHD$$D$ HD$tUH|$E1`H|$HtH/tHD$8dH+%(u`HHL]A\fH-,HT$H|$HwWIHtHHI$HI fATUHHdH%(HD$81HCHt$HD$HFHD$$D$ HD$tUH|$E1_H|$HtH/tHD$8dH+%(u`HHL]A\fH-uHT$H|$HVIHtHHI$HI) fATUHHdH%(HD$81HSHt$HD$HFHD$$D$ HD$tUH|$E1_H|$HtH/tHD$8dH+%(unHHL]A\fH-aHT$H|$HUIHtAo$HHID$HFIr+ ff.ATUHHdH%(HD$81HSHt$HD$HFHD$$D$ HD$tUH|$E1^H|$HtH/tHD$8dH+%(ukHHL]A\fH-HT$H|$HTIHt HHI$HAD$FIu. ff.ATUHHdH%(HD$81HSHt$HD$HFHD$$D$ HD$tUH|$E1]H|$HtH/tHD$8dH+%(ukHHL]A\fH-HT$H|$HSIHt HHI$HAD$FIu.ff.ATUHHdH%(HD$81H]Ht$HD$HFHD$$D$ HD$tUH|$E1\H|$HtH/tHD$8dH+%(ueHHL]A\fH-HT$H|$HRIHtAo$HHI{4@ATUHHdH%(HD$81HmHt$HD$HFHD$$D$ HD$tUH|$E1[H|$HtH/tHD$8dH+%(u`HHL]A\fH-HT$H|$HQIHt%HHI$HIIfATUHHdH%(HD$81H}Ht$HD$HFHD$$D$ HD$tUH|$E1.ZH|$HtH/tHD$8dH+%(u`HHL]A\ fH-HT$H|$HPIHt5HHI$HIYfATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1>YH|$HtH/tHD$8dH+%(unHHL]A\fH-HT$H|$HOIHtEAo$HHID$HFIr[ff.ATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1>XH|$HtH/tHD$8dH+%(ukHHL]A\fH-HT$H|$HNIHt EHHI$HAD$FIu^ff.ATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1>WH|$HtH/tHD$8dH+%(ukHHL]A\fH-HT$H|$HMIHt EHHI$HAD$FIu^ff.ATUH-cHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1>VH|$HtH/tHD$8dH+%(uYHHL]A\fHT$H|$HLIHtLHHI$HIpATUH-JHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1^UH|$HtH/tHD$8dH+%(uYHHL]A\;fHT$H|$HKIHtlHHI$H IATUH-1HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1~TH|$HtH/tHD$8dH+%(u[HHL]A\[fHT$H|$HKIHtAo$HH(Iff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1SH|$HtH/tHD$8dH+%(udHHL]A\kfHT$H|$HJIHt HHI$HAD$F2I|DATUH-xHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1RH|$HtH/tHD$8dH+%(udHHL]A\{fHT$H|$H.IIHt HHI$HAD$FBI|DATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1QH|$HtH/tHD$8dH+%(ugHHL]A\fHT$H|$H>HIHtAo$HHID$HFOIyfATUH-qHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1PH|$HtH/tHD$8dH+%(uoHHL]A\fHT$H|$H5JGIHtA$HHAD$@WIqf.ATUH-qHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1OH|$HtH/tHD$8dH+%(uoHHL]A\fHT$H|$H5JFIHtA$HHAD$@WIqf.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1NH|$HtH/tHD$8dH+%(u]HHL]A\fHT$H|$H5JEIHtHHI$HfIff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1MH|$HtH/tHD$8dH+%(u]HHL]A\fHT$H|$H5ZDIHtHHI$HvIff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1LH|$HtH/tHD$8dH+%(u]HHL]A\fHT$H|$H5KjCIHtHHI$HI ff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1KH|$HtH/tHD$8dH+%(u]HHL]A\fHT$H|$H5GzBIHtHHI$HIff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1JH|$HtH/tHD$8dH+%(u{HHL]A\fHT$H|$H5GAIHtA$HHAD$@AD$@Ieff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1IH|$HtH/tHD$8dH+%(u{HHL]A\fHT$H|$H5#z@IHtA$HHAD$@AD$@{Ieff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1HH|$HtH/tHD$8dH+%(ulHHL]A\fHT$H|$H5kj?IHt AD$HHI$FHzItff.fATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1GH|$HtH/tHD$8dH+%(ulHHL]A\fHT$H|$H5Wj>IHt AD$HHI$FHzItff.fATUH-XHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1FH|$HtH/tHD$8dH+%(uhHHL]A\fHT$H|$H5j=IHt I$HHAD$HF~IxATUH-hHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1EH|$HtH/tHD$8dH+%(uhHHL]A\fHT$H|$H5ztʿf(L$ D$0H=1H@=fDUH-H@dH%(HD$81HFH4$Hl$D$HD$t1H@1HT$8dH+%(uNH@]Ht$ H~t˿f(L$ D$0HH@聸 f.HHdH%(HD$81H6Ht$HD$HFHD$$D$ t1H|$?1HT$8dH+%(uJHHfDHt$H|$豺tп 3D$H=,Hf@÷Lff.HHdH%(HD$81HvHt$HD$HFHD$$D$ t1H|$=?1HT$8dH+%(uFHHfDHt$H|$tпsD$H=@HfHHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$>1HT$8dH+%(uFHHfDHt$H|$AtпD$H=HfWUH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$=1HT$8dH+%(uAH@]@Ht$H|$葸tѿD$HHf諵4@HHdH%(HD$81HfHt$HD$HFHD$$D$ t1H|$-=1HT$8dH+%(uOHHfDHt$H|$tпcD$H=~Hf(@fwHHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$m<1HT$8dH+%(uOHHfDHt$H|$!tпD$H=*Hf(@f.UH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$;1HT$8dH+%(uJH@]@Ht$H|$atѿD$HHf(@frff.USHhfnFdH%(HD$X1H?Ht$ HD$(HGfnD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ :1H|$HtH/tHT$XdH+%(Hh[]HD$HD$HHt1H-׉HT$H|$ H1Ht +P[~K~@YYYY\\T$HD$P#I1M/Ht$HH$~ff.UHHHtzH]aUHHHtZH]AUHHHt:H]!UHHHtH]UHHHtH]UHHHtH]UHHHtH]UHHHtH]UHHHtzH]aUHHHtZH]AUHHHt:H]!UHHHtH]UHHHtH]UHHHtH]UHHHtH]UHHHtH]UHHHtzH]aUHHHtZH]AUHHHt:H]!UHHHtH]UHHHtH]HHdH%(HD$81HH4$HD$HFHD$D$t2H61HT$8dH+%(uHHHfHt$ HtʿfoD$ H=H舮H8dH%(HD$(1HFH4$HD$HFHD$D$t2H61HT$(dH+%(uGH8fHt$ Htʿ@H=LHHD$ H٭bfH8dH%(HD$(1HH4$HD$HFHD$D$t2H`51HT$(dH+%(uGH8fHt$ HntʿH=AHHD$ H)fUH-H0dH%(HD$(1HFH4$Hl$D$HD$t1H41HT$(dH+%(uBH0]Ht$ Ht˿HHHD$ H}fDHHdH%(HD$81H6H4$HD$HFHD$D$t2H41HT$8dH+%(uRHHfHt$(Htʿ 0D$0H=HHD$(FH辫GHHdH%(HD$81HH4$HD$HFHD$D$t2H@31HT$8dH+%(uRHHfHt$(HNtʿ pD$0H=HHD$(FHUH-JH@dH%(HD$81HFH4$Hl$D$HD$t1H21HT$8dH+%(uMH@]Ht$(Ht˿ D$0HHHD$(FHBff.HHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$11HT$8dH+%(uFHHfDHt$ H|$vtпD$ H=׿H臩HHdH%(HD$81HFHt$HD$HFHD$$D$ t1H|$ 11HT$8dH+%(uFHHfDHt$ H|$utпCD$ H=IHר`HHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$]01HT$8dH+%(uFHHfDHt$ H|$AutпD$ H=>H'UH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$/1HT$8dH+%(uAH@]@Ht$ H|$ttѿD$ HH{@HHdH%(HD$81H6Ht$HD$HFHD$$D$ t1H|$.1HT$8dH+%(uNHHfDHt$ H|$stп 3D$ H=H(@迦HHHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$=.1HT$8dH+%(uNHHfDHt$ H|$!stп sD$ H=H(@UH-J}H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$|-1HT$8dH+%(uIH@]@Ht$ H|$artѿ D$ HH(@Cff.HHdH%(HD$81HH4$HD$HFHD$D$t2H,1HT$8dH+%(uHHHfHt$ HtʿfoD$ H=H舤H8dH%(HD$(1HFH4$HD$HFHD$D$t2H,1HT$(dH+%(uGH8fHt$ H.tʿ@H=HHD$ H٣bfH8dH%(HD$(1HH4$HD$HFHD$D$t2H`+1HT$(dH+%(uGH8fHt$ H~tʿH=/HHD$ H)fUH-ŸH0dH%(HD$(1HFH4$Hl$D$HD$t1H*1HT$(dH+%(uBH0]Ht$ Ht˿HHHD$ H}fDHHdH%(HD$81H6H4$HD$HFHD$D$t2H*1HT$8dH+%(uNHHfHt$(Htʿ 0H=ʶHHD$(HD$0F¡Kff.HHdH%(HD$81HH4$HD$HFHD$D$t2H@)1HT$8dH+%(uNHHfHt$(H^tʿ pH=ٶHHD$(HD$0Fff.UH-H@dH%(HD$81HFH4$Hl$D$HD$t1H(1HT$8dH+%(uIH@]Ht$(Ht˿ HHHD$(HD$0FFff.@HHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$'1HT$8dH+%(uGHHfDHt$ H|$AtпfnL$ H=µHfp膟ff.@HHdH%(HD$81H6Ht$HD$HFHD$$D$ t1H|$&1HT$8dH+%(uHHHfDHt$ H|$tп3fnL$ H=rHfpfŞNff.HHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$=&1HT$8dH+%(uHHHfDHt$ H|$tпsfnL$ H= Hfpfff.UH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$|%1HT$8dH+%(uCH@]@Ht$ H|$tѿfnL$ HHfpfIfHHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$$1HT$8dH+%(uMHHfDHt$ H|$Qtп H=HƋD$ fnȉFfpf萜fHHdH%(HD$81H[Ht$HD$HFHD$$D$ t1H|$ $1HT$8dH+%(uMHHfDHt$ H|$tп CH=HƋD$ fnȉFfpfЛYfUH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$L#1HT$8dH+%(uHH@]@Ht$ H|$tѿ HHƋD$ fnȉFfpfff.fAUL-3#ATUHSH(dH%(HD$1HD$HD$L9oHT$H5Ȱ)IHL9mHT$H5HHtJH|$HtsH/t}Hc|-HT$dH+%(H([]A\A]DA $f/whf.zu1@fA/D$H|$HuDH|$HtH/u˧yfDLgL9m/HED@9fD˾HH?HH5H81fDAUL-ATUHSH(dH%(HD$1HD$HD$L9oHT$H5艿IHL9mHT$H5H_HtJH|$HtsH/t}Hc+HT$dH+%(H([]A\A]DA $/wi.zu1@A/D$H|$HuH|$HtH/u+yfDLgL9m/HED@9fD+H\H?HH58H8R1VfDAUL-ATUHSH(dH%(HD$1HD$HD$L9oHT$H5dIHL9mHT$H5=H追HtRH|$HH/tyHc8*HT$dH+%(H([]A\A]fA9 $|`u1ۋ@A9D$LgL9m_HEt@苤fH|$HcdDAfD蓻HHKHIH5H81+ff.AUL-sATUHSH(dH%(HD$1HD$HD$L9oHT$H5IIH%L9mHT$H5HHtRH|$HH/Hc(HT$dH+%(H([]A\A]DA $f/w`f.zuAL$@f/wFf.zu1@fA/D$kLgL9m/HED@H|$H>H|$H:H/0萢&ùHHHyH5H81ff.AUL-ATUHSH(dH%(HD$1HD$HD$L9oHT$H5ЩyIHL9mHT$H5HOHtRH|$HH/Hc&HT$dH+%(H([]A\A]DA $/wY.zuAL$@/wA.zu1@A/D$pDLgL9m7HEL@H|$HFH|$HBH/8Ƞ.H,H'HH5H8"1&fDAUL-ATUHSH(dH%(HD$1HD$HD$L9oHT$H5蹸IHL9mHT$H5קH菸HtJH|$HtbH/tlHc %HT$dH+%(H([]A\A]DA9 $|uHA9L$}l@H|$HuH|$HtH/ulf.LgL9m?HET@{HH_51ۋ@A9D$#HH5pH81'ff.ATIUHHdH%(HD$81HtH5 HlID$ǃ,tt3H5hw1HT$8dH+%(NHH]A\f 趷HH@HD$8dH+%(HHH=g]A\.fDLd$Ld$Ht$HH-qgLD$(Hl$HD$ \RHt$L\=Ht$ L\( L$D$HHD$ @荏HD$8dH+%(u=HHLH=)1]A\HIH5H81ff.wgWG7'wATIHt H:HueID$Džt2tH51A\@L1H=T;A\DδfH=HA\ffDHYH5H8ATIHt HHueID$Džt2tH51A\@L1H=t9A\}D.H=:HHA\ƌfDHH5bH8*ATIHt HHueID$Džt2tH5SI1A\@L1H=7A\D莳H=ӡHHA\&fDHH5H8ATIHt HZHumID$Džt2tH51A\@L1H=5A\=DfH= H@HA\~fDHqH5H8ATIHt HHumID$Džt2tH5 1A\@L1H=2A\D NH=HH@A\ߊHH5zH8BATIHt HHumID$Džt2tH5si1A\@L1H=43A\D 讱H=HH@A\?H1H5H8ATIHt HzHueID$Džt2tH5ӝ1A\@L1H=:A\]DfH=HA\馉fDHH5BH8 ATIHt HHueID$Džt2tH53)1A\@L1H=:A\D nfH=iH@A\fHH5H8jATIHt H:HueID$Džt2tH51A\@L1H=7A\DίfH=HA\ffDHYH5H8ʾSH0fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u6H0[fD;HHuӐHufZCSH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u1H0[fD{HHuӐHuHc{VfDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11.1HT$(dH+%(u1H0[fDHHuӐ+Hu}薹fDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11n 1HT$(dH+%(u0H0[fDHHuӐkHuHc;׸SH0fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11 1HT$(dH+%(u5H0[fD;HHuӐHufZfSH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11 1HT$(dH+%(u2H0[fD{HHuӐHuC\fDH pLd$Ld$HHD$H8LD$(HD$ ^cHt$L^N,f($H=qH[*HD$8dH+%(u=H@LH=1A\)fHH52H81ff.ATIH@dH%(HD$81HtHH=ID$ǃtpt,H5n1HT$8dH+%(H@A\.HHHD$8dH+%(H@H=pA\ZfDHnLd$Ld$HD$Ht$LHD$(HD$ aHt$ LL蚁fnD$fnL$ H=-pHfbf'ZfHD$8dH+%(u=H@LH=1A\fHH5H8Z1^ff.ATIUHHdH%(HD$81HtHH<ID$ǃtwt3H5oG1HT$8dH+%(HH]A\f膀HHHD$8dH+%(HHH=n]A\YDLd$Ld$Ht$H H-nLD$(Hl$HD$ YZHt$ LDEfnD$fnL$ HHfbfXfDHD$8dH+%(u5HHLH=:1]A\HIH5H8躎1辋ff.ATIH@dH%(HD$81HtHfH=ID$ǃtpt,H5k1HT$8dH+%(H@A\~HHHD$8dH+%(H@H=}mA\nWfDHPkLd$Ld$HD$Ht$LHcD$(HD$ !$aHt$ L $LZ~L$ D$H=lHV@HD$8dH+%(u=H@LH=1A\IfHH5RH81ff.ATIUHHdH%(HD$81HtHH<ID$ǃtwt3H5k1HT$8dH+%(HH]A\fF}HHHD$8dH+%(HHH=Ek]A\UDLd$Ld$Ht$HʾH-kLD$(Hl$HD$ y"ZHt$ Ld"E|L$ D$HHEUHD$8dH+%(u=HHLH=1]A\H H5H8z1~ff.ATIUHHdH%(HD$81HtH%H,ID$ǃtwt3H5ig1HT$8dH+%(HH]A\f{fHHD$8dH+%(HHH=li]A\%TDLd$H4Ld$HH-DiLD$(Hl$HD$ V\Ht$LVG{f($HHS'@HD$8dH+%(u5HHLH=j1]A\HyH5"H81ff.USHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$1HT$8dH+%(ucHH[];HHuАHl$HHPUtHt$H?Utf($~HuHbHUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$1HT$8dH+%(utHH[];HHuАHl$Ht$HtHt$ H tfnD$fnT$ fbfpHuHTH|քfDUSHHfnFdH%(HD$81HHt$HD$HGfnЉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$1HT$8dH+%(uoHH[]+HHuАHl$Ht$HntHt$ H]tL$ D$bHuHFH˃ff.SH@fnFdH%(HD$81H@dHt$HD$HGfn؉D$(fbfD$ uDH_HtD$$9D$ tIH|$111HT$8dH+%(H@[#HHuf~ Y((X6YXfZf.wKQZD$^ffYfZ /D$HU{WM葂L$^~L$ff.@SH@fnFdH%(HD$81HbHt$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$11K1HT$8dH+%(H@[ӪHHuf~ Y((X Y(XK(YXfZf.w^QZZ$^Yf(ffYZKfZ踸$H/V'L$ $<]L$ ~$ff.@SHPfnFdH%(HD$H1HpaHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 111HT$HdH+%(HP[SHHuff# fSYf(ff(YXXf(YXf.wOQ =$^f(YffYKO$HFT>T$)$$[T$f($$fDSHPfnFdH%(HD$H1H`Ht$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 11k1HT$HdH+%(HP[HHuffff[f(fYf(fXXf(fYXfXf.wJQ $^ffYfYK$HKASCW~)T$)$yZf(T$f($ff.SH@fnFdH%(HD$81H^Ht$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$11 1HT$8dH+%(H@[蓦HHuff(YX(UX(XXfZf.w^Q%fZ$^ZffYfYfZfZ胴$H:Q2|)$ Y($SH@fnFdH%(HD$81HP]Ht$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$111HT$8dH+%(H@[3HHuff fYf(ff(YXXf.wBQ .$^ffY M$HdP\{)$Wf($SH@fnFdH%(HD$81H \Ht$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$11{1HT$8dH+%(H@[HHufo fofofs fffpfpfbfofsffofsfff~f*f.w_Qfp$^ffYfYffflױ$H$O:z) $aVfo $f.SH@fnFdH%(HD$81HZHt$HD$HGfn؉D$(fbfD$ uDH_HtD$$9D$ tIH|$111HT$8dH+%(H@[胢HHuf~ fffpf~*f.wMQD$^ffYff 蘰D$H^MVxfL$U~L$USHHfnFdH%(HD$81H_YHt$HD$HGfnD$(fbfD$ uCH_HtD$$9D$ tHH|$111HT$8dH+%(HH[]DCHHuf~ ffҋkfpf~Љ*f.wdQ9D$^f(ffYff f*Y,C7D$H>L6wfL$S~L$fDATIHPdH%(HD$H1HtH6H]ID$ǃtxt,H5Wx1HT$HdH+%(?HPA\jfH@HHD$HdH+%(HPH=!YA\6CfDH#WLd$ Ld$ HD$(Ht$LHۚD$8HD$0EYHt$LEDHt$LE/ jfD$H=XHD$@BDHD$HdH+%(u=HPLH=1A\fHYH5H8x1uff.ATIH@dH%(HD$81HtHvH]ID$ǃ%txt,H5U1HT$8dH+%(?H@A\ hHH@HD$8dH+%(H@H=>WA\wAHcULd$Ld$HD$Ht$LHD$(HD$ ɑYHt$L贑DHt$ L蟑/ MhfnD$fnL$H=VHfbfD$ F@fDHD$8dH+%(u5H@LH=1A\1HH5BH8 w1tff.ATIUHXdH%(HD$H1HtH赹H\ID$ǃtt3H5T1HT$HdH+%(>HX]A\f6gfH@HHD$HdH+%(HXH=BT]A\?DLd$ Ld$ Ht$HbH-TLD$8Hl$(HD$01BRHt$LB=Ht$LB(ffD$HHD$@?HD$HdH+%(u=HXLH=r1]A\xH٠H5H8Ju1Nrff.ATIUHHdH%(HD$81HtHHlID$ǃ,tt3H5bS71HT$8dH+%(NHH]A\f veHH@HD$8dH+%(HHH=R]A\=fDLd$Ld$Ht$HH-RLD$(Hl$HD$ ARHt$L,=Ht$ L( dfnD$fnL$HHfbfD$ FO=f.HD$8dH+%(u=HHLH=1]A\騨H H5H8zs1~pff.ATIH@dH%(HD$81HtH&H]ID$ǃ%txt,H5Ph1HT$8dH+%(?H@A\ cHH@HD$8dH+%(H@H=RA\'<HPLd$Ld$HD$Ht$LH˓D$(HD$ YHt$LDHt$ L/ bL$D$H=lQHD$ @;@HD$8dH+%(u5H@LH=1A\HIH5H8q1nff.HxfnFdH%(HD$h1H;OHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$hdH+%(HxÐHHuՐo8f)|$@f(T$@o`f()d$Pf(\$PfYf(fXXf(fYXfXf.wSQ ^f(ffYfY)T$@)D$P HGHt$@H==P3hm)\$)$If(\$f($ff.fHhfnFdH%(HD$X1HMHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 111HT$XdH+%(HhÐ諕HHuՐo8f)|$@f(\$@L$@H@Yf(fHD$PT$Pf(YXXf(YXf.wTQ ^f(YffYL$P)D$@蚣HEHt$@H=Lp1kT$)$HT$f($f.USHHfnFdH%(HD$81HHt$HD$HGfnЉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$衿1HT$8dH+%(HH[]@+HHuАHl$Ht$HntHt$H]tHt$ HLtL$D$D$ CFHlH&H^jHHfnFdH%(HD$81H+KHt$HD$HGfn؉D$(fbfD$ u=HGHtL$$9L$ t:H|$11|1HT$8dH+%(HHÐ HHuՐ~((Y(YX #XfZf.wQQ Z^f(ffYfZD$0 HkHt$0H=^KW|iT$E~T$f.USHXfnFdH%(HD$H1HIHt$ HD$(HGfnȉD$8fbfD$0uKH_Ht!D$0+D$4tEH|$ 11HT$HdH+%(HX[]@軑HHuАHl$ Ht$H7tHt$H7tHt$H7tfD$D$CߟHuHHgAhUSHHfnFdH%(HD$81H)Ht$HD$HGfnȉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$1HT$8dH+%(HH[]@蛐HHuАHl$Ht$H~tHt$HmtHt$ H\tfnD$fnT$fbfD$ C踞HnHH`gf.HXfnFdH%(HD$H1HGHt$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$111HT$HdH+%(HXÐ{HHuՐfff(f(Yff(YXXf.wJQ ~^f(ffY)D$0蜝HwHt$0H=Grce)$Bf($HXfnFdH%(HD$H1HkFHt$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$11輹1HT$HdH+%(HXÐKHHuՐ~H((Y(YX^X(YXfZf.wcQ9ZZ^Yf(ffYZL$@fZD$8>HIHt$8H=E5d\$L$@~\$L$ff.HHfnFdH%(HD$81HDHt$HD$HGfn؉D$(fbfD$ u=HGHtL$$9L$ t:H|$11L1HT$8dH+%(HHÐیHHuՐ~fff~fpf~*f.wOQ^ffYffL$0HuHt$0H=qEТaVcf(fL$w?~L$f(ff.SHPfnFdH%(HD$H1HCHt$ HD$(HGfn؉D$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ 1H|$HtH/tHT$HdH+%(HP[DHD$Ht$ HD$(HGfnЉD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ y1H|$HtH/tHT$HdH+%(HP[DHD$N7HD$ۅHHs1HT$H|$ H5=HtffffYXfXHYKXfH~HGfHnF1:\\ff.SHPfnFdH%(HD$H1H<Ht$ HD$(HGfnȉD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ 1H|$HtH/tHT$HdH+%(HP[DHD$5HD${HHs1HT$H|$ H5<肦HtKH{xʍ谒H^Hc_S[DSH`fnFdH%(HD$X1H;Ht$0HD$8HGfnЉD$HfbfD$@u|HD$(H_Ht{D$@+D$DtuH|$0ٮ1H|$(HtH/tHT$XdH+%(H`[DH$4H$f;HHs1HT$(H|$0H5;BHt kp\$$$l$t$_HMD$YD$ $YL$X X."Y@SH`fnFdH%(HD$X1H5:Ht$0HD$8HGfnЉD$HfbfD$@u|HD$(H_Ht{D$@+D$DtuH|$0i1H|$(HtH/tHT$XdH+%(H`[DHD$>3HD$ˁHHs1HT$(H|$0H5z:ңHt kp\$d$l$t$HLD$YD$L$YL$X |XZ-.Xff.SHPfnFdH%(HD$H1H8Ht$ HD$(HGfn؉D$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ 1H|$HtH/tHT$HdH+%(HP[DHD$1HD$KHHs1HT$H|$ H59RHtYfX(UX(XXf~fHDfnfZ+0VfHXfnFdH%(HD$H1HK7Ht$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$11蜪1HT$HdH+%(HXÐ+HHuՐof(YX(UX(XXfZf.wbQZ^fZffYfYfZfZ)L$0%HPHt$0H=A8rX(YXfZf.wcQZZ^Yf(ffYZL$@fZT$8HIHt$8H=_5zMT$L$)~T$L$ff.HHfnFdH%(HD$81H-Ht$HD$HGfn؉D$(fbfD$ u=HGHtL$$9L$ t:H|$11,1HT$8dH+%(HHÐuHHuՐ~fff~fpf~*f.wOQ^ffYffL$0ڃHuHt$0H=f.谋a6Lf(fL$W(~L$f(ff.USHhfnFdH%(HD$X1H_,Ht$ HD$(HGfnЉD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ ؟1H|$HtH/tHT$XdH+%(Hh[]HD$%HD$;tHHt1H-Q-HT$H|$ H?HtsKDPxADAfnfnAfAnfnfbfbf)T$PfL$H1I1MHt$HH Jff.USHhfnFdH%(HD$X1H*Ht$ HD$(HGfnD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ H1H|$HtH/tHT$XdH+%(Hh[]HD$$HD$rHHt1H-+HT$H|$ H诔HtSK@Xf(f(YY\d$@ +YYYY\\L$HD$P蛀I1MHt$@HpHfDUSHhfnFdH%(HD$X1H?)Ht$ HD$(HGfnD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ 踜1H|$HtH/tHT$XdH+%(Hh[]HD$"HD$qHHt1H-C*HT$H|$ HHt +P[~K~@YYYY\\T$HD$P#I1M/Ht$HH~Gff.SHPfnFdH%(HD$H1H'Ht$HD$HGfn؉D$(fbfD$ uDHGHtL$$9L$ tIH|$11K1HT$HdH+%(HP[oHHufHffHT$8~L$8XD$8fpf~҉\$@Љ*f.wgQ^f(ffYf*YffL$8,D$@}H6Ht$8H='萅"FfL$;"~L$USHhfnFdH%(HD$X1HO&Ht$ HD$(HGfnD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ ș1H|$HtH/tHT$XdH+%(Hh[]HD$HD$+nHHt1H-&HT$H|$ H/Ht +P[fKf@fffYfYYYf\\)T$@D$P.|I1M*Ht$@HDfUSHhfnFdH%(HD$X1H$Ht$ HD$(HGfnЉD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ H1H|$HtH/tHT$XdH+%(Hh[]HD$HD$lHHt1H-%HT$H|$ H诎HtsKDPxADAfnfnAfAnfnfbfbf)T$PfL$HzI1MHt$HHv Bff.ATL%3H -HH5>L6Ju'LHdLA\ATL%CH -H5H5LIȤuLHidLA\ATL%SH -HH5LIآuLHdLA\ATL%cH -HH5LFIuLH.cLA\ATL%sH l-HH5LHuXLH>ycLA\ATL%H L-HH5nLHu LHN)cLA\ATL%H ,-HeH5޷LVHu|LH^bLA\ATL%H -HյH5NLH(u)LHnbLA\ATL%H ,HEH5LG8u'LH~9bLA\ATH5"H=$UHBrIcHtHLHWHHtHL7:{HHtHL_JHHtHL*YHHtHLח_LA\ATL%H l*HծH5NLDuVLHNI_LA\ATL%H L*HEH5LvDu:LH^^LA\ATH5!H="UHoIjHtHLHukn0HHtHLu7bHHtHLߔtHmtDHL]A\fHmuHHmuHHxfDATL%ӋH \)HH5LVCXu/LH]LA\ATL%H L)HH5LChuHLH]LA\ATL%H ,)HH5LBxu'LH9]LA\ATH5!H=!UHBmIZHHtHLHWukpHHtHL;u7{HHtHLtHmtDHL]A\fHmuHHmuHHfDATL%3H <(HH5>LAuLH\LA\ATL%CH (H5H5LFAȃu-LHA\ATL%SH 'HH5L@؁u(LHy[LA\ATL%cH 'HuH5.L@uHzLH.)[LA\ATL%s}H 'HH5LV@}unLH>~ZLA\ATL%{H 'HH5NL@|uELHN|ZLA\AWAVAUATUHSHhHHI11H5dLpIM~c1%It$Ht LH[HI9t:IGL$I|$uH5YH9t +tID$H0DI/LH5 HdQIHH1H5E10dLpIM~\1It$Ht LHHI9t:IGL$I|$uH5YH9t {tID$H0DI/LH5cHLIHH1H51cLpIM~\1It$Ht LHHI9t:IGL$I|$uH5mXH9t tID$H0DI/LH5HIHtHH5NHuIHtHH5HNVIHtHH5H'*IHtHH5.HIHtHH5gH蜔IHt!HH5gHt I,$CH[]A\A]A^A_@ImLIm!LmI,$tLMgI,$-L- I,$L I,$LI,$XLKImLLLLxUHL[]A\A]A^A_Zf.f.Ht'SH'oHSHP[1ff.fHtSH I'HHSP[1DHt'SH'fSP[f.1ff.fHt'SH &ooKH[1ff.fHtSH&o[1ff.fHtSHi&[1ff.fHtSH 9&HHSP[1DHt'SH &oHSHP[1ff.fHtSH%o[1ff.fHt'SH %ooKH[1ff.fATUHHdH%(HD$81HZHt$HD$HFHD$$D$ HD$tUH|$E1螅H|$HtH/tHD$8dH+%(unHHL]A\{ fH- [HT$H|$H'|IHt$Ao$HHID$HF8Ir0ff.ATUHHdH%(HD$81HYHt$HD$HFHD$$D$ HD$tUH|$E1螄H|$HtH/tHD$8dH+%(ukHHL]A\{ fH-ZHT$H|$H'{IHt #HHI$HAD$F;Iu/ff.ATUHHdH%(HD$81HXHt$HD$HFHD$$D$ HD$tUH|$E1螃H|$HtH/tHD$8dH+%(umHHL]A\{ fH-XHT$H|$H'zIHt"HHA$fAD$F9Is.ff.ATUHHdH%(HD$81HWHt$HD$HFHD$$D$ HD$tUH|$E1螂H|$HtH/tHD$8dH+%(upHHL]A\{fH-WHT$H|$H'yIHt !Ao$HHAoL$H6Ip-fATUHHdH%(HD$81HVHt$HD$HFHD$$D$ HD$tUH|$E1螁H|$HtH/tHD$8dH+%(ueHHL]A\{fH-VHT$H|$H'xIHt Ao$HHAI{,@ATUHHdH%(HD$81HUHt$HD$HFHD$$D$ HD$tUH|$E1讀H|$HtH/tHD$8dH+%(u_HHL]A\fH-UHT$H|$H7wIHtHHA$TI+f.ATUH-FUHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(ufHHL]A\fHT$H|$HNvIHtHHA$fAD$F`Iz*ATUH-THHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1~H|$HtH/tHD$8dH+%(udHHL]A\fHT$H|$H^uIHt HHI$HAD$FrI|)DATUH-SHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1}H|$HtH/tHD$8dH+%(ugHHL]A\fHT$H|$HntIHtAo$HHID$HFIy)fATUH-RHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1|H|$HtH/tHD$8dH+%(uXHHL]A\fHT$H|$H~sIHtHHA$I!(ATUH-QHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1|H|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$HrIHtAo$HHI>'ff.ATUH-PHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1{H|$HtH/tHD$8dH+%(uiHHL]A\fHT$H|$HqIHt ,Ao$HHAoL$HIw@&ATUH-OHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1.zH|$HtH/tHD$8dH+%(unHHL]A\ fHT$H|$H5OpIHt8A$HHAD$fFFIrK%ff.HHdH%(HD$81H)NH4$HD$HFHD$D$t2H@y1HT$8dH+%(uSHHfHt$ Htʿpf(L$ D$0H=NH@$fDUH-NH@dH%(HD$81HFH4$Hl$D$HD$t1Hx1HT$8dH+%(uNH@]Ht$ H>t˿f(L$ D$0HH@A#f.HXdH%(HD$H1HLH4$HD$HFHD$D$t2Hw1HT$HdH+%(uRHXfHt$ H~tʿ foD$ foL$0H=MHH~#UH-ULHPdH%(HD$H1HFH4$Hl$D$HD$t1Hv1HT$HdH+%(uMHP]Ht$ Ht˿ 0foD$ foL$0HHHK"ff.HHdH%(HD$81H)KHt$HD$HFHD$$D$ t1H|$=v1HT$8dH+%(uOHHfDHt$H|$tпsD$H=KHf(@f!UH-KH@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$|u1HT$8dH+%(uJH@]@Ht$H|$1tѿD$HHf(@fB ff.HHdH%(HD$81HIHt$HD$HFHD$$D$ t1H|$t1HT$8dH+%(uJHHfDHt$H|$qtп D$H= JHf@ ff.UH-UIH@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$s1HT$8dH+%(uEH@]@Ht$H|$tѿ 3D$HHf@PUHHHtZ H]A<UHHHt: H]!<UHHHt H]<UHHHt H];UHHHt H];UHHHt H];UHHHt H];UHHHtz H]a;UHHHtZ H]A;UHHHt: H]!;[HHdH%(HD$81HFH4$HD$HFHD$D$t2Hr1HT$8dH+%(uRHHfHt$(Htʿ 0D$0H=iGHHD$(FHGUH-FH@dH%(HD$81HFH4$Hl$D$HD$t1H?q1HT$8dH+%(uMH@]Ht$(HNt˿ pD$0HHHD$(FHff.HHdH%(HD$81HsEH4$HD$HFHD$D$t2Hp1HT$8dH+%(uHHHfHt$ HtʿfoD$ H=EHHUH-3EH@dH%(HD$81HFH4$Hl$D$HD$t1Ho1HT$8dH+%(uCH@]Ht$ Ht˿foD$ HH%DHHdH%(HD$81H DHt$HD$HFHD$$D$ t1H|$o1HT$8dH+%(uNHHfDHt$ H|$tп SD$ H=DH(@hUH-DH@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$\n1HT$8dH+%(uIH@]@Ht$ H|$Atѿ D$ HH(@#ff.HHdH%(HD$81HBHt$HD$HFHD$$D$ t1H|$m1HT$8dH+%(uFHHfDHt$ H|$聲tп D$ H=BHgUH-SBH@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$l1HT$8dH+%(uAH@]@Ht$ H|$ѱtѿ# D$ HHD@H8dH%(HD$(1H)AH4$HD$HFHD$D$t2H@l1HT$(dH+%(uOH8fHt$%HMtʿp H=AHD$%fD$'Ff.UH-@H0dH%(HD$(1HFH4$Hl$D$HD$t1Hk1HT$(dH+%(uJH0]Ht$%H.Mt˿ HHD$%fD$'FEff.H8dH%(HD$(1H?H4$HD$HFHD$D$t2Hj1HT$(dH+%(uEH8fHt$$HnLtʿ H=?HƋD$$@UH-?H0dH%(HD$(1HFH4$Hl$D$HD$t1Hj1HT$(dH+%(u@H0]Ht$$HKt˿@ HHƋD$$hHHdH%(HD$81HI>Ht$HD$HFHD$$D$ t1H|$]i1HT$8dH+%(uFHHfDHt$H|$QKtпH=>HD$FF'HHdH%(HD$81H=Ht$HD$HFHD$$D$ t1H|$h1HT$8dH+%(uIHHfDHt$H|$JtпH==HD$FFFtff.fUH-h=H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$g1HT$8dH+%(uHH@]@Ht$ H|$q0tѿ#HHD$ ffFD$=ff.fUH-<H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$,g1HT$8dH+%(uff.ATIUHHdH%(HD$81HtHMH\ID$ǃtwt3H5`1'Z1HT$8dH+%(>HH]A\ffH1fFHD$8dH+%(HHH=0]A\Ld$Ld$Ht$ H+H-0LD$(Hl$HD$ =ZHt$L=EHt$L=0HHD$ D$FD$FKfDHD$8dH+%(u=HHLH=1]A\>H 5H5 H8z 1~ff.ATIUHXdH%(HD$H1HtH%LH\ID$ǃtt3H5/gX1HT$HdH+%(>HX]A\ffH@HHD$HdH+%(HXH=W/]A\DLd$ Ld$ Ht$H)H--/LD$8Hl$(HD$0RHt$L=Ht$Lw(fD$HHD$@HD$HdH+%(u=HXLH=B1]A\<HI3H5H81ff.ATIHPdH%(HD$H1HtHfJHmID$ǃ-txt,H5o-V1HT$HdH+%(OHPA\ fH@HD$HdH+%(HPH=-A\jf.H,Ld$ Ld$ HHD$(HV LD$8HD$0[Ht$LFHt$L1Ht$L *f(D$f( $H=<-H@@HD$HdH+%(u=HPLH=r1A\;fHy1H5"H81ff.ATIH@dH%(HD$81HtHHHmID$ǃ5tpt,H5+T1HT$8dH+%(OH@A\HHD$8dH+%(H@H=+A\H3+Ld$Ld$HD$Ht$ LHT D$(HD$ a8aHt$ LL8LHt$L787Ht$L"8"`H=[+HD$ D$ FD$FD$FDHD$8dH+%(u5H@LH=1A\A9H/H5RH81ff.ATIH@dH%(HD$81HtHFHmID$ǃ5tpt,H5)S1HT$8dH+%(OH@A\NfHHD$8dH+%(H@H=8*A\fDHc)Ld$Ld$HHD$HR LD$(HD$ 胙cHt$LnNHt$LY9Ht$ LD$D$ L$H=)T$H$HD$8dH+%(u5H@LH= 1A\q7H-H5H8J1Nff.ATIUHHdH%(HD$81HtHDH|ID$ǃPLd$Ld$H-H(HLHl$D$ HD$$D$ ?Ht$Lt{Ht$LtjD$ 9D$(}Ht$ LӗtO%D$ L$HT$H$Dt\H5'pP1HT$8dH+%(HH]A\fHD$8dH+%(u}HHLH=1]A\5fHHD$8dH+%(u9HHH=']A\ fH+H5H8j1Unff.ATIUHXdH%(HD$H1HtHCHlID$ǃPLd$ Ld$ H-Z&HD$0H3kLHl$(HD$4HD$t|Ht$LtkHt$LtZD$09D$8}Ht$Lt? Ef(D$f( $HH@fDt\H5%N1HT$HdH+%(HX]A\fHD$HdH+%(u}HXLH=Ž1]A\4 fH@HD$HdH+%(u5HXH=.%]A\5DH)*H5H81Uff.SH0fnFdH%(HD$(1H$H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11nO1HT$(dH+%(u0H0[fD#HHuӐk2Hu;%SH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11N1HT$(dH+%(u2H0[fD;#HHuӐ1HuCDSH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11M1HT$(dH+%(u6H0[fD{"HHuӐ0HufZC8QSH0fnFdH%(HD$(1HV"H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11.M1HT$(dH+%(u1H0[fD!HHuӐ+0Hu{"fDSH0fnFdH%(HD$(1H!H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11nL1HT$(dH+%(u2H0[fD HHuӐk/HuCDSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11K1HT$(dH+%(u1H0[fD; HHuӐ.Hu{]!fDSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11J1HT$(dH+%(u1H0[fD{HHuӐ-Hu=VfDSH0fnFdH%(HD$(1HGH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11.J1HT$(dH+%(u5H0[fDHHuӐ+-HufZyfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11nI1HT$(dH+%(u6H0[fDHHuӐk,HufZCSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11H1HT$(dH+%(u1H0[fD;HHuӐ+HufDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11G1HT$(dH+%(u2H0[fD{HHuӐ*HuC1HT$8dH+%(uQH@[f.;HHuϐHt$H|$ tD$!HuHuHf.SH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$=1HT$8dH+%(uRH@[f.KHHuϐHt$H|$tD$C HuHH fSH@fnFdH%(HD$81H0Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$<1HT$8dH+%(uUH@[f.[HHuϐHt$ H|$衁tD$ C HuHHfDSH@fnFdH%(HD$81H@Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$;1HT$8dH+%(uUH@[f.kHHuϐHt$H|$聶tD$CHuHH&fDSH@fnFdH%(HD$81H8Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$:1HT$8dH+%(uUH@[f.{HHuϐHt$ H|$tD$ CHuHH6fDSH@fnFdH%(HD$81HXHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$:1HT$8dH+%(uUH@[f.HHuϐHt$ H|$~tD$ CHuHHFfDSH@fnFdH%(HD$81HXHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$91HT$8dH+%(uUH@[f. HHuϐHt$ H|$}tD$ CHuHHVfDSH@fnFdH%(HD$81Hx Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$"81HT$8dH+%(uUH@[f. HHuϐHt$ H|$|tD$ CHuHHffDSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$271HT$8dH+%(uQH@[f. HHuϐHt$H|$tD$HuHHzf.SH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$B61HT$8dH+%(uRH@[f. HHuϐHt$H|$!tD$C HuHHfSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$R51HT$8dH+%(uUH@[f. HHuϐHt$H|$tD$C-HuHHfDSH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$b41HT$8dH+%(uTH@[f.HHuϐHt$H|$tD$>HuH"HSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$r31HT$8dH+%(uUH@[f.HHuϐHt$H|$tD$CMHuH1HfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$21HT$8dH+%(uUH@[f. HHuϐHt$H|$!tD$C]HuHAHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$11HT$8dH+%(uUH@[f.HHuϐHt$H|$1tD$CmHuHQHfDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$01HT$8dH+%(uRH@[f.+HHuϐHt$H|$tD$CHuHdHfSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$/1HT$8dH+%(uRH@[f.;HHuϐHt$H|$tD$CHuHtHfSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$.1HT$8dH+%(uTH@[f.KHHuϐHt$ H|$stD$ HuHHSH@fnFdH%(HD$81H!Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$-1HT$8dH+%(uTH@[f.[HHuϐHt$H|$qtD$HuHHSH@fnFdH%(HD$81H1Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$,1HT$8dH+%(uTH@[f.kHHuϐHt$ H|$qtD$ HuHH'USHHfnFdH%(HD$81H )Ht$HD$HGfnЉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$+1HT$8dH+%(HH[]@{HHuАHl$Ht$HptHt$HptHt$ HptL$D$D$ CHlHvH^USHXfnFdH%(HD$H1H'Ht$ HD$(HGfnȉD$8fbfD$0uKH_Ht!D$0+D$4tEH|$ *1HT$HdH+%(HX[]@KHHuАHl$ Ht$H^tHt$HMtHt$HLxHuXLHHLA\AWAVAUATUHSHfHHI11H5 LpIM~c1%It$Ht LHkHI9t:IGL$I|$uH5H9t ;ztID$H0DI/LH5H ϫIHH1H5U1@LpIM~\1It$Ht LH軇HI9t:IGL$I|$uH5-H9t ytID$H0DI/LH5&H\菭IHtHH5qH5mxIHtHH5vH&QIHtHH5AHIHtHH5 HIHtHH5H虆ueIHt!HH5Hvt I,$H[]A\A]A^A_ImALM4I,$uL1I,$ULHI,$L I,$LݟI,$L轟{ImAL蝟4L舟ULxHL[]A\A]A^A_Zf.Ht'SH 虸ooKH[1ff.fHtSHYo[1ff.fHtSH)o[1ff.fHtSHo[1ff.fHtSHɷo[1ff.fHt'SH 虷ooKH[1ff.fATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(upHHL]A\{fH-HT$H|$H'IHt 襶Ao$HHAoL$H6IpfATUHHdH%(HD$81HHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(ueHHL]A\{fH-HT$H|$H' IHt襵Ao$HHAI{@ATUHHdH%(HD$81H Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(ueHHL]A\苛fH- HT$H|$H7 IHt赴Ao$HHQI{@ATUH-_ HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(u[HHL]A\蛚fHT$H|$HN IHt̳Ao$HHhIff.ATUH-c HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(u[HHL]A\諙fHT$H|$H^ IHtܲAo$HHxIff.ATUH-g HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(uiHHL]A\軘fHT$H|$Hn IHt Ao$HHAoL$H}IwHXdH%(HD$H1H H4$HD$HFHD$D$t2H1HT$HdH+%(uRHXfHt$ H辛tʿ 0foD$ foL$0H=$ HH辉GUH- HPdH%(HD$H1HFH4$Hl$D$HD$t1H?1HT$HdH+%(uMHP]Ht$ Ht˿ pfoD$ foL$0HHH苼ff.UHHHt芪H]qUHHHtjH]QUHHHtJH]1UHHHt*H]UHHHt H]UHHHtH]HHdH%(HD$81HH4$HD$HFHD$D$t2H1HT$8dH+%(uHHHfHt$ H辯tʿfoD$ H=HxUH-H@dH%(HD$81HFH4$Hl$D$HD$t1H1HT$8dH+%(uCH@]Ht$ Ht˿0foD$ HH̆UDHHdH%(HD$81H)H4$HD$HFHD$D$t2HP1HT$8dH+%(uHHHfHt$ Hntʿ耭foD$ H=\H衹UH-1H@dH%(HD$81HFH4$Hl$D$HD$t1H 1HT$8dH+%(uCH@]Ht$ H辦t˿ЬfoD$ HHlDATIUHXdH%(HD$H1HtHHlID$ǃ,twt3H5! 1HT$HdH+%(NHX]A\f &fH@HD$HdH+%(HXH=]A\顄Ld$ H Ld$ HH-LD$8Hl$(HD$0+\Ht$LGHt$L2Ht$L jf(D$f( $HH@HD$HdH+%(u=HXLH=`1]A\XHH5bH8*1.ff.ATIH@dH%(HD$81HtHH}ID$ǃ=tpt,H5u1HT$8dH+%(_H@A\fHHD$8dH+%(-H@H=A\鎂fDH Ld$Ld$HHD$H LD$(HD$ cHt$LNHt$L9Ht$ L$RfnL$fn$H=)fnT$ fn\$HfbfbfĺHD$8dH+%(u=H@LH=_1A\)fHH52H81ff.ATIH@dH%(HD$81HtHHmID$ǃ5tpt,H51HT$8dH+%(OH@A\.fHHD$8dH+%(H@H=A\鮀fDH)Ld$Ld$HHD$H LD$(HD$ cMcHt$LNMNHt$L9M9Ht$ L$M$rD$ L$H=WT$H$HD$8dH+%(u5H@LH=`1A\QHH5bH8*1.ff.ATIUHHdH%(HD$81HtHH|ID$ǃ<twt3H5]1HT$8dH+%(^HH]A\fVfHHD$8dH+%(%HHH=]A\~DLd$H Ld$HH-LD$(Hl$HD$ K\Ht$LvKGHt$LaK2Ht$ LLK蚥D$ L$HT$H$~HD$8dH+%(u=HHLH=2[1]A\xHH5H8J1Nff.ATIUHHdH%(HD$81HtHH|ID$ǃ<twt3H571HT$8dH+%(^HH]A\fvfHHD$8dH+%(%HHH=*]A\|DLd$H4 Ld$HH-LD$(Hl$HD$ K\Ht$L6GHt$L!2Ht$ L 躣fnL$fn$HfnT$ fn\$Hfbfbfl9|@HD$8dH+%(u=HHLH=Y1]A\HH5H8j1nff.ATIHPdH%(HD$H1HtHHmID$ǃ-txt,H5X1HT$HdH+%(OHPA\ 螢fH@HD$HdH+%(HPH=xA\{f.HLd$ Ld$ HHD$(H@ LD$8HD$0}[Ht$L}FHt$Lq}1Ht$L\} ڡf(D$f( $H=H@iz@HD$HdH+%(u=HPLH=B^1A\fH)H5H8蚰1螭ff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11n1HT$(dH+%(u1H0[fDHHuӐkHu轁֬fDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u2H0[fD;HHuӐHuCDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H111HT$(dH+%(u2H0[fD{HHuӐHuCHGHtL$9L$t;H111HT$(dH+%(uBH8[HHuҐHHD$ HuHt$ H=|&fDHHfnFdH%(HD$81H H4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$8dH+%(uCHHHHuҐf)T$ HuHt$ H={UDH8fnFdH%(HD$(1HPH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H11/1HT$(dH+%(uBH8HHuҐHHD$ #HuHt$ H=z膘fDH8fnFdH%(HD$(1HH4$HD$HGfnЉD$fbfD$u>HGHtL$9L$t;H11_1HT$(dH+%(uPH8HHuҐ@X@ L$ EHuHt$ H=y託H8fnFdH%(HD$(1HH4$HD$HGfnЉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uPH8 HHuҐX@HD$ eHuHt$ H=x?ȖH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uRH8+HHuҐfnP PfnfbfD$ HuHt$ H=w]fDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uTH8KHHuҐP@fnfnfbfD$ HuHt$ H=w{@HHfnFdH%(HD$81HH4$HD$HGfnЉD$fbfD$u>HGHtL$9L$t;H111HT$8dH+%(uQHHkHHuҐ@X@f)L$ HuHt$ H=u'HHfnFdH%(HD$81H9H4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$8dH+%(uMHH苼HHuҐX@f@)D$ HuHt$ H=tKff.HHfnFdH%(HD$81HhH4$HD$HGfnЉD$fbfD$u>HGHtL$9L$t;H111HT$8dH+%(uLHH諻HHuҐffHfX)D$ HuHt$ H=tlff.H8fnFdH%(HD$(1HH4$HD$HGfnЉD$fbfD$u>HGHtL$9L$t;H11?1HT$(dH+%(uKH8˺HHuҐ~~HXD$ *HuHt$ H=ls荑ff.fSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$R1HT$8dH+%(uQH@[f.۹HHuϐHt$ H|$tD$ C1HuHH蚐f.SH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$b1HT$8dH+%(uQH@[f.HHuϐHt$ H|$ѬtD$ C AHuH%H誏f.SH@fnFdH%(HD$81HpHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$r1HT$8dH+%(uPH@[f.HHuϐHt$ H|$tD$ RHuH6H軎ff.SH@fnFdH%(HD$81H&oHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uQH@[f. HHuϐHt$ H|$tD$ CaHuHEHʍf.SH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.HHuϐHt$H|$1\tD$CmHuHQH֌fDH8fnFdH%(HD$(1HH4$HD$HGfnЉD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(uMH8;HHuҐ~~HffD$ HuHt$ H=nrff.SH@fnFdH%(HD$81H,Ht$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.KHHuϐHt$ H|$$tD$ C HuHHfDSH@fnFdH%(HD$81HvkHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.[HHuϐHt$ H|$#tD$ CHuHHfDSH@fnFdH%(HD$81HCHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.kHHuϐHt$ H|$"tD$ CHuHH&fDSH@fnFdH%(HD$81HiHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uTH@[f.{HHuϐHt$ H|$!tD$ οHuHH7SH@fnFdH%(HD$81HcHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.苰HHuϐHt$H|$VtD$CݾHuHHFfDSH@fnFdH%(HD$81HgHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uUH@[f.蛯HHuϐHt$H|$UtD$CHuHѢHVfDSH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$"1HT$8dH+%(uTH@[f.諮HHuϐHt$H|$TtD$HuHHgUSHHfnFdH%(HD$81HIHt$HD$HGfnЉD$(fbfD$ uKH_Ht!D$ +D$$tEH|$11HT$8dH+%(HH[]@軭HHuАHl$HH蠡tHt$H菡tHt$H~tHt$ HmtfnL$fn\$ fn$fnd$fbfbfl辻HTHHF USHHfnFdH%(HD$81H Ht$HD$HGfn؉D$(fbfD$ uKH_Ht!D$ +D$$tEH|$1HT$8dH+%(HH[]@{HHuАHl$HHtHt$HtHt$HtHt$ HtD$ L$T$$聺HWHaHIUSHXfnFdH%(HD$H1HHt$ HD$(HGfnЉD$8fbfD$0uKH_Ht!D$0+D$4tEH|$ 1HT$HdH+%(HX[]@;HHuАHl$ HHPQtHt$H?QtHt$H.QtHt$HQtf(D$f( $C RHhH2HZ贁@USHXfnFdH%(HD$H1HHt$ HD$(HGfnЉD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ x1H|$HtH/tHT$HdH+%(HX[]HD$N[HD$۩HHt1HT$H|$ H5oHt/w`/Ƚv\C/@HC/vV\H /!H0@$f.\H/HC@/w/v\C /!@USHXfnFdH%(HD$H1HEHt$ HD$(HGfnȉD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ 1H|$HtH/tHT$HdH+%(HX[]HD$YHD$+HHt1HT$H|$ H52Ht9|E~ );K@ŋHS9}>);P !LHK@Z?D)ʋH;PS@9|~);K !~f.USHXfnFdH%(HD$H1HHt$ HD$(HGfnЉD$8fbfD$0u{HD$H_HtzD$0+D$4ttH|$ H1H|$HtH/tHT$HdH+%(HX[]HD$XHD$諦HHt1HT$H|$ H5NHtf/w_f/Ƚv\Cf/@HCf/vT\Hf/!謴H+@D\Hf/HC@f/wf/v\Cf/!|SHPfnFdH%(HD$H1H%Ht$ HD$(HGfnȉD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ 1H|$HtH/tHT$HdH+%(HP[DHD$nVHD$HHs1HT$H|$ H5Hts9|Rx~})щ9MщSSHs 9}P)ʉK@ 9LЉS H9HH+f)ʉ Hs 9LщSSH9|@ ~)щ9M9M@9MƉ"{fSHPfnFdH%(HD$H1HuHt$ HD$(HGfnD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$ 1H|$HtH/tHT$HdH+%()HP[DHD$THD$KHHs1HT$H|$ H5RHt[/wk/@\X_SCH[ /vX\KX(_@ C 9HHH \ X(_@f./@ v&\X__f_EyDSHPfnFdH%(HD$H1HHt$ HD$(HGfnD$8fbfD$0u|HD$H_Ht{D$0+D$4tuH|$  1H|$HtH/tHT$HdH+%(,HP[DHD$RHD$kHHs1HT$H|$ H5rHt[f/wrf/@\X_SCH[f/vU\KXf(_@CUHH5H@\ Xf(_@뒐f/@v%\X__h_bwfUSHXdH%(HD$HHFt7~H5(v x1HT$HdH+%(HX[]Hu Ht$HD$HGD$ D$$D$(H_H1Hu Ht$HD$HGD$ D$$D$( H_HtHl$HHEtHt$HEt$L$f/\XCCCf/\XCKC耭H4H`HHt$0H|$ TL$0f/f/v\_KKL$8Cf/of/x\_KKef.[HHXHD$ +D$$H|$p1f H?HXH2D$ +D$$H|$ 1f\XC C ff/o\_SS\~tff.USHHdH%(HD$8HFt7~H58s 1HT$8dH+%(*HH[]H s Ht$HD$HGD$ D$$D$(pH_H1Hr Ht$HD$HGD$ D$$D$(H_HtHl$Ht$HutHt$ HdtT$ D$ 9>)KS9}t)S C質HWHHf.Ht$0H|$`!D$09~ )ЋS9L‰CD$4S9|~)ЋS 9L‰C 賛HHXHD$ +D$$H|$1;kHHXHD$ +D$$4H|$1f)‰S=@)ʋK9LщSqUSHHdH%(HD$8HFt7~H5p 1HT$8dH+%(~HH[]Hp Ht$HD$HGD$ D$$D$(H_H1H:p Ht$HD$HGD$ D$$D$(H_HtHl$Ht$HU tHt$ HD tT$L$ /\XCCC/\XC KC H3HHfDHt$0H|$dL$0//v\_KKL$4C/s/}\_K K jfDHHXHD$ +D$$H|$1諘HOHXHBD$ +D$$H|$1f\XC Cf/\_SSooff.@ATL%H HeH5LVv8uxLH~ِLA\ATL%H HH5nLvHuh4LH艐LA\ATL%H ܩHH5LuXu踩LH9LA\ATH5H=ļUHBI_HtHLHWuknZHHtHL;u7HHtHLtHmtDHL]A\fHmuHGHmuHGHGfDATL%H HEH5PLtuXLHLA\ATL%#H ̨HH5nPLFtuXYLHɎLA\ATL%3 H HH5OLs u8^LH yLA\AWAVAUATUHSH&HHI11H5LטLpIM~c1%It$Ht LHK,HI9t:IGL$I|$uH5H9t tID$H0DI/LH5H+蟦IHtHH5H+uyIHtHH5H+u>I-IHtHH5H+tI,$ttH[]A\A]A^A_DI,$uLaEI,$uLIEs@ImAL-E4LEHL[]A\A]A^A_Df.GUH@dH%(HD$81Hz5Ht$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5&5ڍ|$HtHt+HH5 HPtRHuHE@19Huiff.fUH@dH%(HD$81H;Ht$HD$HFHD$$D$ t0H|$蜽1HT$8dH+%(ufH@]@H|$HT$H53|$HtXHHt+HH5!HPtjHuH]?1hff.@ATUHHdH%(HD$81HYHt$HD$HFHD$$D$ D$ Ld$HT$ H5L6|$ HtgDSH0fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n1HT$(dH+%(uZH0[fDHHuӐtbHuHcHHH;rztЉfff.fUSHHdH%(HD$81H1Ht$HD$HFHD$$D$ HD$t6H|$蒺1HT$8dH+%(HH[]DHt$H|$H= tLH=u-ЛHaHcVf.LLH=v(蹂tLH=H覂tLH=f/蓂tLWHЉcfATH0fnFdH%(HD$(1H /H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11護E1HD$(dH+%(H0LA\@3HHufHHRxH;ډLjIMtoI$H5LPtZeHuLX9IHoHbLb1HHP@Lw8fE1H"DIjibfATUHHdH%(HD$8HFLd$Ht$HۯHD$HHT$ LH5-D$(HD$ D$ ˅|$ HtQD$ 9D$(}Ht$ L~t6t$ HHH~HH5HPtjHth1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=>A\GH5肳1@H7afATL%sH lHH5LvuقLA\ATIUHmHt HH5LH tHmtH]A\HH]A\:fDUH=lH~u]ÐHH=~tHH=k$~tHH==~tHH=[+~tH]Kf.GWUH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$輳1HT$8dH+%(uhH@]@HT$H|$H5f*|$HtHt+HH5֚HPt蒖HuH51yHu^ff.fUH@dH%(HD$81H{Ht$HD$HFHD$$D$ t0H|$ܲ1HT$8dH+%(ufH@]@H|$HT$H5s:|$HtMHHt+HH5HPt誕HuH41^ff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ Ld$HT$ H5ƫLv|$ HtH(HtD$9D$t;H11蟮1HT$(dH+%(u9H8+HHuҐa薑HuHzvHYff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11ϭ1HT$(dH+%(u9H8[HHuҐ{ƐHuHuH/Yff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fD苁HHuӐHu`XSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(uZH0[fDˀHHuӐt2HuHcHHH;tЉ}Wff.fUH0fnFdH%(HD$(1HuH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uVH0]fDHHuӐtHoPCHuH6-@HHH;itHVUH@fnFdH%(HD$81HLHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(uUH@]f.~HHuϐHt$ H|$!Ytt$ H:HuHcUfDUH@fnFdH%(HD$81H\Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(u^H@]f.}HHuϐH5A{ HT$H|$x|$HtHX:AHuHc~Tff.fAUATUHPfnFdH%(HD$H1H &Ht$HD$HGfnȉD$(fbfD$ uHHo(Ht!D$ +D$$tBH|$n1HT$HdH+%(utHP]A\A]f|HHuӐLd$Ht$ L.WtLl$0LL2tt$ LHҩ-HuHpH|SATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$`1HT$8dH+%(ulHH]A\fD{HHuѐLd$Ht$LVtHt$ L VtT$ t$H$HuHoHRff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$P1HT$8dH+%(ulHH]A\fDzHHuѐLd$Ht$LUtHt$ LntT$ t$H)vHuHmH}Qff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$@1HT$8dH+%(ukHH]A\fDyHHuѐLd$Ht$LStHt$ LStT$ t$HHuHcznPff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(uvHH]A\fDxHHuѐLd$Ht$LRtHt$ LRtT$ t$HybHHuHH=]i͎zSOATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$ 1HT$8dH+%(HH]A\fwHHuѐLd$Ht$LQtHt$LQtHt$ LlktL$ T$Ht$ĚυHvHjHh1NAVAUATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$ILo(1L H|$ HcIrwHl$ Mt(D$+D$LաHl$ E1HtHD$(H9tHV]HD$XdH+%(HhL]A\A]A^;vHH\H1E1" H|$ HcvHl$ fDDHL:+mHLnbHTL%BiHl$ I$FLHAfATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0~HD$Ho(Ht}D$0+D$4twH|$ s1H|$HtH/t!HT$HdH+%(HX]A\DHD$F&HD$tHHq1Ld$ Ht$LNtHt$LNrHT$H5eL豖HHRT$t$HEH4HgH&BKfAUATUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$8dH+%(H@]A\A]fDsHHufLd$Ht$LMtHt$LMtLl$ LLMtT$t$HLr;H誁Ht5蠁HYHt:HH5OH-:fDT$ LUDHAfH IAUATUHpfnFdH%(HD$h1HHt$0HD$8HGfnȉD$HfbfD$@uPHo(Ht!D$@+D$DtRH|$0莝1HT$hdH+%(Hp]A\A]fDrHHufLd$0Ht$,L>LtLl$PLL'tf(D$Pt$,LH\$`fD$)$\$6zf($f.D$PzIuGT$f.T$Xz9u7\$f.\$`z)u'H+HdHfHuϹLL4*Hf.AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$8dH+%(H@]A\A]fDspHHufLd$Ht$LJtHt$LJtLl$ LLyJtT$t$HLH~Ht5~HYHt:HH5KH*:fDT$ LRDH!cH FATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@oHHufHHRxH;bZW=IMtoI$H5yLPtZ5}HuL(IHoHbLtE1HHP@LZ8fE1|H"DIj9EfAWAVAUATUSHhfnFdH%(HD$X1HHt$ HD$(HGfnȉD$8fbfD$0uSHo(Ht!D$0+D$4tMH|$ 1HT$XdH+%(NHh[]A\A]A^A_@{mHHuȐLl$@Ld$ LL"tLt$LLGtL|$LL~GtD$@HLLT$H\$PLD$fH~$D$f.D$@zPuNfHnf.d$HzAu?,$f.l$Pz2u0B{Hte8{HtC.{H@<{HuƹL1L+0fT$L_ODT$LGO@CATUSH@fnFdH%(HD$81HvHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\kHHuːHt$H|$tD$$Ld$u`HELH@H;|H=}`tLH=`u-yHaHcOlVf.LLH=F`tLH=v`tLH=6 c`tL'HЉAfATUHHdH%(HD$8HFLd$Ht$HHD$HvHT$ LH5mD$(HD$ D$ e|$ HtQD$ 9D$(}Ht$ L ^t6t$ HZxHH~HH5|HPtjUxHth1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=~A\xH54’1@HY@fAUATUHpHNdH%(HD$h1HGfnAH%HfnfbA)tBAH5[D91HT$hdH+%( Hp]A\A]fL #Ht$0LL$8L$@D$DD$HHH(HtoD$D9D$@toH|$011ɓ1DH Ht$0HL$8D$HfD$@H,Ho(Ht!D$@+D$DtVH|$0r14crHvHuHHH5CH"Ld$0Ht$(LBtHt$,L BtLl$PLLzf(D$PT$,LH\$`t$(fD$)$\$>f($f.D$PzxuvT$f.T$Xzhuf\$f.\$`zXuVuHHZH9gHH1!fHHU1cuHuLLy*=fAV1IAUATUSHfnFdH%(H$HG~H%fn)fbH HBHt$ HL$(T$8fD$0H4Hl$ Mp(1H$H|$p4AHcfLl$pEM9D$0+D$4IH'H|$p1HT$xH9Ht{HD$LHD$j@H AHt$ HL$(T$8fD$0HM`(Mt%D$0+D$4H|$ 覐1fH58A蔎1H$dH+%(Hİ[]A\A]A^IcI\LeIHH|$ H|$p4HceH|$p1IL1Ll$@Hl$ LH8fo\$@fod$PLLfol$`)\$p)$)$ D$@f.D$pD$xf.D$H$f.D$P$f.D$X$f.D$`qkD$hf.$VP;rH\HWH`fHt$H=Ht$H=DLHE~WAD$IEH9D1HDfATHH9uDAt ADËT$t$LL!0E~3Ic1DHH9tADf.ztBqH4qIH|$p1MH VHLbIH13DpHL1H&D1fDADHH9u"DLH%U 9Hff.fATL%3H HtH5LNuLHZLA\ATIUHM=Ht HH53tLHtHmtH]A\HH]A\UH@fnFdH%(HD$81H޴Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$"1HT$8dH+%(H@]fD`HHuϐH5WHT$H|$j[|$HtD$$u8HEHHH;Yu),7nHuHSHrfH/7ff.@ATH0fnFdH%(HD$(1H|H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@_HHufu\H8ImHuL IHtHntL"61HHP@LeKf{I6fDHGPW-UH=yqH\Tu]ÐHH=5xATtHH=.TtHH=TtHH=TtH]f.5sUH@dH%(HD$81H*Ht$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5X|$HtHt+HH5OHPtlHuH 1kHu]4ff.fHGI~H)ǃuHH=LlHH5X1HÐUSHHdH%(HD$81H4Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$ tHl$H=HQtHH=QujHuHcn]@H3H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8{[HHuҐ(iHuHNHO2ff.@H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8ZHHuҐiHuHMH1ff.@SH0fnFdH%(HD$(1HPH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11N1HT$(dH+%(u6H0[fDYHHuӐH@pXDhHuZ0SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莄1HT$(dH+%(u7H0[fDYHHuӐsgHu藏/SH0fnFdH%(HD$(1HޫH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11΃1HT$(dH+%(u7H0[fD[XHHuӐWfHu׎0/SH0fnFdH%(HD$(1H'H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDWHHuӐ;fHup.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N1HT$(dH+%(uUH0[fDVHHuӐt_0DeHuHcWDHHH;VtЉ-fUSH8fnFdH%(HD$(1H!tH4$HD$HGfnȉD$fbfD$uH8[]@UHHuԐHXpHhhcdHuH)H{W,UH@fnFdH%(HD$81HʾHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$蒀1HT$8dH+%(uVH@]f.UHHuϐHt$ H|$Itt$ H!lcHuHPHH+DUH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.+THHuϐH5קHT$H|$N|$HtHtsbHuHWGH*ff.UH@fnFdH%(HD$81HoHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$~1HT$8dH+%(uTH@]f.+SHHuϐHt$ H|$a-tt$ HazaHu.T)UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$}1HT$8dH+%(uVH@]f.;RHHuϐHt$ H|$q,tt$ HQ`Hu@蜈(DUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$|1HT$8dH+%(uUH@]f.KQHHuϐHt$ H|$+tt$ H_HuHcMR(fDUH@fnFdH%(HD$81H8Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|${1HT$8dH+%(uUH@]f.[PHHuϐHt$ H|$ADtt$ H^HuHc]Q'fDATUHHfnFdH%(HD$81H3Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$z1HT$8dH+%(ulHH]A\fDkOHHuѐLd$Ht$L)tHt$ L=CtT$ t$Hj]HuHBH &ff.fATUHHfnFdH%(HD$81HWHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$y1HT$8dH+%(ulHH]A\fD[NHHuѐLd$Ht$L>BtHt$ L-BtT$ t$Hi\HuHxAH$ff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$x1HT$8dH+%(ulHH]A\fDKMHHuѐLd$Ht$L~'tHt$ Lm'tT$ t$HY[HuHh@H#ff.fUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$w1HT$8dH+%(ulHH[];LHHuАHl$Ht$Hn&tHt$ H]&tT$HChl$ uZHu<+Hc%M"ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$v1HT$8dH+%(uvHH]A\fD+KHHuѐLd$Ht$L^%tHt$ LM%tT$ t$HHaYHuHH=;=az!ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$u1HT$8dH+%(HH]A\fJHHuѐLd$Ht$LN$tHt$ L=$t1H5:LlHHtT$ t$HT9XHp@Gd ff.fAVAUATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$ILo(1L"H|$ HcIIHl$ Mt(D$+D$L5tHl$ E1HtHD$(H9tH/HD$XdH+%(HhL]A\A]A^HHH\H1E1H|$ Hc5IHl$ fDDHLmHLVHTL%;Hl$ I$FHfATUHXfnFdH%(HD$H1H~Ht$ HD$(HGfnȉD$8fbfD$0~HD$Ho(Ht}D$0+D$4twH|$ r1H|$HtH/t!HT$HdH+%(HX]A\DHD$HD$3GHHq1Ld$ Ht$L^!tHt$LM!rHT$H57LiHHRT$t$H5@UH4H :H&fAVAUATUHhfnFdH%(HD$X1Hi/Ht$HD$HGfnȉD$(fbfD$ Ll$Lw(L,H|$0HcILHl$0Mt(D$ +D$$L?qHl$0E1HtHD$8H9tH,HD$XdH+%(HhL]A\A]A^DEHHUH|$E1H|$0HcHl$0느Ht$ Lc9lDHL Vt$ HLSH9L%8Hl$0I$+ HATUSH@fnFdH%(HD$81H6Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$o1HT$8dH+%(H@[]A\KDHHuːHt$H|$tD$$Ld$uXHELH@H;>Fu\H=×9tLH=`9u)dRHeHcEZfDLL(@HЉfAVAUATUHxfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Ll$Lw(L,H|$0HcICHl$0Mt(D$ +D$$L?nHl$0E1HtHD$8H9tH)HD$hdH+%(HxL]A\A]A^DBHHUH|$E1H|$0Hc8CHl$0느Ht$ LlDHLVt$ HLvwPH9L%5Hl$0I$+ HAVAUATUHHfnFdH%(HD$81H>Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$l1HT$8dH+%(HH]A\A]A^f.KAHHuŐLd$Ht$L~tLl$LLjtLt$ LLVtt$LLHkOHtFaOHt$WOHRH74HDfDT$ L#DT$L#AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$Nk1HT$8dH+%(H@]A\A]fD?HHufLd$Ht$LtHt$LtLl$ LLtT$t$HL!HMHt5MHYHt:HH5AH :fDT$ L"DH2H AUATUHpfnFdH%(HD$h1HHt$0HD$8HGfnȉD$HfbfD$@uPHo(Ht!D$@+D$DtRH|$0i1HT$hdH+%(Hp]A\A]fDS>HHufLd$0Ht$,L~tLl$PLLUtf(D$Pt$,LH\$`fD$)$\$vYf($f.D$PzIuGT$f.T$Xz9u7\$f.\$`z)u'2LH+H1Hf LHuϹLL!jf.AUATUH@fnFdH%(HD$81H֯ Ht$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$.h1HT$8dH+%(H@]A\A]fDH5e]1HT$xdH+%(=H[]A\A]A^fDH 0Ht$ HL$(T$8fD$0HIx(HtD$49D$0H|$ 11O_1H Ht$ HL$(T$8fD$0HHl$ Mp(1HH|$@4AHci4Ll$@Eu_MD$0+D$4H^H|$@1HT$HH9HHD$;HD$IcI\fD諧HAHHHH5ҚHDHt$H3 hHt$H SDLH=E~WIEH9FAD$8D1HDfATHH9uDAt ADËT$t$LLqEE~3Ic1DHH9tADf.zt@H@IH|$@1MHZ%HuL1IHH|$ H|$@4Hck2H|$@1I-L1#L1IHP1DH$HD1ADHH9uDLHHAff.fAW1IAVAUATUSHfnFdH%(HD$xHG~H%fn)fbtNH5Y1HT$xdH+%(zHĈ[]A\A]A^A_fH Ht$ HL$(T$8fD$0H\M`(MtD$0+D$4H|$ ^[xfH cHt$ HL$(T$8fD$0HtIx(H>D$49D$0yH|$ 11[1@H Ht$ H\$(T$8fD$0HHl$ Mp(1HlH|$@4AHc0Ll$@Eu_MD$0+D$4HsZH|$@1HT$HH9HvHD$HD$bIcI\fDL.IH6L.IH(H|$ H|$@4HcK/H|$@1I]L1SL`.IHxSHH(HtD$9D$t;H11R1HT$(dH+%(u9H8'HHuҐ'5HuHjHff.@USH8fnFdH%(HD$(1H# H4$HD$HGfnȉD$fbfD$uL8uRLH~LA\ATIUHEHt HH5+LH裸tHmtH]A\HH]A\UH@fnFdH%(HD$81H9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$L1HT$8dH+%(uzH@]f. HHuϐH5HT$H|$J|$HtD$$u(HEH.HuHH@H8!UH=џHu]ÐHH=TtH]D@MUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$J1HT$8dH+%(uhH@]@HT$H|$H5f|$HtHt+HH58HPt-HuH1y-Huff.fUH@dH%(HD$81H{CHt$HD$HFHD$$D$ t0H|$I1HT$8dH+%(uFH@]@H|$HT$H5sC:|$HtH,HuH/ff.@ATUHHdH%(HD$81HBHt$HD$HFHD$$D$ D$ wcLd$HT$ H5BL|$ Ht#D$ 9D$(|Vt$ H+H,HtU1HT$8dH+%(uMHH]A\H|$Hf.Ht$ LCuDH)fUSHHdH%(HD$81HTHt$HD$HFHD$$D$ HD$t6H|$H1HT$8dH+%(HH[]DHt$H|$/tHl$H=6HtHH=u*HuHc@HH={AtHH=tH芦SH0fnFdH%(HD$(1H) H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11F1HT$(dH+%(u7H0[fD{HHuӐ軇)HuHcPSH0fnFdH%(HD$(1H8H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.F1HT$(dH+%(u6H0[fDHHuӐK$)HuSH0fnFdH%(HD$(1HNVH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11nE1HT$(dH+%(uZH0[fDHHuӐtb(HuHcHHH;tЉff.fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$rD1HT$8dH+%(uVH@]f.HHuϐHt$ H|$ tt$ HL'HuH0 HDUH@fnFdH%(HD$81H4Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$C1HT$8dH+%(uTH@]f. HHuϐHt$ H|$Att$ HZ&HuATUHHfnFdH%(HD$81H֚Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$B1HT$8dH+%(ukHH]A\fDHHuѐLd$Ht$LNtHt$ L=tT$ t$H٣R%HuHcff.AVAUATUSHPfnFdH%(HD$H1HәHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|${A1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LLtD$0T$8LH\$@D$fH~fI~D$f.D$0zGuEfHnf.d$8z8u6fInf.l$@z)u'#H>HH0f#HuϹL1L-ff.fAVAUATUSHPfnFdH%(HD$H1HJHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$?1HT$HdH+%(HP[]A\A]A^kHHuƐLd$0Ll$LLtD$0T$8LH\$@D$fH~fI~D$f.D$0zGuEfHnf.d$8z8u6fInf.l$@z)u'b"H>HBH0f;"HuϹL1LTff.fAVAUATUHHfnFdH%(HD$81H–Ht$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$\>1HT$8dH+%(HH]A\A]A^f.HHuŐLd$Ht$LtLl$LLtLt$ LLtt$LLH HtF Ht$ HRHHDfDT$ L7DT$LATH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11HH]A\A]A^DL ПHt$LL$L$ T$$T$(HHo(HtD$ +D$$ H|$\/1DH pHt$HL$T$(fD$ HLHo(HHD$ +D$$t"H|$.1"Ld$Ht$LHt$ LHT$H5 L=|$HD$$T$ t$HEHpfDHHHf.Lt$ Ll$LH5D L|$ IOLH5 (L|$ H/L$$u^HELHHqfHHf.kHH%f.LH՗H .ff.SH0fnFdH%(HD$(1HkH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11,1HT$(dH+%(uMH0[fDHHuӐu$HhHufDJf.AV1IAUATUHxfnFdH%(HD$hHG~H%fnfb)t7~H52*1HT$hdH+%(,Hx]A\A]A^H Ht$ HL$(T$8fD$0H|Ix(HtD$49D$0-H|$ 11+1H ]Ht$ HL$(T$8fD$0HLLl$ Mp(L6H|$@HcIVHl$@Mt$D$0+D$4tOLM+Hl$@1H HT$HH9HHD$HD$Ht$LtDHLAtD$4t$IHL` HsHHl$@HeH HHHIfLIHp1%DLIHH|$ ݒH|$@HcHl$@1@軰ofDHLՁ"H~ff.@ATH0fnFdH%(HD$(1HܙH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11])E1HD$(dH+%(H0LA\@HHufu\H8I; HuL.IHtHstL1HHP@Lf IafDw+UH=Hu]ÐHH=ntHH=@"tHH=^tH]Nf.@)UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$'1HT$8dH+%(uhH@]@HT$H|$H5f|$HtHt+HH5xHPt HuH腩1y Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$&1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=u HuHcN@HH=ltH]@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$%1HT$8dH+%(H@[]A\+HHuːHt$H|$豧tD$$Ld$uXHELH@H;^ulH=<tLH=*mu)DHeHcZfDLLH=1tL븐HЉrfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N$1HT$(dH+%(uZH0[fDHHuӐtBHuHcHHH;tЉff.fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]#E1HD$(dH+%(H0LA\@HHufHHRxH;$IMtoI$H5LPtZHuLIHoHmbLT1HHP@L8fE1H"DIjfATL%H ,HLH5~LxuqLHLA\ATIUH+Ht HH5LHtHmtH]A\HH]A\ѧSH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11N!1HT$(dH+%(uMH0[fDHHuӐu$H<HuHcDf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11o 1HT$(dH+%(uLH8HHuҐu$H^HuHBH@cff.H8fnFdH%(HD$(1HҞH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$H~HuHbH@裿ff.SH0fnFdH%(HD$(1HׄH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD;HHuӐu$H(HuPfDs&f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD[HHuӐu$H HupfD#f.SH0fnFdH%(HD$(1HiH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fD{HHuӐu$HHufD賫:f.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fDHHuӐu$HHHuH@CHYfUH0fnFdH%(HD$(1HҚH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(uNH0]fDHHuӐu$HHHuH@cHyffD7UH=Hu]ÐHH=~tHH=tH]qy'jUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5J|$HtHt+HH5HPtHuH赛1Huff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uFH@]@H|$HT$H5j|$HtHHuH_ff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5L|$ Ht#D$ 9D$(|Vt$ H*HBHtU1HT$8dH+%(uMHH]A\H|$f.Ht$ LsuDHYfHtSHo[1ff.fATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$H IHtAo$HH踎I>ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5 HT$H|$J|$HtH訐HuHHHHtD$9D$t;H111HT$(dH+%(u9H8HHuҐ[HuHHff.@SH0fnFdH%(HD$(1HxH4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H11N1HT$(dH+%(u7H0[fDHHuӐ軐DHu谹UH@fnFdH%(HD$81H*Ht$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$ 1HT$8dH+%(uVH@]f. HHuϐHt$ H|$tt$ H\HuH@HŸDUH0fnFdH%(HD$(1HdH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(u8H0]fD+HHuӐ軾HHuHff.@SH0fnFdH%(HD$(1HXH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(u7H0[fD[HHuӐHuHcw0UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11 1HT$(dH+%(u8H0]fDHHuӐHHuH&off.@UH0fnFdH%(HD$(1HtH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11> 1HT$(dH+%(u8H0]fDHHuӐHH3HuH&蟵ff.@UH0fnFdH%(HD$(1H2tH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11n 1HT$(dH+%(u8H0]fDHHuӐ {HcHuHVϴff.@UH0fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u^H0]fD+HHuӐt$HHuH@HHXH;tHٳfUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u^H0]fD;HHuӐt$HHuH@HH0H;tHfSH0fnFdH%(HD$(1HqH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDKHHuӐtHuHcdfHHxH;tЉfUH@fnFdH%(HD$81HpHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.[HHuϐHt$ H|$Att$ HZHuHHDUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.kHHuϐHt$ H|$Qtt$ HAHuHH%DUH@fnFdH%(HD$81HnHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.{HHuϐH5qnHT$H|$:|$HtH`HuHH,ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.{HHuϐH5qmHT$H|$:|$HtHxHuHH,ff.UH@fnFdH%(HD$81HnHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.{HHuϐHt$ H|$att$ HQHHuH5DUH@fnFdH%(HD$81H(lHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.HHuϐHt$ H|$qtt$ HHHuHEDUH@fnFdH%(HD$81HVkHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ HaUHHuH UDAVAUATUHHfnFdH%(HD$81HujHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$thL|$IpL$ T$LHq0HOHHAHH"uDAVAUATUHHfnFdH%(HD$81HgHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$tH(HtD$9D$t;H111HT$(dH+%(uLH8;HHuҐu$HHuHH@#!ff.U1IHAWAVAUATSH(fnFdH%(HEHG~H%fn)fbƒt< H5d1HUdH+%(\ He[A\A]A^A_]H cH0H8Hfօ@HDH0Mx(1HHLH}4AHcLeE,MB@+D.HH}1HUH9(HH舞H@H bH0H8Hfօ@HH0Mx(1HH;KH}4AHcLeEuhM@+DrHHIc1 HH9t$Af.ztHHHqLH}f@L@IHH0#DH}4HcҰH}1IL1LIHH0CH}4HczH}1IL1H}HL1$sbHHHrATLLLHHyHD1@AHH9uH!HxHDLMr-H4HL1$rAPLLLLHAT;HAHHqHD1AHH9uHHDL~qHweHH-H[-DAVAUATUSHPfnFdH%(HD$H1HXoHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$[1HT$HdH+%( HP[]A\A]A^۬HHuƐLd$0Ll$LLatT$8\$@D$$D$0fH~fI~ޅufHED$HLD$Hf.D$0z_u]fHnf.d$8zPuNfInf.l$@zAu?ºH.H#@HLD$w6D$H@胺HuL1LoDAWAVAUATUH@fnFdH%(HD$81HnHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$1HT$8dH+%(H@]A\A]A^A_fLl$Ht$LtL|$L5VLLL|$ItLLLȥ|$HtD$$Ht$uQLELHA;H\HHNf蛪HH4f.LH%nff.ATUHHfnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$01HT$8dH+%(HH]A\f軩HHuѐLd$Ht$LntHT$H5֝Lf|$HtD$$Ht$u/HEHݷHtHHf@H`1AV1IAUATUHfnFdH%(HD$xHG~H%fn)fbtAH5jE1HD$xdH+%(HĈL]A\A]A^H jHt$ HL$(T$8fD$0H Ih(Ht%D$0+D$4rH|$ E1}fDH jHt$ HL$(T$8fD$0HHl$ M`(HLH#tHmtH]A\HH]A\DUH=H,au]ÐHH= atH]@ATH=##UHsHIHHHEgHݠHH-H5-HH%HHeH=HHMHUoHH5HmmHEH轖HH}3Hu H]-H%H})H5,H H.HzH1HHZHݏH_HmzH腘H{H5%HHMHM&HH-H int C++: static vtkTypeBool IsTypeOf(const char *type) Standard type and print methods. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard type and print methods. V.SafeDownCast(vtkObjectBase) -> vtkAbstractCellLinks C++: static vtkAbstractCellLinks *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkAbstractCellLinks C++: vtkAbstractCellLinks *NewInstance() Standard type and print methods. V.BuildLinks(vtkDataSet) C++: virtual void BuildLinks(vtkDataSet *data) Build the link list array. All subclasses must implement this method. V.GetIdType(int, int, vtkCellArray) -> int C++: static int GetIdType(vtkIdType maxPtId, vtkIdType maxCellId, vtkCellArray *ca) Based on the input (i.e., number of points, number of cells, and length of connectivity array) this helper method returns the integral type to use when instantiating cell link-related classes in order to properly represent the data. The return value is one of the types (VTK_ID_TYPE,VTK_INT,VTK_SHORT) defined in the file vtkType.h. Subclasses may choose to instantiate themselves with different integral types for performance and/or memory reasons. vtkAbstractCellLocatorGetNumberOfCellsPerNodeGetCacheCellBoundsGetRetainCellListsGetLazyEvaluationGetUseExistingSearchStructureSetUseExistingSearchStructureSetRetainCellListsSetCacheCellBoundsSetLazyEvaluationLazyEvaluationOnRetainCellListsOnLazyEvaluationOffUseExistingSearchStructureOnRetainCellListsOffCacheCellBoundsOnCacheCellBoundsOffUseExistingSearchStructureOffSetNumberOfCellsPerNodeInsideCellBoundsFindCellFindCellsAlongLineFindCellsWithinBoundsFindClosestPointWithinRadiusFindClosestPointIntersectWithLinevtkLocatorGetNumberOfCellsPerNodeMinValueGetNumberOfCellsPerNodeMaxValuevtkAbstractCellLocator - an abstract base class for locators which find cells Superclass: vtkLocator vtkAbstractCellLocator is a spatial search object to quickly locate cells in 3D. vtkAbstractCellLocator supplies a basic interface which concrete subclasses should implement. @warning When deriving a class from vtkAbstractCellLocator, one should include the 'hidden' member functions by the following construct in the derived class using vtkAbstractCellLocator::IntersectWithLine; using vtkAbstractCellLocator::FindClosestPoint; using vtkAbstractCellLocator::FindClosestPointWithinRadius; @sa vtkLocator vtkPointLocator vtkOBBTree vtkCellLocator vtkCommonDataModelPython.vtkAbstractCellLocatorV.SafeDownCast(vtkObjectBase) -> vtkAbstractCellLocator C++: static vtkAbstractCellLocator *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkAbstractCellLocator C++: vtkAbstractCellLocator *NewInstance() Standard type and print methods. V.SetNumberOfCellsPerNode(int) C++: virtual void SetNumberOfCellsPerNode(int _arg) Specify the preferred/maximum number of cells in each node/bucket. Default 32. Locators generally operate by subdividing space into smaller regions until the number of cells in each region (or node) reaches the desired level. V.GetNumberOfCellsPerNodeMinValue() -> int C++: virtual int GetNumberOfCellsPerNodeMinValue() Specify the preferred/maximum number of cells in each node/bucket. Default 32. Locators generally operate by subdividing space into smaller regions until the number of cells in each region (or node) reaches the desired level. V.GetNumberOfCellsPerNodeMaxValue() -> int C++: virtual int GetNumberOfCellsPerNodeMaxValue() Specify the preferred/maximum number of cells in each node/bucket. Default 32. Locators generally operate by subdividing space into smaller regions until the number of cells in each region (or node) reaches the desired level. V.GetNumberOfCellsPerNode() -> int C++: virtual int GetNumberOfCellsPerNode() Specify the preferred/maximum number of cells in each node/bucket. Default 32. Locators generally operate by subdividing space into smaller regions until the number of cells in each region (or node) reaches the desired level. V.SetCacheCellBounds(int) C++: virtual void SetCacheCellBounds(int _arg) Boolean controls whether the bounds of each cell are computed only once and then saved. Should be 10 to 20% faster if repeatedly calling any of the Intersect/Find routines and the extra memory won't cause disk caching (24 extra bytes per cell are required to save the bounds). V.GetCacheCellBounds() -> int C++: virtual int GetCacheCellBounds() Boolean controls whether the bounds of each cell are computed only once and then saved. Should be 10 to 20% faster if repeatedly calling any of the Intersect/Find routines and the extra memory won't cause disk caching (24 extra bytes per cell are required to save the bounds). V.CacheCellBoundsOn() C++: virtual void CacheCellBoundsOn() Boolean controls whether the bounds of each cell are computed only once and then saved. Should be 10 to 20% faster if repeatedly calling any of the Intersect/Find routines and the extra memory won't cause disk caching (24 extra bytes per cell are required to save the bounds). V.CacheCellBoundsOff() C++: virtual void CacheCellBoundsOff() Boolean controls whether the bounds of each cell are computed only once and then saved. Should be 10 to 20% faster if repeatedly calling any of the Intersect/Find routines and the extra memory won't cause disk caching (24 extra bytes per cell are required to save the bounds). V.SetRetainCellLists(int) C++: virtual void SetRetainCellLists(int _arg) Boolean controls whether to maintain list of cells in each node. not applicable to all implementations, but if the locator is being used as a geometry simplification technique, there is no need to keep them. V.GetRetainCellLists() -> int C++: virtual int GetRetainCellLists() Boolean controls whether to maintain list of cells in each node. not applicable to all implementations, but if the locator is being used as a geometry simplification technique, there is no need to keep them. V.RetainCellListsOn() C++: virtual void RetainCellListsOn() Boolean controls whether to maintain list of cells in each node. not applicable to all implementations, but if the locator is being used as a geometry simplification technique, there is no need to keep them. V.RetainCellListsOff() C++: virtual void RetainCellListsOff() Boolean controls whether to maintain list of cells in each node. not applicable to all implementations, but if the locator is being used as a geometry simplification technique, there is no need to keep them. V.SetLazyEvaluation(int) C++: virtual void SetLazyEvaluation(int _arg) Most Locators build their search structures during BuildLocator but some may delay construction until it is actually needed. If LazyEvaluation is supported, this turns on/off the feature. if not supported, it is ignored. V.GetLazyEvaluation() -> int C++: virtual int GetLazyEvaluation() Most Locators build their search structures during BuildLocator but some may delay construction until it is actually needed. If LazyEvaluation is supported, this turns on/off the feature. if not supported, it is ignored. V.LazyEvaluationOn() C++: virtual void LazyEvaluationOn() Most Locators build their search structures during BuildLocator but some may delay construction until it is actually needed. If LazyEvaluation is supported, this turns on/off the feature. if not supported, it is ignored. V.LazyEvaluationOff() C++: virtual void LazyEvaluationOff() Most Locators build their search structures during BuildLocator but some may delay construction until it is actually needed. If LazyEvaluation is supported, this turns on/off the feature. if not supported, it is ignored. V.SetUseExistingSearchStructure(int) C++: virtual void SetUseExistingSearchStructure(int _arg) Some locators support querying a new dataset without rebuilding the search structure (typically this may occur when a dataset changes due to a time update, but is actually the same topology) Turning on this flag enables some locators to skip the rebuilding phase V.GetUseExistingSearchStructure() -> int C++: virtual int GetUseExistingSearchStructure() Some locators support querying a new dataset without rebuilding the search structure (typically this may occur when a dataset changes due to a time update, but is actually the same topology) Turning on this flag enables some locators to skip the rebuilding phase V.UseExistingSearchStructureOn() C++: virtual void UseExistingSearchStructureOn() Some locators support querying a new dataset without rebuilding the search structure (typically this may occur when a dataset changes due to a time update, but is actually the same topology) Turning on this flag enables some locators to skip the rebuilding phase V.UseExistingSearchStructureOff() C++: virtual void UseExistingSearchStructureOff() Some locators support querying a new dataset without rebuilding the search structure (typically this may occur when a dataset changes due to a time update, but is actually the same topology) Turning on this flag enables some locators to skip the rebuilding phase V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int, int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId, vtkIdType &cellId) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int, int, vtkGenericCell) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId, vtkIdType &cellId, vtkGenericCell *cell) V.IntersectWithLine((float, float, float), (float, float, float), vtkPoints, vtkIdList) -> int C++: virtual int IntersectWithLine(const double p1[3], const double p2[3], vtkPoints *points, vtkIdList *cellIds) Return intersection point (if any) of finite line with cells contained in cell locator. See vtkCell.h parameters documentation. V.FindClosestPoint([float, float, float], [float, float, float], int, int, float) C++: virtual void FindClosestPoint(double x[3], double closestPoint[3], vtkIdType &cellId, int &subId, double &dist2) V.FindClosestPoint([float, float, float], [float, float, float], vtkGenericCell, int, int, float) C++: virtual void FindClosestPoint(double x[3], double closestPoint[3], vtkGenericCell *cell, vtkIdType &cellId, int &subId, double &dist2) Return the closest point and the cell which is closest to the point x. The closest point is somewhere on a cell, it need not be one of the vertices of the cell. V.FindClosestPointWithinRadius([float, float, float], float, [float, float, float], int, int, float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double x[3], double radius, double closestPoint[3], vtkIdType &cellId, int &subId, double &dist2) V.FindClosestPointWithinRadius([float, float, float], float, [float, float, float], vtkGenericCell, int, int, float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double x[3], double radius, double closestPoint[3], vtkGenericCell *cell, vtkIdType &cellId, int &subId, double &dist2) V.FindClosestPointWithinRadius([float, float, float], float, [float, float, float], vtkGenericCell, int, int, float, int) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double x[3], double radius, double closestPoint[3], vtkGenericCell *cell, vtkIdType &cellId, int &subId, double &dist2, int &inside) Return the closest point within a specified radius and the cell which is closest to the point x. The closest point is somewhere on a cell, it need not be one of the vertices of the cell. This method returns 1 if a point is found within the specified radius. If there are no cells within the specified radius, the method returns 0 and the values of closestPoint, cellId, subId, and dist2 are undefined. V.FindCellsWithinBounds([float, ...], vtkIdList) C++: virtual void FindCellsWithinBounds(double *bbox, vtkIdList *cells) Return a list of unique cell ids inside of a given bounding box. The user must provide the vtkIdList to populate. This method returns data only after the locator has been built. V.FindCellsAlongLine([float, float, float], [float, float, float], float, vtkIdList) C++: virtual void FindCellsAlongLine(double p1[3], double p2[3], double tolerance, vtkIdList *cells) Given a finite line defined by the two points (p1,p2), return the list of unique cell ids in the buckets containing the line. It is possible that an empty cell list is returned. The user must provide the vtkIdList to populate. This method returns data only after the locator has been built. V.FindCell([float, float, float]) -> int C++: virtual vtkIdType FindCell(double x[3]) V.FindCell([float, float, float], float, vtkGenericCell, [float, float, float], [float, ...]) -> int C++: virtual vtkIdType FindCell(double x[3], double tol2, vtkGenericCell *GenCell, double pcoords[3], double *weights) Returns the Id of the cell containing the point, returns -1 if no cell found. This interface uses a tolerance of zero V.InsideCellBounds([float, float, float], int) -> bool C++: virtual bool InsideCellBounds(double x[3], vtkIdType cell_ID) Quickly test if a point is inside the bounds of a particular cell. Some locators cache cell bounds and this function can make use of fast access to the data. vtkAbstractPointLocatorGetNumberOfBucketsFindPointsWithinRadiusFindClosestNPointsGetBoundsp_voidvtkAbstractPointLocator - abstract class to quickly locate points in 3-space Superclass: vtkLocator vtkAbstractPointLocator is an abstract spatial search object to quickly locate points in 3D. vtkAbstractPointLocator works by dividing a specified region of space into "rectangular" buckets, and then keeping a list of points that lie in each bucket. Typical operation involves giving a position in 3D and finding the closest point. The points are provided from the specified dataset input. @sa vtkPointLocator vtkStaticPointLocator vtkMergePoints vtkCommonDataModelPython.vtkAbstractPointLocatorV.SafeDownCast(vtkObjectBase) -> vtkAbstractPointLocator C++: static vtkAbstractPointLocator *SafeDownCast( vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkAbstractPointLocator C++: vtkAbstractPointLocator *NewInstance() Standard type and print methods. V.FindClosestPoint((float, float, float)) -> int C++: virtual vtkIdType FindClosestPoint(const double x[3]) V.FindClosestPoint(float, float, float) -> int C++: vtkIdType FindClosestPoint(double x, double y, double z) Given a position x, return the id of the point closest to it. Alternative method requires separate x-y-z values. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestPointWithinRadius(float, (float, float, float), float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double &dist2) Given a position x and a radius r, return the id of the point closest to the point in that radius. dist2 returns the squared distance to the point. V.FindClosestNPoints(int, (float, float, float), vtkIdList) C++: virtual void FindClosestNPoints(int N, const double x[3], vtkIdList *result) V.FindClosestNPoints(int, float, float, float, vtkIdList) C++: void FindClosestNPoints(int N, double x, double y, double z, vtkIdList *result) Find the closest N points to a position. This returns the closest N points to a position. A faster method could be created that returned N close points to a position, but necessarily the exact N closest. The returned points are sorted from closest to farthest. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindPointsWithinRadius(float, (float, float, float), vtkIdList) C++: virtual void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result) V.FindPointsWithinRadius(float, float, float, float, vtkIdList) C++: void FindPointsWithinRadius(double R, double x, double y, double z, vtkIdList *result) Find all points within a specified radius R of position x. The result is not sorted in any specific manner. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.GetBounds() -> (float, ...) C++: virtual double *GetBounds() V.GetBounds([float, ...]) C++: virtual void GetBounds(double *) Provide an accessor to the bounds. V.GetNumberOfBuckets() -> int C++: virtual vtkIdType GetNumberOfBuckets() Return the total number of buckets in the locator. This has meaning only after the locator is constructed. vtkAdjacentVertexIteratorHasNextGetVertexGetGraphInitializevtkGraphvtkAdjacentVertexIterator - Iterates through adjacent vertices in a graph. Superclass: vtkObject vtkAdjacentVertexIterator iterates through all vertices adjacent to a vertex, i.e. the vertices which may be reached by traversing an out edge of the source vertex. Use graph->GetAdjacentVertices(v, it) to initialize the iterator. vtkCommonDataModelPython.vtkAdjacentVertexIteratorV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkAdjacentVertexIterator C++: static vtkAdjacentVertexIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkAdjacentVertexIterator C++: vtkAdjacentVertexIterator *NewInstance() V.Initialize(vtkGraph, int) C++: void Initialize(vtkGraph *g, vtkIdType v) Initialize the iterator with a graph and vertex. V.GetGraph() -> vtkGraph C++: virtual vtkGraph *GetGraph() Get the graph and vertex associated with this iterator. V.GetVertex() -> int C++: virtual vtkIdType GetVertex() Get the graph and vertex associated with this iterator. V.Next() -> int C++: vtkIdType Next() Returns the next edge in the graph. V.HasNext() -> bool C++: bool HasNext() Whether this iterator has more edges. ComputeStructuredCoordinatesHasPointGetBoxOriginGetCellLinearIndexoperation not availableGetBytesizeComputeDimensionInvalidateGetLoCornerGetHiCornerCoarsenRefineGrowShrinkRemoveGhostsContainsIsInvalidEmptyDimensionDoesIntersectSetDimensionsGetValidHiCornerGetGhostVectorDeserializeShiftGetNumberOfCellsGetNumberOfNodesGetDimensionsSerialize@W vtkAMRBox@PP|i *i *i@P|i *ithis function takes no keyword argumentsDoesBoxIntersectAlongDimensionvtkAMRBox - Encloses a rectangular region of voxel like cells. vtkAMRBox stores information for an AMR block @sa vtkAMRInformation vtkAMRBox() vtkAMRBox(const vtkAMRBox &other) vtkAMRBox(int ilo, int jlo, int klo, int ihi, int jhi, int khi) vtkAMRBox(const double *origin, const int *dimensions, const double *spacing, const double *globalOrigin, int gridDescription=VTK_XYZ_GRID) vtkAMRBox(const int lo[3], const int hi[3]) vtkAMRBox(const int dims[6]) vtkCommonDataModelPython.vtkAMRBoxV.Invalidate() C++: void Invalidate() Set the box to be invalid; V.EmptyDimension(int) -> bool C++: bool EmptyDimension(int i) Whether dimension i is empty, e.g. if the data set is type VTK_XY_PLANE V.SetDimensions(int, int, int, int, int, int, int) C++: void SetDimensions(int ilo, int jlo, int klo, int ihi, int jhi, int khi, int desc=VTK_XYZ_GRID) V.SetDimensions((int, int, int), (int, int, int), int) C++: void SetDimensions(const int lo[3], const int hi[3], int desc=VTK_XYZ_GRID) V.SetDimensions((int, int, int, int, int, int), int) C++: void SetDimensions(const int dims[6], int desc=VTK_XYZ_GRID) Set the dimensions of the box. ilo,jlo,klo,ihi,jhi,khi V.GetDimensions([int, int, int], [int, int, int]) C++: void GetDimensions(int lo[3], int hi[3]) V.GetDimensions([int, int, int, int, int, int]) C++: void GetDimensions(int dims[6]) Get the dimensions of this box. (ilo,jlo,jhi),(ihi,jhi,khi) V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() V.GetNumberOfCells([int, int, int]) C++: void GetNumberOfCells(int num[3]) Gets the number of cells enclosed by the box. V.GetNumberOfNodes([int, int, int]) C++: void GetNumberOfNodes(int ext[3]) V.GetNumberOfNodes() -> int C++: vtkIdType GetNumberOfNodes() Gets the number of nodes required to construct a physical representation of the box. V.ComputeDimension() -> int C++: int ComputeDimension() Determines the dimension of the AMR box given the box indices. Note, the AMR box can be on an arbitrary axis-aligned plane, i.e., XZ or YZ. V.GetLoCorner() -> (int, ...) C++: const int *GetLoCorner() Get the low corner index. V.GetHiCorner() -> (int, ...) C++: const int *GetHiCorner() V.GetValidHiCorner([int, int, int]) C++: void GetValidHiCorner(int hi[3]) Return a high corner. If dimension j is empty, then hi[j] is set from lo[j]. This is convenient For algorithm that must iterate over all cells V.Empty() -> bool C++: bool Empty() V.IsInvalid() -> bool C++: bool IsInvalid() Check to see if the AMR box instance is invalid. V.Serialize([int, ...], int) C++: void Serialize(unsigned char *&buffer, vtkIdType &bytesize) V.Serialize([int, ...]) C++: void Serialize(int *buffer) Serializes this object instance into a byte-stream. buffer -- user-supplied pointer where the serialized object is stored. bytesize -- number of bytes, i.e., the size of the buffer. NOTE: buffer is allocated internally by this method. Pre-conditions: buffer == nullptr Post-conditions: buffer != nullptr bytesize != 0 V.Deserialize([int, ...], int) C++: void Deserialize(unsigned char *buffer, const vtkIdType &bytesize) Deserializes this object instance from the given byte-stream. Pre-conditions: buffer != nullptr bytesize != 0 V.DoesBoxIntersectAlongDimension(vtkAMRBox, int) -> bool C++: bool DoesBoxIntersectAlongDimension(const vtkAMRBox &other, const int q) Checks if this instance of vtkAMRBox intersects with the box passed through the argument list along the given dimension q. True is returned iff the box intersects successfully. Otherwise, there is no intersection along the given dimension and false is returned. V.DoesIntersect(vtkAMRBox) -> bool C++: bool DoesIntersect(const vtkAMRBox &other) V.Coarsen(int) C++: void Coarsen(int r) Coarsen the box. V.Refine(int) C++: void Refine(int r) Refine the box. V.Grow(int) C++: void Grow(int byN) Grows the box in all directions. V.Shrink(int) C++: void Shrink(int byN) Grows the box in all directions. V.Shift(int, int, int) C++: void Shift(int i, int j, int k) V.Shift((int, int, int)) C++: void Shift(const int I[3]) Shifts the box in index space V.Intersect(vtkAMRBox) -> bool C++: bool Intersect(const vtkAMRBox &other) Intersect this box with another box in place. Returns true if the boxes do intersect. Note that the box is modified to be the intersection or is made invalid. V.Contains(int, int, int) -> bool C++: bool Contains(int i, int j, int k) V.Contains((int, int, int)) -> bool C++: bool Contains(const int I[3]) V.Contains(vtkAMRBox) -> bool C++: bool Contains(const vtkAMRBox &) Test to see if a given cell index is inside this box. V.GetGhostVector(int, [int, int, int, int, int, int]) C++: void GetGhostVector(int r, int nghost[6]) Given an AMR box and the refinement ratio, r, this method computes the number of ghost layers in each of the 6 directions, i.e., [imin,imax,jmin,jmax,kmin,kmax] V.RemoveGhosts(int) C++: void RemoveGhosts(int r) Given an AMR box and the refinement ratio, r, this shrinks the AMRBox V.GetBytesize() -> int C++: static vtkIdType GetBytesize() Returns the number of bytes allocated by this instance. In addition, this number of bytes corresponds to the buffer size required to serialize any vtkAMRBox instance. V.GetCellLinearIndex(vtkAMRBox, int, int, int, [int, int, int]) -> int C++: static int GetCellLinearIndex(const vtkAMRBox &box, const int i, const int j, const int k, int imageDimension[3]) Returns the linear index of the given cell structured coordinates V.GetBounds(vtkAMRBox, (float, float, float), (float, float, float), [float, float, float, float, float, float]) C++: static void GetBounds(const vtkAMRBox &box, const double origin[3], const double spacing[3], double bounds[6]) Get the bounds of this box. V.GetBoxOrigin(vtkAMRBox, (float, float, float), (float, float, float), [float, float, float]) C++: static void GetBoxOrigin(const vtkAMRBox &box, const double X0[3], const double spacing[3], double x0[3]) Get the world space origin of this box. The origin is the location of the lower corner cell's lower corner node, V.HasPoint(vtkAMRBox, (float, float, float), (float, float, float) , float, float, float) -> bool C++: static bool HasPoint(const vtkAMRBox &box, const double origin[3], const double spacing[3], double x, double y, double z) Checks if the point is inside this AMRBox instance. x,y,z the world point V.ComputeStructuredCoordinates(vtkAMRBox, (float, float, float), ( float, float, float), (float, float, float), [int, int, int], [float, float, float]) -> int C++: static int ComputeStructuredCoordinates(const vtkAMRBox &box, const double dataOrigin[3], const double h[3], const double x[3], int ijk[3], double pcoords[3]) Compute structured coordinates  HasPartiallyOverlappingGhostCellsvtkAMRUtilities - A concrete instance of vtkObject that employs a singleton design pattern and implements functionality for AMR specific operations. Superclass: vtkObject @sa vtkOverlappingAMR, vtkAMRBox vtkCommonDataModelPython.vtkAMRUtilitiesV.SafeDownCast(vtkObjectBase) -> vtkAMRUtilities C++: static vtkAMRUtilities *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAMRUtilities C++: vtkAMRUtilities *NewInstance() V.StripGhostLayers(vtkOverlappingAMR, vtkOverlappingAMR) C++: static void StripGhostLayers( vtkOverlappingAMR *ghostedAMRData, vtkOverlappingAMR *strippedAMRData) This method detects and strips partially overlapping cells from a given AMR dataset. If ghost layers are detected, they are removed and new grid instances are created to represent the stripped data-set otherwise, each block is shallow-copied. * .SECTION Assumptions * 1) The ghosted AMR data must have complete metadata information. V.HasPartiallyOverlappingGhostCells(vtkOverlappingAMR) -> bool C++: static bool HasPartiallyOverlappingGhostCells( vtkOverlappingAMR *amr) A quick test of whether partially overlapping ghost cells exist. This test starts from the highest-res boxes and checks if they have partially overlapping cells. The code returns with true once partially overlapping cells are detected. Otherwise, false is returned. V.BlankCells(vtkOverlappingAMR) C++: static void BlankCells(vtkOverlappingAMR *amr) Blank cells in overlapping AMR vtkOverlappingAMRStripGhostLayersvtkAMRUtilitiesvtkAnimationSceneIsInPlayRemoveAllCuesStopGetNumberOfCuesGetFrameRateGetPlayModeGetLoopSetAnimationTimeAddCueRemoveCueSetModeToRealTimeSetModeToSequenceSetPlayModeSetFrameRateSetLoop(i)PlayModesPLAYMODE_SEQUENCEPLAYMODE_REALTIMESetTimeModevtkAnimationCuevtkAnimationScene - the animation scene manager. Superclass: vtkAnimationCue vtkAnimationCue and vtkAnimationScene provide the framework to support animations in VTK. vtkAnimationCue represents an entity that changes/ animates with time, while vtkAnimationScene represents scene or setup for the animation, which consists of individual cues or other scenes. A scene can be played in real time mode, or as a seqence of frames 1/frame rate apart in time. @sa vtkAnimationCue vtkCommonDataModelPython.vtkAnimationSceneV.SafeDownCast(vtkObjectBase) -> vtkAnimationScene C++: static vtkAnimationScene *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAnimationScene C++: vtkAnimationScene *NewInstance() V.SetPlayMode(int) C++: virtual void SetPlayMode(int _arg) Get/Set the PlayMode for running/playing the animation scene. In the Sequence mode, all the frames are generated one after the other. The time reported to each Tick of the constituent cues (during Play) is incremented by 1/frame rate, irrespective of the current time. In the RealTime mode, time indicates the instance in time. V.SetModeToSequence() C++: void SetModeToSequence() Get/Set the PlayMode for running/playing the animation scene. In the Sequence mode, all the frames are generated one after the other. The time reported to each Tick of the constituent cues (during Play) is incremented by 1/frame rate, irrespective of the current time. In the RealTime mode, time indicates the instance in time. V.SetModeToRealTime() C++: void SetModeToRealTime() Get/Set the PlayMode for running/playing the animation scene. In the Sequence mode, all the frames are generated one after the other. The time reported to each Tick of the constituent cues (during Play) is incremented by 1/frame rate, irrespective of the current time. In the RealTime mode, time indicates the instance in time. V.GetPlayMode() -> int C++: virtual int GetPlayMode() Get/Set the PlayMode for running/playing the animation scene. In the Sequence mode, all the frames are generated one after the other. The time reported to each Tick of the constituent cues (during Play) is incremented by 1/frame rate, irrespective of the current time. In the RealTime mode, time indicates the instance in time. V.SetFrameRate(float) C++: virtual void SetFrameRate(double _arg) Get/Set the frame rate (in frames per second). This parameter affects only in the Sequence mode. The time interval indicated to each cue on every tick is progressed by 1/frame-rate seconds. V.GetFrameRate() -> float C++: virtual double GetFrameRate() Get/Set the frame rate (in frames per second). This parameter affects only in the Sequence mode. The time interval indicated to each cue on every tick is progressed by 1/frame-rate seconds. V.AddCue(vtkAnimationCue) C++: void AddCue(vtkAnimationCue *cue) Add/Remove an AnimationCue to/from the Scene. It's an error to add a cue twice to the Scene. V.RemoveCue(vtkAnimationCue) C++: void RemoveCue(vtkAnimationCue *cue) Add/Remove an AnimationCue to/from the Scene. It's an error to add a cue twice to the Scene. V.RemoveAllCues() C++: void RemoveAllCues() Add/Remove an AnimationCue to/from the Scene. It's an error to add a cue twice to the Scene. V.GetNumberOfCues() -> int C++: int GetNumberOfCues() Add/Remove an AnimationCue to/from the Scene. It's an error to add a cue twice to the Scene. V.Play() C++: virtual void Play() Starts playing the animation scene. Fires a vtkCommand::StartEvent before play beings and vtkCommand::EndEvent after play ends. V.Stop() C++: void Stop() Stops the animation scene that is running. V.SetLoop(int) C++: virtual void SetLoop(int _arg) Enable/Disable animation loop. V.GetLoop() -> int C++: virtual int GetLoop() Enable/Disable animation loop. V.SetAnimationTime(float) C++: void SetAnimationTime(double time) Makes the state of the scene same as the given time. V.SetTimeMode(int) C++: void SetTimeMode(int mode) override; Overridden to allow change to Normalized mode only if none of the constituent cues is in Relative time mode. V.IsInPlay() -> int C++: int IsInPlay() Returns if the animation is being played. vtkCommonDataModelPython.vtkAnimationScene.PlayModesvtkAnnotationGetDataHIDEENABLEICON_INDEXOPACITYCOLORLABELGetSelectionGetMTimeSetSelectionV *vtkInformationV|i *vtkInformationVectorvtkDataObjectvtkAnnotation - Stores a collection of annotation artifacts. Superclass: vtkDataObject vtkAnnotation is a collection of annotation properties along with an associated selection indicating the portion of data the annotation refers to. @par Thanks: Timothy M. Shead (tshead@sandia.gov) at Sandia National Laboratories contributed code to this class. vtkCommonDataModelPython.vtkAnnotationV.SafeDownCast(vtkObjectBase) -> vtkAnnotation C++: static vtkAnnotation *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAnnotation C++: vtkAnnotation *NewInstance() V.GetSelection() -> vtkSelection C++: virtual vtkSelection *GetSelection() The selection to which this set of annotations will apply. V.SetSelection(vtkSelection) C++: virtual void SetSelection(vtkSelection *selection) The selection to which this set of annotations will apply. V.GetData(vtkInformation) -> vtkAnnotation C++: static vtkAnnotation *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkAnnotation C++: static vtkAnnotation *GetData(vtkInformationVector *v, int i=0) Retrieve a vtkAnnotation stored inside an information object. V.LABEL() -> vtkInformationStringKey C++: static vtkInformationStringKey *LABEL() The label for this annotation. V.COLOR() -> vtkInformationDoubleVectorKey C++: static vtkInformationDoubleVectorKey *COLOR() The color for this annotation. This is stored as an RGB triple with values between 0 and 1. V.OPACITY() -> vtkInformationDoubleKey C++: static vtkInformationDoubleKey *OPACITY() The color for this annotation. This is stored as a value between 0 and 1. V.ICON_INDEX() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *ICON_INDEX() An icon index for this annotation. V.ENABLE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *ENABLE() Whether or not this annotation is enabled. A value of 1 means enabled, 0 disabled. V.HIDE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *HIDE() Whether or not this annotation is visible. V.DATA() -> vtkInformationDataObjectKey C++: static vtkInformationDataObjectKey *DATA() Associate a vtkDataObject with this annotation V.Initialize() C++: void Initialize() override; Initialize the annotation to an empty state. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *other) override; Make this annotation have the same properties and have the same selection of another annotation. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *other) override; Make this annotation have the same properties and have a copy of the selection of another annotation. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Get the modified time of this object. vtkAnnotationLayersGetNumberOfAnnotationsGetCurrentAnnotationAddAnnotationRemoveAnnotationGetAnnotationGetCurrentSelectionSetCurrentSelectionSetCurrentAnnotationvtkAnnotationLayers - Stores a ordered collection of annotation sets Superclass: vtkDataObject vtkAnnotationLayers stores a vector of annotation layers. Each layer may contain any number of vtkAnnotation objects. The ordering of the layers introduces a prioritization of annotations. Annotations in higher layers may obscure annotations in lower layers. vtkCommonDataModelPython.vtkAnnotationLayersV.SafeDownCast(vtkObjectBase) -> vtkAnnotationLayers C++: static vtkAnnotationLayers *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAnnotationLayers C++: vtkAnnotationLayers *NewInstance() V.SetCurrentAnnotation(vtkAnnotation) C++: virtual void SetCurrentAnnotation(vtkAnnotation *ann) The current annotation associated with this annotation link. V.GetCurrentAnnotation() -> vtkAnnotation C++: virtual vtkAnnotation *GetCurrentAnnotation() The current annotation associated with this annotation link. V.SetCurrentSelection(vtkSelection) C++: virtual void SetCurrentSelection(vtkSelection *sel) The current selection associated with this annotation link. This is simply the selection contained in the current annotation. V.GetCurrentSelection() -> vtkSelection C++: virtual vtkSelection *GetCurrentSelection() The current selection associated with this annotation link. This is simply the selection contained in the current annotation. V.GetNumberOfAnnotations() -> int C++: unsigned int GetNumberOfAnnotations() The number of annotations in a specific layer. V.GetAnnotation(int) -> vtkAnnotation C++: vtkAnnotation *GetAnnotation(unsigned int idx) Retrieve an annotation from a layer. V.AddAnnotation(vtkAnnotation) C++: void AddAnnotation(vtkAnnotation *ann) Add an annotation to a layer. V.RemoveAnnotation(vtkAnnotation) C++: void RemoveAnnotation(vtkAnnotation *ann) Remove an annotation from a layer. V.Initialize() C++: void Initialize() override; Initialize the data structure to an empty state. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *other) override; Copy data from another data object into this one which references the same member annotations. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *other) override; Copy data from another data object into this one, performing a deep copy of member annotations. V.GetData(vtkInformation) -> vtkAnnotationLayers C++: static vtkAnnotationLayers *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkAnnotationLayers C++: static vtkAnnotationLayers *GetData(vtkInformationVector *v, int i=0) Retrieve a vtkAnnotationLayers stored inside an information object. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; The modified time for this object. vtkArrayDataClearArraysGetNumberOfArraysGetDataObjectTypeAddArrayvtkArrayGetArrayGetArrayByNamevtkArrayData - Pipeline data object that contains multiple vtkArray objects. Superclass: vtkDataObject Because vtkArray cannot be stored as attributes of data objects (yet), a "carrier" object is needed to pass vtkArray through the pipeline. vtkArrayData acts as a container of zero-to-many vtkArray instances, which can be retrieved via a zero-based index. Note that a collection of arrays stored in vtkArrayData may-or-may-not have related types, dimensions, or extents. @sa vtkArrayDataAlgorithm, vtkArray @par Thanks: Developed by Timothy M. Shead (tshead@sandia.gov) at Sandia National Laboratories. vtkCommonDataModelPython.vtkArrayDataV.SafeDownCast(vtkObjectBase) -> vtkArrayData C++: static vtkArrayData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkArrayData C++: vtkArrayData *NewInstance() V.GetData(vtkInformation) -> vtkArrayData C++: static vtkArrayData *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkArrayData C++: static vtkArrayData *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.AddArray(vtkArray) C++: void AddArray(vtkArray *) Adds a vtkArray to the collection V.ClearArrays() C++: void ClearArrays() Clears the contents of the collection V.GetNumberOfArrays() -> int C++: vtkIdType GetNumberOfArrays() Returns the number of vtkArray instances in the collection V.GetArray(int) -> vtkArray C++: vtkArray *GetArray(vtkIdType index) Returns the n-th vtkArray in the collection V.GetArrayByName(string) -> vtkArray C++: vtkArray *GetArrayByName(const char *name) Returns the array having called name from the collection V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return class name of data type (VTK_ARRAY_DATA). V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *other) override; Shallow and Deep copy. These copy the data, but not any of the pipeline connections. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *other) override; Shallow and Deep copy. These copy the data, but not any of the pipeline connections. vtkAttributesErrorMetricGetAttributeToleranceGetAbsoluteAttributeToleranceSetAbsoluteAttributeToleranceSetAttributeToleranceGetErrorRequiresEdgeSubdivisionvtkGenericSubdivisionErrorMetricvtkAttributesErrorMetric - Objects that compute attribute-based error during cell tessellation. Superclass: vtkGenericSubdivisionErrorMetric It is a concrete error metric, based on an attribute criterium: the variation of the active attribute/component value from a linear ramp @sa vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkCommonDataModelPython.vtkAttributesErrorMetricV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard VTK type and error macros. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard VTK type and error macros. V.SafeDownCast(vtkObjectBase) -> vtkAttributesErrorMetric C++: static vtkAttributesErrorMetric *SafeDownCast( vtkObjectBase *o) Standard VTK type and error macros. V.NewInstance() -> vtkAttributesErrorMetric C++: vtkAttributesErrorMetric *NewInstance() Standard VTK type and error macros. V.GetAbsoluteAttributeTolerance() -> float C++: virtual double GetAbsoluteAttributeTolerance() Absolute tolerance of the active scalar (attribute+component). Subdivision is required if the square distance between the real attribute at the mid point on the edge and the interpolated attribute is greater than AbsoluteAttributeTolerance. This is the attribute accuracy. 0.01 will give better result than 0.1. V.SetAbsoluteAttributeTolerance(float) C++: void SetAbsoluteAttributeTolerance(double value) Set the absolute attribute accuracy to `value'. See GetAbsoluteAttributeTolerance() for details. It is particularly useful when some concrete implementation of vtkGenericAttribute does not support GetRange() request, called internally in SetAttributeTolerance(). It may happen when the implementation support higher order attributes but cannot compute the range. \pre valid_range_value: value>0 V.GetAttributeTolerance() -> float C++: virtual double GetAttributeTolerance() Relative tolerance of the active scalar (attribute+component). Subdivision is required if the square distance between the real attribute at the mid point on the edge and the interpolated attribute is greater than AttributeTolerance. This is the attribute accuracy. 0.01 will give better result than 0.1. V.SetAttributeTolerance(float) C++: void SetAttributeTolerance(double value) Set the relative attribute accuracy to `value'. See GetAttributeTolerance() for details. \pre valid_range_value: value>0 && value<1 V.RequiresEdgeSubdivision([float, ...], [float, ...], [float, ...], float) -> int C++: int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Does the edge need to be subdivided according to the distance between the value of the active attribute/component at the midpoint and the mean value between the endpoints? The edge is defined by its `leftPoint' and its `rightPoint'. `leftPoint', `midPoint' and `rightPoint' have to be initialized before calling RequiresEdgeSubdivision(). Their format is global coordinates, parametric coordinates and point centered attributes: xyx rst abc de... `alpha' is the normalized abscissa of the midpoint along the edge. (close to 0 means close to the left point, close to 1 means close to the right point) \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 V.GetError([float, ...], [float, ...], [float, ...], float) -> float C++: double GetError(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Return the error at the mid-point. The type of error depends on the state of the concrete error metric. For instance, it can return an absolute or relative error metric. See RequiresEdgeSubdivision() for a description of the arguments. \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 \post positive_result: result>=0 vtkBiQuadraticQuadGetCellDimensionGetNumberOfFacesGetNumberOfEdgesGetCellTypeGetFaceGetParametricCenterInterpolateFunctionsInterpolateDerivsClipvtkIncrementalPointLocatorvtkPointDatavtkCellDataContourGetParametricCoordsEvaluateLocationEvaluatePositionCellBoundaryGetEdgevtkNonLinearCellvtkBiQuadraticQuad - cell represents a parabolic, 9-node isoparametric quad Superclass: vtkNonLinearCell vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to represent a two-dimensional, 9-node isoparametric parabolic quadrilateral element with a Centerpoint. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node for each of the four edges of the cell and a center node at the surface. The ordering of the eight points defining the cell are point ids (0-3,4-8) where ids 0-3 define the four corner vertices of the quad; ids 4-7 define the midedge nodes (0,1), (1,2), (2,3), (3,0) and 8 define the face center node. @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid vtkQuadraticQuad @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. vtkCommonDataModelPython.vtkBiQuadraticQuadV.SafeDownCast(vtkObjectBase) -> vtkBiQuadraticQuad C++: static vtkBiQuadraticQuad *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkBiQuadraticQuad C++: vtkBiQuadraticQuad *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; Return the topological dimensional of the cell (0,1,2, or 3). V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Return the number of edges in the cell. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Return the number of faces in the cell. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; Return the edge cell from the edgeId of the cell. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; Return the face cell from the faceId of the cell. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this biquadratic quad using scalar value provided. Like contouring, except that it cuts the twi quads to produce linear triangles. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Line-edge intersection. Intersection has to occur within [0,1] parametric coordinates and with specified tolerance. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the pyramid in parametric coordinates. V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[9]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses. V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[18]) override; ??GetFaceArrayInterpolationDerivsInterpolationFunctionsGetEdgeArrayvtkBiQuadraticQuadraticHexahedronvtkBiQuadraticQuadraticHexahedron - cell represents a biquadratic, 24-node isoparametric hexahedron Superclass: vtkNonLinearCell vtkBiQuadraticQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 24-node isoparametric biquadratic hexahedron. The interpolation is the standard finite element, biquadratic-quadratic isoparametric shape function. The cell includes mid-edge and center-face nodes. The ordering of the 24 points defining the cell is point ids (0-7,8-19, 20-23) where point ids 0-7 are the eight corner vertices of the cube; followed by twelve midedge nodes (8-19), nodes 20-23 are the center-face nodes. Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), (7,4), (0,4), (1,5), (2,6), (3,7). The center face nodes laying in quad 22-(0,1,5,4), 21-(1,2,6,5), 23-(2,3,7,6) and 22-(3,0,4,7) top 7--14--6 | | 15 13 | | 4--12--5 middle 19--23--18 | | 20 21 | | 16--22--17 bottom 3--10--2 | | 11 9 | | 0-- 8--1 @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. vtkCommonDataModelPython.vtkBiQuadraticQuadraticHexahedronV.SafeDownCast(vtkObjectBase) -> vtkBiQuadraticQuadraticHexahedron C++: static vtkBiQuadraticQuadraticHexahedron *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkBiQuadraticQuadraticHexahedron C++: vtkBiQuadraticQuadraticHexahedron *NewInstance() V.GetCellDimension() -> int C++: int GetCellDimension() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this biquadratic hexahedron using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[24]) @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[72]) @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[24]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[72]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.GetEdgeArray(int) -> (int, ...) C++: static int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. V.GetFaceArray(int) -> (int, ...) C++: static int *GetFaceArray(int faceId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. vtkBiQuadraticQuadraticWedgevtkBiQuadraticQuadraticWedge - cell represents a parabolic, 18-node isoparametric wedge Superclass: vtkNonLinearCell vtkBiQuadraticQuadraticWedge is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 18-node isoparametric biquadratic wedge. The interpolation is the standard finite element, biquadratic-quadratic isoparametric shape function plus the linear functions. The cell includes a mid-edge node. The ordering of the 18 points defining the cell is point ids (0-5,6-15, 16-18) where point ids 0-5 are the six corner vertices of the wedge; followed by nine midedge nodes (6-15) and 3 center-face nodes. Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3), (1,4), (2,5), and the center-face nodes are laying in quads 16-(0,1,4,3), 17-(1,2,5,4) and (2,0,3,5). @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. vtkCommonDataModelPython.vtkBiQuadraticQuadraticWedgeV.SafeDownCast(vtkObjectBase) -> vtkBiQuadraticQuadraticWedge C++: static vtkBiQuadraticQuadraticWedge *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkBiQuadraticQuadraticWedge C++: vtkBiQuadraticQuadraticWedge *NewInstance() V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic Wedge using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic wedge in parametric coordinates. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[15]) @deprecated Replaced by vtkBiQuadraticQuadraticWedge::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[45]) @deprecated Replaced by vtkBiQuadraticQuadraticWedge::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[15]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[45]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) UUUUUU?UUUUUU??vtkBiQuadraticTriangleGetParametricDistancevtkBiQuadraticTriangle - cell represents a parabolic, isoparametric triangle Superclass: vtkNonLinearCell vtkBiQuadraticTriangle is a concrete implementation of vtkNonLinearCell to represent a two-dimensional, 7-node, isoparametric parabolic triangle. The interpolation is the standard finite element, bi-quadratic isoparametric shape function. The cell includes three mid-edge nodes besides the three triangle vertices and a center node. The ordering of the three points defining the cell is point ids (0-2,3-6) where id #3 is the midedge node between points (0,1); id #4 is the midedge node between points (1,2); and id #5 is the midedge node between points (2,0). id #6 is the center node of the cell. @sa vtkTriangle vtkQuadraticTriangle vtkBiQuadraticQuad vtkBiQuadraticQuadraticWedge vtkBiQuadraticQuadraticHexahedron@par Thanks: This file has been developed by Oxalya - www.oxalya.com Copyright (c) EDF - www.edf.fr vtkCommonDataModelPython.vtkBiQuadraticTriangleV.SafeDownCast(vtkObjectBase) -> vtkBiQuadraticTriangle C++: static vtkBiQuadraticTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkBiQuadraticTriangle C++: vtkBiQuadraticTriangle *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic triangle using scalar value provided. Like contouring, except that it cuts the triangle to produce linear triangles. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic triangle in parametric coordinates. V.GetParametricDistance([float, float, float]) -> float C++: double GetParametricDistance(double pcoords[3]) override; Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[7]) @deprecated Replaced by vtkBiQuadraticTriangle::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[14]) @deprecated Replaced by vtkBiQuadraticTriangle::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[7]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[14]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) IntersectWithPlaneIntersectBoxvtkBoxAddBoundsSetBoundsSetXMaxSetXMinGetXMinGetXMaxEvaluateGradientEvaluateFunctionvtkImplicitFunctionvtkBox - implicit function for a bounding box Superclass: vtkImplicitFunction vtkBox computes the implicit function and/or gradient for a axis-aligned bounding box. (The superclasses transform can be used to modify this orientation.) Each side of the box is orthogonal to all other sides meeting along shared edges and all faces are orthogonal to the x-y-z coordinate axes. (If you wish to orient this box differently, recall that the superclass vtkImplicitFunction supports a transformation matrix.) vtkCube is a concrete implementation of vtkImplicitFunction. @sa vtkCubeSource vtkImplicitFunction vtkCommonDataModelPython.vtkBoxV.SafeDownCast(vtkObjectBase) -> vtkBox C++: static vtkBox *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkBox C++: vtkBox *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate function at position x-y-z and return value. You should generally not call this method directly, you should use FunctionValue() instead. This method must be implemented by any derived class. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate the gradient of the box. V.SetXMin([float, float, float]) C++: void SetXMin(double p[3]) V.SetXMin(float, float, float) C++: void SetXMin(double x, double y, double z) Set / get the bounding box using various methods. V.GetXMin([float, float, float]) C++: void GetXMin(double p[3]) V.GetXMin(float, float, float) C++: void GetXMin(double &x, double &y, double &z) Set / get the bounding box using various methods. V.SetXMax([float, float, float]) C++: void SetXMax(double p[3]) V.SetXMax(float, float, float) C++: void SetXMax(double x, double y, double z) V.GetXMax([float, float, float]) C++: void GetXMax(double p[3]) V.GetXMax(float, float, float) C++: void GetXMax(double &x, double &y, double &z) V.SetBounds(float, float, float, float, float, float) C++: void SetBounds(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax) V.SetBounds((float, float, float, float, float, float)) C++: void SetBounds(const double bounds[6]) V.GetBounds(float, float, float, float, float, float) C++: void GetBounds(double &xMin, double &xMax, double &yMin, double &yMax, double &zMin, double &zMax) V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) V.GetBounds() -> (float, float, float, float, float, float) C++: double *GetBounds() V.AddBounds((float, float, float, float, float, float)) C++: void AddBounds(const double bounds[6]) A special method that allows union set operation on bounding boxes. Start with a SetBounds(). Subsequent AddBounds() methods are union set operations on the original bounds. Retrieve the final bounds with a GetBounds() method. V.IntersectBox([float, float, float, float, float, float], [float, float, float], [float, float, float], [float, float, float], float) -> char C++: static char IntersectBox(double bounds[6], double origin[3], double dir[3], double coord[3], double &t) Bounding box intersection with line modified from Graphics Gems Vol I. The method returns a non-zero value if the bounding box is hit. Origin[3] starts the ray, dir[3] is the vector components of the ray in the x-y-z directions, coord[3] is the location of hit, and t is the parametric coordinate along line. (Notes: the intersection ray dir[3] is NOT normalized. Valid intersections will only occur between 0<=t<=1.) V.IntersectWithLine((float, float, float, float, float, float), ( float, float, float), (float, float, float), float, float, [float, float, float], [float, float, float], int, int) -> int C++: static int IntersectWithLine(const double bounds[6], const double p1[3], const double p2[3], double &t1, double &t2, double x1[3], double x2[3], int &plane1, int &plane2) Intersect a line with the box. Give the endpoints of the line in p1 and p2. The parameteric distances from p1 to the entry and exit points are returned in t1 and t2, where t1 and t2 are clamped to the range [0,1]. The entry and exit planes are returned in plane1 and plane2 where integers (0, 1, 2, 3, 4, 5) stand for the (xmin, xmax, ymin, ymax, zmin, zmax) planes respectively, and a value of -1 means that no intersection occurred. The actual intersection coordinates are stored in x1 and x2, which can be set to nullptr of you do not need them to be returned. The function return value will be zero if the line is wholly outside of the box. V.IntersectWithPlane([float, float, float, float, float, float], [float, float, float], [float, float, float]) -> int C++: static int IntersectWithPlane(double bounds[6], double origin[3], double normal[3]) Plane intersection with the box. The plane is infinite in extent and defined by an origin and normal. The function indicates whether the plane intersects, not the particulars of intersection points and such. The function returns non-zero if the plane and box intersect; zero otherwise. vtkBSPCutsCreateCutsGetKdNodeTreePrintArraysPrintTreeGetNumberOfCutsEqualsvtkKdNodeGetArraysvtkBSPCuts - This class represents an axis-aligned Binary Spatial Partitioning of a 3D space. Superclass: vtkDataObject This class converts between the vtkKdTree representation of a tree of vtkKdNodes (used by vtkDistributedDataFilter) and a compact array representation that might be provided by a graph partitioning library like Zoltan. Such a representation could be used in message passing. @sa vtkKdTree vtkKdNode vtkDistributedDataFilter vtkCommonDataModelPython.vtkBSPCutsV.SafeDownCast(vtkObjectBase) -> vtkBSPCuts C++: static vtkBSPCuts *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkBSPCuts C++: vtkBSPCuts *NewInstance() V.CreateCuts([float, ...], int, [int, ...], [float, ...], [int, ...], [int, ...], [float, ...], [float, ...], [int, ...]) C++: void CreateCuts(double *bounds, int ncuts, int *dim, double *coord, int *lower, int *upper, double *lowerDataCoord, double *upperDataCoord, int *npoints) V.CreateCuts(vtkKdNode) C++: void CreateCuts(vtkKdNode *kd) Initialize the cuts with arrays of information. This type of information would be obtained from a graph partitioning software package like Zoltan. * bounds - the bounds (xmin, xmax, ymin, ymax, zmin, zmax) of the * space being partitioned * ncuts - the number cuts, also the size of the following arrays * dim - the dimension along which the cut is made (x/y/z - 0/1/2) * coord - the location of the cut along the axis * lower - array index for the lower region bounded by the cut * upper - array index for the upper region bounded by the cut * lowerDataCoord - optional upper bound of the data in the lower region * upperDataCoord - optional lower bound of the data in the upper region * npoints - optional number of points in the spatial region V.GetKdNodeTree() -> vtkKdNode C++: vtkKdNode *GetKdNodeTree() Return a tree of vtkKdNode's representing the cuts specified in this object. This is our copy, don't delete it. V.GetNumberOfCuts() -> int C++: virtual int GetNumberOfCuts() Get the number of cuts in the partitioning, which also the size of the arrays in the array representation of the partitioning. V.GetArrays(int, [int, ...], [float, ...], [int, ...], [int, ...], [float, ...], [float, ...], [int, ...]) -> int C++: int GetArrays(int len, int *dim, double *coord, int *lower, int *upper, double *lowerDataCoord, double *upperDataCoord, int *npoints) Get the arrays representing the cuts in the partitioning. V.Equals(vtkBSPCuts, float) -> int C++: int Equals(vtkBSPCuts *other, double tolerance=0.0) Compare these cuts with those of the other tree. Returns true if the two trees are the same. V.PrintTree() C++: void PrintTree() V.PrintArrays() C++: void PrintArrays() V.GetData(vtkInformation) -> vtkBSPCuts C++: static vtkBSPCuts *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkBSPCuts C++: static vtkBSPCuts *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.Initialize() C++: void Initialize() override; Restore data object to initial state, V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *src) override; Shallow copy. These copy the data, but not any of the pipeline connections. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Shallow copy. These copy the data, but not any of the pipeline connections. vtkBSPIntersectionsGetNumberOfRegionsGetCutsSetCutsIntersectsCellGetRegionBoundsGetRegionDataBoundsIntersectsSphere2IntersectsBox@iV|i *vtkCell@PiV|i *i *vtkCellComputeIntersectionsUsingDataBoundsOnComputeIntersectionsUsingDataBoundsOffGetComputeIntersectionsUsingDataBoundsSetComputeIntersectionsUsingDataBoundsvtkBSPIntersections - Perform calculations (mostly intersection calculations) on regions of a 3D binary spatial partitioning. Superclass: vtkObject Given an axis aligned binary spatial partitioning described by a vtkBSPCuts object, perform intersection queries on various geometric entities with regions of the spatial partitioning. @sa vtkBSPCuts vtkKdTree vtkCommonDataModelPython.vtkBSPIntersectionsV.SafeDownCast(vtkObjectBase) -> vtkBSPIntersections C++: static vtkBSPIntersections *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkBSPIntersections C++: vtkBSPIntersections *NewInstance() V.SetCuts(vtkBSPCuts) C++: void SetCuts(vtkBSPCuts *cuts) Define the binary spatial partitioning. V.GetCuts() -> vtkBSPCuts C++: virtual vtkBSPCuts *GetCuts() V.GetBounds([float, ...]) -> int C++: int GetBounds(double *bounds) Get the bounds of the whole space (xmin, xmax, ymin, ymax, zmin, zmax) Return 0 if OK, 1 on error. V.GetNumberOfRegions() -> int C++: int GetNumberOfRegions() The number of regions in the binary spatial partitioning V.GetRegionBounds(int, [float, float, float, float, float, float]) -> int C++: int GetRegionBounds(int regionID, double bounds[6]) Get the spatial bounds of a particular region Return 0 if OK, 1 on error. V.GetRegionDataBounds(int, [float, float, float, float, float, float]) -> int C++: int GetRegionDataBounds(int regionID, double bounds[6]) Get the bounds of the data within the k-d tree region, possibly smaller than the bounds of the region. Return 0 if OK, 1 on error. V.IntersectsBox(int, [float, ...]) -> int C++: int IntersectsBox(int regionId, double *x) V.IntersectsBox(int, float, float, float, float, float, float) -> int C++: int IntersectsBox(int regionId, double xmin, double xmax, double ymin, double ymax, double zmin, double zmax) V.IntersectsBox([int, ...], int, [float, ...]) -> int C++: int IntersectsBox(int *ids, int len, double *x) V.IntersectsBox([int, ...], int, float, float, float, float, float, float) -> int C++: int IntersectsBox(int *ids, int len, double x0, double x1, double y0, double y1, double z0, double z1) Determine whether a region of the spatial decomposition intersects an axis aligned box. V.IntersectsSphere2(int, float, float, float, float) -> int C++: int IntersectsSphere2(int regionId, double x, double y, double z, double rSquared) V.IntersectsSphere2([int, ...], int, float, float, float, float) -> int C++: int IntersectsSphere2(int *ids, int len, double x, double y, double z, double rSquared) Determine whether a region of the spatial decomposition intersects a sphere, given the center of the sphere and the square of it's radius. V.IntersectsCell(int, vtkCell, int) -> int C++: int IntersectsCell(int regionId, vtkCell *cell, int cellRegion=-1) V.IntersectsCell([int, ...], int, vtkCell, int) -> int C++: int IntersectsCell(int *ids, int len, vtkCell *cell, int cellRegion=-1) Determine whether a region of the spatial decomposition intersects the given cell. If you already know the region that the cell centroid lies in, provide that as the last argument to make the computation quicker. V.GetComputeIntersectionsUsingDataBounds() -> int C++: virtual int GetComputeIntersectionsUsingDataBounds() When computing the intersection of k-d tree regions with other objects, we use the spatial bounds of the region. To use the tighter bound of the bounding box of the data within the region, set this variable ON. (Specifying data bounds in the vtkBSPCuts object is optional. If data bounds were not specified, this option has no meaning.) V.SetComputeIntersectionsUsingDataBounds(int) C++: void SetComputeIntersectionsUsingDataBounds(int c) V.ComputeIntersectionsUsingDataBoundsOn() C++: void ComputeIntersectionsUsingDataBoundsOn() V.ComputeIntersectionsUsingDataBoundsOff() C++: void ComputeIntersectionsUsingDataBoundsOff() vtkCell3DGetMergeToleranceMaxValueGetMergeToleranceMinValueGetMergeToleranceSetMergeToleranceGetFacePointsGetEdgePointsvtkCell3D - abstract class to specify 3D cell interface Superclass: vtkCell vtkCell3D is an abstract class that extends the interfaces for 3D data cells, and implements methods needed to satisfy the vtkCell API. The 3D cells include hexehedra, tetrahedra, wedge, pyramid, and voxel. @sa vtkTetra vtkHexahedron vtkVoxel vtkWedge vtkPyramid vtkCommonDataModelPython.vtkCell3DV.SafeDownCast(vtkObjectBase) -> vtkCell3D C++: static vtkCell3D *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCell3D C++: vtkCell3D *NewInstance() V.GetEdgePoints(int, [int, ...]) C++: virtual void GetEdgePoints(int edgeId, int *&pts) Get the pair of vertices that define an edge. The method returns the number of vertices, along with an array of vertices. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The edgeId must range between 0<=edgeIdGetNumberOfEdges(). V.GetFacePoints(int, [int, ...]) C++: virtual void GetFacePoints(int faceId, int *&pts) Get the list of vertices that define a face. The list is terminated with a negative number. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The faceId must range between 0<=faceIdGetNumberOfFaces(). V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-nullptr, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) (Satisfies vtkCell API.) V.GetCellDimension() -> int C++: int GetCellDimension() override; The topological dimension of the cell. (Satisfies vtkCell API.) V.SetMergeTolerance(float) C++: virtual void SetMergeTolerance(double _arg) Set the tolerance for merging clip intersection points that are near the vertices of cells. This tolerance is used to prevent the generation of degenerate tetrahedra during clipping. V.GetMergeToleranceMinValue() -> float C++: virtual double GetMergeToleranceMinValue() Set the tolerance for merging clip intersection points that are near the vertices of cells. This tolerance is used to prevent the generation of degenerate tetrahedra during clipping. V.GetMergeToleranceMaxValue() -> float C++: virtual double GetMergeToleranceMaxValue() Set the tolerance for merging clip intersection points that are near the vertices of cells. This tolerance is used to prevent the generation of degenerate tetrahedra during clipping. V.GetMergeTolerance() -> float C++: virtual double GetMergeTolerance() Set the tolerance for merging clip intersection points that are near the vertices of cells. This tolerance is used to prevent the generation of degenerate tetrahedra during clipping. -C6??InitTraversalGetSizeGetMaxCellSizeGetActualMemorySizeSetTraversalLocationGetInsertLocationGetPointerEstimateSizeSetCellsvtkIdTypeArrayUpdateCellCountResetSetNumberOfCellsSqueezeWritePointerReverseCell0 <= loc && loc < GetSize()InsertCellPointReplaceCellInsertNextCellGetTraversalLocationGetNextCell@V *vtkCell@V *vtkIdListGetNumberOfConnectivityEntriesvtkCellArray - object to represent cell connectivity Superclass: vtkObject vtkCellArray is a supporting object that explicitly represents cell connectivity. The cell array structure is a raw integer list of the form: (n,id1,id2,...,idn, n,id1,id2,...,idn, ...) where n is the number of points in the cell, and id is a zero-offset index into an associated point list. Advantages of this data structure are its compactness, simplicity, and easy interface to external data. However, it is totally inadequate for random access. This functionality (when necessary) is accomplished by using the vtkCellTypes and vtkCellLinks objects to extend the definition of the data structure. @sa vtkCellTypes vtkCellLinks vtkCommonDataModelPython.vtkCellArrayV.SafeDownCast(vtkObjectBase) -> vtkCellArray C++: static vtkCellArray *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCellArray C++: vtkCellArray *NewInstance() V.Allocate(int, int) -> int C++: int Allocate(vtkIdType sz, vtkIdType ext=1000) Allocate memory and set the size to extend by. V.Initialize() C++: void Initialize() Free any memory and reset to an empty state. V.GetNumberOfCells() -> int C++: virtual vtkIdType GetNumberOfCells() Get the number of cells in the array. V.SetNumberOfCells(int) C++: virtual void SetNumberOfCells(vtkIdType _arg) Set the number of cells in the array. DO NOT do any kind of allocation, advanced use only. V.EstimateSize(int, int) -> int C++: vtkIdType EstimateSize(vtkIdType numCells, int maxPtsPerCell) Utility routines help manage memory of cell array. EstimateSize() returns a value used to initialize and allocate memory for array based on number of cells and maximum number of points making up cell. If every cell is the same size (in terms of number of points), then the memory estimate is guaranteed exact. (If not exact, use Squeeze() to reclaim any extra memory.) V.InitTraversal() C++: void InitTraversal() A cell traversal methods that is more efficient than vtkDataSet traversal methods. InitTraversal() initializes the traversal of the list of cells. V.GetNextCell(int, [int, ...]) -> int C++: int GetNextCell(vtkIdType &npts, vtkIdType *&pts) V.GetNextCell(vtkIdList) -> int C++: int GetNextCell(vtkIdList *pts) A cell traversal methods that is more efficient than vtkDataSet traversal methods. GetNextCell() gets the next cell in the list. If end of list is encountered, 0 is returned. A value of 1 is returned whenever npts and pts have been updated without error. V.GetSize() -> int C++: vtkIdType GetSize() Get the size of the allocated connectivity array. V.GetNumberOfConnectivityEntries() -> int C++: vtkIdType GetNumberOfConnectivityEntries() Get the total number of entries (i.e., data values) in the connectivity array. This may be much less than the allocated size (i.e., return value from GetSize().) V.GetCell(int, int, [int, ...]) C++: void GetCell(vtkIdType loc, vtkIdType &npts, vtkIdType *&pts) V.GetCell(int, vtkIdList) C++: void GetCell(vtkIdType loc, vtkIdList *pts) Internal method used to retrieve a cell given an offset into the internal array. V.InsertNextCell(vtkCell) -> int C++: vtkIdType InsertNextCell(vtkCell *cell) V.InsertNextCell(int, (int, ...)) -> int C++: vtkIdType InsertNextCell(vtkIdType npts, const vtkIdType *pts) V.InsertNextCell(vtkIdList) -> int C++: vtkIdType InsertNextCell(vtkIdList *pts) V.InsertNextCell(int) -> int C++: vtkIdType InsertNextCell(int npts) Insert a cell object. Return the cell id of the cell. V.InsertCellPoint(int) C++: void InsertCellPoint(vtkIdType id) Used in conjunction with InsertNextCell(int npts) to add another point to the list of cells. V.UpdateCellCount(int) C++: void UpdateCellCount(int npts) Used in conjunction with InsertNextCell(int npts) and InsertCellPoint() to update the number of points defining the cell. V.GetInsertLocation(int) -> int C++: vtkIdType GetInsertLocation(int npts) Computes the current insertion location within the internal array. Used in conjunction with GetCell(int loc,...). V.GetTraversalLocation() -> int C++: vtkIdType GetTraversalLocation() V.GetTraversalLocation(int) -> int C++: vtkIdType GetTraversalLocation(vtkIdType npts) Get/Set the current traversal location. V.SetTraversalLocation(int) C++: void SetTraversalLocation(vtkIdType loc) V.ReverseCell(int) C++: void ReverseCell(vtkIdType loc) Special method inverts ordering of current cell. Must be called carefully or the cell topology may be corrupted. V.ReplaceCell(int, int, (int, ...)) C++: void ReplaceCell(vtkIdType loc, int npts, const vtkIdType *pts) Replace the point ids of the cell with a different list of point ids. Calling this method does not mark the vtkCellArray as modified. This is the responsibility of the caller and may be done after multiple calls to ReplaceCell. V.GetMaxCellSize() -> int C++: int GetMaxCellSize() Returns the size of the largest cell. The size is the number of points defining the cell. V.GetPointer() -> (int, ...) C++: vtkIdType *GetPointer() Get pointer to array of cell data. V.WritePointer(int, int) -> (int, ...) C++: vtkIdType *WritePointer(const vtkIdType ncells, const vtkIdType size) Get pointer to data array for purpose of direct writes of data. Size is the total storage consumed by the cell array. ncells is the number of cells represented in the array. V.SetCells(int, vtkIdTypeArray) C++: void SetCells(vtkIdType ncells, vtkIdTypeArray *cells) Define multiple cells by providing a connectivity list. The list is in the form (npts,p0,p1,...p(npts-1), repeated for each cell). Be careful using this method because it discards the old cells, and anything referring these cells becomes invalid (for example, if BuildCells() has been called see vtkPolyData). The traversal location is reset to the beginning of the list; the insertion location is set to the end of the list. V.DeepCopy(vtkCellArray) C++: void DeepCopy(vtkCellArray *ca) Perform a deep copy (no reference counting) of the given cell array. V.GetData() -> vtkIdTypeArray C++: vtkIdTypeArray *GetData() Return the underlying data as a data array. V.Reset() C++: void Reset() Reuse list. Reset to initial condition. V.Squeeze() C++: void Squeeze() Reclaim any extra memory. V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() Return the memory in kibibytes (1024 bytes) consumed by this cell array. Used to support streaming and reading/writing data. The value returned is guaranteed to be greater than or equal to the memory required to actually represent the data represented by this object. The information returned is valid only after the pipeline has been updated. GetPointsGetPointIdsGetNumberOfPointsGetLength2RequiresInitializationIsLinearIsExplicitCellIsPrimaryCellGetFacesGetPointIdSetFacesVTK_CELL_SIZEVTK_TOLRequiresExplicitFaceRepresentation0 <= ptId && ptId < GetPointIds()->GetNumberOfIds()vtkCell - abstract class to specify cell behavior Superclass: vtkObject vtkCell is an abstract class that specifies the interfaces for data cells. Data cells are simple topological elements like points, lines, polygons, and tetrahedra of which visualization datasets are composed. In some cases visualization datasets may explicitly represent cells (e.g., vtkPolyData, vtkUnstructuredGrid), and in some cases, the datasets are implicitly composed of cells (e.g., vtkStructuredPoints). @warning The #define VTK_CELL_SIZE is a parameter used to construct cells and provide a general guideline for controlling object execution. This parameter is not a hard boundary: you can create cells with more points. @sa vtkHexahedron vtkLine vtkPixel vtkPolyLine vtkPolyVertex vtkPolygon vtkQuad vtkTetra vtkTriangle vtkTriangleStrip vtkVertex vtkVoxel vtkWedge vtkPyramid vtkCommonDataModelPython.vtkCellV.SafeDownCast(vtkObjectBase) -> vtkCell C++: static vtkCell *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCell C++: vtkCell *NewInstance() V.Initialize(int, [int, ...], vtkPoints) C++: void Initialize(int npts, vtkIdType *pts, vtkPoints *p) V.Initialize(int, vtkPoints) C++: void Initialize(int npts, vtkPoints *p) V.Initialize() C++: virtual void Initialize() Initialize cell from outside with point ids and point coordinates specified. V.ShallowCopy(vtkCell) C++: virtual void ShallowCopy(vtkCell *c) Copy this cell by reference counting the internal data structures. This is safe if you want a "read-only" copy. If you modify the cell you might wish to use DeepCopy(). V.DeepCopy(vtkCell) C++: virtual void DeepCopy(vtkCell *c) Copy this cell by completely copying internal data structures. This is slower but safer than ShallowCopy(). V.GetCellType() -> int C++: virtual int GetCellType() Return the type of cell. V.GetCellDimension() -> int C++: virtual int GetCellDimension() Return the topological dimensional of the cell (0,1,2, or 3). V.IsLinear() -> int C++: virtual int IsLinear() Non-linear cells require special treatment beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells. V.RequiresInitialization() -> int C++: virtual int RequiresInitialization() Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures. V.IsExplicitCell() -> int C++: virtual int IsExplicitCell() Explicit cells require additional representational information beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells. V.RequiresExplicitFaceRepresentation() -> int C++: virtual int RequiresExplicitFaceRepresentation() Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods). V.SetFaces([int, ...]) C++: virtual void SetFaces(vtkIdType *faces) V.GetFaces() -> (int, ...) C++: virtual vtkIdType *GetFaces() V.GetPoints() -> vtkPoints C++: vtkPoints *GetPoints() Get the point coordinates for the cell. V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() Return the number of points in the cell. V.GetNumberOfEdges() -> int C++: virtual int GetNumberOfEdges() Return the number of edges in the cell. V.GetNumberOfFaces() -> int C++: virtual int GetNumberOfFaces() Return the number of faces in the cell. V.GetPointIds() -> vtkIdList C++: vtkIdList *GetPointIds() Return the list of point ids defining the cell. V.GetPointId(int) -> int C++: vtkIdType GetPointId(int ptId) For cell point i, return the actual point id. V.GetEdge(int) -> vtkCell C++: virtual vtkCell *GetEdge(int edgeId) Return the edge cell from the edgeId of the cell. V.GetFace(int) -> vtkCell C++: virtual vtkCell *GetFace(int faceId) Return the face cell from the faceId of the cell. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: virtual void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: virtual void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: virtual void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-nullptr, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: virtual void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) V.GetBounds() -> (float, float, float, float, float, float) C++: double *GetBounds() Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Copy result into user provided array. V.GetLength2() -> float C++: double GetLength2() Compute Length squared of cell (i.e., bounding box diagonal squared). V.GetParametricCenter([float, float, float]) -> int C++: virtual int GetParametricCenter(double pcoords[3]) Return center of the cell in parametric coordinates. Note that the parametric center is not always located at (0.5,0.5,0.5). The return value is the subId that the center is in (if a composite cell). If you want the center in x-y-z space, invoke the EvaluateLocation() method. V.GetParametricDistance([float, float, float]) -> float C++: virtual double GetParametricDistance(double pcoords[3]) Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.) V.IsPrimaryCell() -> int C++: virtual int IsPrimaryCell() Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells). V.GetParametricCoords() -> (float, ...) C++: virtual double *GetParametricCoords() Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. V.InterpolateFunctions([float, float, float], [float, ...]) C++: virtual void InterpolateFunctions(double pcoords[3], double *weight) Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses. V.InterpolateDerivs([float, float, float], [float, ...]) C++: virtual void InterpolateDerivs(double pcoords[3], double *derivs) h㈵>vtkFieldDatavtkCellData - represent and manipulate cell attribute data Superclass: vtkDataSetAttributes vtkCellData is a class that is used to represent and manipulate cell attribute data (e.g., scalars, vectors, normals, texture coordinates, etc.) Special methods are provided to work with filter objects, such as passing data through filter, copying data from one cell to another, and interpolating data given cell interpolation weights. vtkCommonDataModelPython.vtkCellDataV.SafeDownCast(vtkObjectBase) -> vtkCellData C++: static vtkCellData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCellData C++: vtkCellData *NewInstance() vtkCellIteratorGetCellIdIsDoneWithTraversalGoToNextCell Unknown cell type: vtkCellIterator - Efficient cell iterator for vtkDataSet topologies. Superclass: vtkObject vtkCellIterator provides a method for traversing cells in a data set. Call the vtkDataSet::NewCellIterator() method to use this class. The cell is represented as a set of three pieces of information: The cell type, the ids of the points constituting the cell, and the points themselves. This iterator fetches these as needed. If only the cell type is used, the type is not looked up until GetCellType is called, and the point information is left uninitialized. This allows efficient screening of cells, since expensive point lookups may be skipped depending on the cell type/etc. An example usage of this class: ~~~ void myWorkerFunction(vtkDataSet *ds) { vtkCellIterator *it = ds->NewCellIterator(); for (it->InitTraversal(); !it->IsDoneWithTraversal(); it->GoToNextCell()) { if (it->GetCellType() != VTK_TETRA) { continue; // Skip non-tetrahedral cells } vtkIdList *pointIds = it->GetPointIds(); // Do screening on the point ids, maybe figure out scalar range and skip cells that do not lie in a certain range? vtkPoints *points = it->GetPoints(); // Do work using the cell points, or ... vtkGenericCell *cell = ...; it->GetCell(cell); // ... do work with a vtkCell. } it->Delete(); } ~~~ The example above pulls in bits of information as needed to filter out cells that aren't relevant. The least expensive lookups are performed first (cell type, then point ids, then points/full cell) to prevent wasted cycles fetching unnecessary data. Also note that at the end of the loop, the iterator must be deleted as these iterators are vtkObject subclasses. Generic Warning: In /mnt/storage/workspace/med-ubuntu-free/ExtProjs/VTK/Common/DataModel/vtkCellIterator.h, line vtkCommonDataModelPython.vtkCellIteratorV.SafeDownCast(vtkObjectBase) -> vtkCellIterator C++: static vtkCellIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCellIterator C++: vtkCellIterator *NewInstance() V.InitTraversal() C++: void InitTraversal() Reset to the first cell. V.GoToNextCell() C++: void GoToNextCell() Increment to next cell. Always safe to call. V.IsDoneWithTraversal() -> bool C++: virtual bool IsDoneWithTraversal() Returns false while the iterator is valid. Always safe to call. V.GetCellType() -> int C++: int GetCellType() Get the current cell type (e.g. VTK_LINE, VTK_VERTEX, VTK_TETRA, etc). This should only be called when IsDoneWithTraversal() returns false. V.GetCellDimension() -> int C++: int GetCellDimension() Get the current cell dimension (0, 1, 2, or 3). This should only be called when IsDoneWithTraversal() returns false. V.GetCellId() -> int C++: virtual vtkIdType GetCellId() Get the id of the current cell. V.GetPointIds() -> vtkIdList C++: vtkIdList *GetPointIds() Get the ids of the points in the current cell. This should only be called when IsDoneWithTraversal() returns false. V.GetPoints() -> vtkPoints C++: vtkPoints *GetPoints() Get the points in the current cell. This is usually a very expensive call, and should be avoided when possible. This should only be called when IsDoneWithTraversal() returns false. V.GetFaces() -> vtkIdList C++: vtkIdList *GetFaces() Get the faces for a polyhedral cell. This is only valid when CellType is VTK_POLYHEDRON. V.GetCell(vtkGenericCell) C++: void GetCell(vtkGenericCell *cell) Write the current full cell information into the argument. This is usually a very expensive call, and should be avoided when possible. This should only be called when IsDoneWithTraversal() returns false. V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() Return the number of points in the current cell. This should only be called when IsDoneWithTraversal() returns false. V.GetNumberOfFaces() -> int C++: vtkIdType GetNumberOfFaces() Return the number of faces in the current cell. This should only be called when IsDoneWithTraversal() returns false. ؐ??ؐt::ێێt֎@@@@@@@@@֎@@@@ww֎JddddddddddddJdddJvtkCellLinksInsertNextPointGetNcellsGetCellsDeletePointInsertNextCellReferenceAddCellReferenceRemoveCellReferenceResizeCellListvtkCellLinks - object represents upward pointers from points to list of cells using each point Superclass: vtkAbstractCellLinks vtkCellLinks is a supplemental object to vtkCellArray and vtkCellTypes, enabling access from points to the cells using the points. vtkCellLinks is a list of cell ids, each such link representing a dynamic list of cell ids using the point. The information provided by this object can be used to determine neighbors and construct other local topological information. @warning Note that this class is designed to support incremental link construction. More efficient cell links structures can be built with vtkStaticCellLinks (and vtkStaticCellLinksTemplate). However these other classes are typically meant for one-time (static) construction. @sa vtkCellArray vtkCellTypes vtkStaticCellLinks vtkStaticCellLinksTemplate vtkCommonDataModelPython.vtkCellLinksV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard methods to instantiate, print, and obtain type information. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard methods to instantiate, print, and obtain type information. V.SafeDownCast(vtkObjectBase) -> vtkCellLinks C++: static vtkCellLinks *SafeDownCast(vtkObjectBase *o) Standard methods to instantiate, print, and obtain type information. V.NewInstance() -> vtkCellLinks C++: vtkCellLinks *NewInstance() Standard methods to instantiate, print, and obtain type information. V.BuildLinks(vtkDataSet) C++: void BuildLinks(vtkDataSet *data) override; V.BuildLinks(vtkDataSet, vtkCellArray) C++: void BuildLinks(vtkDataSet *data, vtkCellArray *Connectivity) Build the link list array. All subclasses of vtkAbstractCellLinks must support this method. V.Allocate(int, int) C++: void Allocate(vtkIdType numLinks, vtkIdType ext=1000) Allocate the specified number of links (i.e., number of points) that will be built. V.Initialize() C++: void Initialize() Clear out any previously allocated data structures V.GetNcells(int) -> int C++: unsigned short GetNcells(vtkIdType ptId) Get the number of cells using the point specified by ptId. V.GetCells(int) -> (int, ...) C++: vtkIdType *GetCells(vtkIdType ptId) Return a list of cell ids using the point. V.InsertNextPoint(int) -> int C++: vtkIdType InsertNextPoint(int numLinks) Insert a new point into the cell-links data structure. The size parameter is the initial size of the list. V.InsertNextCellReference(int, int) C++: void InsertNextCellReference(vtkIdType ptId, vtkIdType cellId) Insert a cell id into the list of cells (at the end) using the cell id provided. (Make sure to extend the link list (if necessary) using the method ResizeCellList().) V.DeletePoint(int) C++: void DeletePoint(vtkIdType ptId) Delete point (and storage) by destroying links to using cells. V.RemoveCellReference(int, int) C++: void RemoveCellReference(vtkIdType cellId, vtkIdType ptId) Delete the reference to the cell (cellId) from the point (ptId). This removes the reference to the cellId from the cell list, but does not resize the list (recover memory with ResizeCellList(), if necessary). V.AddCellReference(int, int) C++: void AddCellReference(vtkIdType cellId, vtkIdType ptId) Add the reference to the cell (cellId) from the point (ptId). This adds a reference to the cellId from the cell list, but does not resize the list (extend memory with ResizeCellList(), if necessary). V.ResizeCellList(int, int) C++: void ResizeCellList(vtkIdType ptId, int size) Change the length of a point's link list (i.e., list of cells using a point) by the size specified. V.Squeeze() C++: void Squeeze() Reclaim any unused memory. V.Reset() C++: void Reset() Reset to a state of no entries without freeing the memory. V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() Return the memory in kibibytes (1024 bytes) consumed by this cell links array. Used to support streaming and reading/writing data. The value returned is guaranteed to be greater than or equal to the memory required to actually represent the data represented by this object. The information returned is valid only after the pipeline has been updated. V.DeepCopy(vtkCellLinks) C++: void DeepCopy(vtkCellLinks *src) Standard DeepCopy method. Since this object contains no reference to other objects, there is no ShallowCopy. vtkCellLocatorGetNumberOfCellsPerBucketSetNumberOfCellsPerBucketGenerateRepresentationBuildLocatorInternalForceBuildLocatorBuildLocatorIfNeededFreeSearchStructurevtkCellLocator - octree-based spatial search object to quickly locate cells Superclass: vtkAbstractCellLocator vtkCellLocator is a spatial search object to quickly locate cells in 3D. vtkCellLocator uses a uniform-level octree subdivision, where each octant (an octant is also referred to as a bucket) carries an indication of whether it is empty or not, and each leaf octant carries a list of the cells inside of it. (An octant is not empty if it has one or more cells inside of it.) Typical operations are intersection with a line to return candidate cells, or intersection with another vtkCellLocator to return candidate cells. @warning Many other types of spatial locators have been developed, such as variable depth octrees and kd-trees. These are often more efficient for the operations described here. vtkCellLocator has been designed for subclassing; so these locators can be derived if necessary. @sa vtkLocator vtkPointLocator vtkOBBTree vtkCommonDataModelPython.vtkCellLocatorV.SafeDownCast(vtkObjectBase) -> vtkCellLocator C++: static vtkCellLocator *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkCellLocator C++: vtkCellLocator *NewInstance() Standard type and print methods. V.SetNumberOfCellsPerBucket(int) C++: void SetNumberOfCellsPerBucket(int N) Specify the average number of cells in each octant. V.GetNumberOfCellsPerBucket() -> int C++: int GetNumberOfCellsPerBucket() V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int, int, vtkGenericCell) -> int C++: int IntersectWithLine(double a0[3], double a1[3], double tol, double &t, double x[3], double pcoords[3], int &subId, vtkIdType &cellId, vtkGenericCell *cell) override; V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int, int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId, vtkIdType &cellId) V.IntersectWithLine((float, float, float), (float, float, float), vtkPoints, vtkIdList) -> int C++: virtual int IntersectWithLine(const double p1[3], const double p2[3], vtkPoints *points, vtkIdList *cellIds) Return intersection point (if any) AND the cell which was intersected by the finite line. The cell is returned as a cell id and as a generic cell. For other IntersectWithLine signatures, see vtkAbstractCellLocator V.FindClosestPoint([float, float, float], [float, float, float], vtkGenericCell, int, int, float) C++: void FindClosestPoint(double x[3], double closestPoint[3], vtkGenericCell *cell, vtkIdType &cellId, int &subId, double &dist2) override; V.FindClosestPoint([float, float, float], [float, float, float], int, int, float) C++: virtual void FindClosestPoint(double x[3], double closestPoint[3], vtkIdType &cellId, int &subId, double &dist2) Return the closest point and the cell which is closest to the point x. The closest point is somewhere on a cell, it need not be one of the vertices of the cell. This version takes in a vtkGenericCell to avoid allocating and deallocating the cell. This is much faster than the version which does not take a *cell, especially when this function is called many times in a row such as by a for loop, where the allocation and deallocation can be done only once outside the for loop. If a cell is found, "cell" contains the points and ptIds for the cell "cellId" upon exit. V.FindClosestPointWithinRadius([float, float, float], float, [float, float, float], vtkGenericCell, int, int, float, int) -> int C++: vtkIdType FindClosestPointWithinRadius(double x[3], double radius, double closestPoint[3], vtkGenericCell *cell, vtkIdType &cellId, int &subId, double &dist2, int &inside) override; V.FindClosestPointWithinRadius([float, float, float], float, [float, float, float], int, int, float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double x[3], double radius, double closestPoint[3], vtkIdType &cellId, int &subId, double &dist2) V.FindClosestPointWithinRadius([float, float, float], float, [float, float, float], vtkGenericCell, int, int, float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double x[3], double radius, double closestPoint[3], vtkGenericCell *cell, vtkIdType &cellId, int &subId, double &dist2) Return the closest point within a specified radius and the cell which is closest to the point x. The closest point is somewhere on a cell, it need not be one of the vertices of the cell. This method returns 1 if a point is found within the specified radius. If there are no cells within the specified radius, the method returns 0 and the values of closestPoint, cellId, subId, and dist2 are undefined. This version takes in a vtkGenericCell to avoid allocating and deallocating the cell. This is much faster than the version which does not take a *cell, especially when this function is called many times in a row such as by a for loop, where the allocation and dealloction can be done only once outside the for loop. If a closest point is found, "cell" contains the points and ptIds for the cell "cellId" upon exit. If a closest point is found, inside returns the return value of the EvaluatePosition call to the closest cell; inside(=1) or outside(=0). For other FindClosestPointWithinRadius signatures, see vtkAbstractCellLocator V.GetCells(int) -> vtkIdList C++: virtual vtkIdList *GetCells(int bucket) Get the cells in a particular bucket. V.GetNumberOfBuckets() -> int C++: virtual int GetNumberOfBuckets(void) Return number of buckets available. Insure that the locator has been built before attempting to access buckets (octants). V.FindCell([float, float, float], float, vtkGenericCell, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], double tol2, vtkGenericCell *GenCell, double pcoords[3], double *weights) override; V.FindCell([float, float, float]) -> int C++: virtual vtkIdType FindCell(double x[3]) Find the cell containing a given point. returns -1 if no cell found the cell parameters are copied into the supplied variables, a cell must be provided to store the information. V.FindCellsWithinBounds([float, ...], vtkIdList) C++: void FindCellsWithinBounds(double *bbox, vtkIdList *cells) override; Return a list of unique cell ids inside of a given bounding box. The user must provide the vtkIdList to populate. This method returns data only after the locator has been built. V.FindCellsAlongLine([float, float, float], [float, float, float], float, vtkIdList) C++: void FindCellsAlongLine(double p1[3], double p2[3], double tolerance, vtkIdList *cells) override; Given a finite line defined by the two points (p1,p2), return the list of unique cell ids in the buckets containing the line. It is possible that an empty cell list is returned. The user must provide the vtkIdList to populate. This method returns data only after the locator has been built. V.FreeSearchStructure() C++: void FreeSearchStructure() override; Satisfy vtkLocator abstract interface. V.BuildLocator() C++: void BuildLocator() override; Satisfy vtkLocator abstract interface. V.BuildLocatorIfNeeded() C++: virtual void BuildLocatorIfNeeded() Satisfy vtkLocator abstract interface. V.ForceBuildLocator() C++: virtual void ForceBuildLocator() Satisfy vtkLocator abstract interface. V.BuildLocatorInternal() C++: virtual void BuildLocatorInternal() Satisfy vtkLocator abstract interface. V.GenerateRepresentation(int, vtkPolyData) C++: void GenerateRepresentation(int level, vtkPolyData *pd) override; Satisfy vtkLocator abstract interface. GetTypeIdFromClassNameGetClassNameFromTypeIdvtkCellTypesSetCellTypesGetNumberOfTypesDeleteCellInsertNextTypeGetCellLocationIsTypeInsertCellvtkUnsignedCharArrayvtkIntArrayvtkCellTypes - object provides direct access to cells in vtkCellArray and type information Superclass: vtkObject This class is a supplemental object to vtkCellArray to allow random access into cells as well as representing cell type information. The "location" field is the location in the vtkCellArray list in terms of an integer offset. An integer offset was used instead of a pointer for easy storage and inter-process communication. The type information is defined in the file vtkCellType.h. @warning Sometimes this class is used to pass type information independent of the random access (i.e., location) information. For example, see vtkDataSet::GetCellTypes(). If you use the class in this way, you can use a location value of -1. @sa vtkCellArray vtkCellLinks vtkCommonDataModelPython.vtkCellTypesV.SafeDownCast(vtkObjectBase) -> vtkCellTypes C++: static vtkCellTypes *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCellTypes C++: vtkCellTypes *NewInstance() V.Allocate(int, int) -> int C++: int Allocate(int sz=512, int ext=1000) Allocate memory for this array. Delete old storage only if necessary. V.InsertCell(int, int, int) C++: void InsertCell(vtkIdType id, unsigned char type, vtkIdType loc) Add a cell at specified id. V.InsertNextCell(int, int) -> int C++: vtkIdType InsertNextCell(unsigned char type, vtkIdType loc) Add a cell to the object in the next available slot. V.SetCellTypes(int, vtkUnsignedCharArray, vtkIdTypeArray) C++: void SetCellTypes(vtkIdType ncells, vtkUnsignedCharArray *cellTypes, vtkIdTypeArray *cellLocations) V.SetCellTypes(int, vtkUnsignedCharArray, vtkIntArray) C++: void SetCellTypes(vtkIdType ncells, vtkUnsignedCharArray *cellTypes, vtkIntArray *cellLocations) Specify a group of cell types. V.GetCellLocation(int) -> int C++: vtkIdType GetCellLocation(vtkIdType cellId) Return the location of the cell in the associated vtkCellArray. V.DeleteCell(int) C++: void DeleteCell(vtkIdType cellId) Delete cell by setting to nullptr cell type. V.GetNumberOfTypes() -> int C++: vtkIdType GetNumberOfTypes() Return the number of types in the list. V.IsType(int) -> int C++: int IsType(unsigned char type) Return 1 if type specified is contained in list; 0 otherwise. V.InsertNextType(int) -> int C++: vtkIdType InsertNextType(unsigned char type) Add the type specified to the end of the list. Range checking is performed. V.GetCellType(int) -> int C++: unsigned char GetCellType(vtkIdType cellId) Return the type of cell. V.Reset() C++: void Reset() Initialize object without releasing memory. V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() Return the memory in kibibytes (1024 bytes) consumed by this cell type array. Used to support streaming and reading/writing data. The value returned is guaranteed to be greater than or equal to the memory required to actually represent the data represented by this object. The information returned is valid only after the pipeline has been updated. V.DeepCopy(vtkCellTypes) C++: void DeepCopy(vtkCellTypes *src) Standard DeepCopy method. Since this object contains no reference to other objects, there is no ShallowCopy. V.GetClassNameFromTypeId(int) -> string C++: static const char *GetClassNameFromTypeId(int typeId) Given an int (as defined in vtkCellType.h) identifier for a class return it's classname. V.GetTypeIdFromClassName(string) -> int C++: static int GetTypeIdFromClassName(const char *classname) Given a data object classname, return it's int identified (as defined in vtkCellType.h) V.IsLinear(int) -> int C++: static int IsLinear(unsigned char type) This convenience method is a fast check to determine if a cell type represents a linear or nonlinear cell. This is generally much more efficient than getting the appropriate vtkCell and checking its IsLinear method. @kVV *vtkUnsignedCharArray *vtkIdTypeArray@kVV *vtkUnsignedCharArray *vtkIntArrayvtkCompositeDataSetGetDataSetSetDataSetNewIteratorCURRENT_PROCESS_CAN_LOAD_BLOCKvtkCompositeDataSet - abstract superclass for composite (multi-block or AMR) datasets Superclass: vtkDataObject vtkCompositeDataSet is an abstract class that represents a collection of datasets (including other composite datasets). It provides an interface to access the datasets through iterators. vtkCompositeDataSet provides methods that are used by subclasses to store the datasets. vtkCompositeDataSet provides the datastructure for a full tree representation. Subclasses provide the semantics for it and control how this tree is built. @sa vtkCompositeDataIterator vtkCommonDataModelPython.vtkCompositeDataSetV.SafeDownCast(vtkObjectBase) -> vtkCompositeDataSet C++: static vtkCompositeDataSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCompositeDataSet C++: vtkCompositeDataSet *NewInstance() V.NewIterator() -> vtkCompositeDataIterator C++: virtual vtkCompositeDataIterator *NewIterator() Return a new iterator (the iterator has to be deleted by user). V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return class name of data type (see vtkType.h for definitions). V.CopyStructure(vtkCompositeDataSet) C++: virtual void CopyStructure(vtkCompositeDataSet *input) Copies the tree structure from the input. All pointers to non-composite data objects are initialized to nullptr. This also shallow copies the meta data associated with all the nodes. V.SetDataSet(vtkCompositeDataIterator, vtkDataObject) C++: virtual void SetDataSet(vtkCompositeDataIterator *iter, vtkDataObject *dataObj) Sets the data set at the location pointed by the iterator. The iterator does not need to be iterating over this dataset itself. It can be any composite datasite with similar structure (achieved by using CopyStructure). V.GetDataSet(vtkCompositeDataIterator) -> vtkDataObject C++: virtual vtkDataObject *GetDataSet( vtkCompositeDataIterator *iter) Returns the dataset located at the positiong pointed by the iterator. The iterator does not need to be iterating over this dataset itself. It can be an iterator for composite dataset with similar structure (achieved by using CopyStructure). V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() override; Return the actual size of the data in kibibytes (1024 bytes). This number is valid only after the pipeline has updated. V.GetData(vtkInformation) -> vtkCompositeDataSet C++: static vtkCompositeDataSet *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkCompositeDataSet C++: static vtkCompositeDataSet *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *src) override; Shallow and Deep copy. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Shallow and Deep copy. V.GetNumberOfPoints() -> int C++: virtual vtkIdType GetNumberOfPoints() Returns the total number of points of all blocks. This will iterate over all blocks and call GetNumberOfPoints() so it might be expansive. V.NAME() -> vtkInformationStringKey C++: static vtkInformationStringKey *NAME() Key used to put node name in the meta-data associated with a node. V.CURRENT_PROCESS_CAN_LOAD_BLOCK() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *CURRENT_PROCESS_CAN_LOAD_BLOCK( ) Key used to indicate that the current process can load the data in the node. Used for parallel readers where the nodes are assigned to the processes by the reader to indicate further down the pipeline which nodes will be on which processes. ***THIS IS AN EXPERIMENTAL KEY SUBJECT TO CHANGE WITHOUT NOTICE*** GoToFirstItemGoToNextItemGetSkipEmptyNodesGetReverseGetCurrentFlatIndexGetCurrentDataObjectGetCurrentMetaDataHasCurrentMetaDataSetSkipEmptyNodesSkipEmptyNodesOnSkipEmptyNodesOffInitReverseTraversalvtkCompositeDataIterator - superclass for composite data iterators Superclass: vtkObject vtkCompositeDataIterator provides an interface for accessing datasets in a collection (vtkCompositeDataIterator). vtkCommonDataModelPython.vtkCompositeDataIteratorV.SafeDownCast(vtkObjectBase) -> vtkCompositeDataIterator C++: static vtkCompositeDataIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkCompositeDataIterator C++: vtkCompositeDataIterator *NewInstance() V.SetDataSet(vtkCompositeDataSet) C++: virtual void SetDataSet(vtkCompositeDataSet *ds) Set the composite dataset this iterator is iterating over. Must be set before traversal begins. V.GetDataSet() -> vtkCompositeDataSet C++: virtual vtkCompositeDataSet *GetDataSet() Set the composite dataset this iterator is iterating over. Must be set before traversal begins. V.InitTraversal() C++: virtual void InitTraversal() Begin iterating over the composite dataset structure. V.InitReverseTraversal() C++: virtual void InitReverseTraversal() Begin iterating over the composite dataset structure in reverse order. V.GoToFirstItem() C++: virtual void GoToFirstItem() Move the iterator to the beginning of the collection. V.GoToNextItem() C++: virtual void GoToNextItem() Move the iterator to the next item in the collection. V.IsDoneWithTraversal() -> int C++: virtual int IsDoneWithTraversal() Test whether the iterator is finished with the traversal. Returns 1 for yes, and 0 for no. It is safe to call any of the GetCurrent...() methods only when IsDoneWithTraversal() returns 0. V.GetCurrentDataObject() -> vtkDataObject C++: virtual vtkDataObject *GetCurrentDataObject() Returns the current item. Valid only when IsDoneWithTraversal() returns 0. V.GetCurrentMetaData() -> vtkInformation C++: virtual vtkInformation *GetCurrentMetaData() Returns the meta-data associated with the current item. This will allocate a new vtkInformation object is none is already present. Use HasCurrentMetaData to avoid unnecessary creation of vtkInformation objects. V.HasCurrentMetaData() -> int C++: virtual int HasCurrentMetaData() Returns if the a meta-data information object is present for the current item. Return 1 on success, 0 otherwise. V.SetSkipEmptyNodes(int) C++: virtual void SetSkipEmptyNodes(int _arg) If SkipEmptyNodes is true, then nullptr datasets will be skipped. Default is true. V.GetSkipEmptyNodes() -> int C++: virtual int GetSkipEmptyNodes() If SkipEmptyNodes is true, then nullptr datasets will be skipped. Default is true. V.SkipEmptyNodesOn() C++: virtual void SkipEmptyNodesOn() If SkipEmptyNodes is true, then nullptr datasets will be skipped. Default is true. V.SkipEmptyNodesOff() C++: virtual void SkipEmptyNodesOff() If SkipEmptyNodes is true, then nullptr datasets will be skipped. Default is true. V.GetCurrentFlatIndex() -> int C++: virtual unsigned int GetCurrentFlatIndex() Flat index is an index to identify the data in a composite data structure V.GetReverse() -> int C++: virtual int GetReverse() Returns if the iteration is in reverse order. vtkConeGetAngleMaxValueGetAngleMinValueGetAngleSetAnglevtkCone - implicit function for a cone Superclass: vtkImplicitFunction vtkCone computes the implicit function and function gradient for a cone. vtkCone is a concrete implementation of vtkImplicitFunction. The cone vertex is located at the origin with axis of rotation coincident with x-axis. (Use the superclass' vtkImplicitFunction transformation matrix if necessary to reposition.) The angle specifies the angle between the axis of rotation and the side of the cone. @warning The cone is infinite in extent. To truncate the cone use the vtkImplicitBoolean in combination with clipping planes. vtkCommonDataModelPython.vtkConeV.SafeDownCast(vtkObjectBase) -> vtkCone C++: static vtkCone *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCone C++: vtkCone *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate cone equation. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate cone normal. V.SetAngle(float) C++: virtual void SetAngle(double _arg) Set/Get the cone angle (expressed in degrees). V.GetAngleMinValue() -> float C++: virtual double GetAngleMinValue() Set/Get the cone angle (expressed in degrees). V.GetAngleMaxValue() -> float C++: virtual double GetAngleMaxValue() Set/Get the cone angle (expressed in degrees). V.GetAngle() -> float C++: virtual double GetAngle() Set/Get the cone angle (expressed in degrees). @V@vtkConvexPointSetHasFixedTopologyvtkConvexPointSet - a 3D cell defined by a set of convex points Superclass: vtkCell3D vtkConvexPointSet is a concrete implementation that represents a 3D cell defined by a convex set of points. An example of such a cell is an octant (from an octree). vtkConvexPointSet uses the ordered triangulations approach (vtkOrderedTriangulator) to create triangulations guaranteed to be compatible across shared faces. This allows a general approach to processing complex, convex cell types. @sa vtkHexahedron vtkPyramid vtkTetra vtkVoxel vtkWedge vtkCommonDataModelPython.vtkConvexPointSetV.SafeDownCast(vtkObjectBase) -> vtkConvexPointSet C++: static vtkConvexPointSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkConvexPointSet C++: vtkConvexPointSet *NewInstance() V.HasFixedTopology() -> int C++: virtual int HasFixedTopology() See vtkCell3D API for description of this method. V.GetEdgePoints(int, [int, ...]) C++: void GetEdgePoints(int edgeId, int *&pts) override; See vtkCell3D API for description of these methods. V.GetFacePoints(int, [int, ...]) C++: void GetFacePoints(int faceId, int *&pts) override; Get the list of vertices that define a face. The list is terminated with a negative number. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The faceId must range between 0<=faceIdGetNumberOfFaces(). V.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. V.RequiresInitialization() -> int C++: int RequiresInitialization() override; This cell requires that it be initialized prior to access. V.Initialize() C++: void Initialize() override; V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Satisfy the vtkCell API. This method contours by triangulating the cell and then contouring the resulting tetrahedra. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Satisfy the vtkCell API. This method contours by triangulating the cell and then adding clip-edge intersection points into the triangulation; extracting the clipped region. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Satisfy the vtkCell API. This method determines the subId, pcoords, and weights by triangulating the convex point set, and then determining which tetrahedron the point lies in. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; The inverse of EvaluatePosition. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Triangulates the cells and then intersects them to determine the intersection point. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Triangulate using methods of vtkOrderedTriangulator. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Computes derivatives by triangulating and from subId and pcoords, evaluating derivatives on the resulting tetrahedron. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Returns the set of points forming a face of the triangulation of these points that are on the boundary of the cell that are closest parametrically to the point specified. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the cell in parametric coordinates. V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; A convex point set is triangulated prior to any operations on it so it is not a primary cell, it is a composite cell. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double pcoords[3], double *sf) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, ...]) C++: void InterpolateDerivs(double pcoords[3], double *derivs) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkCubicLinevtkCubicLine - cell represents a cubic , isoparametric 1D line Superclass: vtkNonLinearCell vtkCubicLine is a concrete implementation of vtkNonLinearCell to represent a 1D Cubic line. The Cubic Line is the 4 nodes isoparametric parabolic line . The interpolation is the standard finite element, cubic isoparametric shape function. The cell includes two mid-edge nodes. The ordering of the four points defining the cell is point ids (0,1,2,3) where id #2 and #3 are the mid-edge nodes. Please note that the parametric coordinates lie between -1 and 1 in accordance with most standard documentations.@par Thanks: This file has been developed by Oxalya - www.oxalya.com Copyright (c) EDF - www.edf.fr vtkCommonDataModelPython.vtkCubicLineV.SafeDownCast(vtkObjectBase) -> vtkCubicLine C++: static vtkCubicLine *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCubicLine C++: vtkCubicLine *NewInstance() V.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; See the vtkCell API for descriptions of these methods. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; See the vtkCell API for descriptions of these methods. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; See the vtkCell API for descriptions of these methods. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; See the vtkCell API for descriptions of these methods. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; See the vtkCell API for descriptions of these methods. V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; See the vtkCell API for descriptions of these methods. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *lines, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this line using scalar value provided. Like contouring, except that it cuts the line to produce other lines. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the triangle in parametric coordinates. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Line-line intersection. Intersection has to occur within [0,1] parametric coordinates and with specified tolerance. V.InterpolationFunctions([float, float, float], [float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[4]) @deprecated Replaced by vtkCubicLine::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[4]) @deprecated Replaced by vtkCubicLine::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[4]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[4]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkCylinderGetCenterGetAxisGetRadiusSetRadiusSetAxisSetCentervtkCylinder - implicit function for a cylinder Superclass: vtkImplicitFunction vtkCylinder computes the implicit function and function gradient for a cylinder using F(r)=r^2-Radius^2. vtkCylinder is a concrete implementation of vtkImplicitFunction. By default the Cylinder is centered at the origin and the axis of rotation is along the y-axis. You can redefine the center and axis of rotation by setting the Center and Axis data members. (Note that it is also possible to use the superclass' vtkImplicitFunction transformation matrix if necessary to reposition by using FunctionValue() and FunctionGradient().) @warning The cylinder is infinite in extent. To truncate the cylinder in modeling operations use the vtkImplicitBoolean in combination with clipping planes. vtkCommonDataModelPython.vtkCylinderV.SafeDownCast(vtkObjectBase) -> vtkCylinder C++: static vtkCylinder *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkCylinder C++: vtkCylinder *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate cylinder equation F(r) = r^2 - Radius^2. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate cylinder function gradient. V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the cylinder radius. V.GetRadius() -> float C++: virtual double GetRadius() Set/Get the cylinder radius. V.SetCenter(float, float, float) C++: void SetCenter(double, double, double) V.SetCenter((float, float, float)) C++: void SetCenter(double a[3]) V.GetCenter() -> (float, float, float) C++: double *GetCenter() V.SetAxis(float, float, float) C++: void SetAxis(double ax, double ay, double az) V.SetAxis([float, float, float]) C++: void SetAxis(double a[3]) Set/Get the axis of the cylinder. If the axis is not specified as a unit vector, it will be normalized. If zero-length axis vector is used as input to this method, it will be ignored. V.GetAxis() -> (float, float, float) C++: double *GetAxis() vtkDataSetCellIteratorvtkDataSetCellIterator - Implementation of vtkCellIterator using vtkDataSet API. Superclass: vtkCellIterator vtkCommonDataModelPython.vtkDataSetCellIteratorV.SafeDownCast(vtkObjectBase) -> vtkDataSetCellIterator C++: static vtkDataSetCellIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataSetCellIterator C++: vtkDataSetCellIterator *NewInstance() V.IsDoneWithTraversal() -> bool C++: bool IsDoneWithTraversal() override; Returns false while the iterator is valid. Always safe to call. V.GetCellId() -> int C++: vtkIdType GetCellId() override; Get the id of the current cell. vtkDataObjectCollectionGetNextItemAddItemGetItemvtkCollectionvtkDataObjectCollection - maintain an unordered list of data objects Superclass: vtkCollection vtkDataObjectCollection is an object that creates and manipulates ordered lists of data objects. See also vtkCollection and subclasses. vtkCommonDataModelPython.vtkDataObjectCollectionV.SafeDownCast(vtkObjectBase) -> vtkDataObjectCollection C++: static vtkDataObjectCollection *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkDataObjectCollection C++: vtkDataObjectCollection *NewInstance() V.AddItem(vtkDataObject) C++: void AddItem(vtkDataObject *ds) Add a data object to the bottom of the list. V.GetNextItem() -> vtkDataObject C++: vtkDataObject *GetNextItem() Get the next data object in the list. V.GetItem(int) -> vtkDataObject C++: vtkDataObject *GetItem(int i) Get the ith data object in the list. GetAssociationTypeFromStringGetAssociationTypeAsStringSetPointDataActiveScalarInfoSetActiveAttributeInfoSetActiveAttributeRemoveNamedFieldInformationGetNamedFieldInformationGetActiveFieldInformationSetGlobalReleaseDataFlagSILBOUNDING_BOXSPACINGORIGINFIELD_NAMEPIECE_EXTENTFIELD_RANGEFIELD_OPERATIONFIELD_NUMBER_OF_TUPLESFIELD_NUMBER_OF_COMPONENTSFIELD_ACTIVE_ATTRIBUTEFIELD_ATTRIBUTE_TYPEFIELD_ASSOCIATIONFIELD_ARRAY_TYPEEDGE_DATA_VECTORVERTEX_DATA_VECTORCELL_DATA_VECTORPOINT_DATA_VECTORDATA_TIME_STEPDATA_NUMBER_OF_GHOST_LEVELSDATA_NUMBER_OF_PIECESDATA_PIECE_NUMBERALL_PIECES_EXTENTDATA_EXTENTDATA_EXTENT_TYPEDATA_OBJECTDATA_TYPE_NAMEGetGlobalReleaseDataFlagGlobalReleaseDataFlagOnGlobalReleaseDataFlagOffDataHasBeenGeneratedReleaseDataGetExtentTypeGetDataReleasedGetFieldDataGetInformationGetUpdateTimeCopyInformationFromPipelineCopyInformationToPipelinePrepareForNewDataFieldAssociationsAttributeTypesFieldOperationsGetNumberOfElementsGetAttributeTypeForArrayvtkAbstractArrayGetAttributesAsFieldDataGetAttributesCropSetFieldDataSetInformationVTK_PIECES_EXTENTVTK_3D_EXTENTVTK_TIME_EXTENTFIELD_OPERATION_PRESERVEDFIELD_OPERATION_MODIFIEDFIELD_OPERATION_REMOVEDPOINT_THEN_CELLROWNUMBER_OF_ATTRIBUTE_TYPESFIELD_ASSOCIATION_POINTSFIELD_ASSOCIATION_CELLSFIELD_ASSOCIATION_NONEFIELD_ASSOCIATION_VERTICESFIELD_ASSOCIATION_EDGESFIELD_ASSOCIATION_ROWSNUMBER_OF_ASSOCIATIONSvtkDataObject - general representation of visualization data Superclass: vtkObject vtkDataObject is an general representation of visualization data. It serves to encapsulate instance variables and methods for visualization network execution, as well as representing data consisting of a field (i.e., just an unstructured pile of data). This is to be compared with a vtkDataSet, which is data with geometric and/or topological structure. vtkDataObjects are used to represent arbitrary repositories of data via the vtkFieldData instance variable. These data must be eventually mapped into a concrete subclass of vtkDataSet before they can actually be displayed. @sa vtkDataSet vtkFieldData vtkDataObjectToDataSetFilter vtkFieldDataToAttributeDataFilter FIELD_OPERATION_REINTERPOLATEDFIELD_ASSOCIATION_POINTS_THEN_CELLSvtkCommonDataModelPython.vtkDataObjectV.SafeDownCast(vtkObjectBase) -> vtkDataObject C++: static vtkDataObject *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataObject C++: vtkDataObject *NewInstance() V.GetInformation() -> vtkInformation C++: virtual vtkInformation *GetInformation() Set/Get the information object associated with this data object. V.SetInformation(vtkInformation) C++: virtual void SetInformation(vtkInformation *) Set/Get the information object associated with this data object. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Data objects are composite objects and need to check each part for MTime. The information object also needs to be considered. V.Initialize() C++: virtual void Initialize() Restore data object to initial state, V.ReleaseData() C++: void ReleaseData() Release data back to system to conserve memory resource. Used during visualization network execution. Releasing this data does not make down-stream data invalid. V.GetDataReleased() -> int C++: virtual int GetDataReleased() Get the flag indicating the data has been released. V.SetGlobalReleaseDataFlag(int) C++: static void SetGlobalReleaseDataFlag(int val) Turn on/off flag to control whether every object releases its data after being used by a filter. V.GlobalReleaseDataFlagOn() C++: void GlobalReleaseDataFlagOn() Turn on/off flag to control whether every object releases its data after being used by a filter. V.GlobalReleaseDataFlagOff() C++: void GlobalReleaseDataFlagOff() Turn on/off flag to control whether every object releases its data after being used by a filter. V.GetGlobalReleaseDataFlag() -> int C++: static int GetGlobalReleaseDataFlag() Turn on/off flag to control whether every object releases its data after being used by a filter. V.SetFieldData(vtkFieldData) C++: virtual void SetFieldData(vtkFieldData *) Assign or retrieve a general field data to this data object. V.GetFieldData() -> vtkFieldData C++: virtual vtkFieldData *GetFieldData() Assign or retrieve a general field data to this data object. V.GetDataObjectType() -> int C++: virtual int GetDataObjectType() Return class name of data type. This is one of VTK_STRUCTURED_GRID, VTK_STRUCTURED_POINTS, VTK_UNSTRUCTURED_GRID, VTK_POLY_DATA, or VTK_RECTILINEAR_GRID (see vtkSetGet.h for definitions). THIS METHOD IS THREAD SAFE V.GetUpdateTime() -> int C++: vtkMTimeType GetUpdateTime() Used by Threaded ports to determine if they should initiate an asynchronous update (still in development). V.GetActualMemorySize() -> int C++: virtual unsigned long GetActualMemorySize() Return the actual size of the data in kibibytes (1024 bytes). This number is valid only after the pipeline has updated. The memory size returned is guaranteed to be greater than or equal to the memory required to represent the data (e.g., extra space in arrays, etc. are not included in the return value). V.CopyInformationFromPipeline(vtkInformation) C++: virtual void CopyInformationFromPipeline( vtkInformation *info) Copy from the pipeline information to the data object's own information. Called right before the main execution pass. V.CopyInformationToPipeline(vtkInformation) C++: virtual void CopyInformationToPipeline(vtkInformation *info) Copy information from this data object to the pipeline information. This is used by the vtkTrivialProducer that is created when someone calls SetInputData() to connect a data object to a pipeline. V.GetActiveFieldInformation(vtkInformation, int, int) -> vtkInformation C++: static vtkInformation *GetActiveFieldInformation( vtkInformation *info, int fieldAssociation, int attributeType) Return the information object within the input information object's field data corresponding to the specified association (FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS) and attribute (SCALARS, VECTORS, NORMALS, TCOORDS, or TENSORS) V.GetNamedFieldInformation(vtkInformation, int, string) -> vtkInformation C++: static vtkInformation *GetNamedFieldInformation( vtkInformation *info, int fieldAssociation, const char *name) Return the information object within the input information object's field data corresponding to the specified association (FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS) and name. V.RemoveNamedFieldInformation(vtkInformation, int, string) C++: static void RemoveNamedFieldInformation(vtkInformation *info, int fieldAssociation, const char *name) Remove the info associated with an array V.SetActiveAttribute(vtkInformation, int, string, int) -> vtkInformation C++: static vtkInformation *SetActiveAttribute( vtkInformation *info, int fieldAssociation, const char *attributeName, int attributeType) Set the named array to be the active field for the specified type (SCALARS, VECTORS, NORMALS, TCOORDS, or TENSORS) and association (FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS). Returns the active field information object and creates on entry if one not found. V.SetActiveAttributeInfo(vtkInformation, int, int, string, int, int, int) C++: static void SetActiveAttributeInfo(vtkInformation *info, int fieldAssociation, int attributeType, const char *name, int arrayType, int numComponents, int numTuples) Set the name, array type, number of components, and number of tuples within the passed information object for the active attribute of type attributeType (in specified association, FIELD_ASSOCIATION_POINTS or FIELD_ASSOCIATION_CELLS). If there is not an active attribute of the specified type, an entry in the information object is created. If arrayType, numComponents, or numTuples equal to -1, or name=nullptr the value is not changed. V.SetPointDataActiveScalarInfo(vtkInformation, int, int) C++: static void SetPointDataActiveScalarInfo( vtkInformation *info, int arrayType, int numComponents) Convenience version of previous method for use (primarily) by the Imaging filters. If arrayType or numComponents == -1, the value is not changed. V.DataHasBeenGenerated() C++: void DataHasBeenGenerated() This method is called by the source when it executes to generate data. It is sort of the opposite of ReleaseData. It sets the DataReleased flag to 0, and sets a new UpdateTime. V.PrepareForNewData() C++: virtual void PrepareForNewData() make the output data ready for new data to be inserted. For most objects we just call Initialize. But for vtkImageData we leave the old data in case the memory can be reused. V.ShallowCopy(vtkDataObject) C++: virtual void ShallowCopy(vtkDataObject *src) Shallow and Deep copy. These copy the data, but not any of the pipeline connections. V.DeepCopy(vtkDataObject) C++: virtual void DeepCopy(vtkDataObject *src) Shallow and Deep copy. These copy the data, but not any of the pipeline connections. V.GetExtentType() -> int C++: virtual int GetExtentType() The ExtentType will be left as VTK_PIECES_EXTENT for data objects such as vtkPolyData and vtkUnstructuredGrid. The ExtentType will be changed to VTK_3D_EXTENT for data objects with 3D structure such as vtkImageData (and its subclass vtkStructuredPoints), vtkRectilinearGrid, and vtkStructuredGrid. The default is the have an extent in pieces, with only one piece (no streaming possible). V.Crop((int, ...)) C++: virtual void Crop(const int *updateExtent) This method crops the data object (if necessary) so that the extent matches the update extent. V.GetAttributes(int) -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetAttributes(int type) Returns the attributes of the data object of the specified attribute type. The type may be: POINT - Defined in vtkDataSet subclasses. CELL - Defined in vtkDataSet subclasses. VERTEX - Defined in vtkGraph subclasses. EDGE - Defined in vtkGraph subclasses. ROW - Defined in vtkTable. The other attribute type, FIELD, will return nullptr since field data is stored as a vtkFieldData instance, not a vtkDataSetAttributes instance. To retrieve field data, use GetAttributesAsFieldData. V.GetAttributesAsFieldData(int) -> vtkFieldData C++: virtual vtkFieldData *GetAttributesAsFieldData(int type) Returns the attributes of the data object as a vtkFieldData. This returns non-null values in all the same cases as GetAttributes, in addition to the case of FIELD, which will return the field data for any vtkDataObject subclass. V.GetAttributeTypeForArray(vtkAbstractArray) -> int C++: virtual int GetAttributeTypeForArray(vtkAbstractArray *arr) Retrieves the attribute type that an array came from. This is useful for obtaining which attribute type a input array to an algorithm came from (retrieved from GetInputAbstractArrayToProcesss). V.GetNumberOfElements(int) -> int C++: virtual vtkIdType GetNumberOfElements(int type) Get the number of elements for a specific attribute type (POINT, CELL, etc.). V.GetAssociationTypeAsString(int) -> string C++: static const char *GetAssociationTypeAsString( int associationType) Given an integer association type, this static method returns a string type for the attribute (i.e. type = 0: returns "Points"). V.GetAssociationTypeFromString(string) -> int C++: static int GetAssociationTypeFromString( const char *associationType) Given an integer association type, this static method returns a string type for the attribute (i.e. type = 0: returns "Points"). V.DATA_TYPE_NAME() -> vtkInformationStringKey C++: static vtkInformationStringKey *DATA_TYPE_NAME() V.DATA_OBJECT() -> vtkInformationDataObjectKey C++: static vtkInformationDataObjectKey *DATA_OBJECT() V.DATA_EXTENT_TYPE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DATA_EXTENT_TYPE() V.DATA_EXTENT() -> vtkInformationIntegerPointerKey C++: static vtkInformationIntegerPointerKey *DATA_EXTENT() V.ALL_PIECES_EXTENT() -> vtkInformationIntegerVectorKey C++: static vtkInformationIntegerVectorKey *ALL_PIECES_EXTENT() V.DATA_PIECE_NUMBER() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DATA_PIECE_NUMBER() V.DATA_NUMBER_OF_PIECES() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DATA_NUMBER_OF_PIECES() V.DATA_NUMBER_OF_GHOST_LEVELS() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DATA_NUMBER_OF_GHOST_LEVELS( ) V.DATA_TIME_STEP() -> vtkInformationDoubleKey C++: static vtkInformationDoubleKey *DATA_TIME_STEP() V.POINT_DATA_VECTOR() -> vtkInformationInformationVectorKey C++: static vtkInformationInformationVectorKey *POINT_DATA_VECTOR( ) V.CELL_DATA_VECTOR() -> vtkInformationInformationVectorKey C++: static vtkInformationInformationVectorKey *CELL_DATA_VECTOR() V.VERTEX_DATA_VECTOR() -> vtkInformationInformationVectorKey C++: static vtkInformationInformationVectorKey *VERTEX_DATA_VECTOR( ) V.EDGE_DATA_VECTOR() -> vtkInformationInformationVectorKey C++: static vtkInformationInformationVectorKey *EDGE_DATA_VECTOR() V.FIELD_ARRAY_TYPE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_ARRAY_TYPE() V.FIELD_ASSOCIATION() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_ASSOCIATION() V.FIELD_ATTRIBUTE_TYPE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_ATTRIBUTE_TYPE() V.FIELD_ACTIVE_ATTRIBUTE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_ACTIVE_ATTRIBUTE() V.FIELD_NUMBER_OF_COMPONENTS() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_NUMBER_OF_COMPONENTS() V.FIELD_NUMBER_OF_TUPLES() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_NUMBER_OF_TUPLES() V.FIELD_OPERATION() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_OPERATION() V.FIELD_RANGE() -> vtkInformationDoubleVectorKey C++: static vtkInformationDoubleVectorKey *FIELD_RANGE() V.PIECE_EXTENT() -> vtkInformationIntegerVectorKey C++: static vtkInformationIntegerVectorKey *PIECE_EXTENT() V.FIELD_NAME() -> vtkInformationStringKey C++: static vtkInformationStringKey *FIELD_NAME() V.ORIGIN() -> vtkInformationDoubleVectorKey C++: static vtkInformationDoubleVectorKey *ORIGIN() V.SPACING() -> vtkInformationDoubleVectorKey C++: static vtkInformationDoubleVectorKey *SPACING() V.BOUNDING_BOX() -> vtkInformationDoubleVectorKey C++: static vtkInformationDoubleVectorKey *BOUNDING_BOX() V.SIL() -> vtkInformationDataObjectKey C++: static vtkInformationDataObjectKey *SIL() V.GetData(vtkInformation) -> vtkDataObject C++: static vtkDataObject *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkDataObject C++: static vtkDataObject *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkCommonDataModelPython.vtkDataObject.FieldOperationsvtkCommonDataModelPython.vtkDataObject.AttributeTypesvtkCommonDataModelPython.vtkDataObject.FieldAssociationsNewDataObjectvtkDataObjectTypesvtkDataObjectTypes - no description provided. Superclass: vtkObject vtkCommonDataModelPython.vtkDataObjectTypesV.SafeDownCast(vtkObjectBase) -> vtkDataObjectTypes C++: static vtkDataObjectTypes *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataObjectTypes C++: vtkDataObjectTypes *NewInstance() V.GetClassNameFromTypeId(int) -> string C++: static const char *GetClassNameFromTypeId(int typeId) Given an int (as defined in vtkType.h) identifier for a class return it's classname. V.GetTypeIdFromClassName(string) -> int C++: static int GetTypeIdFromClassName(const char *classname) Given a data object classname, return it's int identified (as defined in vtkType.h) V.NewDataObject(string) -> vtkDataObject C++: static vtkDataObject *NewDataObject(const char *classname) V.NewDataObject(int) -> vtkDataObject C++: static vtkDataObject *NewDataObject(int typeId) Create (New) and return a data object of the given classname. vtkDataObjectTreeSetDataSetFromvtkDataObjectTreeIteratorHasMetaDataGetMetaDataNewTreeIteratorvtkDataObjectTree - provides implementation for most abstract methods in the superclass vtkCompositeDataSet Superclass: vtkCompositeDataSet vtkDataObjectTree is represents a collection of datasets (including other composite datasets). It provides an interface to access the datasets through iterators. vtkDataObjectTree provides methods that are used by subclasses to store the datasets. vtkDataObjectTree provides the datastructure for a full tree representation. Subclasses provide the semantics for it and control how this tree is built. @sa vtkDataObjectTreeIterator vtkCommonDataModelPython.vtkDataObjectTreeV.SafeDownCast(vtkObjectBase) -> vtkDataObjectTree C++: static vtkDataObjectTree *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataObjectTree C++: vtkDataObjectTree *NewInstance() V.NewTreeIterator() -> vtkDataObjectTreeIterator C++: virtual vtkDataObjectTreeIterator *NewTreeIterator() Return a new iterator (the iterator has to be deleted by user). V.NewIterator() -> vtkCompositeDataIterator C++: vtkCompositeDataIterator *NewIterator() override; Return a new iterator (the iterator has to be deleted by user). * Use NewTreeIterator when you have a pointer to a vtkDataObjectTree * and NewIterator when you have a pointer to a vtkCompositeDataSet; * NewIterator is inherited and calls NewTreeIterator internally. V.CopyStructure(vtkCompositeDataSet) C++: void CopyStructure(vtkCompositeDataSet *input) override; Copies the tree structure from the input. All pointers to non-composite data objects are initialized to nullptr. This also shallow copies the meta data associated with all the nodes. V.SetDataSet(vtkCompositeDataIterator, vtkDataObject) C++: void SetDataSet(vtkCompositeDataIterator *iter, vtkDataObject *dataObj) override; Sets the data set at the location pointed by the iterator. The iterator does not need to be iterating over this dataset itself. It can be any composite datasite with similar structure (achieved by using CopyStructure). V.SetDataSetFrom(vtkDataObjectTreeIterator, vtkDataObject) C++: void SetDataSetFrom(vtkDataObjectTreeIterator *iter, vtkDataObject *dataObj) Sets the data at the location provided by a vtkDataObjectTreeIterator V.GetDataSet(vtkCompositeDataIterator) -> vtkDataObject C++: vtkDataObject *GetDataSet(vtkCompositeDataIterator *iter) override; Returns the dataset located at the positiong pointed by the iterator. The iterator does not need to be iterating over this dataset itself. It can be an iterator for composite dataset with similar structure (achieved by using CopyStructure). V.GetMetaData(vtkCompositeDataIterator) -> vtkInformation C++: virtual vtkInformation *GetMetaData( vtkCompositeDataIterator *iter) Returns the meta-data associated with the position pointed by the iterator. This will create a new vtkInformation object if none already exists. Use HasMetaData to avoid creating the vtkInformation object unnecessarily. The iterator does not need to be iterating over this dataset itself. It can be an iterator for composite dataset with similar structure (achieved by using CopyStructure). V.HasMetaData(vtkCompositeDataIterator) -> int C++: virtual int HasMetaData(vtkCompositeDataIterator *iter) Returns if any meta-data associated with the position pointed by the iterator. The iterator does not need to be iterating over this dataset itself. It can be an iterator for composite dataset with similar structure (achieved by using CopyStructure). V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() override; Returns the total number of points of all blocks. This will iterate over all blocks and call GetNumberOfPoints() so it might be expansive. V.GetData(vtkInformation) -> vtkDataObjectTree C++: static vtkDataObjectTree *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkDataObjectTree C++: static vtkDataObjectTree *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. GetVisitOnlyLeavesGetTraverseSubTreeSetTraverseSubTreeSetVisitOnlyLeavesTraverseSubTreeOffTraverseSubTreeOnVisitOnlyLeavesOffVisitOnlyLeavesOnvtkDataObjectTreeIterator - superclass for composite data iterators Superclass: vtkCompositeDataIterator vtkDataObjectTreeIterator provides an interface for accessing datasets in a collection (vtkDataObjectTreeIterator). vtkCommonDataModelPython.vtkDataObjectTreeIteratorV.SafeDownCast(vtkObjectBase) -> vtkDataObjectTreeIterator C++: static vtkDataObjectTreeIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkDataObjectTreeIterator C++: vtkDataObjectTreeIterator *NewInstance() V.GoToFirstItem() C++: void GoToFirstItem() override; Move the iterator to the beginning of the collection. V.GoToNextItem() C++: void GoToNextItem() override; Move the iterator to the next item in the collection. V.IsDoneWithTraversal() -> int C++: int IsDoneWithTraversal() override; Test whether the iterator is finished with the traversal. Returns 1 for yes, and 0 for no. It is safe to call any of the GetCurrent...() methods only when IsDoneWithTraversal() returns 0. V.GetCurrentDataObject() -> vtkDataObject C++: vtkDataObject *GetCurrentDataObject() override; Returns the current item. Valid only when IsDoneWithTraversal() returns 0. V.GetCurrentMetaData() -> vtkInformation C++: vtkInformation *GetCurrentMetaData() override; Returns the meta-data associated with the current item. Note that, depending on iterator implementation, the returned information is not necessarily stored on the current object. So modifying the information is forbidden. V.HasCurrentMetaData() -> int C++: int HasCurrentMetaData() override; Returns if the a meta-data information object is present for the current item. Return 1 on success, 0 otherwise. V.GetCurrentFlatIndex() -> int C++: unsigned int GetCurrentFlatIndex() override; Flat index is an index obtained by traversing the tree in preorder. This can be used to uniquely identify nodes in the tree. Not valid if IsDoneWithTraversal() returns true. V.SetVisitOnlyLeaves(int) C++: virtual void SetVisitOnlyLeaves(int _arg) If VisitOnlyLeaves is true, the iterator will only visit nodes (sub-datasets) that are not composite. If it encounters a composite data set, it will automatically traverse that composite dataset until it finds non-composite datasets. With this options, it is possible to visit all non-composite datasets in tree of composite datasets (composite of composite of composite for example :-) ) If VisitOnlyLeaves is false, GetCurrentDataObject() may return vtkCompositeDataSet. By default, VisitOnlyLeaves is 1. V.GetVisitOnlyLeaves() -> int C++: virtual int GetVisitOnlyLeaves() If VisitOnlyLeaves is true, the iterator will only visit nodes (sub-datasets) that are not composite. If it encounters a composite data set, it will automatically traverse that composite dataset until it finds non-composite datasets. With this options, it is possible to visit all non-composite datasets in tree of composite datasets (composite of composite of composite for example :-) ) If VisitOnlyLeaves is false, GetCurrentDataObject() may return vtkCompositeDataSet. By default, VisitOnlyLeaves is 1. V.VisitOnlyLeavesOn() C++: virtual void VisitOnlyLeavesOn() If VisitOnlyLeaves is true, the iterator will only visit nodes (sub-datasets) that are not composite. If it encounters a composite data set, it will automatically traverse that composite dataset until it finds non-composite datasets. With this options, it is possible to visit all non-composite datasets in tree of composite datasets (composite of composite of composite for example :-) ) If VisitOnlyLeaves is false, GetCurrentDataObject() may return vtkCompositeDataSet. By default, VisitOnlyLeaves is 1. V.VisitOnlyLeavesOff() C++: virtual void VisitOnlyLeavesOff() If VisitOnlyLeaves is true, the iterator will only visit nodes (sub-datasets) that are not composite. If it encounters a composite data set, it will automatically traverse that composite dataset until it finds non-composite datasets. With this options, it is possible to visit all non-composite datasets in tree of composite datasets (composite of composite of composite for example :-) ) If VisitOnlyLeaves is false, GetCurrentDataObject() may return vtkCompositeDataSet. By default, VisitOnlyLeaves is 1. V.SetTraverseSubTree(int) C++: virtual void SetTraverseSubTree(int _arg) If TraverseSubTree is set to true, the iterator will visit the entire tree structure, otherwise it only visits the first level children. Set to 1 by default. V.GetTraverseSubTree() -> int C++: virtual int GetTraverseSubTree() If TraverseSubTree is set to true, the iterator will visit the entire tree structure, otherwise it only visits the first level children. Set to 1 by default. V.TraverseSubTreeOn() C++: virtual void TraverseSubTreeOn() If TraverseSubTree is set to true, the iterator will visit the entire tree structure, otherwise it only visits the first level children. Set to 1 by default. V.TraverseSubTreeOff() C++: virtual void TraverseSubTreeOff() If TraverseSubTree is set to true, the iterator will visit the entire tree structure, otherwise it only visits the first level children. Set to 1 by default. GetAttributeTypeAsStringRemoveArrayGhostArrayNamevtkGhostTypeGetLongAttributeTypeAsStringUpdateCopyTensorsOnSetupForCopySetScalarsIsArrayAnAttributeGetAttributeGetAbstractAttributeSetGlobalIdsSetTCoordsSetNormalsSetTensorsSetPedigreeIdsSetVectorsSetActiveVectorsSetActiveScalarsSetActiveGlobalIdsSetActiveTensorsSetActiveTCoordsSetActiveNormalsSetActivePedigreeIdsGetCopyVectorsGetCopyTensorsGetCopyGlobalIdsGetCopyScalarsGetCopyPedigreeIdsGetCopyNormalsGetCopyTCoordsGetCopyAttributeSetAttributeCopyGlobalIdsOnCopyPedigreeIdsOffCopyVectorsOffCopyGlobalIdsOffCopyScalarsOffCopyTCoordsOnCopyNormalsOnCopyTCoordsOffCopyNormalsOffCopyPedigreeIdsOnCopyVectorsOnCopyTensorsOffCopyScalarsOnSetCopyNormalsSetCopyGlobalIdsSetCopyScalarsSetCopyVectorsSetCopyPedigreeIdsSetCopyTensorsSetCopyTCoordsCopyDataSetCopyAttributeCopyTupleInterpolateTimeInterpolateEdgeGetAttributeIndicesCopyStructuredDataInterpolatePointGetNormalsGetScalarsGetPedigreeIdsGetGlobalIdsGetVectorsGetTCoordsGetTensorsCopyAllocateInterpolateAllocateCopyTuplesAttributeLimitTypesCellGhostTypesPointGhostTypesAttributeCopyOperationsDUPLICATEPOINTHIDDENPOINTPassDataCopyAllOffCopyAllOnCOPYTUPLEINTERPOLATEPASSDATAALLCOPYDUPLICATECELLHIGHCONNECTIVITYCELLLOWCONNECTIVITYCELLREFINEDCELLEXTERIORCELLHIDDENCELLMAXEXACTNOLIMITSCALARSVECTORSNORMALSTCOORDSTENSORSGLOBALIDSPEDIGREEIDSEDGEFLAGNUM_ATTRIBUTES@Vkk *vtkDataSetAttributes@z@zi@iivtkDataSetAttributes - represent and manipulate attribute data in a dataset Superclass: vtkFieldData vtkDataSetAttributes is a class that is used to represent and manipulate attribute data (e.g., scalars, vectors, normals, texture coordinates, tensors, global ids, pedigree ids, and field data). This adds to vtkFieldData the ability to pick one of the arrays from the field as the currently active array for each attribute type. In other words, you pick one array to be called "THE" Scalars, and then filters down the pipeline will treat that array specially. For example vtkContourFilter will contour "THE" Scalar array unless a different array is asked for. Additionally vtkDataSetAttributes provides methods that filters call to pass data through, copy data into, and interpolate from Fields. PassData passes entire arrays from the source to the destination. Copy passes through some subset of the tuples from the source to the destination. Interpolate interpolates from the chosen tuple(s) in the source data, using the provided weights, to produce new tuples in the destination. Each attribute type has pass, copy and interpolate "copy" flags that can be set in the destination to choose which attribute arrays will be transferred from the source to the destination. Finally this class provides a mechanism to determine which attributes a group of sources have in common, and to copy tuples from a source into the destination, for only those attributes that are held by all. vtkCommonDataModelPython.vtkDataSetAttributesV.SafeDownCast(vtkObjectBase) -> vtkDataSetAttributes C++: static vtkDataSetAttributes *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataSetAttributes C++: vtkDataSetAttributes *NewInstance() V.Initialize() C++: void Initialize() override; Initialize all of the object's data to nullptr Also, clear the copy flags. V.Update() C++: virtual void Update() Attributes have a chance to bring themselves up to date; right now this is ignored. V.DeepCopy(vtkFieldData) C++: void DeepCopy(vtkFieldData *pd) override; Deep copy of data (i.e., create new data arrays and copy from input data). Ignores the copy flags but preserves them in the output. V.ShallowCopy(vtkFieldData) C++: void ShallowCopy(vtkFieldData *pd) override; Shallow copy of data (i.e., use reference counting). Ignores the copy flags but preserves them in the output. V.GhostArrayName() -> string C++: static const char *GhostArrayName() V.SetScalars(vtkDataArray) -> int C++: int SetScalars(vtkDataArray *da) Set/Get the scalar data. V.SetActiveScalars(string) -> int C++: int SetActiveScalars(const char *name) Set/Get the scalar data. V.GetScalars() -> vtkDataArray C++: vtkDataArray *GetScalars() V.GetScalars(string) -> vtkDataArray C++: vtkDataArray *GetScalars(const char *name) Set/Get the scalar data. V.SetVectors(vtkDataArray) -> int C++: int SetVectors(vtkDataArray *da) Set/Get the vector data. V.SetActiveVectors(string) -> int C++: int SetActiveVectors(const char *name) Set/Get the vector data. V.GetVectors() -> vtkDataArray C++: vtkDataArray *GetVectors() V.GetVectors(string) -> vtkDataArray C++: vtkDataArray *GetVectors(const char *name) Set/Get the vector data. V.SetNormals(vtkDataArray) -> int C++: int SetNormals(vtkDataArray *da) Set/get the normal data. V.SetActiveNormals(string) -> int C++: int SetActiveNormals(const char *name) Set/get the normal data. V.GetNormals() -> vtkDataArray C++: vtkDataArray *GetNormals() V.GetNormals(string) -> vtkDataArray C++: vtkDataArray *GetNormals(const char *name) Set/get the normal data. V.SetTCoords(vtkDataArray) -> int C++: int SetTCoords(vtkDataArray *da) Set/Get the texture coordinate data. V.SetActiveTCoords(string) -> int C++: int SetActiveTCoords(const char *name) Set/Get the texture coordinate data. V.GetTCoords() -> vtkDataArray C++: vtkDataArray *GetTCoords() V.GetTCoords(string) -> vtkDataArray C++: vtkDataArray *GetTCoords(const char *name) Set/Get the texture coordinate data. V.SetTensors(vtkDataArray) -> int C++: int SetTensors(vtkDataArray *da) Set/Get the tensor data. V.SetActiveTensors(string) -> int C++: int SetActiveTensors(const char *name) Set/Get the tensor data. V.GetTensors() -> vtkDataArray C++: vtkDataArray *GetTensors() V.GetTensors(string) -> vtkDataArray C++: vtkDataArray *GetTensors(const char *name) Set/Get the tensor data. V.SetGlobalIds(vtkDataArray) -> int C++: int SetGlobalIds(vtkDataArray *da) Set/Get the global id data. V.SetActiveGlobalIds(string) -> int C++: int SetActiveGlobalIds(const char *name) Set/Get the global id data. V.GetGlobalIds() -> vtkDataArray C++: vtkDataArray *GetGlobalIds() V.GetGlobalIds(string) -> vtkDataArray C++: vtkDataArray *GetGlobalIds(const char *name) Set/Get the global id data. V.SetPedigreeIds(vtkAbstractArray) -> int C++: int SetPedigreeIds(vtkAbstractArray *da) Set/Get the pedigree id data. V.SetActivePedigreeIds(string) -> int C++: int SetActivePedigreeIds(const char *name) Set/Get the pedigree id data. V.GetPedigreeIds() -> vtkAbstractArray C++: vtkAbstractArray *GetPedigreeIds() V.GetPedigreeIds(string) -> vtkAbstractArray C++: vtkAbstractArray *GetPedigreeIds(const char *name) Set/Get the pedigree id data. V.SetActiveAttribute(string, int) -> int C++: int SetActiveAttribute(const char *name, int attributeType) V.SetActiveAttribute(int, int) -> int C++: int SetActiveAttribute(int index, int attributeType) Make the array with the given name the active attribute. Attribute types are: vtkDataSetAttributes::SCALARS = 0 vtkDataSetAttributes::VECTORS = 1 vtkDataSetAttributes::NORMALS = 2 vtkDataSetAttributes::TCOORDS = 3 vtkDataSetAttributes::TENSORS = 4 vtkDataSetAttributes::GLOBALIDS = 5 vtkDataSetAttributes::PEDIGREEIDS = 6 vtkDataSetAttributes::EDGEFLAG = 7 Returns the index of the array if successful, -1 if the array is not in the list of arrays. V.GetAttributeIndices([int, ...]) C++: void GetAttributeIndices(int *indexArray) Get the field data array indices corresponding to scalars, vectors, tensors, etc. V.IsArrayAnAttribute(int) -> int C++: int IsArrayAnAttribute(int idx) Determine whether a data array of index idx is considered a data set attribute (i.e., scalar, vector, tensor, etc). Return less-than zero if it is, otherwise an index 0<=idx int C++: int SetAttribute(vtkAbstractArray *aa, int attributeType) Set an array to use as the given attribute type (i.e., vtkDataSetAttributes::SCALAR, vtkDataSetAttributes::VECTOR, vtkDataSetAttributes::TENSOR, etc.). If this attribute was previously set to another array, that array is removed from the vtkDataSetAttributes object and the array aa is used as the attribute. * Returns the index of aa within the vtkDataSetAttributes object * (i.e., the index to pass to the method GetArray(int) to obtain * aa) if the attribute was set to aa successfully. If aa was * already set as the given attributeType, returns the index of * aa. * Returns -1 in the following cases: * - aa is nullptr (used to unset an attribute; not an error indicator) * - aa is not a subclass of vtkDataArray, unless the attributeType * is vtkDataSetAttributes::PEDIGREEIDS (error indicator) * - aa has a number of components incompatible with the attribute type * (error indicator) V.GetAttribute(int) -> vtkDataArray C++: vtkDataArray *GetAttribute(int attributeType) Return an attribute given the attribute type (see vtkDataSetAttributes::AttributeTypes). Some attributes (such as PEDIGREEIDS) may not be vtkDataArray subclass, so in that case use GetAbstractAttribute(). V.GetAbstractAttribute(int) -> vtkAbstractArray C++: vtkAbstractArray *GetAbstractAttribute(int attributeType) Return an attribute given the attribute type (see vtkDataSetAttributes::AttributeTypes). This is the same as GetAttribute(), except that the returned array is a vtkAbstractArray instead of vtkDataArray. Some attributes (such as PEDIGREEIDS) may not be vtkDataArray subclass. V.RemoveArray(int) C++: void RemoveArray(int index) override; V.RemoveArray(string) C++: virtual void RemoveArray(const char *name) Remove an array (with the given name) from the list of arrays. V.GetAttributeTypeAsString(int) -> string C++: static const char *GetAttributeTypeAsString( int attributeType) Given an integer attribute type, this static method returns a string type for the attribute (i.e. type = 0: returns "Scalars"). V.GetLongAttributeTypeAsString(int) -> string C++: static const char *GetLongAttributeTypeAsString( int attributeType) Given an integer attribute type, this static method returns a string type for the attribute (i.e. type = 0: returns "Scalars"). V.SetCopyAttribute(int, int, int) C++: void SetCopyAttribute(int index, int value, int ctype=vtkDataSetAttributes::ALLCOPY) Turn on/off the copying of attribute data. ctype is one of the AttributeCopyOperations, and controls copy, interpolate and passdata behavior. For set, ctype=ALLCOPY means set all three flags to the same value. For get, ctype=ALLCOPY returns true only if all three flags are true. * During copying, interpolation and passdata, the following rules are * followed for each array: * 1. If the copy/interpolate/pass flag for an attribute is set (on or off), * it is applied. This overrides rules 2 and 3. * 2. If the copy flag for an array is set (on or off), it is applied * This overrides rule 3. * 3. If CopyAllOn is set, copy the array. * If CopyAllOff is set, do not copy the array * For interpolation, the flag values can be as follows: * 0: Do not interpolate. * 1: Weighted interpolation. * 2: Nearest neighbor interpolation. V.GetCopyAttribute(int, int) -> int C++: int GetCopyAttribute(int index, int ctype) Get the attribute copy flag for copy operation of attribute . V.SetCopyScalars(int, int) C++: void SetCopyScalars(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyScalars(int) -> int C++: int GetCopyScalars(int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyScalarsOn() C++: virtual void CopyScalarsOn() V.CopyScalarsOff() C++: virtual void CopyScalarsOff() V.SetCopyVectors(int, int) C++: void SetCopyVectors(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyVectors(int) -> int C++: int GetCopyVectors(int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyVectorsOn() C++: virtual void CopyVectorsOn() V.CopyVectorsOff() C++: virtual void CopyVectorsOff() V.SetCopyNormals(int, int) C++: void SetCopyNormals(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyNormals(int) -> int C++: int GetCopyNormals(int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyNormalsOn() C++: virtual void CopyNormalsOn() V.CopyNormalsOff() C++: virtual void CopyNormalsOff() V.SetCopyTCoords(int, int) C++: void SetCopyTCoords(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyTCoords(int) -> int C++: int GetCopyTCoords(int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyTCoordsOn() C++: virtual void CopyTCoordsOn() V.CopyTCoordsOff() C++: virtual void CopyTCoordsOff() V.SetCopyTensors(int, int) C++: void SetCopyTensors(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyTensors(int) -> int C++: int GetCopyTensors(int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyTensorsOn() C++: virtual void CopyTensorsOn() V.CopyTensorsOff() C++: virtual void CopyTensorsOff() V.SetCopyGlobalIds(int, int) C++: void SetCopyGlobalIds(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyGlobalIds(int) -> int C++: int GetCopyGlobalIds(int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyGlobalIdsOn() C++: virtual void CopyGlobalIdsOn() V.CopyGlobalIdsOff() C++: virtual void CopyGlobalIdsOff() V.SetCopyPedigreeIds(int, int) C++: void SetCopyPedigreeIds(int i, int ctype=vtkDataSetAttributes::ALLCOPY) @copydoc vtkDataSetAttributes::SetCopyAttribute() V.GetCopyPedigreeIds(int) -> int C++: int GetCopyPedigreeIds( int ctype=vtkDataSetAttributes::ALLCOPY) V.CopyPedigreeIdsOn() C++: virtual void CopyPedigreeIdsOn() V.CopyPedigreeIdsOff() C++: virtual void CopyPedigreeIdsOff() V.CopyAllOn(int) C++: void CopyAllOn(int ctype=vtkDataSetAttributes::ALLCOPY) override; @copydoc vtkDataSetAttributes::SetCopyAttribute() V.CopyAllOff(int) C++: void CopyAllOff(int ctype=vtkDataSetAttributes::ALLCOPY) override; @copydoc vtkDataSetAttributes::SetCopyAttribute() V.PassData(vtkFieldData) C++: void PassData(vtkFieldData *fd) override; Pass entire arrays of input data through to output. Obey the "copy" flags. When passing a field, the following copying rules are followed: 1) Check if a field is an attribute, if yes and if there is a PASSDATA copy flag for that attribute (on or off), obey the flag for that attribute, ignore (2) and (3), 2) if there is a copy field for that field (on or off), obey the flag, ignore (3) 3) obey CopyAllOn/Off V.CopyAllocate(vtkDataSetAttributes, int, int) C++: void CopyAllocate(vtkDataSetAttributes *pd, vtkIdType sze=0, vtkIdType ext=1000) V.CopyAllocate(vtkDataSetAttributes, int, int, int) C++: void CopyAllocate(vtkDataSetAttributes *pd, vtkIdType sze, vtkIdType ext, int shallowCopyArrays) Allocates point data for point-by-point (or cell-by-cell) copy operation. If sze=0, then use the input DataSetAttributes to create (i.e., find initial size of) new objects; otherwise use the sze variable. Note that pd HAS to be the vtkDataSetAttributes object which will later be used with CopyData. If this is not the case, consider using the alternative forms of CopyAllocate and CopyData. ext is no longer used. If shallowCopyArrays is true, input arrays are copied to the output instead of new ones being allocated. V.SetupForCopy(vtkDataSetAttributes) C++: void SetupForCopy(vtkDataSetAttributes *pd) Create a mapping between the input attributes and this object so that methods like CopyData() and CopyStructuredData() can be called. This method assumes that this object has the same arrays as the input and that they are ordered the same way (same array indices). V.CopyStructuredData(vtkDataSetAttributes, (int, ...), (int, ...), bool) C++: void CopyStructuredData(vtkDataSetAttributes *inDsa, const int *inExt, const int *outExt, bool setSize=true) This method is used to copy data arrays in images. You should call CopyAllocate or SetupForCopy before calling this method. If setSize is true, this method will set the size of the output arrays according to the output extent. This is required when CopyAllocate() was used to setup output arrays. V.CopyData(vtkDataSetAttributes, int, int) C++: void CopyData(vtkDataSetAttributes *fromPd, vtkIdType fromId, vtkIdType toId) V.CopyData(vtkDataSetAttributes, vtkIdList, vtkIdList) C++: void CopyData(vtkDataSetAttributes *fromPd, vtkIdList *fromIds, vtkIdList *toIds) V.CopyData(vtkDataSetAttributes, int, int, int) C++: void CopyData(vtkDataSetAttributes *fromPd, vtkIdType dstStart, vtkIdType n, vtkIdType srcStart) Copy the attribute data from one id to another. Make sure CopyAllocate() has been invoked before using this method. When copying a field, the following copying rules are followed: 1) Check if a field is an attribute, if yes and if there is a COPYTUPLE copy flag for that attribute (on or off), obey the flag for that attribute, ignore (2) and (3), 2) if there is a copy field for that field (on or off), obey the flag, ignore (3) 3) obey CopyAllOn/Off V.CopyTuple(vtkAbstractArray, vtkAbstractArray, int, int) C++: void CopyTuple(vtkAbstractArray *fromData, vtkAbstractArray *toData, vtkIdType fromId, vtkIdType toId) Copy a tuple (or set of tuples) of data from one data array to another. This method assumes that the fromData and toData objects are of the same type, and have the same number of components. This is true if you invoke CopyAllocate() or InterpolateAllocate(). V.CopyTuples(vtkAbstractArray, vtkAbstractArray, vtkIdList, vtkIdList) C++: void CopyTuples(vtkAbstractArray *fromData, vtkAbstractArray *toData, vtkIdList *fromIds, vtkIdList *toIds) V.CopyTuples(vtkAbstractArray, vtkAbstractArray, int, int, int) C++: void CopyTuples(vtkAbstractArray *fromData, vtkAbstractArray *toData, vtkIdType dstStart, vtkIdType n, vtkIdType srcStart) Copy a tuple (or set of tuples) of data from one data array to another. This method assumes that the fromData and toData objects are of the same type, and have the same number of components. This is true if you invoke CopyAllocate() or InterpolateAllocate(). V.InterpolateAllocate(vtkDataSetAttributes, int, int) C++: void InterpolateAllocate(vtkDataSetAttributes *pd, vtkIdType sze=0, vtkIdType ext=1000) V.InterpolateAllocate(vtkDataSetAttributes, int, int, int) C++: void InterpolateAllocate(vtkDataSetAttributes *pd, vtkIdType sze, vtkIdType ext, int shallowCopyArrays) Initialize point interpolation method. Note that pd HAS to be the vtkDataSetAttributes object which will later be used with InterpolatePoint or InterpolateEdge. ext is no longer used. If shallowCopyArrays is true, input arrays are copied to the output instead of new ones being allocated. V.InterpolatePoint(vtkDataSetAttributes, int, vtkIdList, [float, ...]) C++: void InterpolatePoint(vtkDataSetAttributes *fromPd, vtkIdType toId, vtkIdList *ids, double *weights) Interpolate data set attributes from other data set attributes given cell or point ids and associated interpolation weights. If the INTERPOLATION copy flag is set to 0 for an array, interpolation is prevented. If the flag is set to 1, weighted interpolation occurs. If the flag is set to 2, nearest neighbor interpolation is used. V.InterpolateEdge(vtkDataSetAttributes, int, int, int, float) C++: void InterpolateEdge(vtkDataSetAttributes *fromPd, vtkIdType toId, vtkIdType p1, vtkIdType p2, double t) Interpolate data from the two points p1,p2 (forming an edge) and an interpolation factor, t, along the edge. The weight ranges from (0,1), with t=0 located at p1. Make sure that the method InterpolateAllocate() has been invoked before using this method. If the INTERPOLATION copy flag is set to 0 for an array, interpolation is prevented. If the flag is set to 1, weighted interpolation occurs. If the flag is set to 2, nearest neighbor interpolation is used. V.InterpolateTime(vtkDataSetAttributes, vtkDataSetAttributes, int, float) C++: void InterpolateTime(vtkDataSetAttributes *from1, vtkDataSetAttributes *from2, vtkIdType id, double t) Interpolate data from the same id (point or cell) at different points in time (parameter t). Two input data set attributes objects are input. The parameter t lies between (0<=t<=1). IMPORTANT: it is assumed that the number of attributes and number of components is the same for both from1 and from2, and the type of data for from1 and from2 are the same. Make sure that the method InterpolateAllocate() has been invoked before using this method. If the INTERPOLATION copy flag is set to 0 for an array, interpolation is prevented. If the flag is set to 1, weighted interpolation occurs. If the flag is set to 2, nearest neighbor interpolation is used. @VVV *vtkDataSetAttributes *vtkIdList *vtkIdListvtkCommonDataModelPython.vtkDataSetAttributes.AttributeCopyOperationsvtkCommonDataModelPython.vtkDataSetAttributes.PointGhostTypesvtkCommonDataModelPython.vtkDataSetAttributes.CellGhostTypesvtkCommonDataModelPython.vtkDataSetAttributes.AttributeLimitTypesvtkCommonDataModelPython.vtkDataSetAttributes.AttributeTypesvtkDataSetCollectionGetNextDataSetvtkDataSetCollection - maintain an unordered list of dataset objects Superclass: vtkCollection vtkDataSetCollection is an object that creates and manipulates ordered lists of datasets. See also vtkCollection and subclasses. vtkCommonDataModelPython.vtkDataSetCollectionV.SafeDownCast(vtkObjectBase) -> vtkDataSetCollection C++: static vtkDataSetCollection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataSetCollection C++: vtkDataSetCollection *NewInstance() V.AddItem(vtkDataSet) C++: void AddItem(vtkDataSet *ds) Add a dataset to the bottom of the list. V.GetNextItem() -> vtkDataSet C++: vtkDataSet *GetNextItem() Get the next dataset in the list. V.GetNextDataSet() -> vtkDataSet C++: vtkDataSet *GetNextDataSet() Get the next dataset in the list. V.GetItem(int) -> vtkDataSet C++: vtkDataSet *GetItem(int i) Get the ith dataset in the list. V.GetDataSet(int) -> vtkDataSet C++: vtkDataSet *GetDataSet(int i) Get the ith dataset in the list. GetCellDataGetPointDataUpdateCellGhostArrayCacheUpdatePointGhostArrayCacheHasAnyGhostCellsHasAnyGhostPointsCheckAttributesAllocatePointGhostArrayAllocateCellGhostArrayGetCellGhostArrayGetPointGhostArrayGetLengthHasAnyBlankCellsHasAnyBlankPointsGetPointCellsGetCellPointsFindPointGetPointFieldDataTypeGenerateGhostArrayGetScalarRangeComputeBoundsFindAndGetCellGetCellNeighborsGetCellTypesGetCellBoundsNewCellIteratorDATA_OBJECT_FIELDPOINT_DATA_FIELDCELL_DATA_FIELDvtkDataSet - abstract class to specify dataset behavior Superclass: vtkDataObject vtkDataSet is an abstract class that specifies an interface for dataset objects. vtkDataSet also provides methods to provide information about the data, such as center, bounding box, and representative length. In vtk a dataset consists of a structure (geometry and topology) and attribute data. The structure is defined implicitly or explicitly as a collection of cells. The geometry of the structure is contained in point coordinates plus the cell interpolation functions. The topology of the dataset structure is defined by cell types and how the cells share their defining points. Attribute data in vtk is either point data (data at points) or cell data (data at cells). Typically filters operate on point data, but some may operate on cell data, both cell and point data, either one, or none. @sa vtkPointSet vtkStructuredPoints vtkStructuredGrid vtkUnstructuredGrid vtkRectilinearGrid vtkPolyData vtkPointData vtkCellData vtkDataObject vtkFieldData vtkCommonDataModelPython.vtkDataSetV.SafeDownCast(vtkObjectBase) -> vtkDataSet C++: static vtkDataSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDataSet C++: vtkDataSet *NewInstance() V.CopyStructure(vtkDataSet) C++: virtual void CopyStructure(vtkDataSet *ds) Copy the geometric and topological structure of an object. Note that the invoking object and the object pointed to by the parameter ds must be of the same type. THIS METHOD IS NOT THREAD SAFE. V.CopyAttributes(vtkDataSet) C++: virtual void CopyAttributes(vtkDataSet *ds) Copy the attributes associated with the specified dataset to this instance of vtkDataSet. THIS METHOD IS NOT THREAD SAFE. V.GetNumberOfPoints() -> int C++: virtual vtkIdType GetNumberOfPoints() Determine the number of points composing the dataset. THIS METHOD IS THREAD SAFE V.GetNumberOfCells() -> int C++: virtual vtkIdType GetNumberOfCells() Determine the number of cells composing the dataset. THIS METHOD IS THREAD SAFE V.GetPoint(int) -> (float, float, float) C++: virtual double *GetPoint(vtkIdType ptId) V.GetPoint(int, [float, float, float]) C++: virtual void GetPoint(vtkIdType id, double x[3]) Get point coordinates with ptId such that: 0 <= ptId < NumberOfPoints. THIS METHOD IS NOT THREAD SAFE. V.NewCellIterator() -> vtkCellIterator C++: virtual vtkCellIterator *NewCellIterator() Return an iterator that traverses the cells in this data set. V.GetCell(int) -> vtkCell C++: virtual vtkCell *GetCell(vtkIdType cellId) V.GetCell(int, int, int) -> vtkCell C++: virtual vtkCell *GetCell(int i, int j, int k) V.GetCell(int, vtkGenericCell) C++: virtual void GetCell(vtkIdType cellId, vtkGenericCell *cell) Get cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS NOT THREAD SAFE. V.GetCellBounds(int, [float, float, float, float, float, float]) C++: virtual void GetCellBounds(vtkIdType cellId, double bounds[6]) Get the bounds of the cell with cellId such that: 0 <= cellId < NumberOfCells. A subclass may be able to determine the bounds of cell without using an expensive GetCell() method. A default implementation is provided that actually uses a GetCell() call. This is to ensure the method is available to all datasets. Subclasses should override this method to provide an efficient implementation. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellType(int) -> int C++: virtual int GetCellType(vtkIdType cellId) Get type of cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellTypes(vtkCellTypes) C++: virtual void GetCellTypes(vtkCellTypes *types) Get a list of types of cells in a dataset. The list consists of an array of types (not necessarily in any order), with a single entry per type. For example a dataset 5 triangles, 3 lines, and 100 hexahedra would result a list of three entries, corresponding to the types VTK_TRIANGLE, VTK_LINE, and VTK_HEXAHEDRON. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellPoints(int, vtkIdList) C++: virtual void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) Topological inquiry to get points defining cell. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetPointCells(int, vtkIdList) C++: virtual void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) Topological inquiry to get cells using point. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: virtual void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds) Topological inquiry to get all cells using list of points exclusive of cell specified (e.g., cellId). Note that the list consists of only cells that use ALL the points provided. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.FindPoint(float, float, float) -> int C++: vtkIdType FindPoint(double x, double y, double z) V.FindPoint([float, float, float]) -> int C++: virtual vtkIdType FindPoint(double x[3]) Locate the closest point to the global coordinate x. Return the point id. If point id < 0; then no point found. (This may arise when point is outside of dataset.) THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.FindCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> int C++: virtual vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) V.FindCell([float, float, float], vtkCell, vtkGenericCell, int, float, int, [float, float, float], [float, ...]) -> int C++: virtual vtkIdType FindCell(double x[3], vtkCell *cell, vtkGenericCell *gencell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) Locate cell based on global coordinate x and tolerance squared. If cell and cellId is non-nullptr, then search starts from this cell and looks at immediate neighbors. Returns cellId >= 0 if inside, < 0 otherwise. The parametric coordinates are provided in pcoords[3]. The interpolation weights are returned in weights[]. (The number of weights is equal to the number of points in the found cell). Tolerance is used to control how close the point is to be considered "in" the cell. THIS METHOD IS NOT THREAD SAFE. V.FindAndGetCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> vtkCell C++: virtual vtkCell *FindAndGetCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) Locate the cell that contains a point and return the cell. Also returns the subcell id, parametric coordinates and weights for subsequent interpolation. This method combines the derived class methods int FindCell and vtkCell *GetCell. Derived classes may provide a more efficient implementation. See for example vtkStructuredPoints. THIS METHOD IS NOT THREAD SAFE. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Datasets are composite objects and need to check each part for MTime THIS METHOD IS THREAD SAFE V.GetCellData() -> vtkCellData C++: vtkCellData *GetCellData() Return a pointer to this dataset's cell data. THIS METHOD IS THREAD SAFE V.GetPointData() -> vtkPointData C++: vtkPointData *GetPointData() Return a pointer to this dataset's point data. THIS METHOD IS THREAD SAFE V.Squeeze() C++: virtual void Squeeze() Reclaim any extra memory used to store data. THIS METHOD IS NOT THREAD SAFE. V.ComputeBounds() C++: virtual void ComputeBounds() Compute the data bounding box from data points. THIS METHOD IS NOT THREAD SAFE. V.GetBounds() -> (float, float, float, float, float, float) C++: double *GetBounds() V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) Return a pointer to the geometry bounding box in the form (xmin,xmax, ymin,ymax, zmin,zmax). THIS METHOD IS NOT THREAD SAFE. V.GetCenter() -> (float, float, float) C++: double *GetCenter() V.GetCenter([float, float, float]) C++: void GetCenter(double center[3]) Get the center of the bounding box. THIS METHOD IS NOT THREAD SAFE. V.GetLength() -> float C++: double GetLength() Return the length of the diagonal of the bounding box. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.Initialize() C++: void Initialize() override; Restore data object to initial state. THIS METHOD IS NOT THREAD SAFE. V.GetScalarRange([float, float]) C++: virtual void GetScalarRange(double range[2]) V.GetScalarRange() -> (float, float) C++: double *GetScalarRange() Convenience method to get the range of the first component (and only the first component) of any scalars in the data set. If the data has both point data and cell data, it returns the (min/max) range of combined point and cell data. If there are no point or cell scalars the method will return (0,1). Note: It might be necessary to call Update to create or refresh the scalars before calling this method. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetMaxCellSize() -> int C++: virtual int GetMaxCellSize() Convenience method returns largest cell size in dataset. This is generally used to allocate memory for supporting data structures. THIS METHOD IS THREAD SAFE V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() override; Return the actual size of the data in kibibytes (1024 bytes). This number is valid only after the pipeline has updated. The memory size returned is guaranteed to be greater than or equal to the memory required to represent the data (e.g., extra space in arrays, etc. are not included in the return value). THIS METHOD IS THREAD SAFE. V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return the type of data object. V.CheckAttributes() -> int C++: int CheckAttributes() This method checks to see if the cell and point attributes match the geometry. Many filters will crash if the number of tupples in an array is less than the number of points/cells. This method returns 1 if there is a mismatch, and 0 if everything is ok. It prints an error if an array is too short, and a warning if an array is too long. V.GenerateGhostArray([int, int, int, int, int, int]) C++: virtual void GenerateGhostArray(int zeroExt[6]) V.GenerateGhostArray([int, int, int, int, int, int], bool) C++: virtual void GenerateGhostArray(int zeroExt[6], bool cellOnly) Normally called by pipeline executives or algorithms only. This method computes the ghost arrays for a given dataset. The zeroExt argument specifies the extent of the region which ghost type = 0. V.GetData(vtkInformation) -> vtkDataSet C++: static vtkDataSet *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkDataSet C++: static vtkDataSet *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.GetAttributesAsFieldData(int) -> vtkFieldData C++: vtkFieldData *GetAttributesAsFieldData(int type) override; Returns the attributes of the data object as a vtkFieldData. This returns non-null values in all the same cases as GetAttributes, in addition to the case of FIELD, which will return the field data for any vtkDataObject subclass. V.GetNumberOfElements(int) -> int C++: vtkIdType GetNumberOfElements(int type) override; Get the number of elements for a specific attribute type (POINT, CELL, etc.). V.HasAnyGhostCells() -> bool C++: bool HasAnyGhostCells() Returns 1 if there are any ghost cells 0 otherwise. V.HasAnyGhostPoints() -> bool C++: bool HasAnyGhostPoints() Returns 1 if there are any ghost points 0 otherwise. V.HasAnyBlankCells() -> bool C++: virtual bool HasAnyBlankCells() Returns 1 if there are any blanking cells 0 otherwise. Blanking is supported only for vtkStructuredGrid and vtkUniformGrid V.HasAnyBlankPoints() -> bool C++: virtual bool HasAnyBlankPoints() Returns 1 if there are any blanking points 0 otherwise. Blanking is supported only for vtkStructuredGrid and vtkUniformGrid V.GetPointGhostArray() -> vtkUnsignedCharArray C++: vtkUnsignedCharArray *GetPointGhostArray() Gets the array that defines the ghost type of each point. We cache the pointer to the array to save a lookup involving string comparisons V.UpdatePointGhostArrayCache() C++: void UpdatePointGhostArrayCache() Updates the pointer to the point ghost array. V.AllocatePointGhostArray() -> vtkUnsignedCharArray C++: vtkUnsignedCharArray *AllocatePointGhostArray() Allocate ghost array for points. V.GetCellGhostArray() -> vtkUnsignedCharArray C++: vtkUnsignedCharArray *GetCellGhostArray() Get the array that defines the ghost type of each cell. We cache the pointer to the array to save a lookup involving string comparisons V.UpdateCellGhostArrayCache() C++: void UpdateCellGhostArrayCache() Updates the pointer to the cell ghost array. V.AllocateCellGhostArray() -> vtkUnsignedCharArray C++: vtkUnsignedCharArray *AllocateCellGhostArray() Allocate ghost array for cells. vtkCommonDataModelPython.vtkDataSet.FieldDataTypeERROR: In /mnt/storage/workspace/med-ubuntu-free/ExtProjs/VTK/Common/DataModel/vtkDataSet.h, line ijk indices are only valid with structured data! (): ErrorEventvtkDirectedAcyclicGraphvtkDirectedGraphvtkDirectedAcyclicGraph - A rooted tree data structure. Superclass: vtkDirectedGraph vtkDirectedAcyclicGraph is a connected directed graph with no cycles. A tree is a type of directed graph, so works with all graph algorithms. vtkDirectedAcyclicGraph is a read-only data structure. To construct a tree, create an instance of vtkMutableDirectedGraph. Add vertices and edges with AddVertex() and AddEdge(). You may alternately start by adding a single vertex as the root then call graph->AddChild(parent) which adds a new vertex and connects the parent to the child. The tree MUST have all edges in the proper direction, from parent to child. After building the tree, call tree->CheckedShallowCopy(graph) to copy the structure into a vtkDirectedAcyclicGraph. This method will return false if the graph is an invalid tree. vtkDirectedAcyclicGraph provides some convenience methods for obtaining the parent and children of a vertex, for finding the root, and determining if a vertex is a leaf (a vertex with no children). @sa vtkDirectedGraph vtkMutableDirectedGraph vtkGraph vtkCommonDataModelPython.vtkDirectedAcyclicGraphV.SafeDownCast(vtkObjectBase) -> vtkDirectedAcyclicGraph C++: static vtkDirectedAcyclicGraph *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkDirectedAcyclicGraph C++: vtkDirectedAcyclicGraph *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return what type of dataset this is. V.GetData(vtkInformation) -> vtkDirectedAcyclicGraph C++: static vtkDirectedAcyclicGraph *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkDirectedAcyclicGraph C++: static vtkDirectedAcyclicGraph *GetData( vtkInformationVector *v, int i=0) Retrieve a graph from an information vector. IsStructureValidvtkDirectedGraph - A directed graph. Superclass: vtkGraph vtkDirectedGraph is a collection of vertices along with a collection of directed edges (edges that have a source and target). ShallowCopy() and DeepCopy() (and CheckedShallowCopy(), CheckedDeepCopy()) accept instances of vtkTree and vtkMutableDirectedGraph. vtkDirectedGraph is read-only. To create an undirected graph, use an instance of vtkMutableDirectedGraph, then you may set the structure to a vtkDirectedGraph using ShallowCopy(). @sa vtkGraph vtkMutableDirectedGraph vtkCommonDataModelPython.vtkDirectedGraphV.SafeDownCast(vtkObjectBase) -> vtkDirectedGraph C++: static vtkDirectedGraph *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkDirectedGraph C++: vtkDirectedGraph *NewInstance() V.GetData(vtkInformation) -> vtkDirectedGraph C++: static vtkDirectedGraph *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkDirectedGraph C++: static vtkDirectedGraph *GetData(vtkInformationVector *v, int i=0) Retrieve a graph from an information vector. V.IsStructureValid(vtkGraph) -> bool C++: bool IsStructureValid(vtkGraph *g) override; Check the storage, and accept it if it is a valid undirected graph. This is public to allow the ToDirected/UndirectedGraph to work. vtkDistributedGraphHelperDISTRIBUTEDEDGEIDSDISTRIBUTEDVERTEXIDSSynchronizeCloneGetVertexIndexGetEdgeOwnerGetEdgeIndexGetVertexOwnerGetVertexOwnerByPedigreeIdMakeDistributedIdvtkVertexPedigreeIdDistributionFunction - The type of a function used to determine how to distribute vertex pedigree IDs across processors in a vtkGraph. The pedigree ID distribution function takes the pedigree ID of the vertex and a user-supplied void pointer and returns a hash value V. A vertex with that pedigree ID will reside on processor V % P, where P is the number of processors. This type is used in conjunction with the vtkDistributedGraphHelper class. Superclass: vtkObject vtkCommonDataModelPython.vtkDistributedGraphHelperV.SafeDownCast(vtkObjectBase) -> vtkDistributedGraphHelper C++: static vtkDistributedGraphHelper *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkDistributedGraphHelper C++: vtkDistributedGraphHelper *NewInstance() V.GetVertexOwner(int) -> int C++: vtkIdType GetVertexOwner(vtkIdType v) Returns owner of vertex v, by extracting top ceil(log2 P) bits of v. V.GetVertexIndex(int) -> int C++: vtkIdType GetVertexIndex(vtkIdType v) Returns local index of vertex v, by masking off top ceil(log2 P) bits of v. V.GetEdgeOwner(int) -> int C++: vtkIdType GetEdgeOwner(vtkIdType e_id) Returns owner of edge with ID e_id, by extracting top ceil(log2 P) bits of e_id. V.GetEdgeIndex(int) -> int C++: vtkIdType GetEdgeIndex(vtkIdType e_id) Returns local index of edge with ID e_id, by masking off top ceil(log2 P) bits of e_id. V.MakeDistributedId(int, int) -> int C++: vtkIdType MakeDistributedId(int owner, vtkIdType local) Builds a distributed ID consisting of the given owner and the local ID. V.GetVertexOwnerByPedigreeId(vtkVariant) -> int C++: vtkIdType GetVertexOwnerByPedigreeId( const vtkVariant &pedigreeId) Determine which processor owns the vertex with the given pedigree ID. V.Synchronize() C++: virtual void Synchronize() Synchronizes all of the processors involved in this distributed graph, so that all processors have a consistent view of the distributed graph for the computation that follows. This routine should be invoked after adding new edges into the distributed graph, so that other processors will see those edges (or their corresponding back-edges). V.Clone() -> vtkDistributedGraphHelper C++: virtual vtkDistributedGraphHelper *Clone() Clones the distributed graph helper, returning another distributed graph helper of the same kind that can be used in another vtkGraph. V.DISTRIBUTEDVERTEXIDS() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DISTRIBUTEDVERTEXIDS() Information Keys that distributed graphs can append to attribute arrays to flag them as containing distributed IDs. These can be used to let routines that migrate vertices (either repartitioning or collecting graphs to single nodes) to also modify the ids contained in the attribute arrays to maintain consistency. V.DISTRIBUTEDEDGEIDS() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DISTRIBUTEDEDGEIDS() Information Keys that distributed graphs can append to attribute arrays to flag them as containing distributed IDs. These can be used to let routines that migrate vertices (either repartitioning or collecting graphs to single nodes) to also modify the ids contained in the attribute arrays to maintain consistency. vtkEdgeListIteratorNextGraphEdgeSetGraphvtkEdgeListIterator - Iterates through all edges in a graph. Superclass: vtkObject vtkEdgeListIterator iterates through all the edges in a graph, by traversing the adjacency list for each vertex. You may instantiate this class directly and call SetGraph() to traverse a certain graph. You may also call the graph's GetEdges() method to set up the iterator for a certain graph. Note that this class does NOT guarantee that the edges will be processed in order of their ids (i.e. it will not necessarily return edge 0, then edge 1, etc.). @sa vtkGraph vtkCommonDataModelPython.vtkEdgeListIteratorV.SafeDownCast(vtkObjectBase) -> vtkEdgeListIterator C++: static vtkEdgeListIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkEdgeListIterator C++: vtkEdgeListIterator *NewInstance() V.GetGraph() -> vtkGraph C++: virtual vtkGraph *GetGraph() V.SetGraph(vtkGraph) C++: virtual void SetGraph(vtkGraph *graph) V.Next() -> vtkEdgeType C++: vtkEdgeType Next() Returns the next edge in the graph. V.NextGraphEdge() -> vtkGraphEdge C++: vtkGraphEdge *NextGraphEdge() Just like Next(), but returns heavy-weight vtkGraphEdge object instead of the vtkEdgeType struct, for use with wrappers. The graph edge is owned by this iterator, and changes after each call to NextGraphEdge(). vtkEdgeTableInsertEdgeIsEdgeInitPointInsertionInitEdgeInsertionGetNextEdgeInsertUniquePoint@kkk@kkvvtkEdgeTable - keep track of edges (edge is pair of integer id's) Superclass: vtkObject vtkEdgeTable is a general object for keeping track of lists of edges. An edge is defined by the pair of point id's (p1,p2). Methods are available to insert edges, check if edges exist, and traverse the list of edges. Also, it's possible to associate attribute information with each edge. The attribute information may take the form of vtkIdType id's, void* pointers, or points. To store attributes, make sure that InitEdgeInsertion() is invoked with the storeAttributes flag set properly. If points are inserted, use the methods InitPointInsertion() and InsertUniquePoint(). vtkCommonDataModelPython.vtkEdgeTableV.SafeDownCast(vtkObjectBase) -> vtkEdgeTable C++: static vtkEdgeTable *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkEdgeTable C++: vtkEdgeTable *NewInstance() V.Initialize() C++: void Initialize() Free memory and return to the initially instantiated state. V.InitEdgeInsertion(int, int) -> int C++: int InitEdgeInsertion(vtkIdType numPoints, int storeAttributes=0) Initialize the edge insertion process. Provide an estimate of the number of points in a dataset (the maximum range value of p1 or p2). The storeAttributes variable controls whether attributes are to be stored with the edge, and what type of attributes. If storeAttributes==1, then attributes of vtkIdType can be stored. If storeAttributes==2, then attributes of type void* can be stored. In either case, additional memory will be required by the data structure to store attribute data per each edge. This method is used in conjunction with one of the three InsertEdge() methods described below (don't mix the InsertEdge() methods---make sure that the one used is consistent with the storeAttributes flag set in InitEdgeInsertion()). V.InsertEdge(int, int) -> int C++: vtkIdType InsertEdge(vtkIdType p1, vtkIdType p2) V.InsertEdge(int, int, int) C++: void InsertEdge(vtkIdType p1, vtkIdType p2, vtkIdType attributeId) V.InsertEdge(int, int, void) C++: void InsertEdge(vtkIdType p1, vtkIdType p2, void *ptr) Insert the edge (p1,p2) into the table. It is the user's responsibility to check if the edge has already been inserted (use IsEdge()). If the storeAttributes flag in InitEdgeInsertion() has been set, then the method returns a unique integer id (i.e., the edge id) that can be used to set and get edge attributes. Otherwise, the method will return 1. Do not mix this method with the InsertEdge() method that follows. V.IsEdge(int, int) -> int C++: vtkIdType IsEdge(vtkIdType p1, vtkIdType p2) Return an integer id for the edge, or an attribute id of the edge (p1,p2) if the edge has been previously defined (it depends upon which version of InsertEdge() is being used); otherwise -1. The unique integer id can be used to set and retrieve attributes to the edge. V.InitPointInsertion(vtkPoints, int) -> int C++: int InitPointInsertion(vtkPoints *newPts, vtkIdType estSize) Initialize the point insertion process. The newPts is an object representing point coordinates into which incremental insertion methods place their data. The points are associated with the edge. V.InsertUniquePoint(int, int, [float, float, float], int) -> int C++: int InsertUniquePoint(vtkIdType p1, vtkIdType p2, double x[3], vtkIdType &ptId) Insert a unique point on the specified edge. Invoke this method only after InitPointInsertion() has been called. Return 0 if point was already in the list, otherwise return 1. V.GetNumberOfEdges() -> int C++: virtual vtkIdType GetNumberOfEdges() Return the number of edges that have been inserted thus far. V.InitTraversal() C++: void InitTraversal() Initialize traversal of edges in table. V.GetNextEdge(int, int) -> int C++: vtkIdType GetNextEdge(vtkIdType &p1, vtkIdType &p2) Traverse list of edges in table. Return the edge as (p1,p2), where p1 and p2 are point id's. Method return value is <0 if list is exhausted; non-zero otherwise. The value of p1 is guaranteed to be <= p2. V.Reset() C++: void Reset() Reset the object and prepare for reinsertion of edges. Does not delete memory like the Initialize() method. vtkEmptyCellvtkEmptyCell - an empty cell used as a place-holder during processing Superclass: vtkCell vtkEmptyCell is a concrete implementation of vtkCell. It is used during processing to represented a deleted element. vtkCommonDataModelPython.vtkEmptyCellV.SafeDownCast(vtkObjectBase) -> vtkEmptyCell C++: static vtkEmptyCell *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkEmptyCell C++: vtkEmptyCell *NewInstance() V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts1, vtkCellArray *lines, vtkCellArray *verts2, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *pts, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip. GetPartitionedOutputExtentGetPartitionedVOIComputeBeginAndEndIsValidGetOutputWholeExtentGetMappedIndexGetMappedExtentValueFromIndexGetMappedIndexFromExtentValueGetMappedExtentValueCopyCellDataCopyPointsAndPointDatavtkExtractStructuredGridHelpervtkExtractStructuredGridHelper - helper for extracting/sub-sampling structured datasets. Superclass: vtkObject vtkExtractStructuredGridHelper provides some common functionality that is used by filters that extract and sub-sample structured data. Specifically, it provides functionality for calculating the mapping from the output extent of each process to the input extent. @sa vtkExtractGrid vtkExtractVOI vtkExtractRectilinearGrid vtkCommonDataModelPython.vtkExtractStructuredGridHelperV.SafeDownCast(vtkObjectBase) -> vtkExtractStructuredGridHelper C++: static vtkExtractStructuredGridHelper *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkExtractStructuredGridHelper C++: vtkExtractStructuredGridHelper *NewInstance() V.GetOutputWholeExtent() -> (int, int, int, int, int, int) C++: int *GetOutputWholeExtent() V.Initialize([int, int, int, int, int, int], [int, int, int, int, int, int], [int, int, int], bool) C++: void Initialize(int voi[6], int wholeExt[6], int sampleRate[3], bool includeBoundary) Initializes the index map. \param voi the extent of the volume of interest \param wholeExt the whole extent of the domain \param smapleRate the sampling rate \param includeBoundary indicates whether to include the boundary or not. V.IsValid() -> bool C++: bool IsValid() Returns true if the helper is properly initialized. V.GetSize(int) -> int C++: int GetSize(const int dim) Returns the size along a given dimension \param dim the dimension in query \pre dim >= 0 && dim < 3 V.GetMappedIndex(int, int) -> int C++: int GetMappedIndex(int dim, int outIdx) Given a dimension and output index, return the corresponding extent index. This method should be used to convert array indices, such as the coordinate arrays for rectilinear grids. \param dim the data dimension \param outIdx The output index along the given dimension. \pre dim >= 0 && dim < 3 \pre outIdx >= 0 && outIdx < this->GetSize( dim ) \return The input extent index along the given dimension. \sa GetMappedExtentValue \sa GetMappedExtentValueFromIndex V.GetMappedIndexFromExtentValue(int, int) -> int C++: int GetMappedIndexFromExtentValue(int dim, int outExtVal) Given a dimension and output extent value, return the corresponding input extent index. This method should be used to compute extent indices from extent values. \param dim the data dimension \param outExtVal The output extent value along the given dimension. \pre dim >= 0 && dim < 3 \pre outExtVal >= this->GetOutputWholeExtent()[2*dim] && outExtVal <= this->GetOutputWholeExtent()[2*dim+1] \return The input extent index along the given dimension. \sa GetMappedExtentValue \sa GetMappedExtentValueFromIndex V.GetMappedExtentValue(int, int) -> int C++: int GetMappedExtentValue(int dim, int outExtVal) Given a dimension and output extent value, return the corresponding input extent value. This method should be used to convert extent values. \param dim the data dimension. \param outExtVal The output extent value along the given dimension. \pre dim >= 0 && dim < 3 \pre outExtVal >= this->GetOutputWholeExtent()[2*dim] && outExtVal <= this->GetOutputWholeExtent()[2*dim+1] \return The input extent value along the given dimension. \sa GetMappedIndex \sa GetMappedExtentValueFromIndex V.GetMappedExtentValueFromIndex(int, int) -> int C++: int GetMappedExtentValueFromIndex(int dim, int outIdx) Given a dimension and output extent index, return the corresponding input extent value. This method should be used to compute extent values from extent indices. \param dim the data dimension. \param outIdx The output index along the given dimension. \pre dim >= 0 && dim < 3 \pre outIdx >= 0 && outIdx < this->GetSize( dim ) \return The input extent value along the given dimension. \sa GetMappedIndex \sa GetMappedExtentValue V.ComputeBeginAndEnd([int, int, int, int, int, int], [int, int, int, int, int, int], [int, int, int], [int, int, int]) C++: void ComputeBeginAndEnd(int inExt[6], int voi[6], int begin[3], int end[3]) Returns the begin & end extent that intersects with the VOI \param inExt the input extent \param voi the volume of interest \param begin the begin extent \param end the end extent V.CopyPointsAndPointData([int, int, int, int, int, int], [int, int, int, int, int, int], vtkPointData, vtkPoints, vtkPointData, vtkPoints) C++: void CopyPointsAndPointData(int inExt[6], int outExt[6], vtkPointData *pd, vtkPoints *inpnts, vtkPointData *outPD, vtkPoints *outpnts) Copies the points & point data to the output. \param inExt the input grid extent. \param outExt the output grid extent. \param pd pointer to the input point data. \param inpnts pointer to the input points, or nullptr if uniform grid. \param outPD point to the output point data. \param outpnts pointer to the output points, or nullptr if uniform grid. \pre pd != nullptr. \pre outPD != nullptr. V.CopyCellData([int, int, int, int, int, int], [int, int, int, int, int, int], vtkCellData, vtkCellData) C++: void CopyCellData(int inExt[6], int outExt[6], vtkCellData *cd, vtkCellData *outCD) Copies the cell data to the output. \param inExt the input grid extent. \param outExt the output grid extent. \param cd the input cell data. \param outCD the output cell data. \pre cd != nullptr. \pre outCD != nullptr. V.GetPartitionedVOI((int, int, int, int, int, int), (int, int, int, int, int, int), (int, int, int), bool, [int, int, int, int, int, int]) C++: static void GetPartitionedVOI(const int globalVOI[6], const int partitionedExtent[6], const int sampleRate[3], bool includeBoundary, int partitionedVOI[6]) Calculate the VOI for a partitioned structured dataset. This method setspartitionedVOI to the VOI that extracts as much of thepartitionedExtent as possible while considering the globalVOI, thesampleRate, and the boundary conditions. \param globalVOI The full VOI for the entire distributed dataset. \param partitionedExtent Extent of the process's partitioned input data. \param sampleRate The sampling rate in each dimension. \param includeBoundary Whether or not to include the boundary of the VOI, even if it doesn't fit the spacing. \param partitionedVOI The extent of the process's partitioned dataset that should be extracted by a serial extraction filter. V.GetPartitionedOutputExtent((int, int, int, int, int, int), (int, int, int, int, int, int), (int, int, int, int, int, int), ( int, int, int), bool, [int, int, int, int, int, int]) C++: static void GetPartitionedOutputExtent( const int globalVOI[6], const int partitionedVOI[6], const int outputWholeExtent[6], const int sampleRate[3], bool includeBoundary, int partitionedOutputExtent[6]) Calculate the partitioned output extent for a partitioned structured dataset. This method sets partitionedOutputExtent to the correct extent of an extracted dataset, such that it properly fits with the other partitioned pieces while considering the globalVOI, thesampleRate, and the boundary conditions. \param globalVOI The full VOI for the entire distributed dataset. \param partitionedVOI The VOI used in the serial extraction. \param outputWholeExtent The output extent of the full dataset. \param sampleRate The sampling rate in each dimension. \param includeBoundary Whether or not to include the boundary of the VOI, even if it doesn't fit the spacing. \param partitionedOutputExtent The correct output extent of the extracted dataset. GetAbstractArrayGetNumberOfComponentsGetNumberOfTuplesSetNumberOfTuplesAllocateArraysCopyFieldOnCopyFieldOffHasArrayGetFieldInsertNextTupleGetArrayContainingComponentSetTupleInsertTupleGetArrayNamevtkFieldData - represent and manipulate fields of data Superclass: vtkObject vtkFieldData represents and manipulates fields of data. The model of a field is a m x n matrix of data values, where m is the number of tuples, and n is the number of components. (A tuple is a row of n components in the matrix.) The field is assumed to be composed of a set of one or more data arrays, where the data in the arrays are of different types (e.g., int, double, char, etc.), and there may be variable numbers of components in each array. Note that each data array is assumed to be "m" in length (i.e., number of tuples), which typically corresponds to the number of points or cells in a dataset. Also, each data array must have a character-string name. (This is used to manipulate data.) There are two ways of manipulating and interfacing to fields. You can do it generically by manipulating components/tuples via a double-type data exchange, or you can do it by grabbing the arrays and manipulating them directly. The former is simpler but performs type conversion, which is bad if your data has non-castable types like (void) pointers, or you lose information as a result of the cast. The, more efficient method means managing each array in the field. Using this method you can create faster, more efficient algorithms that do not lose information. @sa vtkAbstractArray vtkDataSetAttributes vtkPointData vtkCellData vtkCommonDataModelPython.vtkFieldDataV.SafeDownCast(vtkObjectBase) -> vtkFieldData C++: static vtkFieldData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkFieldData C++: vtkFieldData *NewInstance() V.Initialize() C++: virtual void Initialize() Release all data but do not delete object. Also, clear the copy flags. V.Allocate(int, int) -> int C++: int Allocate(vtkIdType sz, vtkIdType ext=1000) Allocate data for each array. Note that ext is no longer used. V.CopyStructure(vtkFieldData) C++: void CopyStructure(vtkFieldData *) Copy data array structure from a given field. The same arrays will exist with the same types, but will contain nothing in the copy. V.AllocateArrays(int) C++: void AllocateArrays(int num) AllocateOfArrays actually sets the number of vtkAbstractArray pointers in the vtkFieldData object, not the number of used pointers (arrays). Adding more arrays will cause the object to dynamically adjust the number of pointers if it needs to extend. Although AllocateArrays can be used if the number of arrays which will be added is known, it can be omitted with a small computation cost. V.GetNumberOfArrays() -> int C++: int GetNumberOfArrays() Get the number of arrays of data available. This does not include nullptr array pointers therefore after fd->AllocateArray(n); nArrays = GetNumberOfArrays() nArrays is not necessarily equal to n. V.AddArray(vtkAbstractArray) -> int C++: int AddArray(vtkAbstractArray *array) Add an array to the array list. If an array with the same name already exists - then the added array will replace it. Return the index of the added array. V.RemoveArray(string) C++: virtual void RemoveArray(const char *name) V.RemoveArray(int) C++: virtual void RemoveArray(int index) Remove an array (with the given name or index) from the list of arrays. V.GetArray(int) -> vtkDataArray C++: vtkDataArray *GetArray(int i) V.GetArray(string, int) -> vtkDataArray C++: vtkDataArray *GetArray(const char *arrayName, int &index) V.GetArray(string) -> vtkDataArray C++: vtkDataArray *GetArray(const char *arrayName) Not recommended for use. Use GetAbstractArray(int i) instead. Return the ith array in the field. A nullptr is returned if the index i is out of range, or if the array at the given index is not a vtkDataArray. To access vtkStringArray, vtkUnicodeStringArray, or vtkVariantArray, use GetAbstractArray(int i). V.GetAbstractArray(int) -> vtkAbstractArray C++: vtkAbstractArray *GetAbstractArray(int i) V.GetAbstractArray(string, int) -> vtkAbstractArray C++: vtkAbstractArray *GetAbstractArray(const char *arrayName, int &index) V.GetAbstractArray(string) -> vtkAbstractArray C++: vtkAbstractArray *GetAbstractArray(const char *arrayName) Returns the ith array in the field. Unlike GetArray(), this method returns a vtkAbstractArray and can be used to access any array type. A nullptr is returned only if the index i is out of range. V.HasArray(string) -> int C++: int HasArray(const char *name) Return 1 if an array with the given name could be found. 0 otherwise. V.GetArrayName(int) -> string C++: const char *GetArrayName(int i) Get the name of ith array. Note that this is equivalent to: GetAbstractArray(i)->GetName() if ith array pointer is not nullptr V.PassData(vtkFieldData) C++: virtual void PassData(vtkFieldData *fd) Pass entire arrays of input data through to output. Obey the "copy" flags. V.CopyFieldOn(string) C++: void CopyFieldOn(const char *name) Turn on/off the copying of the field specified by name. During the copying/passing, the following rules are followed for each array: 1. If the copy flag for an array is set (on or off), it is applied This overrides rule 2. 2. If CopyAllOn is set, copy the array. If CopyAllOff is set, do not copy the array V.CopyFieldOff(string) C++: void CopyFieldOff(const char *name) V.CopyAllOn(int) C++: virtual void CopyAllOn(int unused=0) Turn on copying of all data. During the copying/passing, the following rules are followed for each array: 1. If the copy flag for an array is set (on or off), it is applied This overrides rule 2. 2. If CopyAllOn is set, copy the array. If CopyAllOff is set, do not copy the array V.CopyAllOff(int) C++: virtual void CopyAllOff(int unused=0) Turn off copying of all data. During the copying/passing, the following rules are followed for each array: 1. If the copy flag for an array is set (on or off), it is applied This overrides rule 2. 2. If CopyAllOn is set, copy the array. If CopyAllOff is set, do not copy the array V.DeepCopy(vtkFieldData) C++: virtual void DeepCopy(vtkFieldData *da) Copy a field by creating new data arrays (i.e., duplicate storage). V.ShallowCopy(vtkFieldData) C++: virtual void ShallowCopy(vtkFieldData *da) Copy a field by reference counting the data arrays. V.Squeeze() C++: void Squeeze() Squeezes each data array in the field (Squeeze() reclaims unused memory.) V.Reset() C++: void Reset() Resets each data array in the field (Reset() does not release memory but it makes the arrays look like they are empty.) V.GetActualMemorySize() -> int C++: virtual unsigned long GetActualMemorySize() Return the memory in kibibytes (1024 bytes) consumed by this field data. Used to support streaming and reading/writing data. The value returned is guaranteed to be greater than or equal to the memory required to actually represent the data represented by this object. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Check object's components for modified times. V.GetField(vtkIdList, vtkFieldData) C++: void GetField(vtkIdList *ptId, vtkFieldData *f) Get a field from a list of ids. Supplied field f should have same types and number of data arrays as this one (i.e., like CopyStructure() creates). This method should not be used if the instance is from a subclass of vtkFieldData (vtkPointData or vtkCellData). This is because in those cases, the attribute data is stored with the other fields and will cause the method to behave in an unexpected way. V.GetArrayContainingComponent(int, int) -> int C++: int GetArrayContainingComponent(int i, int &arrayComp) Return the array containing the ith component of the field. The return value is an integer number n 0<=nNumberOfArrays. Also, an integer value is returned indicating the component in the array is returned. Method returns -1 if specified component is not in the field. V.GetNumberOfComponents() -> int C++: int GetNumberOfComponents() Get the number of components in the field. This is determined by adding up the components in each non-nullptr array. This method should not be used if the instance is from a subclass of vtkFieldData (vtkPointData or vtkCellData). This is because in those cases, the attribute data is stored with the other fields and will cause the method to behave in an unexpected way. V.GetNumberOfTuples() -> int C++: vtkIdType GetNumberOfTuples() Get the number of tuples in the field. Note: some fields have arrays with different numbers of tuples; this method returns the number of tuples in the first array. Mixed-length arrays may have to be treated specially. This method should not be used if the instance is from a subclass of vtkFieldData (vtkPointData or vtkCellData). This is because in those cases, the attribute data is stored with the other fields and will cause the method to behave in an unexpected way. V.SetNumberOfTuples(int) C++: void SetNumberOfTuples(const vtkIdType number) Set the number of tuples for each data array in the field. This method should not be used if the instance is from a subclass of vtkFieldData (vtkPointData or vtkCellData). This is because in those cases, the attribute data is stored with the other fields and will cause the method to behave in an unexpected way. V.SetTuple(int, int, vtkFieldData) C++: void SetTuple(const vtkIdType i, const vtkIdType j, vtkFieldData *source) Set the jth tuple in source field data at the ith location. Set operations mean that no range checking is performed, so they're faster. V.InsertTuple(int, int, vtkFieldData) C++: void InsertTuple(const vtkIdType i, const vtkIdType j, vtkFieldData *source) Insert the jth tuple in source field data at the ith location. Range checking is performed and memory allocates as necessary. V.InsertNextTuple(int, vtkFieldData) -> int C++: vtkIdType InsertNextTuple(const vtkIdType j, vtkFieldData *source) Insert the jth tuple in source field data at the end of the tuple matrix. Range checking is performed and memory is allocated as necessary. InterpolateTupleIsGeometryLinearIsInDataSetGetTypeIsOnBoundaryGetDimensionGetGeometryOrderGetIdIsPrimaryGetNumberOfDOFNodesGetNumberOfVerticesOnFaceGetPointIteratorIsFaceOnBoundaryGetAttributeOrdervtkGenericAttributeIsAttributeLinearCountNeighborsGetNumberOfBoundariesGetNeighborsGetBoundaryIteratorCountEdgeNeighborsvtkGenericAttributeCollectionTriangulateFacevtkGenericCellTessellatorTessellatevtkContourValuesGetHighestOrderAttributevtkGenericAdaptorCell - defines cell interface Superclass: vtkObject In VTK, spatial-temporal data is defined in terms of a dataset which is composed of cells. The cells are topological entities over which an interpolation field is applied. Cells are defined in terms of a topology (e.g., vertices, lines, triangles, polygons, tetrahedra, etc.), points that instantiate the geometry of the cells, and interpolation fields (in the general case one interpolation field is for geometry, the other is for attribute data associated with the cell). Currently most algorithms in VTK use vtkCell and vtkDataSet, which make assumptions about the nature of datasets, cells, and attributes. In particular, this abstraction assumes that cell interpolation functions are linear, or products of linear functions. Further, VTK implements most of the interpolation functions. This implementation starts breaking down as the complexity of the interpolation (or basis) functions increases. vtkGenericAdaptorCell addresses these issues by providing more general abstraction for cells. It also adopts modern C++ practices including using iterators. The vtkGenericAdaptorCell is designed to fit within the adaptor framework; meaning that it is meant to adapt VTK to external simulation systems (see the GenericFiltering/README.html). Please note that most cells are defined in terms of other cells (the boundary cells). They are also defined in terms of points, which are not the same as vertices (vertices are a 0-D cell; points represent a position in space). Another important concept is the notion of DOFNodes. These concept supports cell types with complex interpolation functions. For example, higher-order p-method finite elements may have different functions on each of their topological features (edges, faces, region). The coefficients of these polynomial functions are associated with DOFNodes. (There is a single DOFNode for each topological feature.) Note that from this perspective, points are used to establish the topological form of the cell; mid-side nodes and such are considered DOFNodes. @sa vtkGenericDataSet vtkCommonDataModelPython.vtkGenericAdaptorCellV.SafeDownCast(vtkObjectBase) -> vtkGenericAdaptorCell C++: static vtkGenericAdaptorCell *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGenericAdaptorCell C++: vtkGenericAdaptorCell *NewInstance() V.GetId() -> int C++: virtual vtkIdType GetId() Unique identification number of the cell over the whole data set. This unique key may not be contiguous. V.IsInDataSet() -> int C++: virtual int IsInDataSet() Does `this' a cell of a dataset? (otherwise, it is a boundary cell) V.GetType() -> int C++: virtual int GetType() Return the type of the current cell. \post (result==VTK_HIGHER_ORDER_EDGE)|| (result==VTK_HIGHER_ORDER_TRIANGLE)|| (result==VTK_HIGHER_ORDER_TETRAHEDRON) V.GetDimension() -> int C++: virtual int GetDimension() Return the topological dimension of the current cell. \post valid_result: result>=0 && result<=3 V.GetGeometryOrder() -> int C++: virtual int GetGeometryOrder() Return the interpolation order of the geometry. \post positive_result: result>=0 V.IsGeometryLinear() -> int C++: int IsGeometryLinear() Does the cell have a non-linear interpolation for the geometry? \post definition: result==(GetGeometryOrder()==1) V.GetAttributeOrder(vtkGenericAttribute) -> int C++: virtual int GetAttributeOrder(vtkGenericAttribute *a) Return the interpolation order of attribute `a' on the cell (may differ by cell). \pre a_exists: a!=0 \post positive_result: result>=0 V.GetHighestOrderAttribute(vtkGenericAttributeCollection) -> int C++: virtual int GetHighestOrderAttribute( vtkGenericAttributeCollection *ac) Return the index of the first point centered attribute with the highest order in `ac'. \pre ac_exists: ac!=0 \post valid_result: result>=-1 && resultGetNumberOfAttributes() V.IsAttributeLinear(vtkGenericAttribute) -> int C++: int IsAttributeLinear(vtkGenericAttribute *a) Does the attribute `a' have a non-linear interpolation? \pre a_exists: a!=0 \post definition: result==(GetAttributeOrder()==1) V.IsPrimary() -> int C++: virtual int IsPrimary() Is the cell primary (i.e. not composite) ? V.GetNumberOfPoints() -> int C++: virtual int GetNumberOfPoints() Return the number of corner points that compose the cell. \post positive_result: result>=0 V.GetNumberOfBoundaries(int) -> int C++: virtual int GetNumberOfBoundaries(int dim=-1) Return the number of boundaries of dimension `dim' (or all dimensions greater than 0 and less than GetDimension() if -1) of the cell. When dim is -1, the number of vertices is not included in the count because vertices are a special case: a vertex will have at most a single field value associated with it; DOF nodes may have an arbitrary number of field values associated with them. \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim=0 V.GetNumberOfDOFNodes() -> int C++: virtual int GetNumberOfDOFNodes() Accumulated number of DOF nodes of the current cell. A DOF node is a component of cell with a given topological dimension. e.g.: a triangle has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF: 1 region, 6 faces, and 12 edges. * The number of vertices is not included in the * count because vertices are a special case: a vertex will have * at most a single field value associated with it; DOF nodes may have * an arbitrary number of field values associated with them. * \post valid_result: result==GetNumberOfBoundaries(-1)+1 V.GetPointIterator(vtkGenericPointIterator) C++: virtual void GetPointIterator(vtkGenericPointIterator *it) Return the points of cell into `it'. \pre it_exists: it!=0 V.NewCellIterator() -> vtkGenericCellIterator C++: virtual vtkGenericCellIterator *NewCellIterator() Create an empty cell iterator. The user is responsible for deleting it. \post result_exists: result!=0 V.GetBoundaryIterator(vtkGenericCellIterator, int) C++: virtual void GetBoundaryIterator( vtkGenericCellIterator *boundaries, int dim=-1) Return the `boundaries' cells of dimension `dim' (or all dimensions less than GetDimension() if -1) that are part of the boundary of the cell. \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim int C++: virtual int CountNeighbors(vtkGenericAdaptorCell *boundary) Number of cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' of `this'. `this' IS NOT INCLUDED. \pre boundary_exists: boundary!=0 \pre real_boundary: !boundary->IsInDataSet() \pre cell_of_the_dataset: IsInDataSet() \pre boundary: HasBoundary(boundary) \post positive_result: result>=0 V.CountEdgeNeighbors([int, ...]) C++: virtual void CountEdgeNeighbors(int *sharing) Number of cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' of `this'. `this' IS NOT INCLUDED. \pre boundary_exists: boundary!=0 \pre real_boundary: !boundary->IsInDataSet() \pre cell_of_the_dataset: IsInDataSet() \pre boundary: HasBoundary(boundary) \post positive_result: result>=0 V.GetNeighbors(vtkGenericAdaptorCell, vtkGenericCellIterator) C++: virtual void GetNeighbors(vtkGenericAdaptorCell *boundary, vtkGenericCellIterator *neighbors) Put into `neighbors' the cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' with this cell. `this' IS NOT INCLUDED. \pre boundary_exists: boundary!=0 \pre real_boundary: !boundary->IsInDataSet() \pre cell_of_the_dataset: IsInDataSet() \pre boundary: HasBoundary(boundary) \pre neighbors_exist: neighbors!=0 V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float) -> int C++: virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2) Is `x' inside the current cell? It also evaluates parametric coordinates `pcoords', sub-cell id `subId' (0 means primary cell), distance squared to the sub-cell in `dist2' and closest corner point `closestPoint'. `dist2' and `closestPoint' are not evaluated if `closestPoint'==0. If a numerical error occurred, -1 is returned and all other results should be ignored. \post valid_result: result==-1 || result==0 || result==1 \post positive_distance: result!=-1 implies (closestPoint!=0 implies dist2>=0) V.EvaluateLocation(int, [float, float, float], [float, float, float]) C++: virtual void EvaluateLocation(int subId, double pcoords[3], double x[3]) Determine the global coordinates `x' from sub-cell `subId' and parametric coordinates `pcoords' in the cell. \pre positive_subId: subId>=0 \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1) V.InterpolateTuple(vtkGenericAttribute, [float, float, float], [float, ...]) C++: virtual void InterpolateTuple(vtkGenericAttribute *a, double pcoords[3], double *val) V.InterpolateTuple(vtkGenericAttributeCollection, [float, float, float], [float, ...]) C++: virtual void InterpolateTuple( vtkGenericAttributeCollection *c, double pcoords[3], double *val) Interpolate the attribute `a' at local position `pcoords' of the cell into `val'. \pre a_exists: a!=0 \pre a_is_point_centered: a->GetCentering()==vtkPointCentered \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 && pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1 \pre val_exists: val!=0 \pre valid_size: sizeof(val)==a->GetNumberOfComponents() V.Contour(vtkContourValues, vtkImplicitFunction, vtkGenericAttributeCollection, vtkGenericCellTessellator, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkCellData, vtkPointData, vtkPointData, vtkCellData) C++: virtual void Contour(vtkContourValues *values, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *outPd, vtkCellData *outCd, vtkPointData *internalPd, vtkPointData *secondaryPd, vtkCellData *secondaryCd) Generate a contour (contouring primitives) for each `values' or with respect to an implicit function `f'. Contouring is performed on the scalar attribute (`attributes->GetActiveAttribute()' `attributes->GetActiveComponent()'). Contouring interpolates the `attributes->GetNumberOfattributesToInterpolate()' attributes `attributes->GetAttributesToInterpolate()'. The `locator', `verts', `lines', `polys', `outPd' and `outCd' are cumulative data arrays over cell iterations: they store the result of each call to Contour(): - `locator' is a points list that merges points as they are inserted (i.e., prevents duplicates). - `verts' is an array of generated vertices - `lines' is an array of generated lines - `polys' is an array of generated polygons - `outPd' is an array of interpolated point data along the edge (if not-nullptr) - `outCd' is an array of copied cell data of the current cell (if not-nullptr) `internalPd', `secondaryPd' and `secondaryCd' are initialized by the filter that call it from `attributes'. - `internalPd' stores the result of the tessellation pass: the higher-order cell is tessellated into linear sub-cells. - `secondaryPd' and `secondaryCd' are used internally as inputs to the Contour() method on linear sub-cells. Note: the CopyAllocate() method must be invoked on both `outPd' ... [Truncated] V.Clip(float, vtkImplicitFunction, vtkGenericAttributeCollection, vtkGenericCellTessellator, int, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkCellData, vtkPointData, vtkPointData, vtkCellData) C++: virtual void Clip(double value, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int insideOut, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *outPd, vtkCellData *outCd, vtkPointData *internalPd, vtkPointData *secondaryPd, vtkCellData *secondaryCd) Cut (or clip) the current cell with respect to the contour defined by the `value' or the implicit function `f' of the scalar attribute (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()' ). If `f' exists, `value' is not used. The output is the part of the current cell which is inside the contour. The output is a set of zero, one or more cells of the same topological dimension as the current cell. Normally, cell points whose scalar value is greater than "value" are considered inside. If `insideOut' is on, this is reversed. Clipping interpolates the `attributes->GetNumberOfattributesToInterpolate()' attributes `attributes->GetAttributesToInterpolate()'. `locator', `connectivity', `outPd' and `outCd' are cumulative data arrays over cell iterations: they store the result of each call to Clip(): - `locator' is a points list that merges points as they are inserted (i.e., prevents duplicates). - `connectivity' is an array of generated cells - `outPd' is an array of interpolated point data along the edge (if not-nullptr) - `outCd' is an array of copied cell data of the current cell (if not-nullptr) `internalPd', `secondaryPd' and `secondaryCd' are initialized by the filter that call it from `attributes'. - `internalPd' stores the result of the tessellation pass: the higher-order cell is tessellated into linear sub-cells. - `secondaryPd' and `secondaryCd' a ... [Truncated] V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) Is there an intersection between the current cell and the ray (`p1',`p2') according to a tolerance `tol'? If true, `x' is the global intersection, `t' is the parametric coordinate for the line, `pcoords' are the parametric coordinates for cell. `subId' is the sub-cell where the intersection occurs. \pre positive_tolerance: tol>0 V.Derivatives(int, [float, float, float], vtkGenericAttribute, [float, ...]) C++: virtual void Derivatives(int subId, double pcoords[3], vtkGenericAttribute *attribute, double *derivs) Compute derivatives `derivs' of the attribute `attribute' (from its values at the corner points of the cell) given sub-cell `subId' (0 means primary cell) and parametric coordinates `pcoords'. Derivatives are in the x-y-z coordinate directions for each data value. \pre positive_subId: subId>=0 \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1) \pre attribute_exists: attribute!=0 \pre derivs_exists: derivs!=0 \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3 V.GetBounds([float, float, float, float, float, float]) C++: virtual void GetBounds(double bounds[6]) V.GetBounds() -> (float, ...) C++: virtual double *GetBounds() Compute the bounding box of the current cell in `bounds' in global coordinates. THREAD SAFE V.GetLength2() -> float C++: virtual double GetLength2() Return the bounding box diagonal squared of the current cell. \post positive_result: result>=0 V.GetParametricCenter([float, float, float]) -> int C++: virtual int GetParametricCenter(double pcoords[3]) Get the center of the current cell (in parametric coordinates) and place it in `pcoords'. If the current cell is a composite, the return value is the sub-cell id that the center is in. \post valid_result: (result>=0) && (IsPrimary() implies result==0) V.GetParametricDistance([float, float, float]) -> float C++: virtual double GetParametricDistance(double pcoords[3]) Return the distance of the parametric coordinate `pcoords' to the current cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.) \post positive_result: result>=0 V.GetParametricCoords() -> (float, ...) C++: virtual double *GetParametricCoords() Return a contiguous array of parametric coordinates of the corrner points defining the current cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. \post valid_result_exists: ((IsPrimary()) && (result!=0)) || ((!IsPrimary()) && (result==0)) result!=0 implies sizeof(result)==GetNumberOfPoints() V.Tessellate(vtkGenericAttributeCollection, vtkGenericCellTessellator, vtkPoints, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, vtkUnsignedCharArray) C++: virtual void Tessellate( vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, vtkPoints *points, vtkIncrementalPointLocator *locator, vtkCellArray *cellArray, vtkPointData *internalPd, vtkPointData *pd, vtkCellData *cd, vtkUnsignedCharArray *types) Tessellate the cell if it is not linear or if at least one attribute of `attributes' is not linear. The output are linear cells of the same dimension than the cell. If the cell is linear and all attributes are linear, the output is just a copy of the current cell. `points', `cellArray', `pd' and `cd' are cumulative output data arrays over cell iterations: they store the result of each call to Tessellate(). `internalPd' is initialized by the calling filter and stores the result of the tessellation. If it is not null, `types' is filled with the types of the linear cells. `types' is null when it is called from vtkGenericGeometryFilter and not null when it is called from vtkGenericDatasetTessellator. \pre attributes_exist: attributes!=0 \pre tessellator_exists: tess!=0 \pre points_exist: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 \pre pd_exist: pd!=0 \pre cd_exists: cd!=0 V.IsFaceOnBoundary(int) -> int C++: virtual int IsFaceOnBoundary(vtkIdType faceId) Is the face `faceId' of the current cell on the exterior boundary of the dataset? \pre 3d: GetDimension()==3 V.IsOnBoundary() -> int C++: virtual int IsOnBoundary() Is the cell on the exterior boundary of the dataset? \pre 2d: GetDimension()==2 V.GetPointIds([int, ...]) C++: virtual void GetPointIds(vtkIdType *id) Put into `id' the list of the dataset points that define the corner points of the cell. \pre id_exists: id!=0 \pre valid_size: sizeof(id)==GetNumberOfPoints(); V.TriangulateFace(vtkGenericAttributeCollection, vtkGenericCellTessellator, int, vtkPoints, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData) C++: virtual void TriangulateFace( vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int index, vtkPoints *points, vtkIncrementalPointLocator *locator, vtkCellArray *cellArray, vtkPointData *internalPd, vtkPointData *pd, vtkCellData *cd) Tessellate face `index' of the cell. See Tessellate() for further explanations. \pre cell_is_3d: GetDimension()==3 \pre attributes_exist: attributes!=0 \pre tessellator_exists: tess!=0 \pre valid_face: index>=0 \pre points_exist: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 \pre pd_exist: pd!=0 \pre cd_exists: cd!=0 V.GetFaceArray(int) -> (int, ...) C++: virtual int *GetFaceArray(int faceId) Return the ids of the vertices defining face `faceId'. Ids are related to the cell, not to the dataset. \pre is_3d: this->GetDimension()==3 \pre valid_faceId_range: faceId>=0 && faceIdGetNumberOfBoundaries(2) \post result_exists: result!=0 \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId) V.GetNumberOfVerticesOnFace(int) -> int C++: virtual int GetNumberOfVerticesOnFace(int faceId) Return the number of vertices defining face `faceId'. \pre is_3d: this->GetDimension()==3 \pre valid_faceId_range: faceId>=0 && faceIdGetNumberOfBoundaries(2) \post positive_result: && result>0 V.GetEdgeArray(int) -> (int, ...) C++: virtual int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge `edgeId'. Ids are related to the cell, not to the dataset. \pre valid_dimension: this->GetDimension()>=2 \pre valid_edgeId_range: edgeId>=0 && edgeIdGetNumberOfBoundaries(1) \post result_exists: result!=0 \post valid_size: sizeof(result)==2 @VPP *vtkGenericAttribute *d *d@VPP *vtkGenericAttributeCollection *d *dHasAttributeGetNumberOfAttributesIsEmptyGetMaxNumberOfComponentsGetActiveAttributeGetActiveComponentGetAttributesToInterpolateInsertNextAttributeRemoveAttributeGetAttributeIndexFindAttributeInsertAttributeSetAttributesToInterpolateSetAttributesToInterpolateToAllGetNumberOfPointCenteredComponentsGetNumberOfAttributesToInterpolatevtkGenericAttributeCollection - a collection of attributes Superclass: vtkObject vtkGenericAttributeCollection is a class that collects attributes (represented by vtkGenericAttribute). vtkCommonDataModelPython.vtkGenericAttributeCollectionV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard type definition and print methods for a VTK class. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard type definition and print methods for a VTK class. V.SafeDownCast(vtkObjectBase) -> vtkGenericAttributeCollection C++: static vtkGenericAttributeCollection *SafeDownCast( vtkObjectBase *o) Standard type definition and print methods for a VTK class. V.NewInstance() -> vtkGenericAttributeCollection C++: vtkGenericAttributeCollection *NewInstance() Standard type definition and print methods for a VTK class. V.GetNumberOfAttributes() -> int C++: int GetNumberOfAttributes() Return the number of attributes (e.g., instances of vtkGenericAttribute) in the collection. \post positive_result: result>=0 V.GetNumberOfComponents() -> int C++: int GetNumberOfComponents() Return the number of components. This is the sum of all components found in all attributes. \post positive_result: result>=0 V.GetNumberOfPointCenteredComponents() -> int C++: int GetNumberOfPointCenteredComponents() Return the number of components. This is the sum of all components found in all point centered attributes. \post positive_result: result>=0 V.GetMaxNumberOfComponents() -> int C++: int GetMaxNumberOfComponents() Maximum number of components encountered among all attributes. \post positive_result: result>=0 \post valid_result: result<=GetNumberOfComponents() V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() Actual size of the data in kibibytes (1024 bytes); only valid after the pipeline has updated. It is guaranteed to be greater than or equal to the memory required to represent the data. V.IsEmpty() -> int C++: int IsEmpty() Indicate whether the collection contains any attributes. \post definition: result==(GetNumberOfAttributes()==0) V.GetAttribute(int) -> vtkGenericAttribute C++: vtkGenericAttribute *GetAttribute(int i) Return a pointer to the ith instance of vtkGenericAttribute. \pre not_empty: !IsEmpty() \pre valid_i: i>=0 && i int C++: int FindAttribute(const char *name) Return the index of the attribute named `name'. Return the non-negative index if found. Return -1 otherwise. \pre name_exists: name!=0 \post valid_result: (result==-1) || (result>=0) && (result<=GetNumberOfAttributes()) V.GetAttributeIndex(int) -> int C++: int GetAttributeIndex(int i) Return the index of the first component of attribute `i' in an array of format attrib0comp0 attrib0comp1 ... attrib4comp0 ... \pre valid_i: i>=0 && iGetCentering()==vtkPointCentered V.InsertNextAttribute(vtkGenericAttribute) C++: void InsertNextAttribute(vtkGenericAttribute *a) Add the attribute `a' to the end of the collection. \pre a_exists: a!=0 \post more_items: GetNumberOfAttributes()==old GetNumberOfAttributes()+1 \post a_is_set: GetAttribute(GetNumberOfAttributes()-1)==a V.InsertAttribute(int, vtkGenericAttribute) C++: void InsertAttribute(int i, vtkGenericAttribute *a) Replace the attribute at index `i' by `a'. \pre not_empty: !IsEmpty() \pre a_exists: a!=0 \pre valid_i: i>=0 && i=0 && iGetNumberOfAttributes() V.ShallowCopy(vtkGenericAttributeCollection) C++: void ShallowCopy(vtkGenericAttributeCollection *other) Copy, via reference counting, the other attribute array. \pre other_exists: other!=0 \pre not_self: other!=this \post same_size: GetNumberOfAttributes()==other->GetNumberOfAttributes() V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; vtkAttributeCollection is a composite object and needs to check each member of its collection for modified time. V.GetActiveAttribute() -> int C++: virtual int GetActiveAttribute() Index of the attribute to be processed (not necessarily scalar). \pre not_empty: !IsEmpty() \post valid_result: result>=0 && result int C++: virtual int GetActiveComponent() Component of the active attribute to be processed. -1 means module. \pre not_empty: GetNumberOfAttributes()>0 \post valid_result: result>=-1 && resultGetNumberOfComponents() V.SetActiveAttribute(int, int) C++: void SetActiveAttribute(int attribute, int component=0) Set the scalar attribute to be processed. -1 means module. \pre not_empty: !IsEmpty() \pre valid_attribute: attribute>=0 && attribute=-1 && componentGetNumberOfComponents() \post is_set: GetActiveAttribute()==attribute && GetActiveComponent()==component V.GetNumberOfAttributesToInterpolate() -> int C++: virtual int GetNumberOfAttributesToInterpolate() Number of attributes to interpolate. \pre not_empty: !IsEmpty() \post positive_result: result>=0 V.GetAttributesToInterpolate() -> (int, ...) C++: int *GetAttributesToInterpolate() Indices of attributes to interpolate. \pre not_empty: !IsEmpty() \post valid_result: GetNumberOfAttributesToInterpolate()>0 V.HasAttribute(int, [int, ...], int) -> int C++: int HasAttribute(int size, int *attributes, int attribute) Does the array `attributes' of size `size' have `attribute'? \pre positive_size: size>=0 \pre valid_attributes: size>0 implies attributes!=0 V.SetAttributesToInterpolate(int, [int, ...]) C++: void SetAttributesToInterpolate(int size, int *attributes) Set the attributes to interpolate. \pre not_empty: !IsEmpty() \pre positive_size: size>=0 \pre valid_attributes: size>0 implies attributes!=0 \pre valid_attributes_contents: attributes!=0 implies !HasAttributes(size,attributes,GetActiveAttribute()) \post is_set: (GetNumberOfAttributesToInterpolate()==size)&& (GetAttributesToInterpolate()==attributes) V.SetAttributesToInterpolateToAll() C++: void SetAttributesToInterpolateToAll() Set the attributes to interpolate. \pre not_empty: !IsEmpty() \pre positive_size: size>=0 \pre valid_attributes: size>0 implies attributes!=0 \pre valid_attributes_contents: attributes!=0 implies !HasAttributes(size,attributes,GetActiveAttribute()) \post is_set: (GetNumberOfAttributesToInterpolate()==size)&& (GetAttributesToInterpolate()==attributes) GetTupleGetCenteringGetComponentTypeGetMaxNormGetNameGetRangeGetComponentvtkPointCenteredvtkCellCenteredvtkBoundaryCentered@V *vtkGenericAdaptorCell@VP *vtkGenericAdaptorCell *d@V *vtkGenericCellIterator@V *vtkGenericPointIteratorvtkGenericAttribute - abstract class defined API for attribute data Superclass: vtkObject vtkGenericAttribute is an abstract class that defines an API for attribute data. Attribute data is data associated with the topology or geometry of a dataset (i.e., points, cells, etc.). vtkGenericAttribute is part of the adaptor framework (see GenericFiltering/README.html). vtkGenericAttribute provides a more general interface to attribute data than its counterpart vtkDataArray (which assumes a linear, contiguous array). It adopts an iterator interface, and allows attributes to be associated with points, edges, faces, or edges. vtkCommonDataModelPython.vtkGenericAttributeV.SafeDownCast(vtkObjectBase) -> vtkGenericAttribute C++: static vtkGenericAttribute *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGenericAttribute C++: vtkGenericAttribute *NewInstance() V.GetName() -> string C++: virtual const char *GetName() Name of the attribute. (e.g. "velocity") \post result_may_not_exist: result!=0 || result==0 V.GetNumberOfComponents() -> int C++: virtual int GetNumberOfComponents() Dimension of the attribute. (1 for scalar, 3 for velocity) \post positive_result: result>=0 \post GetType()==VTK_SCALARS implies result==1 \post (GetType()==VTK_VECTORS||(GetType()==VTK_NORMALS)||(GetType()= =VTK_TCOORDS) implies result==3 \post GetType()==VTK_TENSORS implies result==6 V.GetCentering() -> int C++: virtual int GetCentering() Is the attribute centered either on points, cells or boundaries? \post valid_result: (result==vtkPointCentered)||(result==vtkCellCentered) V.GetType() -> int C++: virtual int GetType() Type of the attribute: scalar, vector, normal, texture coordinate, tensor \post valid_result: (result==vtkDataSetAttributes::SCALARS) ||(result==vtkDataSetAttributes::VECTORS) ||(result==vtkDataSetAttributes::NORMALS) ||(result==vtkDataSetAttributes::TCOORDS) ||(result==vtkDataSetAttributes::TENSORS) V.GetComponentType() -> int C++: virtual int GetComponentType() Type of the components of the attribute: int, float, double \post valid_result: (result==VTK_BIT) ||(result==VTK_CHAR) ||(result==VTK_UNSIGNED_CHAR) ||(result==VTK_SHORT) ||(result==VTK_UNSIGNED_SHORT)||(result==VTK_INT) ||(result==VTK_UNSIGNED_INT) ||(result==VTK_LONG) ||(result==VTK_UNSIGNED_LONG) ||(result==VTK_FLOAT) ||(result==VTK_DOUBLE) ||(result==VTK_ID_TYPE) V.GetSize() -> int C++: virtual vtkIdType GetSize() Number of tuples. \post valid_result: result>=0 V.GetActualMemorySize() -> int C++: virtual unsigned long GetActualMemorySize() Size in kibibytes (1024 bytes) taken by the attribute. V.GetRange(int) -> (float, ...) C++: virtual double *GetRange(int component=0) V.GetRange(int, [float, float]) C++: virtual void GetRange(int component, double range[2]) Range of the attribute component `component'. If `component'==-1, it returns the range of the magnitude (euclidean norm). It returns double, even if GetType()==VTK_INT. NOT THREAD SAFE \pre valid_component: (component>=-1)&&(component float C++: virtual double GetMaxNorm() Return the maximum euclidean norm for the tuples. \post positive_result: result>=0 V.GetTuple(vtkGenericAdaptorCell) -> (float, ...) C++: virtual double *GetTuple(vtkGenericAdaptorCell *c) V.GetTuple(vtkGenericAdaptorCell, [float, ...]) C++: virtual void GetTuple(vtkGenericAdaptorCell *c, double *tuple) V.GetTuple(vtkGenericCellIterator) -> (float, ...) C++: virtual double *GetTuple(vtkGenericCellIterator *c) V.GetTuple(vtkGenericCellIterator, [float, ...]) C++: virtual void GetTuple(vtkGenericCellIterator *c, double *tuple) V.GetTuple(vtkGenericPointIterator) -> (float, ...) C++: virtual double *GetTuple(vtkGenericPointIterator *p) V.GetTuple(vtkGenericPointIterator, [float, ...]) C++: virtual void GetTuple(vtkGenericPointIterator *p, double *tuple) Attribute at all points of cell `c'. \pre c_exists: c!=0 \pre c_valid: !c->IsAtEnd() \post result_exists: result!=0 \post valid_result: sizeof(result)==GetNumberOfComponents()*c->GetCell()->GetNumbe rOfPoints() V.GetComponent(int, vtkGenericCellIterator, [float, ...]) C++: virtual void GetComponent(int i, vtkGenericCellIterator *c, double *values) V.GetComponent(int, vtkGenericPointIterator) -> float C++: virtual double GetComponent(int i, vtkGenericPointIterator *p) Put component `i' of the attribute at all points of cell `c' in `values'. \pre valid_component: (i>=0) && (iIsAtEnd() \pre values_exist: values!=0 \pre valid_values: sizeof(values)>=c->GetCell()->GetNumberOfPoints() V.DeepCopy(vtkGenericAttribute) C++: virtual void DeepCopy(vtkGenericAttribute *other) Recursive duplication of `other' in `this'. \pre other_exists: other!=0 \pre not_self: other!=this V.ShallowCopy(vtkGenericAttribute) C++: virtual void ShallowCopy(vtkGenericAttribute *other) Update `this' using fields of `other'. \pre other_exists: other!=0 \pre not_self: other!=this @VP *vtkGenericCellIterator *d@VP *vtkGenericPointIterator *dInstantiateCellGetRepresentativeCellSetCellTypeToLagrangeTriangleSetCellTypeToConvexPointSetSetCellTypeToCubicLineSetCellTypeToQuadraticPolygonSetCellTypeToQuadraticTetraSetCellTypeToQuadraticQuadSetCellTypeToQuadraticPyramidSetCellTypeToHexahedronSetCellTypeToLagrangeWedgeSetCellTypeToHexagonalPrismSetCellTypeToPolyLineSetCellTypeToTriangleSetCellTypeToBiQuadraticQuadSetCellTypeToPolyVertexSetCellTypeToPyramidSetCellTypeToLagrangeTetraSetCellTypeToPolyhedronSetCellTypeToLagrangeCurveSetCellTypeToQuadraticEdgeSetCellTypeToPixelSetCellTypeToTriangleStripSetCellTypeToEmptyCellSetCellTypeToQuadSetCellTypeToTetraSetCellTypeToPolygonSetCellTypeToVertexSetCellTypeToWedgeSetCellTypeToLineSetCellTypeToVoxelSetCellTypeToQuadraticWedgeSetCellTypeToPentagonalPrismSetCellTypeSetPointsSetPointIdsSetCellTypeToQuadraticTriangleSetCellTypeToBiQuadraticTriangleSetCellTypeToBiQuadraticQuadraticWedgeSetCellTypeToQuadraticHexahedronSetCellTypeToLagrangeQuadrilateralSetCellTypeToLagrangeHexahedronSetCellTypeToTriQuadraticHexahedronSetCellTypeToBiQuadraticQuadraticHexahedronSetCellTypeToQuadraticLinearQuadSetCellTypeToQuadraticLinearWedgevtkGenericCell - provides thread-safe access to cells Superclass: vtkCell vtkGenericCell is a class that provides access to concrete types of cells. It's main purpose is to allow thread-safe access to cells, supporting the vtkDataSet::GetCell(vtkGenericCell *) method. vtkGenericCell acts like any type of cell, it just dereferences an internal representation. The SetCellType() methods use #define constants; these are defined in the file vtkCellType.h. @sa vtkCell vtkDataSet vtkCommonDataModelPython.vtkGenericCellV.SafeDownCast(vtkObjectBase) -> vtkGenericCell C++: static vtkGenericCell *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGenericCell C++: vtkGenericCell *NewInstance() V.SetPoints(vtkPoints) C++: void SetPoints(vtkPoints *points) Set the points object to use for this cell. This updates the internal cell storage as well as the public member variable Points. V.SetPointIds(vtkIdList) C++: void SetPointIds(vtkIdList *pointIds) Set the point ids to use for this cell. This updates the internal cell storage as well as the public member variable PointIds. V.ShallowCopy(vtkCell) C++: void ShallowCopy(vtkCell *c) override; See the vtkCell API for descriptions of these methods. V.DeepCopy(vtkCell) C++: void DeepCopy(vtkCell *c) override; See the vtkCell API for descriptions of these methods. V.IsLinear() -> int C++: int IsLinear() override; See the vtkCell API for descriptions of these methods. V.RequiresInitialization() -> int C++: int RequiresInitialization() override; See the vtkCell API for descriptions of these methods. V.Initialize() C++: void Initialize() override; See the vtkCell API for descriptions of these methods. V.RequiresExplicitFaceRepresentation() -> int C++: int RequiresExplicitFaceRepresentation() override; See the vtkCell API for descriptions of these methods. V.SetFaces([int, ...]) C++: void SetFaces(vtkIdType *faces) override; See the vtkCell API for descriptions of these methods. V.GetFaces() -> (int, ...) C++: vtkIdType *GetFaces() override; See the vtkCell API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; See the vtkCell API for descriptions of these methods. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; See the vtkCell API for descriptions of these methods. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; See the vtkCell API for descriptions of these methods. V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; See the vtkCell API for descriptions of these methods. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double pcoords[3], double *weights) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.SetCellType(int) C++: void SetCellType(int cellType) This method is used to support the vtkDataSet::GetCell(vtkGenericCell *) method. It allows vtkGenericCell to act like any cell type by dereferencing an internal instance of a concrete cell type. When you set the cell type, you are resetting a pointer to an internal cell which is then used for computation. V.SetCellTypeToEmptyCell() C++: void SetCellTypeToEmptyCell() V.SetCellTypeToVertex() C++: void SetCellTypeToVertex() V.SetCellTypeToPolyVertex() C++: void SetCellTypeToPolyVertex() V.SetCellTypeToLine() C++: void SetCellTypeToLine() V.SetCellTypeToPolyLine() C++: void SetCellTypeToPolyLine() V.SetCellTypeToTriangle() C++: void SetCellTypeToTriangle() V.SetCellTypeToTriangleStrip() C++: void SetCellTypeToTriangleStrip() V.SetCellTypeToPolygon() C++: void SetCellTypeToPolygon() V.SetCellTypeToPixel() C++: void SetCellTypeToPixel() V.SetCellTypeToQuad() C++: void SetCellTypeToQuad() V.SetCellTypeToTetra() C++: void SetCellTypeToTetra() V.SetCellTypeToVoxel() C++: void SetCellTypeToVoxel() V.SetCellTypeToHexahedron() C++: void SetCellTypeToHexahedron() V.SetCellTypeToWedge() C++: void SetCellTypeToWedge() V.SetCellTypeToPyramid() C++: void SetCellTypeToPyramid() V.SetCellTypeToPentagonalPrism() C++: void SetCellTypeToPentagonalPrism() V.SetCellTypeToHexagonalPrism() C++: void SetCellTypeToHexagonalPrism() V.SetCellTypeToPolyhedron() C++: void SetCellTypeToPolyhedron() V.SetCellTypeToConvexPointSet() C++: void SetCellTypeToConvexPointSet() V.SetCellTypeToQuadraticEdge() C++: void SetCellTypeToQuadraticEdge() V.SetCellTypeToCubicLine() C++: void SetCellTypeToCubicLine() V.SetCellTypeToQuadraticTriangle() C++: void SetCellTypeToQuadraticTriangle() V.SetCellTypeToBiQuadraticTriangle() C++: void SetCellTypeToBiQuadraticTriangle() V.SetCellTypeToQuadraticQuad() C++: void SetCellTypeToQuadraticQuad() V.SetCellTypeToQuadraticPolygon() C++: void SetCellTypeToQuadraticPolygon() V.SetCellTypeToQuadraticTetra() C++: void SetCellTypeToQuadraticTetra() V.SetCellTypeToQuadraticHexahedron() C++: void SetCellTypeToQuadraticHexahedron() V.SetCellTypeToQuadraticWedge() C++: void SetCellTypeToQuadraticWedge() V.SetCellTypeToQuadraticPyramid() C++: void SetCellTypeToQuadraticPyramid() V.SetCellTypeToQuadraticLinearQuad() C++: void SetCellTypeToQuadraticLinearQuad() V.SetCellTypeToBiQuadraticQuad() C++: void SetCellTypeToBiQuadraticQuad() V.SetCellTypeToQuadraticLinearWedge() C++: void SetCellTypeToQuadraticLinearWedge() V.SetCellTypeToBiQuadraticQuadraticWedge() C++: void SetCellTypeToBiQuadraticQuadraticWedge() V.SetCellTypeToTriQuadraticHexahedron() C++: void SetCellTypeToTriQuadraticHexahedron() V.SetCellTypeToBiQuadraticQuadraticHexahedron() C++: void SetCellTypeToBiQuadraticQuadraticHexahedron() V.SetCellTypeToLagrangeTriangle() C++: void SetCellTypeToLagrangeTriangle() V.SetCellTypeToLagrangeTetra() C++: void SetCellTypeToLagrangeTetra() V.SetCellTypeToLagrangeCurve() C++: void SetCellTypeToLagrangeCurve() V.SetCellTypeToLagrangeQuadrilateral() C++: void SetCellTypeToLagrangeQuadrilateral() V.SetCellTypeToLagrangeHexahedron() C++: void SetCellTypeToLagrangeHexahedron() V.SetCellTypeToLagrangeWedge() C++: void SetCellTypeToLagrangeWedge() V.InstantiateCell(int) -> vtkCell C++: static vtkCell *InstantiateCell(int cellType) Instantiate a new vtkCell based on it's cell type value V.GetRepresentativeCell() -> vtkCell C++: vtkCell *GetRepresentativeCell() BeginIsAtEndNewCellvtkGenericCellIterator - iterator used to traverse cells Superclass: vtkObject This class (and subclasses) are used to iterate over cells. Use it only in conjunction with vtkGenericDataSet (i.e., the adaptor framework). Typical use is: vtkGenericDataSet *dataset; vtkGenericCellIterator *it = dataset->NewCellIterator(2); for (it->Begin(); !it->IsAtEnd(); it->Next()); { spec=it->GetCell(); } vtkCommonDataModelPython.vtkGenericCellIteratorV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard VTK construction and type macros. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard VTK construction and type macros. V.SafeDownCast(vtkObjectBase) -> vtkGenericCellIterator C++: static vtkGenericCellIterator *SafeDownCast(vtkObjectBase *o) Standard VTK construction and type macros. V.NewInstance() -> vtkGenericCellIterator C++: vtkGenericCellIterator *NewInstance() Standard VTK construction and type macros. V.Begin() C++: virtual void Begin() Move iterator to first position if any (loop initialization). V.IsAtEnd() -> int C++: virtual int IsAtEnd() Is the iterator at the end of traversal? V.NewCell() -> vtkGenericAdaptorCell C++: virtual vtkGenericAdaptorCell *NewCell() Create an empty cell. The user is responsible for deleting it. \post result_exists: result!=0 V.GetCell(vtkGenericAdaptorCell) C++: virtual void GetCell(vtkGenericAdaptorCell *c) V.GetCell() -> vtkGenericAdaptorCell C++: virtual vtkGenericAdaptorCell *GetCell() Get the cell at current position. The cell should be instantiated with the NewCell() method. \pre not_at_end: !IsAtEnd() \pre c_exists: c!=0 THREAD SAFE V.Next() C++: virtual void Next() Move the iterator to the next position in the list. \pre not_at_end: !IsAtEnd() GetMaxErrorsGetErrorMetricsGetMeasurementInitErrorMetricsvtkGenericDataSetSetMeasurementvtkDoubleArrayTessellateFaceSetErrorMetricsvtkGenericCellTessellator - helper class to perform cell tessellation Superclass: vtkObject vtkGenericCellTessellator is a helper class to perform adaptive tessellation of particular cell topologies. The major purpose for this class is to transform higher-order cell types (e.g., higher-order finite elements) into linear cells that can then be easily visualized by VTK. This class works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell classes. This algorithm is based on edge subdivision. An error metric along each edge is evaluated, and if the error is greater than some tolerance, the edge is subdivided (as well as all connected 2D and 3D cells). The process repeats until the error metric is satisfied. A significant issue addressed by this algorithm is to insure face compatibility across neigboring cells. That is, diagonals due to face triangulation must match to insure that the mesh is compatible. The algorithm employs a precomputed table to accelerate the tessellation process. The table was generated with the help of vtkOrderedTriangulator; the basic idea is that the choice of diagonal is made by considering the relative value of the point ids. vtkCommonDataModelPython.vtkGenericCellTessellatorV.SafeDownCast(vtkObjectBase) -> vtkGenericCellTessellator C++: static vtkGenericCellTessellator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkGenericCellTessellator C++: vtkGenericCellTessellator *NewInstance() V.TessellateFace(vtkGenericAdaptorCell, vtkGenericAttributeCollection, int, vtkDoubleArray, vtkCellArray, vtkPointData) C++: virtual void TessellateFace(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkIdType index, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) Tessellate a face of a 3D `cell'. The face is specified by the index value. The result is a set of smaller linear triangles in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==3 \pre valid_index_range: (index>=0) && (indexGetNumberOfBoundaries(2)) \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 V.Tessellate(vtkGenericAdaptorCell, vtkGenericAttributeCollection, vtkDoubleArray, vtkCellArray, vtkPointData) C++: virtual void Tessellate(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) Tessellate a 3D `cell'. The result is a set of smaller linear tetrahedra in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==3 \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 V.Triangulate(vtkGenericAdaptorCell, vtkGenericAttributeCollection, vtkDoubleArray, vtkCellArray, vtkPointData) C++: virtual void Triangulate(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) Triangulate a 2D `cell'. The result is a set of smaller linear triangles in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==2 \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 V.SetErrorMetrics(vtkCollection) C++: virtual void SetErrorMetrics(vtkCollection *someErrorMetrics) Specify the list of error metrics used to decide if an edge has to be splitted or not. It is a collection of vtkGenericSubdivisionErrorMetric-s. V.GetErrorMetrics() -> vtkCollection C++: virtual vtkCollection *GetErrorMetrics() Specify the list of error metrics used to decide if an edge has to be splitted or not. It is a collection of vtkGenericSubdivisionErrorMetric-s. V.Initialize(vtkGenericDataSet) C++: virtual void Initialize(vtkGenericDataSet *ds) Initialize the tessellator with a data set `ds'. V.InitErrorMetrics(vtkGenericDataSet) C++: void InitErrorMetrics(vtkGenericDataSet *ds) Init the error metric with the dataset. Should be called in each filter before any tessellation of any cell. V.GetMeasurement() -> int C++: virtual int GetMeasurement() If true, measure the quality of the fixed subdivision. V.SetMeasurement(int) C++: virtual void SetMeasurement(int _arg) If true, measure the quality of the fixed subdivision. V.GetMaxErrors([float, ...]) C++: void GetMaxErrors(double *errors) Get the maximum error measured after the fixed subdivision. \pre errors_exists: errors!=0 \pre valid_size: sizeof(errors)==GetErrorMetrics()->GetNumberOfItems() GetEstimatedSizeNewPointIteratorGetTessellatorNewBoundaryIteratorSetTessellatorvtkGenericDataSet - defines dataset interface Superclass: vtkDataObject In VTK, spatial-temporal data is defined in terms of a dataset. The dataset consists of geometry (e.g., points), topology (e.g., cells), and attributes (e.g., scalars, vectors, etc.) vtkGenericDataSet is an abstract class defining this abstraction. Since vtkGenericDataSet provides a general interface to manipulate data, algorithms that process it tend to be slower than those specialized for a particular data type. For this reason, there are concrete, non-abstract subclasses that represent and provide access to data more efficiently. Note that filters to process this dataset type are currently found in the VTK/GenericFiltering/ subdirectory. Unlike the vtkDataSet class, vtkGenericDataSet provides a more flexible interface including support for iterators. vtkGenericDataSet is also designed to interface VTK to external simulation packages without the penalty of copying memory (see VTK/GenericFiltering/README.html) for more information. Thus vtkGenericDataSet plays a central role in the adaptor framework. Please note that this class introduces the concepts of "boundary cells". This refers to the boundaries of a cell (e.g., face of a tetrahedron) which may in turn be represented as a cell. Boundary cells are derivative topological features of cells, and are therefore never explicitly represented in the dataset. Often in visualization algorithms, looping over boundaries (edges or faces) is employed, while the actual dataset cells may not traversed. Thus there are methods to loop over these boundary cells. Finally, as a point of clarification, points are not the same as vertices. Vertices refer to points, and points specify a position is space. Vertices are a type of 0-D cell. Also, the concept of a DOFNode, which is where coefficients for higher-order cells are kept, is a new concept introduced by the adaptor framework (see vtkGenericAdaptorCell for more information). @sa vtkGenericAdaptorCell vtkDataSet vtkCommonDataModelPython.vtkGenericDataSetV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard VTK type and print macros. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard VTK type and print macros. V.SafeDownCast(vtkObjectBase) -> vtkGenericDataSet C++: static vtkGenericDataSet *SafeDownCast(vtkObjectBase *o) Standard VTK type and print macros. V.NewInstance() -> vtkGenericDataSet C++: vtkGenericDataSet *NewInstance() Standard VTK type and print macros. V.GetNumberOfPoints() -> int C++: virtual vtkIdType GetNumberOfPoints() Return the number of points composing the dataset. See NewPointIterator() for more details. \post positive_result: result>=0 V.GetNumberOfCells(int) -> int C++: virtual vtkIdType GetNumberOfCells(int dim=-1) Return the number of cells that explicitly define the dataset. See NewCellIterator() for more details. \pre valid_dim_range: (dim>=-1) && (dim<=3) \post positive_result: result>=0 V.GetCellDimension() -> int C++: virtual int GetCellDimension() Return -1 if the dataset is explicitly defined by cells of varying dimensions or if there are no cells. If the dataset is explicitly defined by cells of a unique dimension, return this dimension. \post valid_range: (result>=-1) && (result<=3) V.GetCellTypes(vtkCellTypes) C++: virtual void GetCellTypes(vtkCellTypes *types) Get a list of types of cells in a dataset. The list consists of an array of types (not necessarily in any order), with a single entry per type. For example a dataset 5 triangles, 3 lines, and 100 hexahedra would result a list of three entries, corresponding to the types VTK_TRIANGLE, VTK_LINE, and VTK_HEXAHEDRON. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED \pre types_exist: types!=0 V.NewCellIterator(int) -> vtkGenericCellIterator C++: virtual vtkGenericCellIterator *NewCellIterator(int dim=-1) Return an iterator to traverse cells of dimension `dim' (or all dimensions if -1) that explicitly define the dataset. For instance, it will return only tetrahedra if the mesh is defined by tetrahedra. If the mesh is composed of two parts, one with tetrahedra and another part with triangles, it will return both, but will not return the boundary edges and vertices of these cells. The user is responsible for deleting the iterator. \pre valid_dim_range: (dim>=-1) && (dim<=3) \post result_exists: result!=0 V.NewBoundaryIterator(int, int) -> vtkGenericCellIterator C++: virtual vtkGenericCellIterator *NewBoundaryIterator( int dim=-1, int exteriorOnly=0) Return an iterator to traverse cell boundaries of dimension `dim' (or all dimensions if -1) of the dataset. If `exteriorOnly' is true, only the exterior cell boundaries of the dataset will be returned, otherwise it will return exterior and interior cell boundaries. The user is responsible for deleting the iterator. \pre valid_dim_range: (dim>=-1) && (dim<=2) \post result_exists: result!=0 V.NewPointIterator() -> vtkGenericPointIterator C++: virtual vtkGenericPointIterator *NewPointIterator() Return an iterator to traverse the points composing the dataset; they can be points that define a cell (corner points) or isolated points. The user is responsible for deleting the iterator. \post result_exists: result!=0 V.FindPoint([float, float, float], vtkGenericPointIterator) C++: virtual void FindPoint(double x[3], vtkGenericPointIterator *p) Locate the closest point `p' to position `x' (global coordinates). \pre not_empty: GetNumberOfPoints()>0 \pre p_exists: p!=0 V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Datasets are composite objects and need to check each part for their modified time. V.ComputeBounds() C++: virtual void ComputeBounds() Compute the geometry bounding box. V.GetBounds() -> (float, ...) C++: virtual double *GetBounds() V.GetBounds([float, float, float, float, float, float]) C++: virtual void GetBounds(double bounds[6]) Return a pointer to the geometry bounding box in the form (xmin,xmax, ymin,ymax, zmin,zmax). The return value is VOLATILE. \post result_exists: result!=0 V.GetCenter() -> (float, ...) C++: virtual double *GetCenter() V.GetCenter([float, float, float]) C++: virtual void GetCenter(double center[3]) Get the center of the bounding box in global coordinates. The return value is VOLATILE. \post result_exists: result!=0 V.GetLength() -> float C++: virtual double GetLength() Return the length of the diagonal of the bounding box. \post positive_result: result>=0 V.GetAttributes() -> vtkGenericAttributeCollection C++: virtual vtkGenericAttributeCollection *GetAttributes() V.GetAttributes(int) -> vtkDataSetAttributes C++: vtkDataSetAttributes *GetAttributes(int type) override; Get the collection of attributes associated with this dataset. V.SetTessellator(vtkGenericCellTessellator) C++: virtual void SetTessellator( vtkGenericCellTessellator *tessellator) Set/Get a cell tessellator if cells must be tessellated during processing. \pre tessellator_exists: tessellator!=0 V.GetTessellator() -> vtkGenericCellTessellator C++: virtual vtkGenericCellTessellator *GetTessellator() Set/Get a cell tessellator if cells must be tessellated during processing. \pre tessellator_exists: tessellator!=0 V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() override; Actual size of the data in kibibytes (1024 bytes); only valid after the pipeline has updated. It is guaranteed to be greater than or equal to the memory required to represent the data. V.GetEstimatedSize() -> int C++: virtual vtkIdType GetEstimatedSize() Estimated size needed after tessellation (or special operation) V.GetData(vtkInformation) -> vtkGenericDataSet C++: static vtkGenericDataSet *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkGenericDataSet C++: static vtkGenericDataSet *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkGenericEdgeTableDumpTableLoadFactorIncrementPointReferenceCountSetNumberOfComponentsRemovePointRemoveEdgeCheckEdgeReferenceCountIncrementEdgeReferenceCountCheckEdgeInsertPointInsertPointAndScalarCheckPointvtkGenericEdgeTable - keep track of edges (defined by pair of integer id's) Superclass: vtkObject vtkGenericEdgeTable is used to indicate the existence of and hold information about edges. Similar to vtkEdgeTable, this class is more sophisticated in that it uses reference counting to keep track of when information about an edge should be deleted. vtkGenericEdgeTable is a helper class used in the adaptor framework. It is used during the tessellation process to hold information about the error metric on each edge. This avoids recomputing the error metric each time the same edge is visited. vtkCommonDataModelPython.vtkGenericEdgeTableV.SafeDownCast(vtkObjectBase) -> vtkGenericEdgeTable C++: static vtkGenericEdgeTable *SafeDownCast(vtkObjectBase *o) Standard VTK type and print macros. V.NewInstance() -> vtkGenericEdgeTable C++: vtkGenericEdgeTable *NewInstance() Standard VTK type and print macros. V.InsertEdge(int, int, int, int, int) C++: void InsertEdge(vtkIdType e1, vtkIdType e2, vtkIdType cellId, int ref, vtkIdType &ptId) V.InsertEdge(int, int, int, int) C++: void InsertEdge(vtkIdType e1, vtkIdType e2, vtkIdType cellId, int ref=1) Split the edge with the indicated point id. V.RemoveEdge(int, int) -> int C++: int RemoveEdge(vtkIdType e1, vtkIdType e2) Method to remove an edge from the table. The method returns the current reference count. V.CheckEdge(int, int, int) -> int C++: int CheckEdge(vtkIdType e1, vtkIdType e2, vtkIdType &ptId) Method to determine whether an edge is in the table (0 or 1), or not (-1). It returns whether the edge was split (1) or not (0), and the point id exists. V.IncrementEdgeReferenceCount(int, int, int) -> int C++: int IncrementEdgeReferenceCount(vtkIdType e1, vtkIdType e2, vtkIdType cellId) Method that increments the referencecount and returns it. V.CheckEdgeReferenceCount(int, int) -> int C++: int CheckEdgeReferenceCount(vtkIdType e1, vtkIdType e2) Return the edge reference count. V.Initialize(int) C++: void Initialize(vtkIdType start) To specify the starting point id. It will initialize LastPointId This is very sensitive the start point should be cautiously chosen V.GetNumberOfComponents() -> int C++: int GetNumberOfComponents() Return the total number of components for the point-centered attributes. \post positive_result: result>0 V.SetNumberOfComponents(int) C++: void SetNumberOfComponents(int count) Set the total number of components for the point-centered attributes. \pre positive_count: count>0 V.CheckPoint(int) -> int C++: int CheckPoint(vtkIdType ptId) V.CheckPoint(int, [float, float, float], [float, ...]) -> int C++: int CheckPoint(vtkIdType ptId, double point[3], double *scalar) Check if a point is already in the point table. V.InsertPoint(int, [float, float, float]) C++: void InsertPoint(vtkIdType ptId, double point[3]) Insert point associated with an edge. V.InsertPointAndScalar(int, [float, float, float], [float, ...]) C++: void InsertPointAndScalar(vtkIdType ptId, double pt[3], double *s) V.RemovePoint(int) C++: void RemovePoint(vtkIdType ptId) Remove a point from the point table. V.IncrementPointReferenceCount(int) C++: void IncrementPointReferenceCount(vtkIdType ptId) Increment the reference count for the indicated point. V.DumpTable() C++: void DumpTable() For debugging purposes. It is particularly useful to dump the table and check that nothing is left after a complete iteration. LoadFactor should ideally be very low to be able to have a constant time access V.LoadFactor() C++: void LoadFactor() For debugging purposes. It is particularly useful to dump the table and check that nothing is left after a complete iteration. LoadFactor should ideally be very low to be able to have a constant time access ClearLastCellGetLastCellGetCacheMissGetLastDataSetGetCacheHitGetCachingGetVectorsSelectionSetCachingCachingOffCachingOnGetLastLocalCoordinatesSelectVectorsCopyParametersAddDataSetFunctionValuesvtkGenericInterpolatedVelocityFieldvtkGenericInterpolatedVelocityField - Interface for obtaining interpolated velocity values Superclass: vtkFunctionSet vtkGenericInterpolatedVelocityField acts as a continuous velocity field by performing cell interpolation on the underlying vtkDataSet. This is a concrete sub-class of vtkFunctionSet with NumberOfIndependentVariables = 4 (x,y,z,t) and NumberOfFunctions = 3 (u,v,w). Normally, every time an evaluation is performed, the cell which contains the point (x,y,z) has to be found by calling FindCell. This is a computationally expansive operation. In certain cases, the cell search can be avoided or shortened by providing a guess for the cell iterator. For example, in streamline integration, the next evaluation is usually in the same or a neighbour cell. For this reason, vtkGenericInterpolatedVelocityField stores the last cell iterator. If caching is turned on, it uses this iterator as the starting point. @warning vtkGenericInterpolatedVelocityField is not thread safe. A new instance should be created by each thread. @sa vtkFunctionSet vtkGenericStreamTracer vtkCommonDataModelPython.vtkGenericInterpolatedVelocityFieldV.SafeDownCast(vtkObjectBase) -> vtkGenericInterpolatedVelocityField C++: static vtkGenericInterpolatedVelocityField *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkGenericInterpolatedVelocityField C++: vtkGenericInterpolatedVelocityField *NewInstance() V.FunctionValues([float, ...], [float, ...]) -> int C++: int FunctionValues(double *x, double *f) override; Evaluate the velocity field, f, at (x, y, z, t). For now, t is ignored. V.AddDataSet(vtkGenericDataSet) C++: virtual void AddDataSet(vtkGenericDataSet *dataset) Add a dataset used for the implicit function evaluation. If more than one dataset is added, the evaluation point is searched in all until a match is found. THIS FUNCTION DOES NOT CHANGE THE REFERENCE COUNT OF dataset FOR THREAD SAFETY REASONS. V.ClearLastCell() C++: void ClearLastCell() Set the last cell id to -1 so that the next search does not start from the previous cell V.GetLastCell() -> vtkGenericAdaptorCell C++: vtkGenericAdaptorCell *GetLastCell() Return the cell cached from last evaluation. V.GetLastLocalCoordinates([float, float, float]) -> int C++: int GetLastLocalCoordinates(double pcoords[3]) Returns the interpolation weights cached from last evaluation if the cached cell is valid (returns 1). Otherwise, it does not change w and returns 0. V.GetCaching() -> int C++: virtual int GetCaching() Turn caching on/off. V.SetCaching(int) C++: virtual void SetCaching(int _arg) Turn caching on/off. V.CachingOn() C++: virtual void CachingOn() Turn caching on/off. V.CachingOff() C++: virtual void CachingOff() Turn caching on/off. V.GetCacheHit() -> int C++: virtual int GetCacheHit() Caching statistics. V.GetCacheMiss() -> int C++: virtual int GetCacheMiss() Caching statistics. V.GetVectorsSelection() -> string C++: virtual char *GetVectorsSelection() If you want to work with an arbitrary vector array, then set its name here. By default this in nullptr and the filter will use the active vector array. V.SelectVectors(string) C++: void SelectVectors(const char *fieldName) If you want to work with an arbitrary vector array, then set its name here. By default this in nullptr and the filter will use the active vector array. V.GetLastDataSet() -> vtkGenericDataSet C++: virtual vtkGenericDataSet *GetLastDataSet() Returns the last dataset that was visited. Can be used as a first guess as to where the next point will be as well as to avoid searching through all datasets to get more information about the point. V.CopyParameters(vtkGenericInterpolatedVelocityField) C++: virtual void CopyParameters( vtkGenericInterpolatedVelocityField *from) Copy the user set parameters from source. This copies the Caching parameters. Sub-classes can add more after chaining. vtkFunctionSetGetPositionvtkGenericPointIterator - iterator used to traverse points Superclass: vtkObject This class (and subclasses) are used to iterate over points. Use it only in conjunction with vtkGenericDataSet (i.e., the adaptor framework). Typical use is: vtkGenericDataSet *dataset; vtkGenericPointIterator *it = dataset->NewPointIterator(); for (it->Begin(); !it->IsAtEnd(); it->Next()); { x=it->GetPosition(); } vtkCommonDataModelPython.vtkGenericPointIteratorV.SafeDownCast(vtkObjectBase) -> vtkGenericPointIterator C++: static vtkGenericPointIterator *SafeDownCast( vtkObjectBase *o) Standard VTK construction and type macros. V.NewInstance() -> vtkGenericPointIterator C++: vtkGenericPointIterator *NewInstance() Standard VTK construction and type macros. V.Next() C++: virtual void Next() Move the iterator to the next position in the list. \pre not_off: !IsAtEnd() V.GetPosition() -> (float, ...) C++: virtual double *GetPosition() V.GetPosition([float, float, float]) C++: virtual void GetPosition(double x[3]) Get the coordinates of the point at the current iterator position. \pre not_off: !IsAtEnd() \post result_exists: result!=0 V.GetId() -> int C++: virtual vtkIdType GetId() Return the unique identifier for the point, could be non-contiguous. \pre not_off: !IsAtEnd() GetGenericCellSetGenericCellvtkGenericSubdivisionErrorMetric - Objects that compute error during cell tessellation. Superclass: vtkObject Objects of that class answer the following question during the cell subdivision: "does the edge need to be subdivided?" through RequiresEdgeSubdivision(). The answer depends on the criterium actually used in the subclass of this abstract class: a geometric-based error metric (variation of edge from a straight line), an attribute-based error metric (variation of the active attribute/component value from a linear ramp) , a view-depend error metric, ... Cell subdivision is performed in the context of the adaptor framework: higher-order, or complex cells, are automatically tessellated into simplices so that they can be processed with conventional visualization algorithms. @sa vtkGenericCellTessellator vtkCommonDataModelPython.vtkGenericSubdivisionErrorMetricV.SafeDownCast(vtkObjectBase) -> vtkGenericSubdivisionErrorMetric C++: static vtkGenericSubdivisionErrorMetric *SafeDownCast( vtkObjectBase *o) Standard VTK type and error macros. V.NewInstance() -> vtkGenericSubdivisionErrorMetric C++: vtkGenericSubdivisionErrorMetric *NewInstance() Standard VTK type and error macros. V.RequiresEdgeSubdivision([float, ...], [float, ...], [float, ...], float) -> int C++: virtual int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint, double alpha) Does the edge need to be subdivided according to the implemented computation? The edge is defined by its `leftPoint' and its `rightPoint'. `leftPoint', `midPoint' and `rightPoint' have to be initialized before calling RequiresEdgeSubdivision(). Their format is global coordinates, parametric coordinates and point centered attributes: xyx rst abc de... `alpha' is the normalized abscissa of the midpoint along the edge. (close to 0 means close to the left point, close to 1 means close to the right point) \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 V.GetError([float, ...], [float, ...], [float, ...], float) -> float C++: virtual double GetError(double *leftPoint, double *midPoint, double *rightPoint, double alpha) Return the error at the mid-point. The type of error depends on the state of the concrete error metric. For instance, it can return an absolute or relative error metric. See RequiresEdgeSubdivision() for a description of the arguments. \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 \post positive_result: result>=0 V.SetGenericCell(vtkGenericAdaptorCell) C++: void SetGenericCell(vtkGenericAdaptorCell *cell) The cell that the edge belongs to. V.GetGenericCell() -> vtkGenericAdaptorCell C++: virtual vtkGenericAdaptorCell *GetGenericCell() The cell that the edge belongs to. V.SetDataSet(vtkGenericDataSet) C++: void SetDataSet(vtkGenericDataSet *ds) Set/Get the dataset to be tessellated. V.GetDataSet() -> vtkGenericDataSet C++: virtual vtkGenericDataSet *GetDataSet() Set/Get the dataset to be tessellated. vtkGeometricErrorMetricGetRelativeGetAbsoluteGeometricToleranceSetAbsoluteGeometricToleranceSetRelativeGeometricTolerancevtkGeometricErrorMetric - Objects that compute geometry-based error during cell tessellation. Superclass: vtkGenericSubdivisionErrorMetric It is a concrete error metric, based on a geometric criterium: the variation of the edge from a straight line. @sa vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkCommonDataModelPython.vtkGeometricErrorMetricV.SafeDownCast(vtkObjectBase) -> vtkGeometricErrorMetric C++: static vtkGeometricErrorMetric *SafeDownCast( vtkObjectBase *o) Standard VTK type and error macros. V.NewInstance() -> vtkGeometricErrorMetric C++: vtkGeometricErrorMetric *NewInstance() Standard VTK type and error macros. V.GetAbsoluteGeometricTolerance() -> float C++: virtual double GetAbsoluteGeometricTolerance() Return the squared absolute geometric accuracy. See SetAbsoluteGeometricTolerance() for details. \post positive_result: result>0 V.SetAbsoluteGeometricTolerance(float) C++: void SetAbsoluteGeometricTolerance(double value) Set the geometric accuracy with a squared absolute value. This is the geometric object-based accuracy. Subdivision will be required if the square distance between the real point and the straight line passing through the vertices of the edge is greater than `value'. For instance 0.01 will give better result than 0.1. \pre positive_value: value>0 V.SetRelativeGeometricTolerance(float, vtkGenericDataSet) C++: void SetRelativeGeometricTolerance(double value, vtkGenericDataSet *ds) Set the geometric accuracy with a value relative to the length of the bounding box of the dataset. Internally compute the absolute tolerance. For instance 0.01 will give better result than 0.1. \pre valid_range_value: value>0 && value<1 \pre ds_exists: ds!=0 V.RequiresEdgeSubdivision([float, ...], [float, ...], [float, ...], float) -> int C++: int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Does the edge need to be subdivided according to the distance between the line passing through its endpoints and the mid point? The edge is defined by its `leftPoint' and its `rightPoint'. `leftPoint', `midPoint' and `rightPoint' have to be initialized before calling RequiresEdgeSubdivision(). Their format is global coordinates, parametric coordinates and point centered attributes: xyx rst abc de... `alpha' is the normalized abscissa of the midpoint along the edge. (close to 0 means close to the left point, close to 1 means close to the right point) \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 V.GetError([float, ...], [float, ...], [float, ...], float) -> float C++: double GetError(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Return the error at the mid-point. It will return an error relative to the bounding box size if GetRelative() is true, a square absolute error otherwise. See RequiresEdgeSubdivision() for a description of the arguments. \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 \post positive_result: result>=0 V.GetRelative() -> int C++: int GetRelative() Return the type of output of GetError() this class cannot be instantiatedvtkEdgeBase - no description provided. vtkOutEdgeType - no description provided. Superclass: vtkEdgeBase vtkOutEdgeType() vtkOutEdgeType(vtkIdType t, vtkIdType id) vtkOutEdgeType(const &vtkOutEdgeType) vtkInEdgeType - no description provided. Superclass: vtkEdgeBase vtkInEdgeType() vtkInEdgeType(vtkIdType s, vtkIdType id) vtkInEdgeType(const &vtkInEdgeType) vtkEdgeType - no description provided. Superclass: vtkEdgeBase vtkEdgeType() vtkEdgeType(vtkIdType s, vtkIdType t, vtkIdType id) vtkEdgeType(const &vtkEdgeType) vtkGraph - Base class for graph data types. Superclass: vtkDataObject vtkGraph is the abstract base class that provides all read-only API for graph data types. A graph consists of a collection of vertices and a collection of edges connecting pairs of vertices. The vtkDirectedGraph subclass represents a graph whose edges have inherent order from source vertex to target vertex, while vtkUndirectedGraph is a graph whose edges have no inherent ordering. Graph vertices may be traversed in two ways. In the current implementation, all vertices are assigned consecutive ids starting at zero, so they may be traversed in a simple for loop from 0 to graph->GetNumberOfVertices() - 1. You may alternately create a vtkVertexListIterator and call graph->GetVertices(it). it->Next() will return the id of the next vertex, while it->HasNext() indicates whether there are more vertices in the graph. This is the preferred method, since in the future graphs may support filtering or subsetting where the vertex ids may not be contiguous. Graph edges must be traversed through iterators. To traverse all edges in a graph, create an instance of vtkEdgeListIterator and call graph->GetEdges(it). it->Next() returns lightweight vtkEdgeType structures, which contain the public fields Id, Source and Target. Id is the identifier for the edge, which may be used to look up values in assiciated edge data arrays. Source and Target store the ids of the source and target vertices of the edge. Note that the edge list iterator DOES NOT necessarily iterate over edges in order of ascending id. To traverse edges from wrapper code (Python, Tcl, Java), use it->NextGraphEdge() instead of it->Next(). This will return a heavyweight, wrappable vtkGraphEdge object, which has the same fields as vtkEdgeType accessible through getter methods. To traverse all edges outgoing from a vertex, create a vtkOutEdgeIterator and call graph->GetOutEdges(v, it). it->Next() returns a lightweight vtkOutEdgeType containing the fields Id and Target. The source of the edge is always the vertex that was passed as an argument to GetOutEdges(). Incoming edges may be similarly traversed with vtkInEdgeIterator, which returns vtkInEdgeType structures with Id and Source fields. Both vtkOutEdgeIterator and vtkInEdgeIterator also provide the wrapper functions NextGraphEdge() which return vtkGraphEdge objects. An additional iterator, vtkAdjacentVertexIterator can traverse outgoing vertices directly, instead needing to parse through edges. Initialize the iterator by calling graph->GetAdjacentVertices(v, it). vtkGraph has two instances of vtkDataSetAttributes for associated vertex and edge data. It also has a vtkPoints instance which may store x,y,z locations for each vertex. This is populated by filters such as vtkGraphLayout and vtkAssignCoordinates. All graph types share the same implementation, so the structure of one may be shared among multiple graphs, even graphs of different types. Structures from vtkUndirectedGraph and vtkMutableUndirectedGraph may be shared directly. Structures from vtkDirectedGraph, vtkMutableDirectedGraph, and vtkTree may be shared directly with the exception that setting a structure to a tree requires that a "is a tree" test passes. For graph types that are known to be compatible, calling ShallowCopy() or DeepCopy() will work as expected. When the outcome of a conversion is unknown (i.e. setting a graph to a tree), CheckedShallowCopy() and CheckedDeepCopy() exist which are identical to ShallowCopy() and DeepCopy(), except that instead of emitting an error for an incompatible structure, the function returns false. This allows you to programmatically check structure compatibility without causing error messages. To construct a graph, use vtkMutableDirectedGraph or vtkMutableUndirectedGraph. You may then use CheckedShallowCopy to set the contents of a mutable graph type into one of the non-mutable types vtkDirectedGraph, vtkUndirectedGraph. To construct a tree, use vtkMutableDirectedGraph, with directed edges which point from the parent to the child, then use CheckedShallowCopy to set the structure to a vtkTree. @warning All copy operations implement copy-on-write. The structures are initially shared, but if one of the graphs is modified, the structure is copied so that to the user they function as if they were deep copied. This means that care must be taken if different threads are accessing different graph instances that share the same structure. Race conditions may develop if one thread is modifying the graph at the same time that another graph is copying the structure. @par Vertex pedigree IDs: The vertices in a vtkGraph can be associated with pedigree IDs through GetVertexData()->SetPedigreeIds. In this case, there is a 1-1 mapping between pedigree Ids and vertices. One can query the vertex ID based on the pedigree ID using FindVertex, add new vertices by pedigree ID with AddVertex, and add edges based on the pedigree IDs of the source and target vertices. For example, AddEdge("Here", "There") will find (or add) vertices with pedigree ID "Here" and "There" and then introduce an edge from "Here" to "There". @par Vertex pedigree IDs: To configure the vtkGraph with a pedigree ID mapping, create a vtkDataArray that will store the pedigree IDs and set that array as the pedigree ID array for the vertices via GetVertexData()->SetPedigreeIds(). @par Distributed graphs: vtkGraph instances can be distributed across multiple machines, to allow the construction and manipulation of graphs larger than a single machine could handle. A distributed graph will typically be distributed across many different nodes within a cluster, using the Message Passing Interface (MPI) to allow those cluster nodes to communicate. @par Distributed graphs: An empty vtkGraph can be made into a distributed graph by attaching an instance of a vtkDistributedGraphHelper via the SetDistributedGraphHelper() method. To determine whether a graph is distributed or not, call GetDistributedGraphHelper() and check whether the result is non-nullptr. For a distributed graph, the number of processors across which the graph is distributed can be retrieved by extracting the value for the DATA_NUMBER_OF_PIECES key in the vtkInformation object (retrieved by GetInformation()) associated with the graph. Similarly, the value corresponding to the DATA_PIECE_NUMBER key of the vtkInformation object describes which piece of the data this graph instance provides. @par Distributed graphs: Distributed graphs behave somewhat differently from non-distributed graphs, and will require special care. In a distributed graph, each of the processors will contain a subset of the vertices in the graph. That subset of vertices can be accessed via the vtkVertexListIterator produced by GetVertices(). GetNumberOfVertices(), therefore, returns the number of vertices stored locally: it does not account for vertices stored on other processors. A vertex (or edge) is identified by both the rank of its owning processor and by its index within that processor, both of which are encoded within the vtkIdType value that describes that vertex (or edge). The owning processor is a value between 0 and P-1, where P is the number of processors across which the vtkGraph has been distributed. The local index will be a value between 0 and GetNumberOfVertices(), for vertices, or GetNumberOfEdges(), for edges, and can be used to access the local parts of distributed data arrays. When given a vtkIdType identifying a vertex, one can determine the owner of the vertex with vtkDistributedGraphHelper::GetVertexOwner() and the local index with vtkDistributedGraphHelper::GetVertexIndex(). With edges, the appropriate methods are vtkDistributedGraphHelper::GetEdgeOwner() and vtkDistributedGraphHelper::GetEdgeIndex(), respectively. To construct a vtkIdType representing either a vertex or edge given only its owner and local index, use vtkDistributedGraphHelper::MakeDistributedId(). @par Distributed graphs: The edges in a distributed graph are always stored on the processors that own the vertices named by the edge. For example, given a directed edge (u, v), the edge will be stored in the out-edges list for vertex u on the processor that owns u, and in the in-edges list for vertex v on the processor that owns v. This "row-wise" decomposition of the graph means that, for any vertex that is local to a processor, that processor can look at all of the incoming and outgoing edges of the graph. Processors cannot, however, access the incoming or outgoing edge lists of vertex owned by other processors. Vertices owned by other processors will not be encountered when traversing the vertex list via GetVertices(), but may be encountered by traversing the in- and out-edge lists of local vertices or the edge list. @par Distributed graphs: Distributed graphs can have pedigree IDs for the vertices in the same way that non-distributed graphs can. In this case, the distribution of the vertices in the graph is based on pedigree ID. For example, a vertex with the pedigree ID "Here" might land on processor 0 while a vertex pedigree ID "There" would end up on processor 3. By default, the pedigree IDs themselves are hashed to give a random (and, hopefully, even) distribution of the vertices. However, one can provide a different vertex distribution function by calling vtkDistributedGraphHelper::SetVertexPedigreeIdDistribution. Once a distributed graph has pedigree IDs, the no-argument AddVertex() method can no longer be used. Additionally, once a vertex has a pedigree ID, that pedigree ID should not be changed unless the user can guarantee that the vertex distribution will still map that vertex to the same processor where it already resides. @sa vtkDirectedGraph vtkUndirectedGraph vtkMutableDirectedGraph vtkMutableUndirectedGraph vtkTree vtkDistributedGraphHelper @par Thanks: Thanks to Brian Wylie, Timothy Shead, Ken Moreland of Sandia National Laboratories and Douglas Gregor of Indiana University for designing these classes. vtkCommonDataModelPython.vtkGraphV.SafeDownCast(vtkObjectBase) -> vtkGraph C++: static vtkGraph *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGraph C++: vtkGraph *NewInstance() V.GetVertexData() -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetVertexData() Get the vertex or edge data. V.GetEdgeData() -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetEdgeData() Get the vertex or edge data. V.Initialize() C++: void Initialize() override; Initialize to an empty graph. V.GetPoint(int) -> (float, ...) C++: double *GetPoint(vtkIdType ptId) V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType ptId, double x[3]) These methods return the point (0,0,0) until the points structure is created, when it returns the actual point position. In a distributed graph, only the points for local vertices can be retrieved. V.GetPoints() -> vtkPoints C++: vtkPoints *GetPoints() Returns the points array for this graph. If points is not yet constructed, generates and returns a new points array filled with (0,0,0) coordinates. In a distributed graph, only the points for local vertices can be retrieved or modified. V.SetPoints(vtkPoints) C++: virtual void SetPoints(vtkPoints *points) Returns the points array for this graph. If points is not yet constructed, generates and returns a new points array filled with (0,0,0) coordinates. In a distributed graph, only the points for local vertices can be retrieved or modified. V.ComputeBounds() C++: void ComputeBounds() Compute the bounds of the graph. In a distributed graph, this computes the bounds around the local part of the graph. V.GetBounds() -> (float, ...) C++: double *GetBounds() V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) Return a pointer to the geometry bounding box in the form (xmin,xmax, ymin,ymax, zmin,zmax). In a distributed graph, this computes the bounds around the local part of the graph. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; The modified time of the graph. V.GetOutEdges(int, vtkOutEdgeIterator) C++: virtual void GetOutEdges(vtkIdType v, vtkOutEdgeIterator *it) Initializes the out edge iterator to iterate over all outgoing edges of vertex v. For an undirected graph, returns all incident edges. In a distributed graph, the vertex v must be local to this processor. V.GetDegree(int) -> int C++: virtual vtkIdType GetDegree(vtkIdType v) The total of all incoming and outgoing vertices for vertex v. For undirected graphs, this is simply the number of edges incident to v. In a distributed graph, the vertex v must be local to this processor. V.GetOutDegree(int) -> int C++: virtual vtkIdType GetOutDegree(vtkIdType v) The number of outgoing edges from vertex v. For undirected graphs, returns the same as GetDegree(). In a distributed graph, the vertex v must be local to this processor. V.GetOutEdge(int, int) -> vtkOutEdgeType C++: virtual vtkOutEdgeType GetOutEdge(vtkIdType v, vtkIdType index) V.GetOutEdge(int, int, vtkGraphEdge) C++: virtual void GetOutEdge(vtkIdType v, vtkIdType index, vtkGraphEdge *e) Random-access method for retrieving outgoing edges from vertex v. V.GetInEdges(int, vtkInEdgeIterator) C++: virtual void GetInEdges(vtkIdType v, vtkInEdgeIterator *it) Initializes the in edge iterator to iterate over all incoming edges to vertex v. For an undirected graph, returns all incident edges. In a distributed graph, the vertex v must be local to this processor. V.GetInDegree(int) -> int C++: virtual vtkIdType GetInDegree(vtkIdType v) The number of incoming edges to vertex v. For undirected graphs, returns the same as GetDegree(). In a distributed graph, the vertex v must be local to this processor. V.GetInEdge(int, int) -> vtkInEdgeType C++: virtual vtkInEdgeType GetInEdge(vtkIdType v, vtkIdType index) V.GetInEdge(int, int, vtkGraphEdge) C++: virtual void GetInEdge(vtkIdType v, vtkIdType index, vtkGraphEdge *e) Random-access method for retrieving incoming edges to vertex v. V.GetAdjacentVertices(int, vtkAdjacentVertexIterator) C++: virtual void GetAdjacentVertices(vtkIdType v, vtkAdjacentVertexIterator *it) Initializes the adjacent vertex iterator to iterate over all outgoing vertices from vertex v. For an undirected graph, returns all adjacent vertices. In a distributed graph, the vertex v must be local to this processor. V.GetEdges(vtkEdgeListIterator) C++: virtual void GetEdges(vtkEdgeListIterator *it) Initializes the edge list iterator to iterate over all edges in the graph. Edges may not be traversed in order of increasing edge id. In a distributed graph, this returns edges that are stored locally. V.GetNumberOfEdges() -> int C++: virtual vtkIdType GetNumberOfEdges() The number of edges in the graph. In a distributed graph, this returns the number of edges stored locally. V.GetVertices(vtkVertexListIterator) C++: virtual void GetVertices(vtkVertexListIterator *it) Initializes the vertex list iterator to iterate over all vertices in the graph. In a distributed graph, the iterator traverses all local vertices. V.GetNumberOfVertices() -> int C++: virtual vtkIdType GetNumberOfVertices() The number of vertices in the graph. In a distributed graph, returns the number of local vertices in the graph. V.SetDistributedGraphHelper(vtkDistributedGraphHelper) C++: void SetDistributedGraphHelper( vtkDistributedGraphHelper *helper) Sets the distributed graph helper of this graph, turning it into a distributed graph. This operation can only be executed on an empty graph. V.GetDistributedGraphHelper() -> vtkDistributedGraphHelper C++: vtkDistributedGraphHelper *GetDistributedGraphHelper() Retrieves the distributed graph helper for this graph V.FindVertex(vtkVariant) -> int C++: vtkIdType FindVertex(const vtkVariant &pedigreeID) Retrieve the vertex with the given pedigree ID. If successful, returns the ID of the vertex. Otherwise, either the vertex data does not have a pedigree ID array or there is no vertex with the given pedigree ID, so this function returns -1. If the graph is a distributed graph, this method will return the Distributed-ID of the vertex. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *obj) override; Shallow copies the data object into this graph. If it is an incompatible graph, reports an error. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *obj) override; Deep copies the data object into this graph. If it is an incompatible graph, reports an error. V.CopyStructure(vtkGraph) C++: virtual void CopyStructure(vtkGraph *g) Does a shallow copy of the topological information, but not the associated attributes. V.CheckedShallowCopy(vtkGraph) -> bool C++: virtual bool CheckedShallowCopy(vtkGraph *g) Performs the same operation as ShallowCopy(), but instead of reporting an error for an incompatible graph, returns false. V.CheckedDeepCopy(vtkGraph) -> bool C++: virtual bool CheckedDeepCopy(vtkGraph *g) Performs the same operation as DeepCopy(), but instead of reporting an error for an incompatible graph, returns false. V.Squeeze() C++: virtual void Squeeze() Reclaim unused memory. V.GetData(vtkInformation) -> vtkGraph C++: static vtkGraph *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkGraph C++: static vtkGraph *GetData(vtkInformationVector *v, int i=0) Retrieve a graph from an information vector. V.ReorderOutVertices(int, vtkIdTypeArray) C++: void ReorderOutVertices(vtkIdType v, vtkIdTypeArray *vertices) Reorder the outgoing vertices of a vertex. The vertex list must have the same elements as the current out edge list, just in a different order. This method does not change the topology of the graph. In a distributed graph, the vertex v must be local. V.IsSameStructure(vtkGraph) -> bool C++: bool IsSameStructure(vtkGraph *other) Returns true if both graphs point to the same adjacency structure. Can be used to test the copy-on-write feature of the graph. V.GetSourceVertex(int) -> int C++: vtkIdType GetSourceVertex(vtkIdType e) Retrieve the source and target vertices for an edge id. NOTE: The first time this is called, the graph will build a mapping array from edge id to source/target that is the same size as the number of edges in the graph. If you have access to a vtkOutEdgeType, vtkInEdgeType, vtkEdgeType, or vtkGraphEdge, you should directly use these structures to look up the source or target instead of this method. V.GetTargetVertex(int) -> int C++: vtkIdType GetTargetVertex(vtkIdType e) Retrieve the source and target vertices for an edge id. NOTE: The first time this is called, the graph will build a mapping array from edge id to source/target that is the same size as the number of edges in the graph. If you have access to a vtkOutEdgeType, vtkInEdgeType, vtkEdgeType, or vtkGraphEdge, you should directly use these structures to look up the source or target instead of this method. V.SetEdgePoints(int, int, [float, ...]) C++: void SetEdgePoints(vtkIdType e, vtkIdType npts, double *pts) Get/Set the internal edge control points associated with each edge. The size of the pts array is 3*npts, and holds the x,y,z location of each edge control point. V.GetEdgePoints(int, int, [float, ...]) C++: void GetEdgePoints(vtkIdType e, vtkIdType &npts, double *&pts) Get/Set the internal edge control points associated with each edge. The size of the pts array is 3*npts, and holds the x,y,z location of each edge control point. V.GetNumberOfEdgePoints(int) -> int C++: vtkIdType GetNumberOfEdgePoints(vtkIdType e) Get the number of edge points associated with an edge. V.GetEdgePoint(int, int) -> (float, float, float) C++: double *GetEdgePoint(vtkIdType e, vtkIdType i) Get the x,y,z location of a point along edge e. V.ClearEdgePoints(int) C++: void ClearEdgePoints(vtkIdType e) Clear all points associated with an edge. V.SetEdgePoint(int, int, [float, float, float]) C++: void SetEdgePoint(vtkIdType e, vtkIdType i, double x[3]) V.SetEdgePoint(int, int, float, float, float) C++: void SetEdgePoint(vtkIdType e, vtkIdType i, double x, double y, double z) Set an x,y,z location of a point along an edge. This assumes there is already a point at location i, and simply overwrites it. V.AddEdgePoint(int, [float, float, float]) C++: void AddEdgePoint(vtkIdType e, double x[3]) V.AddEdgePoint(int, float, float, float) C++: void AddEdgePoint(vtkIdType e, double x, double y, double z) Adds a point to the end of the list of edge points for a certain edge. V.ShallowCopyEdgePoints(vtkGraph) C++: void ShallowCopyEdgePoints(vtkGraph *g) Copy the internal edge point data from another graph into this graph. Both graphs must have the same number of edges. V.DeepCopyEdgePoints(vtkGraph) C++: void DeepCopyEdgePoints(vtkGraph *g) Copy the internal edge point data from another graph into this graph. Both graphs must have the same number of edges. V.GetGraphInternals(bool) -> vtkGraphInternals C++: vtkGraphInternals *GetGraphInternals(bool modifying) Returns the internal representation of the graph. If modifying is true, then the returned vtkGraphInternals object will be unique to this vtkGraph object. V.GetInducedEdges(vtkIdTypeArray, vtkIdTypeArray) C++: void GetInducedEdges(vtkIdTypeArray *verts, vtkIdTypeArray *edges) Fills a list of edge indices with the edges contained in the induced subgraph formed by the vertices in the vertex list. V.GetNumberOfElements(int) -> int C++: vtkIdType GetNumberOfElements(int type) override; Get the number of elements for a specific attribute type (VERTEX, EDGE, etc.). V.Dump() C++: void Dump() Dump the contents of the graph to standard output. V.GetEdgeId(int, int) -> int C++: vtkIdType GetEdgeId(vtkIdType a, vtkIdType b) Returns the Id of the edge between vertex a and vertex b. This is independent of directionality of the edge, that is, if edge A->B exists or if edge B->A exists, this function will return its Id. If multiple edges exist between a and b, here is no guarantee about which one will be returned. Returns -1 if no edge exists between a and b. V.ToDirectedGraph(vtkDirectedGraph) -> bool C++: bool ToDirectedGraph(vtkDirectedGraph *g) Convert the graph to a directed graph. V.ToUndirectedGraph(vtkUndirectedGraph) -> bool C++: bool ToUndirectedGraph(vtkUndirectedGraph *g) Convert the graph to an undirected graph. vtkCommonDataModelPython.vtkEdgeTypevtkCommonDataModelPython.vtkInEdgeTypevtkCommonDataModelPython.vtkOutEdgeTypevtkCommonDataModelPython.vtkEdgeBasevtkEdgeBaseDumpGetDistributedGraphHelperGetVertexDataGetEdgeDataSetDistributedGraphHelperShallowCopyEdgePointsDeepCopyEdgePointsClearEdgePointsGetNumberOfEdgePointsToUndirectedGraphvtkUndirectedGraphToDirectedGraphIsSameStructureGetSourceVertexGetTargetVertexGetGraphInternalsReorderOutVerticesGetInducedEdgesFindVertexGetEdgeIdGetEdgePointSetEdgePointsAddEdgePointSetEdgePointCheckedDeepCopyCheckedShallowCopyGetNumberOfVerticesGetVerticesvtkVertexListIteratorGetEdgesGetAdjacentVerticesGetInEdgevtkGraphEdgeGetInDegreeGetInEdgesvtkInEdgeIteratorGetOutEdgeGetOutDegreeGetDegreeGetOutEdgesvtkOutEdgeIterator@W vtkEdgeType@W vtkInEdgeType@W vtkOutEdgeTypeGetSourceGetTargetSetIdSetSourceSetTargetvtkGraphEdge - Representation of a single graph edge. Superclass: vtkObject A heavy-weight (vtkObject subclass) graph edge object that may be used instead of the vtkEdgeType struct, for use with wrappers. The edge contains the source and target vertex ids, and the edge id. @sa vtkGraph vtkCommonDataModelPython.vtkGraphEdgeV.SafeDownCast(vtkObjectBase) -> vtkGraphEdge C++: static vtkGraphEdge *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGraphEdge C++: vtkGraphEdge *NewInstance() V.SetSource(int) C++: virtual void SetSource(vtkIdType _arg) The source of the edge. V.GetSource() -> int C++: virtual vtkIdType GetSource() The source of the edge. V.SetTarget(int) C++: virtual void SetTarget(vtkIdType _arg) The target of the edge. V.GetTarget() -> int C++: virtual vtkIdType GetTarget() The target of the edge. V.SetId(int) C++: virtual void SetId(vtkIdType _arg) The id of the edge. V.GetId() -> int C++: virtual vtkIdType GetId() The id of the edge. vtkGraphInternals@W vtkVertexAdjacencyListvtkVertexAdjacencyList - no description provided. vtkVertexAdjacencyList() vtkVertexAdjacencyList(const &vtkVertexAdjacencyList) vtkGraphInternals - Internal representation of vtkGraph Superclass: vtkObject This is the internal representation of vtkGraph, used only in rare cases where one must modify that representation. vtkCommonDataModelPython.vtkGraphInternalsV.SafeDownCast(vtkObjectBase) -> vtkGraphInternals C++: static vtkGraphInternals *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGraphInternals C++: vtkGraphInternals *NewInstance() vtkCommonDataModelPython.vtkVertexAdjacencyListvtkHexagonalPrismvtkHexagonalPrism - a 3D cell that represents a prism with hexagonal base Superclass: vtkCell3D vtkHexagonalPrism is a concrete implementation of vtkCell to represent a linear 3D prism with hexagonal base. Such prism is defined by the twelve points (0-12) where (0,1,2,3,4,5) is the base of the prism which, using the right hand rule, forms a hexagon whose normal points is in the direction of the opposite face (6,7,8,9,10,11). @par Thanks: Thanks to Philippe Guerville who developed this class. Thanks to Charles Pignerol (CEA-DAM, France) who ported this class under VTK 4. Thanks to Jean Favre (CSCS, Switzerland) who contributed to integrate this class in VTK. Please address all comments to Jean Favre (jfavre at cscs.ch). vtkCommonDataModelPython.vtkHexagonalPrismV.SafeDownCast(vtkObjectBase) -> vtkHexagonalPrism C++: static vtkHexagonalPrism *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHexagonalPrism C++: vtkHexagonalPrism *NewInstance() V.GetFacePoints(int, [int, ...]) C++: void GetFacePoints(int faceId, int *&pts) override; See vtkCell3D API for description of these methods. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the wedge in parametric coordinates. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[12]) @deprecated Replaced by vtkHexagonalPrism::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[36]) @deprecated Replaced by vtkHexagonalPrism::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[12]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[36]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkHexahedronvtkHexahedron - a cell that represents a linear 3D hexahedron Superclass: vtkCell3D vtkHexahedron is a concrete implementation of vtkCell to represent a linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron uses the standard isoparametric shape functions for a linear hexahedron. The hexahedron is defined by the eight points (0-7) where (0,1,2,3) is the base of the hexahedron which, using the right hand rule, forms a quadrilaterial whose normal points in the direction of the opposite face (4,5,6,7). @sa vtkConvexPointSet vtkPyramid vtkTetra vtkVoxel vtkWedge vtkCommonDataModelPython.vtkHexahedronV.SafeDownCast(vtkObjectBase) -> vtkHexahedron C++: static vtkHexahedron *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHexahedron C++: vtkHexahedron *NewInstance() V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[8]) @deprecated Replaced by vtkHexahedron::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[24]) @deprecated Replaced by vtkHexahedron::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[8]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[24]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.GetEdgeArray(int) -> (int, int) C++: static int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. V.GetFaceArray(int) -> (int, int, int, int) C++: static int *GetFaceArray(int faceId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. vtkHierarchicalBoxDataIteratorvtkHierarchicalBoxDataIterator - Empty class for backwards compatibility. Superclass: vtkUniformGridAMRDataIterator vtkCommonDataModelPython.vtkHierarchicalBoxDataIteratorV.SafeDownCast(vtkObjectBase) -> vtkHierarchicalBoxDataIterator C++: static vtkHierarchicalBoxDataIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkHierarchicalBoxDataIterator C++: vtkHierarchicalBoxDataIterator *NewInstance() vtkUniformGridAMRDataIteratorvtkHierarchicalBoxDataSetvtkUniformGridAMRvtkHierarchicalBoxDataSet - Backwards compatibility class Superclass: vtkOverlappingAMR An empty class for backwards compatibility @sa vtkUniformGridAM vtkOverlappingAMR vtkNonOverlappingAMR vtkCommonDataModelPython.vtkHierarchicalBoxDataSetV.SafeDownCast(vtkObjectBase) -> vtkHierarchicalBoxDataSet C++: static vtkHierarchicalBoxDataSet *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkHierarchicalBoxDataSet C++: vtkHierarchicalBoxDataSet *NewInstance() V.NewIterator() -> vtkCompositeDataIterator C++: vtkCompositeDataIterator *NewIterator() override; Return a new iterator (the iterator has to be deleted by user). V.GetData(vtkInformation) -> vtkHierarchicalBoxDataSet C++: static vtkHierarchicalBoxDataSet *GetData( vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkHierarchicalBoxDataSet C++: static vtkHierarchicalBoxDataSet *GetData( vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkHyperTreeCreateInstanceGetScaleGetNumberOfLevelsGetNumberOfLeavesGetBranchFactorGetNumberOfChildrenNewCursorSetGlobalIndexStartSubdivideLeafvtkHyperTreeCursorGetGlobalIndexFromLocalSetGlobalIndexFromLocalSetScaleFindChildParametersFindParentIndex@IvtkHyperTree - An object structured as a tree where each node has exactly either 2^d or 3^d children. Superclass: vtkObject An hypertree is a dataset where each node has either exactly f^d children or no child at all if the node is a leaf, where f in {2,3} is the branching factor of the tree and d in {1,2,3} is the dimension of the dataset. Such trees have particular names when f=2: bintree (d=1), quadtree (d=2), and octree (d=2). When f=3, we respectively call them 3-tree, 9-tree, and 27-tree. The original octree class name came from the following paper: @ARTICLE{yau-srihari-1983, author={Mann-May Yau and Sargur N. Srihari}, title={A Hierarchical Data Structure for Multidimensional Digital Images}, journal={Communications of the ACM}, month={July}, year={1983}, volume={26}, number={7}, pages={504--515} } Each node is a cell. Attributes are associated with cells, not with points. The geometry is implicitly given by the size of the root node on each axis and position of the center and the orientation. (TODO: review center position and orientation). The geometry is then not limited to an hybercube but can have a rectangular shape. Attributes are associated with leaves. For LOD (Level-Of-Detail) purpose, attributes can be computed on none-leaf nodes by computing the average values from its children (which can be leaves or not). By construction, an hypertree is efficient in memory usage when the geometry is sparse. The LOD feature allows for quick culling of part of the dataset. This is an abstract class used as a superclass by a templated compact class. All methods are pure virtual. This is done to hide templates. @par Case with f=2: * d=3 case (octree) for each node, each child index (from 0 to 7) is encoded in the following orientation. It is easy to access each child as a cell of a grid. Note also that the binary representation is relevant, each bit code a side: bit 0 encodes -x side (0) or +x side (1) bit 1 encodes -y side (0) or +y side (1) bit 2 encodes -z side (0) or +z side (2) -z side is first, in counter-clockwise order: 0: -y -x sides 1: -y +x sides 2: +y -x sides 3: +y +x sides +y +-+-+ ^ |2|3| | +-+-+ O +z +-> +x |0|1| +-+-+ @par Case with f=2: +z side is last, in counter-clockwise order: 4: -y -x sides 5: -y +x sides 6: +y -x sides 7: +y +x sides +y +-+-+ ^ |6|7| | +-+-+ O +z +-> +x |4|5| +-+-+ @par Case with f=2: The cases with fewer dimensions are consistent with the octree case: @par Case with f=2: * d=2 case (quadtree): in counter-clockwise order: 0: -y -x edges 1: -y +x edges 2: +y -x edges 3: +y +x edges +y +-+-+ ^ |2|3| | +-+-+ O+-> +x |0|1| +-+-+ @par Case with f=2: * d=1 case (bintree): +0+1+ O+-> +x @warning It is not a spatial search object. If you are looking for this kind of octree see vtkCellLocator instead. @par Thanks: This class was written by Philippe Pebay, Joachim Pouderoux, and Charles Law, Kitware 2013 This class was modified by Guenole Harel and Jacques-Bernard Lekien 2014 This class was modified by Philippe Pebay, 2016 This work was supported by Commissariat a l'Energie Atomique (CEA/DIF) vtkCommonDataModelPython.vtkHyperTreeV.SafeDownCast(vtkObjectBase) -> vtkHyperTree C++: static vtkHyperTree *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperTree C++: vtkHyperTree *NewInstance() V.Initialize() C++: virtual void Initialize() Restore the initial state: only one node and one leaf: the root. V.GetNumberOfLevels() -> int C++: virtual vtkIdType GetNumberOfLevels() Return the number of levels. V.GetNumberOfVertices() -> int C++: virtual vtkIdType GetNumberOfVertices() Return the number of vertices in the tree. V.GetNumberOfNodes() -> int C++: virtual vtkIdType GetNumberOfNodes() Return the number of nodes (non-leaf vertices) in the tree. V.GetNumberOfLeaves() -> int C++: virtual vtkIdType GetNumberOfLeaves() Return the number of leaf vertices in the tree. V.GetBranchFactor() -> int C++: virtual int GetBranchFactor() Return the branch factor of the tree. V.GetDimension() -> int C++: virtual int GetDimension() Return the dimension of the tree. V.GetNumberOfChildren() -> int C++: virtual vtkIdType GetNumberOfChildren() Return the number of children per node of the tree. V.SetScale([float, float, float]) C++: virtual void SetScale(double[3]) Set/Get scale of the tree in each direction. V.GetScale([float, float, float]) C++: virtual void GetScale(double[3]) V.GetScale(int) -> float C++: virtual double GetScale(unsigned int) Set/Get scale of the tree in each direction. V.CreateInstance(int, int) -> vtkHyperTree C++: static vtkHyperTree *CreateInstance( unsigned int branchFactor, unsigned int dimension) Return an instance of a templated hypertree for given branch factor and dimension. This is done to hide templates. V.FindParentIndex(int) C++: virtual void FindParentIndex(vtkIdType &) Find the Index of the parent of a vertex in the hypertree. This is done to hide templates. V.FindChildParameters(int, int, bool) C++: virtual void FindChildParameters(int, vtkIdType &, bool &) Find the Index, Parent Index and IsLeaf() parameters of the child of a node in the hypertree. This is done to hide templates. V.NewCursor() -> vtkHyperTreeCursor C++: virtual vtkHyperTreeCursor *NewCursor() Return pointer to new instance of hyper tree cursor V.SubdivideLeaf(vtkHyperTreeCursor) C++: virtual void SubdivideLeaf(vtkHyperTreeCursor *leaf) Subdivide node pointed by cursor, only if its a leaf. At the end, cursor points on the node that used to be leaf. \pre leaf_exists: leaf!=0 \pre is_a_leaf: leaf->CurrentIsLeaf() V.GetActualMemorySize() -> int C++: virtual unsigned int GetActualMemorySize() Return memory used in kibibytes (1024 bytes). NB: Ignore the attribute array because its size is added by the data set. V.SetGlobalIndexStart(int) C++: virtual void SetGlobalIndexStart(vtkIdType) Set the start global index for the current tree. The global index of a node will be this index + the node index. V.SetGlobalIndexFromLocal(int, int) C++: virtual void SetGlobalIndexFromLocal(vtkIdType local, vtkIdType global) Set the mapping between local & global Ids used by HyperTreeGrids. V.GetGlobalIndexFromLocal(int) -> int C++: virtual vtkIdType GetGlobalIndexFromLocal(vtkIdType local) Get the global id of a local node. Use the mapping function if available or the start global index. ToRootToParentGetTreeGetVertexIdGetLevelGetChildIndexToChildSetTreeToSameVertexSameTreeIsEqualvtkHyperTreeCursor - Objects for depth-first traversal HyperTrees. Superclass: vtkObject Objects that can perform depth-first traversal of HyperTrees. This is an abstract class. Cursors are created by the HyperTree implementation. @sa vtkObject vtkHyperTree vtkHyperTreeGrid @par Thanks: This class was written by Philippe Pebay, Joachim Pouderoux, and Charles Law, Kitware 2013 This class was modified by Guenole Harel and Jacques-Bernard Lekien 2014 This class was revised by Philippe Pebay, 2016 This work was supported by Commissariat a l'Energie Atomique (CEA/DIF) vtkCommonDataModelPython.vtkHyperTreeCursorV.SafeDownCast(vtkObjectBase) -> vtkHyperTreeCursor C++: static vtkHyperTreeCursor *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperTreeCursor C++: vtkHyperTreeCursor *NewInstance() V.SetTree(vtkHyperTree) C++: virtual void SetTree(vtkHyperTree *) Set the HyperTree to which the cursor is pointing. V.GetTree() -> vtkHyperTree C++: virtual vtkHyperTree *GetTree() Return the HyperTree to which the cursor is pointing. V.GetVertexId() -> int C++: virtual vtkIdType GetVertexId() Return the index of the current vertex in the tree. V.IsLeaf() -> bool C++: virtual bool IsLeaf() Is the cursor pointing to a leaf? V.IsRoot() -> bool C++: virtual bool IsRoot() Is the cursor at tree root? V.GetLevel() -> int C++: virtual unsigned int GetLevel() Return the level of the vertex pointed by the cursor. \post positive_result: result>=0 V.GetChildIndex() -> int C++: virtual int GetChildIndex() Return the child number of the current vertex relative to its parent. \pre not_root: !IsRoot(). \post valid_range: result>=0 && result=0 && childGetNumberOfChildren() V.ToSameVertex(vtkHyperTreeCursor) C++: virtual void ToSameVertex(vtkHyperTreeCursor *other) Move the cursor to the same vertex pointed by `other'. \pre other_exists: other!=0 \pre same_hypertree: this->SameTree(other); \post equal: this->IsEqual(other) V.IsEqual(vtkHyperTreeCursor) -> bool C++: virtual bool IsEqual(vtkHyperTreeCursor *other) Is `this' equal to `other'? \pre other_exists: other!=0 \pre same_hypertree: this->SameTree(other); V.Clone() -> vtkHyperTreeCursor C++: virtual vtkHyperTreeCursor *Clone() Create a copy of `this'. \post results_exists:result!=0 \post same_tree: result->SameTree(this) V.SameTree(vtkHyperTreeCursor) -> int C++: virtual int SameTree(vtkHyperTreeCursor *other) Are `this' and `other' pointing on the same hypertree? \pre other_exists: other!=0 V.GetNumberOfChildren() -> int C++: virtual int GetNumberOfChildren() Return the number of children for each node (non-vertex leaf) of the tree. \post positive_number: result>0 V.GetDimension() -> int C++: virtual int GetDimension() Return the dimension of the tree. \post positive_result: result>0 vtkHyperTreeGridSIZESORIENTATIONDIMENSIONGetPureMaterialMaskHasMaterialMaskGetNumberOfTreesGetGridSizeGetZCoordinatesGetMaterialMaskGetYCoordinatesGetXCoordinatesGetOrientationGetTransposedRootIndexingGetHasInterfaceGetMaterialMaskIndexSetXCoordinatesSetDimensionSetBranchFactorSetMaterialMaskvtkBitArraySetYCoordinatesSetZCoordinatesGetChildMaskvtkHyperTreeGridCursorGetInterfaceInterceptsNameGetInterfaceNormalsNameSetIndexingModeToIJKSetIndexingModeToKJINewGridCursorNewVonNeumannSuperCursorNewMooreSuperCursorNewGeometricCursorHasInterfaceOffSetTransposedRootIndexingSetHasInterfaceHasInterfaceOnGetShiftedLevelZeroIndexSetGridSizeSetGridExtentSetInterfaceNormalsNameSetInterfaceInterceptsNameGenerateTreesSetMaterialMaskIndexSetOrientationRecursivelyInitializePureMaterialMaskGetIndexFromLevelZeroCoordinatesGetLevelZeroCoordinatesFromIndexvtkHyperTreeGrid - A dataset containing a grid of vtkHyperTree instances arranged as a rectilinear grid. Superclass: vtkDataSet An hypertree grid is a dataset containing a rectilinear grid of root nodes, each of which can be refined as a vtkHyperTree grid. This organization of the root nodes allows for the definition of tree-based AMR grids that do not have uniform geometry. Some filters can be applied on this dataset: contour, outline, geometry. @warning It is not a spatial search object. If you are looking for this kind of octree see vtkCellLocator instead. Extent support is not finished yet. @sa vtkHyperTree vtkRectilinearGrid @par Thanks: This class was written by Philippe Pebay, Joachim Pouderoux, and Charles Law, Kitware 2013 This class was modified by Guenole Harel and Jacques-Bernard Lekien 2014 This class was rewritten by Philippe Pebay, 2016 This work was supported by Commissariat a l'Energie Atomique (CEA/DIF) vtkCommonDataModelPython.vtkHyperTreeGridV.LEVELS() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *LEVELS() V.DIMENSION() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *DIMENSION() V.ORIENTATION() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *ORIENTATION() V.SIZES() -> vtkInformationDoubleVectorKey C++: static vtkInformationDoubleVectorKey *SIZES() V.SafeDownCast(vtkObjectBase) -> vtkHyperTreeGrid C++: static vtkHyperTreeGrid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperTreeGrid C++: vtkHyperTreeGrid *NewInstance() V.CopyStructure(vtkDataSet) C++: void CopyStructure(vtkDataSet *) override; Copy the internal geometric and topological structure of a vtkHyperTreeGrid object. V.SetGridSize([int, int, int]) C++: void SetGridSize(unsigned int[3]) V.SetGridSize(int, int, int) C++: void SetGridSize(unsigned int, unsigned int, unsigned int) Set/Get sizes of this rectilinear grid dataset V.GetGridSize() -> (int, int, int) C++: unsigned int *GetGridSize() V.SetGridExtent([int, int, int, int, int, int]) C++: void SetGridExtent(int extent[6]) V.SetGridExtent(int, int, int, int, int, int) C++: void SetGridExtent(int, int, int, int, int, int) Set/Get extent of this rectilinear grid dataset. V.SetTransposedRootIndexing(bool) C++: virtual void SetTransposedRootIndexing(bool _arg) Specify whether indexing mode of grid root cells must be transposed to x-axis first, z-axis last, instead of the default z-axis first, k-axis last V.GetTransposedRootIndexing() -> bool C++: virtual bool GetTransposedRootIndexing() Specify whether indexing mode of grid root cells must be transposed to x-axis first, z-axis last, instead of the default z-axis first, k-axis last V.SetIndexingModeToKJI() C++: void SetIndexingModeToKJI() Specify whether indexing mode of grid root cells must be transposed to x-axis first, z-axis last, instead of the default z-axis first, k-axis last V.SetIndexingModeToIJK() C++: void SetIndexingModeToIJK() Specify whether indexing mode of grid root cells must be transposed to x-axis first, z-axis last, instead of the default z-axis first, k-axis last V.SetDimension(int) C++: void SetDimension(unsigned int) Set/Get the dimensionality of the grid. V.GetDimension() -> int C++: virtual unsigned int GetDimension() Set/Get the dimensionality of the grid. V.SetOrientation(int) C++: virtual void SetOrientation(unsigned int) Set/Get the orientation of 1D or 2D grids: . in 1D: 0, 1, 2 = aligned along X, Y, Z axis . in 2D: 0, 1, 2 = normal to X, Y, Z axis NB: Not used in 3D V.GetOrientation() -> int C++: virtual unsigned int GetOrientation() Set/Get the orientation of 1D or 2D grids: . in 1D: 0, 1, 2 = aligned along X, Y, Z axis . in 2D: 0, 1, 2 = normal to X, Y, Z axis NB: Not used in 3D V.SetBranchFactor(int) C++: void SetBranchFactor(unsigned int) Set/Get the subdivision factor in the grid refinement scheme V.GetBranchFactor() -> int C++: virtual unsigned int GetBranchFactor() Set/Get the subdivision factor in the grid refinement scheme V.GetNumberOfTrees() -> int C++: vtkIdType GetNumberOfTrees() Return the number of trees in the level 0 grid. V.GetNumberOfVertices() -> int C++: vtkIdType GetNumberOfVertices() Get the number of vertices in the primal tree grid. V.GetNumberOfLeaves() -> int C++: vtkIdType GetNumberOfLeaves() Get the number of leaves in the primal tree grid. V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() override; Return the number of cells in the dual grid. V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() override; Return the number of points in the dual grid. V.GetNumberOfLevels(int) -> int C++: vtkIdType GetNumberOfLevels(vtkIdType) V.GetNumberOfLevels() -> int C++: vtkIdType GetNumberOfLevels() Return the number of levels in an individual (primal) tree. V.SetXCoordinates(vtkDataArray) C++: void SetXCoordinates(vtkDataArray *) Set/Get the grid coordinates in the x-direction. V.GetXCoordinates() -> vtkDataArray C++: virtual vtkDataArray *GetXCoordinates() Set/Get the grid coordinates in the x-direction. V.SetYCoordinates(vtkDataArray) C++: void SetYCoordinates(vtkDataArray *) Set/Get the grid coordinates in the y-direction. V.GetYCoordinates() -> vtkDataArray C++: virtual vtkDataArray *GetYCoordinates() Set/Get the grid coordinates in the y-direction. V.SetZCoordinates(vtkDataArray) C++: void SetZCoordinates(vtkDataArray *) Set/Get the grid coordinates in the z-direction. V.GetZCoordinates() -> vtkDataArray C++: virtual vtkDataArray *GetZCoordinates() Set/Get the grid coordinates in the z-direction. V.SetMaterialMask(vtkBitArray) C++: void SetMaterialMask(vtkBitArray *) Set/Get the blanking mask of primal leaf cells V.GetMaterialMask() -> vtkBitArray C++: virtual vtkBitArray *GetMaterialMask() Set/Get the blanking mask of primal leaf cells V.HasMaterialMask() -> bool C++: bool HasMaterialMask() Determine whether blanking mask is empty or not V.SetMaterialMaskIndex(vtkIdTypeArray) C++: virtual void SetMaterialMaskIndex(vtkIdTypeArray *) Set/Get the visibility mask of primal leaf cells V.GetMaterialMaskIndex() -> vtkIdTypeArray C++: virtual vtkIdTypeArray *GetMaterialMaskIndex() Set/Get the visibility mask of primal leaf cells V.SetHasInterface(bool) C++: virtual void SetHasInterface(bool _arg) Set/Get presence or absence of interface V.GetHasInterface() -> bool C++: virtual bool GetHasInterface() Set/Get presence or absence of interface V.HasInterfaceOn() C++: virtual void HasInterfaceOn() Set/Get presence or absence of interface V.HasInterfaceOff() C++: virtual void HasInterfaceOff() Set/Get presence or absence of interface V.SetInterfaceNormalsName(string) C++: virtual void SetInterfaceNormalsName(const char *_arg) Set/Get names of interface normal vectors arrays V.GetInterfaceNormalsName() -> string C++: virtual char *GetInterfaceNormalsName() Set/Get names of interface normal vectors arrays V.SetInterfaceInterceptsName(string) C++: virtual void SetInterfaceInterceptsName(const char *_arg) Set/Get names of interface intercepts arrays V.GetInterfaceInterceptsName() -> string C++: virtual char *GetInterfaceInterceptsName() Set/Get names of interface intercepts arrays V.GenerateTrees() C++: virtual void GenerateTrees() This method must be called once the tree settings change. V.NewCursor(int, bool) -> vtkHyperTreeCursor C++: vtkHyperTreeCursor *NewCursor(vtkIdType, bool create=false) Create a new hyper tree cursor: an object that can traverse the cells of an individual hyper tree at given index. If no hyper tree is present at given location, then one will be created only if 'create' flag is true. V.NewGridCursor(int, bool) -> vtkHyperTreeGridCursor C++: vtkHyperTreeGridCursor *NewGridCursor(vtkIdType, bool create=false) Create a new hyper tree grid cursor: an object that can traverse the cells of an hyper tree grid, starting at given tree root index. If no hyper tree is present at given location, then one will be created only if 'create' flag is true. V.NewGeometricCursor(int, bool) -> vtkHyperTreeGridCursor C++: vtkHyperTreeGridCursor *NewGeometricCursor(vtkIdType, bool create=false) Create a new hyper tree grid geometric cursor: an object that can traverse the cells of an hyper tree grid, starting at given tree root index, managing the geometric properties. If no hyper tree is present at given location, then one will be created only if 'create' flag is true. V.NewVonNeumannSuperCursor(int, bool) -> vtkHyperTreeGridCursor C++: vtkHyperTreeGridCursor *NewVonNeumannSuperCursor(vtkIdType, bool create=false) Create a new hyper tree grid Von Neumann super cursor: an object that can traverse the cells of an hyper tree grid, starting at given tree root index, managing geometric properties and von Neumann neighborhood with basic hyper tree grid cursors. If no hyper tree is present at given location, then one will be created only if 'create' flag is true. V.NewMooreSuperCursor(int, bool) -> vtkHyperTreeGridCursor C++: vtkHyperTreeGridCursor *NewMooreSuperCursor(vtkIdType, bool create=false) Create a new hyper tree grid Moore super cursor: an object that can traverse the cells of an hyper tree grid, starting at given tree root index, managing geometric properties and Moore neighborhood with basic hyper tree grid cursors. If no hyper tree is present at given location, then one will be created only if 'create' flag is true. V.SubdivideLeaf(vtkHyperTreeCursor, int) C++: void SubdivideLeaf(vtkHyperTreeCursor *, vtkIdType) Subdivide node pointed by cursor, only if its a leaf. At the end, cursor points on the node that used to be leaf. \pre leaf_exists: leaf!=0 \pre is_a_leaf: leaf->CurrentIsLeaf() V.GetPoint(int) -> (float, ...) C++: double *GetPoint(vtkIdType) override; V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType, double[3]) override; This method should be avoided in favor of cell/point iterators. Random access to points requires that arrays are created explicitly. Get point coordinates with ptId such that: 0 <= ptId < NumberOfPoints. THIS METHOD IS NOT THREAD SAFE. V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType) override; V.GetCell(int, int, int) -> vtkCell C++: vtkCell *GetCell(int i, int j, int k) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType, vtkGenericCell *) override; This method should be avoided in favor of cell/point iterators. Random access to cells requires that connectivity arrays are created explicitly. Get cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS NOT THREAD SAFE. V.GetCellType(int) -> int C++: int GetCellType(vtkIdType) override; All cell types are 2: quadrilaters,3d: hexahedrons. They may be degenerate though. Get type of cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellPoints(int, vtkIdList) C++: void GetCellPoints(vtkIdType, vtkIdList *) override; V.GetCellPoints(int, int, [int, ...]) C++: void GetCellPoints(vtkIdType, vtkIdType &, vtkIdType *&) This method should be avoided in favor of cell/point iterators. Random access to cells requires that connectivity arrays are created explicitly. Topological inquiry to get points defining cell. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetPointCells(int, vtkIdList) C++: void GetPointCells(vtkIdType, vtkIdList *) override; This method should be avoided in favor of cell/point iterators. Random access to cells requires that connectivity arrays are created explicitly. Topological inquiry to get cells using point. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: void GetCellNeighbors(vtkIdType, vtkIdList *, vtkIdList *) override; This method should be avoided in favor of cell/point iterators. Random access to cells requires that connectivity arrays are created explicitly. Topological inquiry to get all cells using list of points exclusive of cell specified (e.g., cellId). Note that the list consists of only cells that use ALL the points provided. This is exactly the same as GetCellNeighbors in unstructured grid. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.FindPoint([float, float, float]) -> int C++: vtkIdType FindPoint(double x[3]) override; Find cell to which this point belongs, or at least closest one, even if the point is outside the grid. Since dual points are leaves, use the structure of the Tree instead of a point locator. V.FindCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; V.FindCell([float, float, float], vtkCell, vtkGenericCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkGenericCell *gencell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; Locate cell based on global coordinate x and tolerance squared. If cell and cellId is non-nullptr, then search starts from this cell and looks at immediate neighbors. Returns cellId >= 0 if inside, < 0 otherwise. The parametric coordinates are provided in pcoords[3]. The interpolation weights are returned in weights[]. (The number of weights is equal to the number of points in the found cell). Tolerance is used to control how close the point is to be considered "in" the cell. NB: There is actually no need for a starting cell, just use the point, as the tree structure is efficient enough. THIS METHOD IS NOT THREAD SAFE. V.Initialize() C++: void Initialize() override; Restore data object to initial state. V.GetTree(int) -> vtkHyperTree C++: vtkHyperTree *GetTree(vtkIdType) Return tree located at given index of hyper tree grid NB: This will return nullptr if grid slot is empty. V.SetTree(int, vtkHyperTree) C++: void SetTree(vtkIdType, vtkHyperTree *) Assign given tree to given index of hyper tree grid NB: This will create a new slot in the grid if needed. V.GetMaxCellSize() -> int C++: int GetMaxCellSize() override; Convenience method to return largest cell size in dataset. Generally used to allocate memory for supporting data structures. This is the number of points of a cell. THIS METHOD IS THREAD SAFE V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *) override; Create shallow copy of hyper tree grid. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *) override; Create deep copy of hyper tree grid. V.GetExtentType() -> int C++: int GetExtentType() override; Structured extent. The extent type is a 3D extent. V.GetNumberOfChildren() -> int C++: virtual unsigned int GetNumberOfChildren() The number of children each node can have. V.RecursivelyInitializePureMaterialMask(vtkHyperTreeGridCursor) -> bool C++: bool RecursivelyInitializePureMaterialMask( vtkHyperTreeGridCursor *cursor) Recursively initialize pure material mask V.GetPureMaterialMask() -> vtkBitArray C++: vtkBitArray *GetPureMaterialMask() Get or create pure material mask V.GetChildMask(int) -> int C++: unsigned int GetChildMask(unsigned int) Return hard-coded bitcode correspondng to child mask Dimension 1: Factor 2: 0: 100, 1: 001 Factor 3: 0: 100, 1: 010, 2: 001 Dimension 2: Factor 2: 0: 1101 0000 0, 1: 0110 0100 0 2: 0001 0011 0, 3: 0000 0101 1 Factor 3: 0: 1101 0000 0, 1: 0100 0000 0, 2: 0110 0100 0 3: 0001 0000 0, 4: 0000 1000 0, 5: 0000 0100 0 6: 0001 0011 0, 7: 0000 0001 0, 8: 0000 0101 1 Dimension 3: Factor 2: 0: 1101 1000 0110 1000 0000 0000 000, 1: 0110 1100 0011 0010 0000 0000 000 2: 0001 1011 0000 1001 1000 0000 000, 3: 0000 1101 1000 0010 1100 0000 000 4: 0000 0000 0110 1000 0011 0110 000, 5: 0000 0000 0011 0010 0001 1011 000 6: 0000 0000 0000 1001 1000 0110 110, 7: 0000 0000 0000 0010 1100 0011 011 Factor 3: 0: 1101 1000 0110 1000 0000 0000 000 1: 0100 1000 0010 0000 0000 0000 000 2: 0110 1100 0011 0010 0000 0000 000 3: 0001 1000 0000 1000 0000 0000 000 4: 0000 1000 0000 0000 0000 0000 000 5: 0000 1100 0000 0010 0000 0000 000 6: 0001 1011 0000 1001 1000 0000 000 7: 0000 1001 0000 0000 1000 0000 000 8: 0000 1101 1000 0010 1100 0000 000 9: 0000 0000 0110 1000 0000 0000 000 10: 0000 0000 0010 0000 0000 0000 000 11: 0000 0000 0011 0010 0000 0000 000 12: 0000 0000 0000 1000 0000 0000 000 13: 0000 0000 0000 0100 0000 0000 000 14: 0000 0000 0000 0010 0000 0000 000 15: 0000 0000 0000 1001 1000 0000 000 16: 0000 0000 0000 0000 1000 0000 000 17: 0000 0000 0000 0010 1100 0000 000 18: 0000 0000 0110 1000 0011 0110 000 19: 0000 0000 0010 0000 0001 0010 000 20: 0000 0000 0011 0010 0001 1011 000 21: 0000 0000 0000 1000 0000 0110 000 22: 0000 0000 0000 0000 0000 0010 000 23: 0000 0000 0000 0010 0000 0011 000 24: 0000 0000 0000 1001 1000 0110 110 25: 0000 0000 0000 0000 1000 0010 010 26: 0000 0000 0000 0010 1100 0011 011 V.GetLevelZeroCoordinatesFromIndex(int, int, int, int) C++: void GetLevelZeroCoordinatesFromIndex(vtkIdType, unsigned int &, unsigned int &, unsigned int &) Convert the global index of a root to its Cartesian coordinates in the grid. V.GetIndexFromLevelZeroCoordinates(int, int, int, int) C++: void GetIndexFromLevelZeroCoordinates(vtkIdType &, unsigned int, unsigned int, unsigned int) Convert the Cartesian coordinates of a root in the grid to its global index. V.GetShiftedLevelZeroIndex(int, int, int, int) -> int C++: unsigned int GetShiftedLevelZeroIndex(vtkIdType, int, int, int) Return the root index of a root cell with given index displaced. by a Cartesian vector in the grid. NB: No boundary checks are performed. V.GetData(vtkInformation) -> vtkHyperTreeGrid C++: static vtkHyperTreeGrid *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkHyperTreeGrid C++: static vtkHyperTreeGrid *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object GetNumberOfCursorsGetGridGetOriginGetCursorGetCornerCursorsGetGlobalNodeIndexSetGridvtkHyperTreeGridCursor - Objects for depth-first traversal HyperTreeGrids. Superclass: vtkHyperTreeCursor Objects that can perform depth-first traversal of hyper tree grids, take into account more parameters (related to the grid structure) than the compact hyper tree cursor implemented in vtkHyperTree can. This is an abstract class. Cursors are created by the HyperTreeGrid implementation. @sa vtkHyperTreeCursor vtkHyperTree vtkHyperTreeGrid @par Thanks: This class was written by Guénolé Harel and Jacques-Bernard Lekien, 2014 This class was re-written by Philippe Pebay, 2016 This work was supported by Commissariat a l'Energie Atomique (CEA/DIF) vtkCommonDataModelPython.vtkHyperTreeGridCursorV.SafeDownCast(vtkObjectBase) -> vtkHyperTreeGridCursor C++: static vtkHyperTreeGridCursor *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperTreeGridCursor C++: vtkHyperTreeGridCursor *NewInstance() V.Clone() -> vtkHyperTreeGridCursor C++: vtkHyperTreeGridCursor *Clone() override; Create a copy of `this'. \post results_exists:result!=0 V.Initialize(vtkHyperTreeGrid, int) C++: virtual void Initialize(vtkHyperTreeGrid *, vtkIdType) Initialize cursor at root of given tree index in grid. V.SetGrid(vtkHyperTreeGrid) C++: virtual void SetGrid(vtkHyperTreeGrid *) Set the hyper tree grid to which the cursor is pointing. V.GetGrid() -> vtkHyperTreeGrid C++: virtual vtkHyperTreeGrid *GetGrid() Set the hyper tree grid to which the cursor is pointing. V.SetTree(vtkHyperTree) C++: void SetTree(vtkHyperTree *) override; Set the hyper tree to which the cursor is pointing. V.GetTree() -> vtkHyperTree C++: vtkHyperTree *GetTree() override; Set the hyper tree to which the cursor is pointing. V.GetVertexId() -> int C++: vtkIdType GetVertexId() override; Return the index of the current vertex in the tree. V.GetGlobalNodeIndex() -> int C++: virtual vtkIdType GetGlobalNodeIndex() Return the global index (relative to the grid) of the current vertex in the tree. V.IsLeaf() -> bool C++: bool IsLeaf() override; Is the cursor pointing to a leaf? V.IsRoot() -> bool C++: bool IsRoot() override; Is the cursor at tree root? V.GetLevel() -> int C++: unsigned int GetLevel() override; Get the level of the tree vertex pointed by the cursor. V.GetChildIndex() -> int C++: int GetChildIndex() override; Return the child number of the current vertex relative to its parent. \pre not_root: !IsRoot(). \post valid_range: result>=0 && result=0 && childGetNumberOfChildren() V.ToSameVertex(vtkHyperTreeCursor) C++: void ToSameVertex(vtkHyperTreeCursor *other) override; Move the cursor to the same vertex pointed by `other'. \pre other_exists: other!=0 \pre same_hypertree: this->SameTree(other); \post equal: this->IsEqual(other) NB: not implemented V.IsEqual(vtkHyperTreeCursor) -> bool C++: bool IsEqual(vtkHyperTreeCursor *other) override; Is `this' equal to `other'? \pre other_exists: other!=0 \pre same_hypertree: this->SameTree(other); NB: not implemented V.SameTree(vtkHyperTreeCursor) -> int C++: int SameTree(vtkHyperTreeCursor *other) override; Are `this' and `other' pointing on the same hypertree? \pre other_exists: other!=0 NB: not implemented V.GetNumberOfChildren() -> int C++: int GetNumberOfChildren() override; Return the number of children for each node (non-vertex leaf) of the tree. \post positive_number: result>0 V.GetDimension() -> int C++: int GetDimension() override; Return the dimension of the tree. \post positive_result: result>0 V.GetOrigin() -> (float, ...) C++: virtual double *GetOrigin() Compute the origin of the cursor. NB: The basic hyper tree grid cursor does not have an origin. V.GetSize() -> (float, ...) C++: virtual double *GetSize() Compute the size of the cursor. NB: The basic hyper tree grid cursor does not have a size. V.GetBounds([float, float, float, float, float, float]) C++: virtual void GetBounds(double pt[6]) Compute the bounds of the cursor. NB: The basic hyper tree grid cursor does not have bounds. V.GetPoint([float, float, float]) C++: virtual void GetPoint(double pt[3]) Compute the center coordinates of the cursor. NB: The basic hyper tree grid cursor is always centered at 0. V.GetNumberOfCursors() -> int C++: virtual unsigned int GetNumberOfCursors() Return the number of neighborhood cursors The neighborhood definition depends on the type of cursor. NB: Only super cursors keep track of neighborhoods. V.GetCursor(int) -> vtkHyperTreeGridCursor C++: virtual vtkHyperTreeGridCursor *GetCursor(unsigned int) Return the cursor pointing into i-th neighbor. The neighborhood definition depends on the type of cursor. NB: Only super cursors keep track of neighborhoods. V.GetCornerCursors(int, int, vtkIdList) -> bool C++: virtual bool GetCornerCursors(unsigned int, unsigned int, vtkIdList *) Return the list of cursors pointing to the leaves touching a given corner of the cell. Return whether the considered cell is the owner of said corner. NB: Only the Moore super cursor implements this functionality. vtkImageDataHasNumberOfScalarComponentsGetNumberOfScalarComponentsHasScalarTypeGetScalarTypevariantobjectUndefinedSetScalarTypeSetNumberOfScalarComponentsGetExtentGetSpacingGetDataDimensionGetArrayIncrementsGetArrayPointerForExtentGetArrayPointerComputePointIdComputeCellIdComputeInternalExtentSetSpacingSetOriginunsigned charunsigned shortunsigned intunsigned longunsigned long longunsigned __int64floatdoubleidtypeunicode stringbitGetScalarTypeAsStringCopyAndCastFromAllocateScalarsSetScalarComponentFromDoubleGetScalarComponentAsDoubleSetScalarComponentFromFloatGetScalarComponentAsFloatGetScalarPointerGetScalarPointerForExtentGetContinuousIncrementsGetIncrementsGetScalarSizeGetScalarTypeMaxGetScalarTypeMinSetExtentGetAxisUpdateExtentSetAxisUpdateExtentGetPointGradientGetVoxelGradient@P *k@V *vtkDataArrayvtkImageData - topologically and geometrically regular array of data Superclass: vtkDataSet vtkImageData is a data object that is a concrete implementation of vtkDataSet. vtkImageData represents a geometric structure that is a topological and geometrical regular array of points. Examples include volumes (voxel data) and pixmaps. vtkCommonDataModelPython.vtkImageDataV.SafeDownCast(vtkObjectBase) -> vtkImageData C++: static vtkImageData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImageData C++: vtkImageData *NewInstance() V.CopyStructure(vtkDataSet) C++: void CopyStructure(vtkDataSet *ds) override; Copy the geometric and topological structure of an input image data object. V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetPoint(int) -> (float, float, float) C++: double *GetPoint(vtkIdType ptId) override; V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType id, double x[3]) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType cellId) override; V.GetCell(int, int, int) -> vtkCell C++: vtkCell *GetCell(int i, int j, int k) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType cellId, vtkGenericCell *cell) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetCellBounds(int, [float, float, float, float, float, float]) C++: void GetCellBounds(vtkIdType cellId, double bounds[6]) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.FindPoint(float, float, float) -> int C++: virtual vtkIdType FindPoint(double x, double y, double z) V.FindPoint([float, float, float]) -> int C++: vtkIdType FindPoint(double x[3]) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.FindCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; V.FindCell([float, float, float], vtkCell, vtkGenericCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkGenericCell *gencell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.FindAndGetCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> vtkCell C++: vtkCell *FindAndGetCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetCellType(int) -> int C++: int GetCellType(vtkIdType cellId) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetCellPoints(int, vtkIdList) C++: void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetPointCells(int, vtkIdList) C++: void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.ComputeBounds() C++: void ComputeBounds() override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetMaxCellSize() -> int C++: int GetMaxCellSize() override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.SetDimensions(int, int, int) C++: virtual void SetDimensions(int i, int j, int k) V.SetDimensions((int, int, int)) C++: virtual void SetDimensions(const int dims[3]) Same as SetExtent(0, i-1, 0, j-1, 0, k-1) V.GetDimensions() -> (int, int, int) C++: virtual int *GetDimensions() V.GetDimensions([int, int, int]) C++: virtual void GetDimensions(int dims[3]) Get dimensions of this structured points dataset. It is the number of points on each axis. Dimensions are computed from Extents during this call. \warning Non thread-safe, use second signature if you want it to be. V.ComputeStructuredCoordinates((float, float, float), [int, int, int], [float, float, float]) -> int C++: virtual int ComputeStructuredCoordinates(const double x[3], int ijk[3], double pcoords[3]) V.ComputeStructuredCoordinates((float, float, float), [int, int, int], [float, float, float], (int, ...), (float, ...), (float, ...), (float, ...)) -> int C++: static int ComputeStructuredCoordinates(const double x[3], int ijk[3], double pcoords[3], const int *extent, const double *spacing, const double *origin, const double *bounds) Convenience function computes the structured coordinates for a point x[3]. The voxel is specified by the array ijk[3], and the parametric coordinates in the cell are specified with pcoords[3]. The function returns a 0 if the point x is outside of the volume, and a 1 if inside the volume. V.GetVoxelGradient(int, int, int, vtkDataArray, vtkDataArray) C++: virtual void GetVoxelGradient(int i, int j, int k, vtkDataArray *s, vtkDataArray *g) Given structured coordinates (i,j,k) for a voxel cell, compute the eight gradient values for the voxel corners. The order in which the gradient vectors are arranged corresponds to the ordering of the voxel points. Gradient vector is computed by central differences (except on edges of volume where forward difference is used). The scalars s are the scalars from which the gradient is to be computed. This method will treat only 3D structured point datasets (i.e., volumes). V.GetPointGradient(int, int, int, vtkDataArray, [float, float, float]) C++: virtual void GetPointGradient(int i, int j, int k, vtkDataArray *s, double g[3]) Given structured coordinates (i,j,k) for a point in a structured point dataset, compute the gradient vector from the scalar data at that point. The scalars s are the scalars from which the gradient is to be computed. This method will treat structured point datasets of any dimension. V.GetDataDimension() -> int C++: virtual int GetDataDimension() Return the dimensionality of the data. V.ComputePointId([int, int, int]) -> int C++: virtual vtkIdType ComputePointId(int ijk[3]) Given a location in structured coordinates (i-j-k), return the point id. V.ComputeCellId([int, int, int]) -> int C++: virtual vtkIdType ComputeCellId(int ijk[3]) Given a location in structured coordinates (i-j-k), return the cell id. V.SetAxisUpdateExtent(int, int, int, (int, ...), [int, ...]) C++: virtual void SetAxisUpdateExtent(int axis, int min, int max, const int *updateExtent, int *axisUpdateExtent) Set / Get the extent on just one axis V.GetAxisUpdateExtent(int, int, int, (int, ...)) C++: virtual void GetAxisUpdateExtent(int axis, int &min, int &max, const int *updateExtent) Set / Get the extent on just one axis V.SetExtent([int, int, int, int, int, int]) C++: virtual void SetExtent(int extent[6]) V.SetExtent(int, int, int, int, int, int) C++: virtual void SetExtent(int x1, int x2, int y1, int y2, int z1, int z2) Set/Get the extent. On each axis, the extent is defined by the index of the first point and the index of the last point. The extent should be set before the "Scalars" are set or allocated. The Extent is stored in the order (X, Y, Z). The dataset extent does not have to start at (0,0,0). (0,0,0) is just the extent of the origin. The first point (the one with Id=0) is at extent (Extent[0],Extent[2],Extent[4]). As for any dataset, a data array on point data starts at Id=0. V.GetExtent() -> (int, int, int, int, int, int) C++: int *GetExtent() V.GetScalarTypeMin(vtkInformation) -> float C++: virtual double GetScalarTypeMin(vtkInformation *meta_data) V.GetScalarTypeMin() -> float C++: virtual double GetScalarTypeMin() These returns the minimum and maximum values the ScalarType can hold without overflowing. V.GetScalarTypeMax(vtkInformation) -> float C++: virtual double GetScalarTypeMax(vtkInformation *meta_data) V.GetScalarTypeMax() -> float C++: virtual double GetScalarTypeMax() These returns the minimum and maximum values the ScalarType can hold without overflowing. V.GetScalarSize(vtkInformation) -> int C++: virtual int GetScalarSize(vtkInformation *meta_data) V.GetScalarSize() -> int C++: virtual int GetScalarSize() Get the size of the scalar type in bytes. V.GetIncrements() -> (int, int, int) C++: virtual vtkIdType *GetIncrements() V.GetIncrements(int, int, int) C++: virtual void GetIncrements(vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) V.GetIncrements([int, int, int]) C++: virtual void GetIncrements(vtkIdType inc[3]) V.GetIncrements(vtkDataArray) -> (int, int, int) C++: virtual vtkIdType *GetIncrements(vtkDataArray *scalars) V.GetIncrements(vtkDataArray, int, int, int) C++: virtual void GetIncrements(vtkDataArray *scalars, vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) V.GetIncrements(vtkDataArray, [int, int, int]) C++: virtual void GetIncrements(vtkDataArray *scalars, vtkIdType inc[3]) Different ways to get the increments for moving around the data. GetIncrements() calls ComputeIncrements() to ensure the increments are up to date. The first three methods compute the increments based on the active scalar field while the next three, the scalar field is passed in. V.GetContinuousIncrements([int, int, int, int, int, int], int, int, int) C++: virtual void GetContinuousIncrements(int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) V.GetContinuousIncrements(vtkDataArray, [int, int, int, int, int, int], int, int, int) C++: virtual void GetContinuousIncrements(vtkDataArray *scalars, int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ) Different ways to get the increments for moving around the data. incX is always returned with 0. incY is returned with the increment needed to move from the end of one X scanline of data to the start of the next line. incZ is filled in with the increment needed to move from the end of one image to the start of the next. The proper way to use these values is to for a loop over Z, Y, X, C, incrementing the pointer by 1 after each component. When the end of the component is reached, the pointer is set to the beginning of the next pixel, thus incX is properly set to 0. The first form of GetContinuousIncrements uses the active scalar field while the second form allows the scalar array to be passed in. V.GetScalarPointerForExtent([int, int, int, int, int, int]) -> void C++: virtual void *GetScalarPointerForExtent(int extent[6]) Access the native pointer for the scalar data V.GetScalarPointer([int, int, int]) -> void C++: virtual void *GetScalarPointer(int coordinates[3]) V.GetScalarPointer(int, int, int) -> void C++: virtual void *GetScalarPointer(int x, int y, int z) V.GetScalarPointer() -> void C++: virtual void *GetScalarPointer() Access the native pointer for the scalar data V.GetScalarComponentAsFloat(int, int, int, int) -> float C++: virtual float GetScalarComponentAsFloat(int x, int y, int z, int component) For access to data from tcl V.SetScalarComponentFromFloat(int, int, int, int, float) C++: virtual void SetScalarComponentFromFloat(int x, int y, int z, int component, float v) For access to data from tcl V.GetScalarComponentAsDouble(int, int, int, int) -> float C++: virtual double GetScalarComponentAsDouble(int x, int y, int z, int component) For access to data from tcl V.SetScalarComponentFromDouble(int, int, int, int, float) C++: virtual void SetScalarComponentFromDouble(int x, int y, int z, int component, double v) For access to data from tcl V.AllocateScalars(int, int) C++: virtual void AllocateScalars(int dataType, int numComponents) V.AllocateScalars(vtkInformation) C++: virtual void AllocateScalars(vtkInformation *pipeline_info) Allocate the point scalars for this dataset. The data type determines the type of the array (VTK_FLOAT, VTK_INT etc.) where as numComponents determines its number of components. V.CopyAndCastFrom(vtkImageData, [int, int, int, int, int, int]) C++: virtual void CopyAndCastFrom(vtkImageData *inData, int extent[6]) V.CopyAndCastFrom(vtkImageData, int, int, int, int, int, int) C++: virtual void CopyAndCastFrom(vtkImageData *inData, int x0, int x1, int y0, int y1, int z0, int z1) This method is passed a input and output region, and executes the filter algorithm to fill the output from the input. It just executes a switch statement to call the correct function for the regions data types. V.Crop((int, ...)) C++: void Crop(const int *updateExtent) override; Reallocates and copies to set the Extent to updateExtent. This is used internally when the exact extent is requested, and the source generated more than the update extent. V.SetSpacing(float, float, float) C++: void SetSpacing(double, double, double) V.SetSpacing((float, float, float)) C++: void SetSpacing(double a[3]) V.GetSpacing() -> (float, float, float) C++: double *GetSpacing() V.SetOrigin(float, float, float) C++: void SetOrigin(double, double, double) V.SetOrigin((float, float, float)) C++: void SetOrigin(double a[3]) V.GetOrigin() -> (float, float, float) C++: double *GetOrigin() V.SetScalarType(int, vtkInformation) C++: static void SetScalarType(int, vtkInformation *meta_data) V.GetScalarType(vtkInformation) -> int C++: static int GetScalarType(vtkInformation *meta_data) V.GetScalarType() -> int C++: int GetScalarType() V.HasScalarType(vtkInformation) -> bool C++: static bool HasScalarType(vtkInformation *meta_data) V.GetScalarTypeAsString() -> string C++: const char *GetScalarTypeAsString() V.SetNumberOfScalarComponents(int, vtkInformation) C++: static void SetNumberOfScalarComponents(int n, vtkInformation *meta_data) Set/Get the number of scalar components for points. As with the SetScalarType method this is setting pipeline info. V.GetNumberOfScalarComponents(vtkInformation) -> int C++: static int GetNumberOfScalarComponents( vtkInformation *meta_data) V.GetNumberOfScalarComponents() -> int C++: int GetNumberOfScalarComponents() Set/Get the number of scalar components for points. As with the SetScalarType method this is setting pipeline info. V.HasNumberOfScalarComponents(vtkInformation) -> bool C++: static bool HasNumberOfScalarComponents( vtkInformation *meta_data) Set/Get the number of scalar components for points. As with the SetScalarType method this is setting pipeline info. V.CopyInformationFromPipeline(vtkInformation) C++: void CopyInformationFromPipeline(vtkInformation *information) override; Override these to handle origin, spacing, scalar type, and scalar number of components. See vtkDataObject for details. V.CopyInformationToPipeline(vtkInformation) C++: void CopyInformationToPipeline(vtkInformation *information) override; Copy information from this data object to the pipeline information. This is used by the vtkTrivialProducer that is created when someone calls SetInputData() to connect the image to a pipeline. V.PrepareForNewData() C++: void PrepareForNewData() override; make the output data ready for new data to be inserted. For most objects we just call Initialize. But for image data we leave the old data in case the memory can be reused. V.GetArrayPointerForExtent(vtkDataArray, [int, int, int, int, int, int]) -> void C++: void *GetArrayPointerForExtent(vtkDataArray *array, int extent[6]) These are convenience methods for getting a pointer from any filed array. It is a start at expanding image filters to process any array (not just scalars). V.GetArrayPointer(vtkDataArray, [int, int, int]) -> void C++: void *GetArrayPointer(vtkDataArray *array, int coordinates[3]) These are convenience methods for getting a pointer from any filed array. It is a start at expanding image filters to process any array (not just scalars). V.GetArrayIncrements(vtkDataArray, [int, int, int]) C++: void GetArrayIncrements(vtkDataArray *array, vtkIdType increments[3]) Since various arrays have different number of components, the will have different increments. V.ComputeInternalExtent([int, ...], [int, ...], [int, ...]) C++: void ComputeInternalExtent(int *intExt, int *tgtExt, int *bnds) Given how many pixel are required on a side for bounrary conditions (in bnds), the target extent to traverse, compute the internal extent (the extent for this ImageData that does not suffer from any boundary conditions) and place it in intExt V.GetExtentType() -> int C++: int GetExtentType() override; The extent type is a 3D extent V.GetData(vtkInformation) -> vtkImageData C++: static vtkImageData *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkImageData C++: static vtkImageData *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. 8 P vtkImplicitBooleanGetFunctionGetOperationTypeMinValueGetOperationTypeMaxValueGetOperationTypeAddFunctionRemoveFunctionUnionOfMagnitudesGetOperationTypeAsStringSetOperationTypeToUnionSetOperationTypeToDifferenceSetOperationTypeVTK_UNIONVTK_INTERSECTIONVTK_DIFFERENCEVTK_UNION_OF_MAGNITUDESSetOperationTypeToUnionOfMagnitudesSetOperationTypeToIntersectionvtkImplicitBoolean - implicit function consisting of boolean combinations of implicit functions Superclass: vtkImplicitFunction vtkImplicitBoolean is an implicit function consisting of boolean combinations of implicit functions. The class has a list of functions (FunctionList) that are combined according to a specified operator (VTK_UNION or VTK_INTERSECTION or VTK_DIFFERENCE). You can use nested combinations of vtkImplicitFunction's (and/or vtkImplicitBoolean) to create elaborate implicit functions. vtkImplicitBoolean is a concrete implementation of vtkImplicitFunction. The operators work as follows. The VTK_UNION operator takes the minimum value of all implicit functions. The VTK_INTERSECTION operator takes the maximum value of all implicit functions. The VTK_DIFFERENCE operator subtracts the 2nd through last implicit functions from the first. The VTK_UNION_OF_MAGNITUDES takes the minimum absolute value of the implicit functions. vtkCommonDataModelPython.vtkImplicitBooleanV.SafeDownCast(vtkObjectBase) -> vtkImplicitBoolean C++: static vtkImplicitBoolean *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImplicitBoolean C++: vtkImplicitBoolean *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate boolean combinations of implicit function using current operator. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate gradient of boolean combination. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Override modified time retrieval because of object dependencies. V.AddFunction(vtkImplicitFunction) C++: void AddFunction(vtkImplicitFunction *in) Add another implicit function to the list of functions. V.RemoveFunction(vtkImplicitFunction) C++: void RemoveFunction(vtkImplicitFunction *in) Remove a function from the list of implicit functions to boolean. V.GetFunction() -> vtkImplicitFunctionCollection C++: vtkImplicitFunctionCollection *GetFunction() Return the collection of implicit functions. V.SetOperationType(int) C++: virtual void SetOperationType(int _arg) Specify the type of boolean operation. V.GetOperationTypeMinValue() -> int C++: virtual int GetOperationTypeMinValue() Specify the type of boolean operation. V.GetOperationTypeMaxValue() -> int C++: virtual int GetOperationTypeMaxValue() Specify the type of boolean operation. V.GetOperationType() -> int C++: virtual int GetOperationType() Specify the type of boolean operation. V.SetOperationTypeToUnion() C++: void SetOperationTypeToUnion() Specify the type of boolean operation. V.SetOperationTypeToIntersection() C++: void SetOperationTypeToIntersection() Specify the type of boolean operation. V.SetOperationTypeToDifference() C++: void SetOperationTypeToDifference() Specify the type of boolean operation. V.SetOperationTypeToUnionOfMagnitudes() C++: void SetOperationTypeToUnionOfMagnitudes() Specify the type of boolean operation. V.GetOperationTypeAsString() -> string C++: const char *GetOperationTypeAsString() Specify the type of boolean operation. vtkCommonDataModelPython.vtkImplicitBoolean.OperationTypevtkImplicitDataSetGetOutGradientGetOutValueSetOutValueSetOutGradientvtkImplicitDataSet - treat a dataset as if it were an implicit function Superclass: vtkImplicitFunction vtkImplicitDataSet treats any type of dataset as if it were an implicit function. This means it computes a function value and gradient. vtkImplicitDataSet is a concrete implementation of vtkImplicitFunction. vtkImplicitDataSet computes the function (at the point x) by performing cell interpolation. That is, it finds the cell containing x, and then uses the cell's interpolation functions to compute an interpolated scalar value at x. (A similar approach is used to find the gradient, if requested.) Points outside of the dataset are assigned the value of the ivar OutValue, and the gradient value OutGradient. @warning Any type of dataset can be used as an implicit function as long as it has scalar data associated with it. @sa vtkImplicitFunction vtkImplicitVolume vtkClipPolyData vtkCutter vtkImplicitWindowFunction vtkCommonDataModelPython.vtkImplicitDataSetV.SafeDownCast(vtkObjectBase) -> vtkImplicitDataSet C++: static vtkImplicitDataSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImplicitDataSet C++: vtkImplicitDataSet *NewInstance() V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Return the MTime also considering the DataSet dependency. V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate the implicit function. This returns the interpolated scalar value at x[3]. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate implicit function gradient. V.SetDataSet(vtkDataSet) C++: virtual void SetDataSet(vtkDataSet *) Set / get the dataset used for the implicit function evaluation. V.GetDataSet() -> vtkDataSet C++: virtual vtkDataSet *GetDataSet() Set / get the dataset used for the implicit function evaluation. V.SetOutValue(float) C++: virtual void SetOutValue(double _arg) Set / get the function value to use for points outside of the dataset. V.GetOutValue() -> float C++: virtual double GetOutValue() Set / get the function value to use for points outside of the dataset. V.SetOutGradient(float, float, float) C++: void SetOutGradient(double, double, double) V.SetOutGradient((float, float, float)) C++: void SetOutGradient(double a[3]) V.GetOutGradient() -> (float, float, float) C++: double *GetOutGradient() vtkImplicitFunctionCollectionvtkImplicitFunctionCollection - maintain a list of implicit functions Superclass: vtkCollection vtkImplicitFunctionCollection is an object that creates and manipulates lists of objects of type vtkImplicitFunction. @sa vtkCollection vtkPlaneCollection vtkCommonDataModelPython.vtkImplicitFunctionCollectionV.SafeDownCast(vtkObjectBase) -> vtkImplicitFunctionCollection C++: static vtkImplicitFunctionCollection *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkImplicitFunctionCollection C++: vtkImplicitFunctionCollection *NewInstance() V.AddItem(vtkImplicitFunction) C++: void AddItem(vtkImplicitFunction *) Add an implicit function to the list. V.GetNextItem() -> vtkImplicitFunction C++: vtkImplicitFunction *GetNextItem() Get the next implicit function in the list. SetTransformGetTransformFunctionGradientFunctionValue@V *vtkAbstractTransformvtkImplicitFunction - abstract interface for implicit functions Superclass: vtkObject vtkImplicitFunction specifies an abstract interface for implicit functions. Implicit functions are real valued functions defined in 3D space, w = F(x,y,z). Two primitive operations are required: the ability to evaluate the function, and the function gradient at a given point. The implicit function divides space into three regions: on the surface (F(x,y,z)=w), outside of the surface (F(x,y,z)>c), and inside the surface (F(x,y,z) vtkImplicitFunction C++: static vtkImplicitFunction *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImplicitFunction C++: vtkImplicitFunction *NewInstance() V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Overload standard modified time function. If Transform is modified, then this object is modified as well. V.FunctionValue(vtkDataArray, vtkDataArray) C++: virtual void FunctionValue(vtkDataArray *input, vtkDataArray *output) V.FunctionValue((float, float, float)) -> float C++: double FunctionValue(const double x[3]) V.FunctionValue(float, float, float) -> float C++: double FunctionValue(double x, double y, double z) Evaluate function at position x-y-z and return value. Point x[3] is transformed through transform (if provided). V.FunctionGradient((float, float, float), [float, float, float]) C++: void FunctionGradient(const double x[3], double g[3]) V.FunctionGradient((float, float, float)) -> (float, float, float) C++: double *FunctionGradient(const double x[3]) V.FunctionGradient(float, float, float) -> (float, float, float) C++: double *FunctionGradient(double x, double y, double z) Evaluate function gradient at position x-y-z and pass back vector. Point x[3] is transformed through transform (if provided). V.SetTransform(vtkAbstractTransform) C++: virtual void SetTransform(vtkAbstractTransform *) V.SetTransform((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: virtual void SetTransform(const double elements[16]) Set/Get a transformation to apply to input points before executing the implicit function. V.GetTransform() -> vtkAbstractTransform C++: virtual vtkAbstractTransform *GetTransform() Set/Get a transformation to apply to input points before executing the implicit function. V.EvaluateFunction([float, float, float]) -> float C++: virtual double EvaluateFunction(double x[3]) V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate function at position x-y-z and return value. You should generally not call this method directly, you should use FunctionValue() instead. This method must be implemented by any derived class. V.EvaluateGradient([float, float, float], [float, float, float]) C++: virtual void EvaluateGradient(double x[3], double g[3]) Evaluate function gradient at position x-y-z and pass back vector. You should generally not call this method directly, you should use FunctionGradient() instead. This method must be implemented by any derived class. vtkImplicitHaloGetFadeOutSetFadeOutvtkImplicitHalo - implicit function for an halo Superclass: vtkImplicitFunction vtkImplicitHalo evaluates to 1.0 for each position in the sphere of a given center and radius Radius*(1-FadeOut). It evaluates to 0.0 for each position out the sphere of a given Center and radius Radius. It fades out linearly from 1.0 to 0.0 for points in a radius from Radius*(1-FadeOut) to Radius. vtkImplicitHalo is a concrete implementation of vtkImplicitFunction. It is useful as an input to vtkSampleFunction to generate an 2D image of an halo. It is used this way by vtkShadowMapPass. @warning It does not implement the gradient. vtkCommonDataModelPython.vtkImplicitHaloV.SafeDownCast(vtkObjectBase) -> vtkImplicitHalo C++: static vtkImplicitHalo *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImplicitHalo C++: vtkImplicitHalo *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate the equation. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate normal. Not implemented. V.SetRadius(float) C++: virtual void SetRadius(double _arg) Radius of the sphere. V.GetRadius() -> float C++: virtual double GetRadius() Radius of the sphere. V.SetFadeOut(float) C++: virtual void SetFadeOut(double _arg) FadeOut ratio. Valid values are between 0.0 and 1.0. V.GetFadeOut() -> float C++: virtual double GetFadeOut() FadeOut ratio. Valid values are between 0.0 and 1.0. vtkImplicitSelectionLoopGetNormalGetAutomaticNormalGenerationSetAutomaticNormalGenerationAutomaticNormalGenerationOnAutomaticNormalGenerationOffSetNormalvtkImplicitSelectionLoop - implicit function for a selection loop Superclass: vtkImplicitFunction vtkImplicitSelectionLoop computes the implicit function value and function gradient for a irregular, cylinder-like object whose cross section is defined by a set of points forming a loop. The loop need not be convex nor its points coplanar. However, the loop must be non-self-intersecting when projected onto the plane defined by the accumulated cross product around the loop (i.e., the axis of the loop). (Alternatively, you can specify the normal to use.) The following procedure is used to compute the implicit function value for a point x. Each point of the loop is first projected onto the plane defined by the loop normal. This forms a polygon. Then, to evaluate the implicit function value, inside/outside tests are used to determine if x is inside the polygon, and the distance to the loop boundary is computed (negative values are inside the loop). One example application of this implicit function class is to draw a loop on the surface of a mesh, and use the loop to clip or extract cells from within the loop. Remember, the selection loop is "infinite" in length, you can use a plane (in boolean combination) to cap the extent of the selection loop. Another trick is to use a connectivity filter to extract the closest region to a given point (i.e., one of the points used to define the selection loop). @sa vtkImplicitFunction vtkImplicitBoolean vtkExtractGeometry vtkClipPolyData vtkConnectivityFilter vtkPolyDataConnectivityFilter vtkCommonDataModelPython.vtkImplicitSelectionLoopV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard VTK methods for printing and type information. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard VTK methods for printing and type information. V.SafeDownCast(vtkObjectBase) -> vtkImplicitSelectionLoop C++: static vtkImplicitSelectionLoop *SafeDownCast( vtkObjectBase *o) Standard VTK methods for printing and type information. V.NewInstance() -> vtkImplicitSelectionLoop C++: vtkImplicitSelectionLoop *NewInstance() Standard VTK methods for printing and type information. V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate selection loop returning a signed distance. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate selection loop returning the gradient. V.SetLoop(vtkPoints) C++: virtual void SetLoop(vtkPoints *) Set/Get the array of point coordinates defining the loop. There must be at least three points used to define a loop. V.GetLoop() -> vtkPoints C++: virtual vtkPoints *GetLoop() Set/Get the array of point coordinates defining the loop. There must be at least three points used to define a loop. V.SetAutomaticNormalGeneration(int) C++: virtual void SetAutomaticNormalGeneration(int _arg) Turn on/off automatic normal generation. By default, the normal is computed from the accumulated cross product of the edges. You can also specify the normal to use. V.GetAutomaticNormalGeneration() -> int C++: virtual int GetAutomaticNormalGeneration() Turn on/off automatic normal generation. By default, the normal is computed from the accumulated cross product of the edges. You can also specify the normal to use. V.AutomaticNormalGenerationOn() C++: virtual void AutomaticNormalGenerationOn() Turn on/off automatic normal generation. By default, the normal is computed from the accumulated cross product of the edges. You can also specify the normal to use. V.AutomaticNormalGenerationOff() C++: virtual void AutomaticNormalGenerationOff() Turn on/off automatic normal generation. By default, the normal is computed from the accumulated cross product of the edges. You can also specify the normal to use. V.SetNormal(float, float, float) C++: void SetNormal(double, double, double) V.SetNormal((float, float, float)) C++: void SetNormal(double a[3]) V.GetNormal() -> (float, float, float) C++: double *GetNormal() Set / get the normal used to determine whether a point is inside or outside the selection loop. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Overload GetMTime() because we depend on the Loop vtkImplicitSumRemoveAllFunctionsGetNormalizeByWeightSetFunctionWeightSetNormalizeByWeightNormalizeByWeightOffNormalizeByWeightOnvtkImplicitSum - implicit sum of other implicit functions Superclass: vtkImplicitFunction vtkImplicitSum produces a linear combination of other implicit functions. The contribution of each function is weighted by a scalar coefficient. The NormalizeByWeight option normalizes the output so that the scalar weights add up to 1. Note that this function gives accurate sums and gradients only if the input functions are linear. vtkCommonDataModelPython.vtkImplicitSumV.SafeDownCast(vtkObjectBase) -> vtkImplicitSum C++: static vtkImplicitSum *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImplicitSum C++: vtkImplicitSum *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate implicit function using current functions and weights. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate gradient of the weighted sum of functions. Input functions should be linear. V.AddFunction(vtkImplicitFunction, float) C++: void AddFunction(vtkImplicitFunction *in, double weight) V.AddFunction(vtkImplicitFunction) C++: void AddFunction(vtkImplicitFunction *in) Add another implicit function to the list of functions, along with a weighting factor. V.RemoveAllFunctions() C++: void RemoveAllFunctions() Remove all functions from the list. V.SetFunctionWeight(vtkImplicitFunction, float) C++: void SetFunctionWeight(vtkImplicitFunction *f, double weight) Set the weight (coefficient) of the given function to be weight. V.SetNormalizeByWeight(int) C++: virtual void SetNormalizeByWeight(int _arg) When calculating the function and gradient values of the composite function, setting NormalizeByWeight on will divide the final result by the total weight of the component functions. This process does not otherwise normalize the gradient vector. By default, NormalizeByWeight is off. V.GetNormalizeByWeight() -> int C++: virtual int GetNormalizeByWeight() When calculating the function and gradient values of the composite function, setting NormalizeByWeight on will divide the final result by the total weight of the component functions. This process does not otherwise normalize the gradient vector. By default, NormalizeByWeight is off. V.NormalizeByWeightOn() C++: virtual void NormalizeByWeightOn() When calculating the function and gradient values of the composite function, setting NormalizeByWeight on will divide the final result by the total weight of the component functions. This process does not otherwise normalize the gradient vector. By default, NormalizeByWeight is off. V.NormalizeByWeightOff() C++: virtual void NormalizeByWeightOff() When calculating the function and gradient values of the composite function, setting NormalizeByWeight on will divide the final result by the total weight of the component functions. This process does not otherwise normalize the gradient vector. By default, NormalizeByWeight is off. ?vtkImplicitVolumeGetVolumeSetVolumevtkImplicitVolume - treat a volume as if it were an implicit function Superclass: vtkImplicitFunction vtkImplicitVolume treats a volume (e.g., structured point dataset) as if it were an implicit function. This means it computes a function value and gradient. vtkImplicitVolume is a concrete implementation of vtkImplicitFunction. vtkImplicitDataSet computes the function (at the point x) by performing cell interpolation. That is, it finds the cell containing x, and then uses the cell's interpolation functions to compute an interpolated scalar value at x. (A similar approach is used to find the gradient, if requested.) Points outside of the dataset are assigned the value of the ivar OutValue, and the gradient value OutGradient. @warning The input volume data is only updated when GetMTime() is called. Works for 3D structured points datasets, 0D-2D datasets won't work properly. @sa vtkImplicitFunction vtkImplicitDataSet vtkClipPolyData vtkCutter vtkImplicitWindowFunction vtkCommonDataModelPython.vtkImplicitVolumeV.SafeDownCast(vtkObjectBase) -> vtkImplicitVolume C++: static vtkImplicitVolume *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkImplicitVolume C++: vtkImplicitVolume *NewInstance() V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Returns the mtime also considering the volume. This also calls Update on the volume, and it therefore must be called before the function is evaluated. V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate the ImplicitVolume. This returns the interpolated scalar value at x[3]. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate ImplicitVolume gradient. V.SetVolume(vtkImageData) C++: virtual void SetVolume(vtkImageData *) Specify the volume for the implicit function. V.GetVolume() -> vtkImageData C++: virtual vtkImageData *GetVolume() Specify the volume for the implicit function. V.SetOutValue(float) C++: virtual void SetOutValue(double _arg) Set the function value to use for points outside of the dataset. V.GetOutValue() -> float C++: virtual double GetOutValue() Set the function value to use for points outside of the dataset. vtkImplicitWindowFunctionGetWindowValuesGetWindowRangeGetImplicitFunctionSetWindowRangeSetWindowValuesSetImplicitFunctionvtkImplicitWindowFunction - implicit function maps another implicit function to lie within a specified range Superclass: vtkImplicitFunction vtkImplicitWindowFunction is used to modify the output of another implicit function to lie within a specified "window", or function range. This can be used to add "thickness" to cutting or clipping functions. This class works as follows. First, it evaluates the function value of the user-specified implicit function. Then, based on the window range specified, it maps the function value into the window values specified. @sa vtkImplicitFunction vtkCommonDataModelPython.vtkImplicitWindowFunctionV.SafeDownCast(vtkObjectBase) -> vtkImplicitWindowFunction C++: static vtkImplicitWindowFunction *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkImplicitWindowFunction C++: vtkImplicitWindowFunction *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate window function. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate window function gradient. Just return implicit function gradient. V.SetImplicitFunction(vtkImplicitFunction) C++: virtual void SetImplicitFunction(vtkImplicitFunction *) Specify an implicit function to operate on. V.GetImplicitFunction() -> vtkImplicitFunction C++: virtual vtkImplicitFunction *GetImplicitFunction() Specify an implicit function to operate on. V.SetWindowRange(float, float) C++: void SetWindowRange(double, double) V.SetWindowRange((float, float)) C++: void SetWindowRange(double a[2]) V.GetWindowRange() -> (float, float) C++: double *GetWindowRange() Specify the range of function values which are considered to lie within the window. WindowRange[0] is assumed to be less than WindowRange[1]. V.SetWindowValues(float, float) C++: void SetWindowValues(double, double) V.SetWindowValues((float, float)) C++: void SetWindowValues(double a[2]) V.GetWindowValues() -> (float, float) C++: double *GetWindowValues() Specify the range of output values that the window range is mapped into. This is effectively a scaling and shifting of the original function values. vtkIncrementalOctreeNodeDeleteChildNodesGetMinBoundsGetMaxBoundsGetPointIdSetGetMaxDataBoundsGetMinDataBoundsExportAllPointIdsByInsertionGetChildGetDistance2ToInnerBoundaryContainsPointContainsPointByDataExportAllPointIdsByDirectSetGetDistance2ToBoundaryvtkIncrementalOctreeNode - Octree node constituting incremental octree (in support of both point location and point insertion) Superclass: vtkObject Octree nodes serve as spatial sub-division primitives to build the search structure of an incremental octree in a recursive top-down manner. The hierarchy takes the form of a tree-like representation by which a parent node contains eight mutually non-overlapping child nodes. Each child is assigned with an axis-aligned rectangular volume (Spatial Bounding Box) and the eight children together cover exactly the same region as governed by their parent. The eight child nodes / octants are ordered as { (xBBoxMin, xBBoxMid] & (yBBoxMin, yBBoxMid] & (zBBoxMin, zBBoxMid] }, { (xBBoxMid, xBBoxMax] & (yBBoxMin, yBBoxMid] & (zBBoxMin, zBBoxMid] }, { (xBBoxMin, xBBoxMid] & (yBBoxMid, yBBoxMax] & (zBBoxMin, zBBoxMid] }, { (xBBoxMid, xBBoxMax] & (yBBoxMid, yBBoxMax] & (zBBoxMin, zBBoxMid] }, { (xBBoxMin, xBBoxMid] & (yBBoxMin, yBBoxMid] & (zBBoxMid, zBBoxMax] }, { (xBBoxMid, xBBoxMax] & (yBBoxMin, yBBoxMid] & (zBBoxMid, zBBoxMax] }, { (xBBoxMin, xBBoxMid] & (yBBoxMid, yBBoxMax] & (zBBoxMid, zBBoxMax] }, { (xBBoxMid, xBBoxMax] & (yBBoxMid, yBBoxMax] & (zBBoxMid, zBBoxMax] }, where { xrange & yRange & zRange } defines the region of each 3D octant. In addition, the points falling within and registered, by means of point indices, in the parent node are distributed to the child nodes for delegated maintenance. In fact, only leaf nodes, i.e., those without any descendants, actually store point indices while each node, regardless of a leaf or non- leaf node, keeps a dynamically updated Data Bounding Box of the inhabitant points, if any. Given a maximum number of points per leaf node, an octree is initialized with an empty leaf node that is then recursively sub-divided, but only on demand as points are incrementally inserted, to construct a populated tree. Please note that this octree node class is able to handle a large number of EXACTLY duplicate points that is greater than the specified maximum number of points per leaf node. In other words, as an exception, a leaf node may maintain an arbitrary number of exactly duplicate points to deal with possible extreme cases. @sa vtkIncrementalOctreePointLocator vtkCommonDataModelPython.vtkIncrementalOctreeNodeV.SafeDownCast(vtkObjectBase) -> vtkIncrementalOctreeNode C++: static vtkIncrementalOctreeNode *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkIncrementalOctreeNode C++: vtkIncrementalOctreeNode *NewInstance() V.GetNumberOfPoints() -> int C++: virtual int GetNumberOfPoints() Get the number of points inside or under this node. V.GetPointIdSet() -> vtkIdList C++: virtual vtkIdList *GetPointIdSet() Get the list of point indices, nullptr for a non-leaf node. V.DeleteChildNodes() C++: void DeleteChildNodes() Delete the eight child nodes. V.SetBounds(float, float, float, float, float, float) C++: void SetBounds(double x1, double x2, double y1, double y2, double z1, double z2) Set the spatial bounding box of the node. This function sets a default data bounding box. V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) Get the spatial bounding box of the node. The values are returned via an array in order of: x_min, x_max, y_min, y_max, z_min, z_max. V.GetMinBounds() -> (float, float, float) C++: double *GetMinBounds() V.GetMaxBounds() -> (float, float, float) C++: double *GetMaxBounds() V.GetMinDataBounds() -> (float, ...) C++: double *GetMinDataBounds() Get access to MinDataBounds. Note that MinDataBounds is not valid until point insertion. V.GetMaxDataBounds() -> (float, ...) C++: double *GetMaxDataBounds() Get access to MaxDataBounds. Note that MaxDataBounds is not valid until point insertion. V.IsLeaf() -> int C++: int IsLeaf() Determine whether or not this node is a leaf. V.GetChildIndex((float, float, float)) -> int C++: int GetChildIndex(const double point[3]) Determine which specific child / octant contains a given point. Note that the point is assumed to be inside this node and no checking is performed on the inside issue. V.GetChild(int) -> vtkIncrementalOctreeNode C++: vtkIncrementalOctreeNode *GetChild(int i) Get quick access to a child of this node. Note that this node is assumed to be a non-leaf one and no checking is performed on the node type. V.ContainsPoint((float, float, float)) -> int C++: int ContainsPoint(const double pnt[3]) A point is in a node if and only if MinBounds[i] < p[i] <= MaxBounds[i], which allows a node to be divided into eight non-overlapping children. V.ContainsPointByData((float, float, float)) -> int C++: int ContainsPointByData(const double pnt[3]) A point is in a node, in terms of data, if and only if MinDataBounds[i] <= p[i] <= MaxDataBounds[i]. V.InsertPoint(vtkPoints, (float, float, float), int, [int, ...], int) -> int C++: int InsertPoint(vtkPoints *points, const double newPnt[3], int maxPts, vtkIdType *pntId, int ptMode) This function is called after a successful point-insertion check and only applies to a leaf node. Prior to a call to this function, the octree should have been retrieved top-down to find the specific leaf node in which this new point (newPt) will be inserted. The actual index of the new point (to be inserted to points) is stored in pntId. Argument ptMode specifies whether the point is not inserted at all but instead only the point index is provided upon 0, the point is inserted via vtkPoints:: InsertPoint() upon 1, or it is inserted via vtkPoints::InsertNextPoint() upon 2. For case 0, pntId needs to be specified. For cases 1 and 2, the actual point index is returned via pntId. Note that this function always returns 1 to indicate the success of point insertion. V.GetDistance2ToInnerBoundary((float, float, float), vtkIncrementalOctreeNode) -> float C++: double GetDistance2ToInnerBoundary(const double point[3], vtkIncrementalOctreeNode *rootNode) Given a point inside this node, get the minimum squared distance to all inner boundaries. An inner boundary is a node's face that is shared by another non-root node. V.GetDistance2ToBoundary((float, float, float), vtkIncrementalOctreeNode, int) -> float C++: double GetDistance2ToBoundary(const double point[3], vtkIncrementalOctreeNode *rootNode, int checkData) V.GetDistance2ToBoundary((float, float, float), [float, float, float], vtkIncrementalOctreeNode, int) -> float C++: double GetDistance2ToBoundary(const double point[3], double closest[3], vtkIncrementalOctreeNode *rootNode, int checkData) Compute the minimum squared distance from a point to this node, with all six boundaries considered. The data bounding box is checked if checkData is non-zero. V.ExportAllPointIdsByInsertion(vtkIdList) C++: void ExportAllPointIdsByInsertion(vtkIdList *idList) Export all the indices of the points (contained in or under this node) by inserting them to an allocated vtkIdList via vtkIdList::InsertNextId(). V.ExportAllPointIdsByDirectSet([int, ...], vtkIdList) C++: void ExportAllPointIdsByDirectSet(vtkIdType *pntIdx, vtkIdList *idList) Export all the indices of the points (contained in or under this node) by directly setting them in an allocated vtkIdList object. pntIdx indicates the starting location (in terms of vtkIdList) from which new point indices are added to vtkIdList by vtkIdList::SetId(). GetMaxPointsPerLeafMaxValueGetMaxPointsPerLeafMinValueGetBuildCubicOctreeGetMaxPointsPerLeafGetLocatorPointsFindPointsWithinSquaredRadiusSetBuildCubicOctreeBuildCubicOctreeOnBuildCubicOctreeOffSetMaxPointsPerLeafInsertPointWithoutCheckingIsInsertedPointFindClosestInsertedPointvtkIncrementalOctreePointLocatorFindClosestPointWithinSquaredRadiusvtkIncrementalOctreePointLocator - Incremental octree in support of both point location and point insertion. Superclass: vtkIncrementalPointLocator As opposed to the uniform bin-based search structure (adopted in class vtkPointLocator) with a fixed spatial resolution, an octree mechanism employs a hierarchy of tree-like sub-division of the 3D data domain. Thus it enables data-aware multi-resolution and accordingly accelerated point location as well as insertion, particularly when handling a radically imbalanced layout of points as not uncommon in datasets defined on adaptive meshes. Compared to a static point locator supporting pure location functionalities through some search structure established from a fixed set of points, an incremental point locator allows for, in addition, point insertion capabilities, with the search structure maintaining a dynamically increasing number of points. Class vtkIncrementalOctreePointLocator is an octree-based accelerated implementation of the functionalities of the uniform bin-based incremental point locator vtkPointLocator. For point location, an octree is built by accessing a vtkDataSet, specifically a vtkPointSet. For point insertion, an empty octree is inited and then incrementally populated as points are inserted. Three increasingly complex point insertion modes, i.e., direct check-free insertion, zero tolerance insertion, and non-zero tolerance insertion, are supported. In fact, the octree used in the point location mode is actually constructed via direct check-free point insertion. This class also provides a polygonal representation of the octree boundary. @sa vtkAbstractPointLocator, vtkIncrementalPointLocator, vtkPointLocator, vtkMergePoints vtkCommonDataModelPython.vtkIncrementalOctreePointLocatorV.SafeDownCast(vtkObjectBase) -> vtkIncrementalOctreePointLocator C++: static vtkIncrementalOctreePointLocator *SafeDownCast( vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkIncrementalOctreePointLocator C++: vtkIncrementalOctreePointLocator *NewInstance() Standard type and print methods. V.SetMaxPointsPerLeaf(int) C++: virtual void SetMaxPointsPerLeaf(int _arg) Set/Get the maximum number of points that a leaf node may maintain. Note that the actual number of points maintained by a leaf node might exceed this threshold if there is a large number (equal to or greater than the threshold) of exactly duplicate points (with zero distance) to be inserted (e.g., to construct an octree for subsequent point location) in extreme cases. Respecting this threshold in such scenarios would cause endless node sub-division. Thus this threshold is broken, but only in case of such situations. V.GetMaxPointsPerLeafMinValue() -> int C++: virtual int GetMaxPointsPerLeafMinValue() Set/Get the maximum number of points that a leaf node may maintain. Note that the actual number of points maintained by a leaf node might exceed this threshold if there is a large number (equal to or greater than the threshold) of exactly duplicate points (with zero distance) to be inserted (e.g., to construct an octree for subsequent point location) in extreme cases. Respecting this threshold in such scenarios would cause endless node sub-division. Thus this threshold is broken, but only in case of such situations. V.GetMaxPointsPerLeafMaxValue() -> int C++: virtual int GetMaxPointsPerLeafMaxValue() Set/Get the maximum number of points that a leaf node may maintain. Note that the actual number of points maintained by a leaf node might exceed this threshold if there is a large number (equal to or greater than the threshold) of exactly duplicate points (with zero distance) to be inserted (e.g., to construct an octree for subsequent point location) in extreme cases. Respecting this threshold in such scenarios would cause endless node sub-division. Thus this threshold is broken, but only in case of such situations. V.GetMaxPointsPerLeaf() -> int C++: virtual int GetMaxPointsPerLeaf() Set/Get the maximum number of points that a leaf node may maintain. Note that the actual number of points maintained by a leaf node might exceed this threshold if there is a large number (equal to or greater than the threshold) of exactly duplicate points (with zero distance) to be inserted (e.g., to construct an octree for subsequent point location) in extreme cases. Respecting this threshold in such scenarios would cause endless node sub-division. Thus this threshold is broken, but only in case of such situations. V.SetBuildCubicOctree(int) C++: virtual void SetBuildCubicOctree(int _arg) Set/Get whether the search octree is built as a cubic shape or not. V.GetBuildCubicOctree() -> int C++: virtual int GetBuildCubicOctree() Set/Get whether the search octree is built as a cubic shape or not. V.BuildCubicOctreeOn() C++: virtual void BuildCubicOctreeOn() Set/Get whether the search octree is built as a cubic shape or not. V.BuildCubicOctreeOff() C++: virtual void BuildCubicOctreeOff() Set/Get whether the search octree is built as a cubic shape or not. V.GetLocatorPoints() -> vtkPoints C++: virtual vtkPoints *GetLocatorPoints() Get access to the vtkPoints object in which point coordinates are stored for either point location or point insertion. V.Initialize() C++: void Initialize() override; Delete the octree search structure. V.FreeSearchStructure() C++: void FreeSearchStructure() override; Delete the octree search structure. V.GetBounds([float, ...]) C++: void GetBounds(double *bounds) override; V.GetBounds() -> (float, ...) C++: double *GetBounds() override; Get the spatial bounding box of the octree. V.GetNumberOfPoints() -> int C++: int GetNumberOfPoints() Get the number of points maintained by the octree. V.FindClosestInsertedPoint((float, float, float)) -> int C++: vtkIdType FindClosestInsertedPoint(const double x[3]) override; Given a point x assumed to be covered by the octree, return the index of the closest in-octree point regardless of the associated minimum squared distance relative to the squared insertion-tolerance distance. This method is used when performing incremental point insertion. Note -1 indicates that no point is found. InitPointInsertion() should have been called in advance. V.GenerateRepresentation(int, vtkPolyData) C++: void GenerateRepresentation(int nodeLevel, vtkPolyData *polysData) override; Create a polygonal representation of the octree boundary (from the root node to a specified level). V.BuildLocator() C++: void BuildLocator() override; Load points from a dataset to construct an octree for point location. This function resorts to InitPointInsertion() to fulfill some of the work. V.FindClosestPoint((float, float, float)) -> int C++: vtkIdType FindClosestPoint(const double x[3]) override; V.FindClosestPoint(float, float, float) -> int C++: virtual vtkIdType FindClosestPoint(double x, double y, double z) V.FindClosestPoint((float, float, float), [float, ...]) -> int C++: virtual vtkIdType FindClosestPoint(const double x[3], double *miniDist2) V.FindClosestPoint(float, float, float, [float, ...]) -> int C++: virtual vtkIdType FindClosestPoint(double x, double y, double z, double *miniDist2) Given a point x, return the id of the closest point. BuildLocator() should have been called prior to this function. This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestPointWithinRadius(float, (float, float, float), float) -> int C++: vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double &dist2) override; Given a point x and a radius, return the id of the closest point within the radius and the associated minimum squared distance (via dist2, this returned distance is valid only if the point id is not -1). Note that BuildLocator() should have been called prior to this function. This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestPointWithinSquaredRadius(float, (float, float, float) , float) -> int C++: vtkIdType FindClosestPointWithinSquaredRadius(double radius2, const double x[3], double &dist2) Given a point x and a squared radius radius2, return the id of the closest point within the radius and the associated minimum squared distance (via dist2, note this returned distance is valid only if the point id is not -1). BuildLocator() should have been called prior to this function.This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindPointsWithinRadius(float, (float, float, float), vtkIdList) C++: void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result) override; Find all points within a radius R relative to a given point x. The returned point ids (stored in result) are not sorted in any way. BuildLocator() should have been called prior to this function. This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindPointsWithinSquaredRadius(float, (float, float, float), vtkIdList) C++: void FindPointsWithinSquaredRadius(double R2, const double x[3], vtkIdList *result) Find all points within a squared radius R2 relative to a given point x. The returned point ids (stored in result) are not sorted in any way. BuildLocator() should have been called prior to this function. This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestNPoints(int, (float, float, float), vtkIdList) C++: void FindClosestNPoints(int N, const double x[3], vtkIdList *result) override; Find the closest N points to a given point. The returned point ids (via result) are sorted from closest to farthest. BuildLocator() should have been called prior to this function. This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.InitPointInsertion(vtkPoints, (float, float, float, float, float, float)) -> int C++: int InitPointInsertion(vtkPoints *points, const double bounds[6]) override; V.InitPointInsertion(vtkPoints, (float, float, float, float, float, float), int) -> int C++: int InitPointInsertion(vtkPoints *points, const double bounds[6], vtkIdType estSize) override; Initialize the point insertion process. points is an object, storing 3D point coordinates, to which incremental point insertion put coordinates. It is created and provided by an external VTK class. Argument bounds represents the spatial bounding box, into which the points fall. In fact, an adjusted version of the bounding box is used to build the octree to make sure no any point (to be inserted) falls outside the octree. This function is not thread safe. V.IsInsertedPoint((float, float, float)) -> int C++: vtkIdType IsInsertedPoint(const double x[3]) override; V.IsInsertedPoint(float, float, float) -> int C++: vtkIdType IsInsertedPoint(double x, double y, double z) override; Determine whether or not a given point has been inserted into the octree. Return the id of the already inserted point if true, otherwise return -1. InitPointInsertion() should have been called in advance. V.InsertUniquePoint((float, float, float), int) -> int C++: int InsertUniquePoint(const double point[3], vtkIdType &pntId) override; Insert a point to the octree unless there has been a duplciate point. Whether the point is actually inserted (return 1) or not (return 0 upon a rejection by an existing duplicate), the index of the point (either new or the duplicate) is returned via pntId. Note that InitPointInsertion() should have been called prior to this function. vtkPoints::InsertNextPoint() is invoked. This method is not thread safe. V.InsertPoint(int, (float, float, float)) C++: void InsertPoint(vtkIdType ptId, const double x[3]) override; Insert a given point into the octree with a specified point index ptId. InitPointInsertion() should have been called prior to this function. In addition, IsInsertedPoint() should have been called in advance to ensure that the given point has not been inserted unless point duplication is allowed (Note that in this case, this function involves a repeated leaf container location). vtkPoints::InsertPoint() is invoked. V.InsertNextPoint((float, float, float)) -> int C++: vtkIdType InsertNextPoint(const double x[3]) override; Insert a given point into the octree and return the point index. Note that InitPointInsertion() should have been called prior to this function. In addition, IsInsertedPoint() should have been called in advance to ensure that the given point has not been inserted unless point duplication is allowed (in this case, this function invovles a repeated leaf container location). vtkPoints::InsertNextPoint() is invoked. V.InsertPointWithoutChecking((float, float, float), int, int) C++: void InsertPointWithoutChecking(const double point[3], vtkIdType &pntId, int insert) "Insert" a point to the octree without any checking. Argument insert means whether vtkPoints::InsertNextPoint() upon 1 is called or the point itself is not inserted to the vtkPoints at all but instead only the point index is inserted to a vtkIdList upon 0. For case 0, the point index needs to be specified via pntId. For case 1, the actual point index is returned via pntId. InitPointInsertion() should have been called. vtkIncrementalPointLocator - Abstract class in support of both point location and point insertion. Superclass: vtkAbstractPointLocator Compared to a static point locator for pure location functionalities through some search structure established from a fixed set of points, an incremental point locator allows for, in addition, point insertion capabilities, with the search structure maintaining a dynamically increasing number of points. There are two incremental point locators, i.e., vtkPointLocator and vtkIncrementalOctreePointLocator. As opposed to the uniform bin-based search structure (adopted in vtkPointLocator) with a fixed spatial resolution, an octree mechanism (employed in vtkIncrementalOctreePointlocator) resorts to a hierarchy of tree-like sub-division of the 3D data domain. Thus it enables data-aware multi- resolution and accordingly accelerated point location as well as point insertion, particularly when handling a radically imbalanced layout of points as not uncommon in datasets defined on adaptive meshes. In other words, vtkIncrementalOctreePointLocator is an octree-based accelerated implementation of all functionalities of vtkPointLocator. @sa vtkLocator, vtkIncrementalOctreePointLocator, vtkPointLocator, vtkMergePoints vtkStaticPointLocator vtkCommonDataModelPython.vtkIncrementalPointLocatorV.SafeDownCast(vtkObjectBase) -> vtkIncrementalPointLocator C++: static vtkIncrementalPointLocator *SafeDownCast( vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkIncrementalPointLocator C++: vtkIncrementalPointLocator *NewInstance() Standard type and print methods. V.FindClosestInsertedPoint((float, float, float)) -> int C++: virtual vtkIdType FindClosestInsertedPoint(const double x[3]) Given a point x assumed to be covered by the search structure, return the index of the closest point (already inserted to the search structure) regardless of the associated minimum squared distance relative to the squared insertion-tolerance distance. This method is used when performing incremental point insertion. Note -1 indicates that no point is found. InitPointInsertion() should have been called in advance. V.InitPointInsertion(vtkPoints, (float, float, float, float, float, float)) -> int C++: virtual int InitPointInsertion(vtkPoints *newPts, const double bounds[6]) V.InitPointInsertion(vtkPoints, (float, float, float, float, float, float), int) -> int C++: virtual int InitPointInsertion(vtkPoints *newPts, const double bounds[6], vtkIdType estSize) Initialize the point insertion process. newPts is an object, storing 3D point coordinates, to which incremental point insertion puts coordinates. It is created and provided by an external VTK class. Argument bounds represents the spatial bounding box, into which the points fall. V.IsInsertedPoint(float, float, float) -> int C++: virtual vtkIdType IsInsertedPoint(double x, double y, double z) V.IsInsertedPoint((float, float, float)) -> int C++: virtual vtkIdType IsInsertedPoint(const double x[3]) Determine whether or not a given point has been inserted. Return the id of the already inserted point if true, else return -1. InitPointInsertion() should have been called in advance. V.InsertUniquePoint((float, float, float), int) -> int C++: virtual int InsertUniquePoint(const double x[3], vtkIdType &ptId) Insert a point unless there has been a duplciate in the search structure. This method is not thread safe. V.InsertPoint(int, (float, float, float)) C++: virtual void InsertPoint(vtkIdType ptId, const double x[3]) Insert a given point with a specified point index ptId. InitPointInsertion() should have been called prior to this function. Also, IsInsertedPoint() should have been called in advance to ensure that the given point has not been inserted unless point duplication is allowed. V.InsertNextPoint((float, float, float)) -> int C++: virtual vtkIdType InsertNextPoint(const double x[3]) Insert a given point and return the point index. InitPointInsertion() should have been called prior to this function. Also, IsInsertedPoint() should have been called in advance to ensure that the given point has not been inserted unless point duplication is allowed. vtkInEdgeIterator - Iterates through all incoming edges to a vertex. Superclass: vtkObject vtkInEdgeIterator iterates through all edges whose target is a particular vertex. Instantiate this class directly and call Initialize() to traverse the vertex of a graph. Alternately, use GetInEdges() on the graph to initialize the iterator. it->Next() returns a vtkInEdgeType structure, which contains Id, the edge's id, and Source, the edge's source vertex. @sa vtkGraph vtkOutEdgeIterator vtkCommonDataModelPython.vtkInEdgeIteratorV.SafeDownCast(vtkObjectBase) -> vtkInEdgeIterator C++: static vtkInEdgeIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkInEdgeIterator C++: vtkInEdgeIterator *NewInstance() V.Next() -> vtkInEdgeType C++: vtkInEdgeType Next() Returns the next edge in the graph. ClearResizeAppendvtkQuadratureSchemeDefinitionGetSaveStatevtkXMLDataElementRestoreStatevtkInformationQuadratureSchemeDefinitionVectorKeyvtkInformationQuadratureSchemeDefinitionVectorKey - Key for vtkQuadratureSchemeDefinition vector values. Superclass: vtkInformationKey vtkInformationQuadratureSchemeDefinitionVectorKey is used to represent keys for double vector values in vtkInformation.h. NOTE the interface in this key differs from that in other similar keys because of our internal use of smart pointers. vtkCommonDataModelPython.vtkInformationQuadratureSchemeDefinitionVectorKeyV.SafeDownCast(vtkObjectBase) -> vtkInformationQuadratureSchemeDefinitionVectorKey C++: static vtkInformationQuadratureSchemeDefinitionVectorKey *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkInformationQuadratureSchemeDefinitionVectorKey C++: vtkInformationQuadratureSchemeDefinitionVectorKey *NewInstance( ) V.Clear(vtkInformation) C++: void Clear(vtkInformation *info) Clear the vector. V.Resize(vtkInformation, int) C++: void Resize(vtkInformation *info, int n) Resize (extend) the vector to hold n objects. Any new elements created will be null initialized. V.Size(vtkInformation) -> int C++: int Size(vtkInformation *info) Get the vector's length. V.Length(vtkInformation) -> int C++: int Length(vtkInformation *info) V.Append(vtkInformation, vtkQuadratureSchemeDefinition) C++: void Append(vtkInformation *info, vtkQuadratureSchemeDefinition *value) Put the value on the back of the vector, with reference counting. V.Set(vtkInformation, vtkQuadratureSchemeDefinition, int) C++: void Set(vtkInformation *info, vtkQuadratureSchemeDefinition *value, int i) Set element i of the vector to value. Resizes the vector if needed. V.Get(vtkInformation, int) -> vtkQuadratureSchemeDefinition C++: vtkQuadratureSchemeDefinition *Get(vtkInformation *info, int idx) Get the vtkQuadratureSchemeDefinition at a specific location in the vector. V.ShallowCopy(vtkInformation, vtkInformation) C++: void ShallowCopy(vtkInformation *from, vtkInformation *to) override; Copy the entry associated with this key from one information object to another. If there is no entry in the first information object for this key, the value is removed from the second. V.DeepCopy(vtkInformation, vtkInformation) C++: void DeepCopy(vtkInformation *from, vtkInformation *to) override; Copy the entry associated with this key from one information object to another. If there is no entry in the first information object for this key, the value is removed from the second. V.SaveState(vtkInformation, vtkXMLDataElement) -> int C++: int SaveState(vtkInformation *info, vtkXMLDataElement *element) Generate an XML representation of the object. Each key/value pair will be nested in the resulting XML hierarchy. The element passed in is assumed to be empty. V.RestoreState(vtkInformation, vtkXMLDataElement) -> int C++: int RestoreState(vtkInformation *info, vtkXMLDataElement *element) Load key/value pairs from an XML state representation created with SaveState. Duplicate keys will generate a fatal error. vtkInformationKeyGetMeanDistanceModeMaxValueGetMeanDistanceModeMinValueGetMaximumMeanDistanceGetMaximumNumberOfLandmarksGetMeanDistanceModeGetCheckMeanDistanceGetLandmarkTransformGetMeanDistanceGetMaximumNumberOfIterationsGetNumberOfIterationsGetLocatorGetStartByMatchingCentroidsSetLocatorGetMeanDistanceModeAsStringSetMeanDistanceModeToRMSSetMaximumMeanDistanceSetMaximumNumberOfLandmarksSetMaximumNumberOfIterationsSetCheckMeanDistanceSetStartByMatchingCentroidsCheckMeanDistanceOffStartByMatchingCentroidsOnStartByMatchingCentroidsOffCheckMeanDistanceOnSetMeanDistanceModeVTK_ICP_MODE_RMSVTK_ICP_MODE_AVMakeTransformInversevtkIterativeClosestPointTransformSetMeanDistanceModeToAbsoluteValuevtkIterativeClosestPointTransform - Implementation of the ICP algorithm. Superclass: vtkLinearTransform Match two surfaces using the iterative closest point (ICP) algorithm. The core of the algorithm is to match each vertex in one surface with the closest surface point on the other, then apply the transformation that modify one surface to best match the other (in a least square sense). This has to be iterated to get proper convergence of the surfaces.@attention Use vtkTransformPolyDataFilter to apply the resulting ICP transform to your data. You might also set it to your actor's user transform.@attention This class makes use of vtkLandmarkTransform internally to compute the best fit. Use the GetLandmarkTransform member to get a pointer to that transform and set its parameters. You might, for example, constrain the number of degrees of freedom of the solution (i.e. rigid body, similarity, etc.) by checking the vtkLandmarkTransform documentation for its SetMode member. @sa vtkLandmarkTransform vtkCommonDataModelPython.vtkIterativeClosestPointTransformV.SafeDownCast(vtkObjectBase) -> vtkIterativeClosestPointTransform C++: static vtkIterativeClosestPointTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkIterativeClosestPointTransform C++: vtkIterativeClosestPointTransform *NewInstance() V.SetSource(vtkDataSet) C++: void SetSource(vtkDataSet *source) Specify the source and target data sets. V.SetTarget(vtkDataSet) C++: void SetTarget(vtkDataSet *target) Specify the source and target data sets. V.GetSource() -> vtkDataSet C++: virtual vtkDataSet *GetSource() Specify the source and target data sets. V.GetTarget() -> vtkDataSet C++: virtual vtkDataSet *GetTarget() Specify the source and target data sets. V.SetLocator(vtkCellLocator) C++: void SetLocator(vtkCellLocator *locator) Set/Get a spatial locator for speeding up the search process. An instance of vtkCellLocator is used by default. V.GetLocator() -> vtkCellLocator C++: virtual vtkCellLocator *GetLocator() Set/Get a spatial locator for speeding up the search process. An instance of vtkCellLocator is used by default. V.SetMaximumNumberOfIterations(int) C++: virtual void SetMaximumNumberOfIterations(int _arg) Set/Get the maximum number of iterations. Default is 50. V.GetMaximumNumberOfIterations() -> int C++: virtual int GetMaximumNumberOfIterations() Set/Get the maximum number of iterations. Default is 50. V.GetNumberOfIterations() -> int C++: virtual int GetNumberOfIterations() Get the number of iterations since the last update V.SetCheckMeanDistance(int) C++: virtual void SetCheckMeanDistance(int _arg) Force the algorithm to check the mean distance between two iterations. Default is Off. V.GetCheckMeanDistance() -> int C++: virtual int GetCheckMeanDistance() Force the algorithm to check the mean distance between two iterations. Default is Off. V.CheckMeanDistanceOn() C++: virtual void CheckMeanDistanceOn() Force the algorithm to check the mean distance between two iterations. Default is Off. V.CheckMeanDistanceOff() C++: virtual void CheckMeanDistanceOff() Force the algorithm to check the mean distance between two iterations. Default is Off. V.SetMeanDistanceMode(int) C++: virtual void SetMeanDistanceMode(int _arg) Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.GetMeanDistanceModeMinValue() -> int C++: virtual int GetMeanDistanceModeMinValue() Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.GetMeanDistanceModeMaxValue() -> int C++: virtual int GetMeanDistanceModeMaxValue() Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.GetMeanDistanceMode() -> int C++: virtual int GetMeanDistanceMode() Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.SetMeanDistanceModeToRMS() C++: void SetMeanDistanceModeToRMS() Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.SetMeanDistanceModeToAbsoluteValue() C++: void SetMeanDistanceModeToAbsoluteValue() Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.GetMeanDistanceModeAsString() -> string C++: const char *GetMeanDistanceModeAsString() Specify the mean distance mode. This mode expresses how the mean distance is computed. The RMS mode is the square root of the average of the sum of squares of the closest point distances. The Absolute Value mode is the mean of the sum of absolute values of the closest point distances. The default is VTK_ICP_MODE_RMS V.SetMaximumMeanDistance(float) C++: virtual void SetMaximumMeanDistance(double _arg) Set/Get the maximum mean distance between two iteration. If the mean distance is lower than this, the convergence stops. The default is 0.01. V.GetMaximumMeanDistance() -> float C++: virtual double GetMaximumMeanDistance() Set/Get the maximum mean distance between two iteration. If the mean distance is lower than this, the convergence stops. The default is 0.01. V.GetMeanDistance() -> float C++: virtual double GetMeanDistance() Get the mean distance between the last two iterations. V.SetMaximumNumberOfLandmarks(int) C++: virtual void SetMaximumNumberOfLandmarks(int _arg) Set/Get the maximum number of landmarks sampled in your dataset. If your dataset is dense, then you will typically not need all the points to compute the ICP transform. The default is 200. V.GetMaximumNumberOfLandmarks() -> int C++: virtual int GetMaximumNumberOfLandmarks() Set/Get the maximum number of landmarks sampled in your dataset. If your dataset is dense, then you will typically not need all the points to compute the ICP transform. The default is 200. V.SetStartByMatchingCentroids(int) C++: virtual void SetStartByMatchingCentroids(int _arg) Starts the process by translating source centroid to target centroid. The default is Off. V.GetStartByMatchingCentroids() -> int C++: virtual int GetStartByMatchingCentroids() Starts the process by translating source centroid to target centroid. The default is Off. V.StartByMatchingCentroidsOn() C++: virtual void StartByMatchingCentroidsOn() Starts the process by translating source centroid to target centroid. The default is Off. V.StartByMatchingCentroidsOff() C++: virtual void StartByMatchingCentroidsOff() Starts the process by translating source centroid to target centroid. The default is Off. V.GetLandmarkTransform() -> vtkLandmarkTransform C++: virtual vtkLandmarkTransform *GetLandmarkTransform() Get the internal landmark transform. Use it to constrain the number of degrees of freedom of the solution (i.e. rigid body, similarity, etc.). V.Inverse() C++: void Inverse() override; Invert the transformation. This is done by switching the source and target. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make another transform of the same type. vtkLinearTransformvtkHomogeneousTransformGetMinIDGetUpGetIDGetDimGetLeftGetRightGetMaxIDSetLeftPrintNodePrintVerboseNodeSetRightSetUpIntersectsRegionvtkPlanesIntersectionAddChildNodesSetDimSetMinIDSetIDSetMaxIDSetNumberOfPointsSetMinDataBoundsSetMaxDataBoundsSetMinBoundsSetMaxBoundsGetDataBoundsContainsBoxSetDataBoundsGetDivisionPositionvtkKdNode - This class represents a single spatial region in an 3D axis aligned binary spatial partitioning. Superclass: vtkObject It is assumed the region bounds some set of points. Regions are represented as nodes in a binary tree. @sa vtkKdTree vtkOBSPCuts vtkCommonDataModelPython.vtkKdNodeV.SafeDownCast(vtkObjectBase) -> vtkKdNode C++: static vtkKdNode *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkKdNode C++: vtkKdNode *NewInstance() V.SetDim(int) C++: virtual void SetDim(int _arg) Set/Get the dimension along which this region is divided. (0 - x, 1 - y, 2 - z, 3 - leaf node (default)). V.GetDim() -> int C++: virtual int GetDim() Set/Get the dimension along which this region is divided. (0 - x, 1 - y, 2 - z, 3 - leaf node (default)). V.GetDivisionPosition() -> float C++: virtual double GetDivisionPosition() Get the location of the division plane along the axis the region is divided. See also GetDim(). The result is undertermined if this node is not divided (a leaf node). V.SetNumberOfPoints(int) C++: virtual void SetNumberOfPoints(int _arg) Set/Get the number of points contained in this region. V.GetNumberOfPoints() -> int C++: virtual int GetNumberOfPoints() Set/Get the number of points contained in this region. V.SetBounds(float, float, float, float, float, float) C++: void SetBounds(double x1, double x2, double y1, double y2, double z1, double z2) V.SetBounds((float, float, float, float, float, float)) C++: void SetBounds(const double b[6]) Set/Get the bounds of the spatial region represented by this node. Caller allocates storage for 6-vector in GetBounds. V.GetBounds([float, ...]) C++: void GetBounds(double *b) Set/Get the bounds of the spatial region represented by this node. Caller allocates storage for 6-vector in GetBounds. V.SetDataBounds(float, float, float, float, float, float) C++: void SetDataBounds(double x1, double x2, double y1, double y2, double z1, double z2) V.SetDataBounds([float, ...]) C++: void SetDataBounds(float *v) Set/Get the bounds of the points contained in this spatial region. This may be smaller than the bounds of the region itself. Caller allocates storage for 6-vector in GetDataBounds. V.GetDataBounds([float, ...]) C++: void GetDataBounds(double *b) Set/Get the bounds of the points contained in this spatial region. This may be smaller than the bounds of the region itself. Caller allocates storage for 6-vector in GetDataBounds. V.GetMinBounds() -> (float, float, float) C++: double *GetMinBounds() Get a pointer to the 3 bound minima (xmin, ymin and zmin) or the 3 bound maxima (xmax, ymax, zmax). Don't free this pointer. V.SetMinBounds((float, ...)) C++: void SetMinBounds(const double *mb) Set the xmin, ymin and zmin value of the bounds of this region V.SetMaxBounds((float, ...)) C++: void SetMaxBounds(const double *mb) Set the xmax, ymax and zmax value of the bounds of this region V.GetMinDataBounds() -> (float, float, float) C++: double *GetMinDataBounds() Get a pointer to the 3 data bound minima (xmin, ymin and zmin) or the 3 data bound maxima (xmax, ymax, zmax). Don't free this pointer. V.GetMaxDataBounds() -> (float, float, float) C++: double *GetMaxDataBounds() V.SetMinDataBounds((float, ...)) C++: void SetMinDataBounds(const double *mb) Set the xmin, ymin and zmin value of the bounds of this data within this region V.SetMaxDataBounds((float, ...)) C++: void SetMaxDataBounds(const double *mb) Set the xmax, ymax and zmax value of the bounds of this data within this region V.SetID(int) C++: virtual void SetID(int _arg) Set/Get the ID associated with the region described by this node. If this is not a leaf node, this value should be -1. V.GetID() -> int C++: virtual int GetID() Set/Get the ID associated with the region described by this node. If this is not a leaf node, this value should be -1. V.GetMinID() -> int C++: virtual int GetMinID() If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID. V.GetMaxID() -> int C++: virtual int GetMaxID() If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID. V.SetMinID(int) C++: virtual void SetMinID(int _arg) If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID. V.SetMaxID(int) C++: virtual void SetMaxID(int _arg) If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Set/Get the range of the IDs of the leaf nodes below this node. If this is already a leaf node, these values should be the same as the ID. V.AddChildNodes(vtkKdNode, vtkKdNode) C++: void AddChildNodes(vtkKdNode *left, vtkKdNode *right) Add the left and right children. V.DeleteChildNodes() C++: void DeleteChildNodes() Delete the left and right children. V.GetLeft() -> vtkKdNode C++: virtual vtkKdNode *GetLeft() Set/Get a pointer to the left child of this node. V.SetLeft(vtkKdNode) C++: void SetLeft(vtkKdNode *left) Set/Get a pointer to the left child of this node. V.GetRight() -> vtkKdNode C++: virtual vtkKdNode *GetRight() Set/Get a pointer to the right child of this node. V.SetRight(vtkKdNode) C++: void SetRight(vtkKdNode *right) Set/Get a pointer to the right child of this node. V.GetUp() -> vtkKdNode C++: virtual vtkKdNode *GetUp() Set/Get a pointer to the parent of this node. V.SetUp(vtkKdNode) C++: void SetUp(vtkKdNode *up) Set/Get a pointer to the parent of this node. V.IntersectsBox(float, float, float, float, float, float, int) -> int C++: int IntersectsBox(double x1, double x2, double y1, double y2, double z1, double z2, int useDataBounds) Return 1 if this spatial region intersects the axis-aligned box given by the bounds passed in. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero. V.IntersectsSphere2(float, float, float, float, int) -> int C++: int IntersectsSphere2(double x, double y, double z, double rSquared, int useDataBounds) Return 1 if this spatial region intersects a sphere described by it's center and the square of it's radius. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero. V.IntersectsRegion(vtkPlanesIntersection, int) -> int C++: int IntersectsRegion(vtkPlanesIntersection *pi, int useDataBounds) A vtkPlanesIntersection object represents a convex 3D region bounded by planes, and it is capable of computing intersections of boxes with itself. Return 1 if this spatial region intersects the spatial region described by the vtkPlanesIntersection object. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero. V.IntersectsCell(vtkCell, int, int, [float, ...]) -> int C++: int IntersectsCell(vtkCell *cell, int useDataBounds, int cellRegion=-1, double *cellBounds=nullptr) Return 1 if the cell specified intersects this region. If you already know the ID of the region containing the cell's centroid, provide that as an argument. If you already know the bounds of the cell, provide that as well, in the form of xmin,xmax,ymin,ymax,zmin, zmax. Either of these may speed the calculation. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero. V.ContainsBox(float, float, float, float, float, float, int) -> int C++: int ContainsBox(double x1, double x2, double y1, double y2, double z1, double z2, int useDataBounds) Return 1 if this spatial region entirely contains a box specified by it's bounds. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero. V.ContainsPoint(float, float, float, int) -> int C++: int ContainsPoint(double x, double y, double z, int useDataBounds) Return 1 if this spatial region entirely contains the given point. Use the possibly smaller bounds of the points within the region if useDataBounds is non-zero. V.GetDistance2ToBoundary(float, float, float, int) -> float C++: double GetDistance2ToBoundary(double x, double y, double z, int useDataBounds) V.GetDistance2ToBoundary(float, float, float, [float, ...], int) -> float C++: double GetDistance2ToBoundary(double x, double y, double z, double *boundaryPt, int useDataBounds) Calculate the distance squared from any point to the boundary of this region. Use the boundary of the points within the region if useDataBounds is non-zero. V.GetDistance2ToInnerBoundary(float, float, float) -> float C++: double GetDistance2ToInnerBoundary(double x, double y, double z) Calculate the distance from the specified point (which is required to be inside this spatial region) to an interior boundary. An interior boundary is one that is not also an boundary of the entire space partitioned by the tree of vtkKdNode's. V.PrintNode(int) C++: void PrintNode(int depth) For debugging purposes, print out this node. V.PrintVerboseNode(int) C++: void PrintVerboseNode(int depth) For debugging purposes, print out this node. vtkKdTreeCopyTreeBuildLocatorFromPointsRemoveDataSetOmitXPartitioningOmitYZPartitioningOmitZXPartitioningOmitZPartitioningOmitYPartitioningPrintVerboseTreeOmitXYPartitioningOmitNoPartitioningDeleteCellListsGetNumberOfDataSetsGetNumberOfRegionsOrLessGetMinCellsGetNumberOfRegionsOrMoreGetTimingGetIncludeRegionBoundaryCellsGetDataSetsGetFudgeFactorAllGetRegionContainingCellPrintRegionGetDataSetIndexBuildMapForDuplicatePointsGetCellListGetPointsInRegionGetBoundaryCellListSetFudgeFactorSetTimingSetIncludeRegionBoundaryCellsSetNumberOfRegionsOrLessSetMinCellsSetNumberOfRegionsOrMoreIncludeRegionBoundaryCellsOffTimingOnIncludeRegionBoundaryCellsOnTimingOffGetRegionContainingPointViewOrderRegionsInDirectionViewOrderRegionsFromPositionGetCellListsSetNewBoundsCreateCellListsFindPointsInAreaFindClosestPointInRegionInvalidateGeometryNewGeometryRemoveAllDataSets@V *vtkPointSet@V *vtkPoints@Vk *vtkDataSet@ik@iPi *i@VPi *vtkDataSet *i@V *vtkDataSetGetGenerateRepresentationUsingDataBoundsViewOrderAllRegionsInDirectionViewOrderAllRegionsFromPositionSetGenerateRepresentationUsingDataBoundsGenerateRepresentationUsingDataBoundsOffGenerateRepresentationUsingDataBoundsOnvtkKdTree - a Kd-tree spatial decomposition of a set of points Superclass: vtkLocator Given one or more vtkDataSets, create a load balancing k-d tree decomposition of the points at the center of the cells. Or, create a k-d tree point locator from a list of points. This class can also generate a PolyData representation of the boundaries of the spatial regions in the decomposition. It can sort the regions with respect to a viewing direction, and it can decompose a list of regions into subsets, each of which represent a convex spatial region (since many algorithms require a convex region). If the points were derived from cells, vtkKdTree can create a list of cell Ids for each region for each data set. Two lists are available - all cells with centroid in the region, and all cells that intersect the region but whose centroid lies in another region. For the purpose of removing duplicate points quickly from large data sets, or for finding nearby points, we added another mode for building the locator. BuildLocatorFromPoints will build a k-d tree from one or more vtkPoints objects. This can be followed by BuildMapForDuplicatePoints which returns a mapping from the original ids to a subset of the ids that is unique within a supplied tolerance, or you can use FindPoint and FindClosestPoint to locate points in the original set that the tree was built from. @sa vtkLocator vtkCellLocator vtkPKdTree vtkCommonDataModelPython.vtkKdTreeV.SafeDownCast(vtkObjectBase) -> vtkKdTree C++: static vtkKdTree *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkKdTree C++: vtkKdTree *NewInstance() Standard type and print methods. V.TimingOn() C++: virtual void TimingOn() Turn on timing of the k-d tree build V.TimingOff() C++: virtual void TimingOff() Turn on timing of the k-d tree build V.SetTiming(int) C++: virtual void SetTiming(int _arg) Turn on timing of the k-d tree build V.GetTiming() -> int C++: virtual int GetTiming() Turn on timing of the k-d tree build V.SetMinCells(int) C++: virtual void SetMinCells(int _arg) Minimum number of cells per spatial region. Default is 100. V.GetMinCells() -> int C++: virtual int GetMinCells() Minimum number of cells per spatial region. Default is 100. V.GetNumberOfRegionsOrLess() -> int C++: virtual int GetNumberOfRegionsOrLess() Set/Get the number of spatial regions you want to get close to without going over. (The number of spatial regions is normally a power of two.) Call this before BuildLocator(). Default is unset (0). V.SetNumberOfRegionsOrLess(int) C++: virtual void SetNumberOfRegionsOrLess(int _arg) V.GetNumberOfRegionsOrMore() -> int C++: virtual int GetNumberOfRegionsOrMore() Set/Get the number of spatial regions you want to get close to while having at least this many regions. (The number of spatial regions is normally a power of two.) Default is unset (0). V.SetNumberOfRegionsOrMore(int) C++: virtual void SetNumberOfRegionsOrMore(int _arg) V.GetFudgeFactor() -> float C++: virtual double GetFudgeFactor() Some algorithms on k-d trees require a value that is a very small distance relative to the diameter of the entire space divided by the k-d tree. This factor is the maximum axis-aligned width of the space multiplied by 10e-6. V.SetFudgeFactor(float) C++: virtual void SetFudgeFactor(double _arg) V.GetCuts() -> vtkBSPCuts C++: virtual vtkBSPCuts *GetCuts() Get a vtkBSPCuts object, a general object representing an axis- aligned spatial partitioning. Used by vtkBSPIntersections. V.SetCuts(vtkBSPCuts) C++: void SetCuts(vtkBSPCuts *cuts) Normally the k-d tree is computed from the dataset(s) provided in SetDataSet. Alternatively, you can provide the cuts that will be applied by calling SetCuts. V.OmitXPartitioning() C++: void OmitXPartitioning() Omit partitions along the X axis, yielding shafts in the X direction V.OmitYPartitioning() C++: void OmitYPartitioning() Omit partitions along the Y axis, yielding shafts in the Y direction V.OmitZPartitioning() C++: void OmitZPartitioning() Omit partitions along the Z axis, yielding shafts in the Z direction V.OmitXYPartitioning() C++: void OmitXYPartitioning() Omit partitions along the X and Y axes, yielding slabs along Z V.OmitYZPartitioning() C++: void OmitYZPartitioning() Omit partitions along the Y and Z axes, yielding slabs along X V.OmitZXPartitioning() C++: void OmitZXPartitioning() Omit partitions along the Z and X axes, yielding slabs along Y V.OmitNoPartitioning() C++: void OmitNoPartitioning() Partition along all three axes - this is the default V.SetDataSet(vtkDataSet) C++: void SetDataSet(vtkDataSet *set) override; This class can compute a spatial decomposition based on the cells in a list of one or more input data sets. SetDataSet sets the first data set in the list to the named set. SetNthDataSet sets the data set at index N to the data set named. RemoveData set takes either the data set itself or an index and removes that data set from the list of data sets. AddDataSet adds a data set to the list of data sets. Clear out all data sets and replace with single data set. For backward compatibility with superclass. V.AddDataSet(vtkDataSet) C++: virtual void AddDataSet(vtkDataSet *set) This class can compute a spatial decomposition based on the cells in a list of one or more input data sets. Add them one at a time with this method. V.RemoveDataSet(int) C++: virtual void RemoveDataSet(int index) V.RemoveDataSet(vtkDataSet) C++: virtual void RemoveDataSet(vtkDataSet *set) Remove the given data set. V.RemoveAllDataSets() C++: virtual void RemoveAllDataSets() Remove the given data set. V.GetNumberOfDataSets() -> int C++: int GetNumberOfDataSets() Get the number of data sets included in spatial paritioning V.GetDataSet(int) -> vtkDataSet C++: vtkDataSet *GetDataSet(int n) V.GetDataSet() -> vtkDataSet C++: vtkDataSet *GetDataSet() override; Get the nth defined data set in the spatial partitioning. (If you used SetNthDataSet to define 0,1 and 3 and ask for data set 2, you get 3.) Return the n'th data set. V.GetDataSets() -> vtkDataSetCollection C++: virtual vtkDataSetCollection *GetDataSets() Return a collection of all the data sets. V.GetDataSetIndex(vtkDataSet) -> int C++: int GetDataSetIndex(vtkDataSet *set) Return the index of the given data set. Returns -1 if that data set does not exist. V.GetBounds([float, ...]) C++: void GetBounds(double *bounds) Get the spatial bounds of the entire k-d tree space. Sets bounds array to xmin, xmax, ymin, ymax, zmin, zmax. V.SetNewBounds([float, ...]) C++: void SetNewBounds(double *bounds) There are certain applications where you want the bounds of the k-d tree space to be at least as large as a specified box. If the k-d tree has been built, you can expand it's bounds with this method. If the bounds supplied are smaller than those computed, they will be ignored. V.GetNumberOfRegions() -> int C++: virtual int GetNumberOfRegions() The number of leaf nodes of the tree, the spatial regions V.GetRegionBounds(int, [float, float, float, float, float, float]) C++: void GetRegionBounds(int regionID, double bounds[6]) Get the spatial bounds of k-d tree region V.GetRegionDataBounds(int, [float, float, float, float, float, float]) C++: void GetRegionDataBounds(int regionID, double bounds[6]) Get the bounds of the data within the k-d tree region V.PrintTree() C++: void PrintTree() Print out nodes of kd tree V.PrintVerboseTree() C++: void PrintVerboseTree() Print out nodes of kd tree V.PrintRegion(int) C++: void PrintRegion(int id) Print out leaf node data for given id V.CreateCellLists(int, [int, ...], int) C++: void CreateCellLists(int dataSetIndex, int *regionReqList, int reqListSize) V.CreateCellLists(vtkDataSet, [int, ...], int) C++: void CreateCellLists(vtkDataSet *set, int *regionReqList, int reqListSize) V.CreateCellLists([int, ...], int) C++: void CreateCellLists(int *regionReqList, int listSize) V.CreateCellLists() C++: void CreateCellLists() Create a list for each of the requested regions, listing the IDs of all cells whose centroid falls in the region. These lists are obtained with GetCellList(). If no DataSet is specified, the cell list is created for DataSet 0. If no list of requested regions is provided, the cell lists for all regions are created. * When CreateCellLists is called again, the lists created * on the previous call are deleted. V.SetIncludeRegionBoundaryCells(int) C++: virtual void SetIncludeRegionBoundaryCells(int _arg) If IncludeRegionBoundaryCells is ON, CreateCellLists() will also create a list of cells which intersect a given region, but are not assigned to the region. These lists are obtained with GetBoundaryCellList(). Default is OFF. V.GetIncludeRegionBoundaryCells() -> int C++: virtual int GetIncludeRegionBoundaryCells() If IncludeRegionBoundaryCells is ON, CreateCellLists() will also create a list of cells which intersect a given region, but are not assigned to the region. These lists are obtained with GetBoundaryCellList(). Default is OFF. V.IncludeRegionBoundaryCellsOn() C++: virtual void IncludeRegionBoundaryCellsOn() If IncludeRegionBoundaryCells is ON, CreateCellLists() will also create a list of cells which intersect a given region, but are not assigned to the region. These lists are obtained with GetBoundaryCellList(). Default is OFF. V.IncludeRegionBoundaryCellsOff() C++: virtual void IncludeRegionBoundaryCellsOff() If IncludeRegionBoundaryCells is ON, CreateCellLists() will also create a list of cells which intersect a given region, but are not assigned to the region. These lists are obtained with GetBoundaryCellList(). Default is OFF. V.DeleteCellLists() C++: void DeleteCellLists() Free the memory used by the cell lists. V.GetCellList(int) -> vtkIdList C++: vtkIdList *GetCellList(int regionID) Get the cell list for a region. This returns a pointer to vtkKdTree's memory, so don't free it. V.GetBoundaryCellList(int) -> vtkIdList C++: vtkIdList *GetBoundaryCellList(int regionID) The cell list obtained with GetCellList is the list of all cells such that their centroid is contained in the spatial region. It may also be desirable to get a list of all cells intersecting a spatial region, but with centroid in some other region. This is that list. This list is computed in CreateCellLists() if and only if IncludeRegionBoundaryCells is ON. This returns a pointer to KdTree's memory, so don't free it. V.GetCellLists(vtkIntArray, int, vtkIdList, vtkIdList) -> int C++: vtkIdType GetCellLists(vtkIntArray *regions, int set, vtkIdList *inRegionCells, vtkIdList *onBoundaryCells) V.GetCellLists(vtkIntArray, vtkDataSet, vtkIdList, vtkIdList) -> int C++: vtkIdType GetCellLists(vtkIntArray *regions, vtkDataSet *set, vtkIdList *inRegionCells, vtkIdList *onBoundaryCells) V.GetCellLists(vtkIntArray, vtkIdList, vtkIdList) -> int C++: vtkIdType GetCellLists(vtkIntArray *regions, vtkIdList *inRegionCells, vtkIdList *onBoundaryCells) * For a list of regions, get two cell lists. The first lists * the IDs all cells whose centroids lie in one of the regions. * The second lists the IDs of all cells that intersect the regions, * but whose centroid lies in a region not on the list. * The total number of cell IDs written to both lists is returned. * Either list pointer passed in can be nullptr, and it will be ignored. * If there are multiple data sets, you must specify which data set * you wish cell IDs for. * The caller should delete these two lists when done. This method * uses the cell lists created in CreateCellLists(). * If the cell list for any of the requested regions does not * exist, then this method will call CreateCellLists() to create * cell lists for *every* region of the k-d tree. You must remember * to DeleteCellLists() when done with all calls to this method, as * cell lists can require a great deal of memory. V.GetRegionContainingCell(vtkDataSet, int) -> int C++: int GetRegionContainingCell(vtkDataSet *set, vtkIdType cellID) V.GetRegionContainingCell(int, int) -> int C++: int GetRegionContainingCell(int set, vtkIdType cellID) V.GetRegionContainingCell(int) -> int C++: int GetRegionContainingCell(vtkIdType cellID) Get the id of the region containing the cell centroid. If no DataSet is specified, assume DataSet 0. If you need the region ID for every cell, use AllGetRegionContainingCell instead. It is more efficient. V.AllGetRegionContainingCell() -> (int, ...) C++: int *AllGetRegionContainingCell() Get a list (in order by data set by cell id) of the region IDs of the region containing the centroid for each cell. This is faster than calling GetRegionContainingCell for each cell in the DataSet. vtkKdTree uses this list, so don't delete it. V.GetRegionContainingPoint(float, float, float) -> int C++: int GetRegionContainingPoint(double x, double y, double z) Get the id of the region containing the specified location. V.BuildLocator() C++: void BuildLocator() override; Create the k-d tree decomposition of the cells of the data set or data sets. Cells are assigned to k-d tree spatial regions based on the location of their centroids. V.ViewOrderAllRegionsInDirection((float, float, float), vtkIntArray) -> int C++: int ViewOrderAllRegionsInDirection( const double directionOfProjection[3], vtkIntArray *orderedList) Given a direction of projection (typically obtained with vtkCamera::GetDirectionOfProjection()), this method, creates a list of the k-d tree region IDs in order from front to back with respect to that direction. The number of ordered regions is returned. Use this method to view order regions for cameras that use parallel projection. V.ViewOrderRegionsInDirection(vtkIntArray, (float, float, float), vtkIntArray) -> int C++: int ViewOrderRegionsInDirection(vtkIntArray *regionIds, const double directionOfProjection[3], vtkIntArray *orderedList) Given a direction of projection and a list of k-d tree region IDs, this method, creates a list of the k-d tree region IDs in order from front to back with respect to that direction. The number of ordered regions is returned. Use this method to view order regions for cameras that use parallel projection. V.ViewOrderAllRegionsFromPosition((float, float, float), vtkIntArray) -> int C++: int ViewOrderAllRegionsFromPosition( const double directionOfProjection[3], vtkIntArray *orderedList) Given a camera position (typically obtained with vtkCamera::GetPosition()), this method, creates a list of the k-d tree region IDs in order from front to back with respect to that direction. The number of ordered regions is returned. Use this method to view order regions for cameras that use perspective projection. V.ViewOrderRegionsFromPosition(vtkIntArray, (float, float, float), vtkIntArray) -> int C++: int ViewOrderRegionsFromPosition(vtkIntArray *regionIds, const double directionOfProjection[3], vtkIntArray *orderedList) Given a camera position and a list of k-d tree region IDs, this method, creates a list of the k-d tree region IDs in order from front to back with respect to that direction. The number of ordered regions is returned. Use this method to view order regions for cameras that use perspective projection. V.BuildLocatorFromPoints(vtkPointSet) C++: void BuildLocatorFromPoints(vtkPointSet *pointset) V.BuildLocatorFromPoints(vtkPoints) C++: void BuildLocatorFromPoints(vtkPoints *ptArray) This is a special purpose locator that builds a k-d tree to find duplicate and near-by points. It builds the tree from one or more vtkPoints objects instead of from the cells of a vtkDataSet. This build would normally be followed by BuildMapForDuplicatePoints, FindPoint, or FindClosestPoint. Since this will build a normal k-d tree, all the region intersection queries will still work, as will most other calls except those that have "Cell" in the name. * This method works most efficiently when the point arrays are * float arrays. V.BuildMapForDuplicatePoints(float) -> vtkIdTypeArray C++: vtkIdTypeArray *BuildMapForDuplicatePoints(float tolerance) This call returns a mapping from the original point IDs supplied to BuildLocatorFromPoints to a subset of those IDs that is unique within the specified tolerance. If points 2, 5, and 12 are the same, then IdMap[2] = IdMap[5] = IdMap[12] = 2 (or 5 or 12). * "original point IDs" - For point IDs we start at 0 for the first * point in the first vtkPoints object, and increase by 1 for subsequent * points and subsequent vtkPoints objects. * You must have called BuildLocatorFromPoints() before calling this. * You are responsible for deleting the returned array. V.FindPoint([float, ...]) -> int C++: vtkIdType FindPoint(double *x) V.FindPoint(float, float, float) -> int C++: vtkIdType FindPoint(double x, double y, double z) Find the Id of the point that was previously supplied to BuildLocatorFromPoints(). Returns -1 if the point was not in the original array. V.FindClosestPoint([float, ...], float) -> int C++: vtkIdType FindClosestPoint(double *x, double &dist2) V.FindClosestPoint(float, float, float, float) -> int C++: vtkIdType FindClosestPoint(double x, double y, double z, double &dist2) Find the Id of the point that was previously supplied to BuildLocatorFromPoints() which is closest to the given point. Set the square of the distance between the two points. V.FindClosestPointWithinRadius(float, (float, float, float), float) -> int C++: vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double &dist2) Given a position x and a radius r, return the id of the point closest to the point in that radius. dist2 returns the squared distance to the point. V.FindClosestPointInRegion(int, [float, ...], float) -> int C++: vtkIdType FindClosestPointInRegion(int regionId, double *x, double &dist2) V.FindClosestPointInRegion(int, float, float, float, float) -> int C++: vtkIdType FindClosestPointInRegion(int regionId, double x, double y, double z, double &dist2) Find the Id of the point in the given region which is closest to the given point. Return the ID of the point, and set the square of the distance of between the points. V.FindPointsWithinRadius(float, (float, float, float), vtkIdList) C++: void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result) Find all points within a specified radius R of position x. The result is not sorted in any specific manner. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestNPoints(int, (float, float, float), vtkIdList) C++: void FindClosestNPoints(int N, const double x[3], vtkIdList *result) Find the closest N points to a position. This returns the closest N points to a position. A faster method could be created that returned N close points to a position, but necessarily the exact N closest. The returned points are sorted from closest to farthest. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.GetPointsInRegion(int) -> vtkIdTypeArray C++: vtkIdTypeArray *GetPointsInRegion(int regionId) Get a list of the original IDs of all points in a region. You must have called BuildLocatorFromPoints before calling this. V.FreeSearchStructure() C++: void FreeSearchStructure() override; Delete the k-d tree data structure. Also delete any cell lists that were computed with CreateCellLists(). V.GenerateRepresentation(int, vtkPolyData) C++: void GenerateRepresentation(int level, vtkPolyData *pd) override; V.GenerateRepresentation([int, ...], int, vtkPolyData) C++: void GenerateRepresentation(int *regionList, int len, vtkPolyData *pd) Create a polydata representation of the boundaries of the k-d tree regions. If level equals GetLevel(), the leaf nodes are represented. V.GenerateRepresentationUsingDataBoundsOn() C++: virtual void GenerateRepresentationUsingDataBoundsOn() The polydata representation of the k-d tree shows the boundaries of the k-d tree decomposition spatial regions. The data inside the regions may not occupy the entire space. To draw just the bounds of the data in the regions, set this variable ON. V.GenerateRepresentationUsingDataBoundsOff() C++: virtual void GenerateRepresentationUsingDataBoundsOff() The polydata representation of the k-d tree shows the boundaries of the k-d tree decomposition spatial regions. The data inside the regions may not occupy the entire space. To draw just the bounds of the data in the regions, set this variable ON. V.SetGenerateRepresentationUsingDataBounds(int) C++: virtual void SetGenerateRepresentationUsingDataBounds( int _arg) The polydata representation of the k-d tree shows the boundaries of the k-d tree decomposition spatial regions. The data inside the regions may not occupy the entire space. To draw just the bounds of the data in the regions, set this variable ON. V.GetGenerateRepresentationUsingDataBounds() -> int C++: virtual int GetGenerateRepresentationUsingDataBounds() The polydata representation of the k-d tree shows the boundaries of the k-d tree decomposition spatial regions. The data inside the regions may not occupy the entire space. To draw just the bounds of the data in the regions, set this variable ON. V.NewGeometry() -> int C++: virtual int NewGeometry() Return 1 if the geometry of the input data sets has changed since the last time the k-d tree was built. V.InvalidateGeometry() C++: virtual void InvalidateGeometry() Forget about the last geometry used. The next call to NewGeometry will return 1. A new k-d tree will be built the next time BuildLocator is called. V.CopyTree(vtkKdNode) -> vtkKdNode C++: static vtkKdNode *CopyTree(vtkKdNode *kd) Create a copy of the binary tree representation of the k-d tree spatial partitioning provided. V.FindPointsInArea([float, ...], vtkIdTypeArray, bool) C++: void FindPointsInArea(double *area, vtkIdTypeArray *ids, bool clearArray=true) Fill ids with points found in area. The area is a 6-tuple containing (xmin, xmax, ymin, ymax, zmin, zmax). This method will clear the array by default. To append ids to an array, set clearArray to false. @ViVV *vtkIntArray *vtkIdList *vtkIdList@VVVV *vtkIntArray *vtkDataSet *vtkIdList *vtkIdListvtkKdTreePointLocatorvtkKdTreePointLocator - class to quickly locate points in 3-space Superclass: vtkAbstractPointLocator vtkKdTreePointLocator is a wrapper class that derives from vtkAbstractPointLocator and calls the search functions in vtkKdTree. @sa vtkKdTree vtkCommonDataModelPython.vtkKdTreePointLocatorV.SafeDownCast(vtkObjectBase) -> vtkKdTreePointLocator C++: static vtkKdTreePointLocator *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkKdTreePointLocator C++: vtkKdTreePointLocator *NewInstance() Standard type and print methods. V.FindClosestPoint((float, float, float)) -> int C++: vtkIdType FindClosestPoint(const double x[3]) override; Given a position x, return the id of the point closest to it. Alternative method requires separate x-y-z values. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestPointWithinRadius(float, (float, float, float), float) -> int C++: vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double &dist2) override; Given a position x and a radius r, return the id of the point closest to the point in that radius. dist2 returns the squared distance to the point. V.FindClosestNPoints(int, (float, float, float), vtkIdList) C++: void FindClosestNPoints(int N, const double x[3], vtkIdList *result) override; Find the closest N points to a position. This returns the closest N points to a position. A faster method could be created that returned N close points to a position, but necessarily the exact N closest. The returned points are sorted from closest to farthest. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindPointsWithinRadius(float, (float, float, float), vtkIdList) C++: void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result) override; Find all points within a specified radius R of position x. The result is not sorted in any specific manner. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FreeSearchStructure() C++: void FreeSearchStructure() override; See vtkLocator interface documentation. These methods are not thread safe. V.BuildLocator() C++: void BuildLocator() override; See vtkLocator interface documentation. These methods are not thread safe. V.GenerateRepresentation(int, vtkPolyData) C++: void GenerateRepresentation(int level, vtkPolyData *pd) override; See vtkLocator interface documentation. These methods are not thread safe. vtkLagrangeCurveSubCellCoordinatesFromIdPointIndexFromIJKTransformApproxToCellParamsGetOrder@Wi &vtkVector3ivtkLagrangeCurve Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeCurveV.SafeDownCast(vtkObjectBase) -> vtkLagrangeCurve C++: static vtkLagrangeCurve *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLagrangeCurve C++: vtkLagrangeCurve *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; Return the type of cell. V.RequiresInitialization() -> int C++: int RequiresInitialization() override; Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-nullptr, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double center[3]) override; Return center of the cell in parametric coordinates. Note that the parametric center is not always located at (0.5,0.5,0.5). The return value is the subId that the center is in (if a composite cell). If you want the center in x-y-z space, invoke the EvaluateLocation() method. V.GetParametricDistance([float, float, float]) -> float C++: double GetParametricDistance(double pcoords[3]) override; Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.) V.GetOrder() -> (int, ...) C++: const int *GetOrder() V.GetOrder(int) -> int C++: int GetOrder(int i) V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double pcoords[3], double *weights) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses. V.InterpolateDerivs([float, float, float], [float, ...]) C++: void InterpolateDerivs(double pcoords[3], double *derivs) override; V.SubCellCoordinatesFromId(vtkVector3i, int) -> bool C++: bool SubCellCoordinatesFromId(vtkVector3i &ijk, int subId) V.SubCellCoordinatesFromId(int, int) -> bool C++: bool SubCellCoordinatesFromId(int &i, int subId) V.PointIndexFromIJK(int, int, int) -> int C++: int PointIndexFromIJK(int i, int, int) V.TransformApproxToCellParams(int, [float, ...]) -> bool C++: bool TransformApproxToCellParams(int subCell, double *pcoords) ?vtkLagrangeHexahedronTransformFaceToCellParamsiiiP *ivtkLagrangeHexahedron Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeHexahedronV.SafeDownCast(vtkObjectBase) -> vtkLagrangeHexahedron C++: static vtkLagrangeHexahedron *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLagrangeHexahedron C++: vtkLagrangeHexahedron *NewInstance() V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Return the edge cell from the edgeId of the cell. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; Return the face cell from the faceId of the cell. V.SubCellCoordinatesFromId(vtkVector3i, int) -> bool C++: bool SubCellCoordinatesFromId(vtkVector3i &ijk, int subId) V.SubCellCoordinatesFromId(int, int, int, int) -> bool C++: bool SubCellCoordinatesFromId(int &i, int &j, int &k, int subId) V.PointIndexFromIJK(int, int, int, (int, ...)) -> int C++: static int PointIndexFromIJK(int i, int j, int k, const int *order) V.PointIndexFromIJK(int, int, int) -> int C++: int PointIndexFromIJK(int i, int j, int k) V.TransformFaceToCellParams(int, [float, ...]) -> bool C++: bool TransformFaceToCellParams(int bdyFace, double *pcoords) GetFixedParameterOfWedgeFaceGetFixedParametersOfWedgeEdgeGetParametricWedgeCoordinatesGetFixedParameterOfHexFaceGetVaryingParametersOfHexFaceGetEdgeIndicesBoundingHexFaceGetFixedParametersOfHexEdgeGetVaryingParameterOfHexEdgeGetParametricHexCoordinatesWedgeEvaluateDerivativeWedgeShapeDerivativesWedgeShapeFunctionsTensor3ShapeDerivativesTensor3ShapeFunctionsTensor2ShapeDerivativesTensor2ShapeFunctionsTensor1ShapeDerivativesTensor1ShapeFunctionsEvaluateShapeAndGradientEvaluateShapeFunctionsvtkLagrangeInterpolationTensor3EvaluateDerivativeWedgeEvaluateConstantsMaxDegreeVTK_21_POINT_WEDGEGetVaryingParametersOfWedgeFaceGetEdgeIndicesBoundingWedgeFaceGetPointIndicesBoundingWedgeFaceGetVaryingParameterOfWedgeEdgeGetPointIndicesBoundingWedgeEdgeGetPointIndicesBoundingHexFaceGetPointIndicesBoundingHexEdgevtkLagrangeInterpolation - no description provided. Superclass: vtkObject vtkCommonDataModelPython.vtkLagrangeInterpolationV.SafeDownCast(vtkObjectBase) -> vtkLagrangeInterpolation C++: static vtkLagrangeInterpolation *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkLagrangeInterpolation C++: vtkLagrangeInterpolation *NewInstance() V.EvaluateShapeFunctions(int, float, [float, ...]) C++: static void EvaluateShapeFunctions(int order, double pcoord, double *shape) V.EvaluateShapeAndGradient(int, float, [float, ...], [float, ...]) C++: static void EvaluateShapeAndGradient(int order, double pcoord, double *shape, double *grad) V.Tensor1ShapeFunctions((int), (float, ...), [float, ...]) -> int C++: static int Tensor1ShapeFunctions(const int order[1], const double *pcoords, double *shape) V.Tensor1ShapeDerivatives((int), (float, ...), [float, ...]) -> int C++: static int Tensor1ShapeDerivatives(const int order[1], const double *pcoords, double *derivs) V.Tensor2ShapeFunctions((int, int), (float, ...), [float, ...]) -> int C++: static int Tensor2ShapeFunctions(const int order[2], const double *pcoords, double *shape) V.Tensor2ShapeDerivatives((int, int), (float, ...), [float, ...]) -> int C++: static int Tensor2ShapeDerivatives(const int order[2], const double *pcoords, double *derivs) V.Tensor3ShapeFunctions((int, int, int), (float, ...), [float, ...]) -> int C++: static int Tensor3ShapeFunctions(const int order[3], const double *pcoords, double *shape) V.Tensor3ShapeDerivatives((int, int, int), (float, ...), [float, ...]) -> int C++: static int Tensor3ShapeDerivatives(const int order[3], const double *pcoords, double *derivs) V.Tensor3EvaluateDerivative((int, int, int, int), (float, ...), [float, ...], int, [float, ...]) C++: void Tensor3EvaluateDerivative(const int order[4], const double *pcoords, double *fieldVals, int fieldDim, double *fieldDerivs) V.WedgeShapeFunctions((int, int, int, int), (float, ...), [float, ...]) C++: static void WedgeShapeFunctions(const int order[4], const double *pcoords, double *shape) V.WedgeShapeDerivatives((int, int, int, int), (float, ...), [float, ...]) C++: static void WedgeShapeDerivatives(const int order[4], const double *pcoords, double *derivs) V.WedgeEvaluate((int, int, int, int), (float, ...), [float, ...], int, [float, ...]) C++: void WedgeEvaluate(const int order[4], const double *pcoords, double *fieldVals, int fieldDim, double *fieldAtPCoords) V.WedgeEvaluateDerivative((int, int, int, int), (float, ...), [float, ...], int, [float, ...]) C++: void WedgeEvaluateDerivative(const int order[4], const double *pcoords, double *fieldVals, int fieldDim, double *fieldDerivs) V.GetParametricHexCoordinates(int) -> vtkVector3d C++: static vtkVector3d GetParametricHexCoordinates(int vertexId) V.GetPointIndicesBoundingHexEdge(int) -> vtkVector2i C++: static vtkVector2i GetPointIndicesBoundingHexEdge(int edgeId) V.GetVaryingParameterOfHexEdge(int) -> int C++: static int GetVaryingParameterOfHexEdge(int edgeId) V.GetFixedParametersOfHexEdge(int) -> vtkVector2i C++: static vtkVector2i GetFixedParametersOfHexEdge(int edgeId) V.GetPointIndicesBoundingHexFace(int) -> (int, int, int, int) C++: static const int *GetPointIndicesBoundingHexFace(int faceId) V.GetEdgeIndicesBoundingHexFace(int) -> (int, int, int, int) C++: static const int *GetEdgeIndicesBoundingHexFace(int faceId) V.GetVaryingParametersOfHexFace(int) -> vtkVector2i C++: static vtkVector2i GetVaryingParametersOfHexFace(int faceId) V.GetFixedParameterOfHexFace(int) -> int C++: static int GetFixedParameterOfHexFace(int faceId) V.GetParametricWedgeCoordinates(int) -> vtkVector3d C++: static vtkVector3d GetParametricWedgeCoordinates( int vertexId) V.GetPointIndicesBoundingWedgeEdge(int) -> vtkVector2i C++: static vtkVector2i GetPointIndicesBoundingWedgeEdge( int edgeId) V.GetVaryingParameterOfWedgeEdge(int) -> int C++: static int GetVaryingParameterOfWedgeEdge(int edgeId) V.GetFixedParametersOfWedgeEdge(int) -> vtkVector2i C++: static vtkVector2i GetFixedParametersOfWedgeEdge(int edgeId) V.GetPointIndicesBoundingWedgeFace(int) -> (int, int, int, int) C++: static const int *GetPointIndicesBoundingWedgeFace( int faceId) V.GetEdgeIndicesBoundingWedgeFace(int) -> (int, int, int, int) C++: static const int *GetEdgeIndicesBoundingWedgeFace(int faceId) V.GetVaryingParametersOfWedgeFace(int) -> vtkVector2i C++: static vtkVector2i GetVaryingParametersOfWedgeFace( int faceId) V.GetFixedParameterOfWedgeFace(int) -> int C++: static int GetFixedParameterOfWedgeFace(int faceId) vtkCommonDataModelPython.vtkLagrangeInterpolation.ConstantsvtkLagrangeQuadrilateral@iiivtkLagrangeQuadrilateral Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeQuadrilateralV.SafeDownCast(vtkObjectBase) -> vtkLagrangeQuadrilateral C++: static vtkLagrangeQuadrilateral *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkLagrangeQuadrilateral C++: vtkLagrangeQuadrilateral *NewInstance() V.PointIndexFromIJK(int, int, int) -> int C++: int PointIndexFromIJK(int i, int j, int k) V.PointIndexFromIJK(int, int, (int, ...)) -> int C++: static int PointIndexFromIJK(int i, int j, const int *order) vtkLagrangeTetraMaximumOrderMaximumNumberOfPointsComputeOrderToIndexToBarycentricIndexVTK_LAGRANGE_TETRAHEDRON_MAX_ORDERvtkLagrangeTetra Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeTetraV.SafeDownCast(vtkObjectBase) -> vtkLagrangeTetra C++: static vtkLagrangeTetra *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLagrangeTetra C++: vtkLagrangeTetra *NewInstance() V.MaximumOrder() -> int C++: static int MaximumOrder() V.MaximumNumberOfPoints() -> int C++: static int MaximumNumberOfPoints() V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return center of the cell in parametric coordinates. Note that the parametric center is not always located at (0.5,0.5,0.5). The return value is the subId that the center is in (if a composite cell). If you want the center in x-y-z space, invoke the EvaluateLocation() method. V.GetOrder() -> int C++: vtkIdType GetOrder() V.ComputeOrder() -> int C++: vtkIdType ComputeOrder() V.ToBarycentricIndex(int, [int, ...]) C++: void ToBarycentricIndex(vtkIdType index, vtkIdType *bindex) V.ToIndex((int, ...)) -> int C++: vtkIdType ToIndex(const vtkIdType *bindex) V.BarycentricIndex(int, [int, ...], int) C++: static void BarycentricIndex(vtkIdType index, vtkIdType *bindex, vtkIdType order) V.Index((int, ...), int) -> int C++: static vtkIdType Index(const vtkIdType *bindex, vtkIdType order) d_etaComputeParametricCoordsvtkLagrangeTriangleVTK_LAGRANGE_TRIANGLE_MAX_ORDERvtkLagrangeTriangle Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeTriangleV.SafeDownCast(vtkObjectBase) -> vtkLagrangeTriangle C++: static vtkLagrangeTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLagrangeTriangle C++: vtkLagrangeTriangle *NewInstance() V.ComputeParametricCoords([float, ...], int) C++: static void ComputeParametricCoords(double *, vtkIdType) V.eta(int, int, float) -> float C++: static double eta(vtkIdType n, vtkIdType chi, double sigma) V.d_eta(int, int, float) -> float C++: static double d_eta(vtkIdType n, vtkIdType chi, double sigma) GetNumberOfApproximatingWedgesvtkLagrangeWedge Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeWedgeV.SafeDownCast(vtkObjectBase) -> vtkLagrangeWedge C++: static vtkLagrangeWedge *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLagrangeWedge C++: vtkLagrangeWedge *NewInstance() V.GetNumberOfApproximatingWedges((int, ...)) -> int C++: static int GetNumberOfApproximatingWedges(const int *order) V.GetNumberOfApproximatingWedges() -> int C++: int GetNumberOfApproximatingWedges() vtkLagrangeWedgeDistanceBetweenLineSegmentsDistanceBetweenLinesIntersection3DvtkLineDistanceToLinevtkLine - cell represents a 1D line Superclass: vtkCell vtkLine is a concrete implementation of vtkCell to represent a 1D line. vtkCommonDataModelPython.vtkLineV.SafeDownCast(vtkObjectBase) -> vtkLine C++: static vtkLine *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLine C++: vtkLine *NewInstance() V.Intersection((float, float, float), (float, float, float), ( float, float, float), (float, float, float), float, float) -> int C++: static int Intersection(const double p1[3], const double p2[3], const double x1[3], const double x2[3], double &u, double &v) Performs intersection of the projection of two finite 3D lines onto a 2D plane. An intersection is found if the projection of the two lines onto the plane perpendicular to the cross product of the two lines intersect. The parameters (u,v) are the parametric coordinates of the lines at the position of closest approach. V.Intersection3D([float, float, float], [float, float, float], [float, float, float], [float, float, float], float, float) -> int C++: static int Intersection3D(double p1[3], double p2[3], double x1[3], double x2[3], double &u, double &v) Performs intersection of two finite 3D lines. An intersection is found if the projection of the two lines onto the plane perpendicular to the cross product of the two lines intersect, and if the distance between the closest points of approach are within a relative tolerance. The parameters (u,v) are the parametric coordinates of the lines at the position of closest approach. * NOTE: "Unlike Intersection(), which determines whether the projections of * two lines onto a plane intersect, Intersection3D() determines whether the * lines themselves in 3D space intersect, within a tolerance. V.DistanceToLine((float, float, float), (float, float, float), ( float, float, float), float, [float, ...]) -> float C++: static double DistanceToLine(const double x[3], const double p1[3], const double p2[3], double &t, double *closestPoint=nullptr) V.DistanceToLine((float, float, float), (float, float, float), ( float, float, float)) -> float C++: static double DistanceToLine(const double x[3], const double p1[3], const double p2[3]) Compute the distance of a point x to a finite line (p1,p2). The method computes the parametric coordinate t and the point location on the line. Note that t is unconstrained (i.e., it may lie outside the range [0,1]) but the closest point will lie within the finite line [p1,p2], if it is defined. Also, the method returns the distance squared between x and the line (p1,p2). V.DistanceBetweenLines([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], float, float) -> float C++: static double DistanceBetweenLines(double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double &t1, double &t2) Computes the shortest distance squared between two infinite lines, each defined by a pair of points (l0,l1) and (m0,m1). Upon return, the closest points on the two line segments will be stored in closestPt1 and closestPt2. Their parametric coords (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is the shortest distance squared between the two line-segments. V.DistanceBetweenLineSegments([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], float, float) -> float C++: static double DistanceBetweenLineSegments(double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double &t1, double &t2) Computes the shortest distance squared between two finite line segments defined by their end points (l0,l1) and (m0,m1). Upon return, the closest points on the two line segments will be stored in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1) will be stored in t0 and t1. The return value is the shortest distance squared between the two line-segments. V.InterpolationFunctions([float, float, float], [float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[2]) @deprecated Replaced by vtkLine::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[2]) @deprecated Replaced by vtkLine::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[2]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[2]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) GetToleranceMinValueGetMaxLevelMinValueGetToleranceMaxValueGetMaxLevelMaxValueGetMaxLevelGetToleranceGetAutomaticGetBuildTimeSetAutomaticAutomaticOffAutomaticOnSetMaxLevelSetTolerancevtkLocator - abstract base class for objects that accelerate spatial searches Superclass: vtkObject vtkLocator is an abstract base class for spatial search objects, or locators. The principle behind locators is that they divide 3-space into small regions (or "buckets") that can be quickly found in response to queries about point location, line intersection, or object-object intersection. The purpose of this base class is to provide data members and methods shared by all locators. The GenerateRepresentation() is one such interesting method. This method works in conjunction with vtkLocatorFilter to create polygonal representations for the locator. For example, if the locator is an OBB tree (i.e., vtkOBBTree.h), then the representation is a set of one or more oriented bounding boxes, depending upon the specified level. Locators typically work as follows. One or more "entities", such as points or cells, are inserted into the locator structure. These entities are associated with one or more buckets. Then, when performing geometric operations, the operations are performed first on the buckets, and then if the operation tests positive, then on the entities in the bucket. For example, during collision tests, the locators are collided first to identify intersecting buckets. If an intersection is found, more expensive operations are then carried out on the entities in the bucket. To obtain good performance, locators are often organized in a tree structure. In such a structure, there are frequently multiple "levels" corresponding to different nodes in the tree. So the word level (in the context of the locator) can be used to specify a particular representation in the tree. For example, in an octree (which is a tree with 8 children), level 0 is the bounding box, or root octant, and level 1 consists of its eight children. @warning There is a concept of static and incremental locators. Static locators are constructed one time, and then support appropriate queries. Incremental locators may have data inserted into them over time (e.g., adding new points during the process of isocontouring). @sa vtkPointLocator vtkCellLocator vtkOBBTree vtkMergePoints vtkCommonDataModelPython.vtkLocatorV.SafeDownCast(vtkObjectBase) -> vtkLocator C++: static vtkLocator *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkLocator C++: vtkLocator *NewInstance() Standard type and print methods. V.SetDataSet(vtkDataSet) C++: virtual void SetDataSet(vtkDataSet *) Build the locator from the points/cells defining this dataset. V.GetDataSet() -> vtkDataSet C++: virtual vtkDataSet *GetDataSet() Build the locator from the points/cells defining this dataset. V.SetMaxLevel(int) C++: virtual void SetMaxLevel(int _arg) Set the maximum allowable level for the tree. If the Automatic ivar is off, this will be the target depth of the locator. Initial value is 8. V.GetMaxLevelMinValue() -> int C++: virtual int GetMaxLevelMinValue() Set the maximum allowable level for the tree. If the Automatic ivar is off, this will be the target depth of the locator. Initial value is 8. V.GetMaxLevelMaxValue() -> int C++: virtual int GetMaxLevelMaxValue() Set the maximum allowable level for the tree. If the Automatic ivar is off, this will be the target depth of the locator. Initial value is 8. V.GetMaxLevel() -> int C++: virtual int GetMaxLevel() Set the maximum allowable level for the tree. If the Automatic ivar is off, this will be the target depth of the locator. Initial value is 8. V.GetLevel() -> int C++: virtual int GetLevel() Get the level of the locator (determined automatically if Automatic is true). The value of this ivar may change each time the locator is built. Initial value is 8. V.SetAutomatic(int) C++: virtual void SetAutomatic(int _arg) Boolean controls whether locator depth/resolution of locator is computed automatically from average number of entities in bucket. If not set, there will be an explicit method to control the construction of the locator (found in the subclass). V.GetAutomatic() -> int C++: virtual int GetAutomatic() Boolean controls whether locator depth/resolution of locator is computed automatically from average number of entities in bucket. If not set, there will be an explicit method to control the construction of the locator (found in the subclass). V.AutomaticOn() C++: virtual void AutomaticOn() Boolean controls whether locator depth/resolution of locator is computed automatically from average number of entities in bucket. If not set, there will be an explicit method to control the construction of the locator (found in the subclass). V.AutomaticOff() C++: virtual void AutomaticOff() Boolean controls whether locator depth/resolution of locator is computed automatically from average number of entities in bucket. If not set, there will be an explicit method to control the construction of the locator (found in the subclass). V.SetTolerance(float) C++: virtual void SetTolerance(double _arg) Specify absolute tolerance (in world coordinates) for performing geometric operations. V.GetToleranceMinValue() -> float C++: virtual double GetToleranceMinValue() Specify absolute tolerance (in world coordinates) for performing geometric operations. V.GetToleranceMaxValue() -> float C++: virtual double GetToleranceMaxValue() Specify absolute tolerance (in world coordinates) for performing geometric operations. V.GetTolerance() -> float C++: virtual double GetTolerance() Specify absolute tolerance (in world coordinates) for performing geometric operations. V.Update() C++: virtual void Update() Cause the locator to rebuild itself if it or its input dataset has changed. V.Initialize() C++: virtual void Initialize() Initialize locator. Frees memory and resets object as appropriate. V.BuildLocator() C++: virtual void BuildLocator() Build the locator from the input dataset. V.FreeSearchStructure() C++: virtual void FreeSearchStructure() Free the memory required for the spatial data structure. V.GenerateRepresentation(int, vtkPolyData) C++: virtual void GenerateRepresentation(int level, vtkPolyData *pd) Method to build a representation at a particular level. Note that the method GetLevel() returns the maximum number of levels available for the tree. You must provide a vtkPolyData object into which to place the data. V.GetBuildTime() -> int C++: virtual vtkMTimeType GetBuildTime() Return the time of the last data structure build. 9~vtkMarchingSquaresLineCasesvtkMarchingSquaresLineCases - no description provided. vtkMarchingSquaresLineCases() vtkMarchingSquaresLineCases(const &vtkMarchingSquaresLineCases) vtkCommonDataModelPython.vtkMarchingSquaresLineCases@W vtkMarchingSquaresLineCasesvtkMarchingCubesTriangleCasesvtkMarchingCubesTriangleCases - no description provided. vtkMarchingCubesTriangleCases() vtkMarchingCubesTriangleCases(const &vtkMarchingCubesTriangleCases) vtkCommonDataModelPython.vtkMarchingCubesTriangleCases@W vtkMarchingCubesTriangleCasesComputeInterpolationWeightsvtkMeanValueCoordinatesInterpolatorvtkMeanValueCoordinatesInterpolator - compute interpolation computes for closed triangular mesh Superclass: vtkObject vtkMeanValueCoordinatesInterpolator computes interpolation weights for a closed, manifold polyhedron mesh. Once computed, the interpolation weights can be used to interpolate data anywhere interior or exterior to the mesh. This work implements two MVC algorithms. The first one is for triangular meshes which is documented in the Siggraph 2005 paper by Tao Ju, Scot Schaefer and Joe Warren from Rice University "Mean Value Coordinates for Closed Triangular Meshes". The second one is for general polyhedron mesh which is documented in the Eurographics Symposium on Geometry Processing 2006 paper by Torsten Langer, Alexander Belyaev and Hans-Peter Seidel from MPI Informatik "Spherical Barycentric Coordinates". The filter will automatically choose which algorithm to use based on whether the input mesh is triangulated or not. In VTK this class was initially created to interpolate data across polyhedral cells. In addition, the class can be used to interpolate data values from a polyhedron mesh, and to smoothly deform a mesh from an associated control mesh. @sa vtkPolyhedralCell vtkCommonDataModelPython.vtkMeanValueCoordinatesInterpolatorV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard instantiable class methods. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard instantiable class methods. V.SafeDownCast(vtkObjectBase) -> vtkMeanValueCoordinatesInterpolator C++: static vtkMeanValueCoordinatesInterpolator *SafeDownCast( vtkObjectBase *o) Standard instantiable class methods. V.NewInstance() -> vtkMeanValueCoordinatesInterpolator C++: vtkMeanValueCoordinatesInterpolator *NewInstance() Standard instantiable class methods. V.ComputeInterpolationWeights([float, float, float], vtkPoints, vtkIdList, [float, ...]) C++: static void ComputeInterpolationWeights(double x[3], vtkPoints *pts, vtkIdList *tris, double *weights) V.ComputeInterpolationWeights([float, float, float], vtkPoints, vtkCellArray, [float, ...]) C++: static void ComputeInterpolationWeights(double x[3], vtkPoints *pts, vtkCellArray *tris, double *weights) Method to generate interpolation weights for a point x[3] from a list of triangles. In this version of the method, the triangles are defined by a vtkPoints array plus a vtkIdList, where the vtkIdList is organized such that three ids in order define a triangle. Note that number of weights must equal the number of points. PVVP *d *vtkPoints *vtkIdList *dPVVP *d *vtkPoints *vtkCellArray *dvtkMergePointsvtkPointLocatorvtkMergePoints - merge exactly coincident points Superclass: vtkPointLocator vtkMergePoints is a locator object to quickly locate points in 3D. The primary difference between vtkMergePoints and its superclass vtkPointLocator is that vtkMergePoints merges precisely coincident points and is therefore much faster. @sa vtkCleanPolyData vtkCommonDataModelPython.vtkMergePointsV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard methods for type management and printing. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard methods for type management and printing. V.SafeDownCast(vtkObjectBase) -> vtkMergePoints C++: static vtkMergePoints *SafeDownCast(vtkObjectBase *o) Standard methods for type management and printing. V.NewInstance() -> vtkMergePoints C++: vtkMergePoints *NewInstance() Standard methods for type management and printing. V.IsInsertedPoint((float, float, float)) -> int C++: vtkIdType IsInsertedPoint(const double x[3]) override; V.IsInsertedPoint(float, float, float) -> int C++: vtkIdType IsInsertedPoint(double x, double y, double z) override; Determine whether point given by x[3] has been inserted into points list. Return id of previously inserted point if this is true, otherwise return -1. V.InsertUniquePoint((float, float, float), int) -> int C++: int InsertUniquePoint(const double x[3], vtkIdType &ptId) override; Determine whether point given by x[3] has been inserted into points list. Return 0 if point was already in the list, otherwise return 1. If the point was not in the list, it will be ADDED. In either case, the id of the point (newly inserted or not) is returned in the ptId argument. Note this combines the functionality of IsInsertedPoint() followed by a call to InsertNextPoint(). vtkMultiBlockDataSetGetNumberOfBlocksRemoveBlockSetNumberOfBlocksGetBlockSetBlock@V *vtkCompositeDataIteratorvtkMultiBlockDataSet - Composite dataset that organizes datasets into blocks. Superclass: vtkDataObjectTree vtkMultiBlockDataSet is a vtkCompositeDataSet that stores a hierarchy of datasets. The dataset collection consists of multiple blocks. Each block can itself be a vtkMultiBlockDataSet, thus providing for a full tree structure. Sub-blocks are usually used to distribute blocks across processors. For example, a 1 block dataset can be distributed as following: proc 0: Block 0: * ds 0 * (null) proc 1: Block 0: * (null) * ds 1 vtkCommonDataModelPython.vtkMultiBlockDataSetV.SafeDownCast(vtkObjectBase) -> vtkMultiBlockDataSet C++: static vtkMultiBlockDataSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkMultiBlockDataSet C++: vtkMultiBlockDataSet *NewInstance() V.SetNumberOfBlocks(int) C++: void SetNumberOfBlocks(unsigned int numBlocks) Set the number of blocks. This will cause allocation if the new number of blocks is greater than the current size. All new blocks are initialized to null. V.GetNumberOfBlocks() -> int C++: unsigned int GetNumberOfBlocks() Returns the number of blocks. V.GetBlock(int) -> vtkDataObject C++: vtkDataObject *GetBlock(unsigned int blockno) Returns the block at the given index. It is recommended that one uses the iterators to iterate over composite datasets rather than using this API. V.SetBlock(int, vtkDataObject) C++: void SetBlock(unsigned int blockno, vtkDataObject *block) Sets the data object as the given block. The total number of blocks will be resized to fit the requested block no. V.RemoveBlock(int) C++: void RemoveBlock(unsigned int blockno) Remove the given block from the dataset. V.HasMetaData(int) -> int C++: int HasMetaData(unsigned int blockno) V.HasMetaData(vtkCompositeDataIterator) -> int C++: int HasMetaData(vtkCompositeDataIterator *iter) override; Returns true if meta-data is available for a given block. V.GetMetaData(int) -> vtkInformation C++: vtkInformation *GetMetaData(unsigned int blockno) V.GetMetaData(vtkCompositeDataIterator) -> vtkInformation C++: vtkInformation *GetMetaData(vtkCompositeDataIterator *iter) override; Returns the meta-data for the block. If none is already present, a new vtkInformation object will be allocated. Use HasMetaData to avoid allocating vtkInformation objects. V.GetData(vtkInformation) -> vtkMultiBlockDataSet C++: static vtkMultiBlockDataSet *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkMultiBlockDataSet C++: static vtkMultiBlockDataSet *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkMultiPieceDataSetGetNumberOfPiecesSetNumberOfPiecesGetPieceGetPieceAsDataObjectSetPiecevtkMultiPieceDataSet - composite dataset to encapsulates pieces of dataset. Superclass: vtkDataObjectTree A vtkMultiPieceDataSet dataset groups multiple data pieces together. For example, say that a simulation broke a volume into 16 piece so that each piece can be processed with 1 process in parallel. We want to load this volume in a visualization cluster of 4 nodes. Each node will get 4 pieces, not necessarily forming a whole rectangular piece. In this case, it is not possible to append the 4 pieces together into a vtkImageData. In this case, these 4 pieces can be collected together using a vtkMultiPieceDataSet. Note that vtkMultiPieceDataSet is intended to be included in other composite datasets eg. vtkMultiBlockDataSet, vtkHierarchicalBoxDataSet. Hence the lack of algorithms producting vtkMultiPieceDataSet. vtkCommonDataModelPython.vtkMultiPieceDataSetV.SafeDownCast(vtkObjectBase) -> vtkMultiPieceDataSet C++: static vtkMultiPieceDataSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkMultiPieceDataSet C++: vtkMultiPieceDataSet *NewInstance() V.SetNumberOfPieces(int) C++: void SetNumberOfPieces(unsigned int numpieces) Set the number of pieces. This will cause allocation if the new number of pieces is greater than the current size. All new pieces are initialized to null. V.GetNumberOfPieces() -> int C++: unsigned int GetNumberOfPieces() Returns the number of pieces. V.GetPiece(int) -> vtkDataSet C++: vtkDataSet *GetPiece(unsigned int pieceno) Returns the piece at the given index. V.GetPieceAsDataObject(int) -> vtkDataObject C++: vtkDataObject *GetPieceAsDataObject(unsigned int pieceno) Returns the piece at the given index. V.SetPiece(int, vtkDataObject) C++: void SetPiece(unsigned int pieceno, vtkDataObject *piece) Sets the data object as the given piece. The total number of pieces will be resized to fit the requested piece no. V.HasMetaData(int) -> int C++: int HasMetaData(unsigned int piece) V.HasMetaData(vtkCompositeDataIterator) -> int C++: int HasMetaData(vtkCompositeDataIterator *iter) override; Returns true if meta-data is available for a given piece. V.GetMetaData(int) -> vtkInformation C++: vtkInformation *GetMetaData(unsigned int pieceno) V.GetMetaData(vtkCompositeDataIterator) -> vtkInformation C++: vtkInformation *GetMetaData(vtkCompositeDataIterator *iter) override; Returns the meta-data for the piece. If none is already present, a new vtkInformation object will be allocated. Use HasMetaData to avoid allocating vtkInformation objects. V.GetData(vtkInformation) -> vtkMultiPieceDataSet C++: static vtkMultiPieceDataSet *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkMultiPieceDataSet C++: static vtkMultiPieceDataSet *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkMutableDirectedGraphLazyAddEdgeRemoveVertexRemoveVerticesRemoveEdgesLazyAddVertexAddGraphEdgeAddChildSetNumberOfVertices@kk|V *vtkVariantArray@V *vtkVariantArray@W vtkVariant@kk@kkV *vtkVariantArrayvtkMutableDirectedGraph - An editable directed graph. Superclass: vtkDirectedGraph vtkMutableDirectedGraph is a directed graph which has additional methods for adding edges and vertices. AddChild() is a convenience method for constructing trees. ShallowCopy(), DeepCopy(), CheckedShallowCopy() and CheckedDeepCopy() will succeed for instances of vtkDirectedGraph, vtkMutableDirectedGraph and vtkTree. @sa vtkDirectedGraph vtkGraph vtkTree vtkCommonDataModelPython.vtkMutableDirectedGraphV.SafeDownCast(vtkObjectBase) -> vtkMutableDirectedGraph C++: static vtkMutableDirectedGraph *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkMutableDirectedGraph C++: vtkMutableDirectedGraph *NewInstance() V.SetNumberOfVertices(int) -> int C++: virtual vtkIdType SetNumberOfVertices(vtkIdType numVerts) Allocates space for the specified number of vertices in the graph's internal data structures. * This has no effect on the number of vertex coordinate tuples or * vertex attribute tuples allocated; you are responsible for * guaranteeing these match. * Also, this call is not implemented for distributed-memory graphs since * the semantics are unclear; calling this function on a graph with a * non-nullptr DistributedGraphHelper will generate an error message and * no allocation will be performed. V.AddVertex() -> int C++: vtkIdType AddVertex() V.AddVertex(vtkVariantArray) -> int C++: vtkIdType AddVertex(vtkVariantArray *propertyArr) V.AddVertex(vtkVariant) -> int C++: vtkIdType AddVertex(const vtkVariant &pedigreeId) Adds a vertex to the graph and returns the index of the new vertex. * ote In a distributed graph (i.e. a graph whose DistributedHelper * is non-null), this routine cannot be used to add a vertex * if the vertices in the graph have pedigree IDs, because this routine * will always add the vertex locally, which may conflict with the * proper location of the vertex based on the distribution of the * pedigree IDs. V.AddEdge(int, int) -> vtkEdgeType C++: vtkEdgeType AddEdge(vtkIdType u, vtkIdType v) V.AddEdge(int, int, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(vtkIdType u, vtkIdType v, vtkVariantArray *propertyArr) V.AddEdge(vtkVariant, int, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(const vtkVariant &u, vtkIdType v, vtkVariantArray *propertyArr=nullptr) V.AddEdge(int, vtkVariant, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(vtkIdType u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) V.AddEdge(vtkVariant, vtkVariant, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(const vtkVariant &u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) Adds a directed edge from u to v, where u and v are vertex indices, and returns a vtkEdgeType structure describing that edge. * vtkEdgeType contains fields for Source vertex index, * Target vertex index, and edge index Id. V.LazyAddVertex() C++: void LazyAddVertex() V.LazyAddVertex(vtkVariantArray) C++: void LazyAddVertex(vtkVariantArray *propertyArr) V.LazyAddVertex(vtkVariant) C++: void LazyAddVertex(const vtkVariant &pedigreeId) Adds a vertex to the graph. * This method is lazily evaluated for distributed graphs (i.e. graphs * whose DistributedHelper is non-null) the next time Synchronize is * called on the helper. V.LazyAddEdge(int, int, vtkVariantArray) C++: void LazyAddEdge(vtkIdType u, vtkIdType v, vtkVariantArray *propertyArr=nullptr) V.LazyAddEdge(vtkVariant, int, vtkVariantArray) C++: void LazyAddEdge(const vtkVariant &u, vtkIdType v, vtkVariantArray *propertyArr=nullptr) V.LazyAddEdge(int, vtkVariant, vtkVariantArray) C++: void LazyAddEdge(vtkIdType u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) V.LazyAddEdge(vtkVariant, vtkVariant, vtkVariantArray) C++: void LazyAddEdge(const vtkVariant &u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) Adds a directed edge from u to v, where u and v are vertex indices. * The number and order of values in the optional parameter * propertyArr must match up with the arrays in the edge data * retrieved by GetEdgeData(). * This method is lazily evaluated for distributed graphs (i.e. graphs * whose DistributedHelper is non-null) the next time Synchronize is * called on the helper. V.AddGraphEdge(int, int) -> vtkGraphEdge C++: vtkGraphEdge *AddGraphEdge(vtkIdType u, vtkIdType v) Variant of AddEdge() that returns a heavyweight vtkGraphEdge object. The graph owns the reference of the edge and will replace its contents on the next call to AddGraphEdge(). * ote This is a less efficient method for use with wrappers. * In C++ you should use the faster AddEdge(). V.AddChild(int, vtkVariantArray) -> int C++: vtkIdType AddChild(vtkIdType parent, vtkVariantArray *propertyArr) V.AddChild(int) -> int C++: vtkIdType AddChild(vtkIdType parent) Convenience method for creating trees. Returns the newly created vertex id. Shortcut forvtkIdType v = g->AddVertex(); g->AddEdge(parent, v); If non-null, propertyArr provides edge properties for the newly-created edge. The values in propertyArr must match up with the arrays in the edge data returned by GetEdgeData(). V.RemoveVertex(int) C++: void RemoveVertex(vtkIdType v) Removes the vertex from the graph along with any connected edges. Note: This invalidates the last vertex index, which is reassigned to v. V.RemoveEdge(int) C++: void RemoveEdge(vtkIdType e) Removes the edge from the graph. Note: This invalidates the last edge index, which is reassigned to e. V.RemoveVertices(vtkIdTypeArray) C++: void RemoveVertices(vtkIdTypeArray *arr) Removes a collection of vertices from the graph along with any connected edges. V.RemoveEdges(vtkIdTypeArray) C++: void RemoveEdges(vtkIdTypeArray *arr) Removes a collection of edges from the graph. @Wk|V vtkVariant *vtkVariantArray@kW|V vtkVariant *vtkVariantArray@WW|V vtkVariant vtkVariant *vtkVariantArrayvtkMutableUndirectedGraphvtkMutableUndirectedGraph - An editable undirected graph. Superclass: vtkUndirectedGraph vtkMutableUndirectedGraph is an undirected graph with additional functions for adding vertices and edges. ShallowCopy(), DeepCopy(), CheckedShallowCopy(), and CheckedDeepCopy() will succeed when the argument is a vtkUndirectedGraph or vtkMutableUndirectedGraph. @sa vtkUndirectedGraph vtkGraph vtkCommonDataModelPython.vtkMutableUndirectedGraphV.SafeDownCast(vtkObjectBase) -> vtkMutableUndirectedGraph C++: static vtkMutableUndirectedGraph *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkMutableUndirectedGraph C++: vtkMutableUndirectedGraph *NewInstance() V.SetNumberOfVertices(int) -> int C++: virtual vtkIdType SetNumberOfVertices(vtkIdType numVerts) Allocates space for the specified number of vertices in the graph's internal data structures. The previous number of vertices is returned on success and -1 is returned on failure. * This has no effect on the number of vertex coordinate tuples or * vertex attribute tuples allocated; you are responsible for * guaranteeing these match. * Also, this call is not implemented for distributed-memory graphs since * the semantics are unclear; calling this function on a graph with a * non-nullptr DistributedGraphHelper will generate an error message, * no allocation will be performed, and a value of -1 will be returned. V.AddEdge(int, int) -> vtkEdgeType C++: vtkEdgeType AddEdge(vtkIdType u, vtkIdType v) V.AddEdge(int, int, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(vtkIdType u, vtkIdType v, vtkVariantArray *propertyArr) V.AddEdge(vtkVariant, int, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(const vtkVariant &u, vtkIdType v, vtkVariantArray *propertyArr=nullptr) V.AddEdge(int, vtkVariant, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(vtkIdType u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) V.AddEdge(vtkVariant, vtkVariant, vtkVariantArray) -> vtkEdgeType C++: vtkEdgeType AddEdge(const vtkVariant &u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) Adds an undirected edge from u to v, where u and v are vertex indices, and returns a vtkEdgeType structure describing that edge. * vtkEdgeType contains fields for Source vertex index, * Target vertex index, and edge index Id. V.LazyAddEdge(int, int) C++: void LazyAddEdge(vtkIdType u, vtkIdType v) V.LazyAddEdge(int, int, vtkVariantArray) C++: void LazyAddEdge(vtkIdType u, vtkIdType v, vtkVariantArray *propertyArr) V.LazyAddEdge(vtkVariant, int, vtkVariantArray) C++: void LazyAddEdge(const vtkVariant &u, vtkIdType v, vtkVariantArray *propertyArr=nullptr) V.LazyAddEdge(int, vtkVariant, vtkVariantArray) C++: void LazyAddEdge(vtkIdType u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) V.LazyAddEdge(vtkVariant, vtkVariant, vtkVariantArray) C++: void LazyAddEdge(const vtkVariant &u, const vtkVariant &v, vtkVariantArray *propertyArr=nullptr) Adds an undirected edge from u to v, where u and v are vertex indices. * This method is lazily evaluated for distributed graphs (i.e. graphs * whose DistributedHelper is non-null) the next time Synchronize is * called on the helper. vtkNonLinearCell - abstract superclass for non-linear cells Superclass: vtkCell vtkNonLinearCell is an abstract superclass for non-linear cell types. Cells that are a direct subclass of vtkCell or vtkCell3D are linear; cells that are a subclass of vtkNonLinearCell have non-linear interpolation functions. Non-linear cells require special treatment when tessellating or converting to graphics primitives. Note that the linearity of the cell is a function of whether the cell needs tessellation, which does not strictly correlate with interpolation order (e.g., vtkHexahedron has non-linear interpolation functions (a product of three linear functions in r-s-t) even thought vtkHexahedron is considered linear.) vtkCommonDataModelPython.vtkNonLinearCellV.SafeDownCast(vtkObjectBase) -> vtkNonLinearCell C++: static vtkNonLinearCell *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkNonLinearCell C++: vtkNonLinearCell *NewInstance() V.IsLinear() -> int C++: int IsLinear() override; Non-linear cells require special treatment (tessellation) when converting to graphics primitives (during mapping). The vtkCell API IsLinear() is modified to indicate this requirement. vtkNonMergingPointLocatorvtkNonMergingPointLocator - direct / check-free point insertion. Superclass: vtkPointLocator As a special sub-class of vtkPointLocator, vtkNonMergingPointLocator is intended for direct / check-free insertion of points into a vtkPoints object. In other words, any given point is always directly inserted. The name emphasizes the difference between this class and its sibling class vtkMergePoints in that the latter class performs check-based zero tolerance point insertion (or to 'merge' exactly duplicate / coincident points) by exploiting the uniform bin mechanism employed by the parent class vtkPointLocator. vtkPointLocator allows for generic (zero and non- zero) tolerance point insertion as well as point location. @sa vtkIncrementalPointLocator vtkPointLocator vtkMergePoints vtkCommonDataModelPython.vtkNonMergingPointLocatorV.SafeDownCast(vtkObjectBase) -> vtkNonMergingPointLocator C++: static vtkNonMergingPointLocator *SafeDownCast( vtkObjectBase *o) Standard methods for type management and printing. V.NewInstance() -> vtkNonMergingPointLocator C++: vtkNonMergingPointLocator *NewInstance() Standard methods for type management and printing. V.IsInsertedPoint((float, float, float)) -> int C++: vtkIdType IsInsertedPoint(const double[3]) override; V.IsInsertedPoint(float, float, float) -> int C++: vtkIdType IsInsertedPoint(double, double, double) override; Determine whether a given point x has been inserted into the points list. Return the id of the already inserted point if it is true, or -1 else. Note this function always returns -1 since any point is always inserted. V.InsertUniquePoint((float, float, float), int) -> int C++: int InsertUniquePoint(const double x[3], vtkIdType &ptId) override; Determine whether a given point x has been inserted into the points list. Return 0 if a duplicate has been inserted in the list, or 1 else. Note this function always returns 1 since any point is always inserted. The index of the point is returned via ptId. vtkOctreePointLocatorGetCreateCubicOctantsGetMaximumPointsPerRegionGetNumberOfLeafNodesSetCreateCubicOctantsSetMaximumPointsPerRegionvtkOctreePointLocator - an octree spatial decomposition of a set of points Superclass: vtkAbstractPointLocator Given a vtkDataSet, create an octree that is locally refined such that all leaf octants contain less than a certain amount of points. Note that there is no size constraint that a leaf octant in relation to any of its neighbors. This class can also generate a PolyData representation of the boundaries of the spatial regions in the decomposition. @sa vtkLocator vtkPointLocator vtkOctreePointLocatorNode vtkCommonDataModelPython.vtkOctreePointLocatorV.SafeDownCast(vtkObjectBase) -> vtkOctreePointLocator C++: static vtkOctreePointLocator *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkOctreePointLocator C++: vtkOctreePointLocator *NewInstance() Standard type and print methods. V.SetMaximumPointsPerRegion(int) C++: virtual void SetMaximumPointsPerRegion(int _arg) Maximum number of points per spatial region. Default is 100. V.GetMaximumPointsPerRegion() -> int C++: virtual int GetMaximumPointsPerRegion() Maximum number of points per spatial region. Default is 100. V.SetCreateCubicOctants(int) C++: virtual void SetCreateCubicOctants(int _arg) Get/Set macro for CreateCubicOctants. V.GetCreateCubicOctants() -> int C++: virtual int GetCreateCubicOctants() Get/Set macro for CreateCubicOctants. V.GetFudgeFactor() -> float C++: virtual double GetFudgeFactor() Some algorithms on octrees require a value that is a very small distance relative to the diameter of the entire space divided by the octree. This factor is the maximum axis-aligned width of the space multiplied by 10e-6. V.SetFudgeFactor(float) C++: virtual void SetFudgeFactor(double _arg) Some algorithms on octrees require a value that is a very small distance relative to the diameter of the entire space divided by the octree. This factor is the maximum axis-aligned width of the space multiplied by 10e-6. V.GetBounds() -> (float, ...) C++: double *GetBounds() override; V.GetBounds([float, ...]) C++: void GetBounds(double *bounds) override; Get the spatial bounds of the entire octree space. Sets bounds array to xmin, xmax, ymin, ymax, zmin, zmax. V.GetNumberOfLeafNodes() -> int C++: virtual int GetNumberOfLeafNodes() The number of leaf nodes of the tree, the spatial regions V.GetRegionBounds(int, [float, float, float, float, float, float]) C++: void GetRegionBounds(int regionID, double bounds[6]) Get the spatial bounds of octree region V.GetRegionDataBounds(int, [float, float, float, float, float, float]) C++: void GetRegionDataBounds(int leafNodeID, double bounds[6]) Get the bounds of the data within the leaf node V.GetRegionContainingPoint(float, float, float) -> int C++: int GetRegionContainingPoint(double x, double y, double z) Get the id of the leaf region containing the specified location. V.BuildLocator() C++: void BuildLocator() override; Create the octree decomposition of the cells of the data set or data sets. Cells are assigned to octree spatial regions based on the location of their centroids. V.FindClosestPoint((float, float, float)) -> int C++: vtkIdType FindClosestPoint(const double x[3]) override; V.FindClosestPoint(float, float, float, float) -> int C++: vtkIdType FindClosestPoint(double x, double y, double z, double &dist2) Return the Id of the point that is closest to the given point. Set the square of the distance between the two points. V.FindClosestPointInRegion(int, [float, ...], float) -> int C++: vtkIdType FindClosestPointInRegion(int regionId, double *x, double &dist2) V.FindClosestPointInRegion(int, float, float, float, float) -> int C++: vtkIdType FindClosestPointInRegion(int regionId, double x, double y, double z, double &dist2) Find the Id of the point in the given leaf region which is closest to the given point. Return the ID of the point, and set the square of the distance of between the points. V.FindPointsWithinRadius(float, (float, float, float), vtkIdList) C++: void FindPointsWithinRadius(double radius, const double x[3], vtkIdList *result) override; Find all points within a specified radius of position x. The result is not sorted in any specific manner. V.FindClosestNPoints(int, (float, float, float), vtkIdList) C++: void FindClosestNPoints(int N, const double x[3], vtkIdList *result) override; Find the closest N points to a position. This returns the closest N points to a position. A faster method could be created that returned N close points to a position, but not necessarily the exact N closest. The returned points are sorted from closest to farthest. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.GetPointsInRegion(int) -> vtkIdTypeArray C++: vtkIdTypeArray *GetPointsInRegion(int leafNodeId) Get a list of the original IDs of all points in a leaf node. V.FreeSearchStructure() C++: void FreeSearchStructure() override; Delete the octree data structure. V.GenerateRepresentation(int, vtkPolyData) C++: void GenerateRepresentation(int level, vtkPolyData *pd) override; Create a polydata representation of the boundaries of the octree regions. vtkOctreePointLocatorNodeCreateChildNodesGetSubOctantIndexComputeOctreeNodeInformationvtkOctreePointLocatorNode - Octree node that has 8 children each of equal size Superclass: vtkObject This class represents a single spatial region in a 3D axis octant partitioning. It is intended to work efficiently with the vtkOctreePointLocator and is not meant for general use. It is assumed the region bounds some set of points. The ordering of the children is (-x,-y,-z),(+x,-y,-z),(-x,+y,-z),(+x,+y,-z),(-x,-y,+z),(+x,-y,+z), (-x,+y,+z),(+x,+y,+z). The portion of the domain assigned to an octant is Min < x <= Max. @sa vtkOctreePointLocator vtkCommonDataModelPython.vtkOctreePointLocatorNodeV.SafeDownCast(vtkObjectBase) -> vtkOctreePointLocatorNode C++: static vtkOctreePointLocatorNode *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkOctreePointLocatorNode C++: vtkOctreePointLocatorNode *NewInstance() V.SetNumberOfPoints(int) C++: void SetNumberOfPoints(int numberOfPoints) Set/Get the number of points contained in this region. V.SetBounds(float, float, float, float, float, float) C++: void SetBounds(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax) V.SetBounds((float, float, float, float, float, float)) C++: void SetBounds(const double b[6]) Set/Get the bounds of the spatial region represented by this node. Caller allocates storage for 6-vector in GetBounds. V.SetDataBounds(float, float, float, float, float, float) C++: void SetDataBounds(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax) Set/Get the bounds of the points contained in this spatial region. This may be smaller than the bounds of the region itself. Caller allocates storage for 6-vector in GetDataBounds. V.GetMinBounds() -> (float, ...) C++: virtual double *GetMinBounds() Get a pointer to the 3 bound minima (xmin, ymin and zmin) or the 3 bound maxima (xmax, ymax, zmax). Don't free this pointer. V.GetMaxBounds() -> (float, ...) C++: virtual double *GetMaxBounds() Get a pointer to the 3 bound minima (xmin, ymin and zmin) or the 3 bound maxima (xmax, ymax, zmax). Don't free this pointer. V.SetMinBounds([float, float, float]) C++: void SetMinBounds(double minBounds[3]) Set the xmin, ymin and zmin value of the bounds of this region V.SetMaxBounds([float, float, float]) C++: void SetMaxBounds(double maxBounds[3]) Set the xmax, ymax and zmax value of the bounds of this region V.GetMinDataBounds() -> (float, ...) C++: virtual double *GetMinDataBounds() Get a pointer to the 3 data bound minima (xmin, ymin and zmin) or the 3 data bound maxima (xmax, ymax, zmax). Don't free this pointer. V.GetMaxDataBounds() -> (float, ...) C++: virtual double *GetMaxDataBounds() Get a pointer to the 3 data bound minima (xmin, ymin and zmin) or the 3 data bound maxima (xmax, ymax, zmax). Don't free this pointer. V.SetMinDataBounds([float, float, float]) C++: void SetMinDataBounds(double minDataBounds[3]) Set the xmin, ymin and zmin value of the bounds of this data within this region. V.SetMaxDataBounds([float, float, float]) C++: void SetMaxDataBounds(double maxDataBounds[3]) Set the xmax, ymax and zmax value of the bounds of this data within this region. V.GetID() -> int C++: virtual int GetID() Get the ID associated with the region described by this node. If this is not a leaf node, this value should be -1. V.GetMinID() -> int C++: virtual int GetMinID() If this node is not a leaf node, there are leaf nodes below it whose regions represent a partitioning of this region. The IDs of these leaf nodes form a contigous set. Get the first of the first point's ID that is contained in this node. V.CreateChildNodes() C++: void CreateChildNodes() Add the 8 children. V.DeleteChildNodes() C++: void DeleteChildNodes() Delete the 8 children. V.GetChild(int) -> vtkOctreePointLocatorNode C++: vtkOctreePointLocatorNode *GetChild(int i) Get a pointer to the ith child of this node. V.GetDistance2ToBoundary(float, float, float, vtkOctreePointLocatorNode, int) -> float C++: double GetDistance2ToBoundary(double x, double y, double z, vtkOctreePointLocatorNode *top, int useDataBounds) V.GetDistance2ToBoundary(float, float, float, [float, ...], vtkOctreePointLocatorNode, int) -> float C++: double GetDistance2ToBoundary(double x, double y, double z, double *boundaryPt, vtkOctreePointLocatorNode *top, int useDataBounds) Calculate the distance squared from any point to the boundary of this region. Use the boundary of the points within the region if useDataBounds is non-zero. V.GetDistance2ToInnerBoundary(float, float, float, vtkOctreePointLocatorNode) -> float C++: double GetDistance2ToInnerBoundary(double x, double y, double z, vtkOctreePointLocatorNode *top) Calculate the distance from the specified point (which is required to be inside this spatial region) to an interior boundary. An interior boundary is one that is not also an boundary of the entire space partitioned by the tree of vtkOctreePointLocatorNode's. V.GetSubOctantIndex([float, ...], int) -> int C++: int GetSubOctantIndex(double *point, int CheckContainment) Return the id of the suboctant that a given point is in. If CheckContainment is non-zero then it checks whether the point is in the actual bounding box of the suboctant, otherwise it only checks which octant the point is in that is created from the axis-aligned partitioning of the domain at this octant's center. V.ComputeOctreeNodeInformation(vtkOctreePointLocatorNode, int, int, [float, ...]) C++: void ComputeOctreeNodeInformation( vtkOctreePointLocatorNode *Parent, int &NextLeafId, int &NextMinId, float *coordinates) Recursive function to compute ID, MinVal, MaxVal, and MinID. Parent is used for MinVal and MaxVal in the case that no points are in the leaf node. vtkOrderedTriangulatorInitTetraTraversalGetUseTwoSortIdsGetPreSortedGetUseTemplatesUpdatePointTypeGetPointPositionGetPointLocationGetTetrasAddTetrasSetPreSortedSetUseTwoSortIdsTemplateTriangulateSetUseTemplatesUseTemplatesOffUseTwoSortIdsOnUseTemplatesOnPreSortedOnPreSortedOffUseTwoSortIdsOffGetNextTetravtkTetraAddTrianglesInitTriangulation@iV *vtkUnstructuredGrid@iV *vtkCellArrayvtkOrderedTriangulator - helper class to generate triangulations Superclass: vtkObject This class is used to generate unique triangulations of points. The uniqueness of the triangulation is controlled by the id of the inserted points in combination with a Delaunay criterion. The class is designed to be as fast as possible (since the algorithm can be slow) and uses block memory allocations to support rapid triangulation generation. Also, the assumption behind the class is that a maximum of hundreds of points are to be triangulated. If you desire more robust triangulation methods use vtkPolygon::Triangulate(), vtkDelaunay2D, or vtkDelaunay3D. @par Background: This work is documented in the technical paper: W.J. Schroeder, B. Geveci, M. Malaterre. Compatible Triangulations of Spatial Decompositions. In Proceedings of Visualization 2004, IEEE Press October 2004. @par Background: Delaunay triangulations are unique assuming a random distribution of input points. The 3D Delaunay criterion is as follows: the circumsphere of each tetrahedron contains no other points of the triangulation except for the four points defining the tetrahedron. In application this property is hard to satisfy because objects like cubes are defined by eight points all sharing the same circumsphere (center and radius); hence the Delaunay triangulation is not unique. These so-called degenerate situations are typically resolved by arbitrary selecting a triangulation. This code does something different: it resolves degenerate triangulations by modifying the "InCircumsphere" method to use a slightly smaller radius. Hence, degenerate points are always considered "out" of the circumsphere. This, in combination with an ordering (based on id) of the input points, guarantees a unique triangulation. @par Background: There is another related characteristic of Delaunay triangulations. Given a N-dimensional Delaunay triangulation, points laying on a (N-1) dimensional plane also form a (N-1) Delaunay triangulation. This means for example, that if a 3D cell is defined by a set of (2D) planar faces, then the face triangulations are Delaunay. Combining this with the method to generate unique triangulations described previously, the triangulations on the face are guaranteed unique. This fact can be used to triangulate 3D objects in such a way to guarantee compatible face triangulations. This is a very useful fact for parallel processing, or performing operations like clipping that require compatible triangulations across 3D cell faces. (See vtkClipVolume for an example.) @par Background: A special feature of this class is that it can generate triangulation templates on the fly. If template triangulation is enabled, then the ordered triangulator will first triangulate the cell using the slower ordered Delaunay approach, and then store the result as a template. Later, if the same cell type and cell configuration is encountered, then the template is reused which greatly speeds the triangulation. @warning Duplicate vertices will be ignored, i.e., if two points have the same coordinates the second one is discarded. The implications are that the user of this class must prevent duplicate points. Because the precision of this algorithm is double, it's also a good idea to merge points that are within some epsilon of one another. @warning The triangulation is performed using the parametric coordinates of the inserted points. Therefore the bounds (see InitTriangulation()) should represent the range of the parametric coordinates of the inserted points. @sa vtkDelaunay2D vtkDelaunay3D vtkPolygon vtkCommonDataModelPython.vtkOrderedTriangulatorV.SafeDownCast(vtkObjectBase) -> vtkOrderedTriangulator C++: static vtkOrderedTriangulator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkOrderedTriangulator C++: vtkOrderedTriangulator *NewInstance() V.InitTriangulation(float, float, float, float, float, float, int) C++: void InitTriangulation(double xmin, double xmax, double ymin, double ymax, double zmin, double zmax, int numPts) V.InitTriangulation([float, float, float, float, float, float], int) C++: void InitTriangulation(double bounds[6], int numPts) Initialize the triangulation process. Provide a bounding box and the maximum number of points to be inserted. Note that since the triangulation is performed using parametric coordinates (see InsertPoint()) the bounds should be represent the range of the parametric coordinates inserted. \post no_point_inserted: GetNumberOfPoints()==0 V.InsertPoint(int, [float, float, float], [float, float, float], int) -> int C++: vtkIdType InsertPoint(vtkIdType id, double x[3], double p[3], int type) V.InsertPoint(int, int, [float, float, float], [float, float, float], int) -> int C++: vtkIdType InsertPoint(vtkIdType id, vtkIdType sortid, double x[3], double p[3], int type) V.InsertPoint(int, int, int, [float, float, float], [float, float, float], int) -> int C++: vtkIdType InsertPoint(vtkIdType id, vtkIdType sortid, vtkIdType sortid2, double x[3], double p[3], int type) For each point to be inserted, provide an id, a position x, parametric coordinate p, and whether the point is inside (type=0), outside (type=1), or on the boundary (type=2). You must call InitTriangulation() prior to invoking this method. Make sure that the number of points inserted does not exceed the numPts specified in InitTriangulation(). Also note that the "id" can be any integer and can be greater than numPts. It is used to create tetras (in AddTetras()) with the appropriate connectivity ids. The method returns an internal id that can be used prior to the Triangulate() method to update the type of the point with UpdatePointType(). (Note: the algorithm triangulated with the parametric coordinate p[3] and creates tetras with the global coordinate x[3]. The parametric coordinates and global coordinates may be the same.) V.Triangulate() C++: void Triangulate() Perform the triangulation. (Complete all calls to InsertPoint() prior to invoking this method.) A special version is available when templates should be used. V.TemplateTriangulate(int, int, int) C++: void TemplateTriangulate(int cellType, int numPts, int numEdges) Perform the triangulation. (Complete all calls to InsertPoint() prior to invoking this method.) A special version is available when templates should be used. V.UpdatePointType(int, int) C++: void UpdatePointType(vtkIdType internalId, int type) Update the point type. This is useful when the merging of nearly coincident points is performed. The id is the internal id returned from InsertPoint(). The method should be invoked prior to the Triangulate method. The type is specified as inside (type=0), outside (type=1), or on the boundary (type=2). \pre valid_range: internalId>=0 && internalIdGetNumberOfPoints() V.GetPointPosition(int) -> (float, ...) C++: double *GetPointPosition(vtkIdType internalId) Return the parametric coordinates of point `internalId'. It assumes that the point has already been inserted. The method should be invoked prior to the Triangulate method. \pre valid_range: internalId>=0 && internalIdGetNumberOfPoints() V.GetPointLocation(int) -> (float, ...) C++: double *GetPointLocation(vtkIdType internalId) Return the global coordinates of point `internalId'. It assumes that the point has already been inserted. The method should be invoked prior to the Triangulate method. \pre valid_range: internalId>=0 && internalIdGetNumberOfPoints() V.GetPointId(int) -> int C++: vtkIdType GetPointId(vtkIdType internalId) Return the Id of point `internalId'. This id is the one passed in argument of InsertPoint. It assumes that the point has already been inserted. The method should be invoked prior to the Triangulate method. \pre valid_range: internalId>=0 && internalIdGetNumberOfPoints() V.GetNumberOfPoints() -> int C++: virtual int GetNumberOfPoints() Return the number of inserted points. V.SetUseTemplates(int) C++: virtual void SetUseTemplates(int _arg) If this flag is set, then the ordered triangulator will create and use templates for the triangulation. To use templates, the TemplateTriangulate() method should be called when appropriate. (Note: the TemplateTriangulate() method works for complete (interior) cells without extra points due to intersection, etc.) V.GetUseTemplates() -> int C++: virtual int GetUseTemplates() If this flag is set, then the ordered triangulator will create and use templates for the triangulation. To use templates, the TemplateTriangulate() method should be called when appropriate. (Note: the TemplateTriangulate() method works for complete (interior) cells without extra points due to intersection, etc.) V.UseTemplatesOn() C++: virtual void UseTemplatesOn() If this flag is set, then the ordered triangulator will create and use templates for the triangulation. To use templates, the TemplateTriangulate() method should be called when appropriate. (Note: the TemplateTriangulate() method works for complete (interior) cells without extra points due to intersection, etc.) V.UseTemplatesOff() C++: virtual void UseTemplatesOff() If this flag is set, then the ordered triangulator will create and use templates for the triangulation. To use templates, the TemplateTriangulate() method should be called when appropriate. (Note: the TemplateTriangulate() method works for complete (interior) cells without extra points due to intersection, etc.) V.SetPreSorted(int) C++: virtual void SetPreSorted(int _arg) Boolean indicates whether the points have been pre-sorted. If pre-sorted is enabled, the points are not sorted on point id. By default, presorted is off. (The point id is defined in InsertPoint().) V.GetPreSorted() -> int C++: virtual int GetPreSorted() Boolean indicates whether the points have been pre-sorted. If pre-sorted is enabled, the points are not sorted on point id. By default, presorted is off. (The point id is defined in InsertPoint().) V.PreSortedOn() C++: virtual void PreSortedOn() Boolean indicates whether the points have been pre-sorted. If pre-sorted is enabled, the points are not sorted on point id. By default, presorted is off. (The point id is defined in InsertPoint().) V.PreSortedOff() C++: virtual void PreSortedOff() Boolean indicates whether the points have been pre-sorted. If pre-sorted is enabled, the points are not sorted on point id. By default, presorted is off. (The point id is defined in InsertPoint().) V.SetUseTwoSortIds(int) C++: virtual void SetUseTwoSortIds(int _arg) Tells the triangulator that a second sort id is provided for each point and should also be considered when sorting. V.GetUseTwoSortIds() -> int C++: virtual int GetUseTwoSortIds() Tells the triangulator that a second sort id is provided for each point and should also be considered when sorting. V.UseTwoSortIdsOn() C++: virtual void UseTwoSortIdsOn() Tells the triangulator that a second sort id is provided for each point and should also be considered when sorting. V.UseTwoSortIdsOff() C++: virtual void UseTwoSortIdsOff() Tells the triangulator that a second sort id is provided for each point and should also be considered when sorting. V.GetTetras(int, vtkUnstructuredGrid) -> int C++: vtkIdType GetTetras(int classification, vtkUnstructuredGrid *ugrid) Initialize and add the tetras and points from the triangulation to the unstructured grid provided. New points are created and the mesh is allocated. (This method differs from AddTetras() in that it inserts points and cells; AddTetras only adds the tetra cells.) The tetrahdera added are of the type specified (0=inside,1=outside,2=all). Inside tetrahedron are those whose points are classified "inside" or on the "boundary." Outside tetrahedron have at least one point classified "outside." The method returns the number of tetrahedrahedron of the type requested. V.AddTetras(int, vtkUnstructuredGrid) -> int C++: vtkIdType AddTetras(int classification, vtkUnstructuredGrid *ugrid) V.AddTetras(int, vtkCellArray) -> int C++: vtkIdType AddTetras(int classification, vtkCellArray *connectivity) V.AddTetras(int, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) -> int C++: vtkIdType AddTetras(int classification, vtkIncrementalPointLocator *locator, vtkCellArray *outConnectivity, vtkPointData *inPD, vtkPointData *outPD, vtkCellData *inCD, vtkIdType cellId, vtkCellData *outCD) V.AddTetras(int, vtkIdList, vtkPoints) -> int C++: vtkIdType AddTetras(int classification, vtkIdList *ptIds, vtkPoints *pts) Add the tetras to the unstructured grid provided. The unstructured grid is assumed to have been initialized (with Allocate()) and points set (with SetPoints()). The tetrahdera added are of the type specified (0=inside,1=outside,2=all). Inside tetrahedron are those whose points are classified "inside" or on the "boundary." Outside tetrahedron have at least one point classified "outside." The method returns the number of tetrahedrahedron of the type requested. V.AddTriangles(vtkCellArray) -> int C++: vtkIdType AddTriangles(vtkCellArray *connectivity) V.AddTriangles(int, vtkCellArray) -> int C++: vtkIdType AddTriangles(vtkIdType id, vtkCellArray *connectivity) Add the triangle faces classified (2=boundary) to the connectivity list provided. The method returns the number of triangles. V.InitTetraTraversal() C++: void InitTetraTraversal() Methods to get one tetra at a time. Start with InitTetraTraversal() and then invoke GetNextTetra() until the method returns 0. V.GetNextTetra(int, vtkTetra, vtkDataArray, vtkDoubleArray) -> int C++: int GetNextTetra(int classification, vtkTetra *tet, vtkDataArray *cellScalars, vtkDoubleArray *tetScalars) Methods to get one tetra at a time. Start with InitTetraTraversal() and then invoke GetNextTetra() until the method returns 0. cellScalars are point-centered scalars on the original cell. tetScalars are point-centered scalars on the tetra: the values will be copied from cellScalars. \pre tet_exists: tet!=0 \pre cellScalars_exists: cellScalars!=0 \pre tetScalars_exists: tetScalars!=0 \pre tetScalars_valid_size: tetScalars->GetNumberOfTuples()==4 vtkOutEdgeIterator - Iterates through all outgoing edges from a vertex. Superclass: vtkObject vtkOutEdgeIterator iterates through all edges whose source is a particular vertex. Instantiate this class directly and call Initialize() to traverse the vertex of a graph. Alternately, use GetInEdges() on the graph to initialize the iterator. it->Next() returns a vtkOutEdgeType structure, which contains Id, the edge's id, and Target, the edge's target vertex. @sa vtkGraph vtkInEdgeIterator vtkCommonDataModelPython.vtkOutEdgeIteratorV.SafeDownCast(vtkObjectBase) -> vtkOutEdgeIterator C++: static vtkOutEdgeIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkOutEdgeIterator C++: vtkOutEdgeIterator *NewInstance() V.Next() -> vtkOutEdgeType C++: vtkOutEdgeType Next() Returns the next edge in the graph. vtkPathGetCodesSetCodesControlPointTypeMOVE_TOLINE_TOCONIC_CURVECUBIC_CURVEvtkPath - concrete dataset representing a path defined by Bezier curves. Superclass: vtkPointSet vtkPath provides a container for paths composed of line segments, 2nd-order (quadratic) and 3rd-order (cubic) Bezier curves. vtkCommonDataModelPython.vtkPathV.SafeDownCast(vtkObjectBase) -> vtkPath C++: static vtkPath *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPath C++: vtkPath *NewInstance() V.InsertNextPoint([float, float, float], int) C++: void InsertNextPoint(double pts[3], int code) V.InsertNextPoint(float, float, float, int) C++: void InsertNextPoint(double x, double y, double z, int code) Insert the next control point in the path. V.SetCodes(vtkIntArray) C++: void SetCodes(vtkIntArray *) Set/Get the array of control point codes: V.GetCodes() -> vtkIntArray C++: vtkIntArray *GetCodes() Set/Get the array of control point codes: V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() override; vtkPath doesn't use cells. These methods return trivial values. V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType, vtkGenericCell *) override; V.GetCell(int, int, int) -> vtkCell C++: virtual vtkCell *GetCell(int i, int j, int k) Get cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS NOT THREAD SAFE. V.GetCellType(int) -> int C++: int GetCellType(vtkIdType) override; Get type of cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellPoints(int, vtkIdList) C++: void GetCellPoints(vtkIdType, vtkIdList *ptIds) override; vtkPath doesn't use cells, this method just clears ptIds. V.GetPointCells(int, vtkIdList) C++: void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) override; vtkPath doesn't use cells, this method just clears cellIds. V.GetMaxCellSize() -> int C++: int GetMaxCellSize() override; Return the maximum cell size in this poly data. V.Allocate(int, int) C++: void Allocate(vtkIdType size=1000, int extSize=1000) Method allocates initial storage for points. Use this method before the method vtkPath::InsertNextPoint(). V.Reset() C++: void Reset() Begin inserting data all over again. Memory is not freed but otherwise objects are returned to their initial state. V.GetData(vtkInformation) -> vtkPath C++: static vtkPath *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkPath C++: static vtkPath *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkCommonDataModelPython.vtkPath.ControlPointTypevtkPentagonalPrismvtkPentagonalPrism - a 3D cell that represents a convex prism with pentagonal base Superclass: vtkCell3D vtkPentagonalPrism is a concrete implementation of vtkCell to represent a linear convex 3D prism with pentagonal base. Such prism is defined by the ten points (0-9), where (0,1,2,3,4) is the base of the prism which, using the right hand rule, forms a pentagon whose normal points is in the direction of the opposite face (5,6,7,8,9). @par Thanks: Thanks to Philippe Guerville who developed this class. Thanks to Charles Pignerol (CEA-DAM, France) who ported this class under VTK 4. Thanks to Jean Favre (CSCS, Switzerland) who contributed to integrate this class in VTK. Please address all comments to Jean Favre (jfavre at cscs.ch). @par Thanks: The Interpolation functions and derivatives were changed in June 2015 by Bill Lorensen. These changes follow the formulation in: http://dilbert.engr.ucdavis.edu/~suku/nem/papers/polyelas.pdf NOTE: An additional copy of this paper is located at: http://www.vtk.org/Wiki/File:ApplicationOfPolygonalFiniteElementsInLin earElasticity.pdf vtkCommonDataModelPython.vtkPentagonalPrismV.SafeDownCast(vtkObjectBase) -> vtkPentagonalPrism C++: static vtkPentagonalPrism *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPentagonalPrism C++: vtkPentagonalPrism *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; See the vtkCell3D API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell3D API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell3D API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell3D API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; See the vtkCell3D API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; See the vtkCell3D API for descriptions of these methods. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell3D API for descriptions of these methods. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[10]) @deprecated Replaced by vtkPentagonalPrism::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[30]) @deprecated Replaced by vtkPentagonalPrism::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[10]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[30]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkPerlinNoiseGetPhaseGetFrequencyGetAmplitudeSetAmplitudeSetPhaseSetFrequencyvtkPerlinNoise - an implicit function that implements Perlin noise Superclass: vtkImplicitFunction vtkPerlinNoise computes a Perlin noise field as an implicit function. vtkPerlinNoise is a concrete implementation of vtkImplicitFunction. Perlin noise, originally described by Ken Perlin, is a non-periodic and continuous noise function useful for modeling real-world objects. The amplitude and frequency of the noise pattern are adjustable. This implementation of Perlin noise is derived closely from Greg Ward's version in Graphics Gems II. @sa vtkImplicitFunction vtkCommonDataModelPython.vtkPerlinNoiseV.SafeDownCast(vtkObjectBase) -> vtkPerlinNoise C++: static vtkPerlinNoise *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPerlinNoise C++: vtkPerlinNoise *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate PerlinNoise function. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate PerlinNoise gradient. Currently, the method returns a 0 gradient. V.SetFrequency(float, float, float) C++: void SetFrequency(double, double, double) V.SetFrequency((float, float, float)) C++: void SetFrequency(double a[3]) V.GetFrequency() -> (float, float, float) C++: double *GetFrequency() Set/get the frequency, or physical scale, of the noise function (higher is finer scale). The frequency can be adjusted per axis, or the same for all axes. V.SetPhase(float, float, float) C++: void SetPhase(double, double, double) V.SetPhase((float, float, float)) C++: void SetPhase(double a[3]) V.GetPhase() -> (float, float, float) C++: double *GetPhase() Set/get the phase of the noise function. This parameter can be used to shift the noise function within space (perhaps to avoid a beat with a noise pattern at another scale). Phase tends to repeat about every unit, so a phase of 0.5 is a half-cycle shift. V.SetAmplitude(float) C++: virtual void SetAmplitude(double _arg) Set/get the amplitude of the noise function. Amplitude can be negative. The noise function varies randomly between -|Amplitude| and |Amplitude|. Therefore the range of values is 2*|Amplitude| large. The initial amplitude is 1. V.GetAmplitude() -> float C++: virtual double GetAmplitude() Set/get the amplitude of the noise function. Amplitude can be negative. The noise function varies randomly between -|Amplitude| and |Amplitude|. Therefore the range of values is 2*|Amplitude| large. The initial amplitude is 1. vtkPiecewiseFunctionRemoveAllPointsGetFirstNonZeroValueGetClampingGetUseLogScaleGetAllowDuplicateScalarsGetDataPointerGetValueEstimateMinNumberOfSamplesSetAllowDuplicateScalarsSetClampingClampingOffAllowDuplicateScalarsOnClampingOnUseLogScaleOffAllowDuplicateScalarsOffUseLogScaleOnSetUseLogScaleAddSegmentAdjustRangeGetNodeValueSetNodeValueFillFromDataPointerBuildFunctionFromTableGetTableAddPointvtkPiecewiseFunction - Defines a 1D piecewise function. Superclass: vtkDataObject Defines a piecewise function mapping. This mapping allows the addition of control points, and allows the user to control the function between the control points. A piecewise hermite curve is used between control points, based on the sharpness and midpoint parameters. A sharpness of 0 yields a piecewise linear function and a sharpness of 1 yields a piecewise constant function. The midpoint is the normalized distance between control points at which the curve reaches the median Y value. The midpoint and sharpness values specified when adding a node are used to control the transition to the next node (the last node's values are ignored) Outside the range of nodes, the values are 0 if Clamping is off, or the nearest node point if Clamping is on. Using the legacy methods for adding points (which do not have Sharpness and Midpoint parameters) will default to Midpoint = 0.5 (halfway between the control points) and Sharpness = 0.0 (linear). vtkCommonDataModelPython.vtkPiecewiseFunctionV.SafeDownCast(vtkObjectBase) -> vtkPiecewiseFunction C++: static vtkPiecewiseFunction *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPiecewiseFunction C++: vtkPiecewiseFunction *NewInstance() V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *f) override; Shallow and Deep copy. These copy the data, but not any of the pipeline connections. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *f) override; Shallow and Deep copy. These copy the data, but not any of the pipeline connections. V.GetSize() -> int C++: int GetSize() Get the number of points used to specify the function V.AddPoint(float, float) -> int C++: int AddPoint(double x, double y) V.AddPoint(float, float, float, float) -> int C++: int AddPoint(double x, double y, double midpoint, double sharpness) Add/Remove points to/from the function. If a duplicate point is added then the function value is changed at that location. Return the index of the point (0 based), or -1 on error. V.RemovePoint(float) -> int C++: int RemovePoint(double x) Add/Remove points to/from the function. If a duplicate point is added then the function value is changed at that location. Return the index of the point (0 based), or -1 on error. V.RemoveAllPoints() C++: void RemoveAllPoints() Removes all points from the function. V.AddSegment(float, float, float, float) C++: void AddSegment(double x1, double y1, double x2, double y2) Add a line segment to the function. All points defined between the two points specified are removed from the function. This is a legacy method that does not allow the specification of the sharpness and midpoint values for the two nodes. V.GetValue(float) -> float C++: double GetValue(double x) Returns the value of the function at the specified location using the specified interpolation. V.GetNodeValue(int, [float, float, float, float]) -> int C++: int GetNodeValue(int index, double val[4]) For the node specified by index, set/get the location (X), value (Y), midpoint, and sharpness values at the node. Returns -1 if the index is out of range, returns 1 otherwise. V.SetNodeValue(int, [float, float, float, float]) -> int C++: int SetNodeValue(int index, double val[4]) For the node specified by index, set/get the location (X), value (Y), midpoint, and sharpness values at the node. Returns -1 if the index is out of range, returns 1 otherwise. V.GetDataPointer() -> (float, ...) C++: double *GetDataPointer() Returns a pointer to the data stored in the table. Fills from a pointer to data stored in a similar table. These are legacy methods which will be maintained for compatibility - however, note that the vtkPiecewiseFunction no longer stores the nodes in a double array internally. V.FillFromDataPointer(int, [float, ...]) C++: void FillFromDataPointer(int, double *) Returns a pointer to the data stored in the table. Fills from a pointer to data stored in a similar table. These are legacy methods which will be maintained for compatibility - however, note that the vtkPiecewiseFunction no longer stores the nodes in a double array internally. V.GetRange() -> (float, float) C++: double *GetRange() V.AdjustRange([float, float]) -> int C++: int AdjustRange(double range[2]) Remove all points out of the new range, and make sure there is a point at each end of that range. Return 1 on success, 0 otherwise. V.GetTable(float, float, int, [float, ...], int) C++: void GetTable(double x1, double x2, int size, double *table, int stride=1) Fills in an array of function values evaluated at regular intervals. Parameter "stride" is used to step through the output "table". V.BuildFunctionFromTable(float, float, int, [float, ...], int) C++: void BuildFunctionFromTable(double x1, double x2, int size, double *table, int stride=1) Constructs a piecewise function from a table. Function range is is set to [x1, x2], function size is set to size, and function points are regularly spaced between x1 and x2. Parameter "stride" is is step through the input table. V.SetClamping(int) C++: virtual void SetClamping(int _arg) When zero range clamping is Off, GetValue() returns 0.0 when a value is requested outside of the points specified. When zero range clamping is On, GetValue() returns the value at the value at the lowest point for a request below all points specified and returns the value at the highest point for a request above all points specified. On is the default. V.GetClamping() -> int C++: virtual int GetClamping() When zero range clamping is Off, GetValue() returns 0.0 when a value is requested outside of the points specified. When zero range clamping is On, GetValue() returns the value at the value at the lowest point for a request below all points specified and returns the value at the highest point for a request above all points specified. On is the default. V.ClampingOn() C++: virtual void ClampingOn() When zero range clamping is Off, GetValue() returns 0.0 when a value is requested outside of the points specified. When zero range clamping is On, GetValue() returns the value at the value at the lowest point for a request below all points specified and returns the value at the highest point for a request above all points specified. On is the default. V.ClampingOff() C++: virtual void ClampingOff() When zero range clamping is Off, GetValue() returns 0.0 when a value is requested outside of the points specified. When zero range clamping is On, GetValue() returns the value at the value at the lowest point for a request below all points specified and returns the value at the highest point for a request above all points specified. On is the default. V.SetUseLogScale(bool) C++: virtual void SetUseLogScale(bool _arg) V.GetUseLogScale() -> bool C++: virtual bool GetUseLogScale() V.UseLogScaleOn() C++: virtual void UseLogScaleOn() V.UseLogScaleOff() C++: virtual void UseLogScaleOff() V.GetType() -> string C++: const char *GetType() Return the type of function: Function Types: 0 : Constant (No change in slope between end points) 1 : NonDecreasing (Always increasing or zero slope) 2 : NonIncreasing (Always decreasing or zero slope) 3 : Varied (Contains both decreasing and increasing slopes) V.GetFirstNonZeroValue() -> float C++: double GetFirstNonZeroValue() Returns the first point location which precedes a non-zero segment of the function. Note that the value at this point may be zero. V.Initialize() C++: void Initialize() override; Clears out the current function. A newly created vtkPiecewiseFunction is alreay initialized, so there is no need to call this method which in turn simply calls RemoveAllPoints() V.GetData(vtkInformation) -> vtkPiecewiseFunction C++: static vtkPiecewiseFunction *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkPiecewiseFunction C++: static vtkPiecewiseFunction *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.SetAllowDuplicateScalars(int) C++: virtual void SetAllowDuplicateScalars(int _arg) Toggle whether to allow duplicate scalar values in the piecewise function (off by default). V.GetAllowDuplicateScalars() -> int C++: virtual int GetAllowDuplicateScalars() Toggle whether to allow duplicate scalar values in the piecewise function (off by default). V.AllowDuplicateScalarsOn() C++: virtual void AllowDuplicateScalarsOn() Toggle whether to allow duplicate scalar values in the piecewise function (off by default). V.AllowDuplicateScalarsOff() C++: virtual void AllowDuplicateScalarsOff() Toggle whether to allow duplicate scalar values in the piecewise function (off by default). V.EstimateMinNumberOfSamples(float, float) -> int C++: int EstimateMinNumberOfSamples(double const &x1, double const &x2) Estimates the minimum size of a table such that it would correctly sample this function. The returned value should be passed as parameter 'n' when calling GetTable(). vtkPixelvtkPixel - a cell that represents an orthogonal quadrilateral Superclass: vtkCell vtkPixel is a concrete implementation of vtkCell to represent a 2D orthogonal quadrilateral. Unlike vtkQuad, the corners are at right angles, and aligned along x-y-z coordinate axes leading to large increases in computational efficiency. vtkCommonDataModelPython.vtkPixelV.SafeDownCast(vtkObjectBase) -> vtkPixel C++: static vtkPixel *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPixel C++: vtkPixel *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. V.InterpolationFunctions([float, float, float], [float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[4]) @deprecated Replaced by vtkPixel::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[8]) @deprecated Replaced by vtkPixel::InterpolateDerivs as of VTK 5.2 V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[8]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) GetDataUSetDataSplitGetEndIndexDisjointCellToNodeNodeToCellGrowLowGrowHighGetStartIndex@W vtkPixelExtentV.Clear() C++: void Clear() PP *i *iWi vtkPixelExtentvtkPixelExtent - Representation of a cartesian pixel plane and common operations on it. The implementation is intended to be fast and light so that it may be used in place of int[4] with little or no performance penalty. NOTE in most cases operation on an empty object produces incorrect results. If it an issue query Empty() first. vtkPixelExtent() vtkPixelExtent(const vtkPixelExtent &other) vtkCommonDataModelPython.vtkPixelExtentV.SetData(vtkPixelExtent) C++: void SetData(const vtkPixelExtent &ext) Set the extent. V.GetData() -> (int, ...) C++: int *GetData() Direct access to internal data. V.GetDataU() -> (int, ...) C++: unsigned int *GetDataU() V.GetStartIndex([int, int]) C++: void GetStartIndex(int first[2]) V.GetStartIndex([int, int], (int, int)) C++: void GetStartIndex(int first[2], const int origin[2]) Get the start/end index. V.GetEndIndex([int, int]) C++: void GetEndIndex(int last[2]) Get the start/end index. V.Empty() -> int C++: int Empty() Return true if empty. V.Contains(vtkPixelExtent) -> int C++: int Contains(const vtkPixelExtent &other) V.Contains(int, int) -> int C++: int Contains(int i, int j) Return non-zero if this extent conatins the other. V.Disjoint(vtkPixelExtent) -> int C++: int Disjoint(vtkPixelExtent other) Return non-zero if the extent is disjoint from the other V.Size() -> int C++: size_t Size() V.Size(vtkPixelExtent) -> int C++: static size_t Size(const vtkPixelExtent &ext) Get the total number. V.Grow(int) C++: void Grow(int n) V.Grow(int, int) C++: void Grow(int q, int n) V.Grow(vtkPixelExtent, int) -> vtkPixelExtent C++: static vtkPixelExtent Grow(const vtkPixelExtent &inputExt, int n) V.Grow(vtkPixelExtent, vtkPixelExtent, int) -> vtkPixelExtent C++: static vtkPixelExtent Grow(const vtkPixelExtent &inputExt, const vtkPixelExtent &problemDomain, int n) Expand the extents by n. V.GrowLow(int, int) C++: void GrowLow(int q, int n) V.GrowLow(vtkPixelExtent, int, int) -> vtkPixelExtent C++: static vtkPixelExtent GrowLow(const vtkPixelExtent &ext, int q, int n) Expand the extents by n. V.GrowHigh(int, int) C++: void GrowHigh(int q, int n) V.GrowHigh(vtkPixelExtent, int, int) -> vtkPixelExtent C++: static vtkPixelExtent GrowHigh(const vtkPixelExtent &ext, int q, int n) Expand the extents by n. V.Shrink(int) C++: void Shrink(int n) V.Shrink(int, int) C++: void Shrink(int q, int n) V.Shrink(vtkPixelExtent, vtkPixelExtent, int) -> vtkPixelExtent C++: static vtkPixelExtent Shrink(const vtkPixelExtent &inputExt, const vtkPixelExtent &problemDomain, int n) V.Shrink(vtkPixelExtent, int) -> vtkPixelExtent C++: static vtkPixelExtent Shrink(const vtkPixelExtent &inputExt, int n) Shrink the extent by n. V.Shift() C++: void Shift() V.Shift(vtkPixelExtent) C++: void Shift(const vtkPixelExtent &ext) V.Shift([int, ...]) C++: void Shift(int *n) V.Shift(int, int) C++: void Shift(int q, int n) V.Shift([int, ...], int) C++: static void Shift(int *ij, int n) V.Shift([int, ...], [int, ...]) C++: static void Shift(int *ij, int *n) Shifts by low corner of this, moving to the origin. V.Split(int) -> vtkPixelExtent C++: vtkPixelExtent Split(int dir) Divide the extent in half in the given direction. The operation is done in-place the other half of the split extent is returned. The retunr will be empty if the split could not be made. V.CellToNode() C++: void CellToNode() V.CellToNode(vtkPixelExtent) -> vtkPixelExtent C++: static vtkPixelExtent CellToNode( const vtkPixelExtent &inputExt) In-place conversion from cell based to node based extent, and vise-versa. V.NodeToCell() C++: void NodeToCell() V.NodeToCell(vtkPixelExtent) -> vtkPixelExtent C++: static vtkPixelExtent NodeToCell( const vtkPixelExtent &inputExt) In-place conversion from cell based to node based extent, and vise-versa. Blit@W vtkPixelTransfervtkPixelTransfer - pixel extents Class to handle non-contiguous data transfers of data described by pixel extents within a process. For transferring data between processes see vtkPPixelTransfer. @sa vtkPixelExtent vtkPPixelTransfer vtkPixelTransfer() vtkPixelTransfer(const &vtkPixelTransfer) vtkCommonDataModelPython.vtkPixelTransferV.Blit(vtkPixelExtent, int, int, void, int, void) -> int C++: static int Blit(const vtkPixelExtent &ext, int nComps, int srcType, void *srcData, int destType, void *destData) V.Blit(vtkPixelExtent, vtkPixelExtent, vtkPixelExtent, vtkPixelExtent, int, int, void, int, int, void) -> int C++: static int Blit(const vtkPixelExtent &srcWhole, const vtkPixelExtent &srcSubset, const vtkPixelExtent &destWhole, const vtkPixelExtent &destSubset, int nSrcComps, int srcType, void *srcData, int nDestComps, int destType, void *destData) for memory to memory transfers. Conveinience api for working with vtk type enum rather than c-data types and simple extents. vtkPlaneCollectionvtkPlanevtkPlaneCollection - maintain a list of planes Superclass: vtkCollection vtkPlaneCollection is an object that creates and manipulates lists of objects of type vtkPlane. @sa vtkCollection vtkCommonDataModelPython.vtkPlaneCollectionV.SafeDownCast(vtkObjectBase) -> vtkPlaneCollection C++: static vtkPlaneCollection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPlaneCollection C++: vtkPlaneCollection *NewInstance() V.AddItem(vtkPlane) C++: void AddItem(vtkPlane *) Add a plane to the list. V.GetNextItem() -> vtkPlane C++: vtkPlane *GetNextItem() Get the next plane in the list. V.GetItem(int) -> vtkPlane C++: vtkPlane *GetItem(int i) Get the ith plane in the list. PushDistanceToPlaneGeneralizedProjectPointProjectVectorvtkPlane - perform various plane computations Superclass: vtkImplicitFunction vtkPlane provides methods for various plane computations. These include projecting points onto a plane, evaluating the plane equation, and returning plane normal. vtkPlane is a concrete implementation of the abstract class vtkImplicitFunction. vtkCommonDataModelPython.vtkPlaneV.SafeDownCast(vtkObjectBase) -> vtkPlane C++: static vtkPlane *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPlane C++: vtkPlane *NewInstance() V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) override; V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate plane equation for point x[3]. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate function gradient at point x[3]. V.GetNormal() -> (float, float, float) C++: double *GetNormal() Set/get plane normal. Plane is defined by point and normal. V.GetOrigin() -> (float, float, float) C++: double *GetOrigin() Set/get point through which plane passes. Plane is defined by point and normal. V.Push(float) C++: void Push(double distance) Translate the plane in the direction of the normal by the distance specified. Negative values move the plane in the opposite direction. V.ProjectPoint([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ProjectPoint(double x[3], double origin[3], double normal[3], double xproj[3]) V.ProjectPoint([float, float, float], [float, float, float]) C++: void ProjectPoint(double x[3], double xproj[3]) Project a point x onto plane defined by origin and normal. The projected point is returned in xproj. NOTE : normal assumed to have magnitude 1. V.ProjectVector([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ProjectVector(double v[3], double origin[3], double normal[3], double vproj[3]) V.ProjectVector([float, float, float], [float, float, float]) C++: void ProjectVector(double v[3], double vproj[3]) Project a vector v onto plane defined by origin and normal. The projected vector is returned in vproj. V.GeneralizedProjectPoint([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void GeneralizedProjectPoint(double x[3], double origin[3], double normal[3], double xproj[3]) V.GeneralizedProjectPoint([float, float, float], [float, float, float]) C++: void GeneralizedProjectPoint(double x[3], double xproj[3]) Project a point x onto plane defined by origin and normal. The projected point is returned in xproj. NOTE : normal does NOT have to have magnitude 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float]) -> float C++: static double Evaluate(double normal[3], double origin[3], double x[3]) Quick evaluation of plane equation n(x-origin)=0. V.DistanceToPlane([float, float, float], [float, float, float], [float, float, float]) -> float C++: static double DistanceToPlane(double x[3], double n[3], double p0[3]) V.DistanceToPlane([float, float, float]) -> float C++: double DistanceToPlane(double x[3]) Return the distance of a point x to a plane defined by n(x-p0) = 0. The normal n[3] must be magnitude=1. V.IntersectWithLine([float, float, float], [float, float, float], [float, float, float], [float, float, float], float, [float, float, float]) -> int C++: static int IntersectWithLine(double p1[3], double p2[3], double n[3], double p0[3], double &t, double x[3]) V.IntersectWithLine([float, float, float], [float, float, float], float, [float, float, float]) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double &t, double x[3]) Given a line defined by the two points p1,p2; and a plane defined by the normal n and point p0, compute an intersection. The parametric coordinate along the line is returned in t, and the coordinates of intersection are returned in x. A zero is returned if the plane and line do not intersect between (0<=t<=1). If the plane and line are parallel, zero is returned and t is set to VTK_LARGE_DOUBLE. vtkPlanesGetNumberOfPlanesSetFrustumPlanesGetPlanevtkPlanes - implicit function for convex set of planes Superclass: vtkImplicitFunction vtkPlanes computes the implicit function and function gradient for a set of planes. The planes must define a convex space. The function value is the closest first order distance of a point to the convex region defined by the planes. The function gradient is the plane normal at the function value. Note that the normals must point outside of the convex region. Thus, a negative function value means that a point is inside the convex region. There are several methods to define the set of planes. The most general is to supply an instance of vtkPoints and an instance of vtkDataArray. (The points define a point on the plane, and the normals corresponding plane normals.) Two other specialized ways are to 1) supply six planes defining the view frustrum of a camera, and 2) provide a bounding box. @sa vtkCamera vtkCommonDataModelPython.vtkPlanesV.SafeDownCast(vtkObjectBase) -> vtkPlanes C++: static vtkPlanes *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPlanes C++: vtkPlanes *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate plane equations. Return smallest absolute value. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate planes gradient. V.SetPoints(vtkPoints) C++: virtual void SetPoints(vtkPoints *) Specify a list of points defining points through which the planes pass. V.GetPoints() -> vtkPoints C++: virtual vtkPoints *GetPoints() Specify a list of points defining points through which the planes pass. V.SetNormals(vtkDataArray) C++: void SetNormals(vtkDataArray *normals) Specify a list of normal vectors for the planes. There is a one-to-one correspondence between plane points and plane normals. V.GetNormals() -> vtkDataArray C++: virtual vtkDataArray *GetNormals() Specify a list of normal vectors for the planes. There is a one-to-one correspondence between plane points and plane normals. V.SetFrustumPlanes([float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void SetFrustumPlanes(double planes[24]) An alternative method to specify six planes defined by the camera view frustrum. See vtkCamera::GetFrustumPlanes() documentation. V.SetBounds((float, float, float, float, float, float)) C++: void SetBounds(const double bounds[6]) V.SetBounds(float, float, float, float, float, float) C++: void SetBounds(double xmin, double xmax, double ymin, double ymax, double zmin, double zmax) An alternative method to specify six planes defined by a bounding box. The bounding box is a six-vector defined as (xmin,xmax,ymin,ymax,zmin,zmax). It defines six planes orthogonal to the x-y-z coordinate axes. V.GetNumberOfPlanes() -> int C++: int GetNumberOfPlanes() Return the number of planes in the set of planes. V.GetPlane(int) -> vtkPlane C++: vtkPlane *GetPlane(int i) V.GetPlane(int, vtkPlane) C++: void GetPlane(int i, vtkPlane *plane) Create and return a pointer to a vtkPlane object at the ith position. Asking for a plane outside the allowable range returns nullptr. This method always returns the same object. Use GetPlane(int i, vtkPlane *plane) instead. Convert3DCellPolygonIntersectsBBoxGetNumberOfRegionVerticesGetNumRegionVerticesGetRegionVerticesSetRegionVerticesvtkPlanesIntersection - A vtkPlanesIntersection object is a vtkPlanes object that can compute whether the arbitrary convex region bounded by it's planes intersects an axis-aligned box. Superclass: vtkPlanes A subclass of vtkPlanes, this class determines whether it intersects an axis aligned box. This is motivated by the need to intersect the axis aligned region of a spacial decomposition of volume data with various other regions. It uses the algorithm from Graphics Gems IV, page 81. @par Caveat: An instance of vtkPlanes can be redefined by changing the planes, but this subclass then will not know if the region vertices are up to date. (Region vertices can be specified in SetRegionVertices or computed by the subclass.) So Delete and recreate if you want to change the set of planes. vtkCommonDataModelPython.vtkPlanesIntersectionV.SafeDownCast(vtkObjectBase) -> vtkPlanesIntersection C++: static vtkPlanesIntersection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPlanesIntersection C++: vtkPlanesIntersection *NewInstance() V.SetRegionVertices(vtkPoints) C++: void SetRegionVertices(vtkPoints *pts) V.SetRegionVertices([float, ...], int) C++: void SetRegionVertices(double *v, int nvertices) It helps if you know the vertices of the convex region. If you don't, we will calculate them. Region vertices are 3-tuples. V.GetNumberOfRegionVertices() -> int C++: int GetNumberOfRegionVertices() V.GetNumRegionVertices() -> int C++: int GetNumRegionVertices() V.GetRegionVertices([float, ...], int) -> int C++: int GetRegionVertices(double *v, int nvertices) V.IntersectsRegion(vtkPoints) -> int C++: int IntersectsRegion(vtkPoints *R) Return 1 if the axis aligned box defined by R intersects the region defined by the planes, or 0 otherwise. V.PolygonIntersectsBBox([float, float, float, float, float, float], vtkPoints) -> int C++: static int PolygonIntersectsBBox(double bounds[6], vtkPoints *pts) A convenience function provided by this class, returns 1 if the polygon defined in pts intersects the bounding box defined in bounds, 0 otherwise. * The points must define a planar polygon. V.Convert3DCell(vtkCell) -> vtkPlanesIntersection C++: static vtkPlanesIntersection *Convert3DCell(vtkCell *cell) Another convenience function provided by this class, returns the vtkPlanesIntersection object representing a 3D cell. The point IDs for each face must be given in counter-clockwise order from the outside of the cell. NullPointvtkPointData - represent and manipulate point attribute data Superclass: vtkDataSetAttributes vtkPointData is a class that is used to represent and manipulate point attribute data (e.g., scalars, vectors, normals, texture coordinates, etc.) Most of the functionality is handled by vtkDataSetAttributes vtkCommonDataModelPython.vtkPointDataV.SafeDownCast(vtkObjectBase) -> vtkPointData C++: static vtkPointData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPointData C++: vtkPointData *NewInstance() V.NullPoint(int) C++: void NullPoint(vtkIdType ptId) GetDivisionsGetNumberOfPointsPerBucketSetNumberOfPointsPerBucketSetDivisionsGetPointsInBucketFindDistributedPointsGetNumberOfPointsPerBucketMinValueGetNumberOfPointsPerBucketMaxValuevtkPointLocator - quickly locate points in 3-space Superclass: vtkIncrementalPointLocator vtkPointLocator is a spatial search object to quickly locate points in 3D. vtkPointLocator works by dividing a specified region of space into a regular array of "rectangular" buckets, and then keeping a list of points that lie in each bucket. Typical operation involves giving a position in 3D and finding the closest point. vtkPointLocator has two distinct methods of interaction. In the first method, you supply it with a dataset, and it operates on the points in the dataset. In the second method, you supply it with an array of points, and the object operates on the array. @warning Many other types of spatial locators have been developed such as octrees and kd-trees. These are often more efficient for the operations described here. @sa vtkCellPicker vtkPointPicker vtkStaticPointLocator vtkCommonDataModelPython.vtkPointLocatorV.SafeDownCast(vtkObjectBase) -> vtkPointLocator C++: static vtkPointLocator *SafeDownCast(vtkObjectBase *o) Standard methods for type management and printing. V.NewInstance() -> vtkPointLocator C++: vtkPointLocator *NewInstance() Standard methods for type management and printing. V.SetDivisions(int, int, int) C++: void SetDivisions(int, int, int) V.SetDivisions((int, int, int)) C++: void SetDivisions(int a[3]) V.GetDivisions() -> (int, int, int) C++: int *GetDivisions() Set the number of divisions in x-y-z directions. V.SetNumberOfPointsPerBucket(int) C++: virtual void SetNumberOfPointsPerBucket(int _arg) Specify the average number of points in each bucket. V.GetNumberOfPointsPerBucketMinValue() -> int C++: virtual int GetNumberOfPointsPerBucketMinValue() Specify the average number of points in each bucket. V.GetNumberOfPointsPerBucketMaxValue() -> int C++: virtual int GetNumberOfPointsPerBucketMaxValue() Specify the average number of points in each bucket. V.GetNumberOfPointsPerBucket() -> int C++: virtual int GetNumberOfPointsPerBucket() Specify the average number of points in each bucket. V.FindClosestPoint((float, float, float)) -> int C++: vtkIdType FindClosestPoint(const double x[3]) override; V.FindClosestPoint(float, float, float) -> int C++: vtkIdType FindClosestPoint(double x, double y, double z) Given a position x, return the id of the point closest to it. Alternative method requires separate x-y-z values. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestPointWithinRadius(float, (float, float, float), float) -> int C++: vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double &dist2) override; V.FindClosestPointWithinRadius(float, (float, float, float), float, float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double inputDataLength, double &dist2) Given a position x and a radius r, return the id of the point closest to the point in that radius. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. dist2 returns the squared distance to the point. V.InitPointInsertion(vtkPoints, (float, float, float, float, float, float)) -> int C++: int InitPointInsertion(vtkPoints *newPts, const double bounds[6]) override; V.InitPointInsertion(vtkPoints, (float, float, float, float, float, float), int) -> int C++: int InitPointInsertion(vtkPoints *newPts, const double bounds[6], vtkIdType estSize) override; Initialize the point insertion process. The newPts is an object representing point coordinates into which incremental insertion methods place their data. Bounds are the box that the points lie in. Not thread safe. V.InsertPoint(int, (float, float, float)) C++: void InsertPoint(vtkIdType ptId, const double x[3]) override; Incrementally insert a point into search structure with a particular index value. You should use the method IsInsertedPoint() to see whether this point has already been inserted (that is, if you desire to prevent duplicate points). Before using this method you must make sure that newPts have been supplied, the bounds has been set properly, and that divs are properly set. (See InitPointInsertion().) Not thread safe. V.InsertNextPoint((float, float, float)) -> int C++: vtkIdType InsertNextPoint(const double x[3]) override; Incrementally insert a point into search structure. The method returns the insertion location (i.e., point id). You should use the method IsInsertedPoint() to see whether this point has already been inserted (that is, if you desire to prevent duplicate points). Before using this method you must make sure that newPts have been supplied, the bounds has been set properly, and that divs are properly set. (See InitPointInsertion().) Not thread safe. V.IsInsertedPoint(float, float, float) -> int C++: vtkIdType IsInsertedPoint(double x, double y, double z) override; V.IsInsertedPoint((float, float, float)) -> int C++: vtkIdType IsInsertedPoint(const double x[3]) override; Determine whether point given by x[3] has been inserted into points list. Return id of previously inserted point if this is true, otherwise return -1. This method is thread safe. V.InsertUniquePoint((float, float, float), int) -> int C++: int InsertUniquePoint(const double x[3], vtkIdType &ptId) override; Determine whether point given by x[3] has been inserted into points list. Return 0 if point was already in the list, otherwise return 1. If the point was not in the list, it will be ADDED. In either case, the id of the point (newly inserted or not) is returned in the ptId argument. Note this combines the functionality of IsInsertedPoint() followed by a call to InsertNextPoint(). This method is not thread safe. V.FindClosestInsertedPoint((float, float, float)) -> int C++: vtkIdType FindClosestInsertedPoint(const double x[3]) override; Given a position x, return the id of the point closest to it. This method is used when performing incremental point insertion. Note that -1 indicates that no point was found. This method is thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindDistributedPoints(int, (float, float, float), vtkIdList, int) C++: virtual void FindDistributedPoints(int N, const double x[3], vtkIdList *result, int M) V.FindDistributedPoints(int, float, float, float, vtkIdList, int) C++: virtual void FindDistributedPoints(int N, double x, double y, double z, vtkIdList *result, int M) Find the closest points to a position such that each octant of space around the position contains at least N points. Loosely limit the search to a maximum number of points evaluated, M. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.GetPointsInBucket((float, float, float), [int, int, int]) -> vtkIdList C++: virtual vtkIdList *GetPointsInBucket(const double x[3], int ijk[3]) Given a position x, return the list of points in the bucket that contains the point. It is possible that nullptr is returned. The user provides an ijk array that is the indices into the locator. This method is thread safe. V.GetPoints() -> vtkPoints C++: virtual vtkPoints *GetPoints() Provide an accessor to the points. V.Initialize() C++: void Initialize() override; See vtkLocator interface documentation. These methods are not thread safe. vtkPointSet - abstract class for specifying dataset behavior Superclass: vtkDataSet vtkPointSet is an abstract class that specifies the interface for datasets that explicitly use "point" arrays to represent geometry. For example, vtkPolyData and vtkUnstructuredGrid require point arrays to specify point position, while vtkStructuredGrid generates point positions implicitly. @sa vtkPolyData vtkStructuredGrid vtkUnstructuredGrid vtkCommonDataModelPython.vtkPointSetV.SafeDownCast(vtkObjectBase) -> vtkPointSet C++: static vtkPointSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPointSet C++: vtkPointSet *NewInstance() V.Initialize() C++: void Initialize() override; Reset to an empty state and free any memory. V.CopyStructure(vtkDataSet) C++: void CopyStructure(vtkDataSet *pd) override; Copy the geometric structure of an input point set object. V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() override; See vtkDataSet for additional information. V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType ptId, double x[3]) override; V.GetPoint(int) -> (float, float, float) C++: double *GetPoint(vtkIdType ptId) override; See vtkDataSet for additional information. V.FindPoint([float, float, float]) -> int C++: vtkIdType FindPoint(double x[3]) override; V.FindPoint(float, float, float) -> int C++: vtkIdType FindPoint(double x, double y, double z) See vtkDataSet for additional information. V.FindCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; V.FindCell([float, float, float], vtkCell, vtkGenericCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkGenericCell *gencell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; See vtkDataSet for additional information. V.NewCellIterator() -> vtkCellIterator C++: vtkCellIterator *NewCellIterator() override; Return an iterator that traverses the cells in this data set. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Get MTime which also considers its vtkPoints MTime. V.ComputeBounds() C++: void ComputeBounds() override; Compute the (X, Y, Z) bounds of the data. V.Squeeze() C++: void Squeeze() override; Reclaim any unused memory. V.SetPoints(vtkPoints) C++: virtual void SetPoints(vtkPoints *) Specify point array to define point coordinates. V.GetPoints() -> vtkPoints C++: virtual vtkPoints *GetPoints() Specify point array to define point coordinates. V.GetData(vtkInformation) -> vtkPointSet C++: static vtkPointSet *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkPointSet C++: static vtkPointSet *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkPointSetCellIteratorvtkPointSetCellIterator - Implementation of vtkCellIterator using vtkPointSet API. Superclass: vtkCellIterator vtkCommonDataModelPython.vtkPointSetCellIteratorV.SafeDownCast(vtkObjectBase) -> vtkPointSetCellIterator C++: static vtkPointSetCellIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkPointSetCellIterator C++: vtkPointSetCellIterator *NewInstance() vtkPointsProjectedHullGetSizeCCWHullXGetSizeCCWHullYGetSizeCCWHullZGetCCWHullZGetCCWHullXGetCCWHullYRectangleIntersectionYRectangleIntersectionZRectangleIntersectionXvtkPointsProjectedHull - the convex hull of the orthogonal projection of the vtkPoints in the 3 coordinate directions Superclass: vtkPoints a subclass of vtkPoints, it maintains the counter clockwise convex hull of the points (projected orthogonally in the three coordinate directions) and has a method to test for intersection of that hull with an axis aligned rectangle. This is used for intersection tests of 3D volumes. vtkCommonDataModelPython.vtkPointsProjectedHullV.SafeDownCast(vtkObjectBase) -> vtkPointsProjectedHull C++: static vtkPointsProjectedHull *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPointsProjectedHull C++: vtkPointsProjectedHull *NewInstance() V.RectangleIntersectionX(vtkPoints) -> int C++: int RectangleIntersectionX(vtkPoints *R) V.RectangleIntersectionX(float, float, float, float) -> int C++: int RectangleIntersectionX(double ymin, double ymax, double zmin, double zmax) determine whether the resulting rectangle intersects the convex hull of the projection of the points along that axis. V.RectangleIntersectionY(vtkPoints) -> int C++: int RectangleIntersectionY(vtkPoints *R) V.RectangleIntersectionY(float, float, float, float) -> int C++: int RectangleIntersectionY(double zmin, double zmax, double xmin, double xmax) of the parallel projection along the Y axis of the points V.RectangleIntersectionZ(vtkPoints) -> int C++: int RectangleIntersectionZ(vtkPoints *R) V.RectangleIntersectionZ(float, float, float, float) -> int C++: int RectangleIntersectionZ(double xmin, double xmax, double ymin, double ymax) of the parallel projection along the Z axis of the points V.GetCCWHullX([float, ...], int) -> int C++: int GetCCWHullX(double *pts, int len) V.GetCCWHullY([float, ...], int) -> int C++: int GetCCWHullY(double *pts, int len) V.GetCCWHullZ([float, ...], int) -> int C++: int GetCCWHullZ(double *pts, int len) V.GetSizeCCWHullX() -> int C++: int GetSizeCCWHullX() Returns the number of points in the convex hull of the projection of the points down the positive x-axis V.GetSizeCCWHullY() -> int C++: int GetSizeCCWHullY() Returns the number of points in the convex hull of the projection of the points down the positive y-axis V.GetSizeCCWHullZ() -> int C++: int GetSizeCCWHullZ() Returns the number of points in the convex hull of the projection of the points down the positive z-axis V.Initialize() C++: void Initialize() override; Return object to instantiated state. V.Reset() C++: void Reset() override; Make object look empty but do not delete memory. V.Update() C++: void Update() Forces recalculation of convex hulls, use this if you delete/add points vtkPolyDataCollectionvtkPolyDataCollection - maintain a list of polygonal data objects Superclass: vtkCollection vtkPolyDataCollection is an object that creates and manipulates ordered lists of datasets of type vtkPolyData. @sa vtkDataSetCollection vtkCollection vtkCommonDataModelPython.vtkPolyDataCollectionV.SafeDownCast(vtkObjectBase) -> vtkPolyDataCollection C++: static vtkPolyDataCollection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolyDataCollection C++: vtkPolyDataCollection *NewInstance() V.AddItem(vtkPolyData) C++: void AddItem(vtkPolyData *pd) Add a poly data to the bottom of the list. V.GetNextItem() -> vtkPolyData C++: vtkPolyData *GetNextItem() Get the next poly data in the list. GetScalarFieldCriticalIndexDeleteCellsRemoveGhostCellsDeleteLinksNeedToBuildCellsRemoveDeletedCellsGetLinesGetPolysGetStripsGetNumberOfVertsGetNumberOfLinesGetVertsGetNumberOfPolysGetNumberOfStripsSetStripsSetVertsSetLinesSetPolysRemoveReferenceToCellAddReferenceToCellCopyCellsGetCellEdgeNeighborsReplaceLinkedCellInsertNextLinkedCellInsertNextLinkedPointIsTriangleIsPointUsedByCellReplaceCellPointGetMeshMTimeGetGhostLevelERR_NO_SUCH_FIELDERR_INCORRECT_FIELDERR_NON_MANIFOLD_STARREGULAR_POINTMINIMUMSADDLEMAXIMUM@kV *vtkDataArray@ki@kz@|ki@V|ki *vtkPolyData@kV *vtkGenericCell@kP *k$$$ll\\|TTT \\\ttddll\\$|$$n__SSnFOOCC[FllDLL< vtkPolyData C++: static vtkPolyData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolyData C++: vtkPolyData *NewInstance() V.CopyStructure(vtkDataSet) C++: void CopyStructure(vtkDataSet *ds) override; Copy the geometric and topological structure of an input poly data object. V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() override; Standard vtkDataSet interface. V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType cellId) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType cellId, vtkGenericCell *cell) override; V.GetCell(int, [int, ...]) -> int C++: unsigned char GetCell(vtkIdType cellId, vtkIdType *&pts) V.GetCell(int, int, int) -> vtkCell C++: virtual vtkCell *GetCell(int i, int j, int k) Standard vtkDataSet interface. V.GetCellType(int) -> int C++: int GetCellType(vtkIdType cellId) override; Standard vtkDataSet interface. V.GetCellBounds(int, [float, float, float, float, float, float]) C++: void GetCellBounds(vtkIdType cellId, double bounds[6]) override; Standard vtkDataSet interface. V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds) override; Standard vtkDataSet interface. V.CopyCells(vtkPolyData, vtkIdList, vtkPointLocator) C++: void CopyCells(vtkPolyData *pd, vtkIdList *idList, vtkPointLocator *locator=nullptr) Copy cells listed in idList from pd, including points, point data, and cell data. This method assumes that point and cell data have been allocated. If you pass in a point locator, then the points won't be duplicated in the output. V.GetCellPoints(int, vtkIdList) C++: void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) override; V.GetCellPoints(int, int, [int, ...]) -> int C++: unsigned char GetCellPoints(vtkIdType cellId, vtkIdType &npts, vtkIdType *&pts) Copy a cells point ids into list provided. (Less efficient.) V.GetPointCells(int, vtkIdList) C++: void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) override; V.GetPointCells(int, int, [int, ...]) C++: void GetPointCells(vtkIdType ptId, unsigned short &ncells, vtkIdType *&cells) Efficient method to obtain cells using a particular point. Make sure that routine BuildLinks() has been called. V.Squeeze() C++: void Squeeze() override; Recover extra allocated memory when creating data whose initial size is unknown. Examples include using the InsertNextCell() method, or when using the CellArray::EstimateSize() method to create vertices, lines, polygons, or triangle strips. V.SetVerts(vtkCellArray) C++: void SetVerts(vtkCellArray *v) Set the cell array defining vertices. V.GetVerts() -> vtkCellArray C++: vtkCellArray *GetVerts() Get the cell array defining vertices. If there are no vertices, an empty array will be returned (convenience to simplify traversal). V.SetLines(vtkCellArray) C++: void SetLines(vtkCellArray *l) Set the cell array defining lines. V.GetLines() -> vtkCellArray C++: vtkCellArray *GetLines() Get the cell array defining lines. If there are no lines, an empty array will be returned (convenience to simplify traversal). V.SetPolys(vtkCellArray) C++: void SetPolys(vtkCellArray *p) Set the cell array defining polygons. V.GetPolys() -> vtkCellArray C++: vtkCellArray *GetPolys() Get the cell array defining polygons. If there are no polygons, an empty array will be returned (convenience to simplify traversal). V.SetStrips(vtkCellArray) C++: void SetStrips(vtkCellArray *s) Set the cell array defining triangle strips. V.GetStrips() -> vtkCellArray C++: vtkCellArray *GetStrips() Get the cell array defining triangle strips. If there are no triangle strips, an empty array will be returned (convenience to simplify traversal). V.GetNumberOfVerts() -> int C++: vtkIdType GetNumberOfVerts() Return the number of primitives of a particular type held. V.GetNumberOfLines() -> int C++: vtkIdType GetNumberOfLines() Return the number of primitives of a particular type held. V.GetNumberOfPolys() -> int C++: vtkIdType GetNumberOfPolys() Return the number of primitives of a particular type held. V.GetNumberOfStrips() -> int C++: vtkIdType GetNumberOfStrips() Return the number of primitives of a particular type held. V.Allocate(int, int) C++: void Allocate(vtkIdType numCells=1000, int extSize=1000) V.Allocate(vtkPolyData, int, int) C++: void Allocate(vtkPolyData *inPolyData, vtkIdType numCells=1000, int extSize=1000) Method allocates initial storage for vertex, line, polygon, and triangle strip arrays. Use this method before the method PolyData::InsertNextCell(). (Or, provide vertex, line, polygon, and triangle strip cell arrays.) The array capacity is doubled when the inserting a cell exceeds the current capacity. extSize is no longer used. V.InsertNextCell(int, int, [int, ...]) -> int C++: vtkIdType InsertNextCell(int type, int npts, vtkIdType *pts) V.InsertNextCell(int, vtkIdList) -> int C++: vtkIdType InsertNextCell(int type, vtkIdList *pts) Insert a cell of type VTK_VERTEX, VTK_POLY_VERTEX, VTK_LINE, VTK_POLY_LINE, VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON, or VTK_TRIANGLE_STRIP. Make sure that the PolyData::Allocate() function has been called first or that vertex, line, polygon, and triangle strip arrays have been supplied. Note: will also insert VTK_PIXEL, but converts it to VTK_QUAD. V.BuildCells() C++: void BuildCells() Create data structure that allows random access of cells. BuildCells is expensive but necessary to make use of the faster non-virtual implementations of GetCell/GetCellPoints. One may check if cells need to be built via NeedToBuilds before invoking. Cells always need to be built/re-built after low level direct modifications to verts, lines, polys or strips cell arrays. V.NeedToBuildCells() -> bool C++: bool NeedToBuildCells() Check if BuildCells is needed. V.BuildLinks(int) C++: void BuildLinks(int initialSize=0) Create upward links from points to cells that use each point. Enables topologically complex queries. Normally the links array is allocated based on the number of points in the vtkPolyData. The optional initialSize parameter can be used to allocate a larger size initially. V.DeleteCells() C++: void DeleteCells() Release data structure that allows random access of the cells. This must be done before a 2nd call to BuildLinks(). DeleteCells implicitly deletes the links as well since they are no longer valid. V.DeleteLinks() C++: void DeleteLinks() Release the upward links from point to cells that use each point. V.GetCellEdgeNeighbors(int, int, int, vtkIdList) C++: void GetCellEdgeNeighbors(vtkIdType cellId, vtkIdType p1, vtkIdType p2, vtkIdList *cellIds) Get the neighbors at an edge. More efficient than the general GetCellNeighbors(). Assumes links have been built (with BuildLinks()), and looks specifically for edge neighbors. V.IsTriangle(int, int, int) -> int C++: int IsTriangle(int v1, int v2, int v3) Given three vertices, determine whether it's a triangle. Make sure BuildLinks() has been called first. V.IsEdge(int, int) -> int C++: int IsEdge(vtkIdType p1, vtkIdType p2) Determine whether two points form an edge. If they do, return non-zero. By definition PolyVertex and PolyLine have no edges since 1-dimensional edges are only found on cells 2D and higher. Edges are defined as 1-D boundary entities to cells. Make sure BuildLinks() has been called first. V.IsPointUsedByCell(int, int) -> int C++: int IsPointUsedByCell(vtkIdType ptId, vtkIdType cellId) Determine whether a point is used by a particular cell. If it is, return non-zero. Make sure BuildCells() has been called first. V.ReplaceCell(int, int, [int, ...]) C++: void ReplaceCell(vtkIdType cellId, int npts, vtkIdType *pts) Replace the points defining cell "cellId" with a new set of points. This operator is (typically) used when links from points to cells have not been built (i.e., BuildLinks() has not been executed). Use the operator ReplaceLinkedCell() to replace a cell when cell structure has been built. V.ReplaceCellPoint(int, int, int) C++: void ReplaceCellPoint(vtkIdType cellId, vtkIdType oldPtId, vtkIdType newPtId) Replace a point in the cell connectivity list with a different point. V.ReverseCell(int) C++: void ReverseCell(vtkIdType cellId) Reverse the order of point ids defining the cell. V.DeletePoint(int) C++: void DeletePoint(vtkIdType ptId) Mark a point/cell as deleted from this vtkPolyData. V.DeleteCell(int) C++: void DeleteCell(vtkIdType cellId) Mark a point/cell as deleted from this vtkPolyData. V.RemoveDeletedCells() C++: void RemoveDeletedCells() The cells marked by calls to DeleteCell are stored in the Cell Array VTK_EMPTY_CELL, but they still exist in the cell arrays. Calling RemoveDeletedCells will traverse the cell arrays and remove/compact the cell arrays as well as any cell data thus truly removing the cells from the polydata object. V.InsertNextLinkedPoint(int) -> int C++: vtkIdType InsertNextLinkedPoint(int numLinks) V.InsertNextLinkedPoint([float, float, float], int) -> int C++: vtkIdType InsertNextLinkedPoint(double x[3], int numLinks) Add a point to the cell data structure (after cell pointers have been built). This method adds the point and then allocates memory for the links to the cells. (To use this method, make sure points are available and BuildLinks() has been invoked.) Of the two methods below, one inserts a point coordinate and the other just makes room for cell links. V.InsertNextLinkedCell(int, int, [int, ...]) -> int C++: vtkIdType InsertNextLinkedCell(int type, int npts, vtkIdType *pts) Add a new cell to the cell data structure (after cell pointers have been built). This method adds the cell and then updates the links from the points to the cells. (Memory is allocated as necessary.) V.ReplaceLinkedCell(int, int, [int, ...]) C++: void ReplaceLinkedCell(vtkIdType cellId, int npts, vtkIdType *pts) Replace one cell with another in cell structure. This operator updates the connectivity list and the point's link list. It does not delete references to the old cell in the point's link list. Use the operator RemoveCellReference() to delete all references from points to (old) cell. You may also want to consider using the operator ResizeCellList() if the link list is changing size. V.RemoveCellReference(int) C++: void RemoveCellReference(vtkIdType cellId) Remove all references to cell in cell structure. This means the links from the cell's points to the cell are deleted. Memory is not reclaimed. Use the method ResizeCellList() to resize the link list from a point to its using cells. (This operator assumes BuildLinks() has been called.) V.AddCellReference(int) C++: void AddCellReference(vtkIdType cellId) Add references to cell in cell structure. This means the links from the cell's points to the cell are modified. Memory is not extended. Use the method ResizeCellList() to resize the link list from a point to its using cells. (This operator assumes BuildLinks() has been called.) V.RemoveReferenceToCell(int, int) C++: void RemoveReferenceToCell(vtkIdType ptId, vtkIdType cellId) Remove a reference to a cell in a particular point's link list. You may also consider using RemoveCellReference() to remove the references from all the cell's points to the cell. This operator does not reallocate memory; use the operator ResizeCellList() to do this if necessary. V.AddReferenceToCell(int, int) C++: void AddReferenceToCell(vtkIdType ptId, vtkIdType cellId) Add a reference to a cell in a particular point's link list. (You may also consider using AddCellReference() to add the references from all the cell's points to the cell.) This operator does not realloc memory; use the operator ResizeCellList() to do this if necessary. V.ResizeCellList(int, int) C++: void ResizeCellList(vtkIdType ptId, int size) Resize the list of cells using a particular point. (This operator assumes that BuildLinks() has been called.) V.Initialize() C++: void Initialize() override; Restore object to initial state. Release memory back to system. V.GetPiece() -> int C++: virtual int GetPiece() Get the piece and the number of pieces. Similar to extent in 3D. V.GetNumberOfPieces() -> int C++: virtual int GetNumberOfPieces() Get the piece and the number of pieces. Similar to extent in 3D. V.GetGhostLevel() -> int C++: virtual int GetGhostLevel() Get the ghost level. V.RemoveGhostCells() C++: void RemoveGhostCells() This method will remove any cell that is marked as ghost (has the vtkDataSetAttributes::DUPLICATECELL bit set). It does not remove unused points. V.GetData(vtkInformation) -> vtkPolyData C++: static vtkPolyData *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkPolyData C++: static vtkPolyData *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.GetScalarFieldCriticalIndex(int, vtkDataArray) -> int C++: int GetScalarFieldCriticalIndex(vtkIdType pointId, vtkDataArray *scalarField) V.GetScalarFieldCriticalIndex(int, int) -> int C++: int GetScalarFieldCriticalIndex(vtkIdType pointId, int fieldId) V.GetScalarFieldCriticalIndex(int, string) -> int C++: int GetScalarFieldCriticalIndex(vtkIdType pointId, const char *fieldName) V.GetMeshMTime() -> int C++: virtual vtkMTimeType GetMeshMTime() Return the mesh (geometry/topology) modification time. This time is different from the usual MTime which also takes into account the modification of data arrays. This function can be used to track the changes on the mesh separately from the data arrays (eg. static mesh over time with transient data). IntersectConvex2DCellsIntersectPolygonWithPolygonDistanceToPolygonPointInPolygonComputeNormalvtkPolygonComputeCentroidIsConvexGetUseMVCInterpolationNonDegenerateTriangulateBoundedTriangulateSetUseMVCInterpolationParameterizePolygonComputeAreaiPP *d *dvtkPolygon - a cell that represents an n-sided polygon Superclass: vtkCell vtkPolygon is a concrete implementation of vtkCell to represent a 2D n-sided polygon. The polygons cannot have any internal holes, and cannot self-intersect. Define the polygon with n-points ordered in the counter- clockwise direction; do not repeat the last point. vtkCommonDataModelPython.vtkPolygonV.SafeDownCast(vtkObjectBase) -> vtkPolygon C++: static vtkPolygon *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolygon C++: vtkPolygon *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tris, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; V.Triangulate(vtkIdList) -> int C++: int Triangulate(vtkIdList *outTris) See the vtkCell API for descriptions of these methods. V.ComputeArea() -> float C++: double ComputeArea() V.ComputeArea(vtkPoints, int, [int, ...], [float, float, float]) -> float C++: static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]) Compute the area of a polygon. This is a convenience function which simply calls static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]); with the appropriate parameters from the instantiated vtkPolygon. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *sf) override; Compute the interpolation functions/derivatives. (aka shape functions/derivatives) Two interpolation algorithms are available: 1/r^2 and Mean Value Coordinate. The former is used by default. To use the second algorithm, set UseMVCInterpolation to be true. The function assumes the input point lies on the polygon plane without checking that. V.ComputeNormal(vtkPoints, int, [int, ...], [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]) V.ComputeNormal(vtkPoints, [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, double n[3]) V.ComputeNormal(vtkIdTypeArray, vtkPoints, [float, float, float]) C++: static void ComputeNormal(vtkIdTypeArray *ids, vtkPoints *pts, double n[3]) V.ComputeNormal(int, [float, ...], [float, float, float]) C++: static void ComputeNormal(int numPts, double *pts, double n[3]) Computes the unit normal to the polygon. If pts=nullptr, point indexing is assummed to be {0, 1, ..., numPts-1}. V.IsConvex() -> bool C++: bool IsConvex() V.IsConvex(vtkPoints, int, [int, ...]) -> bool C++: static bool IsConvex(vtkPoints *p, int numPts, vtkIdType *pts) V.IsConvex(vtkIdTypeArray, vtkPoints) -> bool C++: static bool IsConvex(vtkIdTypeArray *ids, vtkPoints *p) V.IsConvex(vtkPoints) -> bool C++: static bool IsConvex(vtkPoints *p) Determine whether or not a polygon is convex. This is a convenience function that simply calls static bool IsConvex(int numPts, vtkIdType *pts, vtkPoints *p) with the appropriate parameters from the instantiated vtkPolygon. V.ComputeCentroid(vtkPoints, int, [int, ...], [float, float, float]) -> bool C++: static bool ComputeCentroid(vtkPoints *p, int numPts, vtkIdType *pts, double centroid[3]) V.ComputeCentroid(vtkIdTypeArray, vtkPoints, [float, float, float]) -> bool C++: static bool ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts, double centroid[3]) Compute the centroid of a set of points. Returns false if the computation is invalid (this occurs when numPts=0 or when ids is empty). V.ParameterizePolygon([float, float, float], [float, float, float], float, [float, float, float], float, [float, float, float]) -> int C++: int ParameterizePolygon(double p0[3], double p10[3], double &l10, double p20[3], double &l20, double n[3]) Create a local s-t coordinate system for a polygon. The point p0 is the origin of the local system, p10 is s-axis vector, and p20 is the t-axis vector. (These are expressed in the modeling coordinate system and are vectors of dimension [3].) The values l20 and l20 are the lengths of the vectors p10 and p20, and n is the polygon normal. V.PointInPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> int C++: static int PointInPolygon(double x[3], int numPts, double *pts, double bounds[6], double n[3]) Determine whether point is inside polygon. Function uses ray-casting to determine if point is inside polygon. Works for arbitrary polygon shape (e.g., non-convex). Returns 0 if point is not in polygon; 1 if it is. Can also return -1 to indicate degenerate polygon. V.NonDegenerateTriangulate(vtkIdList) -> int C++: int NonDegenerateTriangulate(vtkIdList *outTris) Same as Triangulate(vtkIdList *outTris) but with a first pass to split the polygon into non-degenerate polygons. V.BoundedTriangulate(vtkIdList, float) -> int C++: int BoundedTriangulate(vtkIdList *outTris, double tol) Triangulate polygon and enforce that the ratio of the smallest triangle area to the polygon area is greater than a user-defined tolerance. The user must provide the vtkIdList outTris. On output, the outTris list contains the ids of the points defining the triangulation. The ids are ordered into groups of three: each three-group defines one triangle. V.DistanceToPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> float C++: static double DistanceToPolygon(double x[3], int numPts, double *pts, double bounds[6], double closest[3]) Compute the distance of a point to a polygon. The closest point on the polygon is also returned. The bounds should be provided to accelerate the computation. V.IntersectPolygonWithPolygon(int, [float, ...], [float, float, float, float, float, float], int, [float, ...], [float, float, float], float, [float, float, float]) -> int C++: static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6], int npts2, double *pts2, double bounds2[3], double tol, double x[3]) Method intersects two polygons. You must supply the number of points and point coordinates (npts, *pts) and the bounding box (bounds) of the two polygons. Also supply a tolerance squared for controlling error. The method returns 1 if there is an intersection, and 0 if not. A single point of intersection x[3] is also returned if there is an intersection. V.IntersectConvex2DCells(vtkCell, vtkCell, float, [float, float, float], [float, float, float]) -> int C++: static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2, double tol, double p0[3], double p1[3]) Intersect two convex 2D polygons to produce a line segment as output. The return status of the methods indicated no intersection (returns 0); a single point of intersection (returns 1); or a line segment (i.e., two points of intersection, returns 2). The points of intersection are returned in the arrays p0 and p1. If less than two points of intersection are generated then p1 and/or p0 may be indeterminiate. Finally, if the two convex polygons are parallel, then "0" is returned (i.e., no intersection) even if the triangles lie on one another. V.GetUseMVCInterpolation() -> bool C++: virtual bool GetUseMVCInterpolation() Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to false by default. V.SetUseMVCInterpolation(bool) C++: virtual void SetUseMVCInterpolation(bool _arg) Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to false by default. VVP *vtkIdTypeArray *vtkPoints *dvtkPolyhedronGetPolyDataIsInsidevtkPolyhedron - a 3D cell defined by a set of polygonal faces Superclass: vtkCell3D vtkPolyhedron is a concrete implementation that represents a 3D cell defined by a set of polygonal faces. The polyhedron should be watertight, non-self-intersecting and manifold (each edge is used twice). Interpolation functions and weights are defined / computed using the method of Mean Value Coordinates (MVC). See the VTK class vtkMeanValueCoordinatesInterpolator for more information. The class does not require the polyhedron to be convex. However, the polygonal faces must be planar. Non-planar polygonal faces will definitely cause problems, especially in severely warped situations. @sa vtkCell3D vtkConvecPointSet vtkMeanValueCoordinatesInterpolator vtkCommonDataModelPython.vtkPolyhedronV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard new methods. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard new methods. V.SafeDownCast(vtkObjectBase) -> vtkPolyhedron C++: static vtkPolyhedron *SafeDownCast(vtkObjectBase *o) Standard new methods. V.NewInstance() -> vtkPolyhedron C++: vtkPolyhedron *NewInstance() Standard new methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *scalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Satisfy the vtkCell API. This method contours the input polyhedron and outputs a polygon. When the result polygon is not planar, it will be triangulated. The current implementation assumes water-tight polyhedron cells. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *scalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Satisfy the vtkCell API. This method clips the input polyhedron and outputs a new polyhedron. The face information of the output polyhedron is encoded in the output vtkCellArray using a special format: CellLength [nCellFaces, nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...]. Use the static method vtkUnstructuredGrid::DecomposePolyhedronCellArray to convert it into a standard format. Note: the algorithm assumes water-tight polyhedron cells. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Satisfy the vtkCell API. The subId is ignored and zero is always returned. The parametric coordinates pcoords are normalized values in the bounding box of the polyhedron. The weights are determined by evaluating the MVC coordinates. The dist is always zero if the point x[3] is inside the polyhedron; otherwise it's the distance to the surface. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; The inverse of EvaluatePosition. Note the weights should be the MVC weights. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect the line (p1,p2) with a given tolerance tol to determine a point of intersection x[3] with parametric coordinate t along the line. The parametric coordinates are returned as well (subId can be ignored). Returns the number of intersection points. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Use vtkOrderedTriangulator to tetrahedralize the polyhedron mesh. This method works well for a convex polyhedron but may return wrong result in a concave case. Once triangulation has been performed, the results are saved in ptIds and pts. The ptIds is a vtkIdList with 4xn number of ids (n is the number of result tetrahedrons). The first 4 represent the point ids of the first tetrahedron, the second 4 represents the point ids of the second tetrahedron and so on. The point ids represent global dataset ids. The points of result tetrahedons are stored in pts. Note that there are 4xm output points (m is the number of points in the original polyhedron). A point may be stored multiple times when it is shared by more than one tetrahedrons. The points stored in pts are ordered the same as they are listed in ptIds. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Computes derivatives at the point specified by the parameter coordinate. Current implementation uses all vertices and subId is not used. To accelerate the speed, the future implementation can triangulate and extract the local tetrahedron from subId and pcoords, then evaluate derivatives on the local tetrahedron. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Find the boundary face closest to the point defined by the pcoords[3] and subId of the cell (subId can be ignored). V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the cell in parametric coordinates. In this cell, the center of the bounding box is returned. V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; A polyhedron is a full-fledged primary cell. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *sf) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives). Here we use the MVC calculation process to compute the interpolation functions. V.InterpolateDerivs([float, float, float], [float, ...]) C++: void InterpolateDerivs(double x[3], double *derivs) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives). Here we use the MVC calculation process to compute the interpolation functions. V.RequiresExplicitFaceRepresentation() -> int C++: int RequiresExplicitFaceRepresentation() override; Methods supporting the definition of faces. Note that the GetFaces() returns a list of faces in vtkCellArray form; use the method GetNumberOfFaces() to determine the number of faces in the list. The SetFaces() method is also in vtkCellArray form, except that it begins with a leading count indicating the total number of faces in the list. V.SetFaces([int, ...]) C++: void SetFaces(vtkIdType *faces) override; Methods supporting the definition of faces. Note that the GetFaces() returns a list of faces in vtkCellArray form; use the method GetNumberOfFaces() to determine the number of faces in the list. The SetFaces() method is also in vtkCellArray form, except that it begins with a leading count indicating the total number of faces in the list. V.GetFaces() -> (int, ...) C++: vtkIdType *GetFaces() override; Methods supporting the definition of faces. Note that the GetFaces() returns a list of faces in vtkCellArray form; use the method GetNumberOfFaces() to determine the number of faces in the list. The SetFaces() method is also in vtkCellArray form, except that it begins with a leading count indicating the total number of faces in the list. V.IsInside([float, float, float], float) -> int C++: int IsInside(double x[3], double tolerance) A method particular to vtkPolyhedron. It determines whether a point x[3] is inside the polyhedron or not (returns 1 is the point is inside, 0 otherwise). The tolerance is expressed in normalized space; i.e., a fraction of the size of the bounding box. V.IsConvex() -> bool C++: bool IsConvex() Determine whether or not a polyhedron is convex. This method is adapted from Devillers et al., "Checking the Convexity of Polytopes and the Planarity of Subdivisions", Computational Geometry, Volume 11, Issues 3 - 4, December 1998, Pages 187 - 208. V.GetPolyData() -> vtkPolyData C++: vtkPolyData *GetPolyData() Construct polydata if no one exist, then return this->PolyData vtkPolyLineGenerateSlidingNormalsvtkPolyLine - cell represents a set of 1D lines Superclass: vtkCell vtkPolyLine is a concrete implementation of vtkCell to represent a set of 1D lines. vtkCommonDataModelPython.vtkPolyLineV.SafeDownCast(vtkObjectBase) -> vtkPolyLine C++: static vtkPolyLine *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolyLine C++: vtkPolyLine *NewInstance() V.GenerateSlidingNormals(vtkPoints, vtkCellArray, vtkDataArray) -> int C++: static int GenerateSlidingNormals(vtkPoints *, vtkCellArray *, vtkDataArray *) V.GenerateSlidingNormals(vtkPoints, vtkCellArray, vtkDataArray, [float, ...]) -> int C++: static int GenerateSlidingNormals(vtkPoints *, vtkCellArray *, vtkDataArray *, double *firstNormal) Given points and lines, compute normals to lines. These are not true normals, they are "orientation" normals used by classes like vtkTubeFilter that control the rotation around the line. The normals try to stay pointing in the same direction as much as possible (i.e., minimal rotation) w.r.t the firstNormal (computed if nullptr). Always returns 1 (success). V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *lines, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the point cloud in parametric coordinates. vtkPolyPlaneGetPolyLineSetPolyLinevtkPolyPlane - Implicit function that is generated by extrusion of a polyline along the Z axis Superclass: vtkImplicitFunction vtkPolyPlane is, as the name suggests, an extrusion of a vtkPolyLine. The extrusion direction is assumed to be the Z vector. It can be used in combination with a vtkCutter to cut a dataset with a polyplane. vtkPolyPlane is a concrete implementation of the abstract class vtkImplicitFunction. @todo Generalize to extrusions along arbitrary directions. vtkCommonDataModelPython.vtkPolyPlaneV.SafeDownCast(vtkObjectBase) -> vtkPolyPlane C++: static vtkPolyPlane *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolyPlane C++: vtkPolyPlane *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate plane equation for point x[3]. V.SetPolyLine(vtkPolyLine) C++: virtual void SetPolyLine(vtkPolyLine *) Set/get point through which plane passes. Plane is defined by point and normal. V.GetPolyLine() -> vtkPolyLine C++: virtual vtkPolyLine *GetPolyLine() Set/get point through which plane passes. Plane is defined by point and normal. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Override GetMTime to include the polyline vtkPolyVertexvtkPolyVertex - cell represents a set of 0D vertices Superclass: vtkCell vtkPolyVertex is a concrete implementation of vtkCell to represent a set of 3D vertices. vtkCommonDataModelPython.vtkPolyVertexV.SafeDownCast(vtkObjectBase) -> vtkPolyVertex C++: static vtkPolyVertex *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolyVertex C++: vtkPolyVertex *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. vtkPyramidvtkPyramid - a 3D cell that represents a linear pyramid Superclass: vtkCell3D vtkPyramid is a concrete implementation of vtkCell to represent a 3D pyramid. A pyramid consists of a rectangular base with four triangular faces. vtkPyramid uses the standard isoparametric shape functions for a linear pyramid. The pyramid is defined by the five points (0-4) where (0,1,2,3) is the base of the pyramid which, using the right hand rule, forms a quadrilaterial whose normal points in the direction of the pyramid apex at vertex #4. The parametric location of vertex #4 is [0, 0, 1]. @sa vtkConvexPointSet vtkHexahedron vtkTetra vtkVoxel vtkWedge vtkCommonDataModelPython.vtkPyramidV.SafeDownCast(vtkObjectBase) -> vtkPyramid C++: static vtkPyramid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPyramid C++: vtkPyramid *NewInstance() V.InterpolationFunctions([float, float, float], [float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[5]) @deprecated Replaced by vtkPyramid::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[15]) @deprecated Replaced by vtkPyramid::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[5]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[15]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) ???vtkQuadvtkQuad - a cell that represents a 2D quadrilateral Superclass: vtkCell vtkQuad is a concrete implementation of vtkCell to represent a 2D quadrilateral. vtkQuad is defined by the four points (0,1,2,3) in counterclockwise order. vtkQuad uses the standard isoparametric interpolation functions for a linear quadrilateral. vtkCommonDataModelPython.vtkQuadV.SafeDownCast(vtkObjectBase) -> vtkQuad C++: static vtkQuad *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuad C++: vtkQuad *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quad using scalar value provided. Like contouring, except that it cuts the quad to produce other quads and/or triangles. V.InterpolationFunctions([float, float, float], [float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double sf[4]) @deprecated Replaced by vtkQuad::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[8]) @deprecated Replaced by vtkQuad::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double sf[4]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.GetEdgeArray(int) -> (int, ...) C++: int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge (`edgeId`). Ids are related to the cell, not to the dataset. vtkQuadraticEdgevtkQuadraticEdge - cell represents a parabolic, isoparametric edge Superclass: vtkNonLinearCell vtkQuadraticEdge is a concrete implementation of vtkNonLinearCell to represent a one-dimensional, 3-nodes, isoparametric parabolic line. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node. The ordering of the three points defining the cell is point ids (0,1,2) where id #2 is the midedge node. @sa vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticWedge vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid vtkCommonDataModelPython.vtkQuadraticEdgeV.SafeDownCast(vtkObjectBase) -> vtkQuadraticEdge C++: static vtkQuadraticEdge *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticEdge C++: vtkQuadraticEdge *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *lines, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this edge using scalar value provided. Like contouring, except that it cuts the edge to produce linear line segments. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic tetra in parametric coordinates. V.InterpolationFunctions([float, float, float], [float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[3]) @deprecated Replaced by vtkQuadraticEdge::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[3]) @deprecated Replaced by vtkQuadraticEdge::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[3]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[3]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkQuadraticHexahedronvtkQuadraticHexahedron - cell represents a parabolic, 20-node isoparametric hexahedron Superclass: vtkNonLinearCell vtkQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 20-node isoparametric parabolic hexahedron. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node. The ordering of the twenty points defining the cell is point ids (0-7,8-19) where point ids 0-7 are the eight corner vertices of the cube; followed by twelve midedge nodes (8-19). Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), (7,4), (0,4), (1,5), (2,6), (3,7). @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge vtkCommonDataModelPython.vtkQuadraticHexahedronV.SafeDownCast(vtkObjectBase) -> vtkQuadraticHexahedron C++: static vtkQuadraticHexahedron *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticHexahedron C++: vtkQuadraticHexahedron *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic hexahedron using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[20]) @deprecated Replaced by vtkQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[60]) @deprecated Replaced by vtkQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[20]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[60]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkQuadraticLinearQuadvtkQuadraticLinearQuad - cell represents a quadratic-linear, 6-node isoparametric quad Superclass: vtkNonLinearCell vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to represent a two-dimensional, 6-node isoparametric quadratic-linear quadrilateral element. The interpolation is the standard finite element, quadratic-linear isoparametric shape function. The cell includes a mid-edge node for two of the four edges. The ordering of the six points defining the cell are point ids (0-3,4-5) where ids 0-3 define the four corner vertices of the quad; ids 4-7 define the midedge nodes (0,1) and (2,3) . @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. vtkCommonDataModelPython.vtkQuadraticLinearQuadV.SafeDownCast(vtkObjectBase) -> vtkQuadraticLinearQuad C++: static vtkQuadraticLinearQuad *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticLinearQuad C++: vtkQuadraticLinearQuad *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic linear quad using scalar value provided. Like contouring, except that it cuts the quad to produce linear triangles. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[6]) @deprecated Replaced by vtkQuadraticLinearQuad::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[12]) @deprecated Replaced by vtkQuadraticLinearQuad::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[6]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[12]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.GetEdgeArray(int) -> (int, ...) C++: static int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge (`edgeId`). Ids are related to the cell, not to the dataset. vtkQuadraticLinearWedgevtkQuadraticLinearWedge - cell represents a, 12-node isoparametric wedge Superclass: vtkNonLinearCell vtkQuadraticLinearWedge is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 12-node isoparametric linear quadratic wedge. The interpolation is the standard finite element, quadratic isoparametric shape function in xy - layer and the linear functions in z - direction. The cell includes mid-edge node in the triangle edges. The ordering of the 12 points defining the cell is point ids (0-5,6-12) where point ids 0-5 are the six corner vertices of the wedge; followed by six midedge nodes (6-12). Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3). The Edges (0,3), (1,4), (2,5) don't have midedge nodes. @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. vtkCommonDataModelPython.vtkQuadraticLinearWedgeV.SafeDownCast(vtkObjectBase) -> vtkQuadraticLinearWedge C++: static vtkQuadraticLinearWedge *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkQuadraticLinearWedge C++: vtkQuadraticLinearWedge *NewInstance() V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic linear wedge using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic linear wedge in parametric coordinates. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[15]) @deprecated Replaced by vtkQuadraticLinearWedge::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[45]) @deprecated Replaced by vtkQuadraticLinearWedge::InterpolateDerivs as of VTK 5.2 vtkQuadraticPolygonvtkQuadraticPolygon - a cell that represents a parabolic n-sided polygon Superclass: vtkNonLinearCell vtkQuadraticPolygon is a concrete implementation of vtkNonLinearCell to represent a 2D n-sided (2*n nodes) parabolic polygon. The polygon cannot have any internal holes, and cannot self-intersect. The cell includes a mid-edge node for each of the n edges of the cell. The ordering of the 2*n points defining the cell are point ids (0..n-1 and n..2*n-1) where ids 0..n-1 define the corner vertices of the polygon; ids n..2*n-1 define the midedge nodes. Define the polygon with points ordered in the counter- clockwise direction; do not repeat the last point. @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid vtkCommonDataModelPython.vtkQuadraticPolygonV.SafeDownCast(vtkObjectBase) -> vtkQuadraticPolygon C++: static vtkQuadraticPolygon *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticPolygon C++: vtkQuadraticPolygon *NewInstance() V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells). V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *weights) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.ComputeCentroid(vtkIdTypeArray, vtkPoints, [float, float, float]) C++: static void ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts, double centroid[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.ParameterizePolygon([float, float, float], [float, float, float], float, [float, float, float], float, [float, float, float]) -> int C++: int ParameterizePolygon(double p0[3], double p10[3], double &l10, double p20[3], double &l20, double n[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.PointInPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> int C++: static int PointInPolygon(double x[3], int numPts, double *pts, double bounds[6], double n[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.Triangulate(vtkIdList) -> int C++: int Triangulate(vtkIdList *outTris) V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.NonDegenerateTriangulate(vtkIdList) -> int C++: int NonDegenerateTriangulate(vtkIdList *outTris) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.DistanceToPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> float C++: static double DistanceToPolygon(double x[3], int numPts, double *pts, double bounds[6], double closest[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.IntersectPolygonWithPolygon(int, [float, ...], [float, float, float, float, float, float], int, [float, ...], [float, float, float], float, [float, float, float]) -> int C++: static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6], int npts2, double *pts2, double bounds2[3], double tol, double x[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.IntersectConvex2DCells(vtkCell, vtkCell, float, [float, float, float], [float, float, float]) -> int C++: static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2, double tol, double p0[3], double p1[3]) These methods are based on the vtkPolygon ones : the vtkQuadraticPolygon (with n edges and 2*n points) is transform into a vtkPolygon (with 2*n edges and 2*n points) and the vtkPolygon methods are called. V.GetUseMVCInterpolation() -> bool C++: virtual bool GetUseMVCInterpolation() Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to true by default. V.SetUseMVCInterpolation(bool) C++: virtual void SetUseMVCInterpolation(bool _arg) Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to true by default. vtkQuadraticPyramidvtkQuadraticPyramid - cell represents a parabolic, 13-node isoparametric pyramid Superclass: vtkNonLinearCell vtkQuadraticPyramid is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 13-node isoparametric parabolic pyramid. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node. The ordering of the thirteen points defining the cell is point ids (0-4,5-12) where point ids 0-4 are the five corner vertices of the pyramid; followed by eight midedge nodes (5-12). Note that these midedge nodes lie on the edges defined by (0,1), (1,2), (2,3), (3,0), (0,4), (1,4), (2,4), (3,4), respectively. The parametric location of vertex #4 is [0, 0, 1]. @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticWedge @par Thanks: The shape functions and derivatives could be implemented thanks to the report Pyramid Solid Elements Linear and Quadratic Iso-P Models From Center For Aerospace Structures vtkCommonDataModelPython.vtkQuadraticPyramidV.SafeDownCast(vtkObjectBase) -> vtkQuadraticPyramid C++: static vtkQuadraticPyramid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticPyramid C++: vtkQuadraticPyramid *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tets, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic triangle using scalar value provided. Like contouring, except that it cuts the triangle to produce linear triangles. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic pyramid in parametric coordinates. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[13]) @deprecated Replaced by vtkQuadraticPyramid::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[39]) @deprecated Replaced by vtkQuadraticPyramid::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[13]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[39]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) ؉؉?؉؉?؉؉?vtkQuadraticQuadvtkQuadraticQuad - cell represents a parabolic, 8-node isoparametric quad Superclass: vtkNonLinearCell vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to represent a two-dimensional, 8-node isoparametric parabolic quadrilateral element. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node for each of the four edges of the cell. The ordering of the eight points defining the cell are point ids (0-3,4-7) where ids 0-3 define the four corner vertices of the quad; ids 4-7 define the midedge nodes (0,1), (1,2), (2,3), (3,0). @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid vtkCommonDataModelPython.vtkQuadraticQuadV.SafeDownCast(vtkObjectBase) -> vtkQuadraticQuad C++: static vtkQuadraticQuad *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticQuad C++: vtkQuadraticQuad *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic quad using scalar value provided. Like contouring, except that it cuts the quad to produce linear triangles. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[8]) @deprecated Replaced by vtkQuadraticQuad::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[16]) @deprecated Replaced by vtkQuadraticQuad::InterpolateDerivs as of VTK 5.2 V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[16]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkQuadraticTetravtkQuadraticTetra - cell represents a parabolic, 10-node isoparametric tetrahedron Superclass: vtkNonLinearCell vtkQuadraticTetra is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 10-node, isoparametric parabolic tetrahedron. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node on each of the size edges of the tetrahedron. The ordering of the ten points defining the cell is point ids (0-3,4-9) where ids 0-3 are the four tetra vertices; and point ids 4-9 are the midedge nodes between (0,1), (1,2), (2,0), (0,3), (1,3), and (2,3). Note that this class uses an internal linear tesselation for some internal operations (e.g., clipping and contouring). This means that some artifacts may appear trying to represent a non-linear interpolation function with linear tets. @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticWedge vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid vtkCommonDataModelPython.vtkQuadraticTetraV.SafeDownCast(vtkObjectBase) -> vtkQuadraticTetra C++: static vtkQuadraticTetra *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticTetra C++: vtkQuadraticTetra *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this edge using scalar value provided. Like contouring, except that it cuts the tetra to produce new tetras. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[10]) @deprecated Replaced by vtkQuadraticTetra::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[30]) @deprecated Replaced by vtkQuadraticTetra::InterpolateDerivs as of VTK 5.2 vtkQuadraticTrianglevtkQuadraticTriangle - cell represents a parabolic, isoparametric triangle Superclass: vtkNonLinearCell vtkQuadraticTriangle is a concrete implementation of vtkNonLinearCell to represent a two-dimensional, 6-node, isoparametric parabolic triangle. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes three mid-edge nodes besides the three triangle vertices. The ordering of the three points defining the cell is point ids (0-2,3-5) where id #3 is the midedge node between points (0,1); id #4 is the midedge node between points (1,2); and id #5 is the midedge node between points (2,0). @sa vtkQuadraticEdge vtkQuadraticTetra vtkQuadraticPyramid vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticWedge vtkCommonDataModelPython.vtkQuadraticTriangleV.SafeDownCast(vtkObjectBase) -> vtkQuadraticTriangle C++: static vtkQuadraticTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticTriangle C++: vtkQuadraticTriangle *NewInstance() V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[6]) @deprecated Replaced by vtkQuadraticTriangle::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[12]) @deprecated Replaced by vtkQuadraticTriangle::InterpolateDerivs as of VTK 5.2 vtkQuadraticWedgevtkQuadraticWedge - cell represents a parabolic, 15-node isoparametric wedge Superclass: vtkNonLinearCell vtkQuadraticWedge is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 15-node isoparametric parabolic wedge. The interpolation is the standard finite element, quadratic isoparametric shape function. The cell includes a mid-edge node. The ordering of the fifteen points defining the cell is point ids (0-5,6-14) where point ids 0-5 are the six corner vertices of the wedge, defined analogously to the six points in vtkWedge (points (0,1,2) form the base of the wedge which, using the right hand rule, forms a triangle whose normal points away from the triangular face (3,4,5)); followed by nine midedge nodes (6-14). Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3), (1,4), (2,5). @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid vtkCommonDataModelPython.vtkQuadraticWedgeV.SafeDownCast(vtkObjectBase) -> vtkQuadraticWedge C++: static vtkQuadraticWedge *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadraticWedge C++: vtkQuadraticWedge *NewInstance() V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[15]) @deprecated Replaced by vtkQuadraticWedge::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[45]) @deprecated Replaced by vtkQuadraticWedge::InterpolateDerivs as of VTK 5.2 QUADRATURE_OFFSET_ARRAY_NAMEDICTIONARYGetQuadratureKeyGetNumberOfQuadraturePointsGetQuadratureWeightsGetShapeFunctionWeightsvtkQuadratureSchemeDefinition - An Elemental data type that holds a definition of a numerical quadrature scheme. Superclass: vtkObject The definition contains the requisite information to interpolate to the so called quadrature points of the specific scheme. namely: 1) A matrix of shape function weights(shape functions evaluated at parametric coordinates of the quadrature points). 2) The number of quadrature points and cell nodes. These parameters size the matrix, and allow for convinent evaluation by users of the definition. vtkCommonDataModelPython.vtkQuadratureSchemeDefinitionV.SafeDownCast(vtkObjectBase) -> vtkQuadratureSchemeDefinition C++: static vtkQuadratureSchemeDefinition *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkQuadratureSchemeDefinition C++: vtkQuadratureSchemeDefinition *NewInstance() V.DICTIONARY() -> vtkInformationQuadratureSchemeDefinitionVectorKey C++: static vtkInformationQuadratureSchemeDefinitionVectorKey *DICTIONARY( ) V.QUADRATURE_OFFSET_ARRAY_NAME() -> vtkInformationStringKey C++: static vtkInformationStringKey *QUADRATURE_OFFSET_ARRAY_NAME( ) V.DeepCopy(vtkQuadratureSchemeDefinition) -> int C++: int DeepCopy(const vtkQuadratureSchemeDefinition *other) Deep copy. V.SaveState(vtkXMLDataElement) -> int C++: int SaveState(vtkXMLDataElement *e) Put the object into an XML representation. The element passed in is assumed to be empty. V.RestoreState(vtkXMLDataElement) -> int C++: int RestoreState(vtkXMLDataElement *e) Restore the object from an XML representation. V.Clear() C++: void Clear() Release all allocated resources and set the object to an unitialized state. V.Initialize(int, int, int, [float, ...]) C++: void Initialize(int cellType, int numberOfNodes, int numberOfQuadraturePoints, double *shapeFunctionWeights) V.Initialize(int, int, int, [float, ...], [float, ...]) C++: void Initialize(int cellType, int numberOfNodes, int numberOfQuadraturePoints, double *shapeFunctionWeights, double *quadratureWeights) Initialize the object allocating resources as needed. V.GetCellType() -> int C++: int GetCellType() Access the VTK cell type id. V.GetQuadratureKey() -> int C++: int GetQuadratureKey() Access to an alternative key. V.GetNumberOfNodes() -> int C++: int GetNumberOfNodes() Get the number of nodes associated with the interpolation. V.GetNumberOfQuadraturePoints() -> int C++: int GetNumberOfQuadraturePoints() Get the number of quadrature points associated with the scheme. V.GetShapeFunctionWeights() -> (float, ...) C++: const double *GetShapeFunctionWeights() V.GetShapeFunctionWeights(int) -> (float, ...) C++: const double *GetShapeFunctionWeights(int quadraturePointId) Get the array of shape function weights. Shape function weights are the shape functions evaluated at the quadrature points. There are "NumberOfNodes" weights for each quadrature point. V.GetQuadratureWeights() -> (float, ...) C++: const double *GetQuadratureWeights() Access to the quadrature weights. GetCoefficientsSetCoefficientsvtkQuadric - evaluate implicit quadric function Superclass: vtkImplicitFunction vtkQuadric evaluates the quadric function F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x + a7*y + a8*z + a9. vtkQuadric is a concrete implementation of vtkImplicitFunction. vtkCommonDataModelPython.vtkQuadricV.SafeDownCast(vtkObjectBase) -> vtkQuadric C++: static vtkQuadric *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkQuadric C++: vtkQuadric *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate quadric equation. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate the gradient to the quadric equation. V.SetCoefficients([float, float, float, float, float, float, float, float, float, float]) C++: void SetCoefficients(double a[10]) V.SetCoefficients(float, float, float, float, float, float, float, float, float, float) C++: void SetCoefficients(double a0, double a1, double a2, double a3, double a4, double a5, double a6, double a7, double a8, double a9) Set / get the 10 coefficients of the quadric equation. V.GetCoefficients() -> (float, float, float, float, float, float, float, float, float, float) C++: double *GetCoefficients() Set / get the 10 coefficients of the quadric equation. vtkRectilinearGridvtkRectilinearGrid - a dataset that is topologically regular with variable spacing in the three coordinate directions Superclass: vtkDataSet vtkRectilinearGrid is a data object that is a concrete implementation of vtkDataSet. vtkRectilinearGrid represents a geometric structure that is topologically regular with variable spacing in the three coordinate directions x-y-z. To define a vtkRectilinearGrid, you must specify the dimensions of the data and provide three arrays of values specifying the coordinates along the x-y-z axes. The coordinate arrays are specified using three vtkDataArray objects (one for x, one for y, one for z). @warning Make sure that the dimensions of the grid match the number of coordinates in the x-y-z directions. If not, unpredictable results (including program failure) may result. Also, you must supply coordinates in all three directions, even if the dataset topology is 2D, 1D, or 0D. vtkCommonDataModelPython.vtkRectilinearGridV.SafeDownCast(vtkObjectBase) -> vtkRectilinearGrid C++: static vtkRectilinearGrid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkRectilinearGrid C++: vtkRectilinearGrid *NewInstance() V.CopyStructure(vtkDataSet) C++: void CopyStructure(vtkDataSet *ds) override; Copy the geometric and topological structure of an input rectilinear grid object. V.GetPoint(int) -> (float, float, float) C++: double *GetPoint(vtkIdType ptId) override; V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType id, double x[3]) override; V.GetPoint(int, int, int, [float, float, float]) C++: void GetPoint(const int i, const int j, const int k, double p[3]) Standard vtkDataSet API methods. See vtkDataSet for more information. V.FindPoint(float, float, float) -> int C++: vtkIdType FindPoint(double x, double y, double z) V.FindPoint([float, float, float]) -> int C++: vtkIdType FindPoint(double x[3]) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetPoints(vtkPoints) C++: void GetPoints(vtkPoints *pnts) Given a user-supplied vtkPoints container object, this method fills in all the points of the RectilinearGrid. V.SetDimensions(int, int, int) C++: void SetDimensions(int i, int j, int k) V.SetDimensions([int, int, int]) C++: void SetDimensions(int dim[3]) Set dimensions of rectilinear grid dataset. This also sets the extent. V.GetDimensions() -> (int, int, int) C++: int *GetDimensions() Get dimensions of this rectilinear grid dataset. V.GetDataDimension() -> int C++: int GetDataDimension() Return the dimensionality of the data. V.ComputeStructuredCoordinates([float, float, float], [int, int, int], [float, float, float]) -> int C++: int ComputeStructuredCoordinates(double x[3], int ijk[3], double pcoords[3]) Convenience function computes the structured coordinates for a point x[3]. The cell is specified by the array ijk[3], and the parametric coordinates in the cell are specified with pcoords[3]. The function returns a 0 if the point x is outside of the grid, and a 1 if inside the grid. V.ComputePointId([int, int, int]) -> int C++: vtkIdType ComputePointId(int ijk[3]) Given a location in structured coordinates (i-j-k), return the point id. V.ComputeCellId([int, int, int]) -> int C++: vtkIdType ComputeCellId(int ijk[3]) Given a location in structured coordinates (i-j-k), return the cell id. V.SetXCoordinates(vtkDataArray) C++: virtual void SetXCoordinates(vtkDataArray *) Specify the grid coordinates in the x-direction. V.GetXCoordinates() -> vtkDataArray C++: virtual vtkDataArray *GetXCoordinates() Specify the grid coordinates in the x-direction. V.SetYCoordinates(vtkDataArray) C++: virtual void SetYCoordinates(vtkDataArray *) Specify the grid coordinates in the y-direction. V.GetYCoordinates() -> vtkDataArray C++: virtual vtkDataArray *GetYCoordinates() Specify the grid coordinates in the y-direction. V.SetZCoordinates(vtkDataArray) C++: virtual void SetZCoordinates(vtkDataArray *) Specify the grid coordinates in the z-direction. V.GetZCoordinates() -> vtkDataArray C++: virtual vtkDataArray *GetZCoordinates() Specify the grid coordinates in the z-direction. V.SetExtent([int, int, int, int, int, int]) C++: void SetExtent(int extent[6]) V.SetExtent(int, int, int, int, int, int) C++: void SetExtent(int x1, int x2, int y1, int y2, int z1, int z2) Different ways to set the extent of the data array. The extent should be set before the "Scalars" are set or allocated. The Extent is stored in the order (X, Y, Z). V.GetExtentType() -> int C++: int GetExtentType() override; Structured extent. The extent type is a 3D extent V.Crop((int, ...)) C++: void Crop(const int *updateExtent) override; Reallocates and copies to set the Extent to the UpdateExtent. This is used internally when the exact extent is requested, and the source generated more than the update extent. V.GetData(vtkInformation) -> vtkRectilinearGrid C++: static vtkRectilinearGrid *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkRectilinearGrid C++: static vtkRectilinearGrid *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkReebGraphBuildCloseStreamSimplifyStreamTriangleStreamTetrahedronERR_NOT_A_SIMPLICIAL_MESH@Vk *vtkPolyData@Vk *vtkUnstructuredGrid@Vz *vtkPolyData@Vz *vtkUnstructuredGridvtkReebGraphSimplificationMetricvtkReebGraph - Reeb graph computation for PL scalar fields. Superclass: vtkMutableDirectedGraph vtkReebGraph is a class that computes a Reeb graph given a PL scalar field (vtkDataArray) defined on a simplicial mesh. A Reeb graph is a concise representation of the connectivity evolution of the level sets of a scalar function. It is particularly useful in visualization (optimal seed set computation, fast flexible isosurface extraction, automated transfer function design, feature-driven visualization, etc.) and computer graphics (shape deformation, shape matching, shape compression, etc.). Reference: "Sur les points singuliers d'une forme de Pfaff completement integrable ou d'une fonction numerique", G. Reeb, Comptes-rendus de l'Academie des Sciences, 222:847-849, 1946. vtkReebGraph implements one of the latest and most robust Reeb graph computation algorithms. Reference: "Robust on-line computation of Reeb graphs: simplicity and speed", V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, ACM Transactions on Graphics, Proc. of SIGGRAPH 2007. vtkReebGraph provides methods for computing multi-resolution topological hierarchies through topological simplification. Topoligical simplification can be either driven by persistence homology concepts (default behavior) or by application specific metrics (see vtkReebGraphSimplificationMetric). In the latter case, designing customized simplification metric evaluation algorithms enables the user to control the definition of what should be considered as noise or signal in the topological filtering process. References: "Topological persistence and simplification", H. Edelsbrunner, D. Letscher, and A. Zomorodian, Discrete Computational Geometry, 28:511-533, 2002. "Extreme elevation on a 2-manifold", P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, ACM Symposium on Computational Geometry, pp. 357-365, 2004. "Simplifying flexible isosurfaces using local geometric measures", H. Carr, J. Snoeyink, M van de Panne, IEEE Visualization, 497-504, 2004 "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees", J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184, 2009. Reeb graphs can be computed from 2D data (vtkPolyData, with triangles only) or 3D data (vtkUnstructuredGrid, with tetrahedra only), sequentially (see the "Build" calls) or in streaming (see the "StreamTriangle" and "StreamTetrahedron" calls). vtkReebGraph inherits from vtkMutableDirectedGraph. Each vertex of a vtkReebGraph object represents a critical point of the scalar field where the connectivity of the related level set changes (creation, deletion, split or merge of connected components). A vtkIdTypeArray (called "Vertex Ids") is associated with the VertexData of a vtkReebGraph object, in order to retrieve if necessary the exact Ids of the corresponding vertices in the input mesh. The edges of a vtkReebGraph object represent the regions of the input mesh separated by the critical contours of the field, and where the connectivity of the input field does not change. A vtkVariantArray is associated with the EdgeDta of a vtkReebGraph object and each entry of this array is a vtkAbstractArray containing the Ids of the vertices of those regions, sorted by function value (useful for flexible isosurface extraction or level set signature computation, for instance). See Graphics/Testing/Cxx/TestReebGraph.cxx for examples of traversals and typical usages (customized simplification, skeletonization, contour spectra, etc.) of a vtkReebGraph object. @sa vtkReebGraphSimplificationMetric vtkPolyDataToReebGraphFilter vtkUnstructuredGridToReebGraphFilter vtkReebGraphSimplificationFilter vtkReebGraphSurfaceSkeletonFilter vtkReebGraphVolumeSkeletonFilter vtkAreaContourSpectrumFilter vtkVolumeContourSpectrumFilter @par Tests: Graphics/Testing/Cxx/TestReebGraph.cxx vtkCommonDataModelPython.vtkReebGraphV.SafeDownCast(vtkObjectBase) -> vtkReebGraph C++: static vtkReebGraph *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkReebGraph C++: vtkReebGraph *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return class name of data type. This is one of VTK_STRUCTURED_GRID, VTK_STRUCTURED_POINTS, VTK_UNSTRUCTURED_GRID, VTK_POLY_DATA, or VTK_RECTILINEAR_GRID (see vtkSetGet.h for definitions). THIS METHOD IS THREAD SAFE V.Build(vtkPolyData, vtkDataArray) -> int C++: int Build(vtkPolyData *mesh, vtkDataArray *scalarField) V.Build(vtkUnstructuredGrid, vtkDataArray) -> int C++: int Build(vtkUnstructuredGrid *mesh, vtkDataArray *scalarField) V.Build(vtkPolyData, int) -> int C++: int Build(vtkPolyData *mesh, vtkIdType scalarFieldId) V.Build(vtkUnstructuredGrid, int) -> int C++: int Build(vtkUnstructuredGrid *mesh, vtkIdType scalarFieldId) V.Build(vtkPolyData, string) -> int C++: int Build(vtkPolyData *mesh, const char *scalarFieldName) V.Build(vtkUnstructuredGrid, string) -> int C++: int Build(vtkUnstructuredGrid *mesh, const char *scalarFieldName) Build the Reeb graph of the field 'scalarField' defined on the surface mesh 'mesh'. * Returned values: * vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many * tuples as 'mesh' has vertices. * vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a * simplicial mesh (for example, the surface mesh contains quads instead of * triangles). V.StreamTriangle(int, float, int, float, int, float) -> int C++: int StreamTriangle(vtkIdType vertex0Id, double scalar0, vtkIdType vertex1Id, double scalar1, vtkIdType vertex2Id, double scalar2) Streaming Reeb graph computation. Add to the streaming computation the triangle of the vtkPolyData surface mesh described by vertex0Id, scalar0 vertex1Id, scalar1 vertex2Id, scalar2 * where vertexId is the Id of the vertex in the vtkPolyData structure * and scalaris the corresponding scalar field value. * IMPORTANT: The stream _must_ be finalized with the "CloseStream" call. V.StreamTetrahedron(int, float, int, float, int, float, int, float) -> int C++: int StreamTetrahedron(vtkIdType vertex0Id, double scalar0, vtkIdType vertex1Id, double scalar1, vtkIdType vertex2Id, double scalar2, vtkIdType vertex3Id, double scalar3) Streaming Reeb graph computation. Add to the streaming computation the tetrahedra of the vtkUnstructuredGrid volume mesh described by vertex0Id, scalar0 vertex1Id, scalar1 vertex2Id, scalar2 vertex3Id, scalar3 * where vertexId is the Id of the vertex in the vtkUnstructuredGrid * structure and scalaris the corresponding scalar field value. * IMPORTANT: The stream _must_ be finalized with the "CloseStream" call. V.CloseStream() C++: void CloseStream() Finalize internal data structures, in the case of streaming computations (with StreamTriangle or StreamTetrahedron). After this call, no more triangle or tetrahedron can be inserted via StreamTriangle or StreamTetrahedron. IMPORTANT: This method _must_ be called when the input stream is finished. If you need to get a snapshot of the Reeb graph during the streaming process (to parse or simplify it), do a DeepCopy followed by a CloseStream on the copy. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Deep copies the data object into this graph. If it is an incompatible graph, reports an error. V.Simplify(float, vtkReebGraphSimplificationMetric) -> int C++: int Simplify(double simplificationThreshold, vtkReebGraphSimplificationMetric *simplificationMetric) Simplify the Reeb graph given a threshold 'simplificationThreshold' (between 0 and 1). * This method is the core feature for Reeb graph multi-resolution hierarchy * construction. * Return the number of arcs that have been removed through the simplification * process. * 'simplificationThreshold' represents a "scale", under which each Reeb graph * feature is considered as noise. 'simplificationThreshold' is expressed as a * fraction of the scalar field overall span. It can vary from 0 * (no simplification) to 1 (maximal simplification). * 'simplificationMetric' is an object in charge of evaluating the importance * of a Reeb graph arc at each step of the simplification process. * if 'simplificationMetric' is nullptr, the default strategy (persitence of the * scalar field) is used. * Customized simplification metric evaluation algorithm can be designed (see * vtkReebGraphSimplificationMetric), enabling the user to control the * definition of what should be considered as noise or signal. * References: * "Topological persistence and simplification", * H. Edelsbrunner, D. Letscher, and A. Zomorodian, * Discrete Computational Geometry, 28:511-533, 2002. * "Extreme elevation on a 2-manifold", * P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, * ACM Symposium on Computational Geometry, pp. 357-365, 2004. * "Simplifying flexible isosurfaces using local geometric measures", * H. Carr, J. Snoeyink, M van de Panne, * IEEE Visualization, 497-504, 2004 * "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees", * J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, * IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184,2009. V.Set(vtkMutableDirectedGraph) C++: void Set(vtkMutableDirectedGraph *g) Use a pre-defined Reeb graph (post-processing). Use with caution! @VV *vtkPolyData *vtkDataArray@VV *vtkUnstructuredGrid *vtkDataArrayGetLowerBoundGetUpperBoundSetLowerBoundSetUpperBoundComputeMetricvtkReebGraphSimplificationMetric - abstract class for custom Reeb graph simplification metric design. Superclass: vtkObject This class makes it possible to design customized simplification metric evaluation algorithms, enabling the user to control the definition of what should be considered as noise or signal in the topological filtering process. References: "Topological persistence and simplification", H. Edelsbrunner, D. Letscher, and A. Zomorodian, Discrete Computational Geometry, 28:511-533, 2002. "Extreme elevation on a 2-manifold", P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, ACM Symposium on Computational Geometry, pp. 357-365, 2004. "Simplifying flexible isosurfaces using local geometric measures", H. Carr, J. Snoeyink, M van de Panne, IEEE Visualization, 497-504, 2004 "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees", J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184, 2009. See Graphics/Testing/Cxx/TestReebGraph.cxx for an example of concrete implemetnation. vtkCommonDataModelPython.vtkReebGraphSimplificationMetricV.SafeDownCast(vtkObjectBase) -> vtkReebGraphSimplificationMetric C++: static vtkReebGraphSimplificationMetric *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkReebGraphSimplificationMetric C++: vtkReebGraphSimplificationMetric *NewInstance() V.SetLowerBound(float) C++: virtual void SetLowerBound(double _arg) Set the lowest possible value for the custom metric space. This value can be set prior to launching the Reeb graph simplification and then used inside the ComputeMetric call to make sure the returned value of ComputeMetric call is indeed between 0 and 1. V.GetLowerBound() -> float C++: virtual double GetLowerBound() Set the lowest possible value for the custom metric space. This value can be set prior to launching the Reeb graph simplification and then used inside the ComputeMetric call to make sure the returned value of ComputeMetric call is indeed between 0 and 1. V.SetUpperBound(float) C++: virtual void SetUpperBound(double _arg) Set the highest possible value for the custom metric space. This value can be set prior to launching the Reeb graph simplification and then used inside the ComputeMetric call to make sure the returned value of ComputeMetric call is indeed between 0 and 1. V.GetUpperBound() -> float C++: virtual double GetUpperBound() Set the highest possible value for the custom metric space. This value can be set prior to launching the Reeb graph simplification and then used inside the ComputeMetric call to make sure the returned value of ComputeMetric call is indeed between 0 and 1. V.ComputeMetric(vtkDataSet, vtkDataArray, int, vtkAbstractArray, int) -> float C++: virtual double ComputeMetric(vtkDataSet *mesh, vtkDataArray *field, vtkIdType startCriticalPoint, vtkAbstractArray *vertexList, vtkIdType endCriticalPoint) Function to implement in your simplification metric algorithm. Given the input mesh and the Ids of the vertices living on the Reeb graph arc to consider for removal, you should return a value between 0 and 1 (the smallest the more likely the arc will be removed, depending on the user-defined simplification threshold). SubtractRemoveNodeRemoveAllNodesAddNodeGetNode@V *vtkSelection@V *vtkSelectionNodevtkSelection - A node in a selection tree. Superclass: vtkDataObject Used to store selection results. vtkSelection is a collection of vtkSelectionNode objects, each of which contains information about a piece of the whole selection. Each selection node may contain different types of selections. @sa vtkSelectionNode vtkCommonDataModelPython.vtkSelectionV.SafeDownCast(vtkObjectBase) -> vtkSelection C++: static vtkSelection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSelection C++: vtkSelection *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Returns VTK_SELECTION enumeration value. V.GetNumberOfNodes() -> int C++: unsigned int GetNumberOfNodes() Returns the number of nodes in this selection. Each node contains information about part of the selection. V.GetNode(int) -> vtkSelectionNode C++: virtual vtkSelectionNode *GetNode(unsigned int idx) Returns a node given it's index. Performs bound checking and will return 0 if out-of-bounds. V.AddNode(vtkSelectionNode) C++: virtual void AddNode(vtkSelectionNode *) Adds a selection node. V.RemoveNode(int) C++: virtual void RemoveNode(unsigned int idx) V.RemoveNode(vtkSelectionNode) C++: virtual void RemoveNode(vtkSelectionNode *) Removes a selection node. V.RemoveAllNodes() C++: virtual void RemoveAllNodes() Removes a selection node. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Copy selection nodes of the input. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *src) override; Copy selection nodes of the input. This is a shallow copy: selection lists and pointers in the properties are passed by reference. V.Union(vtkSelection) C++: virtual void Union(vtkSelection *selection) V.Union(vtkSelectionNode) C++: virtual void Union(vtkSelectionNode *node) Union this selection with the specified selection. Attempts to reuse selection nodes in this selection if properties match exactly. Otherwise, creates new selection nodes. V.Subtract(vtkSelection) C++: virtual void Subtract(vtkSelection *selection) V.Subtract(vtkSelectionNode) C++: virtual void Subtract(vtkSelectionNode *node) Remove the nodes from the specified selection from this selection. Assumes that selection node internal arrays are vtkIdTypeArrays. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Return the MTime taking into account changes to the properties V.Dump() C++: virtual void Dump() Dumps the contents of the selection, giving basic information only. V.GetData(vtkInformation) -> vtkSelection C++: static vtkSelection *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkSelection C++: static vtkSelection *GetData(vtkInformationVector *v, int i=0) Retrieve a vtkSelection stored inside an invormation object. INDEXED_VERTICESHIERARCHICAL_INDEXHIERARCHICAL_LEVELCOMPOSITE_INDEXPROCESS_IDPROP_IDPROPSOURCE_IDSOURCEPIXEL_COUNTINVERSECOMPONENT_NUMBERCONTAINING_CELLSEPSILONFIELD_TYPECONTENT_TYPEGetSelectionDataGetPropertiesUnionSelectionListSubtractSelectionListGetQueryStringEqualPropertiesSetQueryStringSelectionContentSelectionFieldGetFieldTypeSetFieldTypeGetContentTypeSetContentTypeSetSelectionDataGetSelectionListSetSelectionListSELECTIONSVALUESINDICESFRUSTUMLOCATIONSTHRESHOLDSBLOCKSQUERYUSERConvertAttributeTypeToSelectionFieldConvertSelectionFieldToAttributeTypevtkSelectionNode - A node in a selection tree. Superclass: vtkObject Used to store selection results. vtkSelectionNode stores selection parameters for a selection (or part of a selection). It stores a list of properties (in a vtkInformation) and a list of selection values (in a vtkAbstractArray). The properties provide information about what the selection values mean. For example the CONTENT_TYPE property gives information about what is stored by the node. If the CONTENT_TYPE is GLOBALIDS, the SelectionList array should contain a list of cell or point ids, which identify the particular cells or points that have matching values in the GLOBALID vtkDataSetAttribute array. If the CONTENT_TYPE is PEDIGREEIDS, the SelectionList array should contain a list of cell or point ids, which identify the particular cells or points that have matching values in the PEDIGREEID vtkDataSetAttribute array. The FIELD_TYPE property designates whether the selection refers to cells or points. Usually, each node under the root is a selection from one data object. SOURCE or SOURCE_ID properties point to this object. If the selection was performed on a renderer, PROP or PROP_ID point to the prop the selection was made on. Selection nodes corresponding to composite datasets may contain child nodes. Each child node of a composite dataset should have COMPOSITE_INDEX set. This is the flat-index to identify a node with in the composite dataset to which the selection applies. @warning No SelectionList is created by default. It should be assigned. vtkCommonDataModelPython.vtkSelectionNodeV.SafeDownCast(vtkObjectBase) -> vtkSelectionNode C++: static vtkSelectionNode *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSelectionNode C++: vtkSelectionNode *NewInstance() V.SetSelectionList(vtkAbstractArray) C++: virtual void SetSelectionList(vtkAbstractArray *) Sets the selection list. V.GetSelectionList() -> vtkAbstractArray C++: virtual vtkAbstractArray *GetSelectionList() Sets the selection list. V.SetSelectionData(vtkDataSetAttributes) C++: virtual void SetSelectionData(vtkDataSetAttributes *data) Sets the selection table. V.GetSelectionData() -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetSelectionData() Sets the selection table. V.GetProperties() -> vtkInformation C++: virtual vtkInformation *GetProperties() Returns the property map. V.DeepCopy(vtkSelectionNode) C++: virtual void DeepCopy(vtkSelectionNode *src) Copy properties, selection list and children of the input. V.ShallowCopy(vtkSelectionNode) C++: virtual void ShallowCopy(vtkSelectionNode *src) Copy properties, selection list and children of the input. This is a shallow copy: selection lists and pointers in the properties are passed by reference. V.CONTENT_TYPE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *CONTENT_TYPE() Get the (primary) property that describes the content of a selection node's data. This key takes on values from the SelectionContent enum. GetContentType() returns -1 if the content type is not set. \sa vtkSelectionNode::SelectionContent V.SetContentType(int) C++: virtual void SetContentType(int type) Get or set the content type of the selection. This is the same as setting the CONTENT_TYPE() key on the property. V.GetContentType() -> int C++: virtual int GetContentType() Get or set the content type of the selection. This is the same as setting the CONTENT_TYPE() key on the property. V.FIELD_TYPE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *FIELD_TYPE() Controls whether cell, point, or field data determine what is inside and out. The default is CELL. Vertex and edge types are also available for graph classes. GetFieldType() returns -1 if the field type is not set. V.SetFieldType(int) C++: virtual void SetFieldType(int type) Get or set the field type of the selection. This is the same as setting the FIELD_TYPE() key on the property. V.GetFieldType() -> int C++: virtual int GetFieldType() Get or set the field type of the selection. This is the same as setting the FIELD_TYPE() key on the property. V.ConvertSelectionFieldToAttributeType(int) -> int C++: static int ConvertSelectionFieldToAttributeType(int val) Methods to convert vtkSelectionNode::SelectionField to vtkDataSetAttribute::AttributeTypes and vice-versa. V.ConvertAttributeTypeToSelectionField(int) -> int C++: static int ConvertAttributeTypeToSelectionField(int val) Methods to convert vtkSelectionNode::SelectionField to vtkDataSetAttribute::AttributeTypes and vice-versa. V.SetQueryString(string) C++: virtual void SetQueryString(const char *_arg) Set/Get the query expression string. V.GetQueryString() -> string C++: virtual char *GetQueryString() Set/Get the query expression string. V.EPSILON() -> vtkInformationDoubleKey C++: static vtkInformationDoubleKey *EPSILON() For location selection of points, if distance is greater than this reject. V.CONTAINING_CELLS() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *CONTAINING_CELLS() This flag tells the extraction filter, when FIELD_TYPE==POINT, that it should also extract the cells that contain any of the extracted points. V.COMPONENT_NUMBER() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *COMPONENT_NUMBER() When ContentType==THRESHOLDS or ContentType==VALUES i.e. threshold and value based selections, it is possible pick the component number using this key. If none is specified, the 0th component is used. If any number less than 0 is specified, then the magnitude is used. V.INVERSE() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *INVERSE() This flag tells the extraction filter to exclude the selection. V.PIXEL_COUNT() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *PIXEL_COUNT() A helper for visible cell selector, this is the number of pixels covered by the actor whose cells are listed in the selection. V.SOURCE() -> vtkInformationObjectBaseKey C++: static vtkInformationObjectBaseKey *SOURCE() Pointer to the data or algorithm the selection belongs to. V.SOURCE_ID() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *SOURCE_ID() ID of the data or algorithm the selection belongs to. What ID means is application specific. V.PROP() -> vtkInformationObjectBaseKey C++: static vtkInformationObjectBaseKey *PROP() Pointer to the prop the selection belongs to. V.PROP_ID() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *PROP_ID() ID of the prop the selection belongs to. What ID means is application specific. V.PROCESS_ID() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *PROCESS_ID() Process id the selection is on. V.COMPOSITE_INDEX() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *COMPOSITE_INDEX() Used to identify a node in composite datasets. V.HIERARCHICAL_LEVEL() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *HIERARCHICAL_LEVEL() Used to identify a dataset in a hiererchical box dataset. V.HIERARCHICAL_INDEX() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *HIERARCHICAL_INDEX() Used to identify a dataset in a hiererchical box dataset. V.INDEXED_VERTICES() -> vtkInformationIntegerKey C++: static vtkInformationIntegerKey *INDEXED_VERTICES() This key is used when making visible vertex selection. It means that the cell ID selection has data about which vertices for each cell are visible. V.UnionSelectionList(vtkSelectionNode) C++: void UnionSelectionList(vtkSelectionNode *other) Merges the selection list between self and the other. Assumes that both has identical properties. V.SubtractSelectionList(vtkSelectionNode) C++: void SubtractSelectionList(vtkSelectionNode *other) Subtracts the items in the selection list, other, from this selection list. Assumes that both selections have identical properties (i.e., test with EqualProperties before using). V.EqualProperties(vtkSelectionNode, bool) -> bool C++: bool EqualProperties(vtkSelectionNode *other, bool fullcompare=true) Compares Properties of self and other to ensure that they are exactly same. vtkCommonDataModelPython.vtkSelectionNode.SelectionFieldvtkCommonDataModelPython.vtkSelectionNode.SelectionContentvtkSimpleCellTessellatorGetFixedSubdivisionsGetMaxSubdivisionLevelGetMaxAdaptiveSubdivisionsSetFixedSubdivisionsSetMaxSubdivisionLevelSetSubdivisionLevelsvtkSimpleCellTessellator - helper class to perform cell tessellation Superclass: vtkGenericCellTessellator vtkSimpleCellTessellator is a helper class to perform adaptive tessellation of particular cell topologies. The major purpose for this class is to transform higher-order cell types (e.g., higher-order finite elements) into linear cells that can then be easily visualized by VTK. This class works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell classes. This algorithm is based on edge subdivision. An error metric along each edge is evaluated, and if the error is greater than some tolerance, the edge is subdivided (as well as all connected 2D and 3D cells). The process repeats until the error metric is satisfied. Since the algorithm is based on edge subdivision it inherently avoid T-junctions. A significant issue addressed by this algorithm is to insure face compatibility across neigboring cells. That is, diagonals due to face triangulation must match to insure that the mesh is compatible. The algorithm employs a precomputed table to accelerate the tessellation process. The table was generated with the help of vtkOrderedTriangulator the basic idea is that the choice of diagonal is made only by considering the relative value of the point ids. @sa vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkAttributesErrorMetric vtkGeometricErrorMetric vtkViewDependentErrorMetric vtkCommonDataModelPython.vtkSimpleCellTessellatorV.SafeDownCast(vtkObjectBase) -> vtkSimpleCellTessellator C++: static vtkSimpleCellTessellator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkSimpleCellTessellator C++: vtkSimpleCellTessellator *NewInstance() V.GetGenericCell() -> vtkGenericAdaptorCell C++: virtual vtkGenericAdaptorCell *GetGenericCell() Get the higher order cell in order to access the evaluation function. V.TessellateFace(vtkGenericAdaptorCell, vtkGenericAttributeCollection, int, vtkDoubleArray, vtkCellArray, vtkPointData) C++: void TessellateFace(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkIdType index, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) override; Tessellate a face of a 3D `cell'. The face is specified by the index value. The result is a set of smaller linear triangles in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==3 \pre valid_index_range: (index>=0) && (indexGetNumberOfBoundaries(2)) \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 V.Tessellate(vtkGenericAdaptorCell, vtkGenericAttributeCollection, vtkDoubleArray, vtkCellArray, vtkPointData) C++: void Tessellate(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) override; Tessellate a 3D `cell'. The result is a set of smaller linear tetrahedra in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==3 \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 V.Triangulate(vtkGenericAdaptorCell, vtkGenericAttributeCollection, vtkDoubleArray, vtkCellArray, vtkPointData) C++: void Triangulate(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) override; Triangulate a 2D `cell'. The result is a set of smaller linear triangles in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==2 \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 V.Reset() C++: void Reset() Reset the output for repeated use of this class. V.Initialize(vtkGenericDataSet) C++: void Initialize(vtkGenericDataSet *ds) override; Initialize the tessellator with a data set `ds'. V.GetFixedSubdivisions() -> int C++: int GetFixedSubdivisions() Return the number of fixed subdivisions. It is used to prevent from infinite loop in degenerated cases. For order 3 or higher, if the inflection point is exactly on the mid-point, error metric will not detect that a subdivision is required. 0 means no fixed subdivision: there will be only adaptive subdivisions. * The algorithm first performs `GetFixedSubdivisions' non adaptive * subdivisions followed by at most `GetMaxAdaptiveSubdivisions' adaptive * subdivisions. Hence, there are at most `GetMaxSubdivisionLevel' * subdivisions. * \post positive_result: result>=0 && result<=GetMaxSubdivisionLevel() V.GetMaxSubdivisionLevel() -> int C++: int GetMaxSubdivisionLevel() Return the maximum level of subdivision. It is used to prevent from infinite loop in degenerated cases. For order 3 or higher, if the inflection point is exactly on the mid-point, error metric will not detect that a subdivision is required. 0 means no subdivision, neither fixed nor adaptive. \post positive_result: result>=GetFixedSubdivisions() V.GetMaxAdaptiveSubdivisions() -> int C++: int GetMaxAdaptiveSubdivisions() Return the maximum number of adaptive subdivisions. \post valid_result: result==GetMaxSubdivisionLevel()-GetFixedSubdivisions() V.SetFixedSubdivisions(int) C++: void SetFixedSubdivisions(int level) Set the number of fixed subdivisions. See GetFixedSubdivisions() for more explanations. \pre positive_level: level>=0 && level<=GetMaxSubdivisionLevel() \post is_set: GetFixedSubdivisions()==level V.SetMaxSubdivisionLevel(int) C++: void SetMaxSubdivisionLevel(int level) Set the maximum level of subdivision. See GetMaxSubdivisionLevel() for more explanations. \pre positive_level: level>=GetFixedSubdivisions() \post is_set: level==GetMaxSubdivisionLevel() V.SetSubdivisionLevels(int, int) C++: void SetSubdivisionLevels(int fixed, int maxLevel) Set both the number of fixed subdivisions and the maximum level of subdivisions. See GetFixedSubdivisions(), GetMaxSubdivisionLevel() and GetMaxAdaptiveSubdivisions() for more explanations. \pre positive_fixed: fixed>=0 \pre valid_range: fixed<=maxLevel \post fixed_is_set: fixed==GetFixedSubdivisions() \post maxLevel_is_set: maxLevel==GetMaxSubdivisionLevel() vtkSmoothErrorMetricGetAngleToleranceSetAngleTolerancevtkSmoothErrorMetric - Objects that compute geometry-based error during cell tessellation according to some max angle. Superclass: vtkGenericSubdivisionErrorMetric It is a concrete error metric, based on a geometric criterium: a max angle between the chord passing through the midpoint and one of the endpoints and the other chord passing through the midpoint and the other endpoint of the edge. It is related to the flatness of an edge. @sa vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkCommonDataModelPython.vtkSmoothErrorMetricV.SafeDownCast(vtkObjectBase) -> vtkSmoothErrorMetric C++: static vtkSmoothErrorMetric *SafeDownCast(vtkObjectBase *o) Standard VTK type and error macros. V.NewInstance() -> vtkSmoothErrorMetric C++: vtkSmoothErrorMetric *NewInstance() Standard VTK type and error macros. V.GetAngleTolerance() -> float C++: double GetAngleTolerance() Return the flatness threshold. \post positive_result: result>90 && result<180 V.SetAngleTolerance(float) C++: void SetAngleTolerance(double value) Set the flatness threshold with an angle in degrees. Internally compute the cosine. value is supposed to be in ]90,180[, if not it is clamped in [90.1,179.9]. For instance 178 will give better result than 150. V.RequiresEdgeSubdivision([float, ...], [float, ...], [float, ...], float) -> int C++: int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Does the edge need to be subdivided according to the cosine between the two chords passing through the mid-point and the endpoints? The edge is defined by its `leftPoint' and its `rightPoint'. `leftPoint', `midPoint' and `rightPoint' have to be initialized before calling RequiresEdgeSubdivision(). Their format is global coordinates, parametric coordinates and point centered attributes: xyx rst abc de... `alpha' is the normalized abscissa of the midpoint along the edge. (close to 0 means close to the left point, close to 1 means close to the right point) \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 vtkSortFieldDataSortvtkSortDataArrayvtkSortFieldData - provides a method for sorting field data Superclass: vtkSortDataArray vtkSortFieldData is used to sort data, based on its value, or with an associated key, into either ascending or descending order. This is useful for operations like selection, or analysis, when evaluating and processing data. This class, which extends the base functionality of vtkSortDataArray, is used to sort field data and its various subclasses (vtkFieldData, vtkDataSetAttributes, vtkPointData, vtkCellData, etc.) @warning This class has been threaded with vtkSMPTools. Using TBB or other non-sequential type (set in the CMake variable VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly on multi-core machines. @warning The sort methods below are static, hence the sorting methods can be used without instantiating the class. All methods are thread safe. @sa vtkSortDataArray vtkCommonDataModelPython.vtkSortFieldDataV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard VTK methods for instantiating, managing type, and printing information about this class. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard VTK methods for instantiating, managing type, and printing information about this class. V.SafeDownCast(vtkObjectBase) -> vtkSortFieldData C++: static vtkSortFieldData *SafeDownCast(vtkObjectBase *o) Standard VTK methods for instantiating, managing type, and printing information about this class. V.NewInstance() -> vtkSortFieldData C++: vtkSortFieldData *NewInstance() Standard VTK methods for instantiating, managing type, and printing information about this class. V.Sort(vtkFieldData, string, int, int) -> (int, ...) C++: static vtkIdType *Sort(vtkFieldData *fd, const char *arrayName, int k, int returnIndices) V.Sort(vtkFieldData, string, int, int, int) -> (int, ...) C++: static vtkIdType *Sort(vtkFieldData *fd, const char *arrayName, int k, int returnIndices, int dir) Given field data (and derived classes such as point data and cell data), sort all the arrays in the field data given an array and a component number k from that array. In other words, if an array has n components, the kth component is used to sort the array and all of the other arrays in the field data. Also note that the user can indicate whether the function returns the sort indices (returnIndices=1). If the indices are returned, then the user takes ownership of the data and must delete it. Note that the indices are in sorted (ascending) order, and indicate the final sorted position of the sort. So for example indices[0]=10 indicates that the original data in position 10 in the field, was moved to position 0 after the sort. By default, returnIndices=0. (Other notes: if any array is not the same length as the sorting array, then it will be skipped and not sorted.) ComputeBoundingSpherevtkSpherevtkSphere - implicit function for a sphere Superclass: vtkImplicitFunction vtkSphere computes the implicit function and/or gradient for a sphere. vtkSphere is a concrete implementation of vtkImplicitFunction. Additional methods are available for sphere-related computations, such as computing bounding spheres for a set of points, or set of spheres. vtkCommonDataModelPython.vtkSphereV.SafeDownCast(vtkObjectBase) -> vtkSphere C++: static vtkSphere *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSphere C++: vtkSphere *NewInstance() V.EvaluateFunction([float, float, float]) -> float C++: double EvaluateFunction(double x[3]) override; V.EvaluateFunction(vtkDataArray, vtkDataArray) C++: virtual void EvaluateFunction(vtkDataArray *input, vtkDataArray *output) V.EvaluateFunction(float, float, float) -> float C++: virtual double EvaluateFunction(double x, double y, double z) Evaluate sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2. V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double n[3]) override; Evaluate sphere gradient. V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set / get the radius of the sphere. The default is 0.5. V.GetRadius() -> float C++: virtual double GetRadius() Set / get the radius of the sphere. The default is 0.5. V.GetCenter() -> (float, float, float) C++: double *GetCenter() Set / get the center of the sphere. The default is (0,0,0). V.ComputeBoundingSphere([float, ...], int, [float, float, float, float], [int, int]) C++: static void ComputeBoundingSphere(double *pts, vtkIdType numPts, double sphere[4], vtkIdType hints[2]) Create a bounding sphere from a set of points. The set of points is defined by an array of doubles, in the order of x-y-z (which repeats for each point). An optional hints array provides a guess for the initial bounding sphere; the two values in the hints array are the two points expected to be the furthest apart. The output sphere consists of a center (x-y-z) and a radius. vtkSplineGetLeftConstraintMinValueGetLeftConstraintMaxValueGetRightConstraintMinValueGetRightConstraintMaxValueComputeGetRightConstraintGetLeftConstraintGetRightValueGetLeftValueGetClosedGetClampValueSetRightValueSetLeftValueSetClampValueSetClosedClampValueOffClampValueOnClosedOffClosedOnSetLeftConstraintSetRightConstraintGetParametricRangeSetParametricRangevtkSpline - spline abstract class for interpolating splines Superclass: vtkObject vtkSpline interpolates a set of data points (i.e., interpolation means that the spline passes through the points). vtkSpline is an abstract class: its subclasses vtkCardinalSpline and vtkKochanekSpline do the interpolation. Note that this spline maps the 1D parametric coordinate t into a single value x. Thus if you want to use the spline to interpolate points (i.e. x[3]), you have to create three splines for each of the x-y-z coordinates. Fortunately, the vtkParametricSpline class does this for you. Typically a spline is used by adding a sequence of parametric coordinate / data (t,x) values followed by use of an evaluation function (e.g., vtkCardinalSpline::Evaluate()). Since these splines are 1D, a point in this context is an independent / dependent variable pair. Splines can also be set up to be closed or open. Closed splines continue from the last point to the first point with continuous function and derivative values. (You don't need to duplicate the first point to close the spline, just set ClosedOn.) This implementation of splines does not use a normalized parametric coordinate. If the spline is open, then the parameter space is (tMin <= t <= tMax) where tMin and tMax are the minimum and maximum parametric values seen when performing AddPoint(). If the spline is closed, then the parameter space is (tMin <= t <= (tMax+1)) where tMin and tMax are the minimum and maximum parametric values seen when performing AddPoint(). Note, however, that this behavior can be changed by explicitly setting the ParametricRange(tMin,tMax). If set, the parameter space remains (tMin <= t <= tMax), except that additions of data with parametric values outside this range are clamped within this range. @sa vtkCardinalSpline vtkKochanekSpline vtkParametricSpline vtkParametricFunctionSource vtkCommonDataModelPython.vtkSplineV.SafeDownCast(vtkObjectBase) -> vtkSpline C++: static vtkSpline *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSpline C++: vtkSpline *NewInstance() V.SetParametricRange(float, float) C++: void SetParametricRange(double tMin, double tMax) V.SetParametricRange([float, float]) C++: void SetParametricRange(double tRange[2]) Set/Get the parametric range. If not set, the range is determined implicitly by keeping track of the (min,max) parameter values for t. If set, the AddPoint() method will clamp the t value to lie within the specified range. V.GetParametricRange([float, float]) C++: void GetParametricRange(double tRange[2]) Set/Get the parametric range. If not set, the range is determined implicitly by keeping track of the (min,max) parameter values for t. If set, the AddPoint() method will clamp the t value to lie within the specified range. V.SetClampValue(int) C++: virtual void SetClampValue(int _arg) Set/Get ClampValue. If On, results of the interpolation will be clamped to the min/max of the input data. V.GetClampValue() -> int C++: virtual int GetClampValue() Set/Get ClampValue. If On, results of the interpolation will be clamped to the min/max of the input data. V.ClampValueOn() C++: virtual void ClampValueOn() Set/Get ClampValue. If On, results of the interpolation will be clamped to the min/max of the input data. V.ClampValueOff() C++: virtual void ClampValueOff() Set/Get ClampValue. If On, results of the interpolation will be clamped to the min/max of the input data. V.Compute() C++: virtual void Compute() Compute the coefficients for the spline. V.Evaluate(float) -> float C++: virtual double Evaluate(double t) Interpolate the value of the spline at parametric location of t. V.GetNumberOfPoints() -> int C++: int GetNumberOfPoints() Return the number of points inserted thus far. V.AddPoint(float, float) C++: void AddPoint(double t, double x) Add a pair of points to be fit with the spline. V.RemovePoint(float) C++: void RemovePoint(double t) Remove a point from the data to be fit with the spline. V.RemoveAllPoints() C++: void RemoveAllPoints() Remove all points from the data. V.SetClosed(int) C++: virtual void SetClosed(int _arg) Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.GetClosed() -> int C++: virtual int GetClosed() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.ClosedOn() C++: virtual void ClosedOn() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.ClosedOff() C++: virtual void ClosedOff() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. V.SetLeftConstraint(int) C++: virtual void SetLeftConstraint(int _arg) Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetLeftConstraintMinValue() -> int C++: virtual int GetLeftConstraintMinValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetLeftConstraintMaxValue() -> int C++: virtual int GetLeftConstraintMaxValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetLeftConstraint() -> int C++: virtual int GetLeftConstraint() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.SetRightConstraint(int) C++: virtual void SetRightConstraint(int _arg) Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetRightConstraintMinValue() -> int C++: virtual int GetRightConstraintMinValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetRightConstraintMaxValue() -> int C++: virtual int GetRightConstraintMaxValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.GetRightConstraint() -> int C++: virtual int GetRightConstraint() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. V.SetLeftValue(float) C++: virtual void SetLeftValue(double _arg) The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.GetLeftValue() -> float C++: virtual double GetLeftValue() The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.SetRightValue(float) C++: virtual void SetRightValue(double _arg) The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.GetRightValue() -> float C++: virtual double GetRightValue() The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Return the MTime also considering the Piecewise function. V.DeepCopy(vtkSpline) C++: virtual void DeepCopy(vtkSpline *s) Deep copy of spline data. vtkStaticCellLinksvtkStaticCellLinks - object represents upward pointers from points to list of cells using each point Superclass: vtkAbstractCellLinks vtkStaticCellLinks is a supplemental object to vtkCellArray and vtkCellTypes, enabling access from points to the cells using the points. vtkStaticCellLinks is an array of links, each link represents a list of cell ids using a particular point. The information provided by this object can be used to determine neighbors and construct other local topological information. This class is a faster implementation of vtkCellLinks. However, it cannot be incrementally constructed; it is meant to be constructed once (statically) and must be rebuilt if the cells change. @warning This is a drop-in replacement for vtkCellLinks using static link construction. It uses the templated vtkStaticCellLinksTemplate class, instantiating vtkStaticCellLinksTemplate with a vtkIdType template parameter. Note that for best performance, the vtkStaticCellLinksTemplate class may be used directly, instantiating it with the appropriate id type. This class is also wrappable and can be used from an interpreted language such as Python. @sa vtkCellLinks vtkStaticCellLinksTemplate vtkCommonDataModelPython.vtkStaticCellLinksV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard methods for instantiation, type manipulation and printing. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard methods for instantiation, type manipulation and printing. V.SafeDownCast(vtkObjectBase) -> vtkStaticCellLinks C++: static vtkStaticCellLinks *SafeDownCast(vtkObjectBase *o) Standard methods for instantiation, type manipulation and printing. V.NewInstance() -> vtkStaticCellLinks C++: vtkStaticCellLinks *NewInstance() Standard methods for instantiation, type manipulation and printing. V.BuildLinks(vtkDataSet) C++: void BuildLinks(vtkDataSet *ds) override; Build the link list array. Satisfy the superclass API. V.GetNumberOfCells(int) -> int C++: vtkIdType GetNumberOfCells(vtkIdType ptId) Get the number of cells using the point specified by ptId. V.GetNcells(int) -> int C++: unsigned short GetNcells(vtkIdType ptId) Get the number of cells using the point specified by ptId. This is an alias for GetNumberOfCells(); consistent with the vtkCellLinks API. V.GetCells(int) -> (int, ...) C++: const vtkIdType *GetCells(vtkIdType ptId) Return a list of cell ids using the specified point. V.Initialize() C++: void Initialize() Make sure any previously created links are cleaned up. vtkStaticCellLocatorGetLargeIdsGetMaxNumberOfBucketsMinValueGetMaxNumberOfBucketsMaxValueGetMaxNumberOfBucketsSetMaxNumberOfBucketsvtkStaticCellLocator - perform fast cell location operations Superclass: vtkAbstractCellLocator vtkStaticCellLocator is a type of vtkAbstractCellLocator that accelerates certain operations when performing spatial operations on cells. These operations include finding a point that contains a cell, and intersecting cells with a line. vtkStaticCellLocator is an accelerated version of vtkCellLocator. It is threaded (via vtkSMPTools), and supports one-time static construction (i.e., incremental cell insertion is not supported). @warning This class is templated. It may run slower than serial execution if the code is not optimized during compilation. Build in Release or ReleaseWithDebugInfo. @warning This class *always* caches cell bounds. @sa vtkLocator vakAbstractCellLocator vtkCellLocator vtkCellTreeLocator vtkModifiedBSPTree vtkCommonDataModelPython.vtkStaticCellLocatorV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard methods to instantiate, print and obtain type-related information. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard methods to instantiate, print and obtain type-related information. V.SafeDownCast(vtkObjectBase) -> vtkStaticCellLocator C++: static vtkStaticCellLocator *SafeDownCast(vtkObjectBase *o) Standard methods to instantiate, print and obtain type-related information. V.NewInstance() -> vtkStaticCellLocator C++: vtkStaticCellLocator *NewInstance() Standard methods to instantiate, print and obtain type-related information. V.GetDivisions() -> (int, int, int) C++: int *GetDivisions() Set the number of divisions in x-y-z directions. If the Automatic data member is enabled, the Divisions are set according to the NumberOfCellsPerNode and MaxNumberOfBuckets data members. The number of divisions must be >= 1 in each direction. V.FindCell([float, float, float], float, vtkGenericCell, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double pos[3], double, vtkGenericCell *cell, double pcoords[3], double *weights) override; V.FindCell([float, float, float]) -> int C++: vtkIdType FindCell(double x[3]) override; Test a point to find if it is inside a cell. Returns the cellId if inside or -1 if not. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int, int, vtkGenericCell) -> int C++: int IntersectWithLine(double a0[3], double a1[3], double tol, double &t, double x[3], double pcoords[3], int &subId, vtkIdType &cellId, vtkGenericCell *cell) override; V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int, int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId, vtkIdType &cellId) override; V.IntersectWithLine((float, float, float), (float, float, float), vtkPoints, vtkIdList) -> int C++: int IntersectWithLine(const double p1[3], const double p2[3], vtkPoints *points, vtkIdList *cellIds) override; Return intersection point (if any) AND the cell which was intersected by the finite line. The cell is returned as a cell id and as a generic cell. V.SetMaxNumberOfBuckets(int) C++: virtual void SetMaxNumberOfBuckets(vtkIdType _arg) Set the maximum number of buckets in the locator. By default the value is set to VTK_INT_MAX. Note that there are significant performance implications at work here. If the number of buckets is set very large (meaning > VTK_INT_MAX) then internal sorting may be performed using 64-bit integers (which is much slower than using a 32-bit int). Of course, memory requirements may dramatically increase as well. It is recommended that the default value be used; but for extremely large data it may be desired to create a locator with an exceptionally large number of buckets. Note also that during initialization of the locator if the MaxNumberOfBuckets threshold is exceeded, the Divisions are scaled down in such a way as not to exceed the MaxNumberOfBuckets proportionally to the size of the bounding box in the x-y-z directions. V.GetMaxNumberOfBucketsMinValue() -> int C++: virtual vtkIdType GetMaxNumberOfBucketsMinValue() Set the maximum number of buckets in the locator. By default the value is set to VTK_INT_MAX. Note that there are significant performance implications at work here. If the number of buckets is set very large (meaning > VTK_INT_MAX) then internal sorting may be performed using 64-bit integers (which is much slower than using a 32-bit int). Of course, memory requirements may dramatically increase as well. It is recommended that the default value be used; but for extremely large data it may be desired to create a locator with an exceptionally large number of buckets. Note also that during initialization of the locator if the MaxNumberOfBuckets threshold is exceeded, the Divisions are scaled down in such a way as not to exceed the MaxNumberOfBuckets proportionally to the size of the bounding box in the x-y-z directions. V.GetMaxNumberOfBucketsMaxValue() -> int C++: virtual vtkIdType GetMaxNumberOfBucketsMaxValue() Set the maximum number of buckets in the locator. By default the value is set to VTK_INT_MAX. Note that there are significant performance implications at work here. If the number of buckets is set very large (meaning > VTK_INT_MAX) then internal sorting may be performed using 64-bit integers (which is much slower than using a 32-bit int). Of course, memory requirements may dramatically increase as well. It is recommended that the default value be used; but for extremely large data it may be desired to create a locator with an exceptionally large number of buckets. Note also that during initialization of the locator if the MaxNumberOfBuckets threshold is exceeded, the Divisions are scaled down in such a way as not to exceed the MaxNumberOfBuckets proportionally to the size of the bounding box in the x-y-z directions. V.GetMaxNumberOfBuckets() -> int C++: virtual vtkIdType GetMaxNumberOfBuckets() Set the maximum number of buckets in the locator. By default the value is set to VTK_INT_MAX. Note that there are significant performance implications at work here. If the number of buckets is set very large (meaning > VTK_INT_MAX) then internal sorting may be performed using 64-bit integers (which is much slower than using a 32-bit int). Of course, memory requirements may dramatically increase as well. It is recommended that the default value be used; but for extremely large data it may be desired to create a locator with an exceptionally large number of buckets. Note also that during initialization of the locator if the MaxNumberOfBuckets threshold is exceeded, the Divisions are scaled down in such a way as not to exceed the MaxNumberOfBuckets proportionally to the size of the bounding box in the x-y-z directions. V.GetLargeIds() -> bool C++: bool GetLargeIds() Inform the user as to whether large ids are being used. This flag only has meaning after the locator has been built. Large ids are used when the number of binned points, or the number of bins, is >= the maximum number of buckets (specified by the user). Note that LargeIds are only available on 64-bit architectures. vtkStaticPointLocatorGetNumberOfPointsInBucketGetBucketIdsvtkStaticPointLocator - quickly locate points in 3-space Superclass: vtkAbstractPointLocator vtkStaticPointLocator is a spatial search object to quickly locate points in 3D. vtkStaticPointLocator works by dividing a specified region of space into a regular array of cuboid buckets, and then keeping a list of points that lie in each bucket. Typical operation involves giving a position in 3D and finding the closest point; or finding the N closest points. vtkStaticPointLocator is an accelerated version of vtkPointLocator. It is threaded (via vtkSMPTools), and supports one-time static construction (i.e., incremental point insertion is not supported). If you need to incrementally insert points, use the vtkPointLocator or its kin to do so. @warning This class is templated. It may run slower than serial execution if the code is not optimized during compilation. Build in Release or ReleaseWithDebugInfo. @warning Make sure that you review the documentation for the superclasses vtkAbstactPointLocator and vtkLocator. In particular the Automatic data member can be used to automatically determine divisions based on the average number of points per bucket. @warning Other types of spatial locators have been developed such as octrees and kd-trees. These are often more efficient for the operations described here. @sa vtkPointLocator vtkCellLocator vtkLocator vtkAbstractPointLocator vtkCommonDataModelPython.vtkStaticPointLocatorV.SafeDownCast(vtkObjectBase) -> vtkStaticPointLocator C++: static vtkStaticPointLocator *SafeDownCast(vtkObjectBase *o) Standard type and print methods. V.NewInstance() -> vtkStaticPointLocator C++: vtkStaticPointLocator *NewInstance() Standard type and print methods. V.SetNumberOfPointsPerBucket(int) C++: virtual void SetNumberOfPointsPerBucket(int _arg) Specify the average number of points in each bucket. This data member is used in conjunction with the Automatic data member (if enabled) to determine the number of locator x-y-z divisions. V.GetNumberOfPointsPerBucketMinValue() -> int C++: virtual int GetNumberOfPointsPerBucketMinValue() Specify the average number of points in each bucket. This data member is used in conjunction with the Automatic data member (if enabled) to determine the number of locator x-y-z divisions. V.GetNumberOfPointsPerBucketMaxValue() -> int C++: virtual int GetNumberOfPointsPerBucketMaxValue() Specify the average number of points in each bucket. This data member is used in conjunction with the Automatic data member (if enabled) to determine the number of locator x-y-z divisions. V.GetNumberOfPointsPerBucket() -> int C++: virtual int GetNumberOfPointsPerBucket() Specify the average number of points in each bucket. This data member is used in conjunction with the Automatic data member (if enabled) to determine the number of locator x-y-z divisions. V.GetDivisions() -> (int, int, int) C++: int *GetDivisions() Set the number of divisions in x-y-z directions. If the Automatic data member is enabled, the Divisions are set according to the NumberOfPointsPerBucket and MaxNumberOfBuckets data members. The number of divisions must be >= 1 in each direction. V.FindClosestPoint((float, float, float)) -> int C++: vtkIdType FindClosestPoint(const double x[3]) override; V.FindClosestPoint(float, float, float) -> int C++: vtkIdType FindClosestPoint(double x, double y, double z) Given a position x, return the id of the point closest to it. An alternative method (defined in the superclass) requires separate x-y-z values. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindClosestPointWithinRadius(float, (float, float, float), float) -> int C++: vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double &dist2) override; V.FindClosestPointWithinRadius(float, (float, float, float), float, float) -> int C++: virtual vtkIdType FindClosestPointWithinRadius(double radius, const double x[3], double inputDataLength, double &dist2) Given a position x and a radius r, return the id of the point closest to the point in that radius. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. dist2 returns the squared distance to the point. Note that if multiple points are located the same distance away, the actual point returned is a function in which order the points are processed (i.e., indeterminate). V.FindClosestNPoints(int, (float, float, float), vtkIdList) C++: void FindClosestNPoints(int N, const double x[3], vtkIdList *result) override; V.FindClosestNPoints(int, float, float, float, vtkIdList) C++: void FindClosestNPoints(int N, double x, double y, double z, vtkIdList *result) Find the closest N points to a position. This returns the closest N points to a position. A faster method could be created that returned N close points to a position, but necessarily the exact N closest. The returned points are sorted from closest to farthest. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.FindPointsWithinRadius(float, (float, float, float), vtkIdList) C++: void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result) override; V.FindPointsWithinRadius(float, float, float, float, vtkIdList) C++: void FindPointsWithinRadius(double R, double x, double y, double z, vtkIdList *result) Find all points within a specified radius R of position x. The result is not sorted in any specific manner. These methods are thread safe if BuildLocator() is directly or indirectly called from a single thread first. V.Initialize() C++: void Initialize() override; See vtkLocator and vtkAbstractPointLocator interface documentation. These methods are not thread safe. V.FreeSearchStructure() C++: void FreeSearchStructure() override; See vtkLocator and vtkAbstractPointLocator interface documentation. These methods are not thread safe. V.BuildLocator() C++: void BuildLocator() override; See vtkLocator and vtkAbstractPointLocator interface documentation. These methods are not thread safe. V.GenerateRepresentation(int, vtkPolyData) C++: void GenerateRepresentation(int level, vtkPolyData *pd) override; Populate a polydata with the faces of the bins that potentially contain cells. Note that the level parameter has no effect on this method as there is no hierarchy built (i.e., uniform binning). Typically this is used for debugging. V.GetNumberOfPointsInBucket(int) -> int C++: vtkIdType GetNumberOfPointsInBucket(vtkIdType bNum) Given a bucket number bNum between 0 <= bNum < this->GetNumberOfBuckets(), return the number of points found in the bucket. V.GetBucketIds(int, vtkIdList) C++: void GetBucketIds(vtkIdType bNum, vtkIdList *bList) Given a bucket number bNum between 0 <= bNum < this->GetNumberOfBuckets(), return a list of point ids contained within the bucket. The user must provide an instance of vtkIdList to contain the result. ComputePointStructuredCoordsComputeCellStructuredCoordsGetLocalStructuredCoordinatesGetCellDimensionsFromExtentGetDimensionsFromExtentGetCellExtentFromPointExtentComputeCellIdForExtentComputePointIdForExtentGetDataDescriptionFromExtentGetDataDescriptionvtkStructuredDataVTK_UNCHANGEDVTK_SINGLE_POINTVTK_X_LINEVTK_Y_LINEVTK_Z_LINEVTK_XY_PLANEVTK_YZ_PLANEVTK_XZ_PLANEVTK_XYZ_GRIDVTK_EMPTYComputeCellStructuredCoordsForExtentGetGlobalStructuredCoordinatesGetCellDimensionsFromPointDimensionsComputePointStructuredCoordsForExtentvtkStructuredData - Singleton class for topologically regular data Superclass: vtkObject vtkStructuredData is a singleton class that provides an interface for topologically regular data. Regular data is data that can be accessed in rectangular fashion using an i-j-k index. A finite difference grid, a volume, or a pixmap are all considered regular. @sa vtkStructuredGrid vtkUniformGrid vtkRectilinearGrid vtkRectilinearGrid vtkCommonDataModelPython.vtkStructuredDataV.SafeDownCast(vtkObjectBase) -> vtkStructuredData C++: static vtkStructuredData *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkStructuredData C++: vtkStructuredData *NewInstance() V.SetDimensions([int, int, int], [int, int, int]) -> int C++: static int SetDimensions(int inDim[3], int dim[3]) Specify the dimensions of a regular, rectangular dataset. The input is the new dimensions (inDim) and the current dimensions (dim). The function returns the dimension of the dataset (0-3D). If the dimensions are improperly specified a -1 is returned. If the dimensions are unchanged, a value of 100 is returned. V.SetExtent([int, int, int, int, int, int], [int, int, int, int, int, int]) -> int C++: static int SetExtent(int inExt[6], int ext[6]) Specify the dimensions of a regular, rectangular dataset. The input is the new dimensions (inDim) and the current dimensions (dim). The function returns the dimension of the dataset (0-3D). If the dimensions are improperly specified a -1 is returned. If the dimensions are unchanged, a value of 100 is returned. V.GetDataDescription([int, int, int]) -> int C++: static int GetDataDescription(int dims[3]) Returns the data description given the dimensions (eg. VTK_SINGLE_POINT, VTK_X_LINE, VTK_XY_PLANE etc.) V.GetDataDescriptionFromExtent([int, int, int, int, int, int]) -> int C++: static int GetDataDescriptionFromExtent(int ext[6]) Returns the data description given the dimensions (eg. VTK_SINGLE_POINT, VTK_X_LINE, VTK_XY_PLANE etc.) V.GetDataDimension(int) -> int C++: static int GetDataDimension(int dataDescription) V.GetDataDimension([int, int, int, int, int, int]) -> int C++: static int GetDataDimension(int ext[6]) Return the topological dimension of the data (e.g., 0, 1, 2, or 3D). V.GetNumberOfPoints([int, int, int, int, int, int], int) -> int C++: static vtkIdType GetNumberOfPoints(int ext[6], int dataDescription=VTK_EMPTY) Given the grid extent, this method returns the total number of points within the extent. The dataDescription field is not used. V.GetNumberOfCells([int, int, int, int, int, int], int) -> int C++: static vtkIdType GetNumberOfCells(int ext[6], int dataDescription=VTK_EMPTY) Given the grid extent, this method returns the total number of cells within the extent. The dataDescription field is not used. V.GetCellExtentFromPointExtent([int, int, int, int, int, int], [int, int, int, int, int, int], int) C++: static void GetCellExtentFromPointExtent(int pntExtent[6], int cellExtent[6], int dataDescription=VTK_EMPTY) Given the point extent of a grid, this method computes the corresponding cell extent for the grid. The dataDescription field is not used. V.GetDimensionsFromExtent([int, int, int, int, int, int], [int, int, int], int) C++: static void GetDimensionsFromExtent(int ext[6], int dims[3], int dataDescription=VTK_EMPTY) Computes the structured grid dimensions based on the given extent. The dataDescription field is not used. V.GetCellDimensionsFromExtent([int, int, int, int, int, int], [int, int, int], int) C++: static void GetCellDimensionsFromExtent(int ext[6], int celldims[3], int dataDescription=VTK_EMPTY) Returns the cell dimensions, i.e., the number of cells along the i,j,k for the grid with the given grid extent. Note, the grid extent is the number of points. The dataDescription field is not used. V.GetCellDimensionsFromPointDimensions([int, int, int], [int, int, int]) C++: static void GetCellDimensionsFromPointDimensions( int pntdims[3], int cellDims[3]) Given the dimensions of the grid, in pntdims, this method returns the corresponding cell dimensions for the given grid. The dataDescription field is not used. V.GetLocalStructuredCoordinates([int, int, int], [int, int, int, int, int, int], [int, int, int], int) C++: static void GetLocalStructuredCoordinates(int ijk[3], int ext[6], int lijk[3], int dataDescription=VTK_EMPTY) Given the global structured coordinates for a point or cell, ijk, w.r.t. as well as, the global sub-grid cell or point extent, this method computes the corresponding local structured coordinates, lijk, starting from 0. The dataDescription argument is not used. V.GetGlobalStructuredCoordinates([int, int, int], [int, int, int, int, int, int], [int, int, int], int) C++: static void GetGlobalStructuredCoordinates(int lijk[3], int ext[6], int ijk[3], int dataDescription=VTK_EMPTY) Given local structured coordinates, and the corresponding global sub-grid extent, this method computes the global ijk coordinates. The dataDescription parameter is not used. V.GetCellPoints(int, vtkIdList, int, [int, int, int]) C++: static void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds, int dataDescription, int dim[3]) Get the points defining a cell. (See vtkDataSet for more info.) V.GetPointCells(int, vtkIdList, [int, int, int]) C++: static void GetPointCells(vtkIdType ptId, vtkIdList *cellIds, int dim[3]) Get the cells using a point. (See vtkDataSet for more info.) V.GetCellNeighbors(int, vtkIdList, vtkIdList, [int, int, int]) C++: static void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds, int dim[3]) V.GetCellNeighbors(int, vtkIdList, vtkIdList, [int, int, int], [int, int, int]) C++: static void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds, int dim[3], int seedLoc[3]) Get the cells using the points ptIds, exclusive of the cell cellId. (See vtkDataSet for more info.) V.ComputePointIdForExtent([int, int, int, int, int, int], [int, int, int], int) -> int C++: static vtkIdType ComputePointIdForExtent(int extent[6], int ijk[3], int dataDescription=VTK_EMPTY) Given a location in structured coordinates (i-j-k), and the extent of the structured dataset, return the point id. The dataDescription argument is not used. V.ComputeCellIdForExtent([int, int, int, int, int, int], [int, int, int], int) -> int C++: static vtkIdType ComputeCellIdForExtent(int extent[6], int ijk[3], int dataDescription=VTK_EMPTY) Given a location in structured coordinates (i-j-k), and the extent of the structured dataset, return the point id. The dataDescription argument is not used. V.ComputePointId([int, int, int], [int, int, int], int) -> int C++: static vtkIdType ComputePointId(int dim[3], int ijk[3], int dataDescription=VTK_EMPTY) Given a location in structured coordinates (i-j-k), and the dimensions of the structured dataset, return the point id. This method does not adjust for the beginning of the extent. The dataDescription argument is not used. V.ComputeCellId([int, int, int], [int, int, int], int) -> int C++: static vtkIdType ComputeCellId(int dim[3], int ijk[3], int dataDescription=VTK_EMPTY) Given a location in structured coordinates (i-j-k), and the dimensions of the structured dataset, return the cell id. This method does not adjust for the beginning of the extent. The dataDescription argument is not used. V.ComputeCellStructuredCoordsForExtent(int, [int, int, int, int, int, int], [int, int, int], int) C++: static void ComputeCellStructuredCoordsForExtent( const vtkIdType cellIdx, int ext[6], int ijk[3], int dataDescription=VTK_EMPTY) Given the global grid extent and the linear index of a cell within the grid extent, this method computes the corresponding structured coordinates of the given cell. This method adjusts for the beginning of the extent. The dataDescription argument is not used. V.ComputeCellStructuredCoords(int, [int, int, int], [int, int, int], int) C++: static void ComputeCellStructuredCoords( const vtkIdType cellId, int dim[3], int ijk[3], int dataDescription=VTK_EMPTY) Given a cellId and grid dimensions 'dim', get the structured coordinates (i-j-k). This method does not adjust for the beginning of the extent. The dataDescription argument is not used. V.ComputePointStructuredCoordsForExtent(int, [int, int, int, int, int, int], [int, int, int], int) C++: static void ComputePointStructuredCoordsForExtent( const vtkIdType ptId, int ext[6], int ijk[3], int dataDescription=VTK_EMPTY) Given a pointId and the grid extent ext, get the structured coordinates (i-j-k). This method adjusts for the beginning of the extent. The dataDescription argument is not used. V.ComputePointStructuredCoords(int, [int, int, int], [int, int, int], int) C++: static void ComputePointStructuredCoords( const vtkIdType ptId, int dim[3], int ijk[3], int dataDescription=VTK_EMPTY) Given a pointId and grid dimensions 'dim', get the structured coordinates (i-j-k). This method does not adjust for the beginning of the extent. The dataDescription argument is not used. ClampvtkStructuredExtentStrictlySmallervtkStructuredExtent - helper class to aid working with structured extents. Superclass: vtkObject vtkStructuredExtent is an helper class that helps in arithmetic with structured extents. It defines a bunch of static methods (most of which are inlined) to aid in dealing with extents. vtkCommonDataModelPython.vtkStructuredExtentV.SafeDownCast(vtkObjectBase) -> vtkStructuredExtent C++: static vtkStructuredExtent *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkStructuredExtent C++: vtkStructuredExtent *NewInstance() V.Clamp([int, int, int, int, int, int], (int, ...)) C++: static void Clamp(int ext[6], const int wholeExt[]) Clamps ext to fit in wholeExt. V.StrictlySmaller((int, int, int, int, int, int), (int, int, int, int, int, int)) -> bool C++: static bool StrictlySmaller(const int ext[6], const int wholeExt[6]) Returns true if ext is fits within wholeExt with atleast 1 dimension smaller than the wholeExt. V.Smaller((int, int, int, int, int, int), (int, int, int, int, int, int)) -> bool C++: static bool Smaller(const int ext[6], const int wholeExt[6]) Returns if ext fits within wholeExt. Unline StrictlySmaller, this method returns true even if ext == wholeExt. V.Grow([int, int, int, int, int, int], int) C++: static void Grow(int ext[6], int count) V.Grow([int, int, int, int, int, int], int, [int, int, int, int, int, int]) C++: static void Grow(int ext[6], int count, int wholeExt[6]) Grows the ext on each side by the given count. V.Transform([int, int, int, int, int, int], [int, int, int, int, int, int]) C++: static void Transform(int ext[6], int wholeExt[6]) Makes ext relative to wholeExt. V.GetDimensions((int, int, int, int, int, int), [int, int, int]) C++: static void GetDimensions(const int ext[6], int dims[3]) Given the extents, computes the dimensions. vtkStructuredGridUnBlankPointUnBlankCellIsCellVisibleIsPointVisibleGetCellDimsvtkStructuredGrid - topologically regular array of data Superclass: vtkPointSet vtkStructuredGrid is a data object that is a concrete implementation of vtkDataSet. vtkStructuredGrid represents a geometric structure that is a topologically regular array of points. The topology is that of a cube that has been subdivided into a regular array of smaller cubes. Each point/cell can be addressed with i-j-k indices. Examples include finite difference grids. The order and number of points must match that specified by the dimensions of the grid. The point order increases in i fastest (from 0<=i vtkStructuredGrid C++: static vtkStructuredGrid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkStructuredGrid C++: vtkStructuredGrid *NewInstance() V.GetPoint(int) -> (float, float, float) C++: double *GetPoint(vtkIdType ptId) override; V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType ptId, double p[3]) override; V.GetPoint(int, int, int, [float, float, float], bool) C++: void GetPoint(int i, int j, int k, double p[3], bool adjustForExtent=true) Standard vtkDataSet API methods. See vtkDataSet for more information. V.Initialize() C++: void Initialize() override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds) override; V.GetCellNeighbors(int, vtkIdList, vtkIdList, [int, ...]) C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds, int *seedLoc) Standard vtkDataSet API methods. See vtkDataSet for more information. V.SetDimensions(int, int, int) C++: void SetDimensions(int i, int j, int k) V.SetDimensions([int, int, int]) C++: void SetDimensions(int dim[3]) following methods are specific to structured grid V.GetDimensions() -> (int, int, int) C++: virtual int *GetDimensions() V.GetDimensions([int, int, int]) C++: virtual void GetDimensions(int dim[3]) Get dimensions of this structured points dataset. V.BlankPoint(int) C++: void BlankPoint(vtkIdType ptId) Methods for supporting blanking of cells. Blanking turns on or off points in the structured grid, and hence the cells connected to them. These methods should be called only after the dimensions of the grid are set. V.UnBlankPoint(int) C++: void UnBlankPoint(vtkIdType ptId) Methods for supporting blanking of cells. Blanking turns on or off points in the structured grid, and hence the cells connected to them. These methods should be called only after the dimensions of the grid are set. V.BlankCell(int) C++: void BlankCell(vtkIdType ptId) Methods for supporting blanking of cells. Blanking turns on or off cells in the structured grid, and hence the points connected to them. These methods should be called only after the dimensions of the grid are set. V.UnBlankCell(int) C++: void UnBlankCell(vtkIdType ptId) Methods for supporting blanking of cells. Blanking turns on or off cells in the structured grid, and hence the points connected to them. These methods should be called only after the dimensions of the grid are set. V.IsPointVisible(int) -> int C++: unsigned char IsPointVisible(vtkIdType ptId) Return non-zero value if specified point is visible. These methods should be called only after the dimensions of the grid are set. V.IsCellVisible(int) -> int C++: unsigned char IsCellVisible(vtkIdType cellId) Return non-zero value if specified point is visible. These methods should be called only after the dimensions of the grid are set. V.HasAnyBlankPoints() -> bool C++: bool HasAnyBlankPoints() override; Returns 1 if there is any visibility constraint on the points, 0 otherwise. V.HasAnyBlankCells() -> bool C++: bool HasAnyBlankCells() override; Returns 1 if there is any visibility constraint on the cells, 0 otherwise. V.GetCellDims([int, int, int]) C++: void GetCellDims(int cellDims[3]) Given the node dimensions of this grid instance, this method computes the node dimensions. The value in each dimension can will have a lowest value of "1" such that computing the total number of cells can be achieved by simply by cellDims[0]*cellDims[1]*cellDims[2]. V.GetData(vtkInformation) -> vtkStructuredGrid C++: static vtkStructuredGrid *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkStructuredGrid C++: static vtkStructuredGrid *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkStructuredPointsCollectionvtkStructuredPointsvtkStructuredPointsCollection - maintain a list of structured points data objects Superclass: vtkCollection vtkStructuredPointsCollection is an object that creates and manipulates ordered lists of structured points datasets. See also vtkCollection and subclasses. vtkCommonDataModelPython.vtkStructuredPointsCollectionV.SafeDownCast(vtkObjectBase) -> vtkStructuredPointsCollection C++: static vtkStructuredPointsCollection *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkStructuredPointsCollection C++: vtkStructuredPointsCollection *NewInstance() V.AddItem(vtkStructuredPoints) C++: void AddItem(vtkStructuredPoints *ds) Add a pointer to a vtkStructuredPoints to the bottom of the list. V.GetNextItem() -> vtkStructuredPoints C++: vtkStructuredPoints *GetNextItem() Get the next item in the collection. nullptr is returned if the collection is exhausted. vtkStructuredPoints - A subclass of ImageData. Superclass: vtkImageData StructuredPoints is a subclass of ImageData that requires the data extent to exactly match the update extent. Normall image data allows that the data extent may be larger than the update extent. StructuredPoints also defines the origin differently that vtkImageData. For structured points the origin is the location of first point. Whereas images define the origin as the location of point 0, 0, 0. Image Origin is stored in ivar, and structured points have special methods for setting/getting the origin/extents. vtkCommonDataModelPython.vtkStructuredPointsV.SafeDownCast(vtkObjectBase) -> vtkStructuredPoints C++: static vtkStructuredPoints *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkStructuredPoints C++: vtkStructuredPoints *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; To simplify filter superclasses, vtkSuperquadricGetThicknessMinValueGetThicknessMaxValueGetPhiRoundnessGetThetaRoundnessGetToroidalGetThicknessSetThetaRoundnessSetPhiRoundnessSetSizeSetToroidalToroidalOffToroidalOnSetThicknessVTK_MIN_SUPERQUADRIC_THICKNESSvtkSuperquadric - implicit function for a Superquadric Superclass: vtkImplicitFunction vtkSuperquadric computes the implicit function and function gradient for a superquadric. vtkSuperquadric is a concrete implementation of vtkImplicitFunction. The superquadric is centered at Center and axes of rotation is along the y-axis. (Use the superclass' vtkImplicitFunction transformation matrix if necessary to reposition.) Roundness parameters (PhiRoundness and ThetaRoundness) control the shape of the superquadric. The Toroidal boolean controls whether a toroidal superquadric is produced. If so, the Thickness parameter controls the thickness of the toroid: 0 is the thinnest allowable toroid, and 1 has a minimum sized hole. The Scale parameters allow the superquadric to be scaled in x, y, and z (normal vectors are correctly generated in any case). The Size parameter controls size of the superquadric. This code is based on "Rigid physically based superquadrics", A. H. Barr, in "Graphics Gems III", David Kirk, ed., Academic Press, 1992. @warning The Size and Thickness parameters control coefficients of superquadric generation, and may do not exactly describe the size of the superquadric. vtkCommonDataModelPython.vtkSuperquadricV.SafeDownCast(vtkObjectBase) -> vtkSuperquadric C++: static vtkSuperquadric *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSuperquadric C++: vtkSuperquadric *NewInstance() V.EvaluateGradient([float, float, float], [float, float, float]) C++: void EvaluateGradient(double x[3], double g[3]) override; Evaluate function gradient at position x-y-z and pass back vector. You should generally not call this method directly, you should use FunctionGradient() instead. This method must be implemented by any derived class. V.GetCenter() -> (float, float, float) C++: double *GetCenter() Set the center of the superquadric. Default is 0,0,0. V.SetScale(float, float, float) C++: void SetScale(double, double, double) V.SetScale((float, float, float)) C++: void SetScale(double a[3]) V.GetScale() -> (float, float, float) C++: double *GetScale() Set the scale factors of the superquadric. Default is 1,1,1. V.GetThickness() -> float C++: virtual double GetThickness() Set/Get Superquadric ring thickness (toroids only). Changing thickness maintains the outside diameter of the toroid. V.SetThickness(float) C++: virtual void SetThickness(double _arg) Set/Get Superquadric ring thickness (toroids only). Changing thickness maintains the outside diameter of the toroid. V.GetThicknessMinValue() -> float C++: virtual double GetThicknessMinValue() Set/Get Superquadric ring thickness (toroids only). Changing thickness maintains the outside diameter of the toroid. V.GetThicknessMaxValue() -> float C++: virtual double GetThicknessMaxValue() Set/Get Superquadric ring thickness (toroids only). Changing thickness maintains the outside diameter of the toroid. V.GetPhiRoundness() -> float C++: virtual double GetPhiRoundness() Set/Get Superquadric north/south roundness. Values range from 0 (rectangular) to 1 (circular) to higher orders. V.SetPhiRoundness(float) C++: void SetPhiRoundness(double e) Set/Get Superquadric north/south roundness. Values range from 0 (rectangular) to 1 (circular) to higher orders. V.GetThetaRoundness() -> float C++: virtual double GetThetaRoundness() Set/Get Superquadric east/west roundness. Values range from 0 (rectangular) to 1 (circular) to higher orders. V.SetThetaRoundness(float) C++: void SetThetaRoundness(double e) Set/Get Superquadric east/west roundness. Values range from 0 (rectangular) to 1 (circular) to higher orders. V.SetSize(float) C++: virtual void SetSize(double _arg) Set/Get Superquadric isotropic size. V.GetSize() -> float C++: virtual double GetSize() Set/Get Superquadric isotropic size. V.ToroidalOn() C++: virtual void ToroidalOn() Set/Get whether or not the superquadric is toroidal (1) or ellipsoidal (0). V.ToroidalOff() C++: virtual void ToroidalOff() Set/Get whether or not the superquadric is toroidal (1) or ellipsoidal (0). V.GetToroidal() -> int C++: virtual int GetToroidal() Set/Get whether or not the superquadric is toroidal (1) or ellipsoidal (0). V.SetToroidal(int) C++: virtual void SetToroidal(int _arg) Set/Get whether or not the superquadric is toroidal (1) or ellipsoidal (0). vtkTableGetNumberOfRowsGetNumberOfColumnsGetRowDataAddColumnRemoveColumnRemoveRowSetNumberOfRowsRemoveColumnByNameInsertNextRowGetColumnGetColumnByNameInsertNextBlankRowSetRowGetColumnNameGetValueByNameSetValueSetValueByNameGetRowSetRowDatavtkTable - A table, which contains similar-typed columns of data Superclass: vtkDataObject vtkTable is a basic data structure for storing columns of data. Internally, columns are stored in a vtkDataSetAttributes structure called RowData. However, using the vtkTable API additionally ensures that every column has the same number of entries, and provides row access (using vtkVariantArray) and single entry access (using vtkVariant). The field data inherited from vtkDataObject may be used to store metadata related to the table. @warning You should use the vtkTable API to change the table data. Performing operations on the object returned by GetRowData() may yield unexpected results. vtkTable does allow the user to set the field data using SetRowData(); the number of rows in the table is determined by the number of tuples in the first array (it is assumed that all arrays are the same length). @warning Each column added with AddColumn musthave its name set to a unique, non-empty string in order for GetValue() to function properly. @par Thanks: Thanks to Patricia Crossno, Ken Moreland, Andrew Wilson and Brian Wylie from Sandia National Laboratories for their help in developing this class API. vtkCommonDataModelPython.vtkTableV.SafeDownCast(vtkObjectBase) -> vtkTable C++: static vtkTable *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTable C++: vtkTable *NewInstance() V.Dump(int, int) C++: void Dump(unsigned int colWidth=16, int rowLimit=-1) Dump table contents. If rowLimit is -1 then the full table is printed out (Default). If rowLimit is 0 then only the header row will be displayed. Otherwise, if rowLimit > 0 then Dump will print the first rowLimit rows of data. V.GetActualMemorySize() -> int C++: unsigned long GetActualMemorySize() override; Return the actual size of the data in kibibytes (1024 bytes). This number is valid only after the pipeline has updated. The memory size returned is guaranteed to be greater than or equal to the memory required to represent the data (e.g., extra space in arrays, etc. are not included in the return value). V.GetRowData() -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetRowData() Get/Set the main data (columns) of the table. V.SetRowData(vtkDataSetAttributes) C++: virtual void SetRowData(vtkDataSetAttributes *data) Get/Set the main data (columns) of the table. V.GetNumberOfRows() -> int C++: vtkIdType GetNumberOfRows() Get the number of rows in the table. V.SetNumberOfRows(int) C++: void SetNumberOfRows(const vtkIdType) Set the number of rows in the table. Note that memory allocation might be performed as a result of this, but no memory will be released. V.GetRow(int) -> vtkVariantArray C++: vtkVariantArray *GetRow(vtkIdType row) V.GetRow(int, vtkVariantArray) C++: void GetRow(vtkIdType row, vtkVariantArray *values) Get a row of the table as a vtkVariantArray which has one entry for each column. NOTE: This version of the method is NOT thread safe. V.SetRow(int, vtkVariantArray) C++: void SetRow(vtkIdType row, vtkVariantArray *values) Set a row of the table with a vtkVariantArray which has one entry for each column. V.InsertNextBlankRow(float) -> int C++: vtkIdType InsertNextBlankRow(double default_num_val=0.0) Insert a blank row at the end of the table. V.InsertNextRow(vtkVariantArray) -> int C++: vtkIdType InsertNextRow(vtkVariantArray *arr) Insert a row specified by a vtkVariantArray. The number of entries in the array should match the number of columns in the table. V.RemoveRow(int) C++: void RemoveRow(vtkIdType row) Delete a row from the table. Rows below the deleted row are shifted up. V.GetNumberOfColumns() -> int C++: vtkIdType GetNumberOfColumns() Get the number of columns in the table. V.GetColumnName(int) -> string C++: const char *GetColumnName(vtkIdType col) V.GetColumnByName(string) -> vtkAbstractArray C++: vtkAbstractArray *GetColumnByName(const char *name) Get a column of the table by its name. V.GetColumn(int) -> vtkAbstractArray C++: vtkAbstractArray *GetColumn(vtkIdType col) Get a column of the table by its column index. V.AddColumn(vtkAbstractArray) C++: void AddColumn(vtkAbstractArray *arr) Add a column to the table. V.RemoveColumnByName(string) C++: void RemoveColumnByName(const char *name) Remove a column from the table by its name. V.RemoveColumn(int) C++: void RemoveColumn(vtkIdType col) Remove a column from the table by its column index. V.GetValue(int, int) -> vtkVariant C++: vtkVariant GetValue(vtkIdType row, vtkIdType col) Retrieve a value in the table by row and column index as a variant. Note that this calls GetValueByName internally so that each column array must have its name set (and that name should be unique within the table). V.GetValueByName(int, string) -> vtkVariant C++: vtkVariant GetValueByName(vtkIdType row, const char *col) Retrieve a value in the table by row index and column name as a variant. V.SetValue(int, int, vtkVariant) C++: void SetValue(vtkIdType row, vtkIdType col, vtkVariant value) Set a value in the table by row and column index as a variant. V.SetValueByName(int, string, vtkVariant) C++: void SetValueByName(vtkIdType row, const char *col, vtkVariant value) Set a value in the table by row index and column name as a variant. V.Initialize() C++: void Initialize() override; Initialize to an empty table. V.GetData(vtkInformation) -> vtkTable C++: static vtkTable *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkTable C++: static vtkTable *GetData(vtkInformationVector *v, int i=0) Retrieve the table from vtkInformation. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *src) override; Shallow/deep copy the data from src into this object. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Shallow/deep copy the data from src into this object. V.GetNumberOfElements(int) -> int C++: vtkIdType GetNumberOfElements(int type) override; Get the number of elements for a specific attribute type (ROW, etc.). ComputeVolumeBarycentricCoordsInsphereCircumsphereTetraCentervtkTetra - a 3D cell that represents a tetrahedron Superclass: vtkCell3D vtkTetra is a concrete implementation of vtkCell to represent a 3D tetrahedron. vtkTetra uses the standard isoparametric shape functions for a linear tetrahedron. The tetrahedron is defined by the four points (0-3); where (0,1,2) is the base of the tetrahedron which, using the right hand rule, forms a triangle whose normal points in the direction of the fourth point. @sa vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge vtkCommonDataModelPython.vtkTetraV.SafeDownCast(vtkObjectBase) -> vtkTetra C++: static vtkTetra *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTetra C++: vtkTetra *NewInstance() V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Returns the set of points that are on the boundary of the tetrahedron that are closest parametrically to the point specified. This may include faces, edges, or vertices. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the tetrahedron in parametric coordinates. V.TetraCenter([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]) Compute the center of the tetrahedron, V.Circumsphere([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float]) -> float C++: static double Circumsphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]) Compute the circumcenter (center[3]) and radius squared (method return value) of a tetrahedron defined by the four points x1, x2, x3, and x4. V.Insphere([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float]) -> float C++: static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]) Compute the center (center[3]) and radius (method return value) of a sphere that just fits inside the faces of a tetrahedron defined by the four points x1, x2, x3, and x4. V.BarycentricCoords([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float, float]) -> int C++: static int BarycentricCoords(double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]) Given a 3D point x[3], determine the barycentric coordinates of the point. Barycentric coordinates are a natural coordinate system for simplices that express a position as a linear combination of the vertices. For a tetrahedron, there are four barycentric coordinates (because there are four vertices), and the sum of the coordinates must equal 1. If a point x is inside a simplex, then all four coordinates will be strictly positive. If three coordinates are zero (so the fourth =1), then the point x is on a vertex. If two coordinates are zero, the point x is on an edge (and so on). In this method, you must specify the vertex coordinates x1->x4. Returns 0 if tetrahedron is degenerate. V.ComputeVolume([float, float, float], [float, float, float], [float, float, float], [float, float, float]) -> float C++: static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]) Compute the volume of a tetrahedron defined by the four points p1, p2, p3, and p4. V.InterpolationFunctions([float, float, float], [float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[4]) @deprecated Replaced by vtkTetra::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[12]) @deprecated Replaced by vtkTetra::InterpolateDerivs as of VTK 5.2 V.GetFaceArray(int) -> (int, int, int) C++: static int *GetFaceArray(int faceId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. ??vtkTreeBFSIteratorvtkTreeIteratorvtkTreeBFSIterator - breadth first search iterator through a vtkTree Superclass: vtkTreeIterator vtkTreeBFSIterator performs a breadth first search traversal of a tree. After setting up the iterator, the normal mode of operation is to set up a while(iter->HasNext())loop, with the statement vtkIdType vertex = iter->Next()inside the loop. @par Thanks: Thanks to David Doria for submitting this class. vtkCommonDataModelPython.vtkTreeBFSIteratorV.SafeDownCast(vtkObjectBase) -> vtkTreeBFSIterator C++: static vtkTreeBFSIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTreeBFSIterator C++: vtkTreeBFSIterator *NewInstance() vtkTreeGetRootGetParentGetParentEdgeGetChildrenReorderChildrenvtkTree - A rooted tree data structure. Superclass: vtkDirectedAcyclicGraph vtkTree is a connected directed graph with no cycles. A tree is a type of directed graph, so works with all graph algorithms. vtkTree is a read-only data structure. To construct a tree, create an instance of vtkMutableDirectedGraph. Add vertices and edges with AddVertex() and AddEdge(). You may alternately start by adding a single vertex as the root then call graph->AddChild(parent) which adds a new vertex and connects the parent to the child. The tree MUST have all edges in the proper direction, from parent to child. After building the tree, call tree->CheckedShallowCopy(graph) to copy the structure into a vtkTree. This method will return false if the graph is an invalid tree. vtkTree provides some convenience methods for obtaining the parent and children of a vertex, for finding the root, and determining if a vertex is a leaf (a vertex with no children). @sa vtkDirectedGraph vtkMutableDirectedGraph vtkGraph vtkCommonDataModelPython.vtkTreeV.SafeDownCast(vtkObjectBase) -> vtkTree C++: static vtkTree *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTree C++: vtkTree *NewInstance() V.GetRoot() -> int C++: virtual vtkIdType GetRoot() Get the root vertex of the tree. V.GetNumberOfChildren(int) -> int C++: vtkIdType GetNumberOfChildren(vtkIdType v) Get the number of children of a vertex. V.GetChild(int, int) -> int C++: vtkIdType GetChild(vtkIdType v, vtkIdType i) Get the i-th child of a parent vertex. V.GetChildren(int, vtkAdjacentVertexIterator) C++: void GetChildren(vtkIdType v, vtkAdjacentVertexIterator *it) Get the child vertices of a vertex. This is a convenience method that functions exactly like GetAdjacentVertices. V.GetParent(int) -> int C++: vtkIdType GetParent(vtkIdType v) Get the parent of a vertex. V.GetParentEdge(int) -> vtkEdgeType C++: vtkEdgeType GetParentEdge(vtkIdType v) Get the edge connecting the vertex to its parent. V.GetLevel(int) -> int C++: vtkIdType GetLevel(vtkIdType v) Get the level of the vertex in the tree. The root vertex has level 0. Returns -1 if the vertex id is < 0 or greater than the number of vertices in the tree. V.IsLeaf(int) -> bool C++: bool IsLeaf(vtkIdType vertex) Return whether the vertex is a leaf (i.e. it has no children). V.GetData(vtkInformation) -> vtkTree C++: static vtkTree *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkTree C++: static vtkTree *GetData(vtkInformationVector *v, int i=0) Retrieve a graph from an information vector. V.ReorderChildren(int, vtkIdTypeArray) C++: virtual void ReorderChildren(vtkIdType parent, vtkIdTypeArray *children) Reorder the children of a parent vertex. The children array must contain all the children of parent, just in a different order. This does not change the topology of the tree. vtkTreeDFSIteratorGetModeSetModeModeTypeDISCOVERFINISHvtkTreeDFSIterator - depth first iterator through a vtkGraph Superclass: vtkTreeIterator vtkTreeDFSIterator performs a depth first search traversal of a tree. First, you must set the tree on which you are going to iterate, and then optionally set the starting vertex and mode. The mode is either DISCOVER (default), in which case vertices are visited as they are first reached, or FINISH, in which case vertices are visited when they are done, i.e. all adjacent vertices have been discovered already. After setting up the iterator, the normal mode of operation is to set up a while(iter->HasNext())loop, with the statement vtkIdType vertex = iter->Next()inside the loop. vtkCommonDataModelPython.vtkTreeDFSIteratorV.SafeDownCast(vtkObjectBase) -> vtkTreeDFSIterator C++: static vtkTreeDFSIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTreeDFSIterator C++: vtkTreeDFSIterator *NewInstance() V.SetMode(int) C++: void SetMode(int mode) Set the visit mode of the iterator. Mode can be DISCOVER (0): Order by discovery time FINISH (1): Order by finish time Default is DISCOVER. Use DISCOVER for top-down algorithms where parents need to be processed before children. Use FINISH for bottom-up algorithms where children need to be processed before parents. V.GetMode() -> int C++: virtual int GetMode() Set the visit mode of the iterator. Mode can be DISCOVER (0): Order by discovery time FINISH (1): Order by finish time Default is DISCOVER. Use DISCOVER for top-down algorithms where parents need to be processed before children. Use FINISH for bottom-up algorithms where children need to be processed before parents. vtkCommonDataModelPython.vtkTreeDFSIterator.ModeTypeTriangleCenterComputeQuadricPointInTriangleTrianglesIntersectProjectTo2DCircumcirclevtkTriangleTriangleAreaComputeNormalDirectionPPPA *d *d *d *d[4]PPPV *d *d *d *vtkQuadricViPP *vtkPoints *k *dPPPP *d *d *d *dvtkTriangle - a cell that represents a triangle Superclass: vtkCell vtkTriangle is a concrete implementation of vtkCell to represent a triangle located in 3-space. vtkCommonDataModelPython.vtkTriangleV.SafeDownCast(vtkObjectBase) -> vtkTriangle C++: static vtkTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTriangle C++: vtkTriangle *NewInstance() V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Get the edge specified by edgeId (range 0 to 2) and return that edge's coordinates. V.ComputeArea() -> float C++: double ComputeArea() A convenience function to compute the area of a vtkTriangle. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this triangle using scalar value provided. Like contouring, except that it cuts the triangle to produce other triangles. V.InterpolationFunctions([float, float, float], [float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double sf[3]) @deprecated Replaced by vtkTriangle::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[6]) @deprecated Replaced by vtkTriangle::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double sf[3]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[6]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Plane intersection plus in/out test on triangle. The in/out test is performed using tol as the tolerance. V.TriangleCenter([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void TriangleCenter(double p1[3], double p2[3], double p3[3], double center[3]) Compute the center of the triangle. V.TriangleArea([float, float, float], [float, float, float], [float, float, float]) -> float C++: static double TriangleArea(double p1[3], double p2[3], double p3[3]) Compute the area of a triangle in 3D. See also vtkTriangle::ComputeArea() V.Circumcircle([float, float], [float, float], [float, float], [float, float]) -> float C++: static double Circumcircle(double p1[2], double p2[2], double p3[2], double center[2]) Compute the circumcenter (center[3]) and radius squared (method return value) of a triangle defined by the three points x1, x2, and x3. (Note that the coordinates are 2D. 3D points can be used but the z-component will be ignored.) V.BarycentricCoords([float, float], [float, float], [float, float], [float, float], [float, float, float]) -> int C++: static int BarycentricCoords(double x[2], double x1[2], double x2[2], double x3[2], double bcoords[3]) Given a 2D point x[2], determine the barycentric coordinates of the point. Barycentric coordinates are a natural coordinate system for simplices that express a position as a linear combination of the vertices. For a triangle, there are three barycentric coordinates (because there are three vertices), and the sum of the coordinates must equal 1. If a point x is inside a simplex, then all three coordinates will be strictly positive. If two coordinates are zero (so the third =1), then the point x is on a vertex. If one coordinates are zero, the point x is on an edge. In this method, you must specify the vertex coordinates x1->x3. Returns 0 if triangle is degenerate. V.ProjectTo2D([float, float, float], [float, float, float], [float, float, float], [float, float], [float, float], [float, float]) -> int C++: static int ProjectTo2D(double x1[3], double x2[3], double x3[3], double v1[2], double v2[2], double v3[2]) Project triangle defined in 3D to 2D coordinates. Returns 0 if degenerate triangle; non-zero value otherwise. Input points are x1->x3; output 2D points are v1->v3. V.ComputeNormal(vtkPoints, int, [int, ...], [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]) V.ComputeNormal([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]) Compute the triangle normal from a points list, and a list of point ids that index into the points list. V.ComputeNormalDirection([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3], double n[3]) Compute the (unnormalized) triangle normal direction from three points. V.TrianglesIntersect([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float]) -> int C++: static int TrianglesIntersect(double p1[3], double q1[3], double r1[3], double p2[3], double q2[3], double r2[3]) Determine whether or not triangle (p1,q1,r1) intersects triangle (p2,q2,r2). This method is adapted from Olivier Devillers, Philippe Guigue. Faster Triangle-Triangle Intersection Tests. RR-4488, IN-RIA. 2002. . V.PointInTriangle([float, float, float], [float, float, float], [float, float, float], [float, float, float], float) -> int C++: static int PointInTriangle(double x[3], double x1[3], double x2[3], double x3[3], double tol2) Given a point x, determine whether it is inside (within the tolerance squared, tol2) the triangle defined by the three coordinate values p1, p2, p3. Method is via comparing dot products. (Note: in current implementation the tolerance only works in the neighborhood of the three vertices of the triangle. V.ComputeQuadric([float, float, float], [float, float, float], [float, float, float], [[float, float, float, float], [float, float, float, float], [float, float, float, float], [float, float, float, float]]) C++: static void ComputeQuadric(double x1[3], double x2[3], double x3[3], double quadric[4][4]) V.ComputeQuadric([float, float, float], [float, float, float], [float, float, float], vtkQuadric) C++: static void ComputeQuadric(double x1[3], double x2[3], double x3[3], vtkQuadric *quadric) Calculate the error quadric for this triangle. Return the quadric as a 4x4 matrix or a vtkQuadric. (from Peter Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of Large Polygonal Models") @@DecomposeStripvtkTriangleStripvtkTriangleStrip - a cell that represents a triangle strip Superclass: vtkCell vtkTriangleStrip is a concrete implementation of vtkCell to represent a 2D triangle strip. A triangle strip is a compact representation of triangles connected edge to edge in strip fashion. The connectivity of a triangle strip is three points defining an initial triangle, then for each additional triangle, a single point that, combined with the previous two points, defines the next triangle. vtkCommonDataModelPython.vtkTriangleStripV.SafeDownCast(vtkObjectBase) -> vtkTriangleStrip C++: static vtkTriangleStrip *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTriangleStrip C++: vtkTriangleStrip *NewInstance() V.DecomposeStrip(int, [int, ...], vtkCellArray) C++: static void DecomposeStrip(int npts, vtkIdType *pts, vtkCellArray *tris) Given a triangle strip, decompose it into a list of (triangle) polygons. The polygons are appended to the end of the list of triangles. vtkTriQuadraticHexahedronvtkTriQuadraticHexahedron - cell represents a parabolic, 27-node isoparametric hexahedron Superclass: vtkNonLinearCell vtkTriQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 27-node isoparametric triquadratic hexahedron. The interpolation is the standard finite element, triquadratic isoparametric shape function. The cell includes 8 edge nodes, 12 mid-edge nodes, 6 mid-face nodes and one mid-volume node. The ordering of the 27 points defining the cell is point ids (0-7,8-19, 20-25, 26) where point ids 0-7 are the eight corner vertices of the cube; followed by twelve midedge nodes (8-19); followed by 6 mid-face nodes (20-25) and the last node (26) is the mid-volume node. Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), (7,4), (0,4), (1,5), (2,6), (3,7). The mid-surface nodes lies on the faces defined by (first edge nodes id's, than mid-edge nodes id's): (0,1,5,4;8,17,12,16), (1,2,6,5;9,18,13,17), (2,3,7,6,10,19,14,18), (3,0,4,7;11,16,15,19), (0,1,2,3;8,9,10,11), (4,5,6,7;12,13,14,15). The last point lies in the center of the cell (0,1,2,3,4,5,6,7). top 7--14--6 | | 15 25 13 | | 4--12--5 middle 19--23--18 | | 20 26 21 | | 16--22--17 bottom 3--10--2 | | 11 24 9 | | 0-- 8--1 @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge vtkBiQuadraticQuad @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. vtkCommonDataModelPython.vtkTriQuadraticHexahedronV.SafeDownCast(vtkObjectBase) -> vtkTriQuadraticHexahedron C++: static vtkTriQuadraticHexahedron *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkTriQuadraticHexahedron C++: vtkTriQuadraticHexahedron *NewInstance() V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this triquadratic hexahedron using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[27]) @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[81]) @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[27]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[81]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkUndirectedGraph - An undirected graph. Superclass: vtkGraph vtkUndirectedGraph is a collection of vertices along with a collection of undirected edges (they connect two vertices in no particular order). ShallowCopy(), DeepCopy(), CheckedShallowCopy(), CheckedDeepCopy() accept instances of vtkUndirectedGraph and vtkMutableUndirectedGraph. GetOutEdges(v, it) and GetInEdges(v, it) return the same list of edges, which is the list of all edges which have a v as an endpoint. GetInDegree(v), GetOutDegree(v) and GetDegree(v) all return the full degree of vertex v. vtkUndirectedGraph is read-only. To create an undirected graph, use an instance of vtkMutableUndirectedGraph, then you may set the structure to a vtkUndirectedGraph using ShallowCopy(). @sa vtkGraph vtkMutableUndirectedGraph vtkCommonDataModelPython.vtkUndirectedGraphV.SafeDownCast(vtkObjectBase) -> vtkUndirectedGraph C++: static vtkUndirectedGraph *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkUndirectedGraph C++: vtkUndirectedGraph *NewInstance() V.GetInDegree(int) -> int C++: vtkIdType GetInDegree(vtkIdType v) override; Returns the full degree of the vertex. V.GetInEdge(int, int) -> vtkInEdgeType C++: vtkInEdgeType GetInEdge(vtkIdType v, vtkIdType i) override; V.GetInEdge(int, int, vtkGraphEdge) C++: void GetInEdge(vtkIdType v, vtkIdType i, vtkGraphEdge *e) override; Random-access method for retrieving the in edges of a vertex. For an undirected graph, this is the same as the out edges. V.GetData(vtkInformation) -> vtkUndirectedGraph C++: static vtkUndirectedGraph *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkUndirectedGraph C++: static vtkUndirectedGraph *GetData(vtkInformationVector *v, int i=0) Retrieve a graph from an information vector. V.GetInEdges(int, vtkInEdgeIterator) C++: void GetInEdges(vtkIdType v, vtkInEdgeIterator *it) override; Initialize the iterator to get the incoming edges to a vertex. For an undirected graph, this is all incident edges. V.IsStructureValid(vtkGraph) -> bool C++: bool IsStructureValid(vtkGraph *g) override; Check the structure, and accept it if it is a valid undirected graph. This is public to allow the ToDirected/UndirectedGraph to work. vtkUniformGridGetGridDescriptionNewImageDataCopyvtkUniformGrid - image data with blanking Superclass: vtkImageData vtkUniformGrid is a subclass of vtkImageData. In addition to all the image data functionality, it supports blanking. vtkCommonDataModelPython.vtkUniformGridV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Construct an empty uniform grid. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Construct an empty uniform grid. V.SafeDownCast(vtkObjectBase) -> vtkUniformGrid C++: static vtkUniformGrid *SafeDownCast(vtkObjectBase *o) Construct an empty uniform grid. V.NewInstance() -> vtkUniformGrid C++: vtkUniformGrid *NewInstance() Construct an empty uniform grid. V.GetCell(int, int, int) -> vtkCell C++: vtkCell *GetCell(int i, int j, int k) override; V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType cellId) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType cellId, vtkGenericCell *cell) override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.GetGridDescription() -> int C++: int GetGridDescription() Returns the data description of this uniform grid instance. V.BlankPoint(int) C++: virtual void BlankPoint(vtkIdType ptId) V.BlankPoint(int, int, int) C++: virtual void BlankPoint(const int i, const int j, const int k) Methods for supporting blanking of cells. Blanking turns on or off points in the structured grid, and hence the cells connected to them. These methods should be called only after the dimensions of the grid are set. V.UnBlankPoint(int) C++: virtual void UnBlankPoint(vtkIdType ptId) V.UnBlankPoint(int, int, int) C++: virtual void UnBlankPoint(const int i, const int j, const int k) Methods for supporting blanking of cells. Blanking turns on or off points in the structured grid, and hence the cells connected to them. These methods should be called only after the dimensions of the grid are set. V.BlankCell(int) C++: virtual void BlankCell(vtkIdType ptId) V.BlankCell(int, int, int) C++: virtual void BlankCell(const int i, const int j, const int k) Methods for supporting blanking of cells. Blanking turns on or off cells in the structured grid. These methods should be called only after the dimensions of the grid are set. V.UnBlankCell(int) C++: virtual void UnBlankCell(vtkIdType ptId) V.UnBlankCell(int, int, int) C++: virtual void UnBlankCell(const int i, const int j, const int k) Methods for supporting blanking of cells. Blanking turns on or off cells in the structured grid. These methods should be called only after the dimensions of the grid are set. V.IsPointVisible(int) -> int C++: virtual unsigned char IsPointVisible(vtkIdType ptId) Return non-zero value if specified point is visible. These methods should be called only after the dimensions of the grid are set. V.IsCellVisible(int) -> int C++: virtual unsigned char IsCellVisible(vtkIdType cellId) Return non-zero value if specified cell is visible. These methods should be called only after the dimensions of the grid are set. V.NewImageDataCopy() -> vtkImageData C++: virtual vtkImageData *NewImageDataCopy() V.GetData(vtkInformation) -> vtkUniformGrid C++: static vtkUniformGrid *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkUniformGrid C++: static vtkUniformGrid *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. DecomposeAPolyhedronCellConvertFaceStreamPointIdsGetCellLocationsArrayGetCellTypesArrayGetCellLinksGetFaceLocationsInitializeFacesRepresentationGetFaceStreamIsHomogeneousGetIdsOfCellsOfType@PV *i *vtkCellArrayvtkUnstructuredGridBasevtkUnstructuredGrid - dataset represents arbitrary combinations of all possible cell types Superclass: vtkUnstructuredGridBase vtkUnstructuredGrid is a data object that is a concrete implementation of vtkDataSet. vtkUnstructuredGrid represents any combinations of any cell types. This includes 0D (e.g., points), 1D (e.g., lines, polylines), 2D (e.g., triangles, polygons), and 3D (e.g., hexahedron, tetrahedron, polyhedron, etc.). vtkCommonDataModelPython.vtkUnstructuredGridV.SafeDownCast(vtkObjectBase) -> vtkUnstructuredGrid C++: static vtkUnstructuredGrid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkUnstructuredGrid C++: vtkUnstructuredGrid *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Standard vtkDataSet API methods. See vtkDataSet for more information. V.Allocate(int, int) C++: void Allocate(vtkIdType numCells=1000, int extSize=1000) override; Method allocates initial storage for the cell connectivity. Use this method before the method InsertNextCell(). The array capacity is doubled when the inserting a cell exceeds the current capacity. extSize is no longer used. V.InsertNextCell(int, int, [int, ...]) -> int C++: vtkIdType InsertNextCell(int type, vtkIdType npts, vtkIdType *ptIds) override; V.InsertNextCell(int, vtkIdList) -> int C++: vtkIdType InsertNextCell(int type, vtkIdList *ptIds) override; V.InsertNextCell(int, int, [int, ...], int, [int, ...]) -> int C++: vtkIdType InsertNextCell(int type, vtkIdType npts, vtkIdType *ptIds, vtkIdType nfaces, vtkIdType *faces) override; Insert/create cell in object by type and list of point ids defining cell topology. Most cells require just a type which implicitly defines a set of points and their ordering. For non-polyhedron cell type, npts is the number of unique points in the cell. pts are the list of global point Ids. For polyhedron cell, a special input format is required. npts is the number of faces in the cell. ptIds is the list of face stream: (numFace0Pts, id1, id2, id3, numFace1Pts,id1, id2, id3, ...) Make sure you have called Allocate() before calling this method V.Reset() C++: void Reset() Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.CopyStructure(vtkDataSet) C++: void CopyStructure(vtkDataSet *ds) override; Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() override; Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType cellId) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType cellId, vtkGenericCell *cell) override; V.GetCell(int, int, int) -> vtkCell C++: virtual vtkCell *GetCell(int i, int j, int k) Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.GetCellBounds(int, [float, float, float, float, float, float]) C++: void GetCellBounds(vtkIdType cellId, double bounds[6]) override; Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.GetCellPoints(int, vtkIdList) C++: void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) override; V.GetCellPoints(int, int, [int, ...]) C++: virtual void GetCellPoints(vtkIdType cellId, vtkIdType &npts, vtkIdType *&pts) Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.GetPointCells(int, vtkIdList) C++: void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) override; Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.NewCellIterator() -> vtkCellIterator C++: vtkCellIterator *NewCellIterator() override; Standard vtkDataSet methods; see vtkDataSet.h for documentation. V.GetCellType(int) -> int C++: int GetCellType(vtkIdType cellId) override; Get type of cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellTypesArray() -> vtkUnsignedCharArray C++: vtkUnsignedCharArray *GetCellTypesArray() V.GetCellLocationsArray() -> vtkIdTypeArray C++: vtkIdTypeArray *GetCellLocationsArray() V.GetMaxCellSize() -> int C++: int GetMaxCellSize() override; Convenience method returns largest cell size in dataset. This is generally used to allocate memory for supporting data structures. THIS METHOD IS THREAD SAFE V.BuildLinks() C++: void BuildLinks() V.GetCellLinks() -> vtkCellLinks C++: vtkCellLinks *GetCellLinks() V.GetFaceStream(int, vtkIdList) C++: void GetFaceStream(vtkIdType cellId, vtkIdList *ptIds) V.GetFaceStream(int, int, [int, ...]) C++: void GetFaceStream(vtkIdType cellId, vtkIdType &nfaces, vtkIdType *&ptIds) Get the face stream of a polyhedron cell in the following format: (numCellFaces, numFace0Pts, id1, id2, id3, numFace1Pts,id1, id2, id3, ...). If the requested cell is not a polyhedron, then the standard GetCellPoints is called to return a list of unique point ids (id1, id2, id3, ...). V.SetCells(int, vtkCellArray) C++: void SetCells(int type, vtkCellArray *cells) V.SetCells([int, ...], vtkCellArray) C++: void SetCells(int *types, vtkCellArray *cells) V.SetCells(vtkUnsignedCharArray, vtkIdTypeArray, vtkCellArray) C++: void SetCells(vtkUnsignedCharArray *cellTypes, vtkIdTypeArray *cellLocations, vtkCellArray *cells) V.SetCells(vtkUnsignedCharArray, vtkIdTypeArray, vtkCellArray, vtkIdTypeArray, vtkIdTypeArray) C++: void SetCells(vtkUnsignedCharArray *cellTypes, vtkIdTypeArray *cellLocations, vtkCellArray *cells, vtkIdTypeArray *faceLocations, vtkIdTypeArray *faces) Special methods specific to vtkUnstructuredGrid for defining the cells composing the dataset. Most cells require just arrays of cellTypes, cellLocations and cellConnectivities which implicitly define the set of points in each cell and their ordering. In those cases the cellConnectivities are of the format (numFace0Pts, id1, id2, id3, numFace1Pts, id1, id2, id3...). However, some cells like vtkPolyhedron require points plus a list of faces. To handle vtkPolyhedron, SetCells() support a special input cellConnectivities format (numCellFaces, numFace0Pts, id1, id2, id3, numFace1Pts,id1, id2, id3, ...) The functions use vtkPolyhedron::DecomposeAPolyhedronCell() to convert polyhedron cells into standard format. V.GetCells() -> vtkCellArray C++: vtkCellArray *GetCells() V.ReplaceCell(int, int, [int, ...]) C++: void ReplaceCell(vtkIdType cellId, int npts, vtkIdType *pts) override; Replace the points defining cell "cellId" with a new set of points. This operator is (typically) used when links from points to cells have not been built (i.e., BuildLinks() has not been executed). Use the operator ReplaceLinkedCell() to replace a cell when cell structure has been built. V.InsertNextLinkedCell(int, int, [int, ...]) -> int C++: vtkIdType InsertNextLinkedCell(int type, int npts, vtkIdType *pts) V.RemoveReferenceToCell(int, int) C++: void RemoveReferenceToCell(vtkIdType ptId, vtkIdType cellId) V.AddReferenceToCell(int, int) C++: void AddReferenceToCell(vtkIdType ptId, vtkIdType cellId) V.ResizeCellList(int, int) C++: void ResizeCellList(vtkIdType ptId, int size) V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds) override; Topological inquiry to get all cells using list of points exclusive of cell specified (e.g., cellId). THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetPiece() -> int C++: virtual int GetPiece() Set / Get the piece and the number of pieces. Similar to extent in 3D. V.GetNumberOfPieces() -> int C++: virtual int GetNumberOfPieces() Set / Get the piece and the number of pieces. Similar to extent in 3D. V.GetIdsOfCellsOfType(int, vtkIdTypeArray) C++: void GetIdsOfCellsOfType(int type, vtkIdTypeArray *array) override; Fill vtkIdTypeArray container with list of cell Ids. This method traverses all cells and, for a particular cell type, inserts the cell Id into the container. V.IsHomogeneous() -> int C++: int IsHomogeneous() override; Traverse cells and determine if cells are all of the same type. V.RemoveGhostCells() C++: void RemoveGhostCells() This method will remove any cell that is marked as ghost (has the vtkDataSetAttributes::DUPLICATECELL bit set). V.GetData(vtkInformation) -> vtkUnstructuredGrid C++: static vtkUnstructuredGrid *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkUnstructuredGrid C++: static vtkUnstructuredGrid *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.GetFaces(int) -> (int, ...) C++: vtkIdType *GetFaces(vtkIdType cellId) V.GetFaces() -> vtkIdTypeArray C++: vtkIdTypeArray *GetFaces() Special support for polyhedron. Return nullptr for all other cell types. V.GetFaceLocations() -> vtkIdTypeArray C++: vtkIdTypeArray *GetFaceLocations() Get pointer to faces and facelocations. Support for polyhedron cells. V.InitializeFacesRepresentation(int) -> int C++: int InitializeFacesRepresentation(vtkIdType numPrevCells) Special function used by vtkUnstructuredGridReader. By default vtkUnstructuredGrid does not contain face information, which is only used by polyhedron cells. If so far no polyhedron cells have been added, Faces and FaceLocations pointers will be nullptr. In this case, need to initialize the arrays and assign values to the previous non-polyhedron cells. V.DecomposeAPolyhedronCell(vtkCellArray, int, int, vtkCellArray, vtkIdTypeArray) C++: static void DecomposeAPolyhedronCell( vtkCellArray *polyhedronCellArray, vtkIdType &nCellpts, vtkIdType &nCellfaces, vtkCellArray *cellArray, vtkIdTypeArray *faces) V.DecomposeAPolyhedronCell([int, ...], int, int, vtkCellArray, vtkIdTypeArray) C++: static void DecomposeAPolyhedronCell( vtkIdType *polyhedronCellStream, vtkIdType &nCellpts, vtkIdType &nCellfaces, vtkCellArray *cellArray, vtkIdTypeArray *faces) V.DecomposeAPolyhedronCell(int, [int, ...], int, vtkCellArray, vtkIdTypeArray) C++: static void DecomposeAPolyhedronCell(vtkIdType nCellFaces, vtkIdType *inFaceStream, vtkIdType &nCellpts, vtkCellArray *cellArray, vtkIdTypeArray *faces) A static method for converting a polyhedron vtkCellArray of format [nCellFaces, nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...] into three components: (1) an integer indicating the number of faces (2) a standard vtkCellArray storing point ids [nCell0Pts, i, j, k] and (3) an vtkIdTypeArray storing face connectivity in format [nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...] Note: input is assumed to contain only one polyhedron cell. Outputs (2) and (3) will be stacked at the end of the input cellArray and faces. The original data in the input will not be touched. V.ConvertFaceStreamPointIds(vtkIdList, [int, ...]) C++: static void ConvertFaceStreamPointIds(vtkIdList *faceStream, vtkIdType *idMap) V.ConvertFaceStreamPointIds(int, [int, ...], [int, ...]) C++: static void ConvertFaceStreamPointIds(vtkIdType nfaces, vtkIdType *faceStream, vtkIdType *idMap) Convert pid in a face stream into idMap[pid]. The face stream is of format [nCellFaces, nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...]. The user is responsible to make sure all the Ids in faceStream do not exceed the range of idMap. VkkVV *vtkCellArray *vtkCellArray *vtkIdTypeArrayPkkVV *k *vtkCellArray *vtkIdTypeArraykPkVV *k *vtkCellArray *vtkIdTypeArrayvtkUnstructuredGridBase - dataset represents arbitrary combinations of all possible cell types. Superclass: vtkPointSet May be mapped onto a non-standard memory layout. vtkUnstructuredGridBase defines the core vtkUnstructuredGrid API, omitting functions that are implementation dependent. @sa vtkMappedDataArray vtkUnstructuredGrid vtkCommonDataModelPython.vtkUnstructuredGridBaseV.SafeDownCast(vtkObjectBase) -> vtkUnstructuredGridBase C++: static vtkUnstructuredGridBase *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkUnstructuredGridBase C++: vtkUnstructuredGridBase *NewInstance() V.Allocate(int, int) C++: virtual void Allocate(vtkIdType numCells=1000, int extSize=1000) Allocate memory for the number of cells indicated. extSize is not used. V.InsertNextCell(int, int, [int, ...]) -> int C++: virtual vtkIdType InsertNextCell(int type, vtkIdType npts, vtkIdType *ptIds) V.InsertNextCell(int, vtkIdList) -> int C++: virtual vtkIdType InsertNextCell(int type, vtkIdList *ptIds) V.InsertNextCell(int, int, [int, ...], int, [int, ...]) -> int C++: virtual vtkIdType InsertNextCell(int type, vtkIdType npts, vtkIdType *ptIds, vtkIdType nfaces, vtkIdType *faces) Insert/create cell in object by type and list of point ids defining cell topology. Most cells require just a type which implicitly defines a set of points and their ordering. For non-polyhedron cell type, npts is the number of unique points in the cell. pts are the list of global point Ids. For polyhedron cell, a special input format is required. npts is the number of faces in the cell. ptIds is the list of face stream: (numFace0Pts, id1, id2, id3, numFace1Pts,id1, id2, id3, ...) V.ReplaceCell(int, int, [int, ...]) C++: virtual void ReplaceCell(vtkIdType cellId, int npts, vtkIdType *pts) Replace the points defining cell "cellId" with a new set of points. This operator is (typically) used when links from points to cells have not been built (i.e., BuildLinks() has not been executed). Use the operator ReplaceLinkedCell() to replace a cell when cell structure has been built. V.GetIdsOfCellsOfType(int, vtkIdTypeArray) C++: virtual void GetIdsOfCellsOfType(int type, vtkIdTypeArray *array) Fill vtkIdTypeArray container with list of cell Ids. This method traverses all cells and, for a particular cell type, inserts the cell Id into the container. V.IsHomogeneous() -> int C++: virtual int IsHomogeneous() Traverse cells and determine if cells are all of the same type. V.GetData(vtkInformation) -> vtkUnstructuredGridBase C++: static vtkUnstructuredGridBase *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkUnstructuredGridBase C++: static vtkUnstructuredGridBase *GetData( vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. vtkUnstructuredGridCellIteratorvtkUnstructuredGridCellIterator - Implementation of vtkCellIterator specialized for vtkUnstructuredGrid. Superclass: vtkCellIterator vtkCommonDataModelPython.vtkUnstructuredGridCellIteratorV.SafeDownCast(vtkObjectBase) -> vtkUnstructuredGridCellIterator C++: static vtkUnstructuredGridCellIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkUnstructuredGridCellIterator C++: vtkUnstructuredGridCellIterator *NewInstance() vtkVertexvtkVertex - a cell that represents a 3D point Superclass: vtkCell vtkVertex is a concrete implementation of vtkCell to represent a 3D point. vtkCommonDataModelPython.vtkVertexV.SafeDownCast(vtkObjectBase) -> vtkVertex C++: static vtkVertex *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkVertex C++: vtkVertex *NewInstance() V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts1, vtkCellArray *lines, vtkCellArray *verts2, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition and tolerance. The method returns non-zero value if intersection occurs. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Triangulate the vertex. This method fills pts and ptIds with information from the only point in the vertex. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Get the derivative of the vertex. Returns (0.0, 0.0, 0.0) for all dimensions. V.InterpolationFunctions([float, float, float], [float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[1]) @deprecated Replaced by vtkVertex::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[3]) @deprecated Replaced by vtkVertex::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float]) C++: void InterpolateFunctions(double pcoords[3], double weights[1]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkVertexListIterator - Iterates all vertices in a graph. Superclass: vtkObject vtkVertexListIterator iterates through all vertices in a graph. Create an instance of this and call graph->GetVertices(it) to initialize this iterator. You may alternately call SetGraph() to initialize the iterator. @sa vtkGraph vtkCommonDataModelPython.vtkVertexListIteratorV.SafeDownCast(vtkObjectBase) -> vtkVertexListIterator C++: static vtkVertexListIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkVertexListIterator C++: vtkVertexListIterator *NewInstance() V.SetGraph(vtkGraph) C++: virtual void SetGraph(vtkGraph *graph) Setup the iterator with a graph. V.GetGraph() -> vtkGraph C++: virtual vtkGraph *GetGraph() Get the graph associated with this iterator. vtkVoxelvtkVoxel - a cell that represents a 3D orthogonal parallelepiped Superclass: vtkCell3D vtkVoxel is a concrete implementation of vtkCell to represent a 3D orthogonal parallelepiped. Unlike vtkHexahedron, vtkVoxel has interior angles of 90 degrees, and sides are parallel to coordinate axes. This results in large increases in computational performance. @sa vtkConvexPointSet vtkHexahedron vtkPyramid vtkTetra vtkWedge vtkCommonDataModelPython.vtkVoxelV.SafeDownCast(vtkObjectBase) -> vtkVoxel C++: static vtkVoxel *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkVoxel C++: vtkVoxel *NewInstance() V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; See vtkCell3D API for description of these methods. V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[24]) @deprecated Replaced by vtkVoxel::InterpolateDerivs as of VTK 5.2 V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[8]) Compute the interpolation functions. This static method is for convenience. Use the member function if you already have an instance of a voxel. vtkWedgevtkWedge - a 3D cell that represents a linear wedge Superclass: vtkCell3D vtkWedge is a concrete implementation of vtkCell to represent a linear 3D wedge. A wedge consists of two triangular and three quadrilateral faces and is defined by the six points (0-5). vtkWedge uses the standard isoparametric shape functions for a linear wedge. The wedge is defined by the six points (0-5) where (0,1,2) is the base of the wedge which, using the right hand rule, forms a triangle whose normal points outward (away from the triangular face (3,4,5)). @sa vtkConvexPointSet vtkHexahedron vtkPyramid vtkTetra vtkVoxel vtkCommonDataModelPython.vtkWedgeV.SafeDownCast(vtkObjectBase) -> vtkWedge C++: static vtkWedge *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkWedge C++: vtkWedge *NewInstance() V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[6]) @deprecated Replaced by vtkWedge::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[18]) @deprecated Replaced by vtkWedge::InterpolateDerivs as of VTK 5.2 V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[18]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) F]kSU?F]kSU?GetVectorAttributeSetVectorAttributeGetScalarAttributeGetNumberOfNestedElementsGetAttributeEncodingMinValueGetAttributeEncodingMaxValueGetCharacterDataWidthGetAttributeEncodingGetXMLByteIndexAddNestedElementSetParentPrintXMLGetNestedElementFindNestedElementLookupElementFindNestedElementWithNameLookupElementWithNameGetCharacterDataSetCharacterDataSetDoubleAttributeSetUnsignedLongAttributeSetIntAttributeSetFloatAttributeGetAttributeNameGetAttributeValueSetXMLByteIndexSetCharacterDataWidthGetWordTypeAttributeSetAttributeEncodingAddCharacterDataIsEqualToRemoveAllNestedElementsRemoveNestedElementRemoveAllAttributesSetName@ziP *i@ziP *d@ziP *L@ziP *k@ziP *l@zd@zl@zkFindNestedElementWithNameAndIdFindNestedElementWithNameAndAttributevtkXMLDataElement - Represents an XML element and those nested inside. Superclass: vtkObject vtkXMLDataElement is used by vtkXMLDataParser to represent an XML element. It provides methods to access the element's attributes and nested elements in a convenient manner. This allows easy traversal of an input XML file by vtkXMLReader and its subclasses. @sa vtkXMLDataParser vtkCommonDataModelPython.vtkXMLDataElementV.SafeDownCast(vtkObjectBase) -> vtkXMLDataElement C++: static vtkXMLDataElement *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkXMLDataElement C++: vtkXMLDataElement *NewInstance() V.GetName() -> string C++: virtual char *GetName() Set/Get the name of the element. This is its XML tag. V.SetName(string) C++: virtual void SetName(const char *_arg) Set/Get the name of the element. This is its XML tag. V.GetId() -> string C++: virtual char *GetId() Set/Get the value of the id attribute of the element, if any. V.SetId(string) C++: virtual void SetId(const char *_arg) Set/Get the value of the id attribute of the element, if any. V.GetAttribute(string) -> string C++: const char *GetAttribute(const char *name) Get the attribute with the given name. If it doesn't exist, returns 0. V.SetAttribute(string, string) C++: void SetAttribute(const char *name, const char *value) Set the attribute with the given name and value. If it doesn't exist, adds it. V.SetCharacterData(string, int) C++: void SetCharacterData(const char *c, int length) Set/Get the character data between XML start/end tags. V.AddCharacterData(string, int) C++: void AddCharacterData(const char *c, size_t length) Set/Get the character data between XML start/end tags. V.GetCharacterData() -> string C++: virtual char *GetCharacterData() Set/Get the character data between XML start/end tags. V.GetScalarAttribute(string, int) -> int C++: int GetScalarAttribute(const char *name, int &value) V.GetScalarAttribute(string, float) -> int C++: int GetScalarAttribute(const char *name, double &value) V.GetScalarAttribute(string, int) -> int C++: int GetScalarAttribute(const char *name, long &value) V.GetScalarAttribute(string, int) -> int C++: int GetScalarAttribute(const char *name, long long &value) Get the attribute with the given name and converted to a scalar value. Returns whether value was extracted. V.SetIntAttribute(string, int) C++: void SetIntAttribute(const char *name, int value) Set the attribute with the given name. We can not use the same GetScalarAttribute() construct since the compiler will not be able to resolve between SetAttribute(..., int) and SetAttribute(..., unsigned long). V.SetFloatAttribute(string, float) C++: void SetFloatAttribute(const char *name, float value) Set the attribute with the given name. We can not use the same GetScalarAttribute() construct since the compiler will not be able to resolve between SetAttribute(..., int) and SetAttribute(..., unsigned long). V.SetDoubleAttribute(string, float) C++: void SetDoubleAttribute(const char *name, double value) Set the attribute with the given name. We can not use the same GetScalarAttribute() construct since the compiler will not be able to resolve between SetAttribute(..., int) and SetAttribute(..., unsigned long). V.SetUnsignedLongAttribute(string, int) C++: void SetUnsignedLongAttribute(const char *name, unsigned long value) Set the attribute with the given name. We can not use the same GetScalarAttribute() construct since the compiler will not be able to resolve between SetAttribute(..., int) and SetAttribute(..., unsigned long). V.GetVectorAttribute(string, int, [int, ...]) -> int C++: int GetVectorAttribute(const char *name, int length, int *value) V.GetVectorAttribute(string, int, [float, ...]) -> int C++: int GetVectorAttribute(const char *name, int length, double *value) V.GetVectorAttribute(string, int, [int, ...]) -> int C++: int GetVectorAttribute(const char *name, int length, long *value) V.GetVectorAttribute(string, int, [int, ...]) -> int C++: int GetVectorAttribute(const char *name, int length, long long *value) Get the attribute with the given name and converted to a scalar value. Returns length of vector read. V.SetVectorAttribute(string, int, (int, ...)) C++: void SetVectorAttribute(const char *name, int length, const int *value) V.SetVectorAttribute(string, int, (float, ...)) C++: void SetVectorAttribute(const char *name, int length, const double *value) V.SetVectorAttribute(string, int, (int, ...)) C++: void SetVectorAttribute(const char *name, int length, const unsigned long *value) V.SetVectorAttribute(string, int, (int, ...)) C++: void SetVectorAttribute(const char *name, int length, long long const *value) Set the attribute with the given name. V.GetWordTypeAttribute(string, int) -> int C++: int GetWordTypeAttribute(const char *name, int &value) Get the attribute with the given name and converted to a word type such as VTK_FLOAT or VTK_UNSIGNED_LONG. V.GetNumberOfAttributes() -> int C++: virtual int GetNumberOfAttributes() Get the number of attributes. V.GetAttributeName(int) -> string C++: const char *GetAttributeName(int idx) Get the n-th attribute name. Returns 0 if there is no such attribute. V.GetAttributeValue(int) -> string C++: const char *GetAttributeValue(int idx) Get the n-th attribute value. Returns 0 if there is no such attribute. V.RemoveAttribute(string) C++: virtual void RemoveAttribute(const char *name) Remove one or all attributes. V.RemoveAllAttributes() C++: virtual void RemoveAllAttributes() Remove one or all attributes. V.GetParent() -> vtkXMLDataElement C++: vtkXMLDataElement *GetParent() Set/Get the parent of this element. V.SetParent(vtkXMLDataElement) C++: void SetParent(vtkXMLDataElement *parent) Set/Get the parent of this element. V.GetRoot() -> vtkXMLDataElement C++: virtual vtkXMLDataElement *GetRoot() Get root of the XML tree this element is part of. V.GetNumberOfNestedElements() -> int C++: int GetNumberOfNestedElements() Get the number of elements nested in this one. V.GetNestedElement(int) -> vtkXMLDataElement C++: vtkXMLDataElement *GetNestedElement(int index) Get the element nested in this one at the given index. V.AddNestedElement(vtkXMLDataElement) C++: void AddNestedElement(vtkXMLDataElement *element) Add nested element V.RemoveNestedElement(vtkXMLDataElement) C++: virtual void RemoveNestedElement(vtkXMLDataElement *) Remove nested element. V.RemoveAllNestedElements() C++: virtual void RemoveAllNestedElements() Remove all nested elements. V.FindNestedElement(string) -> vtkXMLDataElement C++: vtkXMLDataElement *FindNestedElement(const char *id) Find the first nested element with the given id, given name, or given name and id. WARNING: the search is only performed on the children, not the grand-children. V.FindNestedElementWithName(string) -> vtkXMLDataElement C++: vtkXMLDataElement *FindNestedElementWithName( const char *name) Find the first nested element with the given id, given name, or given name and id. WARNING: the search is only performed on the children, not the grand-children. V.FindNestedElementWithNameAndId(string, string) -> vtkXMLDataElement C++: vtkXMLDataElement *FindNestedElementWithNameAndId( const char *name, const char *id) Find the first nested element with the given id, given name, or given name and id. WARNING: the search is only performed on the children, not the grand-children. V.FindNestedElementWithNameAndAttribute(string, string, string) -> vtkXMLDataElement C++: vtkXMLDataElement *FindNestedElementWithNameAndAttribute( const char *name, const char *att_name, const char *att_value) Find the first nested element with the given id, given name, or given name and id. WARNING: the search is only performed on the children, not the grand-children. V.LookupElementWithName(string) -> vtkXMLDataElement C++: vtkXMLDataElement *LookupElementWithName(const char *name) Find the first nested element with given name. WARNING: the search is performed on the whole XML tree. V.LookupElement(string) -> vtkXMLDataElement C++: vtkXMLDataElement *LookupElement(const char *id) Lookup the element with the given id, starting at this scope. V.GetXMLByteIndex() -> int C++: virtual vtkTypeInt64 GetXMLByteIndex() Set/Get the offset from the beginning of the XML document to this element. V.SetXMLByteIndex(int) C++: virtual void SetXMLByteIndex(vtkTypeInt64 _arg) Set/Get the offset from the beginning of the XML document to this element. V.IsEqualTo(vtkXMLDataElement) -> int C++: virtual int IsEqualTo(vtkXMLDataElement *elem) Check if the instance has the same name, attributes, character data and nested elements contents than the given element (this method is applied recursively on the nested elements, and they must be stored in the same order). Warning: Id, Parent, XMLByteIndex are ignored. V.DeepCopy(vtkXMLDataElement) C++: virtual void DeepCopy(vtkXMLDataElement *elem) Copy this element from another of the same type (elem), recursively. Old attributes and nested elements are removed, new ones are created given the contents of 'elem'. Warning: Parent is ignored. V.SetAttributeEncoding(int) C++: virtual void SetAttributeEncoding(int _arg) Get/Set the internal character encoding of the attributes. Default type is VTK_ENCODING_UTF_8. Note that a vtkXMLDataParser has its own AttributesEncoding ivar. If this ivar is set to something other than VTK_ENCODING_NONE, it will be used to set the attribute encoding of each vtkXMLDataElement created by this vtkXMLDataParser. V.GetAttributeEncodingMinValue() -> int C++: virtual int GetAttributeEncodingMinValue() Get/Set the internal character encoding of the attributes. Default type is VTK_ENCODING_UTF_8. Note that a vtkXMLDataParser has its own AttributesEncoding ivar. If this ivar is set to something other than VTK_ENCODING_NONE, it will be used to set the attribute encoding of each vtkXMLDataElement created by this vtkXMLDataParser. V.GetAttributeEncodingMaxValue() -> int C++: virtual int GetAttributeEncodingMaxValue() Get/Set the internal character encoding of the attributes. Default type is VTK_ENCODING_UTF_8. Note that a vtkXMLDataParser has its own AttributesEncoding ivar. If this ivar is set to something other than VTK_ENCODING_NONE, it will be used to set the attribute encoding of each vtkXMLDataElement created by this vtkXMLDataParser. V.GetAttributeEncoding() -> int C++: virtual int GetAttributeEncoding() Get/Set the internal character encoding of the attributes. Default type is VTK_ENCODING_UTF_8. Note that a vtkXMLDataParser has its own AttributesEncoding ivar. If this ivar is set to something other than VTK_ENCODING_NONE, it will be used to set the attribute encoding of each vtkXMLDataElement created by this vtkXMLDataParser. V.PrintXML(string) C++: void PrintXML(const char *fname) Prints element tree as XML. V.GetCharacterDataWidth() -> int C++: virtual int GetCharacterDataWidth() Get/Set the width (in number of fields) that character data (that between open and closing tags ie. ... ) is printed. If the width is less than one the tag's character data is printed all on one line. If it is greater than one the character data is streamed insterting line feeds every width number of fields. See PrintXML. V.SetCharacterDataWidth(int) C++: virtual void SetCharacterDataWidth(int _arg) Get/Set the width (in number of fields) that character data (that between open and closing tags ie. ... ) is printed. If the width is less than one the tag's character data is printed all on one line. If it is greater than one the character data is streamed insterting line feeds every width number of fields. See PrintXML. RestartGetStartVertexSetStartVertexvtkTreeIterator - Abstract class for iterator over a vtkTree. Superclass: vtkObject The base class for tree iterators vtkTreeBFSIterator and vtkTreeDFSIterator. After setting up the iterator, the normal mode of operation is to set up a while(iter->HasNext())loop, with the statement vtkIdType vertex = iter->Next()inside the loop. @sa vtkTreeBFSIterator vtkTreeDFSIterator vtkCommonDataModelPython.vtkTreeIteratorV.SafeDownCast(vtkObjectBase) -> vtkTreeIterator C++: static vtkTreeIterator *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTreeIterator C++: vtkTreeIterator *NewInstance() V.SetTree(vtkTree) C++: void SetTree(vtkTree *graph) Set/get the graph to iterate over. V.GetTree() -> vtkTree C++: virtual vtkTree *GetTree() Set/get the graph to iterate over. V.SetStartVertex(int) C++: void SetStartVertex(vtkIdType vertex) The start vertex of the traversal. The tree iterator will only iterate over the subtree rooted at vertex. If not set (or set to a negative value), starts at the root of the tree. V.GetStartVertex() -> int C++: virtual vtkIdType GetStartVertex() The start vertex of the traversal. The tree iterator will only iterate over the subtree rooted at vertex. If not set (or set to a negative value), starts at the root of the tree. V.Next() -> int C++: vtkIdType Next() The next vertex visited in the graph. V.HasNext() -> bool C++: bool HasNext() Return true when all vertices have been visited. V.Restart() C++: void Restart() Reset the iterator to its start vertex. GetMaxLengthGetDiagonalLengthGetBoundAddBoxIntersectsGetLengthsIntersectPlaneComputeDivisionsInflateGetMaxPointGetMinPointSetMinPointSetMaxPoint@W vtkBoundingBoxvtkBoundingBox - Fast Simple Class for dealing with 3D bounds vtkBoundingBox maintains a 3D axis aligned bounding box. It is very lite weight and many of the member functions are in-lined so its very fast It is not derived from vtkObject so it can be allocated on the stack @sa vtkBox vtkBoundingBox() vtkBoundingBox(const double bounds[6]) vtkBoundingBox(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax) vtkBoundingBox(const vtkBoundingBox &bbox) vtkCommonDataModelPython.vtkBoundingBoxV.SetBounds((float, float, float, float, float, float)) C++: void SetBounds(const double bounds[6]) V.SetBounds(float, float, float, float, float, float) C++: void SetBounds(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax) Set the bounds explicitly of the box (vtk Style) Returns 1 if the box was changed else 0. V.SetMinPoint(float, float, float) C++: void SetMinPoint(double x, double y, double z) V.SetMinPoint([float, float, float]) C++: void SetMinPoint(double p[3]) Set the minimum point of the bounding box - if the min point is greater than the max point then the max point will also be changed. V.SetMaxPoint(float, float, float) C++: void SetMaxPoint(double x, double y, double z) V.SetMaxPoint([float, float, float]) C++: void SetMaxPoint(double p[3]) Set the maximum point of the bounding box - if the max point is less than the min point then the min point will also be changed. V.IsValid() -> int C++: int IsValid() V.IsValid((float, float, float, float, float, float)) -> int C++: static int IsValid(const double bounds[6]) Returns 1 if the bounds have been set and 0 if the box is in its initialized state which is an inverted state. V.AddPoint([float, float, float]) C++: void AddPoint(double p[3]) V.AddPoint(float, float, float) C++: void AddPoint(double px, double py, double pz) Change bounding box so it includes the point p Note that the bounding box may have 0 volume if its bounds were just initialized. V.AddBox(vtkBoundingBox) C++: void AddBox(const vtkBoundingBox &bbox) Change the bounding box to be the union of itself and bbox. V.AddBounds((float, ...)) C++: void AddBounds(const double bounds[]) Adjust the bounding box so it contains the specified bounds (defined by the vtk standard (xmin,xmax, ymin,ymax, zmin,zmax). V.IntersectBox(vtkBoundingBox) -> int C++: int IntersectBox(const vtkBoundingBox &bbox) Intersect this box with bbox. The method returns 1 if both boxes are valid and they do have overlap else it will return 0. If 0 is returned the box has not been modified. V.Intersects(vtkBoundingBox) -> int C++: int Intersects(const vtkBoundingBox &bbox) Returns 1 if the boxes intersect else returns 0. V.IntersectPlane([float, float, float], [float, float, float]) -> bool C++: bool IntersectPlane(double origin[3], double normal[3]) Intersect this box with the half space defined by plane. Returns true if there is intersection---which implies that the box has been modified Returns false otherwise. V.Contains(vtkBoundingBox) -> int C++: int Contains(const vtkBoundingBox &bbox) Returns 1 if the min and max points of bbox are contained within the bounds of this box, else returns 0. V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) V.GetBounds(float, float, float, float, float, float) C++: void GetBounds(double &xMin, double &xMax, double &yMin, double &yMax, double &zMin, double &zMax) Get the bounds of the box (defined by vtk style). V.GetBound(int) -> float C++: double GetBound(int i) Return the ith bounds of the box (defined by vtk style). V.GetMinPoint() -> (float, float, float) C++: const double *GetMinPoint() V.GetMinPoint(float, float, float) C++: void GetMinPoint(double &x, double &y, double &z) Get the minimum point of the bounding box. V.GetMaxPoint() -> (float, float, float) C++: const double *GetMaxPoint() V.GetMaxPoint(float, float, float) C++: void GetMaxPoint(double &x, double &y, double &z) Get the maximum point of the bounding box. V.ContainsPoint([float, float, float]) -> int C++: int ContainsPoint(double p[3]) V.ContainsPoint(float, float, float) -> int C++: int ContainsPoint(double px, double py, double pz) Returns 1 if the point is contained in the box else 0. V.GetCenter([float, float, float]) C++: void GetCenter(double center[3]) Get the center of the bounding box. V.GetLengths([float, float, float]) C++: void GetLengths(double lengths[3]) Get the lengths of the box. V.GetLength(int) -> float C++: double GetLength(int i) Return the length in the ith direction. V.GetMaxLength() -> float C++: double GetMaxLength() Return the Max Length of the box. V.GetDiagonalLength() -> float C++: double GetDiagonalLength() Return the length of the diagonal. \pre not_empty: this->IsValid() V.Inflate(float) C++: void Inflate(double delta) V.Inflate() C++: void Inflate() Expand the Box by delta on each side, the box will grow by 2*delta in x,y and z. Alternatively, inflate the bounds so that it has non-zero volume. Edges that are inflated are adjusted 1% of the longest edge. Or if all edges are zero length, the bounding box is inflated by 1 unit in each of the x-y-z directions. V.Scale([float, float, float]) C++: void Scale(double s[3]) V.Scale(float, float, float) C++: void Scale(double sx, double sy, double sz) Scale each dimension of the box by some given factor. If the box is not valid, it stays unchanged. If the scalar factor is negative, bounds are flipped: for example, if (xMin,xMax)=(-2,4) and sx=-3, (xMin,xMax) becomes (-12,6). V.ComputeDivisions(int, [float, float, float, float, float, float], [int, int, int]) -> int C++: vtkIdType ComputeDivisions(vtkIdType totalBins, double bounds[6], int divs[3]) Compute the number of divisions in the z-y-z directions given a target number of total bins (i.e., product of divisions in the x-y-z directions). The computation is done in such a way as to create near cuboid bins. Also note that the returned bounds may be different than the bounds defined in this class, as the bounds in the z-y-z directions can never be <= 0. Note that the total number of divisions (divs[0]*divs[1]*divs[2]) is guaranteed to be smaller than the target number of bins. V.Reset() C++: void Reset() Returns the box to its initialized state. 9~9~9~999GetMoleculeGetAtomicNumberSetAtomicNumberSetPosition@W vtkAtom@W vtkVector3fvtkAtom - convenience proxy for vtkMolecule vtkAtom(const &vtkAtom) vtkCommonDataModelPython.vtkAtomV.GetId() -> int C++: vtkIdType GetId() Return the Id used to identify this atom in the parent molecule. V.GetMolecule() -> vtkMolecule C++: vtkMolecule *GetMolecule() Return the parent molecule of this atom. V.GetAtomicNumber() -> int C++: unsigned short GetAtomicNumber() Get/Set the atomic number of this atom V.SetAtomicNumber(int) C++: void SetAtomicNumber(unsigned short atomicNum) Get/Set the atomic number of this atom V.GetPosition([float, float, float]) C++: void GetPosition(double pos[3]) V.GetPosition() -> vtkVector3f C++: vtkVector3f GetPosition() Get/Set the position of this atom V.SetPosition((float, float, float)) C++: void SetPosition(const float pos[3]) V.SetPosition(float, float, float) C++: void SetPosition(float x, float y, float z) V.SetPosition(vtkVector3f) C++: void SetPosition(const vtkVector3f &pos) Get/Set the position of this atom GetEndAtomGetBeginAtomIdGetEndAtomIdGetBeginAtom@W vtkBondvtkBond - convenience proxy for vtkMolecule vtkBond(const &vtkBond) vtkCommonDataModelPython.vtkBondV.GetId() -> int C++: vtkIdType GetId() Return the Id used to identify this bond in the parent molecule. V.GetMolecule() -> vtkMolecule C++: vtkMolecule *GetMolecule() Return the parent molecule of this bond. V.GetBeginAtomId() -> int C++: vtkIdType GetBeginAtomId() Get the starting / ending atom ids for this bond. V.GetEndAtomId() -> int C++: vtkIdType GetEndAtomId() Get the starting / ending atom ids for this bond. V.GetBeginAtom() -> vtkAtom C++: vtkAtom GetBeginAtom() Get a vtkAtom object that refers to the starting / ending atom for this bond. V.GetEndAtom() -> vtkAtom C++: vtkAtom GetEndAtom() Get a vtkAtom object that refers to the starting / ending atom for this bond. V.GetOrder() -> int C++: unsigned short GetOrder() Get the bond order for this bond. V.GetLength() -> float C++: double GetLength() Get the distance between the bonded atoms. * ote This function is faster than vtkMolecule::GetBondLength and * should be used when possible. vtkMoleculeAppendBondGetPlaneFromBondClearLatticeHasLatticeGetAtomicPositionArrayGetNumberOfAtomsGetNumberOfBondsGetAtomicNumberArrayGetElectronicDataGetLatticeOriginGetBondOrderGetAtomAtomicNumberGetBondLengthGetAtomGetBondSetAtomAtomicNumberSetBondOrderSetLatticeOriginGetAtomPositionSetAtomPositionSetLatticevtkMatrix3x3GetLatticeAppendAtomDeepCopyAttributesShallowCopyAttributesDeepCopyStructureShallowCopyStructureSetElectronicDatavtkAbstractElectronicData@kk|H@WW|H vtkAtom vtkAtomvtkMolecule - class describing a molecule Superclass: vtkUndirectedGraph vtkMolecule and the convenience classes vtkAtom and vtkBond describe the geometry and connectivity of a molecule. The molecule can be constructed using the AppendAtom() and AppendBond() methods in one of two ways; either by fully specifying the atom/bond in a single call, or by incrementally setting the various attributes using the convience vtkAtom and vtkBond classes: Single call:vtkMolecule *mol = vtkMolecule::New(); vtkAtom h1 = mol->AppendAtom(1, 0.0, 0.0, -0.5); vtkAtom h2 = mol->AppendAtom(1, 0.0, 0.0, 0.5); vtkBond b = mol->AppendBond(h1, h2, 1); Incremental:vtkMolecule *mol = vtkMolecule::New(); vtkAtom h1 = mol->AppendAtom(); h1.SetAtomicNumber(1); h1.SetPosition(0.0, 0.0, -0.5); vtkAtom h2 = mol->AppendAtom(); h2.SetAtomicNumber(1); vtkVector3d displacement (0.0, 0.0, 1.0); h2.SetPosition(h1.GetPositionAsVector3d() + displacement); vtkBond b = mol->AppendBond(h1, h2, 1); Both of the above methods will produce the same molecule, two hydrogens connected with a 1.0 Angstrom single bond, aligned to the z-axis. The second example also demostrates the use of VTK's vtkVector class, which is fully supported by the Chemistry kit. The vtkMolecule object is intended to be used with the vtkMoleculeMapper class for visualizing molecular structure using common rendering techniques. \warning While direct use of the underlying vtkUndirectedGraph structure is possible due to vtkMolecule's public inheritance, this should not be relied upon and may change in the future. @sa vtkAtom vtkBond vtkMoleculeMapper vtkPeriodicTable vtkCommonDataModelPython.vtkMoleculeV.SafeDownCast(vtkObjectBase) -> vtkMolecule C++: static vtkMolecule *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkMolecule C++: vtkMolecule *NewInstance() V.AppendAtom() -> vtkAtom C++: vtkAtom AppendAtom() V.AppendAtom(int, vtkVector3f) -> vtkAtom C++: vtkAtom AppendAtom(unsigned short atomicNumber, const vtkVector3f &pos) V.AppendAtom(int, float, float, float) -> vtkAtom C++: vtkAtom AppendAtom(unsigned short atomicNumber, double x, double y, double z) Add new atom with atomic number 0 (dummy atom) at origin. Return a vtkAtom that refers to the new atom. V.GetAtom(int) -> vtkAtom C++: vtkAtom GetAtom(vtkIdType atomId) Return a vtkAtom that refers to the atom with the specified id. V.GetNumberOfAtoms() -> int C++: vtkIdType GetNumberOfAtoms() Return the number of atoms in the molecule. V.AppendBond(int, int, int) -> vtkBond C++: vtkBond AppendBond(vtkIdType atom1, vtkIdType atom2, unsigned short order=1) V.AppendBond(vtkAtom, vtkAtom, int) -> vtkBond C++: vtkBond AppendBond(const vtkAtom &atom1, const vtkAtom &atom2, unsigned short order=1) Add a bond between the specified atoms, optionally setting the bond order (default: 1). Return a vtkBond object referring to the new bond. V.GetBond(int) -> vtkBond C++: vtkBond GetBond(vtkIdType bondId) Return a vtkAtom that refers to the bond with the specified id. V.GetNumberOfBonds() -> int C++: vtkIdType GetNumberOfBonds() Return the number of bonds in the molecule. V.GetAtomAtomicNumber(int) -> int C++: unsigned short GetAtomAtomicNumber(vtkIdType atomId) Return the atomic number of the atom with the specified id. V.SetAtomAtomicNumber(int, int) C++: void SetAtomAtomicNumber(vtkIdType atomId, unsigned short atomicNum) Set the atomic number of the atom with the specified id. V.SetAtomPosition(int, vtkVector3f) C++: void SetAtomPosition(vtkIdType atomId, const vtkVector3f &pos) V.SetAtomPosition(int, float, float, float) C++: void SetAtomPosition(vtkIdType atomId, double x, double y, double z) Set the position of the atom with the specified id. V.GetAtomPosition(int) -> vtkVector3f C++: vtkVector3f GetAtomPosition(vtkIdType atomId) V.GetAtomPosition(int, [float, float, float]) C++: void GetAtomPosition(vtkIdType atomId, float pos[3]) Get the position of the atom with the specified id. V.SetBondOrder(int, int) C++: void SetBondOrder(vtkIdType bondId, unsigned short order) Get/Set the bond order of the bond with the specified id V.GetBondOrder(int) -> int C++: unsigned short GetBondOrder(vtkIdType bondId) Get/Set the bond order of the bond with the specified id V.GetBondLength(int) -> float C++: double GetBondLength(vtkIdType bondId) Get the bond length of the bond with the specified id * ote If the associated vtkBond object is already available, * vtkBond::GetBondLength is potentially much faster than this * function, as a list of all bonds may need to be constructed to * locate the appropriate bond. * \sa UpdateBondList() V.GetAtomicPositionArray() -> vtkPoints C++: vtkPoints *GetAtomicPositionArray() Access the raw arrays used in this vtkMolecule instance V.GetAtomicNumberArray() -> vtkUnsignedShortArray C++: vtkUnsignedShortArray *GetAtomicNumberArray() Access the raw arrays used in this vtkMolecule instance V.GetElectronicData() -> vtkAbstractElectronicData C++: virtual vtkAbstractElectronicData *GetElectronicData() Set/Get the AbstractElectronicData-subclassed object for this molecule. V.SetElectronicData(vtkAbstractElectronicData) C++: virtual void SetElectronicData(vtkAbstractElectronicData *) Set/Get the AbstractElectronicData-subclassed object for this molecule. V.CheckedShallowCopy(vtkGraph) -> bool C++: bool CheckedShallowCopy(vtkGraph *g) override; Performs the same operation as ShallowCopy(), but instead of reporting an error for an incompatible graph, returns false. V.CheckedDeepCopy(vtkGraph) -> bool C++: bool CheckedDeepCopy(vtkGraph *g) override; Performs the same operation as DeepCopy(), but instead of reporting an error for an incompatible graph, returns false. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *obj) override; Shallow copies the data object into this molecule. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *obj) override; Deep copies the data object into this molecule. V.ShallowCopyStructure(vtkMolecule) C++: virtual void ShallowCopyStructure(vtkMolecule *m) Shallow copies the atoms and bonds from m into this. V.DeepCopyStructure(vtkMolecule) C++: virtual void DeepCopyStructure(vtkMolecule *m) Deep copies the atoms and bonds from m into this. V.ShallowCopyAttributes(vtkMolecule) C++: virtual void ShallowCopyAttributes(vtkMolecule *m) Shallow copies attributes (i.e. everything besides atoms and bonds) fromm into this. V.DeepCopyAttributes(vtkMolecule) C++: virtual void DeepCopyAttributes(vtkMolecule *m) Deep copies attributes (i.e. everything besides atoms and bonds) fromm into this. V.GetPlaneFromBond(vtkBond, vtkVector3f, vtkPlane) -> bool C++: static bool GetPlaneFromBond(const vtkBond &bond, const vtkVector3f &normal, vtkPlane *plane) V.GetPlaneFromBond(vtkAtom, vtkAtom, vtkVector3f, vtkPlane) -> bool C++: static bool GetPlaneFromBond(const vtkAtom &atom1, const vtkAtom &atom2, const vtkVector3f &normal, vtkPlane *plane) Obtain the plane that passes through the indicated bond with the given normal. If the plane is set successfully, the function returns true. * If the normal is not orthogonal to the bond, a new normal will be * constructed in such a way that the plane will be orthogonal to * the plane spanned by the bond vector and the input normal vector. * This ensures that the plane passes through the bond, and the * normal is more of a "hint" indicating the orientation of the plane. * The new normal (n) is defined as the input normal vector (n_i) minus * the projection of itself (proj[n_i]_v) onto the bond vector (v): * * v ^ * | n = (n_i - proj[n_j]_v) * proj[n_i]_v ^ |----x * | | / * | | / n_i * | | / * | |/ * * If n_i is parallel to v, a warning will be printed and no plane will be * added. Obviously, n_i must not be parallel to v. V.HasLattice() -> bool C++: bool HasLattice() Return true if a unit cell lattice is defined. V.ClearLattice() C++: void ClearLattice() Remove any unit cell lattice information from the molecule. V.SetLattice(vtkMatrix3x3) C++: void SetLattice(vtkMatrix3x3 *matrix) V.SetLattice(vtkVector3d, vtkVector3d, vtkVector3d) C++: void SetLattice(const vtkVector3d &a, const vtkVector3d &b, const vtkVector3d &c) The unit cell vectors. The matrix is stored using a row-major layout, with the vectors encoded as columns. V.GetLattice() -> vtkMatrix3x3 C++: vtkMatrix3x3 *GetLattice() V.GetLattice(vtkVector3d, vtkVector3d, vtkVector3d) C++: void GetLattice(vtkVector3d &a, vtkVector3d &b, vtkVector3d &c) V.GetLattice(vtkVector3d, vtkVector3d, vtkVector3d, vtkVector3d) C++: void GetLattice(vtkVector3d &a, vtkVector3d &b, vtkVector3d &c, vtkVector3d &origin) Get the unit cell lattice vectors. The matrix is stored using a row-major layout, with the vectors encoded as columns. Will return nullptr if no unit cell information is available. @sa GetLatticeOrigin V.GetLatticeOrigin() -> vtkVector3d C++: virtual vtkVector3d GetLatticeOrigin() Get the unit cell origin (for rendering purposes). V.SetLatticeOrigin(vtkVector3d) C++: virtual void SetLatticeOrigin(vtkVector3d _arg) Get the unit cell origin (for rendering purposes). GetNumberOfMOsGetNumberOfElectronsGetElectronDensityGetPaddingGetLUMOOrbitalNumberGetMOGetHOMOOrbitalNumberIsLUMOGetLUMOIsHOMOGetHOMOvtkAbstractElectronicData - Provides access to and storage of chemical electronic data Superclass: vtkDataObject vtkCommonDataModelPython.vtkAbstractElectronicDataV.SafeDownCast(vtkObjectBase) -> vtkAbstractElectronicData C++: static vtkAbstractElectronicData *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkAbstractElectronicData C++: vtkAbstractElectronicData *NewInstance() V.GetNumberOfMOs() -> int C++: virtual vtkIdType GetNumberOfMOs() Returns the number of molecular orbitals available. V.GetNumberOfElectrons() -> int C++: virtual vtkIdType GetNumberOfElectrons() Returns the number of electrons in the molecule. V.GetMO(int) -> vtkImageData C++: virtual vtkImageData *GetMO(vtkIdType orbitalNumber) Returns the vtkImageData for the requested molecular orbital. V.GetElectronDensity() -> vtkImageData C++: virtual vtkImageData *GetElectronDensity() Returns vtkImageData for the molecule's electron density. The data will be calculated when first requested, and cached for later requests. V.GetHOMO() -> vtkImageData C++: vtkImageData *GetHOMO() Returns vtkImageData for the Highest Occupied Molecular Orbital. V.GetLUMO() -> vtkImageData C++: vtkImageData *GetLUMO() Returns vtkImageData for the Lowest Unoccupied Molecular Orbital. V.GetHOMOOrbitalNumber() -> int C++: vtkIdType GetHOMOOrbitalNumber() V.GetLUMOOrbitalNumber() -> int C++: vtkIdType GetLUMOOrbitalNumber() V.IsHOMO(int) -> bool C++: bool IsHOMO(vtkIdType orbitalNumber) Returns true if the given orbital number is the Highest Occupied Molecular Orbital, false otherwise. V.IsLUMO(int) -> bool C++: bool IsLUMO(vtkIdType orbitalNumber) Returns true if the given orbital number is the Lowest Unoccupied Molecular Orbital, false otherwise. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *obj) override; Deep copies the data object into this. V.GetPadding() -> float C++: virtual double GetPadding() Get the padding between the molecule and the cube boundaries. This is used to determine the dataset's bounds. VTK_EMPTY_CELLVTK_VERTEXVTK_POLY_VERTEXVTK_LINEVTK_POLY_LINEVTK_TRIANGLEVTK_TRIANGLE_STRIPVTK_POLYGONVTK_PIXELVTK_QUADVTK_TETRAVTK_VOXELVTK_HEXAHEDRONVTK_WEDGEVTK_PYRAMIDVTK_PENTAGONAL_PRISMVTK_HEXAGONAL_PRISMVTK_QUADRATIC_EDGEVTK_QUADRATIC_TRIANGLEVTK_QUADRATIC_QUADVTK_QUADRATIC_POLYGONVTK_QUADRATIC_TETRAVTK_QUADRATIC_HEXAHEDRONVTK_QUADRATIC_WEDGEVTK_QUADRATIC_PYRAMIDVTK_BIQUADRATIC_QUADVTK_TRIQUADRATIC_HEXAHEDRONVTK_QUADRATIC_LINEAR_QUADVTK_QUADRATIC_LINEAR_WEDGEVTK_BIQUADRATIC_TRIANGLEVTK_CUBIC_LINEVTK_CONVEX_POINT_SETVTK_POLYHEDRONVTK_PARAMETRIC_CURVEVTK_PARAMETRIC_SURFACEVTK_PARAMETRIC_TRI_SURFACEVTK_PARAMETRIC_QUAD_SURFACEVTK_PARAMETRIC_TETRA_REGIONVTK_PARAMETRIC_HEX_REGIONVTK_HIGHER_ORDER_EDGEVTK_HIGHER_ORDER_TRIANGLEVTK_HIGHER_ORDER_QUADVTK_HIGHER_ORDER_POLYGONVTK_HIGHER_ORDER_TETRAHEDRONVTK_HIGHER_ORDER_WEDGEVTK_HIGHER_ORDER_PYRAMIDVTK_HIGHER_ORDER_HEXAHEDRONVTK_LAGRANGE_CURVEVTK_LAGRANGE_TRIANGLEVTK_LAGRANGE_QUADRILATERALVTK_LAGRANGE_TETRAHEDRONVTK_LAGRANGE_HEXAHEDRONVTK_LAGRANGE_WEDGEVTK_LAGRANGE_PYRAMIDVTK_NUMBER_OF_CELL_TYPESVTK_BIQUADRATIC_QUADRATIC_WEDGEVTK_BIQUADRATIC_QUADRATIC_HEXAHEDRONvtkVectorvtkVector2vtkVector3CrossGetYGetXGetZSquaredNormSetXSetYSetZNormalizeNormalizedDotvalues-@d-@P *d-@W vtkTuple_IdLi3EE@W vtkVector_IdLi3EE@W vtkVector3d-@f-@P *f-@W vtkTuple_IfLi3EE@W vtkVector_IfLi3EE-@i-@P *i-@W vtkTuple_IiLi3EE@W vtkVector_IiLi3EE@W vtkVector3i-@W vtkTuple_IdLi2EE@W vtkVector_IdLi2EE@W vtkVector2d-@W vtkTuple_IfLi2EE@W vtkVector_IfLi2EE@W vtkVector2f-@W vtkTuple_IiLi2EE@W vtkVector_IiLi2EE@W vtkVector2i@W vtkVector3_IiE@W vtkVector3_IfE@W vtkVector3_IdE@W vtkVector2_IiE@W vtkVector2_IfE@W vtkVector2_IdE@W vtkVector_IiLi4EE@W vtkVector_IfLi4EE@W vtkVector_IdLi4EEvtkVector3 - templated base type for storage of 3D vectors. Superclass: vtkTuple[T,Size] Provided Types: vtkVector[float64,4] => vtkVector vtkVector[float32,4] => vtkVector vtkVector[int32,4] => vtkVector vtkVector[float64,2] => vtkVector vtkVector[float32,2] => vtkVector vtkVector[int32,2] => vtkVector vtkVector[float64,3] => vtkVector vtkVector[float32,3] => vtkVector vtkVector[int32,3] => vtkVector vtkCommonDataModelPython.vtkVectorvtkVector2 - no description provided. Superclass: vtkVector[T,2] Provided Types: vtkVector2[float64] => vtkVector2 vtkVector2[float32] => vtkVector2 vtkVector2[int32] => vtkVector2 vtkCommonDataModelPython.vtkVector2vtkVector3 - no description provided. Superclass: vtkVector[T,3] Provided Types: vtkVector3[float64] => vtkVector3 vtkVector3[float32] => vtkVector3 vtkVector3[int32] => vtkVector3 vtkCommonDataModelPython.vtkVector3vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[float64,4] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const double &scalar) explicit vtkVector(const double *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[float32,4] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const float &scalar) explicit vtkVector(const float *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[int32,4] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const int &scalar) explicit vtkVector(const int *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[float64,2] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const double &scalar) explicit vtkVector(const double *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[float32,2] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const float &scalar) explicit vtkVector(const float *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[int32,2] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const int &scalar) explicit vtkVector(const int *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[float64,3] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const double &scalar) explicit vtkVector(const double *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[float32,3] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const float &scalar) explicit vtkVector(const float *init) vtkVector(const &vtkVector) vtkVector - templated base type for storage of vectors. Superclass: vtkTuple[int32,3] This class is a templated data type for storing and manipulating fixed size vectors, which can be used to represent two and three dimensional points. The memory layout is a contiguous array of the specified type, such that a float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could be cast and used as a vtkVector2f[3]. vtkVector() explicit vtkVector(const int &scalar) explicit vtkVector(const int *init) vtkVector(const &vtkVector) vtkVector2 - no description provided. Superclass: vtkVector[float64,2] vtkVector2() explicit vtkVector2(const double &scalar) explicit vtkVector2(const double *init) vtkVector2(const double &x, const double &y) vtkVector2(const &vtkVector2) vtkVector2 - no description provided. Superclass: vtkVector[float32,2] vtkVector2() explicit vtkVector2(const float &scalar) explicit vtkVector2(const float *init) vtkVector2(const float &x, const float &y) vtkVector2(const &vtkVector2) vtkVector2 - no description provided. Superclass: vtkVector[int32,2] vtkVector2() explicit vtkVector2(const int &scalar) explicit vtkVector2(const int *init) vtkVector2(const int &x, const int &y) vtkVector2(const &vtkVector2) vtkVector3 - no description provided. Superclass: vtkVector[float64,3] vtkVector3() explicit vtkVector3(const double &scalar) explicit vtkVector3(const double *init) vtkVector3(const double &x, const double &y, const double &z) vtkVector3(const &vtkVector3) vtkVector3 - no description provided. Superclass: vtkVector[float32,3] vtkVector3() explicit vtkVector3(const float &scalar) explicit vtkVector3(const float *init) vtkVector3(const float &x, const float &y, const float &z) vtkVector3(const &vtkVector3) vtkVector3 - no description provided. Superclass: vtkVector[int32,3] vtkVector3() explicit vtkVector3(const int &scalar) explicit vtkVector3(const int *init) vtkVector3(const int &x, const int &y, const int &z) vtkVector3(const &vtkVector3) vtkVector2i - Some derived classes for the different vectors commonly used. Superclass: vtkVector2[int32] vtkVector2i() vtkVector2i(int x, int y) explicit vtkVector2i(int s) explicit vtkVector2i(const int *i) explicit vtkVector2i(const vtkTuple &o) vtkVector2i(const vtkVector &o) vtkVector2i(const &vtkVector2i) vtkVector2f - no description provided. Superclass: vtkVector2[float32] vtkVector2f() vtkVector2f(float x, float y) explicit vtkVector2f(float s) explicit vtkVector2f(const float *i) explicit vtkVector2f(const vtkTuple &o) vtkVector2f(const vtkVector &o) vtkVector2f(const &vtkVector2f) vtkVector2d - no description provided. Superclass: vtkVector2[float64] vtkVector2d() vtkVector2d(double x, double y) explicit vtkVector2d(double s) explicit vtkVector2d(const double *i) explicit vtkVector2d(const vtkTuple &o) vtkVector2d(const vtkVector &o) vtkVector2d(const &vtkVector2d) vtkVector3i - no description provided. Superclass: vtkVector3[int32] vtkVector3i() vtkVector3i(int x, int y, int z) explicit vtkVector3i(int s) explicit vtkVector3i(const int *i) explicit vtkVector3i(const vtkTuple &o) vtkVector3i(const vtkVector &o) vtkVector3i(const &vtkVector3i) vtkVector3f - no description provided. Superclass: vtkVector3[float32] vtkVector3f() vtkVector3f(float x, float y, float z) explicit vtkVector3f(float s) explicit vtkVector3f(const float *i) explicit vtkVector3f(const vtkTuple &o) vtkVector3f(const vtkVector &o) vtkVector3f(const &vtkVector3f) vtkVector3d - no description provided. Superclass: vtkVector3[float64] vtkVector3d() vtkVector3d(double x, double y, double z) explicit vtkVector3d(double s) explicit vtkVector3d(const double *i) explicit vtkVector3d(const vtkTuple &o) vtkVector3d(const vtkVector &o) vtkVector3d(const &vtkVector3d) vtkCommonDataModelPython.vtkVector3dV.Normalized() -> vtkVector3d C++: vtkVector3d Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Cross(vtkVector3d) -> vtkVector3d C++: vtkVector3d Cross(const vtkVector3d &other) vtkCommonDataModelPython.vtkVector3fV.Normalized() -> vtkVector3f C++: vtkVector3f Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Cross(vtkVector3f) -> vtkVector3f C++: vtkVector3f Cross(const vtkVector3f &other) vtkCommonDataModelPython.vtkVector3iV.Normalized() -> vtkVector3i C++: vtkVector3i Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Cross(vtkVector3i) -> vtkVector3i C++: vtkVector3i Cross(const vtkVector3i &other) vtkCommonDataModelPython.vtkVector2dV.Normalized() -> vtkVector2d C++: vtkVector2d Normalized() Return the normalized form of this vector. \return The normalized form of this vector. vtkCommonDataModelPython.vtkVector2fV.Normalized() -> vtkVector2f C++: vtkVector2f Normalized() Return the normalized form of this vector. \return The normalized form of this vector. vtkCommonDataModelPython.vtkVector2iV.Normalized() -> vtkVector2i C++: vtkVector2i Normalized() Return the normalized form of this vector. \return The normalized form of this vector. vtkCommonDataModelPython.vtkVector3_IiEV.Set(int, int, int) C++: void Set(const int &x, const int &y, const int &z) Set the x, y and z components of the vector. V.SetX(int) C++: void SetX(const int &x) Set the x component of the vector, i.e. element 0. V.GetX() -> int C++: const int &GetX() Get the x component of the vector, i.e. element 0. V.SetY(int) C++: void SetY(const int &y) Set the y component of the vector, i.e. element 1. V.GetY() -> int C++: const int &GetY() Get the y component of the vector, i.e. element 1. V.SetZ(int) C++: void SetZ(const int &z) Set the z component of the vector, i.e. element 2. V.GetZ() -> int C++: const int &GetZ() Get the z component of the vector, i.e. element 2. V.Cross(vtkVector3_IiE) -> vtkVector3_IiE C++: vtkVector3 Cross(const vtkVector3 &other) Return the cross product of this X other. vtkCommonDataModelPython.vtkVector3_IfEV.Set(float, float, float) C++: void Set(const float &x, const float &y, const float &z) Set the x, y and z components of the vector. V.SetX(float) C++: void SetX(const float &x) Set the x component of the vector, i.e. element 0. V.GetX() -> float C++: const float &GetX() Get the x component of the vector, i.e. element 0. V.SetY(float) C++: void SetY(const float &y) Set the y component of the vector, i.e. element 1. V.GetY() -> float C++: const float &GetY() Get the y component of the vector, i.e. element 1. V.SetZ(float) C++: void SetZ(const float &z) Set the z component of the vector, i.e. element 2. V.GetZ() -> float C++: const float &GetZ() Get the z component of the vector, i.e. element 2. V.Cross(vtkVector3_IfE) -> vtkVector3_IfE C++: vtkVector3 Cross(const vtkVector3 &other) Return the cross product of this X other. vtkCommonDataModelPython.vtkVector3_IdEV.Set(float, float, float) C++: void Set(const double &x, const double &y, const double &z) Set the x, y and z components of the vector. V.SetX(float) C++: void SetX(const double &x) Set the x component of the vector, i.e. element 0. V.GetX() -> float C++: const double &GetX() Get the x component of the vector, i.e. element 0. V.SetY(float) C++: void SetY(const double &y) Set the y component of the vector, i.e. element 1. V.GetY() -> float C++: const double &GetY() Get the y component of the vector, i.e. element 1. V.SetZ(float) C++: void SetZ(const double &z) Set the z component of the vector, i.e. element 2. V.GetZ() -> float C++: const double &GetZ() Get the z component of the vector, i.e. element 2. V.Cross(vtkVector3_IdE) -> vtkVector3_IdE C++: vtkVector3 Cross(const vtkVector3 &other) Return the cross product of this X other. vtkCommonDataModelPython.vtkVector2_IiEV.Set(int, int) C++: void Set(const int &x, const int &y) Set the x and y components of the vector. vtkCommonDataModelPython.vtkVector2_IfEV.Set(float, float) C++: void Set(const float &x, const float &y) Set the x and y components of the vector. vtkCommonDataModelPython.vtkVector2_IdEV.Set(float, float) C++: void Set(const double &x, const double &y) Set the x and y components of the vector. vtkCommonDataModelPython.vtkVector_IiLi3EEV.SquaredNorm() -> int C++: int SquaredNorm() Get the squared norm of the vector. V.Norm() -> float C++: double Norm() Get the norm of the vector, i.e. its length. V.Normalize() -> float C++: double Normalize() Normalize the vector in place. \return The length of the vector. V.Normalized() -> vtkVector_IiLi3EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IiLi3EE) -> int C++: int Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IfLi3EEV.SquaredNorm() -> float C++: float SquaredNorm() Get the squared norm of the vector. V.Normalized() -> vtkVector_IfLi3EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IfLi3EE) -> float C++: float Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IdLi3EEV.SquaredNorm() -> float C++: double SquaredNorm() Get the squared norm of the vector. V.Normalized() -> vtkVector_IdLi3EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IdLi3EE) -> float C++: double Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IiLi2EEV.Normalized() -> vtkVector_IiLi2EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IiLi2EE) -> int C++: int Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IfLi2EEV.Normalized() -> vtkVector_IfLi2EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IfLi2EE) -> float C++: float Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IdLi2EEV.Normalized() -> vtkVector_IdLi2EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IdLi2EE) -> float C++: double Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IiLi4EEV.Normalized() -> vtkVector_IiLi4EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IiLi4EE) -> int C++: int Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IfLi4EEV.Normalized() -> vtkVector_IfLi4EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IfLi4EE) -> float C++: float Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkCommonDataModelPython.vtkVector_IdLi4EEV.Normalized() -> vtkVector_IdLi4EE C++: vtkVector Normalized() Return the normalized form of this vector. \return The normalized form of this vector. V.Dot(vtkVector_IdLi4EE) -> float C++: double Dot(const vtkVector &other) The dot product of this and the supplied vector. vtkColor3vtkColor4GetRedGetBlueGetGreenGetAlphaSetGreenSetRedSetBlueSetAlpha@W vtkColor4d@W vtkColor4f-@P *B@W vtkColor3ub@W vtkColor4ub@W vtkColor3d@W vtkColor3f-@B@W vtkColor4_IhE@W vtkColor4_IfE@W vtkColor4_IdE@W vtkColor3_IhE@W vtkColor3_IfE@W vtkColor3_IdEvtkColor3 - no description provided. Superclass: vtkTuple[T,3] Provided Types: vtkColor3[float64] => vtkColor3 vtkColor3[float32] => vtkColor3 vtkColor3[uint8] => vtkColor3 vtkCommonDataModelPython.vtkColor3vtkColor4 - no description provided. Superclass: vtkTuple[T,4] Provided Types: vtkColor4[float64] => vtkColor4 vtkColor4[float32] => vtkColor4 vtkColor4[uint8] => vtkColor4 vtkCommonDataModelPython.vtkColor4vtkColor3 - no description provided. Superclass: vtkTuple[float64,3] vtkColor3() explicit vtkColor3(const double &scalar) explicit vtkColor3(const double *init) vtkColor3(const double &red, const double &green, const double &blue) vtkColor3(const &vtkColor3) vtkColor3 - no description provided. Superclass: vtkTuple[float32,3] vtkColor3() explicit vtkColor3(const float &scalar) explicit vtkColor3(const float *init) vtkColor3(const float &red, const float &green, const float &blue) vtkColor3(const &vtkColor3) vtkColor3 - no description provided. Superclass: vtkTuple[uint8,3] vtkColor3() explicit vtkColor3(const unsigned char &scalar) explicit vtkColor3(const unsigned char *init) vtkColor3(const unsigned char &red, const unsigned char &green, const unsigned char &blue) vtkColor3(const &vtkColor3) vtkColor4 - no description provided. Superclass: vtkTuple[float64,4] vtkColor4() explicit vtkColor4(const double &scalar) explicit vtkColor4(const double *init) vtkColor4(const double &red, const double &green, const double &blue, const double &alpha) vtkColor4(const &vtkColor4) vtkColor4 - no description provided. Superclass: vtkTuple[float32,4] vtkColor4() explicit vtkColor4(const float &scalar) explicit vtkColor4(const float *init) vtkColor4(const float &red, const float &green, const float &blue, const float &alpha) vtkColor4(const &vtkColor4) vtkColor4 - no description provided. Superclass: vtkTuple[uint8,4] vtkColor4() explicit vtkColor4(const unsigned char &scalar) explicit vtkColor4(const unsigned char *init) vtkColor4(const unsigned char &red, const unsigned char &green, const unsigned char &blue, const unsigned char &alpha) vtkColor4(const &vtkColor4) vtkColor3ub - Some derived classes for the different colors commonly used. Superclass: vtkColor3[uint8] vtkColor3ub() explicit vtkColor3ub(unsigned char scalar) explicit vtkColor3ub(const unsigned char *init) explicit vtkColor3ub(int hexSigned) vtkColor3ub(unsigned char r, unsigned char g, unsigned char b) vtkColor3ub(const &vtkColor3ub) vtkColor3f - no description provided. Superclass: vtkColor3[float32] vtkColor3f() explicit vtkColor3f(float scalar) explicit vtkColor3f(const float *init) vtkColor3f(float r, float g, float b) vtkColor3f(const &vtkColor3f) vtkColor3d - no description provided. Superclass: vtkColor3[float64] vtkColor3d() explicit vtkColor3d(double scalar) explicit vtkColor3d(const double *init) vtkColor3d(double r, double g, double b) vtkColor3d(const &vtkColor3d) vtkColor4ub - no description provided. Superclass: vtkColor4[uint8] vtkColor4ub() explicit vtkColor4ub(unsigned char scalar) explicit vtkColor4ub(const unsigned char *init) explicit vtkColor4ub(int hexSigned) vtkColor4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a=255) vtkColor4ub(const vtkColor3ub &c) vtkColor4ub(const &vtkColor4ub) vtkColor4f - no description provided. Superclass: vtkColor4[float32] vtkColor4f() explicit vtkColor4f(float scalar) explicit vtkColor4f(const float *init) vtkColor4f(float r, float g, float b, float a=1.0) vtkColor4f(const &vtkColor4f) vtkColor4d - no description provided. Superclass: vtkColor4[float64] vtkColor4d() explicit vtkColor4d(double scalar) explicit vtkColor4d(const double *init) vtkColor4d(double r, double g, double b, double a=1.0) vtkColor4d(const &vtkColor4d) vtkCommonDataModelPython.vtkColor4dvtkCommonDataModelPython.vtkColor4fvtkCommonDataModelPython.vtkColor4ubvtkCommonDataModelPython.vtkColor3dvtkCommonDataModelPython.vtkColor3fvtkCommonDataModelPython.vtkColor3ubvtkCommonDataModelPython.vtkColor4_IhEV.Set(int, int, int) C++: void Set(const unsigned char &red, const unsigned char &green, const unsigned char &blue) V.Set(int, int, int, int) C++: void Set(const unsigned char &red, const unsigned char &green, const unsigned char &blue, const unsigned char &alpha) Set the red, green and blue components of the color. V.SetRed(int) C++: void SetRed(const unsigned char &red) Set the red component of the color, i.e. element 0. V.GetRed() -> int C++: const unsigned char &GetRed() Get the red component of the color, i.e. element 0. V.SetGreen(int) C++: void SetGreen(const unsigned char &green) Set the green component of the color, i.e. element 1. V.GetGreen() -> int C++: const unsigned char &GetGreen() Get the green component of the color, i.e. element 1. V.SetBlue(int) C++: void SetBlue(const unsigned char &blue) Set the blue component of the color, i.e. element 2. V.GetBlue() -> int C++: const unsigned char &GetBlue() Get the blue component of the color, i.e. element 2. V.SetAlpha(int) C++: void SetAlpha(const unsigned char &alpha) Set the alpha component of the color, i.e. element 3. V.GetAlpha() -> int C++: const unsigned char &GetAlpha() Get the alpha component of the color, i.e. element 3. vtkCommonDataModelPython.vtkColor4_IfEV.Set(float, float, float) C++: void Set(const float &red, const float &green, const float &blue) V.Set(float, float, float, float) C++: void Set(const float &red, const float &green, const float &blue, const float &alpha) Set the red, green and blue components of the color. V.SetRed(float) C++: void SetRed(const float &red) Set the red component of the color, i.e. element 0. V.GetRed() -> float C++: const float &GetRed() Get the red component of the color, i.e. element 0. V.SetGreen(float) C++: void SetGreen(const float &green) Set the green component of the color, i.e. element 1. V.GetGreen() -> float C++: const float &GetGreen() Get the green component of the color, i.e. element 1. V.SetBlue(float) C++: void SetBlue(const float &blue) Set the blue component of the color, i.e. element 2. V.GetBlue() -> float C++: const float &GetBlue() Get the blue component of the color, i.e. element 2. V.SetAlpha(float) C++: void SetAlpha(const float &alpha) Set the alpha component of the color, i.e. element 3. V.GetAlpha() -> float C++: const float &GetAlpha() Get the alpha component of the color, i.e. element 3. vtkCommonDataModelPython.vtkColor4_IdEV.Set(float, float, float) C++: void Set(const double &red, const double &green, const double &blue) V.Set(float, float, float, float) C++: void Set(const double &red, const double &green, const double &blue, const double &alpha) Set the red, green and blue components of the color. V.SetRed(float) C++: void SetRed(const double &red) Set the red component of the color, i.e. element 0. V.GetRed() -> float C++: const double &GetRed() Get the red component of the color, i.e. element 0. V.SetGreen(float) C++: void SetGreen(const double &green) Set the green component of the color, i.e. element 1. V.GetGreen() -> float C++: const double &GetGreen() Get the green component of the color, i.e. element 1. V.SetBlue(float) C++: void SetBlue(const double &blue) Set the blue component of the color, i.e. element 2. V.GetBlue() -> float C++: const double &GetBlue() Get the blue component of the color, i.e. element 2. V.SetAlpha(float) C++: void SetAlpha(const double &alpha) Set the alpha component of the color, i.e. element 3. V.GetAlpha() -> float C++: const double &GetAlpha() Get the alpha component of the color, i.e. element 3. vtkCommonDataModelPython.vtkColor3_IhEV.Set(int, int, int) C++: void Set(const unsigned char &red, const unsigned char &green, const unsigned char &blue) Set the red, green and blue components of the color. vtkCommonDataModelPython.vtkColor3_IfEV.Set(float, float, float) C++: void Set(const float &red, const float &green, const float &blue) Set the red, green and blue components of the color. vtkCommonDataModelPython.vtkColor3_IdEV.Set(float, float, float) C++: void Set(const double &red, const double &green, const double &blue) Set the red, green and blue components of the color. vtkRectGetWidthGetHeightGetBottomGetTopGetBottomLeftGetTopLeftGetBottomRightGetTopRightSetWidthSetHeightIntersectsWithAddRect@W vtkRectd@W vtkRectf@W vtkRecti@W vtkRect_IiE@W vtkRect_IfE@W vtkRect_IdEvtkRect - templated base type for storage of 2D rectangles. Superclass: vtkVector[T,4] This class is a templated data type for storing and manipulating rectangles. The memory layout is a contiguous array of the specified type, such that a float[4] can be cast to a vtkRectf and manipulated. Also a float[12] could be cast and used as a vtkRectf[3]. Provided Types: vtkRect[float64] => vtkRect vtkRect[float32] => vtkRect vtkRect[int32] => vtkRect vtkCommonDataModelPython.vtkRectvtkRect- templated base type for storage of 2D rectangles. Superclass: vtkVector[float64,4] This class is a templated data type for storing and manipulating rectangles. The memory layout is a contiguous array of the specified type, such that a float[4] can be cast to a vtkRectf and manipulated. Also a float[12] could be cast and used as a vtkRectf[3]. vtkRect() vtkRect(const double &x, const double &y, const double &width, const double &height) explicit vtkRect(const double *init) vtkRect(const &vtkRect) vtkRect- templated base type for storage of 2D rectangles. Superclass: vtkVector[float32,4] This class is a templated data type for storing and manipulating rectangles. The memory layout is a contiguous array of the specified type, such that a float[4] can be cast to a vtkRectf and manipulated. Also a float[12] could be cast and used as a vtkRectf[3]. vtkRect() vtkRect(const float &x, const float &y, const float &width, const float &height) explicit vtkRect(const float *init) vtkRect(const &vtkRect) vtkRect- templated base type for storage of 2D rectangles. Superclass: vtkVector[int32,4] This class is a templated data type for storing and manipulating rectangles. The memory layout is a contiguous array of the specified type, such that a float[4] can be cast to a vtkRectf and manipulated. Also a float[12] could be cast and used as a vtkRectf[3]. vtkRect() vtkRect(const int &x, const int &y, const int &width, const int &height) explicit vtkRect(const int *init) vtkRect(const &vtkRect) vtkRecti - no description provided. Superclass: vtkRect[int32] vtkRecti() vtkRecti(int x, int y, int width, int height) explicit vtkRecti(const int *init) vtkRecti(const &vtkRecti) vtkRectf - no description provided. Superclass: vtkRect[float32] vtkRectf() vtkRectf(float x, float y, float width, float height) explicit vtkRectf(const float *init) vtkRectf(const &vtkRectf) vtkRectd - no description provided. Superclass: vtkRect[float64] vtkRectd() vtkRectd(double x, double y, double width, double height) explicit vtkRectd(const double *init) vtkRectd(const &vtkRectd) vtkCommonDataModelPython.vtkRectdvtkCommonDataModelPython.vtkRectfvtkCommonDataModelPython.vtkRectivtkCommonDataModelPython.vtkRect_IiEV.Set(int, int, int, int) C++: void Set(const int &x, const int &y, const int &width, const int &height) Set the x, y components of the rectangle, and the width/height. V.SetX(int) C++: void SetX(const int &x) Set the x component of the rectangle bottom corner, i.e. element 0. V.GetX() -> int C++: const int &GetX() Get the x component of the rectangle bottom corner, i.e. element 0. V.SetY(int) C++: void SetY(const int &y) Set the y component of the rectangle bottom corner, i.e. element 1. V.GetY() -> int C++: const int &GetY() Get the y component of the rectangle bottom corner, i.e. element 1. V.SetWidth(int) C++: void SetWidth(const int &width) Set the width of the rectanle, i.e. element 2. V.GetWidth() -> int C++: const int &GetWidth() Get the width of the rectangle, i.e. element 2. V.SetHeight(int) C++: void SetHeight(const int &height) Set the height of the rectangle, i.e. element 3. V.GetHeight() -> int C++: const int &GetHeight() Get the height of the rectangle, i.e. element 3. V.GetLeft() -> int C++: const int &GetLeft() Get the left boundary of the rectangle along the X direction. V.GetRight() -> int C++: int GetRight() Get the right boundary of the rectangle along the X direction. V.GetTop() -> int C++: int GetTop() Get the top boundary of the rectangle along the Y direction. V.GetBottom() -> int C++: const int &GetBottom() Get the bottom boundary of the rectangle along the Y direction. V.GetBottomLeft() -> vtkVector2_IiE C++: vtkVector2 GetBottomLeft() Get the bottom left corner of the rect as a vtkVector. V.GetTopLeft() -> vtkVector_IiLi2EE C++: vtkVector GetTopLeft() Get the top left corner of the rect as a vtkVector. V.GetBottomRight() -> vtkVector_IiLi2EE C++: vtkVector GetBottomRight() Get the bottom right corner of the rect as a vtkVector. V.GetTopRight() -> vtkVector_IiLi2EE C++: vtkVector GetTopRight() Get the bottom left corner of the rect as a vtkVector. V.AddPoint((int, int)) C++: void AddPoint(const int point[2]) V.AddPoint(int, int) C++: void AddPoint(int x, int y) Expand this rect to contain the point passed in. V.AddRect(vtkRect_IiE) C++: void AddRect(const vtkRect &rect) Expand this rect to contain the rect passed in. V.IntersectsWith(vtkRect_IiE) -> bool C++: bool IntersectsWith(const vtkRect &rect) Returns true if the rect argument overlaps this rect. If the upper bound of one rect is equal to the lower bound of the other rect, then this will return false (in that case, the rects would be considered to be adjacent but not overlapping). vtkCommonDataModelPython.vtkRect_IfEV.Set(float, float, float, float) C++: void Set(const float &x, const float &y, const float &width, const float &height) Set the x, y components of the rectangle, and the width/height. V.SetX(float) C++: void SetX(const float &x) Set the x component of the rectangle bottom corner, i.e. element 0. V.GetX() -> float C++: const float &GetX() Get the x component of the rectangle bottom corner, i.e. element 0. V.SetY(float) C++: void SetY(const float &y) Set the y component of the rectangle bottom corner, i.e. element 1. V.GetY() -> float C++: const float &GetY() Get the y component of the rectangle bottom corner, i.e. element 1. V.SetWidth(float) C++: void SetWidth(const float &width) Set the width of the rectanle, i.e. element 2. V.GetWidth() -> float C++: const float &GetWidth() Get the width of the rectangle, i.e. element 2. V.SetHeight(float) C++: void SetHeight(const float &height) Set the height of the rectangle, i.e. element 3. V.GetHeight() -> float C++: const float &GetHeight() Get the height of the rectangle, i.e. element 3. V.GetLeft() -> float C++: const float &GetLeft() Get the left boundary of the rectangle along the X direction. V.GetRight() -> float C++: float GetRight() Get the right boundary of the rectangle along the X direction. V.GetTop() -> float C++: float GetTop() Get the top boundary of the rectangle along the Y direction. V.GetBottom() -> float C++: const float &GetBottom() Get the bottom boundary of the rectangle along the Y direction. V.GetBottomLeft() -> vtkVector2_IfE C++: vtkVector2 GetBottomLeft() Get the bottom left corner of the rect as a vtkVector. V.GetTopLeft() -> vtkVector_IfLi2EE C++: vtkVector GetTopLeft() Get the top left corner of the rect as a vtkVector. V.GetBottomRight() -> vtkVector_IfLi2EE C++: vtkVector GetBottomRight() Get the bottom right corner of the rect as a vtkVector. V.GetTopRight() -> vtkVector_IfLi2EE C++: vtkVector GetTopRight() Get the bottom left corner of the rect as a vtkVector. V.AddPoint((float, float)) C++: void AddPoint(const float point[2]) V.AddPoint(float, float) C++: void AddPoint(float x, float y) Expand this rect to contain the point passed in. V.AddRect(vtkRect_IfE) C++: void AddRect(const vtkRect &rect) Expand this rect to contain the rect passed in. V.IntersectsWith(vtkRect_IfE) -> bool C++: bool IntersectsWith(const vtkRect &rect) Returns true if the rect argument overlaps this rect. If the upper bound of one rect is equal to the lower bound of the other rect, then this will return false (in that case, the rects would be considered to be adjacent but not overlapping). vtkCommonDataModelPython.vtkRect_IdEV.Set(float, float, float, float) C++: void Set(const double &x, const double &y, const double &width, const double &height) Set the x, y components of the rectangle, and the width/height. V.SetX(float) C++: void SetX(const double &x) Set the x component of the rectangle bottom corner, i.e. element 0. V.GetX() -> float C++: const double &GetX() Get the x component of the rectangle bottom corner, i.e. element 0. V.SetY(float) C++: void SetY(const double &y) Set the y component of the rectangle bottom corner, i.e. element 1. V.GetY() -> float C++: const double &GetY() Get the y component of the rectangle bottom corner, i.e. element 1. V.SetWidth(float) C++: void SetWidth(const double &width) Set the width of the rectanle, i.e. element 2. V.GetWidth() -> float C++: const double &GetWidth() Get the width of the rectangle, i.e. element 2. V.SetHeight(float) C++: void SetHeight(const double &height) Set the height of the rectangle, i.e. element 3. V.GetHeight() -> float C++: const double &GetHeight() Get the height of the rectangle, i.e. element 3. V.GetLeft() -> float C++: const double &GetLeft() Get the left boundary of the rectangle along the X direction. V.GetRight() -> float C++: double GetRight() Get the right boundary of the rectangle along the X direction. V.GetTop() -> float C++: double GetTop() Get the top boundary of the rectangle along the Y direction. V.GetBottom() -> float C++: const double &GetBottom() Get the bottom boundary of the rectangle along the Y direction. V.GetBottomLeft() -> vtkVector2_IdE C++: vtkVector2 GetBottomLeft() Get the bottom left corner of the rect as a vtkVector. V.GetTopLeft() -> vtkVector_IdLi2EE C++: vtkVector GetTopLeft() Get the top left corner of the rect as a vtkVector. V.GetBottomRight() -> vtkVector_IdLi2EE C++: vtkVector GetBottomRight() Get the bottom right corner of the rect as a vtkVector. V.GetTopRight() -> vtkVector_IdLi2EE C++: vtkVector GetTopRight() Get the bottom left corner of the rect as a vtkVector. V.AddPoint((float, float)) C++: void AddPoint(const double point[2]) V.AddPoint(float, float) C++: void AddPoint(double x, double y) Expand this rect to contain the point passed in. V.AddRect(vtkRect_IdE) C++: void AddRect(const vtkRect &rect) Expand this rect to contain the rect passed in. V.IntersectsWith(vtkRect_IdE) -> bool C++: bool IntersectsWith(const vtkRect &rect) Returns true if the rect argument overlaps this rect. If the upper bound of one rect is equal to the lower bound of the other rect, then this will return false (in that case, the rects would be considered to be adjacent but not overlapping). vtkNonOverlappingAMRvtkNonOverlappingAMR - A concrete instance of vtkUniformGridAMR to store uniform grids at different levels of resolution that do not overlap with each other. Superclass: vtkUniformGridAMR @sa vtkUniformGridAMR vtkCommonDataModelPython.vtkNonOverlappingAMRV.SafeDownCast(vtkObjectBase) -> vtkNonOverlappingAMR C++: static vtkNonOverlappingAMR *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkNonOverlappingAMR C++: vtkNonOverlappingAMR *NewInstance() V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Returns object type (see vtkType.h for definitions). V.GetData(vtkInformation) -> vtkNonOverlappingAMR C++: static vtkNonOverlappingAMR *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkNonOverlappingAMR C++: static vtkNonOverlappingAMR *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. GetRefinementRatioNUMBER_OF_BLANKED_POINTSAuditHasChildrenInformationGetAMRInfoPrintParentChildInfoSetRefinementRatioGetAMRBlockSourceIndexGetAMRBoxSetAMRBlockSourceIndexSetAMRBoxGetParentsFindGridSetAMRInfovtkAMRInformationGenerateParentChildInformationvtkOverlappingAMR - hierarchical dataset of vtkUniformGrids Superclass: vtkUniformGridAMR vtkOverlappingAMR extends vtkUniformGridAMR by exposing access to the amr meta data, which stores all structural information represented by an vtkAMRInformation object @sa vtkAMRInformation vtkCommonDataModelPython.vtkOverlappingAMRV.SafeDownCast(vtkObjectBase) -> vtkOverlappingAMR C++: static vtkOverlappingAMR *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkOverlappingAMR C++: vtkOverlappingAMR *NewInstance() V.NewIterator() -> vtkCompositeDataIterator C++: vtkCompositeDataIterator *NewIterator() override; Return a new iterator (the iterator has to be deleted by the user). V.SetOrigin((float, ...)) C++: void SetOrigin(const double *) Get/Set the global origin of the amr data set V.GetOrigin() -> (float, ...) C++: double *GetOrigin() V.GetOrigin(int, int, [float, float, float]) C++: void GetOrigin(unsigned int level, unsigned int id, double origin[3]) Get/Set the global origin of the amr data set V.SetSpacing(int, (float, float, float)) C++: void SetSpacing(unsigned int level, const double spacing[3]) Get/Set the grid spacing at a given level V.GetSpacing(int, [float, float, float]) C++: void GetSpacing(unsigned int level, double spacing[3]) Get/Set the grid spacing at a given level V.SetAMRBox(int, int, vtkAMRBox) C++: void SetAMRBox(unsigned int level, unsigned int id, const vtkAMRBox &box) Set/Get the AMRBox for a given block V.GetAMRBox(int, int) -> vtkAMRBox C++: const vtkAMRBox &GetAMRBox(unsigned int level, unsigned int id) Set/Get the AMRBox for a given block V.GetBounds(int, int, [float, ...]) C++: void GetBounds(unsigned int level, unsigned int id, double *bb) V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double b[6]) Returns the bounding information of a data set. V.NUMBER_OF_BLANKED_POINTS() -> vtkInformationIdTypeKey C++: static vtkInformationIdTypeKey *NUMBER_OF_BLANKED_POINTS() V.GetData(vtkInformation) -> vtkOverlappingAMR C++: static vtkOverlappingAMR *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkOverlappingAMR C++: static vtkOverlappingAMR *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. V.SetRefinementRatio(int, int) C++: void SetRefinementRatio(unsigned int level, int refRatio) Sets the refinement of a given level. The spacing at level level+1 is defined as spacing(level+1) = spacing(level)/refRatio(level). Note that currently, this is not enforced by this class however some algorithms might not function properly if the spacing in the blocks (vtkUniformGrid) does not match the one described by the refinement ratio. V.GetRefinementRatio(int) -> int C++: int GetRefinementRatio(unsigned int level) V.GetRefinementRatio(vtkCompositeDataIterator) -> int C++: int GetRefinementRatio(vtkCompositeDataIterator *iter) Returns the refinement of a given level. V.SetAMRBlockSourceIndex(int, int, int) C++: void SetAMRBlockSourceIndex(unsigned int level, unsigned int id, int sourceId) Set/Get the source id of a block. The source id is produced by an AMR source, e.g. a file reader might set this to be a file block id V.GetAMRBlockSourceIndex(int, int) -> int C++: int GetAMRBlockSourceIndex(unsigned int level, unsigned int id) Set/Get the source id of a block. The source id is produced by an AMR source, e.g. a file reader might set this to be a file block id V.HasChildrenInformation() -> bool C++: bool HasChildrenInformation() Return whether parent child information has been generated V.GenerateParentChildInformation() C++: void GenerateParentChildInformation() Generate the parent/child relationships - needed to be called before GetParents or GetChildren can be used! V.GetParents(int, int, int) -> (int, ...) C++: unsigned int *GetParents(unsigned int level, unsigned int index, unsigned int &numParents) Return a pointer to Parents of a block. The first entry is the number of parents the block has followed by its parent ids in level-1. If none exits it returns nullptr. V.GetChildren(int, int, int) -> (int, ...) C++: unsigned int *GetChildren(unsigned int level, unsigned int index, unsigned int &numChildren) Return a pointer to Children of a block. The first entry is the number of children the block has followed by its childern ids in level+1. If none exits it returns nullptr. V.PrintParentChildInfo(int, int) C++: void PrintParentChildInfo(unsigned int level, unsigned int index) Prints the parents and children of a requested block (Debug Routine) V.FindGrid([float, float, float], int, int) -> bool C++: bool FindGrid(double q[3], unsigned int &level, unsigned int &gridId) Given a point q, find the highest level grid that contains it. V.GetAMRInfo() -> vtkAMRInformation C++: vtkAMRInformation *GetAMRInfo() override; Get/Set the internal representation of amr meta meta data V.SetAMRInfo(vtkAMRInformation) C++: void SetAMRInfo(vtkAMRInformation *info) override; Get/Set the meta AMR meta data V.Audit() C++: void Audit() Check whether the data set is internally consistent, e.g. whether the meta data and actual data blocks match. Incorrectness will be reported as error messages GenerateRefinementRatioGetTotalNumberOfBlocksHasRefinementRatioSetGridDescriptionHasSpacingGetIndexGetCoarsenedAMRBoxComputeIndexPair@PiI *d@PII *dvtkAMRInformation - Meta data that describes the structure of an AMR data set Superclass: vtkObject vtkAMRInformation encaspulates the following meta information for an AMR data set - a list of vtkAMRBox objects - Refinement ratio between AMR levels - Grid spacing for each level - The file block index for each block - parent child information, if requested @sa vtkOverlappingAMR, vtkAMRBox vtkCommonDataModelPython.vtkAMRInformationV.SafeDownCast(vtkObjectBase) -> vtkAMRInformation C++: static vtkAMRInformation *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAMRInformation C++: vtkAMRInformation *NewInstance() V.Initialize(int, (int, ...)) C++: void Initialize(int numLevels, const int *blocksPerLevel) Initialize the meta information numLevels is the number of levels blocksPerLevel[i] is the number of blocks at level i V.GetGridDescription() -> int C++: virtual int GetGridDescription() returns the value of vtkUniformGrid::GridDescription() of any block V.SetGridDescription(int) C++: void SetGridDescription(int description) returns the value of vtkUniformGrid::GridDescription() of any block V.GetOrigin([float, float, float]) C++: void GetOrigin(double origin[3]) V.GetOrigin() -> (float, ...) C++: double *GetOrigin() V.GetOrigin(int, int, [float, ...]) -> bool C++: bool GetOrigin(unsigned int level, unsigned int id, double *origin) Get the AMR dataset origin The origin is essentially the minimum of all the grids. V.SetOrigin((float, ...)) C++: void SetOrigin(const double *origin) Get the AMR dataset origin The origin is essentially the minimum of all the grids. V.GetNumberOfLevels() -> int C++: unsigned int GetNumberOfLevels() Return the number of levels V.GetNumberOfDataSets(int) -> int C++: unsigned int GetNumberOfDataSets(unsigned int level) Returns the number of datasets at the given levelx V.GetTotalNumberOfBlocks() -> int C++: unsigned int GetTotalNumberOfBlocks() Returns total number of datasets V.GetIndex(int, int) -> int C++: int GetIndex(unsigned int level, unsigned int id) Returns the single index from a pair of indices V.ComputeIndexPair(int, int, int) C++: void ComputeIndexPair(unsigned int index, unsigned int &level, unsigned int &id) Returns the an index pair given a single index V.GetBounds() -> (float, ...) C++: const double *GetBounds() V.GetBounds(int, int, [float, ...]) C++: void GetBounds(unsigned int level, unsigned int id, double *bb) Returns the bounds of the entire domain V.GetSpacing(int, [float, float, float]) C++: void GetSpacing(unsigned int level, double spacing[3]) Return the spacing at the given fiven V.HasSpacing(int) -> bool C++: bool HasSpacing(unsigned int level) V.SetAMRBox(int, int, vtkAMRBox) C++: void SetAMRBox(unsigned int level, unsigned int id, const vtkAMRBox &box) Methods to set and get the AMR box at a given position V.GetAMRBox(int, int) -> vtkAMRBox C++: const vtkAMRBox &GetAMRBox(unsigned int level, unsigned int id) Methods to set and get the AMR box at a given position V.GetCoarsenedAMRBox(int, int, vtkAMRBox) -> bool C++: bool GetCoarsenedAMRBox(unsigned int level, unsigned int id, vtkAMRBox &box) return the amr box coarsened to the previous level V.GetAMRBlockSourceIndex(int) -> int C++: int GetAMRBlockSourceIndex(int index) Get/Set the SourceIndex of a block. Typically, this is a file-type specific index that can be used by a reader to load a particular file block V.SetAMRBlockSourceIndex(int, int) C++: void SetAMRBlockSourceIndex(int index, int sourceId) Get/Set the SourceIndex of a block. Typically, this is a file-type specific index that can be used by a reader to load a particular file block V.GenerateRefinementRatio() C++: void GenerateRefinementRatio() This method computes the refinement ratio at each level. At each level, l, the refinement ratio r_l is computed by r_l = D_{l} / D_{l+1}, where D_{l+1} and D_{l} are the grid spacings at the next and current level respectively. * .SECTION Assumptions * 1) Within each level, the refinement ratios are the same for all blocks. * 2) The refinement ratio is uniform along each dimension of the block. V.HasRefinementRatio() -> bool C++: bool HasRefinementRatio() Returns whether refinement ratio has been set (either by calling GenerateRefinementRatio() or by calling SetRefinementRatio() V.SetRefinementRatio(int, int) C++: void SetRefinementRatio(unsigned int level, int ratio) Set the refinement ratio at a level. This method should be called for all levels, if called at all. V.GetRefinementRatio(int) -> int C++: int GetRefinementRatio(unsigned int level) Returns the refinement of a given level. V.SetSpacing(int, (float, ...)) C++: void SetSpacing(unsigned int level, const double *h) Set the spacing at a given level V.Audit() -> bool C++: bool Audit() Checks whether the meta data is internally consistent. V.FindCell([float, float, float], int, int, int) -> bool C++: bool FindCell(double q[3], unsigned int level, unsigned int index, int &cellIdx) Given a point q, find whether q is bounded by the data set at (level,index). If it is, set cellIdx to the cell index and return true; otherwise return false V.FindGrid([float, float, float], int, int) -> bool C++: bool FindGrid(double q[3], int level, unsigned int &gridId) V.FindGrid([float, float, float], int, int) -> bool C++: bool FindGrid(double q[3], unsigned int &level, unsigned int &gridId) find the grid that contains the point q at the specified level V.DeepCopy(vtkAMRInformation) C++: void DeepCopy(vtkAMRInformation *other) vtkAMRDataInternalsInsertvtkAMRDataInternals - container of vtkUniformGrid for an AMR data set Superclass: vtkObject vtkAMRDataInternals stores a list of non-empty blocks of an AMR data set @sa vtkOverlappingAMR, vtkAMRBox vtkCommonDataModelPython.vtkAMRDataInternalsV.SafeDownCast(vtkObjectBase) -> vtkAMRDataInternals C++: static vtkAMRDataInternals *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAMRDataInternals C++: vtkAMRDataInternals *NewInstance() V.Initialize() C++: void Initialize() V.Insert(int, vtkUniformGrid) C++: void Insert(unsigned int index, vtkUniformGrid *grid) V.GetDataSet(int) -> vtkUniformGrid C++: vtkUniformGrid *GetDataSet(unsigned int compositeIndex) V.ShallowCopy(vtkObject) C++: virtual void ShallowCopy(vtkObject *src) V.GetNumberOfBlocks() -> int C++: unsigned int GetNumberOfBlocks() GetCompositeIndexGetMinGetMaxGetLevelAndIndexvtkUniformGridAMR - no description provided. Superclass: vtkCompositeDataSet vtkUniformGridAMR is a concrete implementation of vtkCompositeDataSet. The dataset type is restricted to vtkUniformGrid. vtkCommonDataModelPython.vtkUniformGridAMRV.SafeDownCast(vtkObjectBase) -> vtkUniformGridAMR C++: static vtkUniformGridAMR *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkUniformGridAMR C++: vtkUniformGridAMR *NewInstance() V.Initialize() C++: void Initialize() override; V.Initialize(int, (int, ...)) C++: virtual void Initialize(int numLevels, const int *blocksPerLevel) Restore data object to initial V.SetGridDescription(int) C++: void SetGridDescription(int gridDescription) Set/Get the data description of this uniform grid instance, e.g. VTK_XYZ_GRID V.GetGridDescription() -> int C++: int GetGridDescription() Set/Get the data description of this uniform grid instance, e.g. VTK_XYZ_GRID V.GetTotalNumberOfBlocks() -> int C++: virtual unsigned int GetTotalNumberOfBlocks() Return the total number of blocks, including nullptr blocks V.GetNumberOfDataSets(int) -> int C++: unsigned int GetNumberOfDataSets(const unsigned int level) Returns the number of datasets at the given level, including null blocks V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) V.GetBounds() -> (float, ...) C++: const double *GetBounds() Retrieve the bounds of the AMR domain V.GetMin([float, float, float]) C++: void GetMin(double min[3]) Retrieve the bounds of the AMR domain V.GetMax([float, float, float]) C++: void GetMax(double max[3]) Retrieve the bounds of the AMR domain V.SetDataSet(vtkCompositeDataIterator, vtkDataObject) C++: void SetDataSet(vtkCompositeDataIterator *iter, vtkDataObject *dataObj) override; V.SetDataSet(int, int, vtkUniformGrid) C++: virtual void SetDataSet(unsigned int level, unsigned int idx, vtkUniformGrid *grid) Unhiding superclass method. V.GetDataSet(vtkCompositeDataIterator) -> vtkDataObject C++: vtkDataObject *GetDataSet(vtkCompositeDataIterator *iter) override; V.GetDataSet(int, int) -> vtkUniformGrid C++: vtkUniformGrid *GetDataSet(unsigned int level, unsigned int idx) Return the data set pointed to by iter V.GetCompositeIndex(int, int) -> int C++: int GetCompositeIndex(const unsigned int level, const unsigned int index) Retrieves the composite index associated with the data at the given (level,index) pair. V.GetLevelAndIndex(int, int, int) C++: void GetLevelAndIndex(const unsigned int compositeIdx, unsigned int &level, unsigned int &idx) Givenes the composite Idx (as set by SetCompositeIdx) this method returns the corresponding level and dataset index within the level. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *src) override; Override ShallowCopy/DeepCopy and CopyStructure V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *src) override; Override ShallowCopy/DeepCopy and CopyStructure V.CopyStructure(vtkCompositeDataSet) C++: void CopyStructure(vtkCompositeDataSet *src) override; Override ShallowCopy/DeepCopy and CopyStructure V.GetData(vtkInformation) -> vtkUniformGridAMR C++: static vtkUniformGridAMR *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkUniformGridAMR C++: static vtkUniformGridAMR *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. GetCurrentIndexGetCurrentLevelvtkUniformGridAMRDataIterator - subclass of vtkCompositeDataIterator with API to get current level and dataset index. Superclass: vtkCompositeDataIterator vtkCommonDataModelPython.vtkUniformGridAMRDataIteratorV.SafeDownCast(vtkObjectBase) -> vtkUniformGridAMRDataIterator C++: static vtkUniformGridAMRDataIterator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkUniformGridAMRDataIterator C++: vtkUniformGridAMRDataIterator *NewInstance() V.GetCurrentMetaData() -> vtkInformation C++: vtkInformation *GetCurrentMetaData() override; Returns the meta-data associated with the current item. Note that this points to a single instance of vtkInformation object allocated by the iterator and will be changed as soon as GoToNextItem is called. V.GetCurrentLevel() -> int C++: virtual unsigned int GetCurrentLevel() Returns the level for the current dataset. V.GetCurrentIndex() -> int C++: virtual unsigned int GetCurrentIndex() Returns the dataset index for the current data object. Valid only if the current data is a leaf node i.e. no a composite dataset. vtkHyperOctreeGetLeafIndexGetIsLeafNewCellCursorGetLeafDataGetDualGridFlagSetDualGridFlagCollapseTerminalNodevtkHyperOctreeCursorGetMaxNumberOfCellsOnBoundaryGetMaxNumberOfPointsGetPointsOnFacevtkHyperOctreePointsGrabberGetPointsOnEdge2DGetPointsOnParentEdge2DGetPointsOnEdgeGetPointsOnParentEdgeGetPointsOnParentFacesvtkHyperOctreeLightWeightCursorGetMaxNumberOfPointsOnBoundaryvtkHyperOctree - A dataset structured as a tree where each node has exactly 2^n children. Superclass: vtkDataSet An hyperoctree is a dataset where each node has either exactly 2^n children or no child at all if the node is a leaf. `n' is the dimension of the dataset (1 (binary tree), 2 (quadtree) or 3 (octree) ). The class name comes from the following paper: @ARTICLE{yau-srihari-1983, author={Mann-May Yau and Sargur N. Srihari}, title={A Hierarchical Data Structure for Multidimensional Digital Images}, journal={Communications of the ACM}, month={July}, year={1983}, volume={26}, number={7}, pages={504--515} } Each node is a cell. Attributes are associated with cells, not with points. The geometry is implicitly given by the size of the root node on each axis and position of the center and the orientation. (TODO: review center position and orientation). The geometry is then not limited to an hybercube but can have a rectangular shape. Attributes are associated with leaves. For LOD (Level-Of-Detail) purpose, attributes can be computed on none-leaf nodes by computing the average values from its children (which can be leaves or not). By construction, an hyperoctree is efficient in memory usage when the geometry is sparse. The LOD feature allows to cull quickly part of the dataset. A couple of filters can be applied on this dataset: contour, outline, geometry. * 3D case (octree) for each node, each child index (from 0 to 7) is encoded in the following orientation. It is easy to access each child as a cell of a grid. Note also that the binary representation is relevant, each bit code a side: bit 0 encodes -x side (0) or +x side (1) bit 1 encodes -y side (0) or +y side (1) bit 2 encodes -z side (0) or +z side (2) - the -z side first - 0: -y -x sides - 1: -y +x sides - 2: +y -x sides - 3: +y +x sides +y +-+-+ ^ |2|3| | +-+-+ O +z +-> +x |0|1| +-+-+ - then the +z side, in counter-clockwise - 4: -y -x sides - 5: -y +x sides - 6: +y -x sides - 7: +y +x sides +y +-+-+ ^ |6|7| | +-+-+ O +z +-> +x |4|5| +-+-+ The cases with fewer dimensions are consistent with the octree case: * Quadtree: in counter-clockwise - 0: -y -x edges - 1: -y +x edges - 2: +y -x edges - 3: +y +x edges +y +-+-+ ^ |2|3| | +-+-+ O+-> +x |0|1| +-+-+ * Binary tree: +0+1+ O+-> +x @warning It is not a spatial search object! If you looking for this kind of octree see vtkCellLocator instead. @sa vtkHyperOctreeAlgorithm vtkHyperOctreeLightWeightCursor - no description provided. vtkHyperOctreeLightWeightCursor() vtkHyperOctreeLightWeightCursor( const &vtkHyperOctreeLightWeightCursor) vtkCommonDataModelPython.vtkHyperOctreeLightWeightCursor@W vtkHyperOctreeLightWeightCursorV.Initialize(vtkHyperOctree) C++: void Initialize(vtkHyperOctree *tree) V.ToRoot() C++: void ToRoot() V.ToChild(int) C++: void ToChild(int child) V.GetIsLeaf() -> int C++: unsigned short GetIsLeaf() V.GetLeafIndex() -> int C++: int GetLeafIndex() V.GetTree() -> vtkHyperOctree C++: vtkHyperOctree *GetTree() V.GetLevel() -> int C++: unsigned short GetLevel() vtkCommonDataModelPython.vtkHyperOctreeV.SafeDownCast(vtkObjectBase) -> vtkHyperOctree C++: static vtkHyperOctree *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperOctree C++: vtkHyperOctree *NewInstance() V.GetDimension() -> int C++: int GetDimension() Return the dimension of the tree (1D:binary tree(2 children), 2D:quadtree(4 children), 3D:octree (8 children)) \post valid_result: result>=1 && result<=3 V.SetDimension(int) C++: void SetDimension(int dim) Set the dimension of the tree with `dim'. See GetDimension() for details. \pre valid_dim: dim>=1 && dim<=3 \post dimension_is_set: GetDimension()==dim V.GetNumberOfCells() -> int C++: vtkIdType GetNumberOfCells() override; Return the number of cells in the dual grid. \post positive_result: result>=0 V.GetNumberOfLeaves() -> int C++: vtkIdType GetNumberOfLeaves() Get the number of leaves in the tree. V.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() override; Return the number of points in the dual grid. \post positive_result: result>=0 V.GetMaxNumberOfPoints(int) -> int C++: vtkIdType GetMaxNumberOfPoints(int level) Return the number of points corresponding to an hyperoctree starting at level `level' where all the leaves at at the last level. In this case, the hyperoctree is like a uniform grid. So this number is the number of points of the uniform grid. \pre positive_level: level>=0 && levelGetNumberOfLevels() \post definition: result==(2^(GetNumberOfLevels()-level-1)+1)^GetDimension() V.GetMaxNumberOfPointsOnBoundary(int) -> int C++: vtkIdType GetMaxNumberOfPointsOnBoundary(int level) Return the number of points corresponding to the boundary of an hyperoctree starting at level `level' where all the leaves at at the last level. In this case, the hyperoctree is like a uniform grid. So this number is the number of points of on the boundary of the uniform grid. For an octree, the boundary are the faces. For a quadtree, the boundary are the edges. \pre 2d_or_3d: this->GetDimension()==2 || this->GetDimension()==3 \pre positive_level: level>=0 && levelGetNumberOfLevels() \post min_result: result>=GetMaxNumberOfPoints(this->GetNumberOfLevels()-1) \post max_result: result<=GetMaxNumberOfPoints(level) V.GetMaxNumberOfCellsOnBoundary(int) -> int C++: vtkIdType GetMaxNumberOfCellsOnBoundary(int level) Return the number of cells corresponding to the boundary of a cell of level `level' where all the leaves at at the last level. \pre positive_level: level>=0 && levelGetNumberOfLevels() \post positive_result: result>=0 V.GetNumberOfLevels() -> int C++: vtkIdType GetNumberOfLevels() Return the number of levels. \post result_greater_or_equal_to_one: result>=1 V.SetSize(float, float, float) C++: void SetSize(double, double, double) V.SetSize((float, float, float)) C++: void SetSize(double a[3]) V.GetSize() -> (float, float, float) C++: double *GetSize() V.NewCellCursor() -> vtkHyperOctreeCursor C++: vtkHyperOctreeCursor *NewCellCursor() Create a new cursor: an object that can traverse the cell of an hyperoctree. \post result_exists: result!=0 V.SubdivideLeaf(vtkHyperOctreeCursor) C++: void SubdivideLeaf(vtkHyperOctreeCursor *leaf) Subdivide node pointed by cursor, only if its a leaf. At the end, cursor points on the node that used to be leaf. \pre leaf_exists: leaf!=0 \pre is_a_leaf: leaf->CurrentIsLeaf() V.CollapseTerminalNode(vtkHyperOctreeCursor) C++: void CollapseTerminalNode(vtkHyperOctreeCursor *node) Collapse a node for which all children are leaves. At the end, cursor points on the leaf that used to be a node. \pre node_exists: node!=0 \pre node_is_node: !node->CurrentIsLeaf() \pre children_are_leaves: node->CurrentIsTerminalNode() V.GetPoint(int) -> (float, float, float) C++: double *GetPoint(vtkIdType ptId) override; V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType id, double x[3]) override; Get point coordinates with ptId such that: 0 <= ptId < NumberOfPoints. THIS METHOD IS NOT THREAD SAFE. V.GetCell(int) -> vtkCell C++: vtkCell *GetCell(vtkIdType cellId) override; V.GetCell(int, vtkGenericCell) C++: void GetCell(vtkIdType cellId, vtkGenericCell *cell) override; V.GetCell(int, int, int) -> vtkCell C++: virtual vtkCell *GetCell(int i, int j, int k) Get cell with cellId such that: 0 <= cellId < NumberOfCells. THIS METHOD IS NOT THREAD SAFE. V.GetCellPoints(int, vtkIdList) C++: void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) override; V.GetCellPoints(int, int, [int, ...]) C++: virtual void GetCellPoints(vtkIdType cellId, vtkIdType &npts, vtkIdType *&pts) Topological inquiry to get points defining cell. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetPointCells(int, vtkIdList) C++: void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) override; Topological inquiry to get cells using point. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.GetCellNeighbors(int, vtkIdList, vtkIdList) C++: void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, vtkIdList *cellIds) override; Topological inquiry to get all cells using list of points exclusive of cell specified (e.g., cellId). Note that the list consists of only cells that use ALL the points provided. THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.FindPoint([float, float, float]) -> int C++: vtkIdType FindPoint(double x[3]) override; Locate the closest point to the global coordinate x. Return the point id. If point id < 0; then no point found. (This may arise when point is outside of dataset.) THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND THE DATASET IS NOT MODIFIED V.FindCell([float, float, float], vtkCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; V.FindCell([float, float, float], vtkCell, vtkGenericCell, int, float, int, [float, float, float], [float, ...]) -> int C++: vtkIdType FindCell(double x[3], vtkCell *cell, vtkGenericCell *gencell, vtkIdType cellId, double tol2, int &subId, double pcoords[3], double *weights) override; Locate cell based on global coordinate x and tolerance squared. If cell and cellId is non-nullptr, then search starts from this cell and looks at immediate neighbors. Returns cellId >= 0 if inside, < 0 otherwise. The parametric coordinates are provided in pcoords[3]. The interpolation weights are returned in weights[]. (The number of weights is equal to the number of points in the found cell). Tolerance is used to control how close the point is to be considered "in" the cell. THIS METHOD IS NOT THREAD SAFE. V.Initialize() C++: void Initialize() override; Restore data object to initial state, THIS METHOD IS NOT THREAD SAFE. V.GetMaxCellSize() -> int C++: int GetMaxCellSize() override; Convenience method returns largest cell size in dataset. This is generally used to allocate memory for supporting data structures. This is the number of points of a cell. THIS METHOD IS THREAD SAFE V.GetPointsOnFace(vtkHyperOctreeCursor, int, int, vtkHyperOctreePointsGrabber) C++: void GetPointsOnFace(vtkHyperOctreeCursor *sibling, int face, int level, vtkHyperOctreePointsGrabber *grabber) Get the points of node `sibling' on its face `face'. \pre sibling_exists: sibling!=0 \pre sibling_not_leaf: !sibling->CurrentIsLeaf() \pre sibling_3d: sibling->GetDimension()==3 \pre valid_face: face>=0 && face<6 \pre valid_level_not_leaf: level>=0 level<(this->GetNumberOfLevels()-1) V.GetPointsOnParentFaces([int, int, int], int, vtkHyperOctreeCursor, vtkHyperOctreePointsGrabber) C++: void GetPointsOnParentFaces(int faces[3], int level, vtkHyperOctreeCursor *cursor, vtkHyperOctreePointsGrabber *grabber) Get the points of the parent node of `cursor' on its faces `faces' at level `level' or deeper. \pre cursor_exists: cursor!=0 \pre cursor_3d: cursor->GetDimension()==3 \pre valid_level: level>=0 \pre boolean_faces: (faces[0]==0 || faces[0]==1) && (faces[1]==0 || faces[1]==1) && (faces[2]==0 || faces[2]==1) V.GetPointsOnEdge(vtkHyperOctreeCursor, int, int, int, int, vtkHyperOctreePointsGrabber) C++: void GetPointsOnEdge(vtkHyperOctreeCursor *sibling, int level, int axis, int k, int j, vtkHyperOctreePointsGrabber *grabber) Get the points of node `sibling' on its edge `axis','k','j'. If axis==0, the edge is X-aligned and k gives the z coordinate and j the y-coordinate. If axis==1, the edge is Y-aligned and k gives the x coordinate and j the z coordinate. If axis==2, the edge is Z-aligned and k gives the y coordinate and j the x coordinate. \pre sibling_exists: sibling!=0 \pre sibling_3d: sibling->GetDimension()==3 \pre sibling_not_leaf: !sibling->CurrentIsLeaf() \pre valid_axis: axis>=0 && axis<3 \pre valid_k: k>=0 && k<=1 \pre valid_j: j>=0 && j<=1 \pre valid_level_not_leaf: level>=0 level<(this->Input->GetNumberOfLevels()-1) V.GetPointsOnParentEdge(vtkHyperOctreeCursor, int, int, int, int, vtkHyperOctreePointsGrabber) C++: void GetPointsOnParentEdge(vtkHyperOctreeCursor *cursor, int level, int axis, int k, int j, vtkHyperOctreePointsGrabber *grabber) Get the points of the parent node of `cursor' on its edge `axis','k','j' at level `level' or deeper. If axis==0, the edge is X-aligned and k gives the z coordinate and j the y-coordinate. If axis==1, the edge is Y-aligned and k gives the x coordinate and j the z coordinate. If axis==2, the edge is Z-aligned and k gives the y coordinate and j the x coordinate. \pre cursor_exists: cursor!=0 \pre cursor_3d: cursor->GetDimension()==3 \pre valid_level: level>=0 \pre valid_range_axis: axis>=0 && axis<3 \pre valid_range_k: k>=0 && k<=1 \pre valid_range_j: j>=0 && j<=1 V.GetPointsOnEdge2D(vtkHyperOctreeCursor, int, int, vtkHyperOctreePointsGrabber) C++: void GetPointsOnEdge2D(vtkHyperOctreeCursor *sibling, int edge, int level, vtkHyperOctreePointsGrabber *grabber) Get the points of node `sibling' on its edge `edge'. \pre sibling_exists: sibling!=0 \pre sibling_not_leaf: !sibling->CurrentIsLeaf() \pre sibling_2d: sibling->GetDimension()==2 \pre valid_edge: edge>=0 && edge<4 \pre valid_level_not_leaf: level>=0 level<(this->Input->GetNumberOfLevels()-1) V.GetPointsOnParentEdge2D(vtkHyperOctreeCursor, int, int, vtkHyperOctreePointsGrabber) C++: void GetPointsOnParentEdge2D(vtkHyperOctreeCursor *cursor, int edge, int level, vtkHyperOctreePointsGrabber *grabber) Get the points of the parent node of `cursor' on its edge `edge' at level `level' or deeper. (edge=0 for -X, 1 for +X, 2 for -Y, 3 for +Y) \pre cursor_exists: cursor!=0 \pre cursor_2d: cursor->GetDimension()==2 \pre valid_level: level>=0 \pre valid_edge: edge>=0 && edge<4 V.GetLeafData() -> vtkDataSetAttributes C++: vtkDataSetAttributes *GetLeafData() A generic way to set the leaf data attributes. This can be either point data for dual or cell data for normal grid. V.SetDualGridFlag(int) C++: void SetDualGridFlag(int flag) Switch between returning leaves as cells, or the dual grid. V.GetDualGridFlag() -> int C++: virtual int GetDualGridFlag() Switch between returning leaves as cells, or the dual grid. V.GetData(vtkInformation) -> vtkHyperOctree C++: static vtkHyperOctree *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkHyperOctree C++: static vtkHyperOctree *GetData(vtkInformationVector *v, int i=0) Retrieve an instance of this class from an information object. MoveToNodeCurrentIsTerminalNodeGetLeafIdFoundCurrentIsLeafCurrentIsRootToSameNodeVTK_QUADTREE_CHILD_SWVTK_QUADTREE_CHILD_SEVTK_QUADTREE_CHILD_NWVTK_QUADTREE_CHILD_NEVTK_BINARY_TREE_CHILD_LEFTVTK_BINARY_TREE_CHILD_RIGHTvtkHyperOctreeCursor - Objects that can traverse hyperoctree nodes. Superclass: vtkObject Objects that can traverse hyperoctree nodes. It is an abstract class. Cursors are created by the hyperoctree. @sa vtkDataObject vtkFieldData vtkHyperOctreeAlgorithm VTK_OCTREE_CHILD_ZMIN_YMIN_XMINVTK_OCTREE_CHILD_ZMIN_YMIN_XMAXVTK_OCTREE_CHILD_ZMIN_YMAX_XMINVTK_OCTREE_CHILD_ZMIN_YMAX_XMAXVTK_OCTREE_CHILD_ZMAX_YMIN_XMINVTK_OCTREE_CHILD_ZMAX_YMIN_XMAXVTK_OCTREE_CHILD_ZMAX_YMAX_XMINVTK_OCTREE_CHILD_ZMAX_YMAX_XMAXvtkCommonDataModelPython.vtkHyperOctreeCursorV.SafeDownCast(vtkObjectBase) -> vtkHyperOctreeCursor C++: static vtkHyperOctreeCursor *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperOctreeCursor C++: vtkHyperOctreeCursor *NewInstance() V.GetLeafId() -> int C++: virtual int GetLeafId() Return the index of the current leaf in the data arrays. \pre is_leaf: CurrentIsLeaf() V.CurrentIsLeaf() -> int C++: virtual int CurrentIsLeaf() Is the node pointed by the cursor a leaf? V.CurrentIsRoot() -> int C++: virtual int CurrentIsRoot() Is the node pointed by the cursor the root? V.GetCurrentLevel() -> int C++: virtual int GetCurrentLevel() Return the level of the node pointed by the cursor. \post positive_result: result>=0 V.GetChildIndex() -> int C++: virtual int GetChildIndex() Return the child number of the current node relative to its parent. \pre not_root: !CurrentIsRoot(). \post valid_range: result>=0 && result int C++: virtual int CurrentIsTerminalNode() V.ToRoot() C++: virtual void ToRoot() Move the cursor the root node. \pre can be root \post is_root: CurrentIsRoot() V.ToParent() C++: virtual void ToParent() Move the cursor to the parent of the current node. \pre not_root: !CurrentIsRoot() V.ToChild(int) C++: virtual void ToChild(int child) Move the cursor to child `child' of the current node. \pre not_leaf: !CurrentIsLeaf() \pre valid_child: child>=0 && childGetNumberOfChildren() V.ToSameNode(vtkHyperOctreeCursor) C++: virtual void ToSameNode(vtkHyperOctreeCursor *other) Move the cursor to the same node pointed by `other'. \pre other_exists: other!=0 \pre same_hyperoctree: this->SameTree(other); \post equal: this->IsEqual(other) V.IsEqual(vtkHyperOctreeCursor) -> int C++: virtual int IsEqual(vtkHyperOctreeCursor *other) Is `this' equal to `other'? \pre other_exists: other!=0 \pre same_hyperoctree: this->SameTree(other); V.Clone() -> vtkHyperOctreeCursor C++: virtual vtkHyperOctreeCursor *Clone() Create a copy of `this'. \post results_exists:result!=0 \post same_tree: result->SameTree(this) V.SameTree(vtkHyperOctreeCursor) -> int C++: virtual int SameTree(vtkHyperOctreeCursor *other) Are `this' and `other' pointing on the same hyperoctree? \pre other_exists: other!=0 V.GetIndex(int) -> int C++: virtual int GetIndex(int d) Return the index in dimension `d', as if the node was a cell of a uniform grid of 1<=0 && d=0 && result<(1< int C++: virtual int GetNumberOfChildren() Return the number of children for each node of the tree. \post positive_number: result>0 V.MoveToNode([int, ...], int) C++: virtual void MoveToNode(int *indices, int level) Move to the node described by its indices in each dimension and at a given level. If there is actually a node or a leaf at this location, Found() returns true. Otherwise, Found() returns false and the cursor moves to the closest parent of the query. It can be the root in the worst case. \pre indices_exists: indices!=0 \pre valid_size: sizeof(indices)==GetDimension() \pre valid_level: level>=0 V.Found() -> int C++: virtual int Found() Did the last call to MoveToNode succeed? InsertPointWithMergeInsertPoint2DvtkHyperOctreePointsGrabber - An object used by filters to store points computed on face or edge of an hyperoctant. Superclass: vtkObject It is an abstract class. vtkClipHyperOctree and vtkHyperOctreeCutter use vtkHyperOctreeClipCutPointsGrabber vtkHyperOctreeContourFilter use an internal one: vtkHyperOctreeContourFilterPointsGrabber. @sa vtkHyperOctree, vtkHyperOctreeClipCutPointsGrabber, vtkClipHyperOctree, vtkHyperOctreeCutter vtkCommonDataModelPython.vtkHyperOctreePointsGrabberV.SafeDownCast(vtkObjectBase) -> vtkHyperOctreePointsGrabber C++: static vtkHyperOctreePointsGrabber *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkHyperOctreePointsGrabber C++: vtkHyperOctreePointsGrabber *NewInstance() V.GetDimension() -> int C++: int GetDimension() Return the dimension of the hyperoctree. \post valid_result: (result==2 || result==3) V.SetDimension(int) C++: virtual void SetDimension(int dim) Set the dimension of the hyperoctree. \pre valid_dim: (dim==2 || dim==3) \post is_set: GetDimension()==dim V.InitPointInsertion() C++: virtual void InitPointInsertion() Initialize the points insertion scheme. Actually, it is just a trick to initialize the IdSet from the filter. The IdSet class cannot be shared with the filter because it is a Pimpl. It is used by clip,cut and contour filters to build the points that lie on an hyperoctant. \pre only_in_3d: GetDimension()==3 V.InsertPoint(int, [float, float, float], [float, float, float], [int, int, int]) C++: virtual void InsertPoint(vtkIdType ptId, double pt[3], double pcoords[3], int ijk[3]) Insert a point, assuming the point is unique and does not require a locator. Tt does not mean it does not use a locator. It just mean that some implementation may skip the use of a locator. V.InsertPointWithMerge(int, [float, float, float], [float, float, float], [int, int, int]) C++: virtual void InsertPointWithMerge(vtkIdType ptId, double pt[3], double pcoords[3], int ijk[3]) Insert a point using a locator. V.InsertPoint2D([float, float, float], [int, int, int]) C++: virtual void InsertPoint2D(double pt[3], int ijk[3]) Insert a point in the quadtree case. can't get dictionary for module vtkCommonDataModelPythonreal_initvtkCommonDataModelPythonvtkCommonDataModelPython;ly|yKL$LELUL0eLuLM$MfMdM$Nh jN!N!N'O':O0(vO.Op/O/P6ePL7P7Ph>QP@R\DRDRXEREpSHSHSDOSPSQTQ6TVWT0XxTXTYTYUPZBUZcU aUDdUgUdhU{U|VH}3V}TVx~VVVtCW$jWWWW"XCXXXXY-YTiYYpY0YYZ5ZVZwZZZZ8Z[=[[8[[\(\I\|j\\d]$b] ]x  ^`(A^(b^ +_ 2_2<_H8_h9_9_:`;'`?m`8@`@`B`hBaP[Pah\qa]ahblfbobsbsbuc4v?c`cc8cc4d%dFdXgddкd<d d e-eNetoeeTeeehf5f`VfpwfffHf( gHGgg g$ggh(hlnhhhP0ipi@ii00jpj jj0kpkkk|Olhpll@llm@m|mmmmn!nBnn<nn o-oTNoooDooo p ?p< {p pp,ppP qAqqq,q0rpWr ~rr(r0)rEsF>sH_sMspMsMsPNsNtt]$tajtctcthdtdun0uxԩ_x@xxxxdxدy (yIJdy8yy yy`z6zWzȹxz@z`zȻ!{B{Hc{{{x{4 |T3|o||||49}}}}(~O~p~~8~Tt:vXepȀ|,5qށV}   2 nۃ]@H""-`#i$**օ<+1XX226"l@C,BbB \\^^o\p͈tt~0Qaܕq$Z0{Dd*|ft8͋X0Xvpٌ6Wxߍ !Bc P ,,Tُd\CEJܟM@̦AxF dO,hVLXl\laģpt L ؂̨Њ , LȘl,T̩ \d ,Ll\P̫4L ,L lL ̬l(40 h7,<9L@lG<,><>< > > ? 4?| X? ?L?? @\!t@"@"@,#A<$4AL%XA,&|=<&=L&>&A&A'B|(4BL)PB*lB*B+B,B-B. C/TCL1C3C4C\6D8DL>,?,@$@HAlB\DďEFlF|F؎FFG8|H\|I,JKؑ L |MPNOPQ \R<R`|S TT̓,UULV8V\lWWXȔYY><?X|@t?@(ALBp DE,F GG<,GlGLH4HlILJD>?@AB$|CHD|LF\HHHh I|LIhKL,MXN|lOlPQR ,T@ U W X>l>|>V\?,V@XVAVLCVDVEWF$WLHHWIlWJWKW\MWN X|PPX RX,?X@|ABĜlCLD ,E0FLlGHIJܝ|LM<?@A8 CT,Dp\EFH4|IpJLlN4LPhQ,SU,LXL[ <^x\@$lBPLEEE\ItLN,OPTf8>f>gX9 h9h>li?Lj4?Lk`?l?,n?|n?n>n>n>\L?@BlC$DXLEpFl@@ ABXG\I N|LSZX\]`X|bbbbbbb,bTbLc\c @D|L\Ol4>\x>>>0??? ?\,@@ @@ @A,@A P>DP,?hP?PL@P@PlAPAQB@QCdQCQw@DwApwCwEwGxlHHxIx,KxL,yMxy,OyPz RLzLSzSzH B\BBGhJKP|LR W,\^a|c`deLe`eteeee8 f|fflg ,h0,i|>0Al,A|CD4\EX,F| G H I3 ?3?3@4A4B84C\4D4E4F4G4H5|I45lJX5\K|5LL5|(>L>,p>> >\>>,?0?ܛL? h?|??L?ܢ?\$@̥H@Lt@ܨ@,@|@̩@Al,AHA dA\AAALABBHB dB\BB|ḆBClC8C TC\pCܷC$D,@D\\DxDܸD D^>$^?H^|@l^h?|@A\C(DdL-FBA D  ABBG L>.gFD@ EE 0p>40FAA D`  AABH H>1IFBB B(A0A8G 8A0A(B BBBI H>31FBB B(A0A8G 8A0A(B BBBI ED@ AG P9?ijFBB B(A0D8Gq 8D0A(B BBBJ d9 F5j8$A`DtFBB A(Dp (A BBBG L9EiFBB B(A0A8G 8D0A(B BBBE :D 'i@8:IDiEC P G e...R. |: <hi b@BdD"bEC P G e...R. XB<a JL6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@JFBB A(A0D 0A(A BBBI $J EDP AK  KLH0~ A (K| c{ FBB B(A0A8G 8D0A(B BBBA `o!E @ AFBB A(A0D 0A(A BBBI PȈ@CFBB B(A0D8Gq 8D0A(B BBBJ F8ܐGtFBB A(Dp (A BBBG l,I$FBB B(A0A8G 8A0A(B BBBD GUArJTALMFBB B(A0A8G 8D0A(B BBBE <'@`8RDEC P G e...R. <t td YFBB B(A0A8D 8A0A(B BBBA HDAKEKAAIܒh[6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI d ^ EDP AK _ED@ AG _H@ I ȓ`ED@ AG   (<Pdx b  0aFBA Gn  ABBE L0cFBA Gn  ABBE 0eEDPa AE TbEY B }(t fEAD`n AAF gED@ AG ĕgED@ AG hED@ AG XiED@ AG (0jFAD` ABG (\kFAD` ABG 0kFBA D  ABBG mgFD@ EE 0nFAA D`  AABH H0pFBB B(A0A8G 8A0A(B BBBI H`trFBB B(A0A8G 8A0A(B BBBI tMFF0ȗtOFDD n ABA DDBlt$FBB B(A0A8G 8A0A(B BBBD GUArJTAtyFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI@{FBB A(A0D 0A(A BBBI <x}ED@ AG Pđd~\FBB B(A0D8Gq 8D0A(B BBBJ F(8ؙ tFBB A(Dp (A BBBG LxPFBB B(A0A8G 8D0A(B BBBE Ȓ'@D~EC P G e...R. 0<[ 6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@x<FBB A(A0D 0A(A BBBI Лī B   4 H|EDPa AE lOEY B jb(EAD`n AAF ̜ؕED@ AG ED@ AG pED@ AG 8LLEDP AG 0\xnFAA D`  AABH gFD@ EE DFDB A(A0D 0A(A BBBB (xFCD ABD (ܡMFF0DOFDD n ABA DDBx<HrFBB B(A0A8G 8A0A(B BBBG H؞LCFDB B(A0A8D| 8A0A(B BBBF $ 8ܰ LEDPa AE pOEY B j(DEAD`n AAF 0nFAA D`  AABH TgFD@ EE MFF00ԭOFDD n ABA DDBdp :Em ԭED@ AG $ED@ AG ̠ ķ EDPa AE OEY B j(8,EAD`n AAF dED@ AG EDP AK EDP AK 0СTnFAA D`  AABH gFD@ EE (ܵMFF0DOFDD n ABA DDBx   Ȣ ܢ |,ص @d TEDPa AE x|EDPa AE (FAD` ABD ȣEDPj AD (xFAD`a ABA 0<FBA D`a  ABBE @LkFBA Dpn  ABBH xH]xAp0$FBA D`n  ABBH 0ĤFBA D`j  ABBD 0ܼFBA D`n  ABBH 0,FBA D`e  ABBI `HPa G |ED@W AG ED@W AG ĥED@W AG \ED@W AG ED@W AG 04ED@W AG TED@W AG x ED@W AG xED@W AG ED@W AG PED@W AG ED@W AG ,(ED@W AG PED@W AG tED@W AG lED@W AG ED@W AG DED@W AG ED@W AG (ED@W AG LED@W AG pED@W AG `ED@W AG ED@W AG ܨ8ED@W AG ED@W AG $ED@W AG H|ED@W AG lH<EY B W(EAD`j AAJ gFD@ EE ܩH@} K H@} K @H@ I 0H@ I LED@ AG pdED@ AG 0ED@ AG ED@ AG ܪED@ AG dED@ AG $ EDP AK H EDP AK lH@ I 0^FAA D`  AABH 4/FAD` ABG T GIL $`EO l AG VA$(`EO l AG VA$D``EO l AG VALl}FPI H(D0O (D BBBD  (D BBBJ 8FBD A(D0a (A ABBH < ( EDP AK 0EDP AK T EDP AK x EDP AK <FBB A(D (D BBBD @!l (EDP AK EDP AK DH@ I `ED@ AG EDP AK |ED@ AG $̮HEDP AK   EDPa AE @tEDPj AD dEDPj AD (FAD`a ABA `EDPa AE د9dT<EY B W($EAD`j AAJ 0<^FAA D`  AABH pgFD@ EE `MFF0OFDD n ABA DDBp EDPa AE EDPa AE (D@FAD` ABD p bEY B }(EAD`n AAF 0бFAA D`  AABH 8 ;FBB A(Dp (A BBBG @$gFD@ EE 4dp/FAD` ABG T GIL hHFA0OFDD n ABA DDB ED@ AG $`EDP AK HLEDP AK l8H@ I ED@ AG EDP AK гEDP AK EDP AK 8bFBB A(Dp (A BBBG TEDP AK xFD@ EE $ED@ AG Ĵ ش,(4 ( <EDPa AE `OEY B j$<P<|??(еEAD`n AAF gFD@ EE ED@ AG DED@ AG h<EDP AG <EDP AG  H@ E ̶H@ E  H@ E  H@ E 0 nFAA D`  AABH T MFF0p OFDD n ABA DDB:Em  ED@ AG ED@ AG |ED@ AG ,8ED@ AG PED@ AG tH@ I tH@ I 8 Ը ($$08,L8`4t@<HDĹPعLX(FAD`a ABA ,xEDPa AE P4O|RhlO|RԆOEY B j ED@W AG (ĺEAD`n AAF (FAD`a ABA H@ I 8lH@ I T@EDP AK xEDP AK EDP AK EDP AK EDP AK \EDP AK ,8EDP AK PEDP AK tEDP AK EDP AK EDP AK !EDP AB P"EDP AB (#EDP AB L#EDP AB p$EDP AB %EDP AB L&EDP AB ܽ'EDP AF (EDP AF $)EDP AF H *EDP AF l+EDP AF ,EDP AF -EDP AF (ؾ-FAD` ABG (.FAD` ABG 80/&FBB A(Dp (A BBBK (l0FAD` ABF 1H@ I 2H@ I пT3H@ I (4H@ I 4H@ I $5H@ I @6H@ I \x7H@ I xL8H@ I  9H@ I 9H@ I :H@ I ;H@ I (p<4FAD` ABK (0=4FAD` ABK (\>4FAD` ABK (?4FAD` ABK (@4FAD` ABK (A4FAD` ABK ( B4FAD` ABK 88C;FBB A(Dp (A BBBK HtE[FBB B(A0A8D 8A0A(B BBBA (FDFAD` ABC @8GkFBB B(A0D 0A(B BBBC @0dHkFBB B(A0D 0A(B BBBC 8tItFBB A(D (A BBBK 0JnFAA D`  AABH LgFD@ EE Dl\MHFBB A(A0D 0D(A BBBG !PؼOGFBB B(A0D8G 8D0A(B BBBG ,X:LPxQFBB B(A0A8G 8D0A(B BBBG !xL`TFGB A(D (A BBBC X (N BBBL UEDPt AB PWEDPt AB YEDPt AB ZEDPt AB @\EDPt AB d@^EDPt AB _EDPt AB 8aFDB A(D (A BBBK 8\dFDB A(D (A BBBK H$gFDB B(A0A8Dr 8A0A(B BBBH $pi`EO l AG VA$i`EO l AG VA$$j`EO l AG VA$\j`EO l AG VA$j`EO l AG VAL8jFPP D(A0O (D BBBD  (D BBBJ 0\nOFDD n ABA DDB dnEDP AK Po5EDP AH lp5EDP AH <qEDP AB `trEDP AK `sEDP AK LtEDP AK 8uH@ I w  wEDPa AE 8lOEY B j(X @DfFBB A(A0Dt 0A(A BBBD 0,FBA G}  ABBF 4 FDA D   ABBA 8FDA A(Dr (A ABBH $0`EO l AG VALXFRB H(D0O (D BBBA  (D BBBG 0ܬOFDD n ABA DDB8 EDP AK Э EDP AK 08]FDA Dr  ABBJ lEDP AK ԲEDP AK ED@ AG 8FBA A(D (A ABBA H@ I 0H@ I LhH@ I h,ED@ AG @xEC P D S._.?.H. 4O @ rFBB B(A0Dp 0A(B BBBC 8\EDP AK 0\HFBA G  ABBC 4aFBA GPq  CBBH 4,rFGA Dt  ABBE dؔ h 4ED@ AG $DEDP AK l   EDPa AE EDPa AE (TFAD` ABD (ED@ AG @$uEY B P(`"EAD`n AAF 0FAA D`  AABH DgFD@ EE 4/FAD` ABG T GIL MFF08OFDD n ABA DDBl L  4EDPa AE EDPa AE (FAD` ABD 4pbEY B } T@ED@ AG (x EAD`n AAF 0FAA D`  AABH LgFD@ EE 4/FAD` ABG T GIL 4MFF0POFDD n ABA DDB EDP AK  DEDPa AE ED@W AG lED@W AG <<EY B W(\EAD`j AAJ 0|^FAA D`  AABH H@{ E lED@{ AK 8EDP AK EDP AK DEDP AK hEDP AK h)ED` AB (tFAD` ABG XgFD@ EE HFA0OFDD n ABA DDBP$d x  EDPa AE <EY B W(EAD`j AAJ 0d^FAA D`  AABH DED@ AG h<ED@ AG ED` AD ED@ AG @gFD@ EE MFF0OFDD n ABA DDBHL$\EDP AK    EDPa AE 4FFD`g ABF p NBH h<EY B W(<EAD`j AAJ hH@ I PH@ I H@ I ED@ AG (tFAD` ABG 8 X'FBB A(Dp (A BBBK (HL"FADp ABC (tPDFAD` ABG 8t]FBB A(Dp (A BBBK (FAG DBB 0 ^FAA D`  AABH <8gFD@ EE 8`FBA A(G (A ABBG (MFF0\OFDD n ABA DDB,,,,@,T,h,|H , 0EDPa AE \,OEY B j(EAD`n AAF ED@ AG 8\ED@ AG \ED@ AG ED@ AG (FAD` ABG (FAD` ABG 0xnFAA D`  AABH 0gFD@ EE T MFF0p4 OFDD n ABA DDB0P< FBB B(A0D8Gq 8D0A(B BBBJ pF80tFBB A(Dp (A BBBG ll($FBB B(A0A8G 8A0A(B BBBD GUArJTAL@FBB B(A0A8G 8D0A(B BBBE '@4DjEC P G e...R. у<G t FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI0d"6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@%FBB A(A0D 0A(A BBBI D d' $D H8L' FBB B(A0A8Gs 8A0A(B BBBF @ )FBB B(A0Gs 0A(B BBBH H*FBB B(A0A8G 8A0A(B BBBI P.EDPa AE 8C<EY B W(X.EAD`j AAJ /ED@ AG L0ED@ AG 1EDP AK (1FAD` ABG (2FAD` ABG (H3FAD` ABG (t4FAD` ABG 0t5^FAA D`  AABH 6gFD@ EE H7FBB B(A0A8G 8A0A(B BBBE \D:AFBB B(A0A8G 8A0A(B BBBE tIAH=FBB B(A0A8G 8A0A(B BBBD T@MFF0 @OFDD n ABA DDB@Tk h@ |k @EDPa AE AO|R@AFGA D`  ABBE X  NBBN Tk<EY B W(0$CEAD`j AAJ \CED@ AG DH@ I 8EH@ I EED@ AG FED@ AG 4GEDP AK $HEDP AK HHEDP AK lIEDP AK tJEDP AK @KEDP AK LEDP AB LEDP AB MEDP AB DNEDP AB h|OEDP AB 8XP;FBB A(Dp (A BBBG (\QFAD` ABG 0@R8FBA D`  ABBG ((LSDFAD` ABG (TpT*FADp ABC (tU*FADp ABC 0xV^FAA D`  AABH (WlFAD` ABC XgFD@ EE @04ZFGA D`  ABBE X  NBBN t[MFF0[OFDD n ABA DDBP [ED@ AG \ED@ AG ]EDP AK D^EDP AK hl_-EDP AH x`-EDP AH aEDP AK pbEDP AK \cEDP AB HdH@ I <heEDPa AE `t tfO|RX<EY B W((fEAD`j AAJ fED@ AG gED@{ AK ThED@{ AK D iED@{ AK hiED@{ AK jED@{ AK kED@{ AK PlED@{ AK mED@{ AK mED@{ AK @nED@{ AK doEDP AA lpEDP AA hq EDP AA Tr EDP AE PsEDP AK ,tED@ AG <(u EDP AE `$v2EDP AI @w>EDP AE \x>EDP AE 8xyRFBB A(Dp (A BBBA 0z\FBA D`  ABBC 0<{FBA D  ABBE 0p4}FBA D  ABBE 0~^FAA D`  AABH gFD@ EE D`FBB A(A0D 0D(A BBBE ]r!D<FBB A(A0D 0D(A BBBE r!oHlFBB B(A0A8G 8A0A(B BBBG L{FBB B(A0A8G 8D0A(B BBBG sq!ѸL{FBB B(A0A8G 8D0A(B BBBG H q!Ll̍cFBB B(A0A8G 8D0A(B BBBG p!-LFBB B(A0A8G 8D0A(B BBBC 0zp'۷\dFBB B(A0A8G 8A0A(B BBBD %dAPHFA0lHOFDD n ABA DDBtPFBB B(A0A8D 8A0A(B BBBA \HEAJ}KBAIt,XFBB B(A0A8D 8A0A(B BBBA RHEAJGKBAI `ED@ AG 0,FBA G  ABBD %FBB B(A0A8D 8A0A(B BBBA HEDBAJzKBDBAIFBB B(A0A8G 8A0A(B BBBE LHEDDADDJ}KBDDADDI$EDP AK DXl  D FBB A(A0D 0D(A BBBA T}l!ٳ EDPa AE 8 <EY B W(XEAD`j AAJ pH@ I $H@ I حED@ AG tED@ AG ED@ AG (ED@ AG LHED@ AG pED@ AG ED@ AG \ED@ AG ED@ AG ԳED@ AG $EDP AK H|EDP AK lHEDP AK $EDP AK EDP AK ̸EDP AK EDP AB ( dFAD` ABG (LH4FAD` ABK 0x\^FAA D`  AABH gFD@ EE D4ԾFBB A(A0D 0D(A BBBA |vh!ӯ<8MFF0XlOFDD n ABA DDBȪ tED@ AG  EDPa AE hO|R@<EY B W(4EAD`j AAJ `DED@{ AK ED@{ AK ED@{ AK ED@{ AK tED@{ AK @ED@{ AK 8ED@{ AK \EDP AA EDP AA (.FADP ABC NEDP AE  NEDP AE LNEDP AE 0<x^FAA D`  AABH pgFD@ EE L_FBB B(A0A8D 8D0A(B BBBK Hd!)Ll\ FBB B(A0A8D 8D0A(B BBBK xd!׫LFBB B(A0A8D 8D0A(B BBBK 0%d!04FDA D  ABBG P:5FDB B(A0A8Gq 8A0A(B BBBF c! HFA8 FBD A(D0a (A ABBH     E 4 pEDPa AE X EDPa AE | xEOEY B j( EAD`n AAF lED@ AG  H@ I  H@ I $ pH@ I @ $H@ I \ H@ I x H@ I  @H@ I  H@ I  H@ I  \H@ I  H@ I  H@ I < xH@ I X ,H@ I t H@ I  H@ I  HH@ I  H@ I  H@ I  dH@ I  H@ I 8 H@ I T H@ I p 4H@ I  H@ I  H@ I  PH@ I  H@ I  H@ I lH@ I 4 H@ I PH@ I lH@ I <H@ I H@ I H@ I XH@ I  H@ I H@ I 0tH@ I L(H@ I hEDP AK EDP AK EDP AK 0`nFAA D`  AABH gFD@ EE ,MFF0HOFDD n ABA DDB|L$cFBB B(A0A8G 8D0A(B BBBA D S\!£Lh  cFBB B(A0A8G 8D0A(B BBBA \!p x ED@ AG  ED@ AG @ FBB A(A0D 0A(A BBBI Ph 0ȢFBB B(A0D8Gq 8D0A(B BBBJ [F8|tFBB A(Dp (A BBBG l$FBB B(A0A8G 8A0A(B BBBD GUArJTAt(FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI$6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAIL ̠FBB B(A0A8G 8D0A(B BBBE CY'@ (#DzEC P G e...R. D Y<W @*FBB A(A0D 0A(A BBBI H+ EDP AK l, EDP AK -ED@ AG @.ED@ AG .ED@ AG D`/CFBB A(A0D 0D(A BBBG W! h2ED@ AG 2H@ I 3ED@ AG X4ED@ AG 5ED@ AG 5ED@ AG 86EDP AK $\x7EDP AK 8EDPa AE C C<EY B W(H9EAD`j AAJ  :H@{ E $:H@{ E @;ED@{ AK d`<ED@{ AK 0,=^FAA D`  AABH X>gFD@ EE ?EDP AG AHFA0 AOFDD n ABA DDBT`lU UUD AFBB A(A0D 0D(A BBBG TOT! DEDPa AE 8U LU<EY B W(lDEAD`j AAJ LEED@ AG FED@ AG FEDP AK GEDP AA (H<EDP AG 0LI^FAA D`  AABH @JFBB B(A0D 0A(B BBBE @pLFBB B(A0D 0A(B BBBE MgFD@ EE T,HOFBB B(A0D 0A(B BBBE KYAPHFA0QOFDD n ABA DDB QEDP AK  s  s 4pREDPa AE X,SEDPa AE (|SFAD` ABD |s xsOEY B j(hTEAD`n AAF EDP AK 0>EDP AK T> EDP AK x> EDP AK >x ED@ AG >4 EDP AK > ED@ AG ? EDP AK (,?/FAD` ABC (X?FCDpr ABF ?` EDP AK (?L/FAD` ABC (?PFCDpr ABF @ EDP AK $@ EDP AK (H@/FAD` ABC t@ED@ AG @EDP AK @xH@ I @x(!@( A(!A( ,A(!@A( TAP hA( |A8EDPa AE A(<EY B W(AEAD`j AAJ 0A^FAA D`  AABH BED@ AG DBED@ AG hB< ED@ AG B <EDP AG B"<EDP AG B0#<EDP AG BL$gFD@ EE C%MFF08C%OFDD n ABA DDBlCm$C&KFAG rDBC' C' CP1 C&EDPa AE <p<'?sFBA H(Dpx (D ABBJ <,sp$lD)Es H F J d L D0<EY B W(D)EAD`j AAJ <D=*rFAA . ABG \ AEA =6,mr 0@E+^FAA D`  AABH tE-gFD@ EE E\.AFzE.MFF0E.FDD Q ABF \DBF k!FHh 0FDh DF@h XFFBA Gn  ABBE dG4EDPa AE GlgbEY B }(G4EAD`n AAF G5EDPa AE GL6ED@ AG H7ED@ AG @H7ED@ AG dH8ED@ AG 0H|9FBA D  ABBG H;gFD@ EE 0Hd<FAA D`  AABH HI=FBB B(A0A8G 8A0A(B BBBI H`IDAIFBB B(A0A8G 8A0A(B BBBI IHCMFF0I|COFDD n ABA DDBIXg JCED@ AG PBpDamFBB B(A0D8Gq 8D0A(B BBBJ B&F-m8JItFBB A(Dp (A BBBG lJ\J$FBB B(A0A8G 8A0A(B BBBD GUArJTALCOelFBB B(A0A8G 8D0A(B BBBE D&'/l@0DhSDlEC P G e...R. tD%<k @4LPZFBB A(A0D 0A(A BBBI xL[ EDP AK L\ EDP AK 4$E]HkFBA D  DBBE \E%%!*k4|E\_kFBA D  DBBE E$!jtM@ M< M8 Ma M MaEDPa AE M(bEDPa AE  NԚ04NbvFBA Gn  ABBE hN0|NdFBA Gn  ABBE NTgEDPa AE N@bEY B }(NgEAD`n AAF OhED@ AG DOiED@ AG hOljED@ AG O8kgFD@ EE 0OlFAA D`  AABH HOmFBB B(A0A8G 8A0A(B BBBI H0Pp1FBB B(A0A8G 8A0A(B BBBI |PsMFF0PsOFDD n ABA DDBP` PsED@ AG PhItHgFBB B(A0D8Gq 8D0A(B BBBJ I!Fg8|QXytFBB A(Dp (A BBBG lQz$FBB B(A0A8G 8A0A(B BBBD GUArJTALJ\LfFBB B(A0A8G 8D0A(B BBBE J- 'f@KDeEC P G e...R. DK<e S6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@SHFBB A(A0D 0A(A BBBI S EDP AK SЏ EDP AK 4|LdFBA D  DBBE L!d4LTqdFBA D  DBBE M!SdT TD TEDPa AE UbEY B }(8U<EAD`n AAF 0dU FAA D`  AABH U|gFD@ EE UȘMFF0UOFDD n ABA DDB V[:Em,Vx @Vd TV` hVLEDPa AE VEDPa AE (VFAD` ABD VEY B c VXED@ AG ( W$5EAD`n AAF 0LW8FAA D`  AABH WĞgFD@ EE 4W/FAD` ABG T GIL WMFF0W X`|>!l`> `> `> `> `> `> `> `|>  ax>  at>!4a> Ha> \a> pa> a> a ah> aEDPa AE aEDPa AE (b\FAD` ABD 44b=FBD Y BBO ^BB4lbX>FBD Y BBO ^BB bED@W AG b,ED@W AG bED@W AG cED@W AG 4c0>bEY B }Tc><hc>?(|c(EAD`n AAF c ED@ AG cED@ AG cdED@ AG dED@ AG 8dED@ AG \dXED@ AG d$ED@ AG dED@ AG dED@ AG dhED@ AG e$ED@ AG 4eED@ AG XeED@ AG |eXED@ AG eED@ AG eED@ AG eED@ AG fHED@ AG 0fEDP AK TfEDP AK xfEDP AK fxEDP AK fTEDP AK f0EDP AK g EDP AK ,gEDP AK PgEDP AK (tg5FADP ABG (g5FADP ABG 8g(FBB A(Dp (A BBBK (hFAD` ABG 4hH@ I PhTH@ I (lh(DFAD` ABG (hLDFAD` ABG (hpDFAD` ABG (hDFAD` ABG (iDFAD` ABG Hi H@ E diLEDP AB iLEDP AB i(H@ E (i4FADp ABC 0i0fFBA Dp  ABBG (jlgFD@ EE @LjFBB A(A0D 0A(A BBBI 0j$FAA D`  AABH 4j/FAD` ABG T GIL jxEDP AF H k$FDB B(A0A8Dr 8A0A(B BBBH DlkhFDA Dr  ABBJ H\A8k@^FBA A(Dp (A ABBD 8kd^FBA A(Dp (A ABBD ,l MFF0Hl OFDD n ABA DDB|lE l ED@ AG l EDP AK l| EDP AK lh ED@ AG  m$ H@ I Pe [ KEH Po D ._.._..O.n.J. e>K @mFBB A(A0D 0A(A BBBI @m<rFBB B(A0Dp 0A(B BBBC (FBA D  ABBG 0Lt?FBA G  ABBF 0tAnFAA D`  AABH tCMFF0t4COFDD n ABA DDBuP= u`2 DDFDB A(A0D 0A(A BBBB 0FBA G  ABBC (gFCD`| ABD 8@ FDA A(Dr (A ABBH |ED@ AG EDP AK ĉ܉1D@ <, @$ TEDPa AE xOEY B j(<EAD`n AAF ĊED@ AG ED@ AG hED@ AG 04ED@ AG TEDP AK xEDP AK ("FADP ABG ȋH@ I H@ I TH@ I (H@ I 08nFAA D`  AABH l8gFD@ EE \EDP AG $`EO l AG VAL܌ FPI H(D0O (D BBBD  (D BBBG 0,OFDD n ABA DDB`4% tED@ AG HrFBB B(A0A8G 8A0A(B BBBG LCFDB B(A0A8D| 8A0A(B BBBF 4 H| \ p B ,  EDPa AE  OEY B j b(EAD`n AAF DpED@ AG h<ED@ AG ED@ AG LEDP AG 0ԏnFAA D`  AABH FDB B(A0A8G{ 8A0A(B BBBD MFF0ԬPOFDD n ABA DDBx10 D X l!   IRح,  EDPa AE $puEY B PD?XD(l"EAD`n AAF ED@ AG (ED@ AG ED@ AG ED@ AG (|ED@ AG L8ED@ AG pH@ I 0ȨEFBA Dp  ABBG DEDP AG H@ E H@ E tEDP AG 8@tYFBB A(D (A BBBK 8|ZFBB A(D (A BBBK gFD@ EE 0ܰFAA D`  AABH tMFF0,OFDD n ABA DDB`t(tFAD` ABF 0BFBA Dp  ABBG 8ԱiFBB A(D (A BBBK (xFCDr ABF @<HFDB B(A0Dr 0A(B BBBB 0ĻbFBA Dp  ABBG 0bFBA Dp  ABBG 8<FBB A(D (A BBBK PFGB B(A0A8G 8A0A(B BBBB ܫABH@ I (/FAD` ABC (FAD` ABF HthFGB A(A0Di 0A(A BBBJ !C4H@ I  EDPa AE ԴbEY B }(EAD`n AAF ( tFAD` ABH (LhFAD` ABH 0x\DFBA Dp  ABBE 8xbFBB A(D (A BBBA gFD@ EE 0 FAA D`  AABH ,@TpFCD  ABF @pFDB B(A0Du 0A(B BBBG HFA0ж4OFDD n ABA DDBx 0t D X\ lxEDPa AE 4<EY B W(EAD`j AAJ 0ܷ^FAA D`  AABH (EADP AAE <ED@ AG `TED@ AG ED@ AG HP F 8ĸ(FBB A(Dp (A BBBK gFD@ EE $MFF0@OFDD n ABA DDBt xEDPa AE ,DJFFD \ DBA d<EY B W(EAD`j AAJ 0,^FAA D`  AABH `EDP AK EDP AK EDP AK 8̺h'FBB A(Dp (A BBBK 8\;FBB A(Dp (A BBBG 8D`'FBB A(Dp (A BBBK @T;FBB A(A0Dp 0A(A BBBE @ĻP;FBB A(A0Dp 0A(A BBBE 8LSFBB A(D (A BBBG ,psFADP DBK ش bPHFA0OFDD n ABA DDB$TjFHN JAB@ bFBB B(A0Dp 0A(B BBBC DL8bFBB B(A0Dp 0A(B BBBC  | x нt!   !  41H\ p )  !Ծ !  $` 8 LHEDPa AE puEY B P$D`?D̿?("EAD`n AAF 0 FAA D`  AABH @ED@ AG dED@ AG ED@ AG xED@ AG 4ED@ AG ED@ AG ED@ AG <hED@ AG `$ED@ AG ED@ AG ED@ AG ED@ AG DED@ AG ED@ AG 8EDP AK \EDP AK tEDP AK (PFADP ABC $H@ I H@ I TEDP AG ,(DEDP AG PT DEDP AG t DEDP AG  DEDP AG  H@ E  H@ E H@ E H@ E ,lEDP AG P4gFD@ EE tMFF4FDD z ABE \ DBN  8FD@ EE 4H@ I Y!0Y DY!XY lY!Y Y Y Y!Y!Z Y  Y   4Y HEDPa AE lY<EY B W(8EAD`j AAJ ED@ AG ED@ AG 4ED@ AG $ED@ AG HlH@ I d ED@ AG ED@ AG ED@ AG TED@ AG  ED@ AG  ED@ AG <!ED@ AG `D"ED@ AG #EDP AK #EDP AK $EDP AK t%EDP AK P&EDP AK 88,'&FBB A(Dp (A BBBK @t (;FBB B(A0Dp 0A(B BBBC )DEDP AG H*DEDP AG t+DEDP AG $,DEDP AG H-DEDP AG (l.)FADp ABC </~FFBB A(D (D BBBD <d!<\1~FBB A(D (D BBBD %!<<2~FBB A(D (D BBBD !<\3~FBB A(D (D BBBD \!b(|49FADp ABC 0D5^FAA D`  AABH (x6TFAD ABC 7gFD@ EE D,<9FBB A(A0D 0D(A BBBG t!lD`;PFBB A(A0D 0D(A BBBG e!"(=FAD ABC (>FAD ABC P\L@FBB B(A0A8D 8D0A(B BBBE !t(pBFCG ABF DxEs,FDB A(A0G 0A(A BBBA H?!DlIsFGB A(A0Gp 0A(A BBBH !tMMFF0MOFDD n ABA DDB MED@ AG ! $!8 L `!t  !( $)@ < 8 4!P (L!<h PO dP xNEDPa AE OEDPa AE  @PO|RxPO|ROEY B j$?8,DLh?`Dt?D(PEAD`n AAF PH@ I QH@ I TRH@ I SH@ I 8SH@ I TpTH@ I p$UH@ I UH@ I VH@ I @WH@ I WED@ AG XED@ AG (LYED@ AG LZED@ AG pZED@ AG [ED@ AG <\ED@ AG \ED@ AG ]ED@ AG $p^ED@ AG H,_ED@ AG l`ED@ AG `EDP AK aEDP AK bEDP AK hcEDP AK DdEDP AK D eEDP AK heEDP AK fEDP AK gEDP AK 0Ph)FBA Dp  ABBG 0Li)FBA Dp  ABBG 8<Hj'FBB A(Dp (A BBBK (xED`a AE 4>EDPa AE X|?HPa G t @EDPa AE @EDPa AE 8AHPa G AEDPa AE hBHPa G  CED`a AE PC[FBB B(A0D8G 8D0A(B BBBG y_-PGFBB B(A0A8G  8D0A(B BBBA l`@PJFBB B(A0A8G  8D0A(B BBBA (@uP@LYFBB B(A0A8G  8D0A(B BBBA \@PhNFBB B(A0A8G  8D0A(B BBBA @PPFBB B(A0A8G  8D0A(B BBBA L@aPpREFBB B(A0A8G  8D0A(B BBBA H@PTFBB B(A0A8G  8D0A(B BBBA <@P`WFBB B(A0A8G  8D0A(B BBBA ~@MP0Y1FBB B(A0A8I( 8D0A(B BBBD ,~@<PX\#FBA A(F (D ABBK |~! L(^EDPa AE p$n<EY B W(^EAD`j AAJ 0_^FAA D`  AABH PT`FBB B(A0D8G 8D0A(B BBBG }_PdFBB B(A0D8G 8D0A(B BBBG l}_q DigFD@ EE $j`EO l AG VA8,jFPO U BBB  BBH 0hkFDD R ABE \DB:Em   ܮ  خ Ԯ4ЮHk \Ȯ 4tk5ſFBA D  DBBC  {! \lEDPa AE m9dT0bEY B }($ mEAD`n AAF PnED@ AG tnED@ AG oED@ AG hpED@ AG 4qED@ AG (qFAD` ABG (0rFAD` ABC 0\sFBA D  ABBG tugFD@ EE 0vFAA D`  AABH DLxdFBB A(A0D 0D(A BBBA xy!6(T`zEAD`p AAD @D|FDB B(A0Dpr 0A(B BBBB ~MFF0OFDD n ABA DDBЯ:EmLc>FBB B(A0A8G 8D0A(B BBBA Ix!LcFBB B(A0A8G 8D0A(B BBBA Xw!@ FBB A(A0D 0A(A BBBI \ED@ AG Pt2FBB B(A0D8Gq 8D0A(B BBBJ 87wF8tFBB A(Dp (A BBBG l4`$FBB B(A0A8G 8A0A(B BBBD GUArJTAt FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI h6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAIL 6FBB B(A0A8G 8D0A(B BBBE X]u'@|lDEC P G e...R. u< @ TFBB A(A0D 0A(A BBBI  H@ I  EDP AK  P  L , H @ D T @ h < | ( 4$FBA D  DBBF ,s!k<L SFBA A(F (D ABBK s!" H EDPa AE l h{H@W A  ̩{H@W A  bEY B }( EAD`n AAF ED@ AG  ED@ AG 8 <ED@ AG \ ED@ AG ԭED@ AG ED@ AG lED@ AG <P8fFBB A(D (D BBBD q!? LhgFD@ EE 0pFAA D`  AABH DϴFBB A(A0D 0D(A BBBA P+q!DMFF0,xFDD R ABE \DB`ĦLc!FBB B(A0A8G 8D0A(B BBBA (tp!LLcϳFBB B(A0A8G 8D0A(B BBBA !p!@\FBB A(A0D 0A(A BBBI @4FBB A(A0D 0A(A BBBI ED@ AG Pl ѲFBB B(A0D8Gq 8D0A(B BBBJ oF84tFBB A(Dp (A BBBG lx$FBB B(A0A8G 8A0A(B BBBD GUArJTAt,8FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAIL 8հFBB B(A0A8G 8D0A(B BBBE Dm'@ DEC P G e...R. H m<` @lFBB A(A0D 0A(A BBBI LH@ I h EDP AK $ EDP AK & & & & &&, @& TED`a AE xED`a AE 4XFBA D  DBBF 8Ok!<X nFBA A(F (D ABBK k!=<%FBA A(F (D ABBF j! EDPa AE L{H@W A {H@W A %bEY B }(0EAD`n AAF \ED@ AG tED@ AG  ED@ AG ED@ AG ED@ AG tED@ AG 4@ED@ AG (X FAD` ABG < FBB A(D (D BBBD (h! 0gFD@ EE 0|FAA D`  AABH DuFBB A(A0D 0D(A BBBA #h!G MFF0@FDD R ABE \DBLLpcǪFBB B(A0A8G 8D0A(B BBBA lg!LcuFBB B(A0A8G 8D0A(B BBBA 4g!?@FBB A(A0D 0A(A BBBI @8FBB A(A0D 0A(A BBBI |hED@ AG PTwFBB B(A0D8Gq 8D0A(B BBBJ XfFC8tFBB A(Dp (A BBBG lT@$FBB B(A0A8G 8A0A(B BBBD GUArJTAt FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI<H 6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAIL({FBB B(A0A8G 8D0A(B BBBE x`!,",%ED@C AC X GQ 4,#-FAD`D ABF ` GIH (d#0/EAD`p AAD @#1FDB B(A0Dpr 0A(B BBBB #3MFF0#3OFDD n ABA DDB$$@:EmL3cFBB B(A0A8G 8D0A(B BBBA ^!L6chFBB B(A0A8G 8D0A(B BBBA hT^!2@(%9FBB A(A0D 0A(A BBBI l%X;ED@ AG PD<FBB B(A0D8Gq 8D0A(B BBBJ H]Fz8&@tFBB A(Dp (A BBBG lD&0B$FBB B(A0A8G 8A0A(B BBBD GUArJTAt&FFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI,'8I6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAIL KFBB B(A0A8G 8D0A(B BBBE h ['|@ OFDD n ABA DDB8> z8L>iFBB A(D (A BBBK (>FCDr ABF > >< >h >$EDPa AE ?EDPa AE (8?|FAD` ABD d?PO|R|?O|R?uEY B P(?"EAD`n AAF 0?FAA D`  AABH @ED@ AG 8@ED@ AG \@xEDP AK @DEDP AK @EDP AK @EDP AK @EDP AK (AtFAD` ABG /FAD` ABG T GIL (H>kFCDpr ABF t@AMFF0tAOFDD n ABA DDBĂ@7؂|AH@ I @BEDP AK ,CEDP AK <8 P4 d0 x,($@F ȃ ܃0FFBA Gn  ABBE $~08|HFBA Gn  ABBE lXJEDPa AE ~OEY B j(JEAD`n AAF ܄KED@ AG LED@ AG $PMED@ AG HNED@ AG (lNFAD` ABG 0OFBA D  ABBG 0̅xQnFAA D`  AABH RgFD@ EE H$TFBB B(A0A8G 8A0A(B BBBI HpDV1FBB B(A0A8G 8A0A(B BBBI 8YMFF0؆lYOFDD n ABA DDB 3 tYED@ AG P`ZBFBB B(A0D8Gq 8D0A(B BBBJ FB8_tFBB A(Dp (A BBBG lL`$FBB B(A0A8G 8A0A(B BBBD GUArJTAL̀ eAFBB B(A0A8G 8D0A(B BBBE 8'A@@XiD|AEC P G e...R. <YA tD@pFBB B(A0A8D 8A0A(B BBBA HDAKEKAAIr6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@D@uFBB A(A0D 0A(A BBBI v EDP AK x1LZJ(ȊxFAK`t DBD PXy?FBB B(A0A8I 8D0A(B BBBI  :N?<Ѓ|&2?FBA A(F (D ABBF !?0̋~%FBA D~  ABBH 0%FBA D~  ABBH 4EUP 8dFBD D(KP (A ABBG $TEs H F J ` H @ȌFBA DM  ABBA X  GIBF  8H@ I (ED@ AG LED@ AG pTED@ AG ( EAD` AAI ( EAD` AAI ȉ<ED` AF ( EAD` AAI <ȋ@ED` AG `6ED` AF 03FAA DP  AABD ( EADp AAD DHp;FBB A(A0D 0D(A BBBG !; PĒ3H@L L V J (tFADG ABK (FADG ABK 8̏HFBA A(DG (A ABBE 0LFBA DH  ABBF 0<8LFBA DH  ABBF (pT{EADpH AAD 0jFAA D`D  AABD @АFBA DM  ABBA X  GIBF `AFz00OFDD n ABA DDBPȉs9FBB B(D0A8Gv 8D0A(B BBBE G9ܑh(:Em( 4EK`s AD 4 HEU$dEs H F J R N lXFBB B(A0GR 0D(B BBBF 5QBDNNEDXAFz0ܬOFDD n ABA DDBL8':Emlج  EDPa AE ̴OEY B j(ؓ\EAD`n AAF 0ED@ AG (ܮEDP AK LEDP AK 0pnFAA D`  AABH gFD@ EE Ȕ MFF0@OFDD n ABA DDB%,B@ TBh |X  H@FBB B(A0A8Gn 8A0A(B BBBC ԵEDPa AE HBBB B(A0A8G} 8A0A(B BBBH `4OEY B jdbb(EAD`n AAF ԖED@ AG ED@ AG XEDP AK 0@$nFAA D`  AABH t`gFD@ EE `FBB B(A0A8GB 8D0A(B BBBL t 8A0A(B BBBB Dh$FBB A(A0G 0A(A BBBH LDPFBB B(A0A8Gs 8A0A(B BBBF LFBB B(A0A8Gs 8A0A(B BBBF LpFBB B(A0A8Gs 8A0A(B BBBF (4FCD ABD (`dFCD ABD MFF0OFDD n ABA DDBܙ!HrFBB B(A0A8G 8A0A(B BBBG L<8CFDB B(A0A8D| 8A0A(B BBBF    Ț ܚEDPa AE OEY B j( EAD`n AAF LhED@ AG pED@ AG ED@ AG |EDP AK 0ܛXFBA G  ABBF 0DnFAA D`  AABH DgFD@ EE (h+FCD`r ABF (FCG{ ABB 4MFF0ܜhOFDD n ABA DDB $pEDP AK HH\rFBB B(A0A8G 8A0A(B BBBG LCFDB B(A0A8D| 8A0A(B BBBF   EDPa AE 0EDPa AE 0TPFAA Gn  AABG LbEY B }(EAD`n AAF ԞED@ AG ED@ AG EDP AK 0@FAA D`  AABH Dؗ+FBB A(A0D 0D(A BBBD !e+ 4gFD@ EE Dh%+FGB A(A0Dg 0A(A BBBD B!+p MFF0 OFDD n ABA DDBdԠp  X EDPa AE  bEY B } @ EDP AK (d EAD`n AAF 0FAA D`  AABH ġgFD@ EE LMFF0OFDD n ABA DDB8 LFAA D`  AABH <@?wFDA A(D (A ABBD 4B/FAD` ABG T GIL CHFA0ԪDOFDD n ABA DDB| DEDP AK @EEDP AK dEED@ AG FEDP AK GH@ I ȫlHH@ I 0IED@ AG IED@ AG PJ[ +EH Po D ._.._..O.n.J. /> @UGFDB A(A0Dr 0A(A BBBD XEDP AK  YH@ I ,h[ @b TP[EDPa AE x\bOEY B j([EAD`n AAF 0ĭ\nFAA D`  AABH ]gFD@ EE H_MFF08|_OFDD n ABA DDBl8 :Em |_ED@ AG $8`ED@ AG Ԯz !*T MFF0pTOFDD n ABA DDBL\cFBB B(A0A8G 8D0A(B BBBA l!tPXXFBB B(A0D8Gq 8D0A(B BBBJ 0F$8gFDB A(Dp (A BBBH l4$FBB B(A0A8G 8A0A(B BBBD GUArJTAL\FBB B(A0A8G 8D0A(B BBBE V'&@(@!D EC P G e...R. l< t,((FBB B(A0A8D 8A0A(B BBBA HDAKEKAAIp*6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@,(-FBB A(A0D 0A(A BBBI p. EDP AK s ss s s r  r $0 4r H 0EDPa AE lrbEY B }(0EAD`n AAF 1ED@ AG (2ED@ AG 2ED@ AG $3ED@ AG Hl4ED@ AG l85ED@ AG 06FBA D  ABBG 07FBA D  ABBG 4\ 9FBA D  DBBE )!4:FBA D  DBBE ! <MFF0?OFDD n ABA DDBP d ?ED@ AG D @FBB A(A0D 0D(A BBBG 4˹!LX@BciFBB B(A0A8G 8D0A(B BBBA x!3LFBA Gn  ABBE (EDPa AE LhbEY B }(lXEAD`n AAF <ED@ AG ED@ AG ED@ AG ED@ AG 0(lFBA D  ABBG \gFD@ EE 0TFAA D`  AABH HFBB B(A0A8G 8A0A(B BBBI H41FBB B(A0A8G 8A0A(B BBBI L(MFF0h\OFDD n ABA DDB( dED@ AG P8P>FBB B(A0D8Gq 8D0A(B BBBJ F 8LtFBB A(Dp (A BBBG l<$FBB B(A0A8G 8A0A(B BBBD GUArJTAL\BFBB B(A0A8G 8D0A(B BBBE ' @HDEC P G e...R. ס< 06FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@\FBB A(A0D 0A(A BBBI  EDP AK p EDP AK 4L\FBA D  DBBE !4gFBA D  DBBE l!I(; $;  ; ;;; ( ; <;0PFBA Gn  ABBE :0LFBA Gn  ABBE (EDPa AE t:OEY B j(EAD`n AAF <ED@ AG `dED@ AG 0ED@ AG ED@ AG ( FAD` ABG  EDP AG 0 FBA D  ABBG 0PD nFAA D`  AABH gFD@ EE H1FBB B(A0A8G 8A0A(B BBBI HFBB B(A0A8G 8A0A(B BBBI @MFF0\8OFDD n ABA DDBTt@FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ED@ AG PtFBB B(A0D8Gq 8D0A(B BBBJ qFU8tFBB A(Dp (A BBBG l`$FBB B(A0A8G 8A0A(B BBBD GUArJTAL #FBB B(A0A8G 8D0A(B BBBE 'W@<l'D;EC P G e...R. V< @T.6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@ 1FBB A(A0D 0A(A BBBI $ 2 EDP AK 4@k HgFD@ EE 0X<@FAA D`  AABH HAiFBB B(A0A8G 8A0A(B BBBG HCiFBB B(A0A8G 8A0A(B BBBG $EMFF0@FOFDD n ABA DDBtlF$FBB B(A0A8G 8A0A(B BBBD GUArJTAtJFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI p$MED@ AG PNFBB B(A0D8Gq 8D0A(B BBBJ LƓFt8 RtFBB A(Dp (A BBBG LSFBB B(A0A8G 8D0A(B BBBE \'@ HXDEC P G e...R. d< $0_6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAIDaFBB A(A0D 0A(A BBBI    0 DPd X l8dEDPa AE ě8dFBA A(Gn (A ABBK 0`fVFBA Gn  ABBE (hEDPa AE L(bEY B }(l(iEAD`n AAF  jEDPa AE jED@ AG kED@ AG `lED@ AG (,mED@ AG LmgFD@ EE 0pDoFAA D`  AABH HpIFBB B(A0A8G 8A0A(B BBBI HrFBB B(A0A8G 8A0A(B BBBI <8uMFF0XluOFDD n ABA DDBltu$FBB B(A0A8G 8A0A(B BBBD GUArJTAt4zFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ||ED@ AG Ph}FBB B(A0D8Gq 8D0A(B BBBJ dWF8$tFBB A(Dp (A BBBG LTwFBB B(A0A8G 8D0A(B BBBE 'A@8D%EC P G e...R. |< <6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@@FBB A(A0D 0A(A BBBI ܒ EDP AK $,ȓ EDP AK T h |   EDPa AE 0,>FBA Gn  ABBE `t0t^FBA Gn  ABBE ̚EDPa AE bEY B }(hEAD`n AAF  LED@ AG < ED@ AG ` ED@ AG ED@ AG ( lFAD` ABG 0 `FBA D  ABBG  gFD@ EE 0, HFAA D`  AABH H` FBB B(A0A8G 8A0A(B BBBI H HFBB B(A0A8G 8A0A(B BBBI  ̪MFF0 OFDD n ABA DDBH l\ $FBB B(A0A8G 8A0A(B BBBD GUArJTAt ȯFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI D ED@ AG PFBB B(A0D8Gq 8D0A(B BBBJ DF8 tFBB A(Dp (A BBBG L.FBB B(A0A8G 8D0A(B BBBE څ'@4DEC P G e...R. 8<  6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@FBB A(A0D 0A(A BBBI $p EDP AK h d ` (\ <XP dP xEDPa AE (8FBA A(Gn (A ABBK 0FBA Gn  ABBE 4EDPa AE XbEY B }(x<EAD`n AAF  EDPa AE ED@ AG ED@ AG tED@ AG 4@ED@ AG 0X FBA D  ABBG gFD@ EE 0FAA D`  AABH HPIFBB B(A0A8G 8A0A(B BBBI H0T1FBB B(A0A8G 8A0A(B BBBI |HMFF0|OFDD n ABA DDBl$FBB B(A0A8G 8A0A(B BBBD GUArJTAtPDFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ED@ AG PP xFBB B(A0D8Gq 8D0A(B BBBJ iFu8d tFBB A(Dp (A BBBG L dFBB B(A0A8G 8D0A(B BBBE T ~'@x D˾EC P G e...R. ~< |6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@PFBB A(A0D 0A(A BBBI H EDP AK $l EDP AK  M M M$M MM M  M!4 HM H\^FBB B(A0A8Gn 8A0A(B BBBC 8 P`EC IL C .I. Hn|<9 Ll FBB B(A0A8I 8D0A(B BBBK 6|'ܻLh FBB B(A0A8I 8D0A(B BBBK 0{'8FBB A(De (A BBBE ,EDPa AE P$KbEY B }(pEAD`n AAF ED@ AG TED@ AG ED@ AG ED@ AG ,ED@ AG PdED@ AG (t0FAD` ABG $EDP AK LEDP AB ,gFD@ EE 0 xFAA D`  AABH \@FBB B(A0A8G 8A0A(B BBBD IA$"MFF0X"OFDD n ABA DDBPh`"OFBB B(A0D8Gq 8D0A(B BBBJ xF8|'FDB A(Dpr (A BBBF L\)c÷FBB B(A0A8G 8D0A(B BBBA lx!l,X,$FBB B(A0A8G 8A0A(B BBBD GUArJTAL1FBB B(A0A8G 8D0A(B BBBE PWw'˶@td5DEC P G e...R. w< txL<FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI>6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@xLAFBB A(A0D 0A(A BBBI $B EDP AK p l  h  d 4 `H D \ X p DEDPa AE  08 ,EFBA A(Gn (A ABBK  0 FnFBA Gn  ABBE ,!IEDPa AE P!bEY B }(p!JEAD`n AAF !hKEDPa AE !$LED@ AG !LED@ AG "MED@ AG ,"NED@ AG 0P"TOFBA D  ABBG "PgFD@ EE 0"FBA Gn  ABBE 7"07 ^FBA Gn  ABBE 88EDPa AE 08D"bEY B }(P8EAD`n AAF |8ED@ AG 8tED@ AG 8@ED@ AG 8 ED@ AG ( 9FAD` ABG 089FBA D  ABBG l9hgFD@ EE 09FAA D`  AABH H9FBB B(A0A8G 8A0A(B BBBI H:FBB B(A0A8G 8A0A(B BBBI \:8MFF0x:lOFDD n ABA DDB:X@:tFBB A(A0D 0A(A BBBI l;$FBB B(A0A8G 8A0A(B BBBD GUArJTAtt;FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ;ED@ AG Pt41FBB B(A0D8Gq 8D0A(B BBBJ 4=[F8< tFBB A(Dp (A BBBG L(5 FBB B(A0A8G 8D0A(B BBBE x5Z'o@5DSEC P G e...R. 5Z<0 =6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@(>FBB A(A0D 0A(A BBBI $l>X EDP AK >PX >LX >HX >DX >@X>  ?8X ?EDPa AE D?X8X?|FBA A(Gn (A ABBK ?W0?FBA Gn  ABBE ?!EDPa AE @tWbEY B }( @$"EAD`n AAF L@#EDPa AE p@#ED@ AG @$ED@ AG @\%ED@ AG @(&ED@ AG 0A&FBA D  ABBG 4A(gFD@ EE 0XA)FAA D`  AABH HA8+IFBB B(A0A8G 8A0A(B BBBI HA<-1FBB B(A0A8G 8A0A(B BBBI $B01MFF0@Bd1OFDD n ABA DDBtB|lBl1$FBB B(A0A8G 8A0A(B BBBD GUArJTAtB,6FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI pCt8ED@ AG P;`9 FBB B(A0D8Gq 8D0A(B BBBJ L<bTF8 D>tFBB A(Dp (A BBBG L<L?FBB B(A0A8G 8D0A(B BBBE <S'^@ =CDBEC P G e...R. d=S< $EJ6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@E8MFBB A(A0D 0A(A BBBI EN EDP AK $FO EDP AK  PL[ "EH Po D ._.._..O.n.J. HMD>  DU̪'FDB A(A0D 0A(A BBBB 0PUFBA G  ABBC (UgFCD`| ABD @UIJFDB A(A0D| 0A(A BBBJ UH@ I VԷEDP AK 4V HV| \Vh pVdEDPa AE V O|RV(EY B c(V85EAD`n AAF 0VLFAA D`  AABH ,WؽH@ I HWED@ AG lWXEDP AK (W4FAD` ABG 8W'FBB A(Dp (A BBBK 8W 'FBB A(Dp (A BBBK 04X&FBA D`  ABBF 0hX&FBA D`  ABBF @X;FBB A(A0Dp 0A(A BBBE @X;FBB A(A0Dp 0A(A BBBE $YgFD@ EE (HYEDP AK ?EDP AK ?LEDP AG 4A<EDP AG XB H@ E tCH@ E DEDP AG 0EnFAA D`  AABH FgFD@ EE ( HFCD ABD (8KFCD ABD d@OMFF0tOFDD U ABJ \DBHȣOrFBB B(A0A8G 8A0A(B BBBG LRCFDB B(A0A8D| 8A0A(B BBBF d` x\ hY D PYEDPa AE ؤ ZEDPa AE (ZFAD` ABD (̀OEY B j(H\[EAD`n AAF t0\ED@ AG \ED@ AG ]ED@ AG T^ED@ AG _EDP AK (_EDP AK L`EDP AK paEDP AK PbEDP AB cEDP AK ܦcEDP AK dEDP AB $eEDP AE (HfFAD` ABG (tpg-FAD` ABC ,thB1FAD ABC 41,PxiR{1FAD ABJ }Z1(8jCFAD` ABF 0dknFAA D`  AABH lgFD@ EE , 8n0FAD ABF P 0,lo0FAD ABE  04TPq/FAD` ABG T GIL (Hr+FCD`r ABF LtMFF0ԩtOFDD n ABA DDB t EDP AK @tu EDP AK d`vEDP AK LwEDP AK 8xH@ I ȪxEDP AK $yED@ AG 0 (, <( P$dz x zEDPa AE T{EDPa AE ԫ0{>FBA Gn  ABBE 00~FBA Gn  ABBE HdFBB B(A0A8Gt 8A0A(B BBBE HFBB B(A0A8G} 8A0A(B BBBD HXFBB B(A0A8G} 8A0A(B BBBD HHFBB B(A0A8G} 8A0A(B BBBD HFBB B(A0A8G} 8A0A(B BBBD DEDPa AE bEY B }($EAD`n AAF PėED@ AG tED@ AG \ED@ AG 0(FBA D  ABBG ěgFD@ EE 0FAA D`  AABH HHlFBB B(A0A8G 8A0A(B BBBI HFBB B(A0A8G 8A0A(B BBBI 4MFF0hOFDD n ABA DDB0@DpFBB A(A0D 0A(A BBBI @FBB A(A0D 0A(A BBBI ̰ED@ AG PTt(FBB B(A0D8Gq 8D0A(B BBBJ F(8htFBB A(Dp (A BBBG l`$FBB B(A0A8G 8A0A(B BBBD GUArJTALx 'FBB B(A0A8G 8D0A(B BBBE Ȫ''@lD'EC P G e...R. 0<c' tTFBB B(A0A8D 8A0A(B BBBA HDAKEKAAIh6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI T EDP AK @ EDP AK 4,%FBA D  DBBE Ԭ"!%4%FBA D  DBBE ,!%H  0EDPa AE 8|OEY B j(XEAD`n AAF 0nFAA D`  AABH gFD@ EE ܵ(MFF0\OFDD n ABA DDB, D X l  EDPa AE <EDPa AE (ܶFAD` ABD EY B c((5EAD`n AAF 0TFAA D`  AABH ,ED@ AG ED@ AG зEDP AK EDP AK LEDP AK (<FAD ABG hEDP AK (FAD` ABG (FAD` ABC gFD@ EE 4/FAD` ABG T GIL @MFF0\OFDD n ABA DDB , /FAD` ABC Թ` H EDPa AE 4 OEY B j TPED@ AG x EDP AK (EAD`n AAF 0ȺnFAA D`  AABH gFD@ EE $ 4`EO l AG VA8Hl-FPO U BBB  BBD 0`OFDD n ABA DDB̻R R R RR0RD` XR HlHUFBB B(A0A8Gn 8A0A(B BBBC H\FBB B(A0A8Gn 8A0A(B BBBC HFBB B(A0A8Gn 8A0A(B BBBC HPtFBB B(A0A8G} 8A0A(B BBBD HFBB B(A0A8G} 8A0A(B BBBD HLFBB B(A0A8Gt 8A0A(B BBBE LGFBB B(A0A8I 8D0A(B BBBG P!HLFBB B(A0A8G} 8A0A(B BBBD HFBB B(A0A8Gn 8A0A(B BBBC H@FBB B(A0A8Gn 8A0A(B BBBC xO04 ^FBA Gn  ABBE Կ@OHL FBB B(A0A8Gh 8A0A(B BBBI 4 EDPa AE X9dTp9dTNOEY B j(EAD`n AAF ED@ AG LED@ AG ED@ AG @ED@ AG dED@ AG Hl!FBB B(A0A8Gn 8A0A(B BBBC (PFAD` ABG DEDP AG 0$@FBA D  ABBG 0XnFAA D`  AABH gFD@ EE HdFBB B(A0A8Gn 8A0A(B BBBC H!FBB B(A0A8G 8A0A(B BBBI HH$iFBB B(A0A8G 8A0A(B BBBG &MFF0&OFDD n ABA DDB:Em@&FBB A(A0D 0A(A BBBI lD`($FBB B(A0A8G 8A0A(B BBBD GUArJTAt -FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ,h/ED@ AG PT0BFBB B(A0D8Gq 8D0A(B BBBJ QF84tFBB A(Dp (A BBBG Lh@6FBB B(A0A8G 8D0A(B BBBE '@ܾ:DdEC P G e...R. <A tA6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@h,DFBB A(A0D 0A(A BBBI $E EDP AK Pw Lw Hw Dw$@w8 (|(gFCD`| ABD lEDP AK H9 d 09 LlLaFBB B(A0A8I 8D0A(B BBBF ! LhFBB B(A0A8I 8D0A(B BBBK 0ÿ!HFBB B(A0A8De 8A0A(B BBBG <EDPa AE `EDPa AE (PFAD` ABD $9dTL,LFBB B(A0A8GR 8D0A(B BBBD |g<6EY B c(\5EAD`n AAF ED@ AG 8ED@ AG ED@ AG pED@ AG  ED@ AG <H@ I X\H@ I tH@ I ED@ AG EDP AK (\FAD` ABG (@FAD` ABG (0$FAD` ABG (\FAD` ABG gFD@ EE D8!FBB A(A0D 0D(A BBBD X#!D|FBB A(A0D 0D(A BBBA ػ!0FAA D`  AABH 4l/FAD` ABG T GIL dEDP AF <xP:FGB A(Gk (D BBBD !dt0;FGB B(A0A8D| 8A0A(B BBBC x 8K0A(B BBBL MFF0<OFDD n ABA DDB, @DED@ AG d ED@ AG ( /FAD` ABC  EDP AK  EDP AK  ED@ AG t ED@ AG D0ED@ AG hED@ AG @rFBB B(A0Dp 0A(B BBBC D4eFBB A(A0D 0D(A BBBA |b!7 <HED@ AG `H@ I |H@ I  EDP AK xED@ AG (4/FAD` ABC <p8KFGB A(Gk (D BBBD O!'0lXFBA G  ABBC 4$FGA Dp  ABBI <  l"ED@ AG (#EDP AK L$IFDB B(A0D8Gz 8D0A(B BBBG Lg,+mFAD` ABF PG -EDPa AE .EDPa AE (@$/FAD` ABD lFuEY B P(/"EAD`n AAF 0ED@ AG 1ED@{ AK (t2EFAD` ABI (,3\FAD` ABE X4gFD@ EE 0|6FAA D`  AABH D7mFBB A(A0D 0D(A BBBG \K!?L9O#FDB B(A0D8G~ 8D0A(B BBBK g4A/FAD` ABG T GIL BHFA0BOFDD n ABA DDB<$,BEDP AK TpD hK |XDEDPa AE dKOEY B j(DEAD`n AAF 0EnFAA D`  AABH GgFD@ EE DPHMFF0`HOFDD n ABA DDB:Em HED@ AG $@IED@ AG  $8 L`tI  HIFBB B(A0A8Gh 8A0A(B BBBI 8$ KFBA A(De (A ABBG `tLEDPa AE @OEY B j(MEAD`n AAF MED@ AG NED@ AG lOED@ AG <(PED@ AG (`PFAD` ABG (QFAD` ABG 0RFBA D  ABBG 0XTnFAA D`  AABH UgFD@ EE HDV FBB B(A0A8D 8A0A(B BBBE HXiFBB B(A0A8G 8A0A(B BBBG ZMFF0ZOFDD n ABA DDB,P[SFBB B(A0D8Gq 8D0A(B BBBJ 7F8_tFBB A(Dp (A BBBG l`$FBB B(A0A8G 8A0A(B BBBD GUArJTAde6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@hhFBB A(A0D 0A(A BBBI 0jED@ AG LjgFBB B(A0A8G 8D0A(B BBBE m'1@,FADp ABG @?EDP AK (@)ED` AB L(A(ED` AB p4B(ED` AB @C(ED` AB <LD~FBB A(D (D BBBD \z!0lEkFAA D`  AABD 0LF{FAA D`  AABD HG:FBB B(A0A8G 8A0A(B BBBI HIoFBB B(A0A8G 8A0A(B BBBI  LEDpG AG <MEDP AE (`TOEADpC AAA (QEADpC AAA 0TFBA DH  ABBF 0VFBA DH  ABBF ( TYFAGQ ABF 0L[FBA D  ABBI 0^FBA D  ABBI 8PaFBA A(DH (A ABBD 04dFAA GQ  AABD $hAFz0@hOFDD n ABA DDBth#JUA(hFAK`t DBD i iEU  iED@ AG ( HPa G >dEKPZ AE D>HPa G `>HPa G |>8EKPZ AE 8>FIA D(FP (A ABBF 8>8FIA D(FP (A ABBF 8?FIA D(FP (A ABBJ 8T?FIA D(FP (A ABBF 8?FIA D(FP (A ABBF 8?FIA D(FP (A ABBF @@|FDD`e ABJ s HBK  MBM L@ `@ t@ @ @ @ @ @ @ A A (A `FGB A(A0G 0A(A BBBD $z#!``0CMFF0dCOFDD n ABA DDB40GHlF \XC!EDP AG dDFD@ EE y F ̂x EEDPa AE FO|Rx<EY B W(<FEAD`j AAJ hGH@ I @HH@ I HED@ AG ăIED@ AG ,JED@ AG JED@ AG 0dKED@ AG (T LEADP AAE LEDP AK MEDP AK ȄlNEDP AK 8OEDP AK PEDP AK 4PEDP AK (XQFAD` ABG (RFAD` ABG (dSFAD` ABG (܅HTEAD` AAI (,U FAD` ABG (4V#FAD` ABC <~W~[FBB A(D (D BBBD 5![(4XnFADp ABF <PxY][FBB A(D (D BBBF !6[0LZ^FAA D`  AABH <[ZFBB A(D (D BBBF $W!Z8$]xFBB A(Dp (A BBBK 0h^}FBA D`  ABBG 0P_FBA D  ABBG 0 a}FBA D`  ABBG lbgFD@ EE 8܈cFBB A(D (A BBBK HLeFBB B(A0A8D 8A0A(B BBBE 8dfFBA A(D (A ABBE DhXFGB A(A0Dd 0A(A BBBG LP!XLpkXFGB B(A0A8Gr 8A0A(B BBBJ !XpMFF0pOFDD n ABA DDBЊ>:Em(q { qEDPa AE 8{<EY B W(XqEAD`j AAJ 0pr^FAA D`  AABH sH@ I (ԋPtEADP AAE (tEADP AAE ,uEDP AK (PdvFAD` ABG |HwgFD@ EE xMFF0xOFDD n ABA DDB<:Em$ xEDP AK 4p Hy \X pyEDPa AE zEDPa AE (,{FAD` ABD bEY B }({EAD`n AAF 0|ED@ AG T`}ED@ AG x}ED@ AG ~EDP AK EDP AK (`FAD` ABG @DFBB A(A0D 0A(A BBBI @TFBB A(A0D 0A(A BBBI 8܃xFBB A(Dp (A BBBK ԏ gFD@ EE 0lFAA D`  AABH 4,ȇ/FAD` ABG T GIL 0dFBA G  ABBJ lMFF0OFDD n ABA DDB9 EDP AK EDP AK DEDP AK (hl5FCD`r ABF 8FDB A(Dpr (A BBBF БED@ AG <XГPFGB A(Dd (A BBBA F!P$T0FD@ EE |   EDPa AE ܒؤOEY B j((EAD`n AAF 0(nFAA D`  AABH \8ED@ AG gFD@ EE PMFF0OFDD n ABA DDB06:Em ED@ AG 4@H@ I PH@ I lȞED@ AG ED@ AG @ED@ AG ؔED@ AG $ED@ AG $P8 LP` t |  dEDPa AE ԕ EDPa AE (FAD` ABD $#JUA(@FAK`t DBD lhEDP AK DEUH DED@W AG ED@W AG ED@W AG DKFAG q CBD D FBL Y KBJ ؏'K bEY B }Trėr(ؗEAD`n AAF ED@ AG (ED@ AG LED@ AG pTH@ I ED@ AG EDP AK ԘpED@ AG ED@ AG ED@ AG @dED@ AG dED@ AG ED@ AG ED@ AG ЙTED@ AG EDP AK ܲEDP AK <EDP AK `EDP AK `EDP AK ,EDP AK ̚EDP AK 8ķkFBB A(Dp (A BBBG 8,kFBB A(Dp (A BBBG 8h,kFBB A(Dp (A BBBG `gFD@ EE LțFBB A(D (A BBBG GXAL FBB A(D (A BBBG GXA0hlFAA D`  AABH @FBB A(A0D 0A(A BBBE 4d/FAD` ABG T GIL (\FCD ABD (DFCD ABD pMFFAFz0 FDD Q ABF \DBܝ,! TED@ AG  EDP AK 8 EDP AK \ED@ AG H@ I Px[ DEH Po D ._.._..O.n.J. T>rD @`FBB A(A0D 0A(A BBBI @XrFBB B(A0Dp 0A(B BBBC (/FAD` ABC <, CFGB A(Gk (D BBBD l!~C (, EDP AK 4UCFGA Dp  ABBI  JC8`FDA A(Dr (A ABBH $ED@ AG ED@ AG (EDP AK $LED@ AG DؙbBFBB A(A0D 0D(A BBBB n!4B EDPa AE  |<EY B W(8EAD`j AAJ dPH@{ E H@{ E ED@{ AK ED@{ AK pED@{ AK <ED@{ AK ,ED@{ AK PED@{ AK tED@{ AK lED@{ AK 8ED@{ AK ED@{ AK  EDP AA (EDP AA LEDP AA p EDP AE  EDP AE 0^FAA D`  AABH gFD@ EE HFA8,HFBD A(D0 (A ABBF h,%H|X4FBB B(A0A8G 8A0A(B BBBG ȥ ܥ8EDPa AE d<EY B W( EAD`j AAJ L ED@ AG p4 H@{ E  EDP AA 0 ^FAA D`  AABH H FBB B(A0A8G 8A0A(B BBBE H04FBB B(A0A8G 8A0A(B BBBG |gFD@ EE HFA0HOFDD n ABA DDB"(FMD  DBA 0"+EZ%e    "o2#Z <&N PK _e \2           yo22zIT/&"x    Z"x    Z{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7A!!!!!!!! !;l0q2#c  ]  U  ;SmT0mT0p0"{F"r\gsl0z5z5zm8"{   A l  7e  p]] o2$  U  "m0m0z5z5{   Az 8 " 7{   Az 8 " 7i+Zl0{5w2{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7m0m0{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7i 7 Y " Y "{   Az5z 8 " 7{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7{   Az 8 " 7;h X  ;,i+Z 6 8d $"x    Z"x    Z V"o2$  \  "#Z < Ni+Z#_ x   {v>  }> ( ( {   Az 8 " 7m0m0 Y{   Az 8 " 7 O{   Az 8 " 7{   Az 8 " 7 6 8d $ V V*D     "Eo2r5br5b6 ;e)c $    NnY  ;,rc5HrY Y"E{   Az 8 " 7{   Az 8 " 7m0m0{   Az 8 " 7m0m0{>x9Qx9Qx9Qx9Q{>{>{>&O NJ i+i+#  =  i+o07o07"Z6]#j   YTp  8d $b6 ;e)c $    o^2b@>`>>>>>? ?@?`??@ @@@`@@@@@A AAAA0BPBpBC C@C`CCCCD D@D`DDDDE E@E`EEEEEF F@F`FFFFFG G@G`GGGGH@H`HHHHI I@I`IIIIIJ J@J`JJJJJK KKKKKLPLLLM0MPMMMMPNNNO0OPOpOOOOOP0PPPpPPPPPQ0QpQQQQR0RPRpRRRRST0TPTpTTTTTU0UPUpUUUUUV0VPVpVVVVVW0WPWpWWW@XXXY Y@Y`YYYYYZ Z@Z`ZZZZ[ [@[`[[[[\ \@\`\\\\ ]@]^^_0`P`p```aPaaaa`b1111111*2+2271p=r=G1K1e1~11(11111+2)+25+2>+2F+2T+2i+2}+2+2+2 +2+2+2+2+2+2+2+2+2+2+2+2222˧3ܧ33­5̭5ݭ55/m87m8?m8Km8?9-?9A?9W?9e?9m?9t?9-?9?9I:+2*22p=r=G1:+2+2::::::: : \;j;{;;;;;;ç;Ч; p=p=p=p=p=p=p= q=q= q= )q= 3q= =q= Lq= Vq=bq=wq=q=q=q=q=$q=q= r=r=5r=Jr=fr=r=u= u=!r="r=#r=)r=*r=3r=4s=5.s=6Js=7fs=8s=<s==s=>s=?s=@s=At=B,t=CHt=D[t=Eqt=Ft=Gt=Ht=It=Jt=K>.>D>Z>p>>>Б>>>0>P>p>>Ed P Y/DDohp6  D; 08 o/ooX o:D0P @P PP `P pP P P P P P P P P Q Q Q 0Q @Q PQ `Q pQ Q Q Q Q Q Q Q Q R R R 0R @R PR `R pR R R R R R R R R S S S 0S @S PS `S pS S S S S S S S S T T T 0T @T PT `T pT T T T T T T T T U U U 0U @U PU `U pU U U U U U U U U V V V 0V @V PV `V pV V V V V V V V V W W W 0W @W PW `W pW W W W W W W W W X X X 0X @X PX `X pX X X X X X X X X Y Y Y 0Y @Y PY `Y pY Y Y Y Y Y Y Y Y Z Z Z 0Z @Z PZ `Z pZ Z Z Z Z Z Z Z Z [ [ [ 0[ @[ P[ `[ p[ [ [ [ [ [ [ [ [ \ \ \ 0\ @\ P\ `\ p\ \ \ \ \ \ \ \ \ ] ] ] 0] @] P] `] p] ] ] ] ] ] ] ] ] ^ ^ ^ 0^ @^ P^ `^ p^ ^ ^ ^ ^ ^ ^ ^ ^ _ _ _ 0_ @_ P_ `_ p_ _ _ _ _ _ _ _ _ ` ` ` 0` @` P` `` p` ` ` ` ` ` ` ` ` a a a 0a @a Pa `a pa a a a a a a a a b b b 0b @b Pb `b pb b b b b b b b b c c c 0c @c Pc `c pc c c c c c c c c d d d 0d @d Pd `d pd d d d d d d d d e e e 0e @e Pe `e pe e e e e e e e e f f f 0f @f Pf `f pf f f f f f f f f g g g 0g @g Pg `g pg g g g g g g g g h h h 0h @h Ph `h ph h h h h h h h h i i i 0i @i Pi `i pi i i i i i i i i j j j 0j @j Pj `j pj j j j j j j j j k k k 0k @k Pk `k pk k k k k k k k k l l l 0l @l Pl `l pl l l l l l l l l m m m 0m @m Pm `m pm m m m m m m m m n n n 0n @n Pn `n pn n n n n n n n n o o o 0o @o Po `o po o o o o o o o o p p p 0p @p Pp `p pp p p p p p p p p q q q 0q @q Pq `q pq q q q q q q q q r r r 0r @r Pr `r pr r r r r r r r r s s s 0s @s Ps `s ps s s s s s s s s t t t 0t @t Pt `t pt t t t t t t t t u u u 0u @u Pu `u pu u u u u u u u u v v v 0v @v Pv `v pv v v v v v v v v w w w 0w @w Pw `w pw w w w w w w w w x x x 0x @x Px `x px x x x x x x x x y y y 0y @y Py `y py y y y y y y y y z z z 0z @z Pz `z pz z z z z z z z z { { { 0{ @{ P{ `{ p{ { { { { { { { { | | | 0| @| P| `| p| | | | | | | | | } } } 0} @} P} `} p} } } } } } } } } ~ ~ ~ 0~ @~ P~ `~ p~ ~ ~ ~ ~ ~ ~ ~ ~    0 @ P ` p          0 @ P ` p Ѐ  0 @ P ` p Ё  0 @ P ` p Ђ  0 @ P ` p Ѓ  0 @ P ` p Є  0 @ P ` p Ѕ  0 @ P ` p І  0 @ P ` p Ї  0 @ P ` p Ј  0 @ P ` p Љ  0 @ P ` p Њ  0 @ P ` p Ћ  0 @ P ` p Ќ  0 @ P ` p Ѝ  0 @ P ` p Ў  0 @ P ` p Џ  0 @ P ` p А  0 @ P ` p Б  0 @ P ` p В  0 @ P ` p Г  0 @ P ` p Д  0 @ P ` p Е  0 @ P ` p Ж  0 @ P ` p З  0 @ P ` p И  0 @ P ` p Й  0 @ P ` p К  0 @ P ` p Л  0 @ P ` p М  0 @ P ` p Н  0 @ P ` p О  0 @ P ` p П  0 @ P ` p Р  0 @ P ` p С  0 @ P ` p Т  0 @ P ` p У  0 @ P ` p Ф  0 @ P ` p Х  0 @ P ` p Ц  0 @ P ` p Ч  0 @ P ` p Ш  0 @ P ` p Щ  0 @ P ` p Ъ  0 @ P ` p Ы  0 @ P ` p Ь  0 @ P ` p Э  0 @ P ` p Ю  0 @ P ` p Я  0 @ P ` p а  0 @ P ` p б  0 @ P ` p в  0 @ P ` p г  0 @ P ` p д  0 @ P ` p е  0 @ P ` p ж  0 @ P ` p з  0 @ P ` p и  0 @ P ` p й  0 @ P ` p к  0 @ P ` p л  0 @ P ` p м  0 @ P ` p н  0 @ P ` p о  0 @ P ` p п  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0 @ P ` p  0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p   0 @ P ` p            0 @ P ` p            0 @ P ` p            0 @ P ` p            0 @ P ` p          0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p   0 @ P ` p         !! !0!@!P!`!p!!!!!!!!!"" "0"@"P"`"p""`9Eb/HDE`/eb/N`/fXc/ `/cc/R`/ghd/:`/dd/`/bpe/l/HDE`/0kb/N`/PXc/ `/Pjl/R`/m/;i/n/i/0l@o/j/ mp/g/nq/nh/ts/g/npt/h/|u/ i/}(w/[h/sx/g/oy/h/xz/h/{{/h/0v|/ h/p~/h/pw(/h/yH/=h/prh/h/qЂ/h/z8/i/~/i//i//i/x/i//mi/Д/di//Si/Єp/ /HDE`/`b/N`/Xc/ `/X/R`/0/i//i/@@/̙///0/ߙ/`P//`/H/HDE`//N`// `//R`///`h/ۦ//Ѧ/`/̦/ج/ɦ/(/8/(0@/p3v=/`/Q//n/0/Ю/// //0////h/ /`/|//_3/G//ޮ/ h//H/@/P(/`///0// X/%//*/ؾ// (/4C</>////1//֭/@H//0/ߙ/@//P///x/@/3v=////HDE`/p/N`/`/ `//R`/@////0/20//HDh/ E`/#/N`/4/ `/0"/R`/$x/}/00/k/@/P/Y/P./#/)P//p1//(/H/P,/O/P-x//@& //'//`8H//'//28///*/7/`+//P7`//%//HDE`/@/N`/A/ `/@:/R`/ D@//@C//PK//E//@@//?H// ?//>//>8//p=/9+2<h//pJ/4`IX/4PH//`G/ ;!/;!/@/HDE`/O/N`/V/ `/Lp/R`/P//_@/V/R//^//]`/?/Q@//U/k/SH/y/T//\0/4[/4ZP//W//YH/M!/N!/x/HDE`/c/N`/d/ `/0a/R`/k// mX//hx//@f//g //i//j0/g04p 04n0b!/b!/0HDE`/r0N`/`wP0 `/q0R`/xp00t00u00s 00pv 00Ѐ 00z(00HDE`/0/N`/P/ `/P 0R`/0P000@x0?00.00p0#00\0X0000`00#0΁9 %0 V7'00+00-00(20i/@40d050x0600P70>0HDE`//N`// `/>0R`/?0P000?0?0@0.0 A0#0PA0\0@PB00`00 -0000#0΁9%0 V7p'00`+00B0i/p@40!90pE0 90F0x0I000K0890(N090N0T0HDE`//N`// `/HT0R`/ T0P0p00?0?0@0.0` A0#000@U0\0 /U00@-00*-00"00#0΁9p%0 V7P'00@+00V0i/P@40d0PX0!90HY0 900Z0x0p \00 ^0890(N090PN00d0HDE`/P9/N`/pB/ `/p8`d0R`/Ad0P0 =00@;?0?00<@0.0`: A0#0pn@U0\0>PB00l00Pi-00b00@]#0΁9[%0 V7V'00U+00R8e0i/M@40d00?Pg0o`0Kh0!905i0 90P2j0x0DPk00 G`l0p0HDE`/|/N`/~/ `/|p0R`/Pq0n0Hq0m00ps0m00t0m0t0m0`u0m0@@v0m0v0ߙ/w0m0}8y0m0wz0i/s8}0m0pH00HDE`/`/N`// `/0R`/p0J0P0U0`0y0h000(00p0o000c0 X0/0/p04`04P0!/`!/0HDE`//N`// `/(0R`/0a00Y0`0ߙ/0F0@P0x0pȖ00@00p00`0i0@80000X0ؠ00@00p00ˑ0أ0HDE`/p/N`// `/0R`/`h0p00b0H000-00pЧ00p(0P00$0`0 0pȮ0>0`د080HDE`/P /N`/!/ `/p `0R`/ #е0*2p 0/0/00h0S000@00300X0H0p0<2P700:0ܱ0p'P0x006000 2h0!0000$00)000@0H000 x0`0040/80000 0 000@.(0+400/v=@0HDE`/@/N`/R/ `/?h0R`/0T0/04804(0P00J00@I000E00Dx0%0pGX0x0F@0V0pWP0B0M00A00 C@0?0 K0.0L 00`B0K00P0#0Np0\0 O00U`00u@00g(00\000Z80i/px0΁9PQ0 V7k 0ߙ/|00C0d0@0o`0040PH00p0x0c10`011HDE`//N`// `/1R`/1 1HDE`//N`/0/ `/  1R`/ 10 11 1k1 1P0p10`1a1 10101B01<210P(1.001X1HDE`/`1N`/P1 `/1R`/X1:`/1*2а1/`111111 11 11!110P"110#11$100h%10%1 0Ъ&14'1,1HDE`/оb/N`/@Xc/ `/,1R`/-1(1-1n(1x.1i/@.1i/0(41i/8811?1/P@1di/A1i/C1mi/HD1(1 8F1(1@F1(1`G1(1xG1(1G1(1pPH1L1HDE`/@/N`// `/L1R`/0HM1*2PM1yI1`  N10 N1*I1HO1bI1 P1HI1PQ17I1pQ1rI1  R1SI1R1P0@S10000S1 0S14U1I1 PV1H1pW10W1X1 Y1[1HDE`//N`/ / `/\1R`/\1rY1\1/]1C=^1gY1`0_1\Y10`1 0(b1/`"b1/0'04 &(d14%d100$e1w1 e1Y1pf1!/!/i1HDE`/P*/N`/ 9/ `/p)j1R`/@+j1gY1<j1\Y100k10<pl1h1 ;l16h1,pm1Dh1-m1k12Pn1h12Xo1h13p1h148q1h15q1Qh1p.r1h17(s1h18s1nh11Pt1ch1P/t1w1HDE`/@/N`/ G/ `/ ?x1R`/Epx1n0Kx1m00I(z1u1Dz1mu1B0{1\u1A{1~u1C |1~1HDE`/Q/N`/_/ `/P1R`/0^1|1T1p0PZH1b0@\؀10@+0P0R`10U؂1/`h1?0S1#0`W1.01\0p100h10p10 {10`v1i/0q1΁9o1 V7j10h1d0X8140V1x0@e10a1(1HDE`//N`// `/P1R`/01P0`10`1?0P1.01#001\0P10x10`@10@10P1΁9гx1 V781001o`0h00 1d0p1i/p1!901 901x0100ذ11HDE`//N`// `/@1R`/01n01m011p(11p11`1Ա1x111ޱ11ػ1HDE`//N`// `/1R`/01k1 1a1@p11HDE`/P/N`// `/p81R`/11  11P11 1P1HD1 1 1 E`/@ /N`/@/ `/x1R`/0 11p011,1/+`1/0( 1i1x11H1811#1 x1;1p 1 1 11*111/11P1 0)h11011@111111X110110 11@1T1@11P14 '14&1u1H11p$11`#1t1P"1J10!`161 11PH1j1H11 H11 11 11p1111Px111|10`1m11[1P1J1171X1&1`11h11@11H11 1181111p0111|1P1q11j101b1H1U11Q1 1/x1!/!/1HDE`/ 2/N`/3/ `/11R`/p4`1I101H1`/p1I1102.!%,2-!7v=2HDE`/p9/N`/:/ `/62R`/P=22`L2rY1@K2C=0J2gY1H2F2< 2\Y1Gh 2{2F 2o2`E 2 0pDb1/C04B(d14pAd10@`2/>827!/p8!/2HDE`/N/N`/Y/ `/M(2R`/O26h1`2Dh1`2k10_2h1P^2h1p]2h1\2nh1[22 T2l2 Q22X@22W 22R"22R#22pV$22`Ux%222HD`y2 y2 y2 (z2 pz2 E`/f/N`/p/ `/d022R`/22/32&2h32442442{&2f52&2k52o'2@vH62'*262S'2Pth72^'2Pu72N*2@82.'2Pq82'2zX92*2092#'2Ppx:2'2y:2Y*2`;29'2Pr <2'2 x<2d*2p<2'2Po=2'20w>2A*2з>2D'2PsH?2'2z?22*28@21eA2)2PC2&2lHD2[(2pE2&2pmhI2'2`nJ2o&2peL2V&2cL2&2gM2)2N2J(2ЄR2Q)28S2 (2@S2#)2p8T2(2pT2`)2 T2'2{HU2)2U2(2U21)2`V2,(2V2(2ЍW2(2PW2)2W2;(2(X2(2X2(2X2)2X2'2}Y2&2iY2)20Z2@)2hZ2'2 ~[2h(20p[2(2[2o)2`[2(2`\2(2]2x(2 H]2+2p]2 +20^2+2 ^2o*2P`2&2jc2)28e2)2P(g2)2j2*2Pl2|*20n2 *2PPq2)2Xs2)2u2  ,2`(y2/v=$,2',2+,2{2HDE`//N`/ / `/{2R`/pp|21|210}2z2P}21~2\Y1`~2Є2HD2 E`//N`/@/ `/2R`/`2C=p2B= 6202/ 22`2p2@5؉2<2/p2b2-؋2P0P2U2,@2202202D2+(22PД2di/P252p%2/$@2~22~2@p20#2'2"x2ߙ/ 2Ա10 822 2/!Т22PH20إ2 0`2/`24P(d14@d172 Ȩ22X2/ 2t1(2612202%2`2222ذ22P2~22G22v22~22_22!/!/к2HDE`/ =/N`/P>/ `/92R`/?2/0<2/`A`2p:!/0;!/п2HDE`/pG/N`/H/ `/C2R`/Jx2/F2/K22PM2D!/E!/p2HDE`/Q/N`/Q/ `/O2R`/ [02B2W22 U 2(2V252WX2l2Z2Q2X22PSx220T22pP22O22HDE`/p^/N`/`_/ `/]2R`/d@2ۦ/ c2^2f2̦/Pb 2P2`x2ɦ/a(/2HDE`/j/N`/v/ `/g2R`/`w82/j22q22ph@22@n22PoX22x2?0`m20kh22s20l2p2`t2X2HDE`/|/N`/`/ `/{2R`/Є2P0}`10`1?0@1.0~1#0 1\0@10x10820820p00#0i/2΁9%0 V7'02HDE`/0/N`// `/P2R`/`2D22/P2<2 20вh2Y222(222h2д2)22232кX3232p33HDE`/@/N`// `/@3R`/h3/P3*2`(3C=3 33/0P3/P3o&2 @3/P3t 3pH3 3`3:3p3+2  3 3H!3 3"3+2#3 +2p$34%34`&30&30X'3 0'3/P)3 3)3 3 +3 30-3 3P.3 3 13%323.333 343/v=$,2/v=$,2@$,20/v=?3HDE`//N`/0/ `/?3R`/`@353 @353pXA353`A353@B3530HC353C3X63D3M73=E3~630F353G30 H363pH363K3663hM3p2N363 N363PxP3638R3630S30`#U30PX353ppZ30:`]3068e3i/@(m3 V7o3ߙ/3xr302s3d0  t3o`0 u300Xw3173p0y3G63(353P30373-p390363H3890x33@3`3HDE`/B3N`/V(3 `/B3R`/ X3G3E(3 3G3P3G3e3H3 0K3]3@F3&2R(33S033Q`33M33pTؗ3Ӊ3N@30C034O34P3/]3~3@I33 Jx31U3x3KP33L3:3 ?33Y303Dȥ33HDE`/_/N`/n/ `/p^3R`/p33i3 3Pd33`353aȮ33pb(30`c3 0@f`33z33@eȴ3{3P_X33|34@g34`hػ3Pm3pq3j83Pt3lS30w33HDE`/ /N`/ / `/@3R`/ 33 h3 3 03434x3P0`1010300`3/P3x0pX3V03B0x3?01.01#03\0x30x10@1010@103i/3΁9@x1 V7 81d0p 30`01403x0@30130(33p3o33Z333`33@3'3333Z3`33Л353@3G333H3½30333r3 3׿3`@333333(3վ3x38333P383P333O3 3m3@33p3333`83P3P3=33x3 03`3Ў333 3`H3333330P3333P3ڽ3H3ؼ333  3 3HDE`/P3N`/3 `/0H3R`/3m3x3s33{3@3<2p3̦/@33HDE`//N`// `/ 3R`/3!3`3173P(3΁9 303333/3333H3333p@3`4HDE`/0 4N`/P4 `/x4R`/40 4/P40 `4U2&4p24\30 4<3 @ 424/%4'20 (4ߙ/"4Ա1 4241x4p34M34 0h4/`2+3 x4/04p!/0!/x4HDE`/p)4N`/054 `/(4R`/08H42=440443442 441h!4/-!4 3,"4z4.h#44@$446%449%44/0&4]4,&4H4`*('4R40+ (4P.4HDE`/`F/N`/R/ `/E.4R`/T0/4)4\/4)4[`04)4`G14%)40H824)4Q24Y)4K34x)4M44)4Ph44)4N44M)4J441)4IH54d)4L54)4U64>)4Ih74)4Z84P;4HDE`/cP3N`/h3 `/b;4R`/pi8<4m3pdx3s30f3̦/Pe<494j8=453 gH>40B4HDE`/u0N`/yP0 `/`npB4R`/ {0C40@oC40|G4>4xJ4>4vK4gY1wK4\Y1vL4HN4HDE`/`0N`/0P0 `/N4R`/(O4L4 O4L4 P4L4PR40S40X4L4`Z4Ȅ4HDص4(4((4(КPP4(00E`/P/N`// `/4R`/X4444`4/2/ 42P40H43p4'2P4ߙ/P4/ 4߸44ո4@4ȸ4X44P44444}44i4Д4`4@4?0`4>44*444@Й4444@44H444C=44P44(404/`@44@4X4 4h4 4x4`4߷4@4p0pP4 40h4ҷ444@44@44p4Զ4@44@H44444t1(26144 Ȳ4ȷ4p4H4 4#4 H4!/P!/4М 444HDE`//N`/p/ `/4R`/0(4R4p484Ȼ4\4 4B4x4L4pм453 44HD4(PE`//N`// `/4R`/p 4x44HDE`/@/N`/0/ `/`84R`/4p0`CH1b0pA4P00`10 1?01.01#0`@3\0P?x30p=x10 600`1#0i/0,2΁9*%0 V7%'00$+0d04!90 @4 90P x4x0X40!4890P(N090p N04HDE`/M/N`/ S/ `/L4R`/Qh4p0}H1b0{4P0O`1?0P1.0N1#0z3\0yx30wx10t@100m00ph#0i/@c2΁9a%0 V7\'00[+0!90@J4 90G4x0W@40TX4890G490`F44HDE`/`/N`/p/ `/H4R`/4`4HDE`/0/N`/p/ `/4R`/0 4rY1p4/@]1/(4!/@!/04HDE`//N`// `/@X4R`/p4/444*44/p4444x453p44`@4^4440@44 4{44g444P4 4@ 4 0@84404F44.4p4`u=`44HDE`/ /N`/P/ `/@04R`/444d4p4l44S>h4>4x4й444T44[4`4444H44 H5205454 p553@(5 5HD1 55pp 55 55P8 5E`//N`// `/ 5R`/ 5/42C=3` 5:50555F5(55 5a55u55`555 553552p5R5P55054@5585*454(5/150054`55 h5B555p52555x55 555"555@55/55@55p 5{5` 55!55h!5T5!5H5 h"5l5@"5-5#55/$54$55%55@'55 (55p*5 4`,52+-5<2@&x/5P00%`152!252 45D2 652pp85di/95/08>5d4>54H?50P@54@A540xA5u1A5 0@ 24``B55B55pC5 5(D55 K55L5!5M5/0N5!/P!/8R5HDE`/;/N`/0M/ `/:hR5R`/<R52[@S5/PZS5O5@YpT5RO5@T540XU5d4>V5l4PWV5O5pVV5S>UW5>TW5x4?@X54SX5T4RY5[4RZ54QZ54D`[54Ex\54GP]54 P^553@O^5ZO5BP_50A_5ߙ/0K`52pIXa5?O5>b5dO5Cc5nO5 Hd5j5HDE`/`i/N`/{/ `/]@j5R`/vj5C= j5/pj2/@k50q(l52 l5<2m5b2o52`o5di/q552pxs5P0`t52shu52 r v5'2v50`kXw5/8>5n/@w5Ю/x5x/0z5h50}5h5 5f5pȁ5ff5}85uf5~5th55`h5`h5Vh5(5f5@m؇5Eh5 54h505&h5@5h55h55g505g5P5g5(5g5ؕ5g5 5gg5@5Wg5`5Gg5`x515 0К2f5p5f50n5f5@`5ZO5 o5e5c@5e5Ѐ5e5a@51g55e5h5e55me5`@51@51@51З54(d14d1=f5xp5Vf5y5*f5uب5f5@5u1Pl@5/5^!/_!/0a!/b!/ h5h55HD5 E`//N`/ / `/85R`/ 5n05m05/ `56505B50p5555 555 5`5%5P5|5P5050 55@p55`5c50p5 5HDE`//N`// `/P5R`/0 5/-5n0`)5m0&H5gY1%5\Y1x5X5p5L55d5!5=5505HDE`/2/N`/3/ `/ 0h5R`/@5511`51155HDE`/8/N`/:/ `/75R`/<5/N5x5`K5g5?@5M5805Z595n0Dh5m0=5PJ5 Iu=5HDE`/0Q/N`/W/ `/PP5R`/0Y 5n0Pap5m0^51 U51 S51Z1Ա10Rx15pV855 T55HDE`/ h5N`/0o5 `/@g5R`/p5n0zh5m0@x5/0w5//jp5`5k(5C5j05}5m055 n(55r(595 i5/@vh55HDE`//N`/0/ `/85R`/5n0P5m0Џ5/`565p55555 5Ѕ555J5 x6556H6HDE`//N`// `/x6R`/06/@6n0` 6m0 6\6Фp 6R6 6X5p` 6L5 6d55=55@6HDE`//N`// `/ x6R`/06n0`6m06 66 6@6 66 6p6 6H6 66/`5!6HDE`//N`// `/"6R`/"60 "66h#66#6m0pH$6ߙ/@8%66@ &660h&66&66P'6S>p'64H(6M6P)6r6`@*660+64,6V6/668160636646x>6HDE`/b/N`/Xc/ `/>6R`/`p?666 @6Q66XB6566D666(G666I6m66J666J6660K666pK6/PL6(1L6ߙ/@M60M6>76hN6(1`hP6(1PQ6i/ R6i/U676PW6/Y666@x[6̙/0`]62p_6.76Xb62d6408f61Ph676`j6q6HDE`/pb/N`/#Xc/ `/q6R`/"r6>76(s62'Hu6.76%w62!py64`z61{6@6HDE`/,/N`/-/ `/+p6R`/p46/@3h/ۦ/0/Ѧ/1`/̦/`286P2/x2ɦ//(/6HDE`/7/N`/8/ `/66R`/D66 :X66 =673 ;`6AB= <66P>63@C؆6Ā6?64pH64G6Ȁ6@66B66HDE`/`K/N`/L/ `/J86R`/pmД6R4[@6\4\684T 6B4pU6>6Z66 Y66c66`W 66@X6Ύ6d866R6K6j66g(6_6lȜ6G6 OX6+60N66Q6e6_6؏6^6I6]06~6`Ч6c6P6ԍ6PV66@b 6z6Q@660fX6"6Z66hȭ6/6ix66S(66 q(66p6ȳ6HDE`/v/N`// `/u6R`/X666r6~866е66ȶ60p{H6m0Pȷ6ߙ/0666g6x66wp66`xh&6M686Z666 yH66y 6+6p6<66 6`6l6~`6]6P|66p6666H6666z@6y666p66x66P6f60}`66P60060 6ű6P 6i006u6P6r6666V6P66pH66`66HDE`/b/N`/pXc/ `/`6R`/66660H666B66Y6`66`66X6@6x6)6@6e6@6v6`86 6`6Y06a0Ph6M6H6666H666_6p@6r6@66 06gY1,6)4+6?6P66(666\Y1 `6j666P 6ߙ/P6+6x6F06x0X606o0P6666`h6866"6P6L6@767~67676@X76 76 76`  76p76P07(1'706767P6@767(676P72 7i/p!7i/@#7Y6$7/&7̙/((760(*7(1&+7(1"+76@-76.7p6P076 176!27r6 376@p47H6`(57P6P6p6667 67p6p6*/v=p)687HDE`/2b/N`/3Xc/ `/1887R`/P587i/>P97i/0=:7̙/;;7/P:=7(1p9x?7(18@7(1`7@7B7HDE`/A/N`/0P/ `/p@8B7R`/NB7P0PFC70`Ex00pDXC7?0C0.0Bp0#0`H0\0@GX0/h10~00`w00r#00`o-00l8D7i/pg2΁9e%0 V7`'00_+0d0LpH7o`0^I7A7pTK7x0ZL70 W M7dA7PAM7}A7KN7A7QN7IA7J+,2P7HDE`/Є/N`/Ѝ/ `/0P7R`/`P7P0C70Іx00XC7?00.0p0#0@Q7\00Q7/Ph10p00 00`#00 -00`8D7i/02΁9%0 V7'00+0d0pH7o`0I7A7PK7x0PL70 M7dA7`R7}A7S7A7`N7O7S7!O7X7HDj7 E`/@/N`/0/ `/`@X7R`/X7EV70(Y7,V7Y7V7hZ7U7P[7U7[7U7\7U7p8]7U7]7uV7^7U70_7xU7``7V7Pa7`U7a7DU7b7W7P`c7'U7c7 U7Hd7xW70d7T7He7T7e7T7@f7T7Pf7PW7(g70W7g7xT7  h7W7ph7V7(i7V7i7[T7P8j7Hk7HDE`/0/N`/`/ `/k7R`/l7P0@C70 x000 XC7?0 0.0 p0#0FQ7\0 Q7/Eh10C00p<007#00p4-0018D7i/,2΁9+%0 V7%'00$+0d0 pH7o`0#I7A7K7x0L700 M7dA7R7}A7hl7A7N7j7!O7n7HDE`/M/N`/X/ `/K0n7R`/Vn7P0`PC70 Tx00@RXC7?00S0.0PQp0#00Q7\0 Q7/@h1Hm7Ln7Um7@M8o70`0000Pz#00w-00Pt8D7i/ o2΁9m%0 V7h'00pg+0d0eo7o`0dI7x0`L70 ] M7A7Nq7km7O@q7m7Yxq7xm7Uq7m7I8r7m7Hr7s7HDE`//N`/p/ `/0s7R`/ht7P0C70`x00pXC7?00.0p0#0Q7\0PX0/h1Hm7n7Um78o7000p00#00p-008D7i/2΁9%0 V7'00Я+02s7 t7d0 o7o`0`I7x0L70 M7A7 q7km7@q7m7xq7xm7pq7m78r7m7r7.s70u7,s7 u7`v7HDE`//N`// `/v7R`/`w7P0C70x00XC7?00.0p0#0pQ7\0`Q7/h1000P00 #00P-008D7i/`2΁9%0 V7'00+0d0pH7o`0I7A7K7x0L70 M7dA7R7}A7S7A7`N7O7S7v7Xw7!4v=!O7y7HDE`/7/N`/?/ `/P2@y7R`/0Ay7P08`1091?0:1.091#0;1\0<10fx10pc@10 \@10`W1΁9Ux1 V7P810O010L1d0=1i/Gp1߱60y7ex7@,8|7|x7037Px7&؂74x7ȅ7!900Ȉ7 907x0Dp70BX77HDE`/pjb/N`/Xc/ `/i7R`/`k@7gY1P7\Y1 t(77|7K7m7t7oX77`r07x4@s770yЛ77v7Ռ7{87Ȍ7pz`77}767l(7_7nС77ux7&2p7/7(1p7(1q`7(1w77v07h7(ЇІ77(77HDE`/ 7N`/7 `/7R`/`Я7٨7Вh7!P7!x77HDE`/@7N`/ȵ7 `/ЗH7R`/7.760h7277HDE`/@/N`/p/ `/Ƚ7R`/H7/Щ]1 7777277;7p777o207{2 7/7!/!/4D74D77HDE`/0/N`/`/ `/7R`/pP7/]1 7777277;7x7P7`7o27{27/p7з!/!/4D7p4D7H7HDE`/`/N`// `/7R`/`7!70h77`77P770777 7x77777477`777P577@77pL7p`7n7r7777pL7`77HDE`//N`/ / `/7R`/ph7!777`7777@77X7 7x777477`777n7@r7p777L7`7 n7pr777 7L7`77HDE`/p/N`/p/ `/7R`/H7077HDE`/P@7N`/ȵ7 `/p7R`/7.76PH82!8(8HDE`/ $b/N`/04Xc/ `/@#X8R`/288,p88 '88)880% 8v6& 8 6 + 8ߙ/G 88( 8x0/` 80086-8(1G8i/`Dh8i/B:7Y688/`A8̙/?86(8(1?8(1=8H65(57P8HDE`/N/N`/]/ `/ M8R`/c860Sp80PH6m0q8ߙ/ i066 ep8g6fx66@V86PW 8M6p^`!8Z6`b!86 T"860Uh#8+6_@$8<6a$8l6pQ%8]6PRP&88Nx'86O'8M6`X(8ű6PY 6r6[66t(8V6Z+88k,88`n.8?8HDE`/{/N`// `/z?8R`/p@8_18 @84`C8΁9|H808I8[08J8k08L8|08M8K08O80@~P808ЌQ8K08R818PT808 U8080W8>08X818pY818Z808p[8-08 [808@x\8+18(]808]808`8R188e808p}f8<18@g8 q1818k8HDE`/p/N`/`/ `/k8R`/0Xl8/h/ۦ/`/Ѧ/@`/̦/ l8P2x2ɦ/(/@n8HDw8 E`/`/N`// `/hn8R`/Pn8/21`o8m8p8 m8`pp8/p8<2hq8P0r82s82PPt800t8*2hu80(v8/`v8!/`!/X|8HDE`//N`// `/|8R`/@}8p0 H1b0 4P0P}80}8?0H~8.0~8#0 H8\0 80 X80P 00#0i/`2΁9%0 V7'00+0d0p4!90(8 900H8x0@80 8890(N090PN0p8HDE`/p /N`/ / `/ 8R`/0 8n0$ P8m0`" Ћ880 88` @88 (88p 88` 88P (88HDE`/ . /N`/K / `/+ 88R`/L 840] 84 \ 8/1 200 `880X 846 88_8 / 088 E 8ǒ87 88G 88pI 886 ȡ88M (83p2 88`F ؤ88S 8ɓ8P 88@< P88`3 848? 88= (8u8C 88@4 8g8B H8?8@ 8538 8o8/ 8/@[ ر8/W 88; 88 5 88> p8N8A 8В89 8`, !/ - !/88HDE`/f /N`/0n / `/e `8R`/o ȹ8P0`i `10ph 1?0Pj 1.0g 1#0P 3\0@k 10p x100 @10p 80 @10` 1d0`l 1i/0 2΁9} %0 V7x '00w +0!90c Ȼ8 90` 8x0q 10s 88( %8;8 (860 78/ 8ľ8 880 8۾8p 8_3 08>/ p88 8873 8%/p P88 88` 8*/ 8/ H8վ8 88@ 88 80 %8@ 3v= +,20 !6 !U8 +,2` !^8 +,2 !^88(  @ 0 88 H88HDE`/ /N`/ / `/@ 8R`/P 81 81  81 8`8HDE`/ /N`/P / `/ 8R`/ 8n0`!08m0!85 !(595p h8f5 !`5ZO5 88` 88` @88@!88 8V7 88P 8i/0 H88HDE`/!/N`/@"!/ `/!8R`/#!(8n0.!h8m0+!83*!80`!08.'2 !8*2@!88 !P8m0P'!88!88 %!8@8HDE`/06!/N`/9!/ `/2!p8R`/>!88p?!H88@7!p888!88P;!8ű68!p884!08z83!8(9HDE`/F!/N`/ G!/ `/@D!P9R`/H!99 E!99HDE`/0L!@7N`/T!ȵ7 `/PK!9R`/PS!`99`V!9?9@O!h 9g9Q! 99`M!h 99PN! 9L9Q! 9i/s!8 9i/p! 92m!94pl!91Pk!9.76h! 920g!9>76f!9̙/d!;79pa!9/`!=79`^!900P! 9/]! 9(1\!x?7(1[!@7(1Z!@7(#9HDE`/z!/N`/@!/ `/0x!P#9R`/}!#9/!$9C=!`$90|!$92Ѐ!h%920!P&9di/Ѝ!8'9p2!)9/!0*9'2 !*90@!+930!X+90{!+9 0@!240!(d14 !d1/P!H,9y!!/y!!/-9HDE`/p!/N`/p!/ `/!(.9R`/!.9k1Х!1a1!p119HDE`/!/N`/!/ `/ !19R`/p!029/9!29t/9!39/9P! 59\/9!P69h/9@!69P/9!79 /9Щ!X790/9!89@/9P!89/!P990!99&2!:9;9HDE`/!/N`/!/ `/!;9R`/0!0<91!<91!<9J9HDE`/!/N`/`!/ `/!J9R`/p!HK9/!2C=`2"K9/1"0L9<2,"L9P0p*"0N9b2p("N9D2&"PO9v>9!P92""Q92"R9'2"*90"T90"t82>9!0U9=9!U9;>9!`V9=9!V9D>9!W9=9P!W9(>9!X9=9 !(Y9=9!Z9=9!Z9>9`![9>90![9*2!\90" ^90!(v8=9@!P`9=9!a9:`/!Pb9q=9!c9=9!d9>9@!e9>9P"Hf92!g9>9`"hh90!Pi9>9"j90!k91P!l9HI1!l9=9!l9>9!`n9>9`!p9>9!q91@ "s91 "Pu9M>9!v9c>9!0x91!y9/"`z927 "z97@"P{9 ?9`"{9 0p"24`"(d14P"d1}=9p!0|9/!|9U=9P!~9?9`"9!|?9 !?90!?9!!/P!!/p!?9!?9+"?9!?99HDE`/Y"/N`/d"/ `/K"9R`/@f"9P0["`10Z"1?0P_"1.0\"1#0 "3\00`"10@"x10"@10@"P90"@100"1i/|"3΁9y"9 V7pt"8140]"39`l"9x0q"9e9`U"Ȋ99 Q"`9~9L"99g"9V9B"99Pa"9ǁ9Pb"9D9="9(96"899 4"99p^"9ځ9c"p90J"!9pG"!99HDE`/ "@9N`/@"9 `/@"9R`/Х"9p0"H1b0"؀10"+0P0"`10"؂1/"h1?0"9#0"9.0"9\0"H90"90"90p"90"X9i/"h9΁9"9 V7"H90"@9d0"H940"09x0"90 "ȿ9x0"9V0"9B0p"P99P"990"H99"p99HDE`/"/N`/"/ `/"9R`/ "H99"9P0"`10"1?0"1.0"1#0"3\0p"x30 #x10#@10#h90p"@10"1i/"3΁9"x1 V7"8140"3d00"(99HDE`/` #/N`/@#/ `/ #9R`/#9n0@#9m0#89#P99`#9/#99HDE`/#/N`/$#/ `/#9R`/&#H9P0#`10#1?0#1.0!#1#0##3\0`"#x30G#x10pD#@10A#90`:#@105#1i/p0#3΁9.#x1 V7)#8140 #3d0 (#(99HDE`/R#/N`/Z#/ `/Q#9R`/PY#x9p0 #H1b00#4P0U#`10V#1?0S#1.0T#1#0 #3\0#x300#x10|#@10u#@10p#1i/k#3΁90j#x1 V7e#810d#01d0W#50!90O#9 90K#9x0P\#90 _#9890 K#490pJ#49HDE`/#/N`/#/ `/#9R`/# 9P0#`10#1?0#1.0#1#0#3\0p#10#x10#@100#@10p#1i/@#3΁9#x1 V7#810#01d0#10Р#`9!90Ћ#p9 90 #X9x0#X90`#8890#P9h9HDE`/P#/N`/#/ `/p#9R`/#9P0`#00P#x0?0@#0.0 #p0#0 #0\0#X00#00@#-00#000##0΁9#%0 V7#'00#+00#`9i/#@40d0@#h9!90# 9 90#9x0#90#989HDE`/$/N`/$/ `/$h9R`/0$9P0p$00P$?0?0`$@0.0@$ A0#01$A0\00$PB00.$00+$-00`$$00$#0΁9 $%0 V7$'00$+000$@9i/$@40!90@#X9 90p#9x0 $h900 $9890$(N090#N0:HDE`/@;$/N`/`D$/ `/`:$:R`/B$:P00>$00P<$?0?0@=$@0.0 ?$ A0#0 n$A0\0@$PB00@l$00i$-00a$00\$#0΁9p[$%0 V7PV$'00@U$+00R$:i/PM$@40d0 A$50!908$: 904$ :x0E$@ :0H$H :8903$x :H:HDE`/w$/N`/$/ `/v$:R`/ $:P0p{$00z$?0?0y$@0.0`|$ A0#00$@U0\0 $U00@$00$h:0$:0$:΁9p$P: V7P$H:0@$x:0$@:i/P$@40d0P}$X:!90s$: 900q$h:x0p$\00 $^0890x$(N090Pp$N0#:HDE`/$/N`/p$/ `/0$#:R`/$`$:P0$00$x0?0$0.0$p0#0$0\0$X040 $$:0$&:0p$x':0$*:0`$h,:0$@.:i/p$/:x0$1:~9$3:9$4:V9л$h6:΁9p$08:9$9:D9$;:(9$<:9P$?: V7P$'09$@:ځ9$ B:G:HDE`/%/N`/ %/ `/%G:R`/` %pH:P0%00%?0?0%@0.0% A0#006%@U0\0 5%U00@3%000%-00(%00#%#0΁9p"%%0 V7P%'00@%+00%H:i/P%@40d0%J:!90$K: 90$L:x0%N:0` %P:890%(N090$N0(U:HDE`/?%/N`/H%/ `/>%XU:R`/pG%U:P0C%00@%?0?0B%@0.0A% A0#0s%A0\0D%PB00q%00`n%-00g%00Pb%#0΁9`%%0 V7[%'00Z%+00W% V:i/R%@40d0E%50!900<%0X: 90P8%@Y:x0pJ%@40M%Z:_:HDE`/ }%/N`/@%/ `/@|%`:R`/Ђ%x`:P0%00%?0?0%@0.0% A0#0%A0\0%PB00%00`%-00%00P%#0΁9О%%0 V7%'00%+00%`:i/%@40d0%h9o`0@%h0!90@y%b: 90v%c:x0%80Ѕ% 88900~%(N090u%N0h:HDE`/%/N`/0%/ `/0%h:R`/%`i:P0%00%?0?0%@0.0 % A0#0%@U0\0п%PB00%00%-00@%00%#0΁9%%0 V7%'00%+00%8e0i/%@40d0%Pg0o`0 %h0!90з%i: 90%j:x0%@ :0%H :o:HDE`/0%/N`/ &/ `/P%(p:R`/&p:P0%00%?0?0 %@0.0% A0#0,&@U0\0+&U00)&00&&-00@&00&#0΁9&%0 V7&'00&+00&@9i/ &@40d0%X0!90%p: 90%8r:x0&\00&^0890@%(N090%N0v:HDE`/0&/N`/9&/ `/.&0w:R`/:&w:rt:P0&(x:Ut:/&x:46&Py:Ȁ67&y:68&z:64&{:/>&x{:P0P3& }:}t:1&p}:/2&}:t:4&@~:t:`<&~:t:5&X::HDE`/G&/N`/I&/ `/F&0:R`/K&:n00T&؂:m0Q&X:߀:pL&:π:H&:0:HDE`/[&/N`/n&/ `/Y&`:R`/k&؋:/^&2C=Ф&(:/&`z9/f&k50d&(l52`&Ќ:<2&m5b2&o52&P:di/`&q552Ѕ&xs5P0&t52`i&hu52h& v5'2&v50\&Xw5D2`&X:0e&0:n/ t&:Ю/p`&:f5`a&8:x/p&:ff5j&:uf5@m& :5P&:B50b&H:5@&Ж:25c&X:50&:5c&h:Vh5v&:f5_&؇5 0@~&240}&(d14 |&d1u1]&`:1z&К:/r&ț:Y&!/Z&!/`:HDE`/&/N`/0&/ `/&:R`/&:/&@: :&`:(:p&h:7:&::&h:4&`::&:3&`:&:&:&c:&t: &:P&::HDE`/@&/N`/&/ `/`&:R`/0&:S:0&:7:0&X:a:&:E:0&:o:@&(::HDE`/P&/N`/p&/ `/&0:R`/P&:/&0/&:/&X::&::&:o:&0:z:&:4&8:4&:5&:f:`&:/&:4&h:/&:&!/`&!/&:&:&:&:&4&:`:HD: : E`/&/N`/P&/ `/`&:R`/&:/ ' 1: 'X::'::'H::&::&P:4':4'P:/'::&H:s:':d:'X::&:W:'@:J:':(:&::@&x::&X::&::&8::`&:r:&:j:@&`:^:&:W: &:M:&:H:&H:@:p&:5:&:%:P&::&::0&P::&::&::&: :&:h;HDE`/ '/N`/'/ `/ ';R`/'(;>4';!3'8;173'X ;΁90' ;0'P;/ ';D:'0;Y:P';p:';:'X;:'h;:'p;p;HDE`/P!'0N`/$'P0 `/p ';R`/%'@;J;P"';\; #'H;0-'h;0''X40&;HDE`/4'`&;N`/5''; `/3'';R`/07'(;";8'P);/;HDE`/?'/N`/E'/ `/?'/;R`/0D' 0;n0M'`0;m0@K'2;1B'2;1A'3;1G'1Ա1@'3;.;;'4;@?;HDE`/PT'/N`/q'/ `/pS'h?;R`/r'?;7;Pt'@;7;p'A;D7;f'B;7;_'C;j7; j'0D;\7;i'D;6;pZ'pE;V7a'E;0V'PF;8b'F;4`'8G;_8@U'G;R7;g'H;7;_'H;7;@l'I;w7;0k'J;7;Pm'PK;_6;V'M;y6;W'O;6;0\'8R;7;n'xT;6;X'V;6;Y'Y;6;P['p[;77;@e'];7;^'x^;)7;c'8_;6;]'`;/x'`;4pw'8a;Xf;HDE`/P}'f;N`/P~' g; `/p|'g;R`/'ph;:`/'i;/'i;1' j;1'j;/p'k;o;HDE`/Ј'o;N`/@'p; `/' q;R`/Џ'q;9В'9?9'r;di/'s;i/'C1i/'Xu;(1'PH1(1'8F1(1'F1Rl;`'z;l;'~;l;';p")h9</*)9<0<,):<)!/)!/><HDB< E`/`1)/N`/`2)/ `/.) ?<R`/3)?<%<<p0)?<<</)XA<D<HDE`/`f)/N`/ t)/ `/e)D<R`/u)E<#0`)`E<P0j)`10j)1?0i)1.00h)1\0p)10)x10@)@10)@100)1΁9)x1 V7)810)019`g)F<0)xF<!90 c)H< 90`)hI<x0~)`J<0{)PK<8900q)P9i/)PL<d0Pr)1o`0Ё)h0B<7)M<cC<k)N<JC<])O<G<Y)Q<>C<T)U<e9 f)V<pC<w)X<+C<F)Y<C<B)[< C<e)]<?)!C<<)!C<R)!C< L)!C<b<HDE`/p)/N`/)/ `/)c<R`/)c<P0@)`10p)1?0)1.00)1#0)3\0)x30 )x10)@10 )80)00)#0i/)2΁9`)%0 V7@)'040`)$:d0)(9`<p)c<Xk<HDE`/)/N`/0)/ `/0)k<R`/)l<P0)00)?0?0)@0.0) A0#0 *A0\0 *PB00 *00*-000*00p)#0΁9)%0 V7)'00)+00)xl<i/)@40!90)n< 90)8p<x0)ps<0)u<890 )(N090)N0p{<HDE`/P*/N`/P*/ `/*{<R`/*|</`*24p*h|<}4*|</P*8~<4@*`<2 *@<*!/P*!/<HDE`/"*@<N`/+*< `/@ * <R`/)*<C=S*j5/%*2<2O*<di/0D*q552>*xs5P0=*t52 (*hu52&* v5/<*`;0$*Xw5.<$*p<Q;P:*<O;7*p<^;5*<\;03*H<2P2*x;2p1*;v;`0*<h;P/*<A<p.*`</,*< !*!/!*!/<HDE`/d*/N`/Py*/ `/ \*<R`/`r*8</@l*<*2* <0@*h<0pk*H<C=0*</P*@<<2*Й<b2* <20*<2* <p2 *Н<P0*p<)<f*h<<f*ȟ<00*+9/P*$90p*(<:`/i*<;<Ph*0<w<P~*x<`0*p<1g*<0*<>9v*x<M>9 n*<c>9@p*h<1Pq*ȫ<D2 *<27@*p<7`*< ?9*{9 0*24*(d14p*d1<@*<<`*<}=9j* </{*Ȱ<B0@|*<H<i*<Y<0m*x<?9p*9<^*H<<_*<Z*!<W*!ؼ<@U*!<]*!/]*!/0o*18s*<<HDE`/P*/N`/*/ `/*<R`/*@</*`2*2*<4*d10*P<0 *<<`*x<<p*</@*<*!/P*!/<HDE`/*/N`/*/ `/*H<R`/*<k1*1a1 *p1<HDE`/*/N`/0*/ `/*<R`/*<P0*`10p*1?0P*1.0*1#0P*1\00*10@+820*@100*10 *010@*<0*<d0p*1i/* <΁9P*< V70*<!900*< 90P*<x0*<0 *9<HDE`/+/N`/ +/ `/+<R`/ +<^2+<ۦ/ +X<̦/ +ج/ɦ/ +(/x<HDE`/+/N`/+/ `/+<R`/+<p0I+H1b0G+40F+H<P0+`10+1?0+1.0+1#0E+3\0pD+x30B+x10P?+@108+@10@3+1i/.+3΁9,+x1 V7p'+81 90`+<x0 +@40#+X4!90+P<890+490P+4<HDE`/`S+/N`/p[+/ `/R+@<R`/Z+<p0+H1b0+4P0PV+`10@W+1?0pT+1.0`U+1#0+3\0p+x30+x10P|+@10u+@10@p+1i/k+3΁9i+x1 V7pd+810`c+01d00X+4!90 P+< 90M+<x0]+@ :0_+8<890 M+490pL+40<HDE`/0+/N`/@+/ `/+`<R`/+<3Н+(<+<+<53+<L4+<&2p+<[(2Х+<<0+P<<`+<<+x<<+<;<+<K<+0<<P+h<"<p+<<+<<@+h<<+<G3@+<]<+<n<@+<Ӊ3+ <<+<w0< +<y<+`=o0<+=<+X=<+=h<+x=<+=<+p=<+=<+=h<+=<+`=<+=<Й+ =X< +h =<+ =<+ =4+ =<+(=<+=<+p=C<`+=<+=-<+=<@+=@+3<+;<p+C<+K<+3<`+;<+S<+K<+',2+[<@+_<+c<=HDE`/+/N`/+/ `/+=R`/+x=4+=d4P+(=D=+=5=0+=̦/+x=ɦ/+=-=+(=!=(+@++P++u=+=m0`,8!==,"==,#=<2,$=8,%==0+'=m0+'=m0+`(==`+h)==`+)=>/+(+=ߙ/,+==0+ -==0,-==,h.=r6,@/=Ա1+00==p+0=20+1=r=+x1==+1==,`2=8 ,3==+`5=0P+8= 9=(p ,` ,*,p,8=53P!,H9=8= ,9=8=",(:=8=",:=94',;=8=%,;=#,u=$,8=X==(-,-,3, ,,==53.,==8=.,==<=/,`>=<=`0,>=<=2,@?=<=-,?=A701,P@=21,@=I=HDE`/09,/N`/@P,/ `/5,I=R`/J,`J=/k,4/0?,2B=],J=HB=D,PL=A=<,L=tA=`6,HM=PB=F,N=A==,pO=&B=C,O=XB=G,P=B=T,0Q=B=Q,PR=lB=H,HS=B= B,S=:B=D,pT=A=;,U=A=`>,xV=A= @,W=(C=j,W=4pi,X=4Ph,pY=4@g,@Z=40f,Z=C= e,H[=C=d,[=B=c,p\=B=a,(]=A=6,]=A=0;,b=A=`:,c=B=@W,xc=B=pZ,d=B=A,f=yB=L,pg= I,TC=pN,ZC=i=HDE`/n,/N`/{,/ `/m,@i=R`/o,i=g=q,(j= h=r,j=Qh=u,(k=h=r,k=h=z,l=sh=x,(m=Wh=v,m=-`=u=<-=,u=,u= ,w=zu=@,0=u= ,P=u=`-=u=@&-=u=4-h==(v-P--=(v--- =(p--p-H=(v-Є--p=(`v--p-=(---=(@v---=( v---=(v--@-=(u-p--X=(u-`-- =(u-v-@-t-u=q-u=m-N=|-u= y-u=l-\=~-j=-.v=n-q=k-=ps-u=pp-u=k-=z-u=w-u=j-=p}-j=-.v= i-q=@-=0~-j=0h-=3P-=6=-8= =`-=-= -==-===-== -=E= -=$= -h=P{-u=px-u=@g-=3-=6=-(= =-=-=Э-==`-x===-==-X=E=-=$=`-8=0t-u=0q-u=@f-Ѿ=3-=6=-= =-h=-=@-==`-H===0-== -(=E=-=$=-=-=|-j=@e-=3 -=6=-8= = -=-=-==-===-==`-=y-u=v-u=@d-=3м-=6=-(= =-=-=-==-x===-==`-X=r-u=o-u=@c-=3-H=6=`-= = -h=-=P-==-H===p-==-(=8=(---`=(---=(---=(-- -@=(--- >(p-0---u=-r=-u=-~=P-2v= -=-2v=0-=3.=u=P.=pu= -=u=@.h=ku=-=H=p.H==-=Q=`.==`-=y6 -=6-`= =-==-8==-="=0-8=-=-=<= .H=8 .=j= .x=[=.=@-u=@-=3.h=u= .(=pu=-=u= .=ku=`-=H= .== -x=Q= .==-P=y6-=6@-0= = -==`-==-="=p-=-=P-=<=.=8#.=j=.X>[=@.>-u=@-=3.H>u=.>pu=`->u= .>ku= -x>H= .>= -`>Q=0.>=-8>y6->6- > =`->=`->=-p>"=->-=. ><=. >8. >j=.P >[=p. >>HDE`/P../N`//./ `/p*.8>R`/ 1.>/`-.>/2.>P+.!/0,.!/>HD/<.]1E`/9./N`/Q./ `/05.0>R`/PN.>rY1].>f5F.>ZO5T.>f5P@.>f50K.>>@H.0>d>D.>ߙ/0W.h>>p8.`>/PS.>:>pB.>> 8.>n>E.>M>C.>>;.>>0:.P >>L.!>0<I.P">%>`A.#>>O.H$>>=.%>>\.%>>;. &>`>.4P?.D76.!/6.!/)>HDE`/`./N`/x./ `/_.@)>R`/.)>/Pw.*>.<f.*>'>0h.p+>ZO5.,>f5`t.P->4`g.->6 j.X.>&>c..>='>q.`/>Y'>{./>ߙ/ .0>f5~.p1>2'>k.2>>u.H2>d> r.2>F'>0s.3>M>l.`4>n>n.H5>&>b.86> '>e.8>:>m.8>>l.9>f5Pz.:>>e.>>p}.!>0<.P">%>p.#>>a.P >>@d.:>di/@.:>>`.0<>4 i.p=>.j'>P.r'>>>HDE`/./N`/./ `/.>>R`/.P?>/@.?>=>.?>\Y1.0@>4.@>_3./7.@>0B>HDE`/Р./N`/P./ `/0.`B>R`/.B>rY1p.>/`.]1/.(C>'>P.C>.<.D>4.->&>л.E>6@.E>ߙ/.`F>?A>@.(G>FA>Ш.G>gY1.G>\Y1.0I>-A>0.XJ>MA>`.0K>4.HL>4.L>C=.PM>/.M>.!/П.!/O>HDE`/./N`/./ `/0.P>R`/p.P>h1.Q>h1.2h1.2nh1.2,O>.@R>O> .R>6h1@.2Dh1`.2k1.2_>(...a>HD.`>/.0`>T4.`>4@.`>S>.`>S>p.a>d4.@a>x40.a>1. 55.p 55.8 5E`/`./N`/./ `/.a>R`/.Pb>/$/2C=#/(:53.b>5.hc>/"/8d>40.d>0!/8e>+T>.e>T>.g> T>.j>4.k>;0.pl>0 .m>f5`.`5ZO50.5S>.@m> 4.n>S>.o>2/pp><2P/q>P0@/p<2/s>2/t>D2/u>2`/0w>di//x>/ /|>0@/8}>40/(d14 /d1@T>.@~>T>P.0>T>`.X>T>.>lT>.>~T>.>S>`.Ќ>S>.>S>.> 00/2/0.>.!/.!/>HDE`/+//N`/@=// `/*/>R`/>/`>>P//>>01/H>> 2/>,O>3/>44/>ˏ>`./>T4,/>[4-/X>47/ؗ> >9/>4;/>24/p>4 ='>8/؛>45/>536/(5>'/>>@0/>>HDE`/E//N`/I// `/E/>R`/0P/>53F/>5pH/x>2G/(>4L/>>A/>>J/> >xIGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.03Pj80kk0l mnAn~opq?pr<s<t<0v<=pwxxy z7{ t|} ~ 5TwPngTЄs'7w'!D "> z``$ @xl n 0g \ P  AE `CE` > `? H!y Z i p y @5 d @   F E o GE 0 @{  @IE`S;t`0A e%Qt)))4P\YPuNE`c3Y\'!ME` : Z#0NQ| HHBIE> q 6qorst0uzpv`wnxg$`cEIeE`q@z_ЀV_@ P0&@]0+egPaP4`fEShEu @$62lHF t>'z`D<  !N  pvY\. go  I 9!jEg!lE@!@@!p$"T"`"p"F$#te##7'#D<$^<$ 6$`%@ C%P )%@ %P%00&w&&&*'k''p'`)(Pm( g(( I)p 1d)oE)`qE`)`@)P$1*f*@*P*F'+ptc++'+"D+,<q,*6,@-, / -00 0V-@2 -P2-5-p85.P9h.`:.@;.0</ =O/>/0?/Ag/pB#0Db0 G0tE0`vE@0@1KW1M$1R1U2V62CFq2[t2@]2'"3bD]3<3Pi63l4pn y784 U444`4`4/5`V5`5 556T'6nI6pgs6K60E66/7E`97`}EP7Ej7@7P7`7p=8 .8b888p-9@g9992:a:T:^:p:@7;gj;;!;/ <!H<@h~<@E`<<!'=p \==`E=E@=@@>0>pV>p>p>`>`!?`gJ?y?n??!? @!P@Ef@@E@A@p@06HH@`  Ap 5AP ^A@AAABpFB@uBBBCACjCCCCDAD<rD D EDp DD!^E #g@E$lEp'E)E!E+T+F@.d]F0kF 2F3]F!!GP7IG!vG:YGEG9!HEHE9H A_HFvInHEvIHDvIOH?H@ IA.I`BUI CICIDIEIFPbPSP PPgQ`HQ uQQQ R8RdRRRpRP$S0^KSEgSE SA:_HGvIS0S WTp ;ThT`T`T0T UЪ>UgUUUUVа4?VwV0VPnVgV0,Wn[WWEW`EW0BWbYX 6XeXоXX$Yg6Y@\YEwYEYPBYp/Y-ZaZ`Z@Z Z2[j[![{['\7\ b\< \0 \@|`]P ,]P^]Q]R]S]T)^Ue^V^`W^X^PZ1_!i_@\_!_0^g`_.``EL`Em``C`ac`6! a@ecEaW!ahajaxFbotNb0q$b`vb'b {D,c<gcpc06cp c!d`Qd@gdp ddeAejeee`eP)f0QfPyfpf0gff0/gdgE}g E@gCg$g hLhhh!Fhгt iP:ig'piDi<i`6i*w,j LjzjjjkPLk@k0kkk3lmlllm5m^m0mmPm np>nvnn n o@Soo`oopPpp0ppP'qZqpq q q r Pr@ zr0 gr rps@Ps}ssst>tpntPt0t@uPHu@^mu/uE`uEuEv`E:v@EWvEqvDv DvD@vD0w DBw  ww0!wP" w`# xp$@x!kx&x 'x0(x)#y*Qy+{y,syc yczdHzpeO|z E`zeOzE`{fU{f{g{h{i0|je|k|l|pm}`nE}Poz}Pp}Pq}Pr~PsJ~Pt}~Pu~@v~0w* xcyzz{I} ~@`+bׁЄ&E0 -fӃЍ @wpT`44ą4 42`4m44ۆ ;`[CD|kktpnJg~P!G6 :vPF!PE`K0~зPpP0'ZE EEE @EYEz`E` D΍D0`D`2 D@dD Î05p5(_ʏ.YҐ@'_Ǒ` %[P Ixؓ4p` FF@ng. /T`F`vP g>ɕ0 f P A`h`EE`ED0E : q]@ɗP`%PR!{"#͘$p%!S+r,-ٙ/ *@5X 6{ {њ|}&~W`@ @ `n-ЄgYFrF`EFt=$o*'֝pDQ<=b6#pO'*F`]ɟp`/Pe@0ՠ 7t+e  ڢ00RP p2ɣ>>50Rk \  $0^Qg!1!rPl{!+@{h!ߧ!`#S2'@(ͨ"F$F FC-|p0236%E:v=?  ?&Y!iBBCDiE@FG0GHέ@I JVKKL;MNOP8Q{RSpT9U4}V^ XgY;z!`*F,F@F]rTp^P_O3F_`Hawpb`c޴Pd@eM@f@g`hi.jNMlNPmNn^޶pgpqD!|Pt!0w!Rz|:!/F@1F@2D0c`F_ @ = u,Pm .k`0"Ўkp@$iP\ ٿP`0ЛMp@,cP U`;0i   ng`4F26F PFxc!c@!X`p "aFU@t$6;'sD<  7 a !MpP0#Vfp+!V?}<^"PZ g`BF.@DFWF( (!p)Q`*0+,,5-g./0 1H2!3Y05^608gM9kL!=@s.m!e@KFLFGpE EO`F`G0HI[IJK&L-qM<N P6QRnTgU^H`OFxQF GZ.[p\:`nB@o_uv[vwx y^X {g|'_`VFDXF`t`Gp `D`{   V0ng`YF[F`G8l__x0%a0zbFК60 W@#vp#3МDmPP  4 WPP  +Q`@=@o@@0 * V  7;c@)png!pKD!ze!`/kF`=PbB@jvI @aFlF@vI 5_FO`lF@zvI ^F lF@`vI `\FdF@AiGK  @o>k/ /5\  /  mEPKs  ?9$pB?^hp gqFsF@vI oF= sF^H! `  p P  >T`@P0 Mg#0L!ItFuF`@H'$`%`F*t0,$/`1e' 6D<p=CP? p`@ pA !`C;* !FsPF `FGGv$@J\LMNOPEQgr STW1yFzF@7`H^[\K Fat@c$Rph '0mD <$t6Mw{y z { !0}_ ! PEPop%[p@4f`@3 g6t`@  FzBs5 58 `(j    D6 Dh  D pD D  H  L pL  4* fo g   0/8 F`` ` 0  ^4@^s`FF  I@ 0?@oP0[ 6 >0p^ r /!_t !.0% ^@&  + //S0123#4Y] x]^_`70avab@c?c5Pd2 vh`i7pji`kPl@m0n oEpvq rbsbu7vgcxy{}~MЀ{F@F@/A`F`e@'+ _p@+aFzF`IЗC}К !<`l`Og TgP[P?-^ s9@F` F w ^ `L  !!hB! :{! !0!"zH"@\v"""` "p*# ^#[ #% >#`D# $g5$  ^$@$ #+$ $!%V%%p%@%08& v&&&*'s''.'t*(@`(^(`B(J )gB)pox))c !*G* !*>*F*F+J0F+ y++"+=,,,%-m-p-P-@EC.D../ tb/Y/Z 0`gI00F0 F 0J1\10B1i1x&2pm20b2b2P3 3 B3 4`/k444 !95K:5657!68^j6 :6 ;6 <K7 ='7P>;7?',8@;{8B;8@CS9Dg9  9@F9F<: KjnHwI:wI:Gb;pHbDR;u n;u;v;w;`x< y@<yn<z<p{<P|<0}=~7=~[====p=p>`F>Pl>P>P&>;>D ?D2?`DU?D{?D?P)?~@( !D@~r@I !@~@j !@~(A !WA9A^A TAgA"B !NByB !BBB0)C !ZCPCsC!CsD0!ID F_DFxDKDeVDP D`E@8EOlEF`EPOE`F`EFCFpsF@FFG/G_GPG GGHJH`sH@H HI;IkIII`Ip3J`\JPJPJPJPKPTK@}K0K K)L@)VLp'LLELC*MPDpMTMDMPDMD4ND]N@DNNN:OtOO0OP$PSOPSP@ZP{P QJQ{QpnQgQPQQ!RBRr!qRpR!RpS!;S`iS!S` fS@F`T ,TF`RT zTT!TpHT!.U[UF`U8!U{UY!'VF=V F VVKyV V!V"4Wz!?W&pW'W(Wp)W*%X+MX,]uX`@ Xp@XPAOY@G`?YAlYBYCYpDZ`EFZPFvZ@GZ`HZI [J=N[K[L[Ng[0P\QT\!\pT\F\F]L:_HwI-] Wcc]!]Zc]!^^O^_^`^F^et_pg$R_l{_`o6_r_D'``wDK`k<`~`f` aVKa!aaЄa+bІebbbcVc`gcЍc`c!Gdd!d e G@DePve`eGe@GePL:_HwI.fcif !fPcf+!*gigggLFhtJh0$h`h 6h`i']i Di<ip jP@j0 qj@ wj@ jPkbkkpk ElllP'mnmmn0MnnnP)oqoo_o@pT@p0p@ qPq@qpq@"rfrT@rr@8sP|s@st@NttT@t0# u!hu`u@u0^vLv_vPv_wgHw Gww`Gw G@wL:_HwIH}w !x5bxs!xx9y@G`Yy0y@y0  z Fz z z z5{ u{g{`{%|!r|||G}G9}L:_HwIk}0c}!}c-~!s~#~$~%-Fj+t,$1p46E7='Āp<Dd<CC|EF wH H4!cI !҂KL{4@M{nMNȃO`P)PQ^@R0S΄ TU/!`VgXY!+GH@G@hM ]cȆ$!`c<E!zdepg$hTfFmt o$Ptw6DPzy'D<"`S@  0 ڊ  -X! 0!, kQ!0{{T SpɎ`P0p_r!gƏp+!jG G0Mڐc!Qc!Α`  FЯFt$Xp6<'(pD`c<є 2p U!V!] Uŗ`g-U`!ژ![%`&G@ݙ&G@Er G̚`"GPM:_HwIcL#!cD!8peF՜t`$;dP6 ŝ'PD4<nΞ` p &p @o0&؟&&@,N20ZP203'۠78&9R9~:;͡<=?n>0AgeB9D9¢&G֢(GMG$;L[OP5FݣUt`W0{'a \D<pc6f  ?!F!В98@7G`ǧ^`gE4Gu6GOԭ0# @#C $u0%& '/(m()D +T,Db-$/ݫ02gO04|5 !8{7A!~SG UG@ŭP=/4?q?b`AbB3`DmGG֯b!M : MtNNO&PepQPRα0S  T K0U @V òPW `X3PY&qZK[9]^&p^C`_CaCܴ`bCcgO eofŵ! i<!xk!`nE!q˷t!X`XG~ZG0Pڸ B`h`"`ѹ0(TxDúPg `4`/W lG`v@hGiG@fGƻ`D@P P/3/\( ;@ ̼P09vؽ =tp@gNx@9lG  nG`,PXHFt-`$e'P D<K ~   !G {!p+ + `, C - v .  / / 0 L1 p2 `3 @4 " 5 c6 6 7 8 /9 r; <@< <= > [? @ A B <C <s E 9`F cG pI DK npL gM 3!!P #`T!S #u! W /;@{G`g0X ktG`vGP @[ > \ r0] U` ` c !e Jf og ph `i Pj @k B`l r0n no gq s 1{G.@}G FQhw x F} t0 $C` p' D<p "0 6Fp oP P 1  ?:A0 &ly!` % %  < k`G p G`0 , T     <( T @|0 6p 3 @ +![ 3G@   ( LR` L} {0 j `G`&G@S@G`q 0Q:_H`wIY2! 2!H3!4!06!@7!38!q8!9!P;!Y !S>!gp?!z !@G%GJR}y0x!y!y!z!!{!J|! {}!g@!Ѐ!wP!/ G`;GSGnpR !0!@!0!B@!i !!!Ѝ![  >B0!Gk!!6!  !"!U!Щ!!P!4!d!np!g! !9!o !@!!!![\P![![GG 'RW!! !!P!*P!Oe@G!"!!p!D@!n!!!!#P!K !t!!!`!,0!]!!!! !2!Z!! !!!;!y !0!P! p!DK!wt@!D!c!o G`p!gJ!uxQ#R#S#T#MU#wV#W#PY#gZ#$P\#W _#1`GGTd#e#8'Fg0j#tk#$p#L''$u#DSs'<|#60##  # $0#P'! #'!#  #'Ћ#Y#####$#Pp#s###n#g`#1=#mG G@TР###/'F[#t@#$p#7(' 0#D8^(<i#6## = # #2#mp#P#`#P#0@#e ## #@#*#gZ##i#i`G G . TX #$ # # #!(FT!#t!0#!('!#D(")<b"@#6"#]&"# "##p#]#@#V#$#$$$?$p$u$`$$P$$@$&%0$g\%$%0 $I% $& G(&G@N&U~&$$&0$&$''$]'C)F' $t'$ ()'I(`$$D()<(+$6(.$-)0$ _)1$ h-)3$ )3$)4$>/*8$^p*`:$*@;$*P<$+@=$P+0>$+ ?$+@$+ A$1,B$gg,`D$,E$,H$-G3-G@Y-0U-PM$$-R$-@U$2.PV$h.)F.p[$t.\$/2*'T/a$D/Y*</i$60@l$80 n$ X4j0@p$ 0Pp$00q$ 1s$M1v$1w$1x$1y$-2z$i2p{$2`|$2P}$3 $gR3$3 $I3p$13G"4G`I4PUz4P$$4$4@$&5P$]5*F5p$t5$ 6*'M6$D6+<6$66@$57 $ h70$ <7@$ 7P$^7$PB8>+<8$8z+'9л$79+'r9$90$9$ : $B:$z:$:$:$#;$[;$;$;$L<$g;<p$f<$<G<G<pU=P$D=+F|=p$=$c=,!,>p$$e>$>/,'>`$D?V,<O?${?p$6?$?$ C @$ 3@$g@$@$n@%A%DA%xA%A%A%B%SB%B` %gB %B` %I%C%aC@GCG`CUCP%$ D%6D@%qDP%D,FDp"%tE#%GE,'E(%DE,<E0%6(F@3%\F 5% F06% IF@8% FP8%G0<%PG>%G?%G@%GA%HB%MHC%}HD%HE%HpG%gIH%9IpJ%1rIM%QI@GIG IUJR%$EJW%nJZ%J[%J;-F K`%t;KPb%pK-'Kg%DK-<L`n%6ELq%vLs% OLu% Lu%Lv%1M@y%mM@|%M }%M0~%M%5N%kN%N%NЂ%gO@%,OЅ%9cO%OGOGOUP@%BP%{P%$P%P%Q%FQ-F|QО%tQP%Q*.'R%DTRQ.<R`%6R%R% S% VHS% oS%>Sз%^S0%T%PT %T%T%T%/Uп%_U%U%gU0%U%8V%rV GVH@VUV %#W%$]W%W%W%W.F3X%tgX%X.'X@%DY.<UY%6Y%Y% l]Y% Z%@Z%yZ%ZP%Z0%[@%G[ %}[%[%[%\%S\&g\ &\&I\&1]H<]H`]]V] &$]&]&"^&S^6/F^&t^&^|/'+_@&Da_/<_&&6_)&_+& (`,& ceU`.& `.&`/&aP0&Ma0&a1&a2& bP3&Hb4&b4&b5&c6&Lc7&c8&c9&^c:&g7d`<&%d>&%d/gd H'e H@Te0VmkeX& eY&eY&fZ&Ef[&tf\&f]&f^&g_&Egp`&yg`a&g0b&gc&hc&Rhd&he&hf&9hh&B%i`i&JYij&ik&gi@m&8in&jp&ajr&/jH`j t&jv&kHn&'n&n&g#o`&Ro&oФ&lqo` ' op 'pP!'DpP"'~p #'p$'np%'gq@1H9q2H ]q0Wq''q0_q-'2r#1_rtwr;' r;'8r1'r?'(s?'Ns@'usA'sB'Ls0D'gsE'n tG'4t`6HJt8HctpWt@K'rtM'Cwt' u'>uЈ'ou'u'u'/v'dv'v`'lvЏ'gw@'@wВ'uw`BHwDH@wXw'x'Yx'/x'x'y1!Sy'y1'H~y' y'zp'Jz'z@'z0'{ '^{'{'{'|'^|'|'|'\} 'lZ}'g}'}'}@FH~GH`9~Xh~'~1!~'/'I''p'P'60'|P'hG( ܀(F0(6Bp(o2!`(Ձ@( (8(h(^ (9‚`(gPHRH`8 YԈe (  (!(p"(p#("I$(|%(&(p'(`((L0)(~ *(+(ޅ,(,(A-(u.( /(9 1(S2(bF3(gw`5(7(/͇@ZH`08():(X=(2SHUHň@YC(32!IpE(PF(0G(@H(PI(N@J(zL(T2!Q("`R(/US( T(V(gZ(( 4(]Е(((Ќ(`(+0(Y (((ύ((!П(P(z((̎((Х(-H(Bmu2P(R2(C(n3p(g[(2 (Ր2 (/) jH`I(+l@dHeH@Y( (  (E(mй(((l0( @(/(X(>(((@(8(a(((ה((,(Y((g(ѕ(p(0jHE lH@]Y(`(ږ@( P(22F_p(t($ (3')DAB3<s0) )60) ܘ@) P)*~3!Y@)3!E7) Й7)U<)/?)`zHB)ȚF) L)*R)Z3!T)Y)])`)^J c)e)e)9ڜ@H` f)91H`Z`f)`g)0h)ݝi) j)=j)hk)!p)0q)Pr) t)n=u)ghw){)ϟ~)izH|H6`Z:_HowI[Ё))$)))C3Fs)t0)Ρ'4')D3N4<h@)6)`) `) p) 84!p)p)Σp)`)5@)e0))Ϥ))n#)gSHpHZ)@)"4FW`)t)$)4',)Da5< )ħ)6 )!) M) y)))80)r) )))Y))ժ)g0)?)I~)`HH@ZB)$)))-T5Fk)tp)5'%0*Dc5<*6ۮ * * J * :0 * @ *ϯ !*!*)"*"T$*$*%*&*b (*bN)*g|+*,*/̱H`H @H@+[Sp.*P/* `0* p1*P2*N03*_|5*_7*_׳P:*_<*1=* _>*5ƴ0D*[ 6>!O*gKS*{0U* @U*Z6!,W*o{6!Z* \*.]*`]*^*9ҷH_*O6gd*5Ÿf*f*;g*kPh*i*׹i* j*Apk*n@l*0m* n*)0o*\@p*Pq*̻`r*gs*27!jv*$7!Py*{*/A H`l@|*P~*:ѽE7! *;;H`gHH  [׾p* `*@@*/{p**޿**N`*@* *r*"f7!Zp*P*0** $ *[*/0*7!*4*c7 P*0*@*I:7gu*mt**P*IP*"}*p*`*E2*\f*g* */8!?*OyP8g@*/ H`H>He@[*@* P*0*K*u***p* P*N0*sP*p*0*n*g* E *itHH [0*8FP*tF*$u*6@* *0*#8'V*D$9<@+@+ P++F+y`+v+++$+Q+y++g+ +1#+MHb H`z[p'+`9F,+t.+$G@3+t9'8+D9<P?+6)B+RpD+ vE+ F+G+ :!#I+M*:!\|`L+ pL+ M+M+F P+^LR+u`S+pT+`U+PV+@W+I0X+yZ+gp[+]+_+ H5 HM\o`c+pd+K:Fi+tk+$J@p+w:'u+D:<P|+6,+Up+ y+ +:!+ ;!ROp+ s+`+6;! @+OXH+O`H+O0Hd0+ +++B++`+@+4 +i++++2+iЙ++++-LН+-y+-0+P+p+P++Х++2+-h@+-p+E+9 +<A@+<|+@+@+:,@+9g+l+B@+^+PW;!p+x;! @+F;!+;!+g2`+h+;!+;!^+<!+NH"@HC \n++++A+n+++ +;(+\++ZH@+ P+N$`H`Q><+ N<+&+ZP+0+0+0+)`+(/+(Z+(+~^<!p+k+{?`+:p+o,,,%0,S,~ ,`,,,.,^,H@`\ 5. 05.&6.V6.+ 8.OPI`p8.09."^0:.;.;. <.@=.p`>.P?.P@. `A.PpB.C.D. E./F.~^<!@H.nI.}0K."L.}RPN.gO.Q.PS.GPI`0T._0W.<!@KILIP`,\.!\]._. _.`.OWI`;`.ia.b.c.&@d.Qe.e.f.`g.40h.l i. j.k.l.;l.wm.n.p.%q.S r. 0s.#`t.~<!u.nLPw.|<!x.^Pz. =!?{.xup}.}~..}.g7.hP.@. .$=!*.YE=!@QIRIp`:_HxI . 0.M.}П.Р...J`.P.@.0.)@.UШ.`.x.gP../>_I`g.ZI\I`.3.a..5.л...^f=!p.j. ..A.n.#..2 .i . . . . .` = `. p. 0.Q . . . @.> 0.r . . . `.3 0._  . . . ..S....;.km.k.k.g `.;.s.P.0./mI`"`.N0.xdIgI @cIfI@,fI[Pa!0/ /0/@/C /p/[ =>`//r*//Z/=!@/ P/= F/q!/"/#/$/<'/o>!*/+/ ,/<-/m`./P//@0/ 01/A 2/w3/4/4/5/O6/7/ 8/9/;/ H /g@nIoI DPD`a1bcdLe}f^gg9E ;E"@>P |^R`()gbDE`FE@>!0) ]   p `^!g=!`NEY!PEx!>%! " !0"!#%"$gV"%"@&"'"'#(H#)y#*#`+#P,$P-7$P.n$@/$00<$p1L%2<5%4n^%RE%QE%@TE%?%P7!&`8F)K&0: k&@:& ;&;&<'p=='>e'>' ?'?'@@(@2(AnW(@C( Dg(E/([E`)WE)XE`7) ?^)`G)PH)`I)pJ *PKM-9*L _*L*M*N*O'+PgZ+Q+R+S ,TA,Uv,Vn,W/,@_E`,`[E-]E@>-@?k-Y-Z-[-\0.]k.^._1. a /0a./bY/b/c/dn/@f/g/0ga0h0i0j0kg1 m/61cE`Z1_Es1@aE1`?1n1p2 2?|_HCvInHBvIHAvI482p Q2p:~2s2w2|2|3}?3~n]3Pg33`3037 4@7/4S4yEf4@{E |4@40r4C54 5<5d55g5E5`E5A: 6 )6R6p6 66O7E`C7@l70g77p708K8t8888 *9 Y9 i9` "9S9S :PO4:^X: Eq:E:pB_HJvInHIvIHHvI=::;K;; ;;&<gY<<0!<`R<*%= nP=`"/=E`=E=E@=C>0$S>%> &>0'>(lC#?p)\?P*?@+g?,@-<@p.z@P/@00@1(A2hA2A3A4'B5<eB7B8 B 9^C E5CE]C CC ;C< D<EAD? [D ?D@DADBDC#EDGEEgnE GnE`EEE`E@CE0IrFKC%H1F OF{FFFFpGpLEGnhG0gGG`G`EGEHC;HrkHCIH HH.In\I0gIEI@EIC:_HKvI J@?J pL}J` JpJPKPJK }K KnKgL E:LEaLDOL- L-L.%M`/bM0M1M19NE`6N 2eN3^Np4gN ENEO@D Q.O6`O7Op8Op9O:P<;KPP=g|P>/P E`P EPE`Q`D\ ="r\P>\?g\`A/ ]@F`:]F^]`F] E_]C ]C ^D9^Eh^F^pG^H^Jg#_K/O_@ F`w_F_@F_@E_PMc`OM`O`pP`QaQ^6aPSoa0Ta UaVbWRbWbX)bZc [gNc Ftc@ Fc`Eec] c]*dp^Zd`_^d`dadPbe cEedgxe FeF@eEefiifg 7fgdfphfF`fjfj gk8gl^g`mg@ngPo'gp"hqDIhs]uh`thv^h`wghx%iF>iFZiEni` ip iBjjPj0k ;kkвkkдMlll^m`gXmкmAmnFHnF@vnEtn0 n@n O&o"F`Nopo!F`o@o0p/pUppPp pqLqxqqqr.rZrrr;rs 8Ls`Dus*s*s^spltgGtPpt "F`tFt`F`tFtuMuyuu-u-u  v0Ov@~vPxv0vwBwrwww^xg:xplx?Fx`AF@xF|xypGy0wy0 y0 y z Ez {z zz2{2P{0[{{Pn{g|0/?|JF`h| FF|GF |F| }B}v},}} ~" 6~%d~&~b~cpd3Pec0f gh^pig-jdSF UF@@G݂ ,Up^yɁp<<C<m0glFnF`΂G{p %d`pՃg}F>FlH:_HwI Є B@z@05p 0gY/F` FFHApz@ և0OF`$Mpgyֈ ;mpʉ`P(@\0 @`p "7Z`^Ӌ FFH.bF@Ō g&S`@0 I{Վй8 fǏ  !$P^N FmFI: :;N<g>>?&@XABCD)E[G HIɓpI0K00Mn^`FF@Iה@O PLQ~RRSTKU|pVPW0X!@YSPZB[ ݗ?q`P&0X00"̙`PT@0 ܚ n g8 \o@FFFݛ D@ I7 frCԜ ,[pL%nO0 g!`F՞FI#%T&r`)CŸ-0 ! 0_11ՠ23nD@5gF`FءI+7C8Ow`F`8ע9 :^6<gi=T?1٣@FFIID[ I"PJ`K$NT@P vPP0Qҥ0R S, TZ ULpVLWnܦ0Yg Z8FT`FsJ^rЧPaC$0g /@gh h iӨjjPk<m n *0onZpgrȪFF JG@v|0w@xrzC* Kzڬ)EЅ<|  0ng=#kF@F@J̮Џr*PC] FupLnϰ0g4 FRFs`JФͱr`C9g  Ͳ@|n0g'cFƴ FJ"Xr׵CѸPpζ DF!b"g#%p0'q@FF`¸J9+ +L,z-^/й/011``2@3(p4g@F F`*KUpJ J˻`K" LB0N OP0QQʽRS^TpUܾPV!`Ws@X YZOZ[\ ]^^_`TP@bDcDdD=0fDgh(iyjll pmgLFzFKp) qf1 123#P5gXFz`FK`7/8Dp9P:b;b0=C>}ipj`kgl,m^nopq `rJ@sq tuvvwEP0y<{pz {|L}%^G@,G^-G@xMpP"M|_H wInH wIHwIUFPN|_H wInH wIH wIM3І 0Їc 1G2G@ wI >NOs0C &[3G4G@@wI @Nw З5gF7Ga@9G0Oi0  4iO=G`3Og@>G`@"p.Щh Dupg/ =G`6 :GW;G{PO,+ >sзO `BG`=OqBG`0"`8rQp`pg/BG`I>Gj@@GpO,+I* TOFGO)GGX`"5kppp))SJPQ1k@`gH0& `GG`U`&HG` CGDG:Ok0  OI`LG~OMG`&@NG`N"4p)!])  @*EpJ}p-epg  C@&~ MG`HGJGO7 xppn+g[NGx@PGOc` p(P5^PgQG+RGTO!izz z&{Y|p}@~ Cz#^ ;0<rp<ЌD% _@Pp ? z^{g+L @cG`"]GE`_GkPP p"`^Lz`@  8(i0gcG@eG`pP1 ) Xp p ` P  ` T; na0 g 0 qG sG"PJ`" r}$ C3 0  / W@   GG@G@$pQ:_HawIN0 s@    5 c nP g@GGQ, G l    p C` dP n g0 P $ :` c@! ! !GG@Q(!rU`!C! !!!`!D@!l ! !@"!n#!g  %!+2P'!YGo`GQ*!+!r.!Ca.0D! M@D!z E!F! G!H!g`G6GR0R+ x@K! PK!0L!"`M!< PN! @O! 0P! Q! Q!\[ PS!g T! `V! G `G PRE Z!/ [! \! ]! `^!I `!b pa!( d!b f!. 0g!ic h! Pk! pl!B m!.p!ns!h! !p!8p!ng!gG GR:_HbwI!OХ!<! !!!!R!!n0!gG`G-R_HewInHdwIHcwI\p # { #` #`#@#n!#gM@GfG@pT###r.@#C_F& |F&G&H&I&nK&gHpL&v HH PVQ&r0T&C)& H&u&O@H&50& &6&h&&&'&' &&0P&&Y&;&;&gp&k&8HTHm D0V&P& `&X@&0&0&0&L[&L&^0&g HBH@rV@&& &:&e`&`&O`"H`&O"H`&&OQ #H`xP&P&g&&0p&nT&/|"H`HH`V& &I &u & & & &!&H!&w!&!&!&!& #"&1)N"P& q"`&"@&"&4#&i#0&#&#P& $&:$p&f$&$&$ &$&%@&D%&y%`&%&%& &&:&&g&&g&&&&&&5'&o'&-'&T'P&^'&N1(&H_( %H(#H(`(H (D(`D`")VL)'})')')'*'A*'q*'*'*'+ '=+ '.l+ ' + '+ ','7,'x,P','-'=-'~-'-'.'n2.'gj.-H. /H .W. ' /0'X/'/'1/3' /3'04'K05'ns007'g08'04H05H 1PW631pS']1PT'1@U'1V'1V'2W'M2X'2Y'2pZ'2P['30\'A3]'l3^'3_'3_'3`'4a'74b']4c'L4@e'L4f'<4g'<5i' /5 j'Y50k' 5@l'5Pm'\5n'\6p'c56q'^V6r'g6Pt'y69H6 ;H`6W7pw''7x'x9M7`|' r7p|'7P}'7P~'n7'.8'e8' 8'8'g8p' (9?HG9 AH@i9W_HkwInHjwIHiwI99@X|_HnwInHmwIHlwIHA9' :'L:':P':';'Vg;';';@''<@'DZ<'$<'<P't='O== '/t=P'^='r=0'3>p'L> '3>`'#>'>((?`(Z?@(9?PH`?(c?(C@ (q@ (^@ (g@@KH@LH AD9AYZCdA@]( AP](A0^(B_(HB`(Ba(nBpb(gBZHC@\HKC`YDCd( Cd(Ce(Df("EDg(pDi(gD ]HD^HDYIE@l( 5EPl(eE0m(E0n(E0o(F0p(.F q(ZFr(Fs(Ft(Ft(!Gu(LGv(Gw(Gx(LG z(<H`{( =Hp|(kH}(H0(nH(gH(I(JI_HfI aH IYI(rI(CIKJ ) ;J0)nJ)J)nJ)gJ`pHKrH:KZ8NfK) K)K)K)K)5L)7L )dL!)Lp")L`#)LP$)L@%)M@&)JM@')nMP()Mp))gM*)/M@vH`MrHN@tH)N ZJN,)/,PuN.) N.)N/)Np0))O`1)XO`2)nO3)gO@xHOvHOyHP@ZnRIP* nP*P*PP*QP*2Q`*jQP*Q*gQP*/Q@H`R@H=RH`_RZR *R@*AR*#Sp* TUS* S*S*T*n:T*gyTHT HT`[:_HpwI U *JU*jWU+ U+U+!V +OV +V +^V +V +gWH6W`H [W[W+YW+W+X+^?X+jX+X+XP+X0+Y+LY+wY+gYHY@HY@\j\ Z@,#"Zp,EZ` , bZp ,Z ,ZP!,Z",Z",[#,I[$,)s[%,[H`[',[*,#\H%\H@D\H[\\:_HqwI^|\+,3\ ,,\-,\-, \-,].,:].,a]/,]`0,]01,]1,]2,$^3,3Q^ He^H@^H ^\d^p5, ^5,_`6,O0_H`V_6,w_09,"_`:,_0;,`;,:`<,j`=,``>,`0?,` @,0aA,`a B,aC,aD,aD,bF,:bG,mbH,b I,fbJ,gbL,o!cpN,Nc@P,qcQ,cT,c@W,)cpZ,X#d],Md HedHd\:_HrwIda,dc, ed,=e e,qe0f,e@g,ePh,epi,%fj,Vfk,7jfm,fn,fo,g)gq,egr,gr,gs,ht,ahu, hv,hw, ix,?iy, siz,i{,niHiH (j ][j},?j,3j0,#j`,#j,#k,#;k,#]k ,3k`,+k,+k,#k,#l ,# lP,3?l,+^l,+}l,#l ,#lP,#l,+l,+ m,3%m ,Wm ,m,m,m,n,QnЉ,nЊ,nЋ,nЌ,o,Go,wo,o,o,p,5p,cp`,pP,p@,p0,q ,Iq ,wq ,q,q,r,/r,]r,r,r,r,s,Cs,us,sP,s,t,7tp,gt0,t,t,t`,)u,Wu,u,u@,u,r v,5v,^v,v,v,v ,w@,+w`,Tw,}w,w,w,w,x ,;x@,ax`,x,x,x,x,y,3y , Zy0,y,y,y@,z,Nz,~zp,z0,z,{,@{@,n{,{,{p,{0,0|,b|,|@,|,|,"}p,P}0,},},}p,~ ,D~,t~,~`,~H~,H6,e`H@,H, H,CH^p,H@, ׀P, `, %p, L, s, , , , , 3, W, {, ,  , 0, @, )P, J`, kp, ,à I ,% IP, I`,` I,KIv, I؅@,I:,qI,ӆ`I ,%,L,s`, ,,,`,6 ,],,`,҈ ,, ,G`,x0, @,ډ@, 0,<,m,,ϊ,,',N,u,,Ë,,,8,_p,`,P,Ԍ@,0," ,I, s , , Ǎ0,0, @-EP-*o--Îp-I -T I}-@HՏ@ - `I2 -c@H -@H-- . -T0-A-q-Z`-T-Y? -0nP-v-9̒-Zp-/IX0-@I -H "-> He$-I”@&-c'-f" )-(HP*-6x+-,-&ĕ--(/-d$0-5T1-m}03-Y4-`ϖ5-C@7-T!8-;J9-lsP;-r<-^ŗ0>-O?-Q@-mOPB-jC-6E-(Ә0F-dG-5'H-OpJ-wL-rM-məN-wpP-@H1`IRHp IHIК`HIH-`IN Hl IH I̛H I @H)` IJ IhIII œ`I I HI@1@HIH@dH|H@HH`ʝ`HH`HH`0@]R_HswIbS^+_HtwIa-3Pa-+a-3ٞa-3b-#0b-#3`b-+Nb-3ib-#c-3@c-͟@d-@e-)@f-W@g-0h- i-j- k-9k-gl-m-n-o-pp-G0q-uq-r-Ϣps-0t-)t-Uu-zu-u-ģv- v-@v-3`v-Uv-wv-v-v- ޤv- w-8px-f y-y-z-P{-|-F|-tp}-0~-Ц~--,@-Z--p-(IP- .`- Qp- t- - - ݨ- - Є- >- _- -#0-3p-ک--01IWp-)I@-ߪ3I-90I`-@*I-@)I @-@@.Ig-*I-,I-K (Ip-'Iŭ`- --?-i`- --- `-6 -^--`-گ --.-X`- --Ұ-`-% -O-w--ʱ-Э--G-q--²-p-`-=P-g@-0- -- -5-]-м-(-ϴ -" -"P-A-|f-&I3Iµ`$Iܵ2I"I0I0 !IJ.I@gI-I@I@+I@ն@I xI IxI 9IPwI j`IwI IwI η IwI ^_H@xI!-3=@-#Yp-#u-#-#-3@-@-0-> -f----p-+-N-q---Ѻ0- @--D-nP--Ļ@>I`- - $- E- c-  -`?I`ռ-`BI`)-W>I`x-?I`ǽ-`EI``-? -g--`- --0-T`-x --ɿ-`- -=-a-`- ---$-L`-r@- ----Gp-qP-0---!.O.z.p.`.P.@.>0.g . . . . .+ .S .w..@.=.,@.2.v`p. ....+ .}S#.{.r..^@..8.e...gWIYI`;`:_HxIh._ . 0. .C.nx.p.g_I#aIPa:_HxI.`. @.I ....V.TA/4E/E/RF/G/pH/  I/^?J/ |L/40P/grI`tI`EazuIha+_HyIxI a  b`b3@vI?DfbrD D $B0?DP$>c`9EpAEY/ P D(vID^O "N 7l"_. " *" [PH+Ry0$O"!B"o$ =O<m"`[-MBv$O"P !"@9GdKm?p0o/m0H"^ "  H"z w I`H"Dn") C|"`O") )Bu"0.  As"9 "P.&"`$"4. S" 7)" B"= n"@/ 3\Q"><t`"K+ "$ O8Z"  }ZM"O"0 " " b:i"@! uO3X"PZ-M"p&_"$ "I#8d|" [( pM/@[-ME"`];n"@R/ 7"pz n"pO"`?,"& Q"_. "@" 8" & oQ/O5e"{'<"@ s"PO"p$ '.M/o"0+1Kw"& Y-"@ *>q") ".&!`H9gUnO8\"! "p 7d};"z'_\"$Gx"z<" 2MI{yO 5,O"s $"`s e""+ A&]"P S}"\(^PMv"0+ 1P{Oj:"p6 -Q"O&"P' f "IJo"-& L ". r   & ` ".b    / i  " "# ") . `   " "0* , ] t    )"`7OT"Ov"  5M;OO{ 4"_ OV"#"pr Dt-O"J#OjPOM3\5M")"b PO%"P#M"[(x"p &G`-M>"`L a"` O"P ".  Rg"p"0 5Z{ -M"@]I"pN t"3$ " |'<@n"z'"1  =T >x"0R' "hQ" "b" "X$ "0 B a   7!i!!!"S'b! "". +"`"*O""0 "" ""@<""`! #2#d#M####$?H2$b$P.O$$$%$%V%"@C %%%&S&&&" &&&,)M';'y''!(E(0#MX(|((04.O("  (;)"@m,uT)"7Ol)"b)))"0&*0`;*"І r***:H*&+"@d+++"@ ,0,`OJ,"* },"` ,,,-?-"p( g---"" ..B.u.../2/U/r/"H /"y'/"/.M0&0l00"`b0"&/b01%1M1111O262f22"`$b223I3"33"o 3"?4" E4d444"y'4" 5M5"pF&<x5"><5%6X66M666"' /7"PCuT7"' |777 8%OA8"0" `8"8889G9f99999" O :3:c:" z::"p[(:;M#;"3'OE;"Oc;;;; <I<"` <<<<)="* \=".B==pO==>A>"* n>>>"0?>?G?????!@U@@"0.& @"*O@ AAA"`OA B'BOUBBB" ' B C&CO@C~CC"#bCC"w!k DDD &ODEeEEEE3FRF"hFF" FFbG"0 G" GG"> 2H_H"{' HHHIVI"" IIIJOCJxJ"y'1JJZ-MJKKK MKL(LJL"` kL".& L"6 LMM:'M;M"#_M"P{ MMMZ OMR-MMN" #O*NcN"е'kNMNNO"0-OEOwO"hOOP"0/ /PTPPPPQ"B2Q\QQQQ R">RXRR"r R SM/S"u%^SSS"S.TMNTTTHT"p U"Ц:UFMSU"`OfUUMUUV^VVV"+ VWHW'OfW" WW"<W"k( XFXXXOXY#M%YPY"YY" Y"p'/rZ=Z"v!AdZ"@<ZZ[4[v[[""[" # ["  "\[\ w'Or\M$O\" \\]"^T]]]b+M]]#^e^^^" *^_`E_e___)`O``" '`" '<`a"Н. 5aeaaaa"( b" ;b;'OYbwb"`7% bb""bcIc@''Okccc"d(Oc"9Oc dPd" dd"pd"P&/ d1ePe0Mmee f1f"+XffBMffgJgjgg"Ogg"LOh)hIhOohhpMhh)i"z'Ui" giii" *ijAjajjkNOoso"@DoopJp`c#M`pp"% p"^ pqjq".!qqq\Hq"r4r"b<ir"0) Brrrr" s>s\s"t% s"@T*/ssPHs9tfttttu-uRuzuuu"  2vSv"v! vpMvvw$wLw"P~www"%wxx"PxxOyMO1y`y"[( y7Oy"uy"tDyzz {" R{@\Mn{O{{{"l,{!|N|"q| O|" |"?|"Pb}"#8}d}"P+b}}}}-~J~g~PH~"`F& ~"p<~"X& H O3U"p) ɀD"E sƁ". "@.!" Oo"@6 @&OՂ"Ќ+"R' Q)Mm"01? .""%@p"P& "5 څO@jΆ"@^ "5 D"&/Pf" #" * M͇*M$ .*O@v&"o Q&Mi"/ "Po$ ԉ"P"06 Ek""! 8m‹M.%MK""! =|"s!"ж ڍ"# " + 9"9Z"( "@/HԎ`Oҏ`&O"@g< 'a"_ ?M4"q ["#W-MS%Mڒ7" m"T* F_y" #ʕ/Ry"%/P–" z' !(ϗ$O!P W-Mi" "Z͘-M'"bE"@.&9" mݚ9Nl"г% " HZHoĜ#[" 3S"`_ <ٞO/N"@7u"P<"P+>"'z "лD"% o@(.Mߡ @_Ģ"K+ <". Tۣ O@l"<"1-0w OC"+d"<xp`" ޥL$M>0d(Oi"+ BwpeMa"~, ֨"#"h*6" - F" ت)OO"+ p"-<ګ"  zM8 "  5W"+ ڭ"95k"r!ɮ "@ 6d@,s}PR-M0"0C b"$".) %Lo[-M"P6 ͱ"' '"# Q" 'A~ܲ""b*O"!ep-M Oгm&`ߴ"J!b" '"po$M Ok"ǵ:hC!M"t%"(ͶMyŷ"$@|"!  *Z߹"r1"Ж Ir"h @(Oź"  O#Pa,M:\". ջ={"E"Bռ[V M="j oĿM 1T"3" Hu*O\OJ"~,O>u>O"0& P.A6d"`6 "( 7"+]" "!$i,@)OLt"4.u"0<"0 1"o$bUu"0uDLcu9Oz"> 3"@ g"\ ,Q"{"p1 "OJ'M60C(MS|"+! M"м( (D"t%n" b"o"p- "<"p @#O 7" ^{Q" #\"<"\7"pv!)j"?- 8WUHOj%"`&/ L" # " /!Wy&Mu:i".<7"% f"7 $]"7"<%a" tuGe"v! ""^ !0-M'W"P {"pA/ %M7jDg" # "Nq)O" 6T"`C"'bfM}"E  M">g"p" " "3Pr" `\M0Zp'OpOP" 0"P?m1z`M'" Qv" "7"7% E"Pc?y" $!"z'"/8"t% ]"p3""+ "1b7"  !"Ik"P>"6 `"0<"Ё7" v"0E<"z' "PuEj"!O"P$ 5`"b"Й " (7>c'"@ ^"( .d" "' $K"I#r"@%.[r%OOnOO"G1&M]"}").") So"\0O<w"b<" -o""%b"`+ YM%"hIx"%2S$O`")O.\"` z"0w! #e" `,)O LGOgx"_ ."Z}" # "&"""  Q"X&O =f"`r 6p.Mq;Z"" " L"  "`{'?*"& W")bl"" Xs+^"_. "s "# 4 r  M "PB  Q&M "p(? @ R/b    ") "<9 o  "P  ' @O? q     (, L " u "*   .f@"!<] O"b"2b"y'" " ?!G"8<p "<5`pDO"' 9i,Qy DsEЇ'm"b&"!B5)-`H" E")j\!"" Lh*MpM+O"@& (M"\(u6m"`P #M"P<""""!="  {""Gh"?"r ""  9 d    " * *!"+<M!k!}!"pT*2!!"& ""p] @""""p ""#B#o#"##-#06O $" ?$p$$$%" ,%_%" %">%pO%"` &O&~&"+ &"@ &&"G #'M'u'"-'$M''(<(" Hbb(}(((O((C)))"& ) *H*z*"p *"0#*+"& 1+++"`v! ,","u?g,,,"PL),,---$MP---M-"6 .=.pJ!OW...."* 2/U/"@Oj////0K0"p i0" ` ?0" #001142"(OI2d2222"3S3q33" z 3O34G4i44"'144,5W555"+ 5"2! 6"c?F6w6" 666"# 7"7/$7@[O?7"p 77"<7" 78" C8"( p88 J!M89"H9c99"?b9:<:::;.;Y;;"7%;"1;"<<`O(<" X<<<" <" = ="p ( Q==="="P/ ="`6>Z>>"% >>"p>4?*OY?"#o??@" H@g@@O@@A0AcAA"I# AOAІ'OA"h BDB{BB}BB"( C,CPC"p7uCCCCD"3"u+D"@> aDDDD ETEE" 'ET-MEE2F0&.MHF" f iFFFFOFG" 9GeG"/ GGG@Z!O H"@) -H"$bHHHH"`` <#I\IOIIPOII"@bOJ"0m, /J&GJ" qJJJJJ!H K6K)!MKK^KKKK"`& *LPLcLLL'#MLLLMMMM"  N;NYN"Lb|NNNN"` #OWOOOOP-M+PLPlP"% PPPP" O Q`FHIQmQQQQQ#R)OJR"@<|R" R:OR"@ RR"0 SNS"'OnSmOSS"0u%bST>T_T"@R'B{T"( T"]T"( TM!UeOBUxUUU0*!OUVu)v"` Bvv-Mvv-wcwwOww" {'< x"0aOxxxy7yTyyyyyy(zDz" zBOz" z){`iHI{" {" {{{ |L|r||"%|"+ },}b}}}` A}~3~k~" ~" (<~~~9k")"p'k"!1Uπ"I``z"#O"PR/<ށ"9\"}"?<cՃS-M;j΄"P& >`+O]" ӅC"8a_"`<"." bˇ3" ^"`1 ҈'"$ OzpmH߉p6"0) `" >ɋ" 'M=["p Œ"+0Ki@"э"p2! 1"& a" s Ž"` P"p"j؏"l, ;"5!n/K"P%"p&/ LΒ$Ms"^ "C! K{OƔ"O O~"P1 ҕAh") Ж0t"#b" ' ݗA`z"( ژ"'1-QęШ"M2L },HqE&M˚O0Ruڛ #H,a˜\.M-YM\c#Ot"`"L)"` ZQ/H"K+ӟE0Mo" <"ؠ)M$P" ) z"`{ /"P)O" Ӣ;\O"o "p ;" ' eLM3h"д' "07 ۥ0 M"P8T-OwΦ`O2"@o$ b"`-ۧ;"<m"oO"`zЩ"[( $>"0*uc"@+ PnMӪ"( :"@f"O"Ыp.O&AL'Or"P) Ƭ"`"N*Myȭ"!2"`b<i"P$ "aϮ"@ #""Oͯ" )^"$װ"p{<E" ' {)D0z&Oò"\ @d۳".)C"o"O" <W".<v%Mض$Go"@) ?׸(" (OE`[O"+b "p' Fi"K+ ĺ"t A")k".Oл" +"X& 6^". " μ/"6 X6M "P"+OX-M`9Yzڿ&"p' Q"PMbp "PO")O8l"j<!S"%/ -l"( Fu"p!"Ї+ 3Z '+O"!4\"P/O|0aM "6!I}$O{8c""P7 RsЏM"" 'p-=^":"@X"$ "-MMM"TJ'Ok" "{'?)H"-!b&.`!O'W"0T* " NO"P y"`!D@.O%"-!Be"P' /". Vu"E-" r"s"#@o"* +J0)Mo"`  As"0*b" "6<."E^%H"PF_"0Gr!O",o4"OX" "i "PE "0+ "t Hl"@! "l, "$@d"  "@+<"Eb ]" #xp},O!`AI`R%Og" "0) (eO 9d"6 "G S"0u"+ ! #M9q'#OC"( d"6<|"G%"- Jw"0] "#LtaO,O 9p@S-MI"`;' w"0[(3."  PX-n"@L =e`MLc+O "O?s" E]"P-""#"0z'F"G /W?"ж 0ZO"0+"2!OAM7jDOQx"" "`f  ;r6M3F&O^" (O}V"p  x") "5"~, l8W,g@O"" *^" E "# ,$Gu@)O"0 :^v` MH<xp"O"k( (a"0qO M:_"[( G"R'O]"+ b"p;'O"L #G")Og@+,Ay"`2! 5- +"@#So"  U    " q "\" L      + N "0r!  8 " n<] "`$  "a & "`^ O x @>M "s " ?"@'6p O`2`f"/ ".AY0.O"` "0^<&"?b(MvR-M"+ pA:" W"(PnM P{"K+b"+"* b+Q"+<p"?4"# S *OIf O"P "py'iOE3cH"' |"<"<"\(/3"1p"p!ML{"` 'M!Os"* 3-MHqPO$J"P z@=MF`yM"  3 b  " "h  !g!"L!!! "5""L^""""#$#"t% N#}###"^$C$$ GM$(.$$$"`)%8%i%"!b%%%&-&pOI&FO&O&"G &"I#&'6'Z'"- ''(;(c(((()))P)`)"K ))"[( )*D*"p<d**"0# **`p"M+*+++,.,`, M~,,"+ ,-"2$ /-\--&+M---:." ^ u."o$."."1/DM/"PV/j/KO//a-/e000" O0131"p T1y111{22"07) 22 373 (HT3s37O3334D4m4Y!M4"@z 4"0z 4"T*u 585[5"? 55pO5"0 61666"p O67"P<"7L7"' 7"<7"@u7"@w!u78<8d8O8"?8") 89"p0999 :L:j::"n ::;" B;e;;"r ;%<"0o$ P<<<"s!0=U="=="P7% =>"` 4>_>>>p+H>>1?T??@M?"' ?,?y@@@"@A" (N&ANA"b<AAA"g B"@O,BaBT-M~BB4C"P" XCCC"pC5D"pfORDrDDDD3E"+ jEE MEEF FQF"0- tF"0' FF"o G@5)`7G" g [GGGG"@!bG/HqHHHH I7ITIfI`&`I">!I" I J5J_JJJK;K\K"KK" iKL"<1LLMUM"FuMM"p&<MMN"+4N^N"0 N"P0DNN"* NOYO -MnOOOOP@zM>P"& hP"P"oP"! P"NbQ#Q" ZQQ"#QЖMQRRR"@7)OrRRR"@bRSASp#O[SSSST"`3$b?ToTT" * TT"bU\U"UUUVVXVsV"J# VV"6 V+W-MCWmW"p+ WW"@' W"`E X"'AJX0O`XXXX"@3$ Y0Y-M9YLYlYY"pP YY"!OYZZZ`@/Z`C!OZ[3[c[w[[\"3\"-) I\|\\"#\\A]q]"]"!b]]"^1^_^^^^_5_"/ o___`1`N`"+p``"p!``-*Ma:aNa`Q&Ofaaa"a b" "b&bSb"pBzbp*Hbbb8c"(<\c" cccd#O;d"@1 ld"@$ d"P dOde"Ce"!aee" )Oee"0beef"` 1f"pOVff"0 ffPk(O g"8gcg"pzggg h?h\hh"0 h'Oh"`o$ i"0g =i"  ci"# ii0+Mik(Mj:jcj"j-Mjj"^. j%k#O:kNkpik"P!Okkk'.Mkl"P])lZl~ll"% llmR-M8m" tm" mm"<m+Mn1ninn/o"p+foo\-vo" op"$ Dplpp"p! p"& pq"@qq"  qqr-rv'HBrrrrsHslsss"`st"t:tTttttuBu"huuu=v\vvvv"@iOv1w" Zwwww`'Mw" pb#xOJxgx") xxxy"@# 'yhy"`y"@<yy(My+zWz"A/<yzzz{E{n{{" {{{""!|"@' T||P!M|||"*b}6}"@rU}}"$}}H~&~Y~~Ѕ!O~"M~"@ .`0"@+H g"0% "]O%JY-M"" ց"P*"0ON"G"p1D-S"9 "P^ ރ"0? pYO*J"K+ f&O„@s΅" 6 @pɆ"е!$" K"+ lŇp5`:cΈ+O (O"+;e" * W"J! 0`܊"& )"Ь$bNj" 'O"e $T"?<n" Ezэ*O@KM +<\.Mv"-& ю" C"P ֏VOJx͐!M(?dBo"I#ؒuM?"0L sœѓ" u%BŔ?" pʕ'"pE R"P3$!OٖD̗"O"В( !"u% O") B/M"^ v™ 1"]ZӚPM= Y"`9" ". ћ" D̜#"p3' U"( ܝ"I#6@ &MӞ"7%5Ɵ") -e0T-M"a  "-) ."z'Mn" "<" ס"0b  A/4,AAg" #&'M'XzO~У"9?%" I"ЄdP"( pѥ:"l,bk"Oɦ%O!"K+ Bw0)MƧ" %"&O?"t?} "0uר O"+!2^@Mϩ"0bN"Ot"&)"Э O"`7s"p ɫ6"@* OROf"L ɬ" #M6"(<Uǭ"R' " <@@O[Į"pOܮ"t%2"bׯ(LO"@&bװ"*;" i"I#ӱR%M:fzP-Hβ .M@!M"PP !"&XԳ"6 " w! )I~6)OԴ"0<#LpGOa"0DƵO6\"03$ " 5eHMη"`)O " 3$ ="k(u^޸"!Iɹ" # " C"$@s*Hٻ" /S"Ж" {ȼ"-& 'TVMp"\( ͽ"/b4"p7% a"@9a" 1g"0?"o$J0!He(M%"6 T"  "% "P><=`"` "aO4"p. ^`H<V" & "o$`$M"` ?3I`_pM"_ <%"')^"C!b"@]<"7%"&/r>g`;T"6 "v! X"`.&bX{"`&[0v"* "@LH"%L"P? " ]'@MHj"!"+ "@7% ,w"* !V"Pz "@M 5^3.M~"  K"p# v MO(Ro"v!L"  " Ev"`# _M=V+,O" "@- $NtJ{M "(j*G&.M]~@O.""oV"{' u"7 Hm"\*Q") v"`"`' Q#c"z' 2" T* X"Or!O0^M@p"eB8q"P "K!WP(O<"P#OPr"!O " _.u*?MP\.O[M(">?Zw@M"%HOb8"/ T"`%bv O,[\O"P(E*"`'bLl"R'p+Pc(M"z R,"7%b%O""d( ]a,O >t0%M0 MNM1+P" "@" H" a .M3['M"P|O"1"`(r$Ac0\-M#Hd" "3$ N"0?"@z'1)`"`/!S_ZL37PyvtkAbstractCellLocator_SafeDownCastP7_objectS0__ZL33PyvtkAbstractCellLocator_IsTypeOfP7_objectS0__ZL56PyvtkAbstractCellLocator_GetNumberOfCellsPerNodeMinValueP7_objectS0__ZL56PyvtkAbstractCellLocator_GetNumberOfCellsPerNodeMaxValueP7_objectS0__ZL48PyvtkAbstractCellLocator_GetNumberOfCellsPerNodeP7_objectS0__ZL43PyvtkAbstractCellLocator_GetCacheCellBoundsP7_objectS0__ZL43PyvtkAbstractCellLocator_GetRetainCellListsP7_objectS0__ZL42PyvtkAbstractCellLocator_GetLazyEvaluationP7_objectS0__ZL54PyvtkAbstractCellLocator_GetUseExistingSearchStructureP7_objectS0__ZL54PyvtkAbstractCellLocator_SetUseExistingSearchStructureP7_objectS0__ZL43PyvtkAbstractCellLocator_SetRetainCellListsP7_objectS0__ZL43PyvtkAbstractCellLocator_SetCacheCellBoundsP7_objectS0__ZL42PyvtkAbstractCellLocator_SetLazyEvaluationP7_objectS0__ZL41PyvtkAbstractCellLocator_LazyEvaluationOnP7_objectS0__ZL42PyvtkAbstractCellLocator_RetainCellListsOnP7_objectS0__ZL42PyvtkAbstractCellLocator_LazyEvaluationOffP7_objectS0__ZL53PyvtkAbstractCellLocator_UseExistingSearchStructureOnP7_objectS0__ZL43PyvtkAbstractCellLocator_RetainCellListsOffP7_objectS0__ZL42PyvtkAbstractCellLocator_CacheCellBoundsOnP7_objectS0__ZL43PyvtkAbstractCellLocator_CacheCellBoundsOffP7_objectS0__ZL54PyvtkAbstractCellLocator_UseExistingSearchStructureOffP7_objectS0__ZL48PyvtkAbstractCellLocator_SetNumberOfCellsPerNodeP7_objectS0__ZL28PyvtkAbstractCellLocator_IsAP7_objectS0__ZL36PyvtkAbstractCellLocator_NewInstanceP7_objectS0__ZL29PyvtkAbstractCellLocator_Type_ZL32PyvtkAbstractCellLocator_Methods_GLOBAL__sub_I_vtkAbstractCellLocatorPython.cxx_ZL41PyvtkAbstractCellLocator_InsideCellBoundsP7_objectS0__ZL33PyvtkAbstractCellLocator_FindCellP7_objectS0__ZL33PyvtkAbstractCellLocator_FindCellP7_objectS0_.cold_ZL43PyvtkAbstractCellLocator_FindCellsAlongLineP7_objectS0__ZL46PyvtkAbstractCellLocator_FindCellsWithinBoundsP7_objectS0__ZL46PyvtkAbstractCellLocator_FindCellsWithinBoundsP7_objectS0_.cold_ZL53PyvtkAbstractCellLocator_FindClosestPointWithinRadiusP7_objectS0__ZL41PyvtkAbstractCellLocator_FindClosestPointP7_objectS0__ZL42PyvtkAbstractCellLocator_IntersectWithLineP7_objectS0__ZL38PyvtkAbstractPointLocator_SafeDownCastP7_objectS0__ZL34PyvtkAbstractPointLocator_IsTypeOfP7_objectS0__ZL44PyvtkAbstractPointLocator_GetNumberOfBucketsP7_objectS0__ZL54PyvtkAbstractPointLocator_FindClosestPointWithinRadiusP7_objectS0__ZL29PyvtkAbstractPointLocator_IsAP7_objectS0__ZL37PyvtkAbstractPointLocator_NewInstanceP7_objectS0__ZL42PyvtkAbstractPointLocator_FindClosestPointP7_objectS0__ZL48PyvtkAbstractPointLocator_FindPointsWithinRadiusP7_objectS0__ZL44PyvtkAbstractPointLocator_FindClosestNPointsP7_objectS0__ZL30PyvtkAbstractPointLocator_Type_ZL33PyvtkAbstractPointLocator_Methods_GLOBAL__sub_I_vtkAbstractPointLocatorPython.cxx_ZL35PyvtkAbstractPointLocator_GetBoundsP7_objectS0__ZL35PyvtkAbstractPointLocator_GetBoundsP7_objectS0_.cold_ZL17PyvtkAMRBox_CCopyPKv_ZL17PyvtkAMRBox_CCopyPKv.cold_ZL24PyvtkAMRBox_vtkAMRBox_s6P7_objectS0__ZL24PyvtkAMRBox_vtkAMRBox_s6P7_objectS0_.cold_ZL24PyvtkAMRBox_vtkAMRBox_s2P7_objectS0__ZL24PyvtkAMRBox_vtkAMRBox_s2P7_objectS0_.cold_ZL40PyvtkAMRBox_ComputeStructuredCoordinatesP7_objectS0__ZL20PyvtkAMRBox_HasPointP7_objectS0__ZL24PyvtkAMRBox_GetBoxOriginP7_objectS0__ZL21PyvtkAMRBox_GetBoundsP7_objectS0__ZL30PyvtkAMRBox_GetCellLinearIndexP7_objectS0__ZL23PyvtkAMRBox_RichCompareP7_objectS0_i_ZL16PyvtkAMRBox_Type_ZL16PyvtkAMRBox_HashP7_object_ZL23PyvtkAMRBox_GetBytesizeP7_objectS0__ZL15PyvtkAMRBox_NewP11_typeobjectP7_objectS2__ZL29PyvtkAMRBox_vtkAMRBox_Methods_ZL15PyvtkAMRBox_NewP11_typeobjectP7_objectS2_.cold_ZL18PyvtkAMRBox_DeleteP7_object_ZL28PyvtkAMRBox_ComputeDimensionP7_objectS0__ZL22PyvtkAMRBox_InvalidateP7_objectS0__ZL23PyvtkAMRBox_GetLoCornerP7_objectS0__ZL23PyvtkAMRBox_GetHiCornerP7_objectS0__ZL19PyvtkAMRBox_CoarsenP7_objectS0__ZL18PyvtkAMRBox_RefineP7_objectS0__ZL16PyvtkAMRBox_GrowP7_objectS0__ZL18PyvtkAMRBox_ShrinkP7_objectS0__ZL24PyvtkAMRBox_RemoveGhostsP7_objectS0__ZL23PyvtkAMRBox_Contains_s2P7_objectS0__ZL21PyvtkAMRBox_IsInvalidP7_objectS0__ZL26PyvtkAMRBox_EmptyDimensionP7_objectS0__ZL17PyvtkAMRBox_EmptyP7_objectS0__ZL25PyvtkAMRBox_DoesIntersectP7_objectS0__ZL23PyvtkAMRBox_Contains_s3P7_objectS0__ZL21PyvtkAMRBox_IntersectP7_objectS0__ZL28PyvtkAMRBox_SetDimensions_s3P7_objectS0__ZL42PyvtkAMRBox_DoesBoxIntersectAlongDimensionP7_objectS0__ZL28PyvtkAMRBox_SetDimensions_s2P7_objectS0__ZL25PyvtkAMRBox_SetDimensionsP7_objectS0__ZL33PyvtkAMRBox_SetDimensions_Methods_ZL28PyvtkAMRBox_GetValidHiCornerP7_objectS0__ZL26PyvtkAMRBox_GetGhostVectorP7_objectS0__ZL23PyvtkAMRBox_DeserializeP7_objectS0__ZL23PyvtkAMRBox_DeserializeP7_objectS0_.cold_ZL20PyvtkAMRBox_ContainsP7_objectS0__ZL28PyvtkAMRBox_Contains_Methods_ZL17PyvtkAMRBox_ShiftP7_objectS0__ZL28PyvtkAMRBox_GetNumberOfCellsP7_objectS0__ZL28PyvtkAMRBox_GetNumberOfNodesP7_objectS0__ZL25PyvtkAMRBox_GetDimensionsP7_objectS0__ZL21PyvtkAMRBox_SerializeP7_objectS0__ZL21PyvtkAMRBox_SerializeP7_objectS0_.cold_ZL19PyvtkAMRBox_Methods_GLOBAL__sub_I_vtkAMRBoxPython.cxx_ZL36PyvtkAttributesErrorMetric_StaticNewv_ZL39PyvtkAttributesErrorMetric_SafeDownCastP7_objectS0__ZL35PyvtkAttributesErrorMetric_IsTypeOfP7_objectS0__ZL48PyvtkAttributesErrorMetric_GetAttributeToleranceP7_objectS0__ZL56PyvtkAttributesErrorMetric_GetAbsoluteAttributeToleranceP7_objectS0__ZL56PyvtkAttributesErrorMetric_SetAbsoluteAttributeToleranceP7_objectS0__ZL48PyvtkAttributesErrorMetric_SetAttributeToleranceP7_objectS0__ZL30PyvtkAttributesErrorMetric_IsAP7_objectS0__ZL38PyvtkAttributesErrorMetric_NewInstanceP7_objectS0__ZL31PyvtkAttributesErrorMetric_Type_ZL34PyvtkAttributesErrorMetric_Methods_GLOBAL__sub_I_vtkAttributesErrorMetricPython.cxx_ZL35PyvtkAttributesErrorMetric_GetErrorP7_objectS0__ZL35PyvtkAttributesErrorMetric_GetErrorP7_objectS0_.cold_ZL50PyvtkAttributesErrorMetric_RequiresEdgeSubdivisionP7_objectS0__ZL50PyvtkAttributesErrorMetric_RequiresEdgeSubdivisionP7_objectS0_.cold_ZL30PyvtkBiQuadraticQuad_StaticNewv_ZL33PyvtkBiQuadraticQuad_SafeDownCastP7_objectS0__ZL29PyvtkBiQuadraticQuad_IsTypeOfP7_objectS0__ZL37PyvtkBiQuadraticQuad_GetCellDimensionP7_objectS0__ZL37PyvtkBiQuadraticQuad_GetNumberOfFacesP7_objectS0__ZL37PyvtkBiQuadraticQuad_GetNumberOfEdgesP7_objectS0__ZL32PyvtkBiQuadraticQuad_GetCellTypeP7_objectS0__ZL28PyvtkBiQuadraticQuad_GetFaceP7_objectS0__ZL40PyvtkBiQuadraticQuad_GetParametricCenterP7_objectS0__ZL32PyvtkBiQuadraticQuad_NewInstanceP7_objectS0__ZL24PyvtkBiQuadraticQuad_IsAP7_objectS0__ZL41PyvtkBiQuadraticQuad_InterpolateFunctionsP7_objectS0__ZL38PyvtkBiQuadraticQuad_InterpolateDerivsP7_objectS0__ZL25PyvtkBiQuadraticQuad_Type_ZL28PyvtkBiQuadraticQuad_Methods_GLOBAL__sub_I_vtkBiQuadraticQuadPython.cxx_ZL38PyvtkBiQuadraticQuad_IntersectWithLineP7_objectS0__ZL25PyvtkBiQuadraticQuad_ClipP7_objectS0__ZL28PyvtkBiQuadraticQuad_ContourP7_objectS0__ZL40PyvtkBiQuadraticQuad_GetParametricCoordsP7_objectS0__ZL32PyvtkBiQuadraticQuad_DerivativesP7_objectS0__ZL32PyvtkBiQuadraticQuad_DerivativesP7_objectS0_.cold_ZL32PyvtkBiQuadraticQuad_TriangulateP7_objectS0__ZL37PyvtkBiQuadraticQuad_EvaluateLocationP7_objectS0__ZL37PyvtkBiQuadraticQuad_EvaluateLocationP7_objectS0_.cold_ZL37PyvtkBiQuadraticQuad_EvaluatePositionP7_objectS0__ZL37PyvtkBiQuadraticQuad_EvaluatePositionP7_objectS0_.cold_ZL33PyvtkBiQuadraticQuad_CellBoundaryP7_objectS0__ZL28PyvtkBiQuadraticQuad_GetEdgeP7_objectS0__ZL45PyvtkBiQuadraticQuadraticHexahedron_StaticNewv_ZL48PyvtkBiQuadraticQuadraticHexahedron_GetFaceArrayP7_objectS0__ZL55PyvtkBiQuadraticQuadraticHexahedron_InterpolationDerivsP7_objectS0__ZL58PyvtkBiQuadraticQuadraticHexahedron_InterpolationFunctionsP7_objectS0__ZL48PyvtkBiQuadraticQuadraticHexahedron_SafeDownCastP7_objectS0__ZL44PyvtkBiQuadraticQuadraticHexahedron_IsTypeOfP7_objectS0__ZL48PyvtkBiQuadraticQuadraticHexahedron_GetEdgeArrayP7_objectS0__ZL47PyvtkBiQuadraticQuadraticHexahedron_GetCellTypeP7_objectS0__ZL52PyvtkBiQuadraticQuadraticHexahedron_GetNumberOfEdgesP7_objectS0__ZL52PyvtkBiQuadraticQuadraticHexahedron_GetCellDimensionP7_objectS0__ZL52PyvtkBiQuadraticQuadraticHexahedron_GetNumberOfFacesP7_objectS0__ZL47PyvtkBiQuadraticQuadraticHexahedron_NewInstanceP7_objectS0__ZL39PyvtkBiQuadraticQuadraticHexahedron_IsAP7_objectS0__ZL53PyvtkBiQuadraticQuadraticHexahedron_InterpolateDerivsP7_objectS0__ZL56PyvtkBiQuadraticQuadraticHexahedron_InterpolateFunctionsP7_objectS0__ZL40PyvtkBiQuadraticQuadraticHexahedron_Type_ZL43PyvtkBiQuadraticQuadraticHexahedron_Methods_GLOBAL__sub_I_vtkBiQuadraticQuadraticHexahedronPython.cxx_ZL53PyvtkBiQuadraticQuadraticHexahedron_IntersectWithLineP7_objectS0__ZL40PyvtkBiQuadraticQuadraticHexahedron_ClipP7_objectS0__ZL55PyvtkBiQuadraticQuadraticHexahedron_GetParametricCoordsP7_objectS0__ZL47PyvtkBiQuadraticQuadraticHexahedron_DerivativesP7_objectS0__ZL47PyvtkBiQuadraticQuadraticHexahedron_DerivativesP7_objectS0_.cold_ZL47PyvtkBiQuadraticQuadraticHexahedron_TriangulateP7_objectS0__ZL52PyvtkBiQuadraticQuadraticHexahedron_EvaluateLocationP7_objectS0__ZL52PyvtkBiQuadraticQuadraticHexahedron_EvaluateLocationP7_objectS0_.cold_ZL52PyvtkBiQuadraticQuadraticHexahedron_EvaluatePositionP7_objectS0__ZL52PyvtkBiQuadraticQuadraticHexahedron_EvaluatePositionP7_objectS0_.cold_ZL43PyvtkBiQuadraticQuadraticHexahedron_ContourP7_objectS0__ZL48PyvtkBiQuadraticQuadraticHexahedron_CellBoundaryP7_objectS0__ZL43PyvtkBiQuadraticQuadraticHexahedron_GetFaceP7_objectS0__ZL43PyvtkBiQuadraticQuadraticHexahedron_GetEdgeP7_objectS0__ZL40PyvtkBiQuadraticQuadraticWedge_StaticNewv_ZL43PyvtkBiQuadraticQuadraticWedge_GetFaceArrayP7_objectS0__ZL50PyvtkBiQuadraticQuadraticWedge_InterpolationDerivsP7_objectS0__ZL53PyvtkBiQuadraticQuadraticWedge_InterpolationFunctionsP7_objectS0__ZL43PyvtkBiQuadraticQuadraticWedge_SafeDownCastP7_objectS0__ZL39PyvtkBiQuadraticQuadraticWedge_IsTypeOfP7_objectS0__ZL43PyvtkBiQuadraticQuadraticWedge_GetEdgeArrayP7_objectS0__ZL47PyvtkBiQuadraticQuadraticWedge_GetNumberOfEdgesP7_objectS0__ZL47PyvtkBiQuadraticQuadraticWedge_GetCellDimensionP7_objectS0__ZL42PyvtkBiQuadraticQuadraticWedge_GetCellTypeP7_objectS0__ZL47PyvtkBiQuadraticQuadraticWedge_GetNumberOfFacesP7_objectS0__ZL50PyvtkBiQuadraticQuadraticWedge_GetParametricCenterP7_objectS0__ZL42PyvtkBiQuadraticQuadraticWedge_NewInstanceP7_objectS0__ZL34PyvtkBiQuadraticQuadraticWedge_IsAP7_objectS0__ZL48PyvtkBiQuadraticQuadraticWedge_InterpolateDerivsP7_objectS0__ZL51PyvtkBiQuadraticQuadraticWedge_InterpolateFunctionsP7_objectS0__ZL35PyvtkBiQuadraticQuadraticWedge_Type_ZL38PyvtkBiQuadraticQuadraticWedge_Methods_GLOBAL__sub_I_vtkBiQuadraticQuadraticWedgePython.cxx_ZL48PyvtkBiQuadraticQuadraticWedge_IntersectWithLineP7_objectS0__ZL35PyvtkBiQuadraticQuadraticWedge_ClipP7_objectS0__ZL50PyvtkBiQuadraticQuadraticWedge_GetParametricCoordsP7_objectS0__ZL42PyvtkBiQuadraticQuadraticWedge_DerivativesP7_objectS0__ZL42PyvtkBiQuadraticQuadraticWedge_DerivativesP7_objectS0_.cold_ZL42PyvtkBiQuadraticQuadraticWedge_TriangulateP7_objectS0__ZL47PyvtkBiQuadraticQuadraticWedge_EvaluateLocationP7_objectS0__ZL47PyvtkBiQuadraticQuadraticWedge_EvaluateLocationP7_objectS0_.cold_ZL47PyvtkBiQuadraticQuadraticWedge_EvaluatePositionP7_objectS0__ZL47PyvtkBiQuadraticQuadraticWedge_EvaluatePositionP7_objectS0_.cold_ZL38PyvtkBiQuadraticQuadraticWedge_ContourP7_objectS0__ZL43PyvtkBiQuadraticQuadraticWedge_CellBoundaryP7_objectS0__ZL38PyvtkBiQuadraticQuadraticWedge_GetFaceP7_objectS0__ZL38PyvtkBiQuadraticQuadraticWedge_GetEdgeP7_objectS0__ZL34PyvtkBiQuadraticTriangle_StaticNewv_ZL44PyvtkBiQuadraticTriangle_InterpolationDerivsP7_objectS0__ZL47PyvtkBiQuadraticTriangle_InterpolationFunctionsP7_objectS0__ZL37PyvtkBiQuadraticTriangle_SafeDownCastP7_objectS0__ZL33PyvtkBiQuadraticTriangle_IsTypeOfP7_objectS0__ZL41PyvtkBiQuadraticTriangle_GetNumberOfFacesP7_objectS0__ZL41PyvtkBiQuadraticTriangle_GetCellDimensionP7_objectS0__ZL41PyvtkBiQuadraticTriangle_GetNumberOfEdgesP7_objectS0__ZL36PyvtkBiQuadraticTriangle_GetCellTypeP7_objectS0__ZL32PyvtkBiQuadraticTriangle_GetFaceP7_objectS0__ZL44PyvtkBiQuadraticTriangle_GetParametricCenterP7_objectS0__ZL36PyvtkBiQuadraticTriangle_NewInstanceP7_objectS0__ZL28PyvtkBiQuadraticTriangle_IsAP7_objectS0__ZL45PyvtkBiQuadraticTriangle_InterpolateFunctionsP7_objectS0__ZL42PyvtkBiQuadraticTriangle_InterpolateDerivsP7_objectS0__ZL29PyvtkBiQuadraticTriangle_Type_ZL32PyvtkBiQuadraticTriangle_Methods_GLOBAL__sub_I_vtkBiQuadraticTrianglePython.cxx_ZL46PyvtkBiQuadraticTriangle_GetParametricDistanceP7_objectS0__ZL42PyvtkBiQuadraticTriangle_IntersectWithLineP7_objectS0__ZL29PyvtkBiQuadraticTriangle_ClipP7_objectS0__ZL44PyvtkBiQuadraticTriangle_GetParametricCoordsP7_objectS0__ZL36PyvtkBiQuadraticTriangle_DerivativesP7_objectS0__ZL36PyvtkBiQuadraticTriangle_DerivativesP7_objectS0_.cold_ZL36PyvtkBiQuadraticTriangle_TriangulateP7_objectS0__ZL41PyvtkBiQuadraticTriangle_EvaluateLocationP7_objectS0__ZL41PyvtkBiQuadraticTriangle_EvaluateLocationP7_objectS0_.cold_ZL41PyvtkBiQuadraticTriangle_EvaluatePositionP7_objectS0__ZL41PyvtkBiQuadraticTriangle_EvaluatePositionP7_objectS0_.cold_ZL32PyvtkBiQuadraticTriangle_ContourP7_objectS0__ZL37PyvtkBiQuadraticTriangle_CellBoundaryP7_objectS0__ZL32PyvtkBiQuadraticTriangle_GetEdgeP7_objectS0__ZL22PyvtkBSPCuts_StaticNewv_ZL25PyvtkBSPCuts_SafeDownCastP7_objectS0__ZL23PyvtkBSPCuts_GetData_s1P7_objectS0__ZL23PyvtkBSPCuts_GetData_s2P7_objectS0__ZL26PyvtkBSPCuts_CreateCuts_s1P7_objectS0__ZL26PyvtkBSPCuts_CreateCuts_s1P7_objectS0_.cold_ZL21PyvtkBSPCuts_IsTypeOfP7_objectS0__ZL26PyvtkBSPCuts_GetKdNodeTreeP7_objectS0__ZL24PyvtkBSPCuts_PrintArraysP7_objectS0__ZL22PyvtkBSPCuts_PrintTreeP7_objectS0__ZL28PyvtkBSPCuts_GetNumberOfCutsP7_objectS0__ZL19PyvtkBSPCuts_EqualsP7_objectS0__ZL16PyvtkBSPCuts_IsAP7_objectS0__ZL24PyvtkBSPCuts_NewInstanceP7_objectS0__ZL23PyvtkBSPCuts_CreateCutsP7_objectS0__ZL22PyvtkBSPCuts_GetArraysP7_objectS0__ZL22PyvtkBSPCuts_GetArraysP7_objectS0_.cold_ZL20PyvtkBSPCuts_GetDataP7_objectS0__ZL28PyvtkBSPCuts_GetData_Methods_ZL17PyvtkBSPCuts_Type_ZL20PyvtkBSPCuts_Methods_GLOBAL__sub_I_vtkBSPCutsPython.cxx_ZL21PyvtkBSPCuts_DeepCopyP7_objectS0__ZL24PyvtkBSPCuts_ShallowCopyP7_objectS0__ZL23PyvtkBSPCuts_InitializeP7_objectS0__ZL31PyvtkBSPIntersections_StaticNewv_ZL34PyvtkBSPIntersections_SafeDownCastP7_objectS0__ZL30PyvtkBSPIntersections_IsTypeOfP7_objectS0__ZL59PyvtkBSPIntersections_ComputeIntersectionsUsingDataBoundsOnP7_objectS0__ZL60PyvtkBSPIntersections_ComputeIntersectionsUsingDataBoundsOffP7_objectS0__ZL40PyvtkBSPIntersections_GetNumberOfRegionsP7_objectS0__ZL29PyvtkBSPIntersections_GetCutsP7_objectS0__ZL60PyvtkBSPIntersections_GetComputeIntersectionsUsingDataBoundsP7_objectS0__ZL60PyvtkBSPIntersections_SetComputeIntersectionsUsingDataBoundsP7_objectS0__ZL29PyvtkBSPIntersections_SetCutsP7_objectS0__ZL39PyvtkBSPIntersections_IntersectsCell_s1P7_objectS0__ZL25PyvtkBSPIntersections_IsAP7_objectS0__ZL37PyvtkBSPIntersections_GetRegionBoundsP7_objectS0__ZL41PyvtkBSPIntersections_GetRegionDataBoundsP7_objectS0__ZL33PyvtkBSPIntersections_NewInstanceP7_objectS0__ZL31PyvtkBSPIntersections_GetBoundsP7_objectS0__ZL31PyvtkBSPIntersections_GetBoundsP7_objectS0_.cold_ZL39PyvtkBSPIntersections_IntersectsCell_s2P7_objectS0__ZL39PyvtkBSPIntersections_IntersectsCell_s2P7_objectS0_.cold_ZL36PyvtkBSPIntersections_IntersectsCellP7_objectS0__ZL44PyvtkBSPIntersections_IntersectsCell_Methods_ZL39PyvtkBSPIntersections_IntersectsSphere2P7_objectS0__ZL39PyvtkBSPIntersections_IntersectsSphere2P7_objectS0_.cold_ZL35PyvtkBSPIntersections_IntersectsBoxP7_objectS0__ZL35PyvtkBSPIntersections_IntersectsBoxP7_objectS0_.cold_ZL26PyvtkBSPIntersections_Type_ZL29PyvtkBSPIntersections_Methods_GLOBAL__sub_I_vtkBSPIntersectionsPython.cxx_ZL24PyvtkCell3D_SafeDownCastP7_objectS0__ZL20PyvtkCell3D_IsTypeOfP7_objectS0__ZL37PyvtkCell3D_GetMergeToleranceMaxValueP7_objectS0__ZL28PyvtkCell3D_GetCellDimensionP7_objectS0__ZL37PyvtkCell3D_GetMergeToleranceMinValueP7_objectS0__ZL29PyvtkCell3D_GetMergeToleranceP7_objectS0__ZL23PyvtkCell3D_NewInstanceP7_objectS0__ZL29PyvtkCell3D_SetMergeToleranceP7_objectS0__ZL15PyvtkCell3D_IsAP7_objectS0__ZL25PyvtkCell3D_GetFacePointsP7_objectS0__ZL25PyvtkCell3D_GetFacePointsP7_objectS0_.cold_ZL25PyvtkCell3D_GetEdgePointsP7_objectS0__ZL25PyvtkCell3D_GetEdgePointsP7_objectS0_.cold_ZL16PyvtkCell3D_Type_ZL19PyvtkCell3D_Methods_GLOBAL__sub_I_vtkCell3DPython.cxx_ZL16PyvtkCell3D_ClipP7_objectS0__ZL19PyvtkCell3D_ContourP7_objectS0__ZL24PyvtkCellArray_StaticNewv_ZL27PyvtkCellArray_SafeDownCastP7_objectS0__ZL23PyvtkCellArray_IsTypeOfP7_objectS0__ZL28PyvtkCellArray_InitTraversalP7_objectS0__ZL22PyvtkCellArray_GetDataP7_objectS0__ZL25PyvtkCellArray_InitializeP7_objectS0__ZL22PyvtkCellArray_GetSizeP7_objectS0__ZL45PyvtkCellArray_GetNumberOfConnectivityEntriesP7_objectS0__ZL29PyvtkCellArray_GetMaxCellSizeP7_objectS0__ZL31PyvtkCellArray_GetNumberOfCellsP7_objectS0__ZL34PyvtkCellArray_GetActualMemorySizeP7_objectS0__ZL35PyvtkCellArray_SetTraversalLocationP7_objectS0__ZL32PyvtkCellArray_GetInsertLocationP7_objectS0__ZL23PyvtkCellArray_DeepCopyP7_objectS0__ZL25PyvtkCellArray_GetPointerP7_objectS0__ZL27PyvtkCellArray_EstimateSizeP7_objectS0__ZL23PyvtkCellArray_SetCellsP7_objectS0__ZL30PyvtkCellArray_UpdateCellCountP7_objectS0__ZL20PyvtkCellArray_ResetP7_objectS0__ZL31PyvtkCellArray_SetNumberOfCellsP7_objectS0__ZL22PyvtkCellArray_SqueezeP7_objectS0__ZL27PyvtkCellArray_WritePointerP7_objectS0__ZL23PyvtkCellArray_AllocateP7_objectS0__ZL18PyvtkCellArray_IsAP7_objectS0__ZL26PyvtkCellArray_NewInstanceP7_objectS0__ZL26PyvtkCellArray_ReverseCellP7_objectS0__ZL30PyvtkCellArray_InsertCellPointP7_objectS0__ZL26PyvtkCellArray_ReplaceCellP7_objectS0__ZL26PyvtkCellArray_ReplaceCellP7_objectS0_.cold_ZL32PyvtkCellArray_InsertNextCell_s3P7_objectS0__ZL32PyvtkCellArray_InsertNextCell_s1P7_objectS0__ZL32PyvtkCellArray_InsertNextCell_s4P7_objectS0__ZL35PyvtkCellArray_GetTraversalLocationP7_objectS0__ZL26PyvtkCellArray_GetNextCellP7_objectS0__ZL26PyvtkCellArray_GetNextCellP7_objectS0_.cold_ZL22PyvtkCellArray_GetCellP7_objectS0__ZL22PyvtkCellArray_GetCellP7_objectS0_.cold_ZL29PyvtkCellArray_InsertNextCellP7_objectS0__ZL37PyvtkCellArray_InsertNextCell_Methods_ZL29PyvtkCellArray_InsertNextCellP7_objectS0_.cold_ZL19PyvtkCellArray_Type_ZL22PyvtkCellArray_Methods_GLOBAL__sub_I_vtkCellArrayPython.cxx_ZStL8__ioinit_ZL28vtkDebugLeaksManagerInstance_ZL39vtkObjectFactoryRegistryCleanupInstance_ZL22PyvtkCell_SafeDownCastP7_objectS0__ZL18PyvtkCell_IsTypeOfP7_objectS0__ZL19PyvtkCell_GetPointsP7_objectS0__ZL21PyvtkCell_GetPointIdsP7_objectS0__ZL27PyvtkCell_GetNumberOfPointsP7_objectS0__ZL20PyvtkCell_GetLength2P7_objectS0__ZL32PyvtkCell_RequiresInitializationP7_objectS0__ZL18PyvtkCell_IsLinearP7_objectS0__ZL44PyvtkCell_RequiresExplicitFaceRepresentationP7_objectS0__ZL24PyvtkCell_IsExplicitCellP7_objectS0__ZL23PyvtkCell_IsPrimaryCellP7_objectS0__ZL26PyvtkCell_GetCellDimensionP7_objectS0__ZL21PyvtkCell_GetCellTypeP7_objectS0__ZL26PyvtkCell_GetNumberOfEdgesP7_objectS0__ZL26PyvtkCell_GetNumberOfFacesP7_objectS0__ZL18PyvtkCell_GetFacesP7_objectS0__ZL17PyvtkCell_GetEdgeP7_objectS0__ZL17PyvtkCell_GetFaceP7_objectS0__ZL20PyvtkCell_GetPointIdP7_objectS0__ZL21PyvtkCell_TriangulateP7_objectS0__ZL13PyvtkCell_IsAP7_objectS0__ZL21PyvtkCell_NewInstanceP7_objectS0__ZL22PyvtkCell_CellBoundaryP7_objectS0__ZL18PyvtkCell_SetFacesP7_objectS0__ZL18PyvtkCell_SetFacesP7_objectS0_.cold_ZL14PyvtkCell_ClipP7_objectS0__ZL17PyvtkCell_ContourP7_objectS0__ZL27PyvtkCell_InterpolateDerivsP7_objectS0__ZL27PyvtkCell_InterpolateDerivsP7_objectS0_.cold_ZL30PyvtkCell_InterpolateFunctionsP7_objectS0__ZL30PyvtkCell_InterpolateFunctionsP7_objectS0_.cold_ZL26PyvtkCell_EvaluateLocationP7_objectS0__ZL26PyvtkCell_EvaluateLocationP7_objectS0_.cold_ZL21PyvtkCell_DerivativesP7_objectS0__ZL21PyvtkCell_DerivativesP7_objectS0_.cold_ZL27PyvtkCell_IntersectWithLineP7_objectS0__ZL26PyvtkCell_EvaluatePositionP7_objectS0__ZL26PyvtkCell_EvaluatePositionP7_objectS0_.cold_ZL19PyvtkCell_GetBoundsP7_objectS0__ZL20PyvtkCell_InitializeP7_objectS0__ZL20PyvtkCell_InitializeP7_objectS0_.cold_ZL14PyvtkCell_Type_ZL17PyvtkCell_Methods_GLOBAL__sub_I_vtkCellPython.cxx_ZL29PyvtkCell_GetParametricCoordsP7_objectS0__ZL31PyvtkCell_GetParametricDistanceP7_objectS0__ZL29PyvtkCell_GetParametricCenterP7_objectS0__ZL18PyvtkCell_DeepCopyP7_objectS0__ZL21PyvtkCell_ShallowCopyP7_objectS0__ZL30PyvtkCellIterator_SafeDownCastP7_objectS0__ZL26PyvtkCellIterator_IsTypeOfP7_objectS0__ZL29PyvtkCellIterator_NewInstanceP7_objectS0__ZL34PyvtkCellIterator_GetCellDimensionP7_objectS0__ZL27PyvtkCellIterator_GetCellIdP7_objectS0__ZL37PyvtkCellIterator_IsDoneWithTraversalP7_objectS0__ZL31PyvtkCellIterator_InitTraversalP7_objectS0__ZL30PyvtkCellIterator_GoToNextCellP7_objectS0__ZL25PyvtkCellIterator_GetCellP7_objectS0__ZL26PyvtkCellIterator_GetFacesP7_objectS0__ZL29PyvtkCellIterator_GetPointIdsP7_objectS0__ZL27PyvtkCellIterator_GetPointsP7_objectS0__ZL29PyvtkCellIterator_GetCellTypeP7_objectS0__ZL35PyvtkCellIterator_GetNumberOfPointsP7_objectS0__ZL21PyvtkCellIterator_IsAP7_objectS0__ZL22PyvtkCellIterator_Type_ZL25PyvtkCellIterator_Methods_GLOBAL__sub_I_vtkCellIteratorPython.cxx_ZL34PyvtkCellIterator_GetNumberOfFacesP7_objectS0__ZL34PyvtkCellIterator_GetNumberOfFacesP7_objectS0_.cold_ZL24PyvtkCellLinks_StaticNewv_ZL27PyvtkCellLinks_SafeDownCastP7_objectS0__ZL23PyvtkCellLinks_IsTypeOfP7_objectS0__ZL25PyvtkCellLinks_InitializeP7_objectS0__ZL22PyvtkCellLinks_SqueezeP7_objectS0__ZL20PyvtkCellLinks_ResetP7_objectS0__ZL34PyvtkCellLinks_GetActualMemorySizeP7_objectS0__ZL23PyvtkCellLinks_DeepCopyP7_objectS0__ZL30PyvtkCellLinks_InsertNextPointP7_objectS0__ZL24PyvtkCellLinks_GetNcellsP7_objectS0__ZL23PyvtkCellLinks_GetCellsP7_objectS0__ZL26PyvtkCellLinks_DeletePointP7_objectS0__ZL23PyvtkCellLinks_AllocateP7_objectS0__ZL38PyvtkCellLinks_InsertNextCellReferenceP7_objectS0__ZL31PyvtkCellLinks_AddCellReferenceP7_objectS0__ZL18PyvtkCellLinks_IsAP7_objectS0__ZL26PyvtkCellLinks_NewInstanceP7_objectS0__ZL34PyvtkCellLinks_RemoveCellReferenceP7_objectS0__ZL29PyvtkCellLinks_ResizeCellListP7_objectS0__ZL29PyvtkCellLinks_ResizeCellListP7_objectS0_.cold_ZL19PyvtkCellLinks_Type_ZL22PyvtkCellLinks_Methods_GLOBAL__sub_I_vtkCellLinksPython.cxx_ZL25PyvtkCellLinks_BuildLinksP7_objectS0__ZL26PyvtkCellLocator_StaticNewv_ZL29PyvtkCellLocator_SafeDownCastP7_objectS0__ZL25PyvtkCellLocator_IsTypeOfP7_objectS0__ZL42PyvtkCellLocator_GetNumberOfCellsPerBucketP7_objectS0__ZL42PyvtkCellLocator_SetNumberOfCellsPerBucketP7_objectS0__ZL28PyvtkCellLocator_NewInstanceP7_objectS0__ZL20PyvtkCellLocator_IsAP7_objectS0__ZL21PyvtkCellLocator_Type_ZL24PyvtkCellLocator_Methods_GLOBAL__sub_I_vtkCellLocatorPython.cxx_ZL39PyvtkCellLocator_GenerateRepresentationP7_objectS0__ZL37PyvtkCellLocator_BuildLocatorInternalP7_objectS0__ZL34PyvtkCellLocator_ForceBuildLocatorP7_objectS0__ZL37PyvtkCellLocator_BuildLocatorIfNeededP7_objectS0__ZL29PyvtkCellLocator_BuildLocatorP7_objectS0__ZL36PyvtkCellLocator_FreeSearchStructureP7_objectS0__ZL35PyvtkCellLocator_FindCellsAlongLineP7_objectS0__ZL38PyvtkCellLocator_FindCellsWithinBoundsP7_objectS0__ZL38PyvtkCellLocator_FindCellsWithinBoundsP7_objectS0_.cold_ZL25PyvtkCellLocator_FindCellP7_objectS0__ZL25PyvtkCellLocator_FindCellP7_objectS0_.cold_ZL35PyvtkCellLocator_GetNumberOfBucketsP7_objectS0__ZL25PyvtkCellLocator_GetCellsP7_objectS0__ZL45PyvtkCellLocator_FindClosestPointWithinRadiusP7_objectS0__ZL33PyvtkCellLocator_FindClosestPointP7_objectS0__ZL34PyvtkCellLocator_IntersectWithLineP7_objectS0__ZL29PyvtkConvexPointSet_StaticNewv_ZL32PyvtkConvexPointSet_SafeDownCastP7_objectS0__ZL28PyvtkConvexPointSet_IsTypeOfP7_objectS0__ZL31PyvtkConvexPointSet_GetCellTypeP7_objectS0__ZL36PyvtkConvexPointSet_GetNumberOfEdgesP7_objectS0__ZL36PyvtkConvexPointSet_HasFixedTopologyP7_objectS0__ZL42PyvtkConvexPointSet_RequiresInitializationP7_objectS0__ZL33PyvtkConvexPointSet_IsPrimaryCellP7_objectS0__ZL27PyvtkConvexPointSet_GetEdgeP7_objectS0__ZL39PyvtkConvexPointSet_GetParametricCenterP7_objectS0__ZL33PyvtkConvexPointSet_GetEdgePointsP7_objectS0__ZL33PyvtkConvexPointSet_GetEdgePointsP7_objectS0_.cold_ZL33PyvtkConvexPointSet_GetFacePointsP7_objectS0__ZL33PyvtkConvexPointSet_GetFacePointsP7_objectS0_.cold_ZL31PyvtkConvexPointSet_NewInstanceP7_objectS0__ZL23PyvtkConvexPointSet_IsAP7_objectS0__ZL24PyvtkConvexPointSet_Type_ZL27PyvtkConvexPointSet_Methods_GLOBAL__sub_I_vtkConvexPointSetPython.cxx_ZL37PyvtkConvexPointSet_InterpolateDerivsP7_objectS0__ZL37PyvtkConvexPointSet_InterpolateDerivsP7_objectS0_.cold_ZL40PyvtkConvexPointSet_InterpolateFunctionsP7_objectS0__ZL40PyvtkConvexPointSet_InterpolateFunctionsP7_objectS0_.cold_ZL32PyvtkConvexPointSet_CellBoundaryP7_objectS0__ZL31PyvtkConvexPointSet_DerivativesP7_objectS0__ZL31PyvtkConvexPointSet_DerivativesP7_objectS0_.cold_ZL31PyvtkConvexPointSet_TriangulateP7_objectS0__ZL37PyvtkConvexPointSet_IntersectWithLineP7_objectS0__ZL36PyvtkConvexPointSet_EvaluateLocationP7_objectS0__ZL36PyvtkConvexPointSet_EvaluateLocationP7_objectS0_.cold_ZL36PyvtkConvexPointSet_EvaluatePositionP7_objectS0__ZL36PyvtkConvexPointSet_EvaluatePositionP7_objectS0_.cold_ZL24PyvtkConvexPointSet_ClipP7_objectS0__ZL27PyvtkConvexPointSet_ContourP7_objectS0__ZL27PyvtkConvexPointSet_GetFaceP7_objectS0__ZL36PyvtkConvexPointSet_GetNumberOfFacesP7_objectS0__ZL30PyvtkConvexPointSet_InitializeP7_objectS0__ZL39PyvtkConvexPointSet_GetParametricCoordsP7_objectS0__ZL24PyvtkCubicLine_StaticNewv_ZL34PyvtkCubicLine_InterpolationDerivsP7_objectS0__ZL37PyvtkCubicLine_InterpolationFunctionsP7_objectS0__ZL27PyvtkCubicLine_SafeDownCastP7_objectS0__ZL23PyvtkCubicLine_IsTypeOfP7_objectS0__ZL26PyvtkCubicLine_GetCellTypeP7_objectS0__ZL31PyvtkCubicLine_GetNumberOfFacesP7_objectS0__ZL31PyvtkCubicLine_GetCellDimensionP7_objectS0__ZL31PyvtkCubicLine_GetNumberOfEdgesP7_objectS0__ZL22PyvtkCubicLine_GetEdgeP7_objectS0__ZL22PyvtkCubicLine_GetFaceP7_objectS0__ZL34PyvtkCubicLine_GetParametricCenterP7_objectS0__ZL26PyvtkCubicLine_NewInstanceP7_objectS0__ZL18PyvtkCubicLine_IsAP7_objectS0__ZL32PyvtkCubicLine_InterpolateDerivsP7_objectS0__ZL35PyvtkCubicLine_InterpolateFunctionsP7_objectS0__ZL19PyvtkCubicLine_Type_ZL22PyvtkCubicLine_Methods_GLOBAL__sub_I_vtkCubicLinePython.cxx_ZL32PyvtkCubicLine_IntersectWithLineP7_objectS0__ZL19PyvtkCubicLine_ClipP7_objectS0__ZL36PyvtkCubicLine_GetParametricDistanceP7_objectS0__ZL34PyvtkCubicLine_GetParametricCoordsP7_objectS0__ZL26PyvtkCubicLine_DerivativesP7_objectS0__ZL26PyvtkCubicLine_DerivativesP7_objectS0_.cold_ZL26PyvtkCubicLine_TriangulateP7_objectS0__ZL31PyvtkCubicLine_EvaluateLocationP7_objectS0__ZL31PyvtkCubicLine_EvaluateLocationP7_objectS0_.cold_ZL31PyvtkCubicLine_EvaluatePositionP7_objectS0__ZL31PyvtkCubicLine_EvaluatePositionP7_objectS0_.cold_ZL22PyvtkCubicLine_ContourP7_objectS0__ZL27PyvtkCubicLine_CellBoundaryP7_objectS0__ZL25PyvtkDataObject_StaticNewv_ZL28PyvtkDataObject_SafeDownCastP7_objectS0__ZL26PyvtkDataObject_GetData_s1P7_objectS0__ZL26PyvtkDataObject_GetData_s2P7_objectS0__ZL44PyvtkDataObject_GetAssociationTypeFromStringP7_objectS0__ZL42PyvtkDataObject_GetAssociationTypeAsStringP7_objectS0__ZL44PyvtkDataObject_SetPointDataActiveScalarInfoP7_objectS0__ZL38PyvtkDataObject_SetActiveAttributeInfoP7_objectS0__ZL34PyvtkDataObject_SetActiveAttributeP7_objectS0__ZL43PyvtkDataObject_RemoveNamedFieldInformationP7_objectS0__ZL40PyvtkDataObject_GetNamedFieldInformationP7_objectS0__ZL41PyvtkDataObject_GetActiveFieldInformationP7_objectS0__ZL40PyvtkDataObject_SetGlobalReleaseDataFlagP7_objectS0__ZL19PyvtkDataObject_SILP7_objectS0__ZL28PyvtkDataObject_BOUNDING_BOXP7_objectS0__ZL23PyvtkDataObject_SPACINGP7_objectS0__ZL22PyvtkDataObject_ORIGINP7_objectS0__ZL26PyvtkDataObject_FIELD_NAMEP7_objectS0__ZL28PyvtkDataObject_PIECE_EXTENTP7_objectS0__ZL27PyvtkDataObject_FIELD_RANGEP7_objectS0__ZL31PyvtkDataObject_FIELD_OPERATIONP7_objectS0__ZL38PyvtkDataObject_FIELD_NUMBER_OF_TUPLESP7_objectS0__ZL42PyvtkDataObject_FIELD_NUMBER_OF_COMPONENTSP7_objectS0__ZL38PyvtkDataObject_FIELD_ACTIVE_ATTRIBUTEP7_objectS0__ZL36PyvtkDataObject_FIELD_ATTRIBUTE_TYPEP7_objectS0__ZL33PyvtkDataObject_FIELD_ASSOCIATIONP7_objectS0__ZL32PyvtkDataObject_FIELD_ARRAY_TYPEP7_objectS0__ZL32PyvtkDataObject_EDGE_DATA_VECTORP7_objectS0__ZL34PyvtkDataObject_VERTEX_DATA_VECTORP7_objectS0__ZL32PyvtkDataObject_CELL_DATA_VECTORP7_objectS0__ZL33PyvtkDataObject_POINT_DATA_VECTORP7_objectS0__ZL30PyvtkDataObject_DATA_TIME_STEPP7_objectS0__ZL43PyvtkDataObject_DATA_NUMBER_OF_GHOST_LEVELSP7_objectS0__ZL37PyvtkDataObject_DATA_NUMBER_OF_PIECESP7_objectS0__ZL33PyvtkDataObject_DATA_PIECE_NUMBERP7_objectS0__ZL33PyvtkDataObject_ALL_PIECES_EXTENTP7_objectS0__ZL27PyvtkDataObject_DATA_EXTENTP7_objectS0__ZL32PyvtkDataObject_DATA_EXTENT_TYPEP7_objectS0__ZL27PyvtkDataObject_DATA_OBJECTP7_objectS0__ZL30PyvtkDataObject_DATA_TYPE_NAMEP7_objectS0__ZL40PyvtkDataObject_GetGlobalReleaseDataFlagP7_objectS0__ZL24PyvtkDataObject_IsTypeOfP7_objectS0__ZL27PyvtkDataObject_NewInstanceP7_objectS0__ZL39PyvtkDataObject_GlobalReleaseDataFlagOnP7_objectS0__ZL40PyvtkDataObject_GlobalReleaseDataFlagOffP7_objectS0__ZL36PyvtkDataObject_DataHasBeenGeneratedP7_objectS0__ZL27PyvtkDataObject_ReleaseDataP7_objectS0__ZL29PyvtkDataObject_GetExtentTypeP7_objectS0__ZL33PyvtkDataObject_GetDataObjectTypeP7_objectS0__ZL31PyvtkDataObject_GetDataReleasedP7_objectS0__ZL28PyvtkDataObject_GetFieldDataP7_objectS0__ZL30PyvtkDataObject_GetInformationP7_objectS0__ZL29PyvtkDataObject_GetUpdateTimeP7_objectS0__ZL43PyvtkDataObject_CopyInformationFromPipelineP7_objectS0__ZL41PyvtkDataObject_CopyInformationToPipelineP7_objectS0__ZL33PyvtkDataObject_PrepareForNewDataP7_objectS0__ZL19PyvtkDataObject_IsAP7_objectS0__ZL23PyvtkDataObject_GetDataP7_objectS0__ZL31PyvtkDataObject_GetData_Methods_ZL38PyvtkDataObject_FieldAssociations_Type_ZL35PyvtkDataObject_AttributeTypes_Type_ZL36PyvtkDataObject_FieldOperations_Type_ZL23PyvtkDataObject_Methods_ZL20PyvtkDataObject_Type_ZZ24PyvtkDataObject_ClassNewE9constants_ZZ24PyvtkDataObject_ClassNewE9constants_0_ZZ24PyvtkDataObject_ClassNewE9constants_1_ZZ26PyVTKAddFile_vtkDataObjectE9constants_GLOBAL__sub_I_vtkDataObjectPython.cxx_ZL35PyvtkDataObject_GetNumberOfElementsP7_objectS0__ZL40PyvtkDataObject_GetAttributeTypeForArrayP7_objectS0__ZL40PyvtkDataObject_GetAttributesAsFieldDataP7_objectS0__ZL29PyvtkDataObject_GetAttributesP7_objectS0__ZL20PyvtkDataObject_CropP7_objectS0__ZL20PyvtkDataObject_CropP7_objectS0_.cold_ZL24PyvtkDataObject_DeepCopyP7_objectS0__ZL27PyvtkDataObject_ShallowCopyP7_objectS0__ZL26PyvtkDataObject_InitializeP7_objectS0__ZL35PyvtkDataObject_GetActualMemorySizeP7_objectS0__ZL28PyvtkDataObject_SetFieldDataP7_objectS0__ZL24PyvtkDataObject_GetMTimeP7_objectS0__ZL30PyvtkDataObject_SetInformationP7_objectS0__ZL32PyvtkDataSetAttributes_StaticNewv_ZL47PyvtkDataSetAttributes_GetAttributeTypeAsStringP7_objectS0__ZL35PyvtkDataSetAttributes_SafeDownCastP7_objectS0__ZL34PyvtkDataSetAttributes_RemoveArrayP7_objectS0__ZL42PyvtkDataSetAttributes_RemoveArray_Methods_ZL41PyvtkDataSetAttributes_SetActiveAttributeP7_objectS0__ZL49PyvtkDataSetAttributes_SetActiveAttribute_Methods_ZL37PyvtkDataSetAttributes_GhostArrayNameP7_objectS0__ZL31PyvtkDataSetAttributes_IsTypeOfP7_objectS0__ZL51PyvtkDataSetAttributes_GetLongAttributeTypeAsStringP7_objectS0__ZL29PyvtkDataSetAttributes_UpdateP7_objectS0__ZL36PyvtkDataSetAttributes_CopyTensorsOnP7_objectS0__ZL35PyvtkDataSetAttributes_SetupForCopyP7_objectS0__ZL33PyvtkDataSetAttributes_SetScalarsP7_objectS0__ZL41PyvtkDataSetAttributes_IsArrayAnAttributeP7_objectS0__ZL35PyvtkDataSetAttributes_GetAttributeP7_objectS0__ZL43PyvtkDataSetAttributes_GetAbstractAttributeP7_objectS0__ZL35PyvtkDataSetAttributes_SetGlobalIdsP7_objectS0__ZL33PyvtkDataSetAttributes_SetTCoordsP7_objectS0__ZL33PyvtkDataSetAttributes_SetNormalsP7_objectS0__ZL33PyvtkDataSetAttributes_SetTensorsP7_objectS0__ZL37PyvtkDataSetAttributes_SetPedigreeIdsP7_objectS0__ZL33PyvtkDataSetAttributes_SetVectorsP7_objectS0__ZL39PyvtkDataSetAttributes_SetActiveVectorsP7_objectS0__ZL39PyvtkDataSetAttributes_SetActiveScalarsP7_objectS0__ZL41PyvtkDataSetAttributes_SetActiveGlobalIdsP7_objectS0__ZL39PyvtkDataSetAttributes_SetActiveTensorsP7_objectS0__ZL39PyvtkDataSetAttributes_SetActiveTCoordsP7_objectS0__ZL39PyvtkDataSetAttributes_SetActiveNormalsP7_objectS0__ZL43PyvtkDataSetAttributes_SetActivePedigreeIdsP7_objectS0__ZL37PyvtkDataSetAttributes_GetCopyVectorsP7_objectS0__ZL37PyvtkDataSetAttributes_GetCopyTensorsP7_objectS0__ZL39PyvtkDataSetAttributes_GetCopyGlobalIdsP7_objectS0__ZL37PyvtkDataSetAttributes_GetCopyScalarsP7_objectS0__ZL41PyvtkDataSetAttributes_GetCopyPedigreeIdsP7_objectS0__ZL37PyvtkDataSetAttributes_GetCopyNormalsP7_objectS0__ZL37PyvtkDataSetAttributes_GetCopyTCoordsP7_objectS0__ZL44PyvtkDataSetAttributes_SetActiveAttribute_s2P7_objectS0__ZL39PyvtkDataSetAttributes_GetCopyAttributeP7_objectS0__ZL35PyvtkDataSetAttributes_SetAttributeP7_objectS0__ZL44PyvtkDataSetAttributes_SetActiveAttribute_s1P7_objectS0__ZL38PyvtkDataSetAttributes_CopyGlobalIdsOnP7_objectS0__ZL41PyvtkDataSetAttributes_CopyPedigreeIdsOffP7_objectS0__ZL37PyvtkDataSetAttributes_CopyVectorsOffP7_objectS0__ZL39PyvtkDataSetAttributes_CopyGlobalIdsOffP7_objectS0__ZL37PyvtkDataSetAttributes_CopyScalarsOffP7_objectS0__ZL36PyvtkDataSetAttributes_CopyTCoordsOnP7_objectS0__ZL36PyvtkDataSetAttributes_CopyNormalsOnP7_objectS0__ZL37PyvtkDataSetAttributes_CopyTCoordsOffP7_objectS0__ZL37PyvtkDataSetAttributes_CopyNormalsOffP7_objectS0__ZL40PyvtkDataSetAttributes_CopyPedigreeIdsOnP7_objectS0__ZL36PyvtkDataSetAttributes_CopyVectorsOnP7_objectS0__ZL37PyvtkDataSetAttributes_CopyTensorsOffP7_objectS0__ZL36PyvtkDataSetAttributes_CopyScalarsOnP7_objectS0__ZL37PyvtkDataSetAttributes_SetCopyNormalsP7_objectS0__ZL39PyvtkDataSetAttributes_SetCopyGlobalIdsP7_objectS0__ZL37PyvtkDataSetAttributes_SetCopyScalarsP7_objectS0__ZL37PyvtkDataSetAttributes_SetCopyVectorsP7_objectS0__ZL41PyvtkDataSetAttributes_SetCopyPedigreeIdsP7_objectS0__ZL37PyvtkDataSetAttributes_SetCopyTensorsP7_objectS0__ZL37PyvtkDataSetAttributes_SetCopyTCoordsP7_objectS0__ZL34PyvtkDataSetAttributes_CopyData_s1P7_objectS0__ZL34PyvtkDataSetAttributes_CopyData_s2P7_objectS0__ZL39PyvtkDataSetAttributes_SetCopyAttributeP7_objectS0__ZL32PyvtkDataSetAttributes_CopyTupleP7_objectS0__ZL38PyvtkDataSetAttributes_InterpolateTimeP7_objectS0__ZL38PyvtkDataSetAttributes_InterpolateEdgeP7_objectS0__ZL26PyvtkDataSetAttributes_IsAP7_objectS0__ZL34PyvtkDataSetAttributes_NewInstanceP7_objectS0__ZL42PyvtkDataSetAttributes_GetAttributeIndicesP7_objectS0__ZL42PyvtkDataSetAttributes_GetAttributeIndicesP7_objectS0_.cold_ZL41PyvtkDataSetAttributes_CopyStructuredDataP7_objectS0__ZL41PyvtkDataSetAttributes_CopyStructuredDataP7_objectS0_.cold_ZL39PyvtkDataSetAttributes_InterpolatePointP7_objectS0__ZL39PyvtkDataSetAttributes_InterpolatePointP7_objectS0_.cold_ZL31PyvtkDataSetAttributes_CopyDataP7_objectS0__ZL39PyvtkDataSetAttributes_CopyData_Methods_ZL33PyvtkDataSetAttributes_GetNormalsP7_objectS0__ZL33PyvtkDataSetAttributes_GetScalarsP7_objectS0__ZL37PyvtkDataSetAttributes_GetPedigreeIdsP7_objectS0__ZL35PyvtkDataSetAttributes_GetGlobalIdsP7_objectS0__ZL33PyvtkDataSetAttributes_GetVectorsP7_objectS0__ZL33PyvtkDataSetAttributes_GetTCoordsP7_objectS0__ZL33PyvtkDataSetAttributes_GetTensorsP7_objectS0__ZL35PyvtkDataSetAttributes_CopyAllocateP7_objectS0__ZL42PyvtkDataSetAttributes_InterpolateAllocateP7_objectS0__ZL33PyvtkDataSetAttributes_CopyTuplesP7_objectS0__ZL42PyvtkDataSetAttributes_AttributeTypes_Type_ZL47PyvtkDataSetAttributes_AttributeLimitTypes_Type_ZL42PyvtkDataSetAttributes_CellGhostTypes_Type_ZL43PyvtkDataSetAttributes_PointGhostTypes_Type_ZL51PyvtkDataSetAttributes_AttributeCopyOperations_Type_ZL27PyvtkDataSetAttributes_Type_ZL30PyvtkDataSetAttributes_Methods_ZZ31PyvtkDataSetAttributes_ClassNewE9constants_ZZ31PyvtkDataSetAttributes_ClassNewE9constants_0_ZZ31PyvtkDataSetAttributes_ClassNewE9constants_1_ZZ31PyvtkDataSetAttributes_ClassNewE9constants_3_GLOBAL__sub_I_vtkDataSetAttributesPython.cxx_ZL31PyvtkDataSetAttributes_PassDataP7_objectS0__ZL33PyvtkDataSetAttributes_CopyAllOffP7_objectS0__ZL32PyvtkDataSetAttributes_CopyAllOnP7_objectS0__ZL37PyvtkDataSetAttributes_RemoveArray_s2P7_objectS0__ZL37PyvtkDataSetAttributes_RemoveArray_s1P7_objectS0__ZL34PyvtkDataSetAttributes_ShallowCopyP7_objectS0__ZL31PyvtkDataSetAttributes_DeepCopyP7_objectS0__ZL33PyvtkDataSetAttributes_InitializeP7_objectS0__ZL25PyvtkDataSet_SafeDownCastP7_objectS0__ZL23PyvtkDataSet_GetData_s1P7_objectS0__ZL23PyvtkDataSet_GetData_s2P7_objectS0__ZL21PyvtkDataSet_IsTypeOfP7_objectS0__ZL24PyvtkDataSet_GetCellDataP7_objectS0__ZL25PyvtkDataSet_GetPointDataP7_objectS0__ZL38PyvtkDataSet_UpdateCellGhostArrayCacheP7_objectS0__ZL39PyvtkDataSet_UpdatePointGhostArrayCacheP7_objectS0__ZL29PyvtkDataSet_HasAnyGhostCellsP7_objectS0__ZL30PyvtkDataSet_HasAnyGhostPointsP7_objectS0__ZL28PyvtkDataSet_CheckAttributesP7_objectS0__ZL36PyvtkDataSet_AllocatePointGhostArrayP7_objectS0__ZL35PyvtkDataSet_AllocateCellGhostArrayP7_objectS0__ZL30PyvtkDataSet_GetCellGhostArrayP7_objectS0__ZL31PyvtkDataSet_GetPointGhostArrayP7_objectS0__ZL22PyvtkDataSet_GetLengthP7_objectS0__ZL30PyvtkDataSet_GetDataObjectTypeP7_objectS0__ZL29PyvtkDataSet_HasAnyBlankCellsP7_objectS0__ZL30PyvtkDataSet_HasAnyBlankPointsP7_objectS0__ZL30PyvtkDataSet_GetNumberOfPointsP7_objectS0__ZL29PyvtkDataSet_GetNumberOfCellsP7_objectS0__ZL27PyvtkDataSet_GetMaxCellSizeP7_objectS0__ZL26PyvtkDataSet_CopyStructureP7_objectS0__ZL24PyvtkDataSet_GetCellTypeP7_objectS0__ZL26PyvtkDataSet_GetPointCellsP7_objectS0__ZL26PyvtkDataSet_GetCellPointsP7_objectS0__ZL16PyvtkDataSet_IsAP7_objectS0__ZL24PyvtkDataSet_NewInstanceP7_objectS0__ZL20PyvtkDataSet_GetDataP7_objectS0__ZL28PyvtkDataSet_GetData_Methods_ZL21PyvtkDataSet_FindCellP7_objectS0__ZL21PyvtkDataSet_FindCellP7_objectS0_.cold_ZL22PyvtkDataSet_GetCenterP7_objectS0__ZL22PyvtkDataSet_GetBoundsP7_objectS0__ZL22PyvtkDataSet_FindPointP7_objectS0__ZL21PyvtkDataSet_GetPointP7_objectS0__ZL31PyvtkDataSet_FieldDataType_Type_ZL20PyvtkDataSet_Methods_ZL17PyvtkDataSet_Type_ZZ21PyvtkDataSet_ClassNewE9constants_GLOBAL__sub_I_vtkDataSetPython.cxx_ZL32PyvtkDataSet_GetNumberOfElementsP7_objectS0__ZL37PyvtkDataSet_GetAttributesAsFieldDataP7_objectS0__ZL31PyvtkDataSet_GenerateGhostArrayP7_objectS0__ZL21PyvtkDataSet_DeepCopyP7_objectS0__ZL24PyvtkDataSet_ShallowCopyP7_objectS0__ZL32PyvtkDataSet_GetActualMemorySizeP7_objectS0__ZL27PyvtkDataSet_GetScalarRangeP7_objectS0__ZL23PyvtkDataSet_InitializeP7_objectS0__ZL26PyvtkDataSet_ComputeBoundsP7_objectS0__ZL20PyvtkDataSet_SqueezeP7_objectS0__ZL21PyvtkDataSet_GetMTimeP7_objectS0__ZL27PyvtkDataSet_FindAndGetCellP7_objectS0__ZL27PyvtkDataSet_FindAndGetCellP7_objectS0_.cold_ZL29PyvtkDataSet_GetCellNeighborsP7_objectS0__ZL25PyvtkDataSet_GetCellTypesP7_objectS0__ZL26PyvtkDataSet_GetCellBoundsP7_objectS0__ZL20PyvtkDataSet_GetCellP7_objectS0__ZL20PyvtkDataSet_GetCellP7_objectS0_.cold_ZL28PyvtkDataSet_NewCellIteratorP7_objectS0__ZL27PyvtkDataSet_CopyAttributesP7_objectS0__ZL24PyvtkEmptyCell_StaticNewv_ZL27PyvtkEmptyCell_SafeDownCastP7_objectS0__ZL23PyvtkEmptyCell_IsTypeOfP7_objectS0__ZL26PyvtkEmptyCell_GetCellTypeP7_objectS0__ZL31PyvtkEmptyCell_GetNumberOfFacesP7_objectS0__ZL31PyvtkEmptyCell_GetCellDimensionP7_objectS0__ZL31PyvtkEmptyCell_GetNumberOfEdgesP7_objectS0__ZL22PyvtkEmptyCell_GetEdgeP7_objectS0__ZL22PyvtkEmptyCell_GetFaceP7_objectS0__ZL18PyvtkEmptyCell_IsAP7_objectS0__ZL26PyvtkEmptyCell_NewInstanceP7_objectS0__ZL19PyvtkEmptyCell_Type_ZL22PyvtkEmptyCell_Methods_GLOBAL__sub_I_vtkEmptyCellPython.cxx_ZL26PyvtkEmptyCell_DerivativesP7_objectS0__ZL26PyvtkEmptyCell_DerivativesP7_objectS0_.cold_ZL26PyvtkEmptyCell_TriangulateP7_objectS0__ZL32PyvtkEmptyCell_IntersectWithLineP7_objectS0__ZL31PyvtkEmptyCell_EvaluateLocationP7_objectS0__ZL31PyvtkEmptyCell_EvaluateLocationP7_objectS0_.cold_ZL31PyvtkEmptyCell_EvaluatePositionP7_objectS0__ZL31PyvtkEmptyCell_EvaluatePositionP7_objectS0_.cold_ZL19PyvtkEmptyCell_ClipP7_objectS0__ZL22PyvtkEmptyCell_ContourP7_objectS0__ZL27PyvtkEmptyCell_CellBoundaryP7_objectS0__ZL36PyvtkGenericAdaptorCell_SafeDownCastP7_objectS0__ZL40PyvtkGenericAdaptorCell_InterpolateTupleP7_objectS0__ZL48PyvtkGenericAdaptorCell_InterpolateTuple_Methods_ZL32PyvtkGenericAdaptorCell_IsTypeOfP7_objectS0__ZL40PyvtkGenericAdaptorCell_IsGeometryLinearP7_objectS0__ZL35PyvtkGenericAdaptorCell_IsInDataSetP7_objectS0__ZL31PyvtkGenericAdaptorCell_GetTypeP7_objectS0__ZL36PyvtkGenericAdaptorCell_IsOnBoundaryP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetDimensionP7_objectS0__ZL40PyvtkGenericAdaptorCell_GetGeometryOrderP7_objectS0__ZL29PyvtkGenericAdaptorCell_GetIdP7_objectS0__ZL33PyvtkGenericAdaptorCell_IsPrimaryP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetNumberOfDOFNodesP7_objectS0__ZL39PyvtkGenericAdaptorCell_NewCellIteratorP7_objectS0__ZL41PyvtkGenericAdaptorCell_GetNumberOfPointsP7_objectS0__ZL49PyvtkGenericAdaptorCell_GetNumberOfVerticesOnFaceP7_objectS0__ZL40PyvtkGenericAdaptorCell_GetPointIteratorP7_objectS0__ZL40PyvtkGenericAdaptorCell_IsFaceOnBoundaryP7_objectS0__ZL41PyvtkGenericAdaptorCell_GetAttributeOrderP7_objectS0__ZL41PyvtkGenericAdaptorCell_IsAttributeLinearP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetParametricCoordsP7_objectS0__ZL38PyvtkGenericAdaptorCell_CountNeighborsP7_objectS0__ZL45PyvtkGenericAdaptorCell_GetNumberOfBoundariesP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetEdgeArrayP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetFaceArrayP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetNeighborsP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetBoundaryIteratorP7_objectS0__ZL45PyvtkGenericAdaptorCell_GetParametricDistanceP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetParametricCenterP7_objectS0__ZL27PyvtkGenericAdaptorCell_IsAP7_objectS0__ZL35PyvtkGenericAdaptorCell_NewInstanceP7_objectS0__ZL35PyvtkGenericAdaptorCell_GetPointIdsP7_objectS0__ZL35PyvtkGenericAdaptorCell_GetPointIdsP7_objectS0_.cold_ZL42PyvtkGenericAdaptorCell_CountEdgeNeighborsP7_objectS0__ZL42PyvtkGenericAdaptorCell_CountEdgeNeighborsP7_objectS0_.cold_ZL40PyvtkGenericAdaptorCell_EvaluateLocationP7_objectS0__ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s1P7_objectS0__ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s1P7_objectS0_.cold_ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s2P7_objectS0__ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s2P7_objectS0_.cold_ZL35PyvtkGenericAdaptorCell_DerivativesP7_objectS0__ZL35PyvtkGenericAdaptorCell_DerivativesP7_objectS0_.cold_ZL40PyvtkGenericAdaptorCell_EvaluatePositionP7_objectS0__ZL40PyvtkGenericAdaptorCell_EvaluatePositionP7_objectS0_.cold_ZL41PyvtkGenericAdaptorCell_IntersectWithLineP7_objectS0__ZL28PyvtkGenericAdaptorCell_Type_ZL31PyvtkGenericAdaptorCell_Methods_GLOBAL__sub_I_vtkGenericAdaptorCellPython.cxx_ZL39PyvtkGenericAdaptorCell_TriangulateFaceP7_objectS0__ZL34PyvtkGenericAdaptorCell_TessellateP7_objectS0__ZL34PyvtkGenericAdaptorCell_GetLength2P7_objectS0__ZL33PyvtkGenericAdaptorCell_GetBoundsP7_objectS0__ZL28PyvtkGenericAdaptorCell_ClipP7_objectS0__ZL31PyvtkGenericAdaptorCell_ContourP7_objectS0__ZL48PyvtkGenericAdaptorCell_GetHighestOrderAttributeP7_objectS0__ZL41PyvtkGenericAttributeCollection_StaticNewv_ZL44PyvtkGenericAttributeCollection_HasAttributeP7_objectS0__ZL44PyvtkGenericAttributeCollection_HasAttributeP7_objectS0_.cold_ZL44PyvtkGenericAttributeCollection_SafeDownCastP7_objectS0__ZL40PyvtkGenericAttributeCollection_IsTypeOfP7_objectS0__ZL37PyvtkGenericAttributeCollection_ResetP7_objectS0__ZL63PyvtkGenericAttributeCollection_SetAttributesToInterpolateToAllP7_objectS0__ZL53PyvtkGenericAttributeCollection_GetNumberOfAttributesP7_objectS0__ZL39PyvtkGenericAttributeCollection_IsEmptyP7_objectS0__ZL53PyvtkGenericAttributeCollection_GetNumberOfComponentsP7_objectS0__ZL66PyvtkGenericAttributeCollection_GetNumberOfPointCenteredComponentsP7_objectS0__ZL56PyvtkGenericAttributeCollection_GetMaxNumberOfComponentsP7_objectS0__ZL50PyvtkGenericAttributeCollection_GetActiveAttributeP7_objectS0__ZL50PyvtkGenericAttributeCollection_GetActiveComponentP7_objectS0__ZL66PyvtkGenericAttributeCollection_GetNumberOfAttributesToInterpolateP7_objectS0__ZL51PyvtkGenericAttributeCollection_GetActualMemorySizeP7_objectS0__ZL58PyvtkGenericAttributeCollection_GetAttributesToInterpolateP7_objectS0__ZL51PyvtkGenericAttributeCollection_InsertNextAttributeP7_objectS0__ZL47PyvtkGenericAttributeCollection_RemoveAttributeP7_objectS0__ZL40PyvtkGenericAttributeCollection_DeepCopyP7_objectS0__ZL43PyvtkGenericAttributeCollection_ShallowCopyP7_objectS0__ZL49PyvtkGenericAttributeCollection_GetAttributeIndexP7_objectS0__ZL44PyvtkGenericAttributeCollection_GetAttributeP7_objectS0__ZL45PyvtkGenericAttributeCollection_FindAttributeP7_objectS0__ZL47PyvtkGenericAttributeCollection_InsertAttributeP7_objectS0__ZL50PyvtkGenericAttributeCollection_SetActiveAttributeP7_objectS0__ZL35PyvtkGenericAttributeCollection_IsAP7_objectS0__ZL43PyvtkGenericAttributeCollection_NewInstanceP7_objectS0__ZL58PyvtkGenericAttributeCollection_SetAttributesToInterpolateP7_objectS0__ZL58PyvtkGenericAttributeCollection_SetAttributesToInterpolateP7_objectS0_.cold_ZL36PyvtkGenericAttributeCollection_Type_ZL39PyvtkGenericAttributeCollection_Methods_GLOBAL__sub_I_vtkGenericAttributeCollectionPython.cxx_ZL40PyvtkGenericAttributeCollection_GetMTimeP7_objectS0__ZL34PyvtkGenericAttribute_SafeDownCastP7_objectS0__ZL30PyvtkGenericAttribute_GetTupleP7_objectS0__ZL38PyvtkGenericAttribute_GetTuple_Methods_ZL30PyvtkGenericAttribute_IsTypeOfP7_objectS0__ZL34PyvtkGenericAttribute_GetCenteringP7_objectS0__ZL29PyvtkGenericAttribute_GetTypeP7_objectS0__ZL38PyvtkGenericAttribute_GetComponentTypeP7_objectS0__ZL29PyvtkGenericAttribute_GetSizeP7_objectS0__ZL43PyvtkGenericAttribute_GetNumberOfComponentsP7_objectS0__ZL32PyvtkGenericAttribute_GetMaxNormP7_objectS0__ZL41PyvtkGenericAttribute_GetActualMemorySizeP7_objectS0__ZL30PyvtkGenericAttribute_DeepCopyP7_objectS0__ZL33PyvtkGenericAttribute_ShallowCopyP7_objectS0__ZL29PyvtkGenericAttribute_GetNameP7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s3P7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s5P7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s1P7_objectS0__ZL25PyvtkGenericAttribute_IsAP7_objectS0__ZL33PyvtkGenericAttribute_NewInstanceP7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s2P7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s2P7_objectS0_.cold_ZL33PyvtkGenericAttribute_GetTuple_s4P7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s4P7_objectS0_.cold_ZL33PyvtkGenericAttribute_GetTuple_s6P7_objectS0__ZL33PyvtkGenericAttribute_GetTuple_s6P7_objectS0_.cold_ZL30PyvtkGenericAttribute_GetRangeP7_objectS0__ZL34PyvtkGenericAttribute_GetComponentP7_objectS0__ZL34PyvtkGenericAttribute_GetComponentP7_objectS0_.cold_ZL26PyvtkGenericAttribute_Type_ZL29PyvtkGenericAttribute_Methods_ZZ32PyVTKAddFile_vtkGenericAttributeE9constants_GLOBAL__sub_I_vtkGenericAttributePython.cxx_ZL26PyvtkGenericCell_StaticNewv_ZL32PyvtkGenericCell_InstantiateCellP7_objectS0__ZL29PyvtkGenericCell_SafeDownCastP7_objectS0__ZL25PyvtkGenericCell_IsTypeOfP7_objectS0__ZL38PyvtkGenericCell_GetRepresentativeCellP7_objectS0__ZL46PyvtkGenericCell_SetCellTypeToLagrangeTriangleP7_objectS0__ZL44PyvtkGenericCell_SetCellTypeToConvexPointSetP7_objectS0__ZL39PyvtkGenericCell_SetCellTypeToCubicLineP7_objectS0__ZL47PyvtkGenericCell_SetCellTypeToQuadraticTriangleP7_objectS0__ZL46PyvtkGenericCell_SetCellTypeToQuadraticPolygonP7_objectS0__ZL44PyvtkGenericCell_SetCellTypeToQuadraticTetraP7_objectS0__ZL49PyvtkGenericCell_SetCellTypeToBiQuadraticTriangleP7_objectS0__ZL43PyvtkGenericCell_SetCellTypeToQuadraticQuadP7_objectS0__ZL46PyvtkGenericCell_SetCellTypeToQuadraticPyramidP7_objectS0__ZL40PyvtkGenericCell_SetCellTypeToHexahedronP7_objectS0__ZL43PyvtkGenericCell_SetCellTypeToLagrangeWedgeP7_objectS0__ZL55PyvtkGenericCell_SetCellTypeToBiQuadraticQuadraticWedgeP7_objectS0__ZL44PyvtkGenericCell_SetCellTypeToHexagonalPrismP7_objectS0__ZL49PyvtkGenericCell_SetCellTypeToQuadraticHexahedronP7_objectS0__ZL38PyvtkGenericCell_SetCellTypeToPolyLineP7_objectS0__ZL51PyvtkGenericCell_SetCellTypeToLagrangeQuadrilateralP7_objectS0__ZL38PyvtkGenericCell_SetCellTypeToTriangleP7_objectS0__ZL45PyvtkGenericCell_SetCellTypeToBiQuadraticQuadP7_objectS0__ZL40PyvtkGenericCell_SetCellTypeToPolyVertexP7_objectS0__ZL48PyvtkGenericCell_SetCellTypeToLagrangeHexahedronP7_objectS0__ZL37PyvtkGenericCell_SetCellTypeToPyramidP7_objectS0__ZL52PyvtkGenericCell_SetCellTypeToTriQuadraticHexahedronP7_objectS0__ZL43PyvtkGenericCell_SetCellTypeToLagrangeTetraP7_objectS0__ZL40PyvtkGenericCell_SetCellTypeToPolyhedronP7_objectS0__ZL60PyvtkGenericCell_SetCellTypeToBiQuadraticQuadraticHexahedronP7_objectS0__ZL43PyvtkGenericCell_SetCellTypeToLagrangeCurveP7_objectS0__ZL43PyvtkGenericCell_SetCellTypeToQuadraticEdgeP7_objectS0__ZL35PyvtkGenericCell_SetCellTypeToPixelP7_objectS0__ZL43PyvtkGenericCell_SetCellTypeToTriangleStripP7_objectS0__ZL39PyvtkGenericCell_SetCellTypeToEmptyCellP7_objectS0__ZL34PyvtkGenericCell_SetCellTypeToQuadP7_objectS0__ZL35PyvtkGenericCell_SetCellTypeToTetraP7_objectS0__ZL37PyvtkGenericCell_SetCellTypeToPolygonP7_objectS0__ZL36PyvtkGenericCell_SetCellTypeToVertexP7_objectS0__ZL35PyvtkGenericCell_SetCellTypeToWedgeP7_objectS0__ZL49PyvtkGenericCell_SetCellTypeToQuadraticLinearQuadP7_objectS0__ZL50PyvtkGenericCell_SetCellTypeToQuadraticLinearWedgeP7_objectS0__ZL34PyvtkGenericCell_SetCellTypeToLineP7_objectS0__ZL35PyvtkGenericCell_SetCellTypeToVoxelP7_objectS0__ZL44PyvtkGenericCell_SetCellTypeToQuadraticWedgeP7_objectS0__ZL45PyvtkGenericCell_SetCellTypeToPentagonalPrismP7_objectS0__ZL28PyvtkGenericCell_SetCellTypeP7_objectS0__ZL26PyvtkGenericCell_SetPointsP7_objectS0__ZL28PyvtkGenericCell_SetPointIdsP7_objectS0__ZL20PyvtkGenericCell_IsAP7_objectS0__ZL28PyvtkGenericCell_NewInstanceP7_objectS0__ZL21PyvtkGenericCell_Type_ZL24PyvtkGenericCell_Methods_GLOBAL__sub_I_vtkGenericCellPython.cxx_ZL34PyvtkGenericCell_InterpolateDerivsP7_objectS0__ZL34PyvtkGenericCell_InterpolateDerivsP7_objectS0_.cold_ZL37PyvtkGenericCell_InterpolateFunctionsP7_objectS0__ZL37PyvtkGenericCell_InterpolateFunctionsP7_objectS0_.cold_ZL30PyvtkGenericCell_IsPrimaryCellP7_objectS0__ZL36PyvtkGenericCell_GetParametricCoordsP7_objectS0__ZL36PyvtkGenericCell_GetParametricCenterP7_objectS0__ZL28PyvtkGenericCell_DerivativesP7_objectS0__ZL28PyvtkGenericCell_DerivativesP7_objectS0_.cold_ZL28PyvtkGenericCell_TriangulateP7_objectS0__ZL34PyvtkGenericCell_IntersectWithLineP7_objectS0__ZL21PyvtkGenericCell_ClipP7_objectS0__ZL24PyvtkGenericCell_ContourP7_objectS0__ZL33PyvtkGenericCell_EvaluateLocationP7_objectS0__ZL33PyvtkGenericCell_EvaluateLocationP7_objectS0_.cold_ZL33PyvtkGenericCell_EvaluatePositionP7_objectS0__ZL33PyvtkGenericCell_EvaluatePositionP7_objectS0_.cold_ZL29PyvtkGenericCell_CellBoundaryP7_objectS0__ZL24PyvtkGenericCell_GetFaceP7_objectS0__ZL24PyvtkGenericCell_GetEdgeP7_objectS0__ZL33PyvtkGenericCell_GetNumberOfFacesP7_objectS0__ZL33PyvtkGenericCell_GetNumberOfEdgesP7_objectS0__ZL25PyvtkGenericCell_GetFacesP7_objectS0__ZL25PyvtkGenericCell_SetFacesP7_objectS0__ZL25PyvtkGenericCell_SetFacesP7_objectS0_.cold_ZL51PyvtkGenericCell_RequiresExplicitFaceRepresentationP7_objectS0__ZL27PyvtkGenericCell_InitializeP7_objectS0__ZL39PyvtkGenericCell_RequiresInitializationP7_objectS0__ZL25PyvtkGenericCell_IsLinearP7_objectS0__ZL33PyvtkGenericCell_GetCellDimensionP7_objectS0__ZL28PyvtkGenericCell_GetCellTypeP7_objectS0__ZL25PyvtkGenericCell_DeepCopyP7_objectS0__ZL28PyvtkGenericCell_ShallowCopyP7_objectS0__ZL40PyvtkGenericCellTessellator_GetMaxErrorsP7_objectS0__ZL40PyvtkGenericCellTessellator_GetMaxErrorsP7_objectS0_.cold_ZL40PyvtkGenericCellTessellator_SafeDownCastP7_objectS0__ZL36PyvtkGenericCellTessellator_IsTypeOfP7_objectS0__ZL43PyvtkGenericCellTessellator_GetErrorMetricsP7_objectS0__ZL42PyvtkGenericCellTessellator_GetMeasurementP7_objectS0__ZL44PyvtkGenericCellTessellator_InitErrorMetricsP7_objectS0__ZL38PyvtkGenericCellTessellator_InitializeP7_objectS0__ZL42PyvtkGenericCellTessellator_SetMeasurementP7_objectS0__ZL31PyvtkGenericCellTessellator_IsAP7_objectS0__ZL38PyvtkGenericCellTessellator_TessellateP7_objectS0__ZL39PyvtkGenericCellTessellator_TriangulateP7_objectS0__ZL39PyvtkGenericCellTessellator_NewInstanceP7_objectS0__ZL42PyvtkGenericCellTessellator_TessellateFaceP7_objectS0__ZL32PyvtkGenericCellTessellator_Type_ZL35PyvtkGenericCellTessellator_Methods_GLOBAL__sub_I_vtkGenericCellTessellatorPython.cxx_ZL43PyvtkGenericCellTessellator_SetErrorMetricsP7_objectS0__ZL31PyvtkGenericEdgeTable_StaticNewv_ZL34PyvtkGenericEdgeTable_SafeDownCastP7_objectS0__ZL30PyvtkGenericEdgeTable_IsTypeOfP7_objectS0__ZL31PyvtkGenericEdgeTable_DumpTableP7_objectS0__ZL32PyvtkGenericEdgeTable_LoadFactorP7_objectS0__ZL43PyvtkGenericEdgeTable_GetNumberOfComponentsP7_objectS0__ZL50PyvtkGenericEdgeTable_IncrementPointReferenceCountP7_objectS0__ZL32PyvtkGenericEdgeTable_InitializeP7_objectS0__ZL43PyvtkGenericEdgeTable_SetNumberOfComponentsP7_objectS0__ZL33PyvtkGenericEdgeTable_RemovePointP7_objectS0__ZL32PyvtkGenericEdgeTable_RemoveEdgeP7_objectS0__ZL45PyvtkGenericEdgeTable_CheckEdgeReferenceCountP7_objectS0__ZL49PyvtkGenericEdgeTable_IncrementEdgeReferenceCountP7_objectS0__ZL31PyvtkGenericEdgeTable_CheckEdgeP7_objectS0__ZL25PyvtkGenericEdgeTable_IsAP7_objectS0__ZL33PyvtkGenericEdgeTable_InsertPointP7_objectS0__ZL33PyvtkGenericEdgeTable_NewInstanceP7_objectS0__ZL42PyvtkGenericEdgeTable_InsertPointAndScalarP7_objectS0__ZL42PyvtkGenericEdgeTable_InsertPointAndScalarP7_objectS0_.cold_ZL32PyvtkGenericEdgeTable_InsertEdgeP7_objectS0__ZL32PyvtkGenericEdgeTable_CheckPointP7_objectS0__ZL32PyvtkGenericEdgeTable_CheckPointP7_objectS0_.cold_ZL26PyvtkGenericEdgeTable_Type_ZL29PyvtkGenericEdgeTable_Methods_GLOBAL__sub_I_vtkGenericEdgeTablePython.cxx_ZL47PyvtkGenericInterpolatedVelocityField_StaticNewv_ZL50PyvtkGenericInterpolatedVelocityField_SafeDownCastP7_objectS0__ZL46PyvtkGenericInterpolatedVelocityField_IsTypeOfP7_objectS0__ZL51PyvtkGenericInterpolatedVelocityField_ClearLastCellP7_objectS0__ZL49PyvtkGenericInterpolatedVelocityField_GetLastCellP7_objectS0__ZL50PyvtkGenericInterpolatedVelocityField_GetCacheMissP7_objectS0__ZL52PyvtkGenericInterpolatedVelocityField_GetLastDataSetP7_objectS0__ZL49PyvtkGenericInterpolatedVelocityField_GetCacheHitP7_objectS0__ZL48PyvtkGenericInterpolatedVelocityField_GetCachingP7_objectS0__ZL57PyvtkGenericInterpolatedVelocityField_GetVectorsSelectionP7_objectS0__ZL48PyvtkGenericInterpolatedVelocityField_SetCachingP7_objectS0__ZL48PyvtkGenericInterpolatedVelocityField_CachingOffP7_objectS0__ZL47PyvtkGenericInterpolatedVelocityField_CachingOnP7_objectS0__ZL61PyvtkGenericInterpolatedVelocityField_GetLastLocalCoordinatesP7_objectS0__ZL41PyvtkGenericInterpolatedVelocityField_IsAP7_objectS0__ZL49PyvtkGenericInterpolatedVelocityField_NewInstanceP7_objectS0__ZL51PyvtkGenericInterpolatedVelocityField_SelectVectorsP7_objectS0__ZL42PyvtkGenericInterpolatedVelocityField_Type_ZL45PyvtkGenericInterpolatedVelocityField_Methods_GLOBAL__sub_I_vtkGenericInterpolatedVelocityFieldPython.cxx_ZL52PyvtkGenericInterpolatedVelocityField_CopyParametersP7_objectS0__ZL48PyvtkGenericInterpolatedVelocityField_AddDataSetP7_objectS0__ZL52PyvtkGenericInterpolatedVelocityField_FunctionValuesP7_objectS0__ZL52PyvtkGenericInterpolatedVelocityField_FunctionValuesP7_objectS0_.cold_ZL47PyvtkGenericSubdivisionErrorMetric_SafeDownCastP7_objectS0__ZL58PyvtkGenericSubdivisionErrorMetric_RequiresEdgeSubdivisionP7_objectS0__ZL58PyvtkGenericSubdivisionErrorMetric_RequiresEdgeSubdivisionP7_objectS0_.cold_ZL43PyvtkGenericSubdivisionErrorMetric_IsTypeOfP7_objectS0__ZL45PyvtkGenericSubdivisionErrorMetric_GetDataSetP7_objectS0__ZL49PyvtkGenericSubdivisionErrorMetric_GetGenericCellP7_objectS0__ZL45PyvtkGenericSubdivisionErrorMetric_SetDataSetP7_objectS0__ZL49PyvtkGenericSubdivisionErrorMetric_SetGenericCellP7_objectS0__ZL38PyvtkGenericSubdivisionErrorMetric_IsAP7_objectS0__ZL46PyvtkGenericSubdivisionErrorMetric_NewInstanceP7_objectS0__ZL43PyvtkGenericSubdivisionErrorMetric_GetErrorP7_objectS0__ZL43PyvtkGenericSubdivisionErrorMetric_GetErrorP7_objectS0_.cold_ZL39PyvtkGenericSubdivisionErrorMetric_Type_ZL42PyvtkGenericSubdivisionErrorMetric_Methods_GLOBAL__sub_I_vtkGenericSubdivisionErrorMetricPython.cxx_ZL35PyvtkGeometricErrorMetric_StaticNewv_ZL38PyvtkGeometricErrorMetric_SafeDownCastP7_objectS0__ZL34PyvtkGeometricErrorMetric_IsTypeOfP7_objectS0__ZL37PyvtkGeometricErrorMetric_GetRelativeP7_objectS0__ZL55PyvtkGeometricErrorMetric_GetAbsoluteGeometricToleranceP7_objectS0__ZL55PyvtkGeometricErrorMetric_SetAbsoluteGeometricToleranceP7_objectS0__ZL55PyvtkGeometricErrorMetric_SetRelativeGeometricToleranceP7_objectS0__ZL29PyvtkGeometricErrorMetric_IsAP7_objectS0__ZL37PyvtkGeometricErrorMetric_NewInstanceP7_objectS0__ZL30PyvtkGeometricErrorMetric_Type_ZL33PyvtkGeometricErrorMetric_Methods_GLOBAL__sub_I_vtkGeometricErrorMetricPython.cxx_ZL34PyvtkGeometricErrorMetric_GetErrorP7_objectS0__ZL34PyvtkGeometricErrorMetric_GetErrorP7_objectS0_.cold_ZL49PyvtkGeometricErrorMetric_RequiresEdgeSubdivisionP7_objectS0__ZL49PyvtkGeometricErrorMetric_RequiresEdgeSubdivisionP7_objectS0_.cold_ZL17PyvtkEdgeBase_NewP11_typeobjectP7_objectS2__ZL25PyvtkEdgeBase_RichCompareP7_objectS0_i_ZL18PyvtkEdgeBase_Type_ZL20PyvtkEdgeBase_DeleteP7_object_ZL23PyvtkOutEdgeType_DeleteP7_object_ZL22PyvtkInEdgeType_DeleteP7_object_ZL20PyvtkEdgeType_DeleteP7_object_ZL18PyvtkEdgeBase_HashP7_object_ZL22PyvtkOutEdgeType_CCopyPKv_ZL21PyvtkInEdgeType_CCopyPKv_ZL19PyvtkEdgeType_CCopyPKv_ZL34PyvtkOutEdgeType_vtkOutEdgeType_s3P7_objectS0__ZL32PyvtkInEdgeType_vtkInEdgeType_s3P7_objectS0__ZL28PyvtkEdgeType_vtkEdgeType_s3P7_objectS0__ZL23PyvtkGraph_SafeDownCastP7_objectS0__ZL21PyvtkGraph_GetData_s1P7_objectS0__ZL21PyvtkGraph_GetData_s2P7_objectS0__ZL20PyvtkOutEdgeType_NewP11_typeobjectP7_objectS2__ZL18PyvtkEdgeType_HashP7_object_ZL21PyvtkOutEdgeType_HashP7_object_ZL20PyvtkInEdgeType_HashP7_object_ZL19PyvtkInEdgeType_NewP11_typeobjectP7_objectS2__ZL17PyvtkEdgeType_NewP11_typeobjectP7_objectS2__ZL19PyvtkGraph_IsTypeOfP7_objectS0__ZL24PyvtkGraph_ComputeBoundsP7_objectS0__ZL15PyvtkGraph_DumpP7_objectS0__ZL20PyvtkGraph_GetPointsP7_objectS0__ZL36PyvtkGraph_GetDistributedGraphHelperP7_objectS0__ZL28PyvtkGraph_GetDataObjectTypeP7_objectS0__ZL24PyvtkGraph_GetVertexDataP7_objectS0__ZL22PyvtkGraph_GetEdgeDataP7_objectS0__ZL36PyvtkGraph_SetDistributedGraphHelperP7_objectS0__ZL32PyvtkGraph_ShallowCopyEdgePointsP7_objectS0__ZL29PyvtkGraph_DeepCopyEdgePointsP7_objectS0__ZL26PyvtkGraph_ClearEdgePointsP7_objectS0__ZL32PyvtkGraph_GetNumberOfEdgePointsP7_objectS0__ZL28PyvtkGraph_ToUndirectedGraphP7_objectS0__ZL26PyvtkGraph_ToDirectedGraphP7_objectS0__ZL26PyvtkGraph_IsSameStructureP7_objectS0__ZL26PyvtkGraph_GetSourceVertexP7_objectS0__ZL26PyvtkGraph_GetTargetVertexP7_objectS0__ZL28PyvtkGraph_GetGraphInternalsP7_objectS0__ZL29PyvtkGraph_ReorderOutVerticesP7_objectS0__ZL26PyvtkGraph_GetInducedEdgesP7_objectS0__ZL21PyvtkGraph_FindVertexP7_objectS0__ZL20PyvtkGraph_GetEdgeIdP7_objectS0__ZL23PyvtkGraph_GetEdgePointP7_objectS0__ZL14PyvtkGraph_IsAP7_objectS0__ZL22PyvtkGraph_NewInstanceP7_objectS0__ZL24PyvtkGraph_GetEdgePointsP7_objectS0__ZL24PyvtkGraph_GetEdgePointsP7_objectS0_.cold_ZL24PyvtkGraph_SetEdgePointsP7_objectS0__ZL24PyvtkGraph_SetEdgePointsP7_objectS0_.cold_ZL18PyvtkGraph_GetDataP7_objectS0__ZL26PyvtkGraph_GetData_Methods_ZL20PyvtkGraph_GetBoundsP7_objectS0__ZL19PyvtkGraph_GetPointP7_objectS0__ZL23PyvtkGraph_AddEdgePointP7_objectS0__ZL23PyvtkGraph_SetEdgePointP7_objectS0__ZL21PyvtkEdgeBase_Methods_ZL21PyvtkOutEdgeType_Type_ZL39PyvtkOutEdgeType_vtkOutEdgeType_Methods_ZL24PyvtkOutEdgeType_Methods_ZL20PyvtkInEdgeType_Type_ZL37PyvtkInEdgeType_vtkInEdgeType_Methods_ZL23PyvtkInEdgeType_Methods_ZL18PyvtkEdgeType_Type_ZL33PyvtkEdgeType_vtkEdgeType_Methods_ZL21PyvtkEdgeType_Methods_ZL15PyvtkGraph_Type_ZL18PyvtkGraph_Methods_ZL20PyvtkEdgeBase_StringP7_object_ZL20PyvtkEdgeBase_StringP7_object.cold_GLOBAL__sub_I_vtkGraphPython.cxx_ZL30PyvtkGraph_GetNumberOfElementsP7_objectS0__ZL35PyvtkGraph_GetAttributesAsFieldDataP7_objectS0__ZL18PyvtkGraph_SqueezeP7_objectS0__ZL26PyvtkGraph_CheckedDeepCopyP7_objectS0__ZL29PyvtkGraph_CheckedShallowCopyP7_objectS0__ZL24PyvtkGraph_CopyStructureP7_objectS0__ZL19PyvtkGraph_DeepCopyP7_objectS0__ZL22PyvtkGraph_ShallowCopyP7_objectS0__ZL30PyvtkGraph_GetNumberOfVerticesP7_objectS0__ZL22PyvtkGraph_GetVerticesP7_objectS0__ZL27PyvtkGraph_GetNumberOfEdgesP7_objectS0__ZL19PyvtkGraph_GetEdgesP7_objectS0__ZL30PyvtkGraph_GetAdjacentVerticesP7_objectS0__ZL20PyvtkGraph_GetInEdgeP7_objectS0__ZL22PyvtkGraph_GetInDegreeP7_objectS0__ZL21PyvtkGraph_GetInEdgesP7_objectS0__ZL21PyvtkGraph_GetOutEdgeP7_objectS0__ZL23PyvtkGraph_GetOutDegreeP7_objectS0__ZL20PyvtkGraph_GetDegreeP7_objectS0__ZL22PyvtkGraph_GetOutEdgesP7_objectS0__ZL19PyvtkGraph_GetMTimeP7_objectS0__ZL20PyvtkGraph_SetPointsP7_objectS0__ZL21PyvtkGraph_InitializeP7_objectS0__ZL31PyvtkVertexAdjacencyList_DeleteP7_object_ZL29PyvtkVertexAdjacencyList_HashP7_object_ZL29PyvtkGraphInternals_StaticNewv_ZL32PyvtkGraphInternals_SafeDownCastP7_objectS0__ZL50PyvtkVertexAdjacencyList_vtkVertexAdjacencyList_s2P7_objectS0__ZL50PyvtkVertexAdjacencyList_vtkVertexAdjacencyList_s2P7_objectS0_.cold_ZL28PyvtkVertexAdjacencyList_NewP11_typeobjectP7_objectS2__ZL28PyvtkGraphInternals_IsTypeOfP7_objectS0__ZL30PyvtkVertexAdjacencyList_CCopyPKv_ZL30PyvtkVertexAdjacencyList_CCopyPKv.cold_ZL23PyvtkGraphInternals_IsAP7_objectS0__ZL31PyvtkGraphInternals_NewInstanceP7_objectS0__ZL29PyvtkVertexAdjacencyList_Type_ZL55PyvtkVertexAdjacencyList_vtkVertexAdjacencyList_Methods_ZL32PyvtkVertexAdjacencyList_Methods_ZL24PyvtkGraphInternals_Type_ZL27PyvtkGraphInternals_Methods_GLOBAL__sub_I_vtkGraphInternalsPython.cxx_ZL29PyvtkHexagonalPrism_StaticNewv_ZL32PyvtkHexagonalPrism_GetFaceArrayP7_objectS0__ZL39PyvtkHexagonalPrism_InterpolationDerivsP7_objectS0__ZL42PyvtkHexagonalPrism_InterpolationFunctionsP7_objectS0__ZL32PyvtkHexagonalPrism_SafeDownCastP7_objectS0__ZL28PyvtkHexagonalPrism_IsTypeOfP7_objectS0__ZL32PyvtkHexagonalPrism_GetEdgeArrayP7_objectS0__ZL31PyvtkHexagonalPrism_GetCellTypeP7_objectS0__ZL36PyvtkHexagonalPrism_GetCellDimensionP7_objectS0__ZL36PyvtkHexagonalPrism_GetNumberOfFacesP7_objectS0__ZL36PyvtkHexagonalPrism_GetNumberOfEdgesP7_objectS0__ZL39PyvtkHexagonalPrism_GetParametricCenterP7_objectS0__ZL31PyvtkHexagonalPrism_NewInstanceP7_objectS0__ZL23PyvtkHexagonalPrism_IsAP7_objectS0__ZL40PyvtkHexagonalPrism_InterpolateFunctionsP7_objectS0__ZL37PyvtkHexagonalPrism_InterpolateDerivsP7_objectS0__ZL24PyvtkHexagonalPrism_Type_ZL27PyvtkHexagonalPrism_Methods_GLOBAL__sub_I_vtkHexagonalPrismPython.cxx_ZL39PyvtkHexagonalPrism_GetParametricCoordsP7_objectS0__ZL31PyvtkHexagonalPrism_DerivativesP7_objectS0__ZL31PyvtkHexagonalPrism_DerivativesP7_objectS0_.cold_ZL31PyvtkHexagonalPrism_TriangulateP7_objectS0__ZL37PyvtkHexagonalPrism_IntersectWithLineP7_objectS0__ZL36PyvtkHexagonalPrism_EvaluateLocationP7_objectS0__ZL36PyvtkHexagonalPrism_EvaluateLocationP7_objectS0_.cold_ZL36PyvtkHexagonalPrism_EvaluatePositionP7_objectS0__ZL36PyvtkHexagonalPrism_EvaluatePositionP7_objectS0_.cold_ZL32PyvtkHexagonalPrism_CellBoundaryP7_objectS0__ZL27PyvtkHexagonalPrism_GetFaceP7_objectS0__ZL27PyvtkHexagonalPrism_GetEdgeP7_objectS0__ZL33PyvtkHexagonalPrism_GetFacePointsP7_objectS0__ZL33PyvtkHexagonalPrism_GetFacePointsP7_objectS0_.cold_ZL33PyvtkHexagonalPrism_GetEdgePointsP7_objectS0__ZL33PyvtkHexagonalPrism_GetEdgePointsP7_objectS0_.cold_ZL25PyvtkHexahedron_StaticNewv_ZL28PyvtkHexahedron_GetFaceArrayP7_objectS0__ZL28PyvtkHexahedron_GetEdgeArrayP7_objectS0__ZL35PyvtkHexahedron_InterpolationDerivsP7_objectS0__ZL38PyvtkHexahedron_InterpolationFunctionsP7_objectS0__ZL28PyvtkHexahedron_SafeDownCastP7_objectS0__ZL24PyvtkHexahedron_IsTypeOfP7_objectS0__ZL32PyvtkHexahedron_GetNumberOfFacesP7_objectS0__ZL27PyvtkHexahedron_GetCellTypeP7_objectS0__ZL32PyvtkHexahedron_GetNumberOfEdgesP7_objectS0__ZL27PyvtkHexahedron_NewInstanceP7_objectS0__ZL19PyvtkHexahedron_IsAP7_objectS0__ZL33PyvtkHexahedron_InterpolateDerivsP7_objectS0__ZL36PyvtkHexahedron_InterpolateFunctionsP7_objectS0__ZL20PyvtkHexahedron_Type_ZL23PyvtkHexahedron_Methods_GLOBAL__sub_I_vtkHexahedronPython.cxx_ZL35PyvtkHexahedron_GetParametricCoordsP7_objectS0__ZL27PyvtkHexahedron_DerivativesP7_objectS0__ZL27PyvtkHexahedron_DerivativesP7_objectS0_.cold_ZL27PyvtkHexahedron_TriangulateP7_objectS0__ZL33PyvtkHexahedron_IntersectWithLineP7_objectS0__ZL32PyvtkHexahedron_EvaluateLocationP7_objectS0__ZL32PyvtkHexahedron_EvaluateLocationP7_objectS0_.cold_ZL32PyvtkHexahedron_EvaluatePositionP7_objectS0__ZL32PyvtkHexahedron_EvaluatePositionP7_objectS0_.cold_ZL23PyvtkHexahedron_ContourP7_objectS0__ZL28PyvtkHexahedron_CellBoundaryP7_objectS0__ZL23PyvtkHexahedron_GetFaceP7_objectS0__ZL23PyvtkHexahedron_GetEdgeP7_objectS0__ZL29PyvtkHexahedron_GetFacePointsP7_objectS0__ZL29PyvtkHexahedron_GetFacePointsP7_objectS0_.cold_ZL29PyvtkHexahedron_GetEdgePointsP7_objectS0__ZL29PyvtkHexahedron_GetEdgePointsP7_objectS0_.cold_ZL28PyvtkHyperTreeGrid_StaticNewv_ZL31PyvtkHyperTreeGrid_SafeDownCastP7_objectS0__ZL29PyvtkHyperTreeGrid_GetData_s1P7_objectS0__ZL29PyvtkHyperTreeGrid_GetData_s2P7_objectS0__ZL24PyvtkHyperTreeGrid_SIZESP7_objectS0__ZL30PyvtkHyperTreeGrid_ORIENTATIONP7_objectS0__ZL28PyvtkHyperTreeGrid_DIMENSIONP7_objectS0__ZL25PyvtkHyperTreeGrid_LEVELSP7_objectS0__ZL27PyvtkHyperTreeGrid_IsTypeOfP7_objectS0__ZL36PyvtkHyperTreeGrid_GetNumberOfLeavesP7_objectS0__ZL38PyvtkHyperTreeGrid_GetPureMaterialMaskP7_objectS0__ZL34PyvtkHyperTreeGrid_HasMaterialMaskP7_objectS0__ZL35PyvtkHyperTreeGrid_GetNumberOfTreesP7_objectS0__ZL38PyvtkHyperTreeGrid_GetNumberOfVerticesP7_objectS0__ZL32PyvtkHyperTreeGrid_GetExtentTypeP7_objectS0__ZL30PyvtkHyperTreeGrid_GetGridSizeP7_objectS0__ZL31PyvtkHyperTreeGrid_GetDimensionP7_objectS0__ZL38PyvtkHyperTreeGrid_GetNumberOfChildrenP7_objectS0__ZL34PyvtkHyperTreeGrid_GetBranchFactorP7_objectS0__ZL34PyvtkHyperTreeGrid_GetZCoordinatesP7_objectS0__ZL34PyvtkHyperTreeGrid_GetMaterialMaskP7_objectS0__ZL34PyvtkHyperTreeGrid_GetYCoordinatesP7_objectS0__ZL34PyvtkHyperTreeGrid_GetXCoordinatesP7_objectS0__ZL33PyvtkHyperTreeGrid_GetOrientationP7_objectS0__ZL44PyvtkHyperTreeGrid_GetTransposedRootIndexingP7_objectS0__ZL34PyvtkHyperTreeGrid_GetHasInterfaceP7_objectS0__ZL39PyvtkHyperTreeGrid_GetMaterialMaskIndexP7_objectS0__ZL34PyvtkHyperTreeGrid_SetXCoordinatesP7_objectS0__ZL31PyvtkHyperTreeGrid_SetDimensionP7_objectS0__ZL34PyvtkHyperTreeGrid_SetBranchFactorP7_objectS0__ZL34PyvtkHyperTreeGrid_SetMaterialMaskP7_objectS0__ZL34PyvtkHyperTreeGrid_SetYCoordinatesP7_objectS0__ZL34PyvtkHyperTreeGrid_SetZCoordinatesP7_objectS0__ZL26PyvtkHyperTreeGrid_GetTreeP7_objectS0__ZL31PyvtkHyperTreeGrid_GetChildMaskP7_objectS0__ZL56PyvtkHyperTreeGrid_RecursivelyInitializePureMaterialMaskP7_objectS0__ZL45PyvtkHyperTreeGrid_GetInterfaceInterceptsNameP7_objectS0__ZL42PyvtkHyperTreeGrid_GetInterfaceNormalsNameP7_objectS0__ZL32PyvtkHyperTreeGrid_SubdivideLeafP7_objectS0__ZL26PyvtkHyperTreeGrid_SetTreeP7_objectS0__ZL39PyvtkHyperTreeGrid_SetIndexingModeToIJKP7_objectS0__ZL39PyvtkHyperTreeGrid_SetIndexingModeToKJIP7_objectS0__ZL28PyvtkHyperTreeGrid_NewCursorP7_objectS0__ZL32PyvtkHyperTreeGrid_NewGridCursorP7_objectS0__ZL43PyvtkHyperTreeGrid_NewVonNeumannSuperCursorP7_objectS0__ZL38PyvtkHyperTreeGrid_NewMooreSuperCursorP7_objectS0__ZL37PyvtkHyperTreeGrid_NewGeometricCursorP7_objectS0__ZL34PyvtkHyperTreeGrid_HasInterfaceOffP7_objectS0__ZL44PyvtkHyperTreeGrid_SetTransposedRootIndexingP7_objectS0__ZL34PyvtkHyperTreeGrid_SetHasInterfaceP7_objectS0__ZL33PyvtkHyperTreeGrid_HasInterfaceOnP7_objectS0__ZL43PyvtkHyperTreeGrid_GetShiftedLevelZeroIndexP7_objectS0__ZL51PyvtkHyperTreeGrid_GetIndexFromLevelZeroCoordinatesP7_objectS0__ZL30PyvtkHyperTreeGrid_NewInstanceP7_objectS0__ZL51PyvtkHyperTreeGrid_GetLevelZeroCoordinatesFromIndexP7_objectS0__ZL22PyvtkHyperTreeGrid_IsAP7_objectS0__ZL26PyvtkHyperTreeGrid_GetDataP7_objectS0__ZL34PyvtkHyperTreeGrid_GetData_Methods_ZL36PyvtkHyperTreeGrid_GetNumberOfLevelsP7_objectS0__ZL30PyvtkHyperTreeGrid_SetGridSizeP7_objectS0__ZL32PyvtkHyperTreeGrid_SetGridExtentP7_objectS0__ZL42PyvtkHyperTreeGrid_SetInterfaceNormalsNameP7_objectS0__ZL45PyvtkHyperTreeGrid_SetInterfaceInterceptsNameP7_objectS0__ZL23PyvtkHyperTreeGrid_Type_ZL26PyvtkHyperTreeGrid_Methods_GLOBAL__sub_I_vtkHyperTreeGridPython.cxx_ZL38PyvtkHyperTreeGrid_GetActualMemorySizeP7_objectS0__ZL27PyvtkHyperTreeGrid_DeepCopyP7_objectS0__ZL30PyvtkHyperTreeGrid_ShallowCopyP7_objectS0__ZL33PyvtkHyperTreeGrid_GetMaxCellSizeP7_objectS0__ZL29PyvtkHyperTreeGrid_InitializeP7_objectS0__ZL27PyvtkHyperTreeGrid_FindCellP7_objectS0__ZL27PyvtkHyperTreeGrid_FindCellP7_objectS0_.cold_ZL28PyvtkHyperTreeGrid_FindPointP7_objectS0__ZL35PyvtkHyperTreeGrid_GetCellNeighborsP7_objectS0__ZL32PyvtkHyperTreeGrid_GetPointCellsP7_objectS0__ZL32PyvtkHyperTreeGrid_GetCellPointsP7_objectS0__ZL32PyvtkHyperTreeGrid_GetCellPointsP7_objectS0_.cold_ZL30PyvtkHyperTreeGrid_GetCellTypeP7_objectS0__ZL26PyvtkHyperTreeGrid_GetCellP7_objectS0__ZL26PyvtkHyperTreeGrid_GetCellP7_objectS0_.cold_ZL27PyvtkHyperTreeGrid_GetPointP7_objectS0__ZL32PyvtkHyperTreeGrid_GenerateTreesP7_objectS0__ZL39PyvtkHyperTreeGrid_SetMaterialMaskIndexP7_objectS0__ZL36PyvtkHyperTreeGrid_GetNumberOfPointsP7_objectS0__ZL35PyvtkHyperTreeGrid_GetNumberOfCellsP7_objectS0__ZL33PyvtkHyperTreeGrid_SetOrientationP7_objectS0__ZL32PyvtkHyperTreeGrid_CopyStructureP7_objectS0__ZL36PyvtkHyperTreeGrid_GetDataObjectTypeP7_objectS0__ZL24PyvtkImageData_StaticNewv_ZL27PyvtkImageData_SafeDownCastP7_objectS0__ZL25PyvtkImageData_GetData_s1P7_objectS0__ZL25PyvtkImageData_GetData_s2P7_objectS0__ZL42PyvtkImageData_HasNumberOfScalarComponentsP7_objectS0__ZL45PyvtkImageData_GetNumberOfScalarComponents_s1P7_objectS0__ZL28PyvtkImageData_HasScalarTypeP7_objectS0__ZL31PyvtkImageData_GetScalarType_s1P7_objectS0__ZN12vtkImageData21GetScalarTypeAsStringEv.part.0_ZL28PyvtkImageData_SetScalarTypeP7_objectS0__ZL46PyvtkImageData_ComputeStructuredCoordinates_s2P7_objectS0_.constprop.0_ZL46PyvtkImageData_ComputeStructuredCoordinates_s2P7_objectS0_.constprop.0.cold_ZL42PyvtkImageData_SetNumberOfScalarComponentsP7_objectS0__ZL23PyvtkImageData_IsTypeOfP7_objectS0__ZL32PyvtkImageData_GetDataObjectTypeP7_objectS0__ZL29PyvtkImageData_GetMaxCellSizeP7_objectS0__ZL28PyvtkImageData_GetExtentTypeP7_objectS0__ZL24PyvtkImageData_GetExtentP7_objectS0__ZL25PyvtkImageData_GetSpacingP7_objectS0__ZL24PyvtkImageData_GetOriginP7_objectS0__ZL31PyvtkImageData_GetDataDimensionP7_objectS0__ZL32PyvtkImageData_GetNumberOfPointsP7_objectS0__ZL28PyvtkImageData_GetPointCellsP7_objectS0__ZL28PyvtkImageData_GetCellPointsP7_objectS0__ZL33PyvtkImageData_GetArrayIncrementsP7_objectS0__ZL26PyvtkImageData_NewInstanceP7_objectS0__ZL39PyvtkImageData_GetArrayPointerForExtentP7_objectS0__ZL30PyvtkImageData_GetArrayPointerP7_objectS0__ZL18PyvtkImageData_IsAP7_objectS0__ZL29PyvtkImageData_ComputePointIdP7_objectS0__ZL28PyvtkImageData_ComputeCellIdP7_objectS0__ZL28PyvtkImageData_GetScalarTypeP7_objectS0__ZL36PyvtkImageData_GetScalarType_Methods_ZL42PyvtkImageData_GetNumberOfScalarComponentsP7_objectS0__ZL50PyvtkImageData_GetNumberOfScalarComponents_Methods_ZL22PyvtkImageData_GetDataP7_objectS0__ZL30PyvtkImageData_GetData_Methods_ZL36PyvtkImageData_ComputeInternalExtentP7_objectS0__ZL36PyvtkImageData_ComputeInternalExtentP7_objectS0_.cold_ZL25PyvtkImageData_SetSpacingP7_objectS0__ZL24PyvtkImageData_SetOriginP7_objectS0__ZL36PyvtkImageData_GetScalarTypeAsStringP7_objectS0__ZL19PyvtkImageData_Type_ZL22PyvtkImageData_Methods_GLOBAL__sub_I_vtkImageDataPython.cxx_ZL23PyvtkImageData_DeepCopyP7_objectS0__ZL26PyvtkImageData_ShallowCopyP7_objectS0__ZL32PyvtkImageData_PrepareForNewDataP7_objectS0__ZL40PyvtkImageData_CopyInformationToPipelineP7_objectS0__ZL42PyvtkImageData_CopyInformationFromPipelineP7_objectS0__ZL34PyvtkImageData_GetActualMemorySizeP7_objectS0__ZL19PyvtkImageData_CropP7_objectS0__ZL19PyvtkImageData_CropP7_objectS0_.cold_ZL30PyvtkImageData_CopyAndCastFromP7_objectS0__ZL30PyvtkImageData_AllocateScalarsP7_objectS0__ZL43PyvtkImageData_SetScalarComponentFromDoubleP7_objectS0__ZL41PyvtkImageData_GetScalarComponentAsDoubleP7_objectS0__ZL42PyvtkImageData_SetScalarComponentFromFloatP7_objectS0__ZL40PyvtkImageData_GetScalarComponentAsFloatP7_objectS0__ZL31PyvtkImageData_GetScalarPointerP7_objectS0__ZL40PyvtkImageData_GetScalarPointerForExtentP7_objectS0__ZL38PyvtkImageData_GetContinuousIncrementsP7_objectS0__ZL31PyvtkImageData_GetIncrements_s4P7_objectS0__ZL31PyvtkImageData_GetIncrements_s3P7_objectS0__ZL28PyvtkImageData_GetIncrementsP7_objectS0__ZL36PyvtkImageData_GetIncrements_Methods_ZL28PyvtkImageData_GetScalarSizeP7_objectS0__ZL31PyvtkImageData_GetScalarTypeMaxP7_objectS0__ZL31PyvtkImageData_GetScalarTypeMinP7_objectS0__ZL24PyvtkImageData_SetExtentP7_objectS0__ZL34PyvtkImageData_GetAxisUpdateExtentP7_objectS0__ZL34PyvtkImageData_GetAxisUpdateExtentP7_objectS0_.cold_ZL34PyvtkImageData_SetAxisUpdateExtentP7_objectS0__ZL34PyvtkImageData_SetAxisUpdateExtentP7_objectS0_.cold_ZL31PyvtkImageData_GetPointGradientP7_objectS0__ZL31PyvtkImageData_GetVoxelGradientP7_objectS0__ZL43PyvtkImageData_ComputeStructuredCoordinatesP7_objectS0__ZL28PyvtkImageData_GetDimensionsP7_objectS0__ZL28PyvtkImageData_SetDimensionsP7_objectS0__ZL25PyvtkImageData_InitializeP7_objectS0__ZL28PyvtkImageData_ComputeBoundsP7_objectS0__ZL26PyvtkImageData_GetCellTypeP7_objectS0__ZL29PyvtkImageData_FindAndGetCellP7_objectS0__ZL29PyvtkImageData_FindAndGetCellP7_objectS0_.cold_ZL23PyvtkImageData_FindCellP7_objectS0__ZL23PyvtkImageData_FindCellP7_objectS0_.cold_ZL24PyvtkImageData_FindPointP7_objectS0__ZL28PyvtkImageData_GetCellBoundsP7_objectS0__ZL22PyvtkImageData_GetCellP7_objectS0__ZL23PyvtkImageData_GetPointP7_objectS0__ZL31PyvtkImageData_GetNumberOfCellsP7_objectS0__ZL28PyvtkImageData_CopyStructureP7_objectS0__ZL36PyvtkIncrementalOctreeNode_StaticNewv_ZL39PyvtkIncrementalOctreeNode_SafeDownCastP7_objectS0__ZL35PyvtkIncrementalOctreeNode_IsTypeOfP7_objectS0__ZL43PyvtkIncrementalOctreeNode_DeleteChildNodesP7_objectS0__ZL33PyvtkIncrementalOctreeNode_IsLeafP7_objectS0__ZL39PyvtkIncrementalOctreeNode_GetMinBoundsP7_objectS0__ZL39PyvtkIncrementalOctreeNode_GetMaxBoundsP7_objectS0__ZL44PyvtkIncrementalOctreeNode_GetNumberOfPointsP7_objectS0__ZL40PyvtkIncrementalOctreeNode_GetPointIdSetP7_objectS0__ZL43PyvtkIncrementalOctreeNode_GetMaxDataBoundsP7_objectS0__ZL43PyvtkIncrementalOctreeNode_GetMinDataBoundsP7_objectS0__ZL55PyvtkIncrementalOctreeNode_ExportAllPointIdsByInsertionP7_objectS0__ZL35PyvtkIncrementalOctreeNode_GetChildP7_objectS0__ZL54PyvtkIncrementalOctreeNode_GetDistance2ToInnerBoundaryP7_objectS0__ZL40PyvtkIncrementalOctreeNode_GetChildIndexP7_objectS0__ZL36PyvtkIncrementalOctreeNode_GetBoundsP7_objectS0__ZL30PyvtkIncrementalOctreeNode_IsAP7_objectS0__ZL40PyvtkIncrementalOctreeNode_ContainsPointP7_objectS0__ZL46PyvtkIncrementalOctreeNode_ContainsPointByDataP7_objectS0__ZL38PyvtkIncrementalOctreeNode_NewInstanceP7_objectS0__ZL36PyvtkIncrementalOctreeNode_SetBoundsP7_objectS0__ZL55PyvtkIncrementalOctreeNode_ExportAllPointIdsByDirectSetP7_objectS0__ZL55PyvtkIncrementalOctreeNode_ExportAllPointIdsByDirectSetP7_objectS0_.cold_ZL38PyvtkIncrementalOctreeNode_InsertPointP7_objectS0__ZL38PyvtkIncrementalOctreeNode_InsertPointP7_objectS0_.cold_ZL49PyvtkIncrementalOctreeNode_GetDistance2ToBoundaryP7_objectS0__ZL31PyvtkIncrementalOctreeNode_Type_ZL34PyvtkIncrementalOctreeNode_Methods_GLOBAL__sub_I_vtkIncrementalOctreeNodePython.cxx_ZL44PyvtkIncrementalOctreePointLocator_StaticNewv_ZL47PyvtkIncrementalOctreePointLocator_SafeDownCastP7_objectS0__ZL43PyvtkIncrementalOctreePointLocator_IsTypeOfP7_objectS0__ZL52PyvtkIncrementalOctreePointLocator_GetNumberOfPointsP7_objectS0__ZL62PyvtkIncrementalOctreePointLocator_GetMaxPointsPerLeafMaxValueP7_objectS0__ZL62PyvtkIncrementalOctreePointLocator_GetMaxPointsPerLeafMinValueP7_objectS0__ZL54PyvtkIncrementalOctreePointLocator_GetBuildCubicOctreeP7_objectS0__ZL54PyvtkIncrementalOctreePointLocator_GetMaxPointsPerLeafP7_objectS0__ZL51PyvtkIncrementalOctreePointLocator_GetLocatorPointsP7_objectS0__ZL45PyvtkIncrementalOctreePointLocator_InitializeP7_objectS0__ZL64PyvtkIncrementalOctreePointLocator_FindPointsWithinSquaredRadiusP7_objectS0__ZL54PyvtkIncrementalOctreePointLocator_SetBuildCubicOctreeP7_objectS0__ZL53PyvtkIncrementalOctreePointLocator_BuildCubicOctreeOnP7_objectS0__ZL54PyvtkIncrementalOctreePointLocator_BuildCubicOctreeOffP7_objectS0__ZL54PyvtkIncrementalOctreePointLocator_SetMaxPointsPerLeafP7_objectS0__ZL61PyvtkIncrementalOctreePointLocator_InsertPointWithoutCheckingP7_objectS0__ZL70PyvtkIncrementalOctreePointLocator_FindClosestPointWithinSquaredRadiusP7_objectS0__ZL46PyvtkIncrementalOctreePointLocator_NewInstanceP7_objectS0__ZL38PyvtkIncrementalOctreePointLocator_IsAP7_objectS0__ZL39PyvtkIncrementalOctreePointLocator_Type_ZL42PyvtkIncrementalOctreePointLocator_Methods_GLOBAL__sub_I_vtkIncrementalOctreePointLocatorPython.cxx_ZL50PyvtkIncrementalOctreePointLocator_InsertNextPointP7_objectS0__ZL46PyvtkIncrementalOctreePointLocator_InsertPointP7_objectS0__ZL52PyvtkIncrementalOctreePointLocator_InsertUniquePointP7_objectS0__ZL50PyvtkIncrementalOctreePointLocator_IsInsertedPointP7_objectS0__ZL53PyvtkIncrementalOctreePointLocator_InitPointInsertionP7_objectS0__ZL53PyvtkIncrementalOctreePointLocator_FindClosestNPointsP7_objectS0__ZL57PyvtkIncrementalOctreePointLocator_FindPointsWithinRadiusP7_objectS0__ZL63PyvtkIncrementalOctreePointLocator_FindClosestPointWithinRadiusP7_objectS0__ZL51PyvtkIncrementalOctreePointLocator_FindClosestPointP7_objectS0__ZL51PyvtkIncrementalOctreePointLocator_FindClosestPointP7_objectS0_.cold_ZL47PyvtkIncrementalOctreePointLocator_BuildLocatorP7_objectS0__ZL57PyvtkIncrementalOctreePointLocator_GenerateRepresentationP7_objectS0__ZL59PyvtkIncrementalOctreePointLocator_FindClosestInsertedPointP7_objectS0__ZL44PyvtkIncrementalOctreePointLocator_GetBoundsP7_objectS0__ZL44PyvtkIncrementalOctreePointLocator_GetBoundsP7_objectS0_.cold_ZL54PyvtkIncrementalOctreePointLocator_FreeSearchStructureP7_objectS0__ZL64PyvtkInformationQuadratureSchemeDefinitionVectorKey_SafeDownCastP7_objectS0__ZL60PyvtkInformationQuadratureSchemeDefinitionVectorKey_IsTypeOfP7_objectS0__ZL55PyvtkInformationQuadratureSchemeDefinitionVectorKey_IsAP7_objectS0__ZL57PyvtkInformationQuadratureSchemeDefinitionVectorKey_ClearP7_objectS0__ZL56PyvtkInformationQuadratureSchemeDefinitionVectorKey_SizeP7_objectS0__ZL58PyvtkInformationQuadratureSchemeDefinitionVectorKey_LengthP7_objectS0__ZL58PyvtkInformationQuadratureSchemeDefinitionVectorKey_ResizeP7_objectS0__ZL58PyvtkInformationQuadratureSchemeDefinitionVectorKey_AppendP7_objectS0__ZL55PyvtkInformationQuadratureSchemeDefinitionVectorKey_GetP7_objectS0__ZL61PyvtkInformationQuadratureSchemeDefinitionVectorKey_SaveStateP7_objectS0__ZL64PyvtkInformationQuadratureSchemeDefinitionVectorKey_RestoreStateP7_objectS0__ZL55PyvtkInformationQuadratureSchemeDefinitionVectorKey_SetP7_objectS0__ZL63PyvtkInformationQuadratureSchemeDefinitionVectorKey_NewInstanceP7_objectS0__ZL63PyvtkInformationQuadratureSchemeDefinitionVectorKey_NewInstanceP7_objectS0_.cold_ZL56PyvtkInformationQuadratureSchemeDefinitionVectorKey_Type_ZL59PyvtkInformationQuadratureSchemeDefinitionVectorKey_Methods_GLOBAL__sub_I_vtkInformationQuadratureSchemeDefinitionVectorKeyPython.cxx_ZL38vtkCommonInformationKeyManagerInstance_ZL60PyvtkInformationQuadratureSchemeDefinitionVectorKey_DeepCopyP7_objectS0__ZL63PyvtkInformationQuadratureSchemeDefinitionVectorKey_ShallowCopyP7_objectS0__ZL21PyvtkKdNode_StaticNewv_ZL24PyvtkKdNode_SafeDownCastP7_objectS0__ZL20PyvtkKdNode_IsTypeOfP7_objectS0__ZL24PyvtkKdNode_GetMinBoundsP7_objectS0__ZL24PyvtkKdNode_GetMaxBoundsP7_objectS0__ZL28PyvtkKdNode_GetMinDataBoundsP7_objectS0__ZL28PyvtkKdNode_GetMaxDataBoundsP7_objectS0__ZL28PyvtkKdNode_DeleteChildNodesP7_objectS0__ZL29PyvtkKdNode_GetNumberOfPointsP7_objectS0__ZL20PyvtkKdNode_GetMinIDP7_objectS0__ZL17PyvtkKdNode_GetUpP7_objectS0__ZL17PyvtkKdNode_GetIDP7_objectS0__ZL18PyvtkKdNode_GetDimP7_objectS0__ZL19PyvtkKdNode_GetLeftP7_objectS0__ZL20PyvtkKdNode_GetRightP7_objectS0__ZL20PyvtkKdNode_GetMaxIDP7_objectS0__ZL19PyvtkKdNode_SetLeftP7_objectS0__ZL21PyvtkKdNode_PrintNodeP7_objectS0__ZL28PyvtkKdNode_PrintVerboseNodeP7_objectS0__ZL20PyvtkKdNode_SetRightP7_objectS0__ZL17PyvtkKdNode_SetUpP7_objectS0__ZL28PyvtkKdNode_IntersectsRegionP7_objectS0__ZL25PyvtkKdNode_AddChildNodesP7_objectS0__ZL18PyvtkKdNode_SetDimP7_objectS0__ZL20PyvtkKdNode_SetMinIDP7_objectS0__ZL17PyvtkKdNode_SetIDP7_objectS0__ZL20PyvtkKdNode_SetMaxIDP7_objectS0__ZL29PyvtkKdNode_SetNumberOfPointsP7_objectS0__ZL39PyvtkKdNode_GetDistance2ToInnerBoundaryP7_objectS0__ZL28PyvtkKdNode_SetMinDataBoundsP7_objectS0__ZL28PyvtkKdNode_SetMinDataBoundsP7_objectS0_.cold_ZL28PyvtkKdNode_SetMaxDataBoundsP7_objectS0__ZL28PyvtkKdNode_SetMaxDataBoundsP7_objectS0_.cold_ZL24PyvtkKdNode_SetMinBoundsP7_objectS0__ZL24PyvtkKdNode_SetMinBoundsP7_objectS0_.cold_ZL24PyvtkKdNode_SetMaxBoundsP7_objectS0__ZL24PyvtkKdNode_SetMaxBoundsP7_objectS0_.cold_ZL25PyvtkKdNode_ContainsPointP7_objectS0__ZL15PyvtkKdNode_IsAP7_objectS0__ZL29PyvtkKdNode_IntersectsSphere2P7_objectS0__ZL23PyvtkKdNode_NewInstanceP7_objectS0__ZL21PyvtkKdNode_GetBoundsP7_objectS0__ZL21PyvtkKdNode_GetBoundsP7_objectS0_.cold_ZL25PyvtkKdNode_GetDataBoundsP7_objectS0__ZL25PyvtkKdNode_GetDataBoundsP7_objectS0_.cold_ZL23PyvtkKdNode_ContainsBoxP7_objectS0__ZL25PyvtkKdNode_IntersectsBoxP7_objectS0__ZL26PyvtkKdNode_IntersectsCellP7_objectS0__ZL26PyvtkKdNode_IntersectsCellP7_objectS0_.cold_ZL21PyvtkKdNode_SetBoundsP7_objectS0__ZL25PyvtkKdNode_SetDataBoundsP7_objectS0__ZL25PyvtkKdNode_SetDataBoundsP7_objectS0_.cold_ZL34PyvtkKdNode_GetDistance2ToBoundaryP7_objectS0__ZL34PyvtkKdNode_GetDistance2ToBoundaryP7_objectS0_.cold_ZL16PyvtkKdNode_Type_ZL19PyvtkKdNode_Methods_GLOBAL__sub_I_vtkKdNodePython.cxx_ZL31PyvtkKdNode_GetDivisionPositionP7_objectS0__ZL21PyvtkKdTree_StaticNewv_ZL24PyvtkKdTree_SafeDownCastP7_objectS0__ZL20PyvtkKdTree_CopyTreeP7_objectS0__ZL34PyvtkKdTree_BuildLocatorFromPointsP7_objectS0__ZL42PyvtkKdTree_BuildLocatorFromPoints_Methods_ZL25PyvtkKdTree_RemoveDataSetP7_objectS0__ZL33PyvtkKdTree_RemoveDataSet_Methods_ZL20PyvtkKdTree_IsTypeOfP7_objectS0__ZL29PyvtkKdTree_OmitXPartitioningP7_objectS0__ZL30PyvtkKdTree_OmitYZPartitioningP7_objectS0__ZL30PyvtkKdTree_OmitZXPartitioningP7_objectS0__ZL29PyvtkKdTree_OmitZPartitioningP7_objectS0__ZL29PyvtkKdTree_OmitYPartitioningP7_objectS0__ZL28PyvtkKdTree_PrintVerboseTreeP7_objectS0__ZL30PyvtkKdTree_OmitXYPartitioningP7_objectS0__ZL21PyvtkKdTree_PrintTreeP7_objectS0__ZL30PyvtkKdTree_OmitNoPartitioningP7_objectS0__ZL27PyvtkKdTree_DeleteCellListsP7_objectS0__ZL31PyvtkKdTree_GetNumberOfDataSetsP7_objectS0__ZL36PyvtkKdTree_GetNumberOfRegionsOrLessP7_objectS0__ZL23PyvtkKdTree_GetMinCellsP7_objectS0__ZL36PyvtkKdTree_GetNumberOfRegionsOrMoreP7_objectS0__ZL52PyvtkKdTree_GetGenerateRepresentationUsingDataBoundsP7_objectS0__ZL21PyvtkKdTree_GetTimingP7_objectS0__ZL19PyvtkKdTree_GetCutsP7_objectS0__ZL30PyvtkKdTree_GetNumberOfRegionsP7_objectS0__ZL41PyvtkKdTree_GetIncludeRegionBoundaryCellsP7_objectS0__ZL23PyvtkKdTree_GetDataSetsP7_objectS0__ZL26PyvtkKdTree_GetFudgeFactorP7_objectS0__ZL38PyvtkKdTree_AllGetRegionContainingCellP7_objectS0__ZL23PyvtkKdTree_PrintRegionP7_objectS0__ZL37PyvtkKdTree_BuildLocatorFromPoints_s1P7_objectS0__ZL37PyvtkKdTree_BuildLocatorFromPoints_s2P7_objectS0__ZL19PyvtkKdTree_SetCutsP7_objectS0__ZL27PyvtkKdTree_GetDataSetIndexP7_objectS0__ZL38PyvtkKdTree_BuildMapForDuplicatePointsP7_objectS0__ZL23PyvtkKdTree_GetCellListP7_objectS0__ZL29PyvtkKdTree_GetPointsInRegionP7_objectS0__ZL31PyvtkKdTree_GetBoundaryCellListP7_objectS0__ZL42PyvtkKdTree_ViewOrderAllRegionsInDirectionP7_objectS0__ZL43PyvtkKdTree_ViewOrderAllRegionsFromPositionP7_objectS0__ZL38PyvtkKdTree_GetRegionContainingCell_s1P7_objectS0__ZL38PyvtkKdTree_GetRegionContainingCell_s2P7_objectS0__ZL34PyvtkKdTree_FindPointsWithinRadiusP7_objectS0__ZL30PyvtkKdTree_FindClosestNPointsP7_objectS0__ZL52PyvtkKdTree_SetGenerateRepresentationUsingDataBoundsP7_objectS0__ZL26PyvtkKdTree_SetFudgeFactorP7_objectS0__ZL21PyvtkKdTree_SetTimingP7_objectS0__ZL41PyvtkKdTree_SetIncludeRegionBoundaryCellsP7_objectS0__ZL36PyvtkKdTree_SetNumberOfRegionsOrLessP7_objectS0__ZL23PyvtkKdTree_SetMinCellsP7_objectS0__ZL36PyvtkKdTree_SetNumberOfRegionsOrMoreP7_objectS0__ZL41PyvtkKdTree_IncludeRegionBoundaryCellsOffP7_objectS0__ZL20PyvtkKdTree_TimingOnP7_objectS0__ZL52PyvtkKdTree_GenerateRepresentationUsingDataBoundsOffP7_objectS0__ZL40PyvtkKdTree_IncludeRegionBoundaryCellsOnP7_objectS0__ZL51PyvtkKdTree_GenerateRepresentationUsingDataBoundsOnP7_objectS0__ZL21PyvtkKdTree_TimingOffP7_objectS0__ZL36PyvtkKdTree_GetRegionContainingPointP7_objectS0__ZL39PyvtkKdTree_ViewOrderRegionsInDirectionP7_objectS0__ZL40PyvtkKdTree_ViewOrderRegionsFromPositionP7_objectS0__ZL40PyvtkKdTree_FindClosestPointWithinRadiusP7_objectS0__ZL27PyvtkKdTree_GetCellLists_s1P7_objectS0__ZL27PyvtkKdTree_GetCellLists_s2P7_objectS0__ZL27PyvtkKdTree_GetRegionBoundsP7_objectS0__ZL31PyvtkKdTree_GetRegionDataBoundsP7_objectS0__ZL15PyvtkKdTree_IsAP7_objectS0__ZL23PyvtkKdTree_NewInstanceP7_objectS0__ZL21PyvtkKdTree_GetBoundsP7_objectS0__ZL21PyvtkKdTree_GetBoundsP7_objectS0_.cold_ZL24PyvtkKdTree_SetNewBoundsP7_objectS0__ZL24PyvtkKdTree_SetNewBoundsP7_objectS0_.cold_ZL30PyvtkKdTree_CreateCellLists_s2P7_objectS0__ZL30PyvtkKdTree_CreateCellLists_s2P7_objectS0_.cold_ZL30PyvtkKdTree_CreateCellLists_s1P7_objectS0__ZL30PyvtkKdTree_CreateCellLists_s1P7_objectS0_.cold_ZL28PyvtkKdTree_FindPointsInAreaP7_objectS0__ZL28PyvtkKdTree_FindPointsInAreaP7_objectS0_.cold_ZL35PyvtkKdTree_GetRegionContainingCellP7_objectS0__ZL43PyvtkKdTree_GetRegionContainingCell_Methods_ZL24PyvtkKdTree_GetCellListsP7_objectS0__ZL32PyvtkKdTree_GetCellLists_Methods_ZL22PyvtkKdTree_GetDataSetP7_objectS0__ZL21PyvtkKdTree_FindPointP7_objectS0__ZL21PyvtkKdTree_FindPointP7_objectS0_.cold_ZL28PyvtkKdTree_FindClosestPointP7_objectS0__ZL28PyvtkKdTree_FindClosestPointP7_objectS0_.cold_ZL27PyvtkKdTree_CreateCellListsP7_objectS0__ZL35PyvtkKdTree_CreateCellLists_Methods_ZL27PyvtkKdTree_CreateCellListsP7_objectS0_.cold_ZL36PyvtkKdTree_FindClosestPointInRegionP7_objectS0__ZL36PyvtkKdTree_FindClosestPointInRegionP7_objectS0_.cold_ZL16PyvtkKdTree_Type_ZL19PyvtkKdTree_Methods_GLOBAL__sub_I_vtkKdTreePython.cxx_ZL30PyvtkKdTree_InvalidateGeometryP7_objectS0__ZL23PyvtkKdTree_NewGeometryP7_objectS0__ZL34PyvtkKdTree_GenerateRepresentationP7_objectS0__ZL34PyvtkKdTree_GenerateRepresentationP7_objectS0_.cold_ZL31PyvtkKdTree_FreeSearchStructureP7_objectS0__ZL24PyvtkKdTree_BuildLocatorP7_objectS0__ZL29PyvtkKdTree_RemoveAllDataSetsP7_objectS0__ZL28PyvtkKdTree_RemoveDataSet_s2P7_objectS0__ZL28PyvtkKdTree_RemoveDataSet_s1P7_objectS0__ZL22PyvtkKdTree_AddDataSetP7_objectS0__ZL22PyvtkKdTree_SetDataSetP7_objectS0__ZL28PyvtkLagrangeCurve_StaticNewv_ZL31PyvtkLagrangeCurve_SafeDownCastP7_objectS0__ZL43PyvtkLagrangeCurve_SubCellCoordinatesFromIdP7_objectS0__ZL51PyvtkLagrangeCurve_SubCellCoordinatesFromId_Methods_ZL27PyvtkLagrangeCurve_IsTypeOfP7_objectS0__ZL35PyvtkLagrangeCurve_GetNumberOfFacesP7_objectS0__ZL35PyvtkLagrangeCurve_GetNumberOfEdgesP7_objectS0__ZL41PyvtkLagrangeCurve_RequiresInitializationP7_objectS0__ZL35PyvtkLagrangeCurve_GetCellDimensionP7_objectS0__ZL30PyvtkLagrangeCurve_GetCellTypeP7_objectS0__ZL26PyvtkLagrangeCurve_GetFaceP7_objectS0__ZL26PyvtkLagrangeCurve_GetEdgeP7_objectS0__ZL46PyvtkLagrangeCurve_SubCellCoordinatesFromId_s1P7_objectS0__ZL46PyvtkLagrangeCurve_SubCellCoordinatesFromId_s2P7_objectS0__ZL36PyvtkLagrangeCurve_PointIndexFromIJKP7_objectS0__ZL38PyvtkLagrangeCurve_GetParametricCenterP7_objectS0__ZL30PyvtkLagrangeCurve_NewInstanceP7_objectS0__ZL22PyvtkLagrangeCurve_IsAP7_objectS0__ZL46PyvtkLagrangeCurve_TransformApproxToCellParamsP7_objectS0__ZL46PyvtkLagrangeCurve_TransformApproxToCellParamsP7_objectS0_.cold_ZL27PyvtkLagrangeCurve_GetOrderP7_objectS0__ZL23PyvtkLagrangeCurve_Type_ZL26PyvtkLagrangeCurve_Methods_GLOBAL__sub_I_vtkLagrangeCurvePython.cxx_ZL36PyvtkLagrangeCurve_InterpolateDerivsP7_objectS0__ZL36PyvtkLagrangeCurve_InterpolateDerivsP7_objectS0_.cold_ZL39PyvtkLagrangeCurve_InterpolateFunctionsP7_objectS0__ZL39PyvtkLagrangeCurve_InterpolateFunctionsP7_objectS0_.cold_ZL40PyvtkLagrangeCurve_GetParametricDistanceP7_objectS0__ZL38PyvtkLagrangeCurve_GetParametricCoordsP7_objectS0__ZL30PyvtkLagrangeCurve_DerivativesP7_objectS0__ZL30PyvtkLagrangeCurve_DerivativesP7_objectS0_.cold_ZL30PyvtkLagrangeCurve_TriangulateP7_objectS0__ZL36PyvtkLagrangeCurve_IntersectWithLineP7_objectS0__ZL23PyvtkLagrangeCurve_ClipP7_objectS0__ZL26PyvtkLagrangeCurve_ContourP7_objectS0__ZL35PyvtkLagrangeCurve_EvaluateLocationP7_objectS0__ZL35PyvtkLagrangeCurve_EvaluateLocationP7_objectS0_.cold_ZL35PyvtkLagrangeCurve_EvaluatePositionP7_objectS0__ZL35PyvtkLagrangeCurve_EvaluatePositionP7_objectS0_.cold_ZL31PyvtkLagrangeCurve_CellBoundaryP7_objectS0__ZL29PyvtkLagrangeCurve_InitializeP7_objectS0__ZL33PyvtkLagrangeHexahedron_StaticNewv_ZL44PyvtkLagrangeHexahedron_PointIndexFromIJK_s1P7_objectS0__ZL44PyvtkLagrangeHexahedron_PointIndexFromIJK_s1P7_objectS0_.cold_ZL36PyvtkLagrangeHexahedron_SafeDownCastP7_objectS0__ZL32PyvtkLagrangeHexahedron_IsTypeOfP7_objectS0__ZL35PyvtkLagrangeHexahedron_GetCellTypeP7_objectS0__ZL40PyvtkLagrangeHexahedron_GetCellDimensionP7_objectS0__ZL40PyvtkLagrangeHexahedron_GetNumberOfEdgesP7_objectS0__ZL40PyvtkLagrangeHexahedron_GetNumberOfFacesP7_objectS0__ZL46PyvtkLagrangeHexahedron_RequiresInitializationP7_objectS0__ZL43PyvtkLagrangeHexahedron_GetParametricCenterP7_objectS0__ZL35PyvtkLagrangeHexahedron_NewInstanceP7_objectS0__ZL27PyvtkLagrangeHexahedron_IsAP7_objectS0__ZL51PyvtkLagrangeHexahedron_TransformApproxToCellParamsP7_objectS0__ZL51PyvtkLagrangeHexahedron_TransformApproxToCellParamsP7_objectS0_.cold_ZL49PyvtkLagrangeHexahedron_TransformFaceToCellParamsP7_objectS0__ZL49PyvtkLagrangeHexahedron_TransformFaceToCellParamsP7_objectS0_.cold_ZL41PyvtkLagrangeHexahedron_PointIndexFromIJKP7_objectS0__ZL49PyvtkLagrangeHexahedron_PointIndexFromIJK_Methods_ZL32PyvtkLagrangeHexahedron_GetOrderP7_objectS0__ZL48PyvtkLagrangeHexahedron_SubCellCoordinatesFromIdP7_objectS0__ZL28PyvtkLagrangeHexahedron_Type_ZL31PyvtkLagrangeHexahedron_Methods_GLOBAL__sub_I_vtkLagrangeHexahedronPython.cxx_ZL41PyvtkLagrangeHexahedron_InterpolateDerivsP7_objectS0__ZL41PyvtkLagrangeHexahedron_InterpolateDerivsP7_objectS0_.cold_ZL44PyvtkLagrangeHexahedron_InterpolateFunctionsP7_objectS0__ZL44PyvtkLagrangeHexahedron_InterpolateFunctionsP7_objectS0_.cold_ZL45PyvtkLagrangeHexahedron_GetParametricDistanceP7_objectS0__ZL43PyvtkLagrangeHexahedron_GetParametricCoordsP7_objectS0__ZL35PyvtkLagrangeHexahedron_DerivativesP7_objectS0__ZL35PyvtkLagrangeHexahedron_DerivativesP7_objectS0_.cold_ZL35PyvtkLagrangeHexahedron_TriangulateP7_objectS0__ZL41PyvtkLagrangeHexahedron_IntersectWithLineP7_objectS0__ZL28PyvtkLagrangeHexahedron_ClipP7_objectS0__ZL31PyvtkLagrangeHexahedron_ContourP7_objectS0__ZL40PyvtkLagrangeHexahedron_EvaluateLocationP7_objectS0__ZL40PyvtkLagrangeHexahedron_EvaluateLocationP7_objectS0_.cold_ZL40PyvtkLagrangeHexahedron_EvaluatePositionP7_objectS0__ZL40PyvtkLagrangeHexahedron_EvaluatePositionP7_objectS0_.cold_ZL36PyvtkLagrangeHexahedron_CellBoundaryP7_objectS0__ZL34PyvtkLagrangeHexahedron_InitializeP7_objectS0__ZL31PyvtkLagrangeHexahedron_GetFaceP7_objectS0__ZL31PyvtkLagrangeHexahedron_GetEdgeP7_objectS0__ZL36PyvtkLagrangeInterpolation_StaticNewv_ZL55PyvtkLagrangeInterpolation_GetFixedParameterOfWedgeFaceP7_objectS0__ZL58PyvtkLagrangeInterpolation_GetVaryingParametersOfWedgeFaceP7_objectS0__ZL58PyvtkLagrangeInterpolation_GetEdgeIndicesBoundingWedgeFaceP7_objectS0__ZL59PyvtkLagrangeInterpolation_GetPointIndicesBoundingWedgeFaceP7_objectS0__ZL56PyvtkLagrangeInterpolation_GetFixedParametersOfWedgeEdgeP7_objectS0__ZL57PyvtkLagrangeInterpolation_GetVaryingParameterOfWedgeEdgeP7_objectS0__ZL59PyvtkLagrangeInterpolation_GetPointIndicesBoundingWedgeEdgeP7_objectS0__ZL56PyvtkLagrangeInterpolation_GetParametricWedgeCoordinatesP7_objectS0__ZL53PyvtkLagrangeInterpolation_GetFixedParameterOfHexFaceP7_objectS0__ZL56PyvtkLagrangeInterpolation_GetVaryingParametersOfHexFaceP7_objectS0__ZL56PyvtkLagrangeInterpolation_GetEdgeIndicesBoundingHexFaceP7_objectS0__ZL57PyvtkLagrangeInterpolation_GetPointIndicesBoundingHexFaceP7_objectS0__ZL54PyvtkLagrangeInterpolation_GetFixedParametersOfHexEdgeP7_objectS0__ZL55PyvtkLagrangeInterpolation_GetVaryingParameterOfHexEdgeP7_objectS0__ZL57PyvtkLagrangeInterpolation_GetPointIndicesBoundingHexEdgeP7_objectS0__ZL54PyvtkLagrangeInterpolation_GetParametricHexCoordinatesP7_objectS0__ZL50PyvtkLagrangeInterpolation_WedgeEvaluateDerivativeP7_objectS0__ZL50PyvtkLagrangeInterpolation_WedgeEvaluateDerivativeP7_objectS0_.cold_ZL48PyvtkLagrangeInterpolation_WedgeShapeDerivativesP7_objectS0__ZL48PyvtkLagrangeInterpolation_WedgeShapeDerivativesP7_objectS0_.cold_ZL46PyvtkLagrangeInterpolation_WedgeShapeFunctionsP7_objectS0__ZL46PyvtkLagrangeInterpolation_WedgeShapeFunctionsP7_objectS0_.cold_ZL50PyvtkLagrangeInterpolation_Tensor3ShapeDerivativesP7_objectS0__ZL50PyvtkLagrangeInterpolation_Tensor3ShapeDerivativesP7_objectS0_.cold_ZL48PyvtkLagrangeInterpolation_Tensor3ShapeFunctionsP7_objectS0__ZL48PyvtkLagrangeInterpolation_Tensor3ShapeFunctionsP7_objectS0_.cold_ZL50PyvtkLagrangeInterpolation_Tensor2ShapeDerivativesP7_objectS0__ZL50PyvtkLagrangeInterpolation_Tensor2ShapeDerivativesP7_objectS0_.cold_ZL48PyvtkLagrangeInterpolation_Tensor2ShapeFunctionsP7_objectS0__ZL48PyvtkLagrangeInterpolation_Tensor2ShapeFunctionsP7_objectS0_.cold_ZL50PyvtkLagrangeInterpolation_Tensor1ShapeDerivativesP7_objectS0__ZL50PyvtkLagrangeInterpolation_Tensor1ShapeDerivativesP7_objectS0_.cold_ZL48PyvtkLagrangeInterpolation_Tensor1ShapeFunctionsP7_objectS0__ZL48PyvtkLagrangeInterpolation_Tensor1ShapeFunctionsP7_objectS0_.cold_ZL51PyvtkLagrangeInterpolation_EvaluateShapeAndGradientP7_objectS0__ZL51PyvtkLagrangeInterpolation_EvaluateShapeAndGradientP7_objectS0_.cold_ZL49PyvtkLagrangeInterpolation_EvaluateShapeFunctionsP7_objectS0__ZL49PyvtkLagrangeInterpolation_EvaluateShapeFunctionsP7_objectS0_.cold_ZL39PyvtkLagrangeInterpolation_SafeDownCastP7_objectS0__ZL35PyvtkLagrangeInterpolation_IsTypeOfP7_objectS0__ZL30PyvtkLagrangeInterpolation_IsAP7_objectS0__ZL52PyvtkLagrangeInterpolation_Tensor3EvaluateDerivativeP7_objectS0__ZL52PyvtkLagrangeInterpolation_Tensor3EvaluateDerivativeP7_objectS0_.cold_ZL40PyvtkLagrangeInterpolation_WedgeEvaluateP7_objectS0__ZL40PyvtkLagrangeInterpolation_WedgeEvaluateP7_objectS0_.cold_ZL38PyvtkLagrangeInterpolation_NewInstanceP7_objectS0__ZL41PyvtkLagrangeInterpolation_Constants_Type_ZL31PyvtkLagrangeInterpolation_Type_ZL34PyvtkLagrangeInterpolation_Methods_GLOBAL__sub_I_vtkLagrangeInterpolationPython.cxx_ZL36PyvtkLagrangeQuadrilateral_StaticNewv_ZL47PyvtkLagrangeQuadrilateral_PointIndexFromIJK_s2P7_objectS0__ZL47PyvtkLagrangeQuadrilateral_PointIndexFromIJK_s2P7_objectS0_.cold_ZL39PyvtkLagrangeQuadrilateral_SafeDownCastP7_objectS0__ZL44PyvtkLagrangeQuadrilateral_PointIndexFromIJKP7_objectS0__ZL52PyvtkLagrangeQuadrilateral_PointIndexFromIJK_Methods_ZL35PyvtkLagrangeQuadrilateral_IsTypeOfP7_objectS0__ZL38PyvtkLagrangeQuadrilateral_GetCellTypeP7_objectS0__ZL49PyvtkLagrangeQuadrilateral_RequiresInitializationP7_objectS0__ZL43PyvtkLagrangeQuadrilateral_GetCellDimensionP7_objectS0__ZL43PyvtkLagrangeQuadrilateral_GetNumberOfEdgesP7_objectS0__ZL43PyvtkLagrangeQuadrilateral_GetNumberOfFacesP7_objectS0__ZL34PyvtkLagrangeQuadrilateral_GetFaceP7_objectS0__ZL47PyvtkLagrangeQuadrilateral_PointIndexFromIJK_s1P7_objectS0__ZL46PyvtkLagrangeQuadrilateral_GetParametricCenterP7_objectS0__ZL38PyvtkLagrangeQuadrilateral_NewInstanceP7_objectS0__ZL30PyvtkLagrangeQuadrilateral_IsAP7_objectS0__ZL54PyvtkLagrangeQuadrilateral_TransformApproxToCellParamsP7_objectS0__ZL54PyvtkLagrangeQuadrilateral_TransformApproxToCellParamsP7_objectS0_.cold_ZL35PyvtkLagrangeQuadrilateral_GetOrderP7_objectS0__ZL51PyvtkLagrangeQuadrilateral_SubCellCoordinatesFromIdP7_objectS0__ZL31PyvtkLagrangeQuadrilateral_Type_ZL34PyvtkLagrangeQuadrilateral_Methods_GLOBAL__sub_I_vtkLagrangeQuadrilateralPython.cxx_ZL44PyvtkLagrangeQuadrilateral_InterpolateDerivsP7_objectS0__ZL44PyvtkLagrangeQuadrilateral_InterpolateDerivsP7_objectS0_.cold_ZL47PyvtkLagrangeQuadrilateral_InterpolateFunctionsP7_objectS0__ZL47PyvtkLagrangeQuadrilateral_InterpolateFunctionsP7_objectS0_.cold_ZL48PyvtkLagrangeQuadrilateral_GetParametricDistanceP7_objectS0__ZL46PyvtkLagrangeQuadrilateral_GetParametricCoordsP7_objectS0__ZL38PyvtkLagrangeQuadrilateral_DerivativesP7_objectS0__ZL38PyvtkLagrangeQuadrilateral_DerivativesP7_objectS0_.cold_ZL38PyvtkLagrangeQuadrilateral_TriangulateP7_objectS0__ZL44PyvtkLagrangeQuadrilateral_IntersectWithLineP7_objectS0__ZL31PyvtkLagrangeQuadrilateral_ClipP7_objectS0__ZL34PyvtkLagrangeQuadrilateral_ContourP7_objectS0__ZL43PyvtkLagrangeQuadrilateral_EvaluateLocationP7_objectS0__ZL43PyvtkLagrangeQuadrilateral_EvaluateLocationP7_objectS0_.cold_ZL43PyvtkLagrangeQuadrilateral_EvaluatePositionP7_objectS0__ZL43PyvtkLagrangeQuadrilateral_EvaluatePositionP7_objectS0_.cold_ZL39PyvtkLagrangeQuadrilateral_CellBoundaryP7_objectS0__ZL37PyvtkLagrangeQuadrilateral_InitializeP7_objectS0__ZL34PyvtkLagrangeQuadrilateral_GetEdgeP7_objectS0__ZL28PyvtkLagrangeTetra_StaticNewv_ZL24PyvtkLagrangeTetra_IndexP7_objectS0__ZL24PyvtkLagrangeTetra_IndexP7_objectS0_.cold_ZL35PyvtkLagrangeTetra_BarycentricIndexP7_objectS0__ZL35PyvtkLagrangeTetra_BarycentricIndexP7_objectS0_.cold_ZL31PyvtkLagrangeTetra_SafeDownCastP7_objectS0__ZL31PyvtkLagrangeTetra_MaximumOrderP7_objectS0__ZL40PyvtkLagrangeTetra_MaximumNumberOfPointsP7_objectS0__ZL27PyvtkLagrangeTetra_IsTypeOfP7_objectS0__ZL27PyvtkLagrangeTetra_GetOrderP7_objectS0__ZL31PyvtkLagrangeTetra_ComputeOrderP7_objectS0__ZL30PyvtkLagrangeTetra_GetCellTypeP7_objectS0__ZL35PyvtkLagrangeTetra_GetNumberOfFacesP7_objectS0__ZL41PyvtkLagrangeTetra_RequiresInitializationP7_objectS0__ZL35PyvtkLagrangeTetra_GetNumberOfEdgesP7_objectS0__ZL35PyvtkLagrangeTetra_GetCellDimensionP7_objectS0__ZL26PyvtkLagrangeTetra_ToIndexP7_objectS0__ZL26PyvtkLagrangeTetra_ToIndexP7_objectS0_.cold_ZL30PyvtkLagrangeTetra_NewInstanceP7_objectS0__ZL22PyvtkLagrangeTetra_IsAP7_objectS0__ZL37PyvtkLagrangeTetra_ToBarycentricIndexP7_objectS0__ZL37PyvtkLagrangeTetra_ToBarycentricIndexP7_objectS0_.cold_ZL23PyvtkLagrangeTetra_Type_ZL26PyvtkLagrangeTetra_Methods_GLOBAL__sub_I_vtkLagrangeTetraPython.cxx_ZL36PyvtkLagrangeTetra_InterpolateDerivsP7_objectS0__ZL36PyvtkLagrangeTetra_InterpolateDerivsP7_objectS0_.cold_ZL39PyvtkLagrangeTetra_InterpolateFunctionsP7_objectS0__ZL39PyvtkLagrangeTetra_InterpolateFunctionsP7_objectS0_.cold_ZL40PyvtkLagrangeTetra_GetParametricDistanceP7_objectS0__ZL38PyvtkLagrangeTetra_GetParametricCenterP7_objectS0__ZL38PyvtkLagrangeTetra_GetParametricCoordsP7_objectS0__ZL30PyvtkLagrangeTetra_DerivativesP7_objectS0__ZL30PyvtkLagrangeTetra_DerivativesP7_objectS0_.cold_ZL30PyvtkLagrangeTetra_TriangulateP7_objectS0__ZL36PyvtkLagrangeTetra_IntersectWithLineP7_objectS0__ZL23PyvtkLagrangeTetra_ClipP7_objectS0__ZL26PyvtkLagrangeTetra_ContourP7_objectS0__ZL35PyvtkLagrangeTetra_EvaluateLocationP7_objectS0__ZL35PyvtkLagrangeTetra_EvaluateLocationP7_objectS0_.cold_ZL35PyvtkLagrangeTetra_EvaluatePositionP7_objectS0__ZL35PyvtkLagrangeTetra_EvaluatePositionP7_objectS0_.cold_ZL31PyvtkLagrangeTetra_CellBoundaryP7_objectS0__ZL29PyvtkLagrangeTetra_InitializeP7_objectS0__ZL26PyvtkLagrangeTetra_GetFaceP7_objectS0__ZL26PyvtkLagrangeTetra_GetEdgeP7_objectS0__ZL31PyvtkLagrangeTriangle_StaticNewv_ZL27PyvtkLagrangeTriangle_d_etaP7_objectS0__ZL25PyvtkLagrangeTriangle_etaP7_objectS0__ZL27PyvtkLagrangeTriangle_IndexP7_objectS0__ZL27PyvtkLagrangeTriangle_IndexP7_objectS0_.cold_ZL38PyvtkLagrangeTriangle_BarycentricIndexP7_objectS0__ZL38PyvtkLagrangeTriangle_BarycentricIndexP7_objectS0_.cold_ZL45PyvtkLagrangeTriangle_ComputeParametricCoordsP7_objectS0__ZL45PyvtkLagrangeTriangle_ComputeParametricCoordsP7_objectS0_.cold_ZL34PyvtkLagrangeTriangle_SafeDownCastP7_objectS0__ZL34PyvtkLagrangeTriangle_MaximumOrderP7_objectS0__ZL43PyvtkLagrangeTriangle_MaximumNumberOfPointsP7_objectS0__ZL30PyvtkLagrangeTriangle_IsTypeOfP7_objectS0__ZL30PyvtkLagrangeTriangle_GetOrderP7_objectS0__ZL34PyvtkLagrangeTriangle_ComputeOrderP7_objectS0__ZL33PyvtkLagrangeTriangle_GetCellTypeP7_objectS0__ZL38PyvtkLagrangeTriangle_GetNumberOfFacesP7_objectS0__ZL38PyvtkLagrangeTriangle_GetNumberOfEdgesP7_objectS0__ZL44PyvtkLagrangeTriangle_RequiresInitializationP7_objectS0__ZL38PyvtkLagrangeTriangle_GetCellDimensionP7_objectS0__ZL29PyvtkLagrangeTriangle_GetFaceP7_objectS0__ZL29PyvtkLagrangeTriangle_ToIndexP7_objectS0__ZL29PyvtkLagrangeTriangle_ToIndexP7_objectS0_.cold_ZL33PyvtkLagrangeTriangle_NewInstanceP7_objectS0__ZL25PyvtkLagrangeTriangle_IsAP7_objectS0__ZL40PyvtkLagrangeTriangle_ToBarycentricIndexP7_objectS0__ZL40PyvtkLagrangeTriangle_ToBarycentricIndexP7_objectS0_.cold_ZL26PyvtkLagrangeTriangle_Type_ZL29PyvtkLagrangeTriangle_Methods_GLOBAL__sub_I_vtkLagrangeTrianglePython.cxx_ZL39PyvtkLagrangeTriangle_InterpolateDerivsP7_objectS0__ZL39PyvtkLagrangeTriangle_InterpolateDerivsP7_objectS0_.cold_ZL42PyvtkLagrangeTriangle_InterpolateFunctionsP7_objectS0__ZL42PyvtkLagrangeTriangle_InterpolateFunctionsP7_objectS0_.cold_ZL43PyvtkLagrangeTriangle_GetParametricDistanceP7_objectS0__ZL41PyvtkLagrangeTriangle_GetParametricCenterP7_objectS0__ZL41PyvtkLagrangeTriangle_GetParametricCoordsP7_objectS0__ZL33PyvtkLagrangeTriangle_DerivativesP7_objectS0__ZL33PyvtkLagrangeTriangle_DerivativesP7_objectS0_.cold_ZL33PyvtkLagrangeTriangle_TriangulateP7_objectS0__ZL39PyvtkLagrangeTriangle_IntersectWithLineP7_objectS0__ZL26PyvtkLagrangeTriangle_ClipP7_objectS0__ZL29PyvtkLagrangeTriangle_ContourP7_objectS0__ZL38PyvtkLagrangeTriangle_EvaluateLocationP7_objectS0__ZL38PyvtkLagrangeTriangle_EvaluateLocationP7_objectS0_.cold_ZL38PyvtkLagrangeTriangle_EvaluatePositionP7_objectS0__ZL38PyvtkLagrangeTriangle_EvaluatePositionP7_objectS0_.cold_ZL34PyvtkLagrangeTriangle_CellBoundaryP7_objectS0__ZL32PyvtkLagrangeTriangle_InitializeP7_objectS0__ZL29PyvtkLagrangeTriangle_GetEdgeP7_objectS0__ZL28PyvtkLagrangeWedge_StaticNewv_ZL52PyvtkLagrangeWedge_GetNumberOfApproximatingWedges_s1P7_objectS0__ZL52PyvtkLagrangeWedge_GetNumberOfApproximatingWedges_s1P7_objectS0_.cold_ZL39PyvtkLagrangeWedge_PointIndexFromIJK_s1P7_objectS0__ZL39PyvtkLagrangeWedge_PointIndexFromIJK_s1P7_objectS0_.cold_ZL31PyvtkLagrangeWedge_SafeDownCastP7_objectS0__ZL27PyvtkLagrangeWedge_IsTypeOfP7_objectS0__ZL30PyvtkLagrangeWedge_GetCellTypeP7_objectS0__ZL35PyvtkLagrangeWedge_GetCellDimensionP7_objectS0__ZL35PyvtkLagrangeWedge_GetNumberOfEdgesP7_objectS0__ZL41PyvtkLagrangeWedge_RequiresInitializationP7_objectS0__ZL35PyvtkLagrangeWedge_GetNumberOfFacesP7_objectS0__ZL38PyvtkLagrangeWedge_GetParametricCenterP7_objectS0__ZL30PyvtkLagrangeWedge_NewInstanceP7_objectS0__ZL22PyvtkLagrangeWedge_IsAP7_objectS0__ZL46PyvtkLagrangeWedge_TransformApproxToCellParamsP7_objectS0__ZL46PyvtkLagrangeWedge_TransformApproxToCellParamsP7_objectS0_.cold_ZL44PyvtkLagrangeWedge_TransformFaceToCellParamsP7_objectS0__ZL44PyvtkLagrangeWedge_TransformFaceToCellParamsP7_objectS0_.cold_ZL49PyvtkLagrangeWedge_GetNumberOfApproximatingWedgesP7_objectS0__ZL57PyvtkLagrangeWedge_GetNumberOfApproximatingWedges_Methods_ZL36PyvtkLagrangeWedge_PointIndexFromIJKP7_objectS0__ZL44PyvtkLagrangeWedge_PointIndexFromIJK_Methods_ZL27PyvtkLagrangeWedge_GetOrderP7_objectS0__ZL43PyvtkLagrangeWedge_SubCellCoordinatesFromIdP7_objectS0__ZL23PyvtkLagrangeWedge_Type_ZL26PyvtkLagrangeWedge_Methods_GLOBAL__sub_I_vtkLagrangeWedgePython.cxx_ZL36PyvtkLagrangeWedge_InterpolateDerivsP7_objectS0__ZL36PyvtkLagrangeWedge_InterpolateDerivsP7_objectS0_.cold_ZL39PyvtkLagrangeWedge_InterpolateFunctionsP7_objectS0__ZL39PyvtkLagrangeWedge_InterpolateFunctionsP7_objectS0_.cold_ZL40PyvtkLagrangeWedge_GetParametricDistanceP7_objectS0__ZL38PyvtkLagrangeWedge_GetParametricCoordsP7_objectS0__ZL30PyvtkLagrangeWedge_DerivativesP7_objectS0__ZL30PyvtkLagrangeWedge_DerivativesP7_objectS0_.cold_ZL30PyvtkLagrangeWedge_TriangulateP7_objectS0__ZL36PyvtkLagrangeWedge_IntersectWithLineP7_objectS0__ZL23PyvtkLagrangeWedge_ClipP7_objectS0__ZL26PyvtkLagrangeWedge_ContourP7_objectS0__ZL35PyvtkLagrangeWedge_EvaluateLocationP7_objectS0__ZL35PyvtkLagrangeWedge_EvaluateLocationP7_objectS0_.cold_ZL35PyvtkLagrangeWedge_EvaluatePositionP7_objectS0__ZL35PyvtkLagrangeWedge_EvaluatePositionP7_objectS0_.cold_ZL31PyvtkLagrangeWedge_CellBoundaryP7_objectS0__ZL29PyvtkLagrangeWedge_InitializeP7_objectS0__ZL26PyvtkLagrangeWedge_GetFaceP7_objectS0__ZL26PyvtkLagrangeWedge_GetEdgeP7_objectS0__ZL19PyvtkLine_StaticNewv_ZL29PyvtkLine_InterpolationDerivsP7_objectS0__ZL32PyvtkLine_InterpolationFunctionsP7_objectS0__ZL37PyvtkLine_DistanceBetweenLineSegmentsP7_objectS0__ZL30PyvtkLine_DistanceBetweenLinesP7_objectS0__ZL24PyvtkLine_Intersection3DP7_objectS0__ZL22PyvtkLine_IntersectionP7_objectS0__ZL22PyvtkLine_SafeDownCastP7_objectS0__ZL24PyvtkLine_DistanceToLineP7_objectS0__ZL24PyvtkLine_DistanceToLineP7_objectS0_.cold_ZL18PyvtkLine_IsTypeOfP7_objectS0__ZL21PyvtkLine_GetCellTypeP7_objectS0__ZL26PyvtkLine_GetNumberOfFacesP7_objectS0__ZL26PyvtkLine_GetCellDimensionP7_objectS0__ZL26PyvtkLine_GetNumberOfEdgesP7_objectS0__ZL17PyvtkLine_GetEdgeP7_objectS0__ZL17PyvtkLine_GetFaceP7_objectS0__ZL29PyvtkLine_GetParametricCenterP7_objectS0__ZL13PyvtkLine_IsAP7_objectS0__ZL21PyvtkLine_NewInstanceP7_objectS0__ZL27PyvtkLine_InterpolateDerivsP7_objectS0__ZL30PyvtkLine_InterpolateFunctionsP7_objectS0__ZL14PyvtkLine_Type_ZL17PyvtkLine_Methods_GLOBAL__sub_I_vtkLinePython.cxx_ZL27PyvtkLine_IntersectWithLineP7_objectS0__ZL14PyvtkLine_ClipP7_objectS0__ZL29PyvtkLine_GetParametricCoordsP7_objectS0__ZL21PyvtkLine_DerivativesP7_objectS0__ZL21PyvtkLine_DerivativesP7_objectS0_.cold_ZL21PyvtkLine_TriangulateP7_objectS0__ZL26PyvtkLine_EvaluateLocationP7_objectS0__ZL26PyvtkLine_EvaluateLocationP7_objectS0_.cold_ZL26PyvtkLine_EvaluatePositionP7_objectS0__ZL26PyvtkLine_EvaluatePositionP7_objectS0_.cold_ZL17PyvtkLine_ContourP7_objectS0__ZL22PyvtkLine_CellBoundaryP7_objectS0__ZL47PyvtkMeanValueCoordinatesInterpolator_StaticNewv_ZL68PyvtkMeanValueCoordinatesInterpolator_ComputeInterpolationWeights_s2P7_objectS0__ZL68PyvtkMeanValueCoordinatesInterpolator_ComputeInterpolationWeights_s2P7_objectS0_.cold_ZL68PyvtkMeanValueCoordinatesInterpolator_ComputeInterpolationWeights_s1P7_objectS0__ZL68PyvtkMeanValueCoordinatesInterpolator_ComputeInterpolationWeights_s1P7_objectS0_.cold_ZL50PyvtkMeanValueCoordinatesInterpolator_SafeDownCastP7_objectS0__ZL65PyvtkMeanValueCoordinatesInterpolator_ComputeInterpolationWeightsP7_objectS0__ZL73PyvtkMeanValueCoordinatesInterpolator_ComputeInterpolationWeights_Methods_ZL46PyvtkMeanValueCoordinatesInterpolator_IsTypeOfP7_objectS0__ZL41PyvtkMeanValueCoordinatesInterpolator_IsAP7_objectS0__ZL49PyvtkMeanValueCoordinatesInterpolator_NewInstanceP7_objectS0__ZL42PyvtkMeanValueCoordinatesInterpolator_Type_ZL45PyvtkMeanValueCoordinatesInterpolator_Methods_GLOBAL__sub_I_vtkMeanValueCoordinatesInterpolatorPython.cxx_ZL33PyvtkOctreePointLocator_StaticNewv_ZL36PyvtkOctreePointLocator_SafeDownCastP7_objectS0__ZL32PyvtkOctreePointLocator_IsTypeOfP7_objectS0__ZL45PyvtkOctreePointLocator_GetCreateCubicOctantsP7_objectS0__ZL38PyvtkOctreePointLocator_GetFudgeFactorP7_objectS0__ZL49PyvtkOctreePointLocator_GetMaximumPointsPerRegionP7_objectS0__ZL44PyvtkOctreePointLocator_GetNumberOfLeafNodesP7_objectS0__ZL41PyvtkOctreePointLocator_GetPointsInRegionP7_objectS0__ZL45PyvtkOctreePointLocator_SetCreateCubicOctantsP7_objectS0__ZL38PyvtkOctreePointLocator_SetFudgeFactorP7_objectS0__ZL49PyvtkOctreePointLocator_SetMaximumPointsPerRegionP7_objectS0__ZL48PyvtkOctreePointLocator_GetRegionContainingPointP7_objectS0__ZL39PyvtkOctreePointLocator_GetRegionBoundsP7_objectS0__ZL43PyvtkOctreePointLocator_GetRegionDataBoundsP7_objectS0__ZL35PyvtkOctreePointLocator_NewInstanceP7_objectS0__ZL27PyvtkOctreePointLocator_IsAP7_objectS0__ZL40PyvtkOctreePointLocator_FindPointsInAreaP7_objectS0__ZL40PyvtkOctreePointLocator_FindPointsInAreaP7_objectS0_.cold_ZL48PyvtkOctreePointLocator_FindClosestPointInRegionP7_objectS0__ZL48PyvtkOctreePointLocator_FindClosestPointInRegionP7_objectS0_.cold_ZL28PyvtkOctreePointLocator_Type_ZL31PyvtkOctreePointLocator_Methods_GLOBAL__sub_I_vtkOctreePointLocatorPython.cxx_ZL46PyvtkOctreePointLocator_GenerateRepresentationP7_objectS0__ZL43PyvtkOctreePointLocator_FreeSearchStructureP7_objectS0__ZL42PyvtkOctreePointLocator_FindClosestNPointsP7_objectS0__ZL46PyvtkOctreePointLocator_FindPointsWithinRadiusP7_objectS0__ZL52PyvtkOctreePointLocator_FindClosestPointWithinRadiusP7_objectS0__ZL40PyvtkOctreePointLocator_FindClosestPointP7_objectS0__ZL36PyvtkOctreePointLocator_BuildLocatorP7_objectS0__ZL33PyvtkOctreePointLocator_GetBoundsP7_objectS0__ZL33PyvtkOctreePointLocator_GetBoundsP7_objectS0_.cold_ZL37PyvtkOctreePointLocatorNode_StaticNewv_ZL40PyvtkOctreePointLocatorNode_SafeDownCastP7_objectS0__ZL36PyvtkOctreePointLocatorNode_IsTypeOfP7_objectS0__ZL44PyvtkOctreePointLocatorNode_CreateChildNodesP7_objectS0__ZL44PyvtkOctreePointLocatorNode_DeleteChildNodesP7_objectS0__ZL45PyvtkOctreePointLocatorNode_GetNumberOfPointsP7_objectS0__ZL33PyvtkOctreePointLocatorNode_GetIDP7_objectS0__ZL36PyvtkOctreePointLocatorNode_GetMinIDP7_objectS0__ZL45PyvtkOctreePointLocatorNode_SetNumberOfPointsP7_objectS0__ZL44PyvtkOctreePointLocatorNode_GetMinDataBoundsP7_objectS0__ZL44PyvtkOctreePointLocatorNode_GetMaxDataBoundsP7_objectS0__ZL40PyvtkOctreePointLocatorNode_GetMinBoundsP7_objectS0__ZL40PyvtkOctreePointLocatorNode_GetMaxBoundsP7_objectS0__ZL36PyvtkOctreePointLocatorNode_GetChildP7_objectS0__ZL44PyvtkOctreePointLocatorNode_IntersectsRegionP7_objectS0__ZL55PyvtkOctreePointLocatorNode_GetDistance2ToInnerBoundaryP7_objectS0__ZL41PyvtkOctreePointLocatorNode_ContainsPointP7_objectS0__ZL31PyvtkOctreePointLocatorNode_IsAP7_objectS0__ZL40PyvtkOctreePointLocatorNode_SetMinBoundsP7_objectS0__ZL44PyvtkOctreePointLocatorNode_SetMinDataBoundsP7_objectS0__ZL44PyvtkOctreePointLocatorNode_SetMaxDataBoundsP7_objectS0__ZL40PyvtkOctreePointLocatorNode_SetMaxBoundsP7_objectS0__ZL39PyvtkOctreePointLocatorNode_NewInstanceP7_objectS0__ZL41PyvtkOctreePointLocatorNode_SetDataBoundsP7_objectS0__ZL41PyvtkOctreePointLocatorNode_GetDataBoundsP7_objectS0__ZL41PyvtkOctreePointLocatorNode_GetDataBoundsP7_objectS0_.cold_ZL37PyvtkOctreePointLocatorNode_GetBoundsP7_objectS0__ZL37PyvtkOctreePointLocatorNode_GetBoundsP7_objectS0_.cold_ZL45PyvtkOctreePointLocatorNode_GetSubOctantIndexP7_objectS0__ZL45PyvtkOctreePointLocatorNode_GetSubOctantIndexP7_objectS0_.cold_ZL56PyvtkOctreePointLocatorNode_ComputeOctreeNodeInformationP7_objectS0__ZL56PyvtkOctreePointLocatorNode_ComputeOctreeNodeInformationP7_objectS0_.cold_ZL37PyvtkOctreePointLocatorNode_SetBoundsP7_objectS0__ZL50PyvtkOctreePointLocatorNode_GetDistance2ToBoundaryP7_objectS0__ZL50PyvtkOctreePointLocatorNode_GetDistance2ToBoundaryP7_objectS0_.cold_ZL32PyvtkOctreePointLocatorNode_Type_ZL35PyvtkOctreePointLocatorNode_Methods_GLOBAL__sub_I_vtkOctreePointLocatorNodePython.cxx_ZL19PyvtkPath_StaticNewv_ZL22PyvtkPath_SafeDownCastP7_objectS0__ZL20PyvtkPath_GetData_s1P7_objectS0__ZL20PyvtkPath_GetData_s2P7_objectS0__ZL18PyvtkPath_IsTypeOfP7_objectS0__ZL15PyvtkPath_ResetP7_objectS0__ZL18PyvtkPath_GetCodesP7_objectS0__ZL24PyvtkPath_GetMaxCellSizeP7_objectS0__ZL27PyvtkPath_GetDataObjectTypeP7_objectS0__ZL26PyvtkPath_GetNumberOfCellsP7_objectS0__ZL18PyvtkPath_SetCodesP7_objectS0__ZL21PyvtkPath_GetCellTypeP7_objectS0__ZL18PyvtkPath_AllocateP7_objectS0__ZL21PyvtkPath_NewInstanceP7_objectS0__ZL13PyvtkPath_IsAP7_objectS0__ZL25PyvtkPath_InsertNextPointP7_objectS0__ZL17PyvtkPath_GetDataP7_objectS0__ZL25PyvtkPath_GetData_Methods_ZL31PyvtkPath_ControlPointType_Type_ZL17PyvtkPath_Methods_ZL14PyvtkPath_Type_ZZ18PyvtkPath_ClassNewE9constants_GLOBAL__sub_I_vtkPathPython.cxx_ZL23PyvtkPath_GetPointCellsP7_objectS0__ZL23PyvtkPath_GetCellPointsP7_objectS0__ZL17PyvtkPath_GetCellP7_objectS0__ZL17PyvtkPath_GetCellP7_objectS0_.cold_ZL30PyvtkPentagonalPrism_StaticNewv_ZL33PyvtkPentagonalPrism_GetFaceArrayP7_objectS0__ZL40PyvtkPentagonalPrism_InterpolationDerivsP7_objectS0__ZL43PyvtkPentagonalPrism_InterpolationFunctionsP7_objectS0__ZL33PyvtkPentagonalPrism_SafeDownCastP7_objectS0__ZL29PyvtkPentagonalPrism_IsTypeOfP7_objectS0__ZL33PyvtkPentagonalPrism_GetEdgeArrayP7_objectS0__ZL32PyvtkPentagonalPrism_GetCellTypeP7_objectS0__ZL37PyvtkPentagonalPrism_GetCellDimensionP7_objectS0__ZL37PyvtkPentagonalPrism_GetNumberOfFacesP7_objectS0__ZL37PyvtkPentagonalPrism_GetNumberOfEdgesP7_objectS0__ZL40PyvtkPentagonalPrism_GetParametricCenterP7_objectS0__ZL32PyvtkPentagonalPrism_NewInstanceP7_objectS0__ZL24PyvtkPentagonalPrism_IsAP7_objectS0__ZL41PyvtkPentagonalPrism_InterpolateFunctionsP7_objectS0__ZL38PyvtkPentagonalPrism_InterpolateDerivsP7_objectS0__ZL25PyvtkPentagonalPrism_Type_ZL28PyvtkPentagonalPrism_Methods_GLOBAL__sub_I_vtkPentagonalPrismPython.cxx_ZL40PyvtkPentagonalPrism_GetParametricCoordsP7_objectS0__ZL32PyvtkPentagonalPrism_DerivativesP7_objectS0__ZL32PyvtkPentagonalPrism_DerivativesP7_objectS0_.cold_ZL32PyvtkPentagonalPrism_TriangulateP7_objectS0__ZL38PyvtkPentagonalPrism_IntersectWithLineP7_objectS0__ZL37PyvtkPentagonalPrism_EvaluateLocationP7_objectS0__ZL37PyvtkPentagonalPrism_EvaluateLocationP7_objectS0_.cold_ZL37PyvtkPentagonalPrism_EvaluatePositionP7_objectS0__ZL37PyvtkPentagonalPrism_EvaluatePositionP7_objectS0_.cold_ZL33PyvtkPentagonalPrism_CellBoundaryP7_objectS0__ZL28PyvtkPentagonalPrism_GetFaceP7_objectS0__ZL28PyvtkPentagonalPrism_GetEdgeP7_objectS0__ZL34PyvtkPentagonalPrism_GetFacePointsP7_objectS0__ZL34PyvtkPentagonalPrism_GetFacePointsP7_objectS0_.cold_ZL34PyvtkPentagonalPrism_GetEdgePointsP7_objectS0__ZL34PyvtkPentagonalPrism_GetEdgePointsP7_objectS0_.cold_ZL32PyvtkPiecewiseFunction_StaticNewv_ZL35PyvtkPiecewiseFunction_SafeDownCastP7_objectS0__ZL33PyvtkPiecewiseFunction_GetData_s1P7_objectS0__ZL33PyvtkPiecewiseFunction_GetData_s2P7_objectS0__ZL31PyvtkPiecewiseFunction_IsTypeOfP7_objectS0__ZL38PyvtkPiecewiseFunction_RemoveAllPointsP7_objectS0__ZL43PyvtkPiecewiseFunction_GetFirstNonZeroValueP7_objectS0__ZL30PyvtkPiecewiseFunction_GetSizeP7_objectS0__ZL40PyvtkPiecewiseFunction_GetDataObjectTypeP7_objectS0__ZL31PyvtkPiecewiseFunction_GetRangeP7_objectS0__ZL34PyvtkPiecewiseFunction_GetClampingP7_objectS0__ZL37PyvtkPiecewiseFunction_GetUseLogScaleP7_objectS0__ZL47PyvtkPiecewiseFunction_GetAllowDuplicateScalarsP7_objectS0__ZL37PyvtkPiecewiseFunction_GetDataPointerP7_objectS0__ZL34PyvtkPiecewiseFunction_RemovePointP7_objectS0__ZL31PyvtkPiecewiseFunction_GetValueP7_objectS0__ZL30PyvtkPiecewiseFunction_GetTypeP7_objectS0__ZL49PyvtkPiecewiseFunction_EstimateMinNumberOfSamplesP7_objectS0__ZL47PyvtkPiecewiseFunction_SetAllowDuplicateScalarsP7_objectS0__ZL34PyvtkPiecewiseFunction_SetClampingP7_objectS0__ZL34PyvtkPiecewiseFunction_ClampingOffP7_objectS0__ZL46PyvtkPiecewiseFunction_AllowDuplicateScalarsOnP7_objectS0__ZL33PyvtkPiecewiseFunction_ClampingOnP7_objectS0__ZL37PyvtkPiecewiseFunction_UseLogScaleOffP7_objectS0__ZL47PyvtkPiecewiseFunction_AllowDuplicateScalarsOffP7_objectS0__ZL36PyvtkPiecewiseFunction_UseLogScaleOnP7_objectS0__ZL37PyvtkPiecewiseFunction_SetUseLogScaleP7_objectS0__ZL33PyvtkPiecewiseFunction_AddSegmentP7_objectS0__ZL34PyvtkPiecewiseFunction_AdjustRangeP7_objectS0__ZL35PyvtkPiecewiseFunction_GetNodeValueP7_objectS0__ZL35PyvtkPiecewiseFunction_SetNodeValueP7_objectS0__ZL26PyvtkPiecewiseFunction_IsAP7_objectS0__ZL34PyvtkPiecewiseFunction_NewInstanceP7_objectS0__ZL42PyvtkPiecewiseFunction_FillFromDataPointerP7_objectS0__ZL42PyvtkPiecewiseFunction_FillFromDataPointerP7_objectS0_.cold_ZL45PyvtkPiecewiseFunction_BuildFunctionFromTableP7_objectS0__ZL45PyvtkPiecewiseFunction_BuildFunctionFromTableP7_objectS0_.cold_ZL31PyvtkPiecewiseFunction_GetTableP7_objectS0__ZL31PyvtkPiecewiseFunction_GetTableP7_objectS0_.cold_ZL30PyvtkPiecewiseFunction_GetDataP7_objectS0__ZL38PyvtkPiecewiseFunction_GetData_Methods_ZL31PyvtkPiecewiseFunction_AddPointP7_objectS0__ZL27PyvtkPiecewiseFunction_Type_ZL30PyvtkPiecewiseFunction_Methods_GLOBAL__sub_I_vtkPiecewiseFunctionPython.cxx_ZL33PyvtkPiecewiseFunction_InitializeP7_objectS0__ZL34PyvtkPiecewiseFunction_ShallowCopyP7_objectS0__ZL31PyvtkPiecewiseFunction_DeepCopyP7_objectS0__ZL20PyvtkPixel_StaticNewv_ZL30PyvtkPixel_InterpolationDerivsP7_objectS0__ZL33PyvtkPixel_InterpolationFunctionsP7_objectS0__ZL23PyvtkPixel_SafeDownCastP7_objectS0__ZL19PyvtkPixel_IsTypeOfP7_objectS0__ZL27PyvtkPixel_GetNumberOfFacesP7_objectS0__ZL27PyvtkPixel_GetCellDimensionP7_objectS0__ZL22PyvtkPixel_GetCellTypeP7_objectS0__ZL27PyvtkPixel_GetNumberOfEdgesP7_objectS0__ZL18PyvtkPixel_GetFaceP7_objectS0__ZL30PyvtkPixel_GetParametricCenterP7_objectS0__ZL14PyvtkPixel_IsAP7_objectS0__ZL22PyvtkPixel_NewInstanceP7_objectS0__ZL31PyvtkPixel_InterpolateFunctionsP7_objectS0__ZL28PyvtkPixel_InterpolateDerivsP7_objectS0__ZL15PyvtkPixel_Type_ZL18PyvtkPixel_Methods_GLOBAL__sub_I_vtkPixelPython.cxx_ZL30PyvtkPixel_GetParametricCoordsP7_objectS0__ZL22PyvtkPixel_DerivativesP7_objectS0__ZL22PyvtkPixel_DerivativesP7_objectS0_.cold_ZL22PyvtkPixel_TriangulateP7_objectS0__ZL28PyvtkPixel_IntersectWithLineP7_objectS0__ZL27PyvtkPixel_EvaluateLocationP7_objectS0__ZL27PyvtkPixel_EvaluateLocationP7_objectS0_.cold_ZL27PyvtkPixel_EvaluatePositionP7_objectS0__ZL27PyvtkPixel_EvaluatePositionP7_objectS0_.cold_ZL15PyvtkPixel_ClipP7_objectS0__ZL18PyvtkPixel_ContourP7_objectS0__ZL23PyvtkPixel_CellBoundaryP7_objectS0__ZL18PyvtkPixel_GetEdgeP7_objectS0__ZL22PyvtkPixelExtent_CCopyPKv_ZL34PyvtkPixelExtent_vtkPixelExtent_s2P7_objectS0__ZL25PyvtkPixelExtent_Shift_s6P7_objectS0__ZL25PyvtkPixelExtent_Shift_s6P7_objectS0_.cold_ZL25PyvtkPixelExtent_Shift_s5P7_objectS0__ZL25PyvtkPixelExtent_Shift_s5P7_objectS0_.cold_ZL26PyvtkPixelExtent_Shrink_s4P7_objectS0__ZL24PyvtkPixelExtent_Grow_s3P7_objectS0__ZL23PyvtkPixelExtent_DeleteP7_object_ZL21PyvtkPixelExtent_HashP7_object_ZL28PyvtkPixelExtent_RichCompareP7_objectS0_i_ZL21PyvtkPixelExtent_Type_ZL20PyvtkPixelExtent_NewP11_typeobjectP7_objectS2__ZL21PyvtkPixelExtent_GrowP7_objectS0__ZL29PyvtkPixelExtent_Grow_Methods_ZL22PyvtkPixelExtent_ClearP7_objectS0__ZL22PyvtkPixelExtent_EmptyP7_objectS0__ZL25PyvtkPixelExtent_GetDataUP7_objectS0__ZL24PyvtkPixelExtent_GetDataP7_objectS0__ZL25PyvtkPixelExtent_Shift_s4P7_objectS0__ZL24PyvtkPixelExtent_Grow_s2P7_objectS0__ZL24PyvtkPixelExtent_SetDataP7_objectS0__ZL26PyvtkPixelExtent_Shrink_s2P7_objectS0__ZL22PyvtkPixelExtent_SplitP7_objectS0__ZL25PyvtkPixelExtent_Shift_s2P7_objectS0__ZL28PyvtkPixelExtent_GetEndIndexP7_objectS0__ZL25PyvtkPixelExtent_DisjointP7_objectS0__ZL25PyvtkPixelExtent_Shift_s3P7_objectS0__ZL25PyvtkPixelExtent_Shift_s3P7_objectS0_.cold_ZL22PyvtkPixelExtent_ShiftP7_objectS0__ZL30PyvtkPixelExtent_Shift_Methods_ZL27PyvtkPixelExtent_CellToNodeP7_objectS0__ZL27PyvtkPixelExtent_NodeToCellP7_objectS0__ZL21PyvtkPixelExtent_SizeP7_objectS0__ZL24PyvtkPixelExtent_GrowLowP7_objectS0__ZL25PyvtkPixelExtent_GrowHighP7_objectS0__ZL25PyvtkPixelExtent_ContainsP7_objectS0__ZL30PyvtkPixelExtent_GetStartIndexP7_objectS0__ZL23PyvtkPixelExtent_ShrinkP7_objectS0__ZL31PyvtkPixelExtent_Shrink_Methods_ZL39PyvtkPixelExtent_vtkPixelExtent_Methods_ZL24PyvtkPixelExtent_Methods_ZL23PyvtkPixelExtent_StringP7_object_ZL23PyvtkPixelExtent_StringP7_object.cold_GLOBAL__sub_I_vtkPixelExtentPython.cxx_ZL33PyvtkPlanesIntersection_StaticNewv_ZL36PyvtkPlanesIntersection_SafeDownCastP7_objectS0__ZL37PyvtkPlanesIntersection_Convert3DCellP7_objectS0__ZL45PyvtkPlanesIntersection_PolygonIntersectsBBoxP7_objectS0__ZL32PyvtkPlanesIntersection_IsTypeOfP7_objectS0__ZL49PyvtkPlanesIntersection_GetNumberOfRegionVerticesP7_objectS0__ZL44PyvtkPlanesIntersection_GetNumRegionVerticesP7_objectS0__ZL40PyvtkPlanesIntersection_IntersectsRegionP7_objectS0__ZL27PyvtkPlanesIntersection_IsAP7_objectS0__ZL41PyvtkPlanesIntersection_GetRegionVerticesP7_objectS0__ZL41PyvtkPlanesIntersection_GetRegionVerticesP7_objectS0_.cold_ZL35PyvtkPlanesIntersection_NewInstanceP7_objectS0__ZL41PyvtkPlanesIntersection_SetRegionVerticesP7_objectS0__ZL41PyvtkPlanesIntersection_SetRegionVerticesP7_objectS0_.cold_ZL28PyvtkPlanesIntersection_Type_ZL31PyvtkPlanesIntersection_Methods_GLOBAL__sub_I_vtkPlanesIntersectionPython.cxx_ZL26PyvtkPointSet_SafeDownCastP7_objectS0__ZL24PyvtkPointSet_GetData_s1P7_objectS0__ZL24PyvtkPointSet_GetData_s2P7_objectS0__ZL22PyvtkPointSet_IsTypeOfP7_objectS0__ZL23PyvtkPointSet_GetPointsP7_objectS0__ZL31PyvtkPointSet_GetNumberOfPointsP7_objectS0__ZL25PyvtkPointSet_NewInstanceP7_objectS0__ZL17PyvtkPointSet_IsAP7_objectS0__ZL22PyvtkPointSet_GetPointP7_objectS0__ZL21PyvtkPointSet_GetDataP7_objectS0__ZL29PyvtkPointSet_GetData_Methods_ZL18PyvtkPointSet_Type_ZL21PyvtkPointSet_Methods_GLOBAL__sub_I_vtkPointSetPython.cxx_ZL22PyvtkPointSet_DeepCopyP7_objectS0__ZL25PyvtkPointSet_ShallowCopyP7_objectS0__ZL33PyvtkPointSet_GetActualMemorySizeP7_objectS0__ZL23PyvtkPointSet_SetPointsP7_objectS0__ZL21PyvtkPointSet_SqueezeP7_objectS0__ZL27PyvtkPointSet_ComputeBoundsP7_objectS0__ZL22PyvtkPointSet_GetMTimeP7_objectS0__ZL29PyvtkPointSet_NewCellIteratorP7_objectS0__ZL22PyvtkPointSet_FindCellP7_objectS0__ZL22PyvtkPointSet_FindCellP7_objectS0_.cold_ZL23PyvtkPointSet_FindPointP7_objectS0__ZL27PyvtkPointSet_CopyStructureP7_objectS0__ZL24PyvtkPointSet_InitializeP7_objectS0__ZL34PyvtkPointsProjectedHull_StaticNewv_ZL37PyvtkPointsProjectedHull_SafeDownCastP7_objectS0__ZL33PyvtkPointsProjectedHull_IsTypeOfP7_objectS0__ZL31PyvtkPointsProjectedHull_UpdateP7_objectS0__ZL40PyvtkPointsProjectedHull_GetSizeCCWHullXP7_objectS0__ZL40PyvtkPointsProjectedHull_GetSizeCCWHullYP7_objectS0__ZL40PyvtkPointsProjectedHull_GetSizeCCWHullZP7_objectS0__ZL30PyvtkPointsProjectedHull_ResetP7_objectS0__ZL28PyvtkPointsProjectedHull_IsAP7_objectS0__ZL36PyvtkPointsProjectedHull_NewInstanceP7_objectS0__ZL36PyvtkPointsProjectedHull_GetCCWHullZP7_objectS0__ZL36PyvtkPointsProjectedHull_GetCCWHullZP7_objectS0_.cold_ZL36PyvtkPointsProjectedHull_GetCCWHullXP7_objectS0__ZL36PyvtkPointsProjectedHull_GetCCWHullXP7_objectS0_.cold_ZL36PyvtkPointsProjectedHull_GetCCWHullYP7_objectS0__ZL36PyvtkPointsProjectedHull_GetCCWHullYP7_objectS0_.cold_ZL47PyvtkPointsProjectedHull_RectangleIntersectionYP7_objectS0__ZL47PyvtkPointsProjectedHull_RectangleIntersectionZP7_objectS0__ZL47PyvtkPointsProjectedHull_RectangleIntersectionXP7_objectS0__ZL29PyvtkPointsProjectedHull_Type_ZL32PyvtkPointsProjectedHull_Methods_GLOBAL__sub_I_vtkPointsProjectedHullPython.cxx_ZL35PyvtkPointsProjectedHull_InitializeP7_objectS0__ZL23PyvtkPolyData_StaticNewv_ZL26PyvtkPolyData_SafeDownCastP7_objectS0__ZL24PyvtkPolyData_GetData_s1P7_objectS0__ZL24PyvtkPolyData_GetData_s2P7_objectS0__ZL41PyvtkPolyData_GetScalarFieldCriticalIndexP7_objectS0__ZL49PyvtkPolyData_GetScalarFieldCriticalIndex_Methods_ZL22PyvtkPolyData_IsTypeOfP7_objectS0__ZL25PyvtkPolyData_DeleteCellsP7_objectS0__ZL19PyvtkPolyData_ResetP7_objectS0__ZL30PyvtkPolyData_RemoveGhostCellsP7_objectS0__ZL24PyvtkPolyData_BuildCellsP7_objectS0__ZL25PyvtkPolyData_DeleteLinksP7_objectS0__ZL30PyvtkPolyData_NeedToBuildCellsP7_objectS0__ZL32PyvtkPolyData_RemoveDeletedCellsP7_objectS0__ZL22PyvtkPolyData_GetLinesP7_objectS0__ZL22PyvtkPolyData_GetPolysP7_objectS0__ZL23PyvtkPolyData_GetStripsP7_objectS0__ZL30PyvtkPolyData_GetNumberOfVertsP7_objectS0__ZL30PyvtkPolyData_GetNumberOfLinesP7_objectS0__ZL22PyvtkPolyData_GetVertsP7_objectS0__ZL30PyvtkPolyData_GetNumberOfPolysP7_objectS0__ZL31PyvtkPolyData_GetNumberOfStripsP7_objectS0__ZL31PyvtkPolyData_GetDataObjectTypeP7_objectS0__ZL23PyvtkPolyData_SetStripsP7_objectS0__ZL22PyvtkPolyData_SetVertsP7_objectS0__ZL25PyvtkPolyData_ReverseCellP7_objectS0__ZL22PyvtkPolyData_SetLinesP7_objectS0__ZL22PyvtkPolyData_SetPolysP7_objectS0__ZL24PyvtkPolyData_DeleteCellP7_objectS0__ZL24PyvtkPolyData_BuildLinksP7_objectS0__ZL35PyvtkPolyData_RemoveReferenceToCellP7_objectS0__ZL32PyvtkPolyData_AddReferenceToCellP7_objectS0__ZL20PyvtkPolyData_IsEdgeP7_objectS0__ZL44PyvtkPolyData_GetScalarFieldCriticalIndex_s1P7_objectS0__ZL44PyvtkPolyData_GetScalarFieldCriticalIndex_s2P7_objectS0__ZL44PyvtkPolyData_GetScalarFieldCriticalIndex_s3P7_objectS0__ZL25PyvtkPolyData_DeletePointP7_objectS0__ZL25PyvtkPolyData_Allocate_s1P7_objectS0__ZL23PyvtkPolyData_CopyCellsP7_objectS0__ZL34PyvtkPolyData_GetCellEdgeNeighborsP7_objectS0__ZL25PyvtkPolyData_Allocate_s2P7_objectS0__ZL22PyvtkPolyData_AllocateP7_objectS0__ZL30PyvtkPolyData_Allocate_Methods_ZL25PyvtkPolyData_NewInstanceP7_objectS0__ZL28PyvtkPolyData_ResizeCellListP7_objectS0__ZL28PyvtkPolyData_ResizeCellListP7_objectS0_.cold_ZL17PyvtkPolyData_IsAP7_objectS0__ZL31PyvtkPolyData_ReplaceLinkedCellP7_objectS0__ZL31PyvtkPolyData_ReplaceLinkedCellP7_objectS0_.cold_ZL25PyvtkPolyData_ReplaceCellP7_objectS0__ZL25PyvtkPolyData_ReplaceCellP7_objectS0_.cold_ZL34PyvtkPolyData_InsertNextLinkedCellP7_objectS0__ZL34PyvtkPolyData_InsertNextLinkedCellP7_objectS0_.cold_ZL24PyvtkPolyData_GetCell_s3P7_objectS0__ZL24PyvtkPolyData_GetCell_s3P7_objectS0_.cold_ZL21PyvtkPolyData_GetDataP7_objectS0__ZL29PyvtkPolyData_GetData_Methods_ZL35PyvtkPolyData_InsertNextLinkedPointP7_objectS0__ZL28PyvtkPolyData_InsertNextCellP7_objectS0__ZL28PyvtkPolyData_InsertNextCellP7_objectS0_.cold_ZL24PyvtkPolyData_IsTriangleP7_objectS0__ZL24PyvtkPolyData_IsTriangleP7_objectS0_.cold_ZL30PyvtkPolyData_AddCellReferenceP7_objectS0__ZL33PyvtkPolyData_RemoveCellReferenceP7_objectS0__ZL31PyvtkPolyData_IsPointUsedByCellP7_objectS0__ZL30PyvtkPolyData_ReplaceCellPointP7_objectS0__ZL18PyvtkPolyData_Type_ZL21PyvtkPolyData_Methods_ZZ22PyvtkPolyData_ClassNewE9constants_GLOBAL__sub_I_vtkPolyDataPython.cxx_ZL26PyvtkPolyData_GetMeshMTimeP7_objectS0__ZL22PyvtkPolyData_DeepCopyP7_objectS0__ZL25PyvtkPolyData_ShallowCopyP7_objectS0__ZL33PyvtkPolyData_GetActualMemorySizeP7_objectS0__ZL27PyvtkPolyData_GetGhostLevelP7_objectS0__ZL31PyvtkPolyData_GetNumberOfPiecesP7_objectS0__ZL22PyvtkPolyData_GetPieceP7_objectS0__ZL24PyvtkPolyData_InitializeP7_objectS0__ZL28PyvtkPolyData_GetMaxCellSizeP7_objectS0__ZL21PyvtkPolyData_SqueezeP7_objectS0__ZL27PyvtkPolyData_ComputeBoundsP7_objectS0__ZL27PyvtkPolyData_GetPointCellsP7_objectS0__ZL27PyvtkPolyData_GetPointCellsP7_objectS0_.cold_ZL27PyvtkPolyData_GetCellPointsP7_objectS0__ZL27PyvtkPolyData_GetCellPointsP7_objectS0_.cold_ZL30PyvtkPolyData_GetCellNeighborsP7_objectS0__ZL27PyvtkPolyData_GetCellBoundsP7_objectS0__ZL25PyvtkPolyData_GetCellTypeP7_objectS0__ZL24PyvtkPolyData_GetCell_s2P7_objectS0__ZL21PyvtkPolyData_GetCellP7_objectS0__ZL29PyvtkPolyData_GetCell_Methods_ZL21PyvtkPolyData_GetCellP7_objectS0_.cold_ZL30PyvtkPolyData_GetNumberOfCellsP7_objectS0__ZL27PyvtkPolyData_CopyStructureP7_objectS0__ZL22PyvtkPolygon_StaticNewv_ZL35PyvtkPolygon_IntersectConvex2DCellsP7_objectS0__ZL40PyvtkPolygon_IntersectPolygonWithPolygonP7_objectS0__ZL40PyvtkPolygon_IntersectPolygonWithPolygonP7_objectS0_.cold_ZL30PyvtkPolygon_DistanceToPolygonP7_objectS0__ZL30PyvtkPolygon_DistanceToPolygonP7_objectS0_.cold_ZL27PyvtkPolygon_PointInPolygonP7_objectS0__ZL27PyvtkPolygon_PointInPolygonP7_objectS0_.cold_ZL29PyvtkPolygon_ComputeNormal_s4P7_objectS0__ZL29PyvtkPolygon_ComputeNormal_s4P7_objectS0_.cold_ZL29PyvtkPolygon_ComputeNormal_s3P7_objectS0__ZL25PyvtkPolygon_SafeDownCastP7_objectS0__ZL28PyvtkPolygon_ComputeCentroidP7_objectS0__ZL28PyvtkPolygon_ComputeCentroidP7_objectS0_.cold_ZL21PyvtkPolygon_IsConvexP7_objectS0__ZL21PyvtkPolygon_IsConvexP7_objectS0_.cold_ZL26PyvtkPolygon_ComputeNormalP7_objectS0__ZL34PyvtkPolygon_ComputeNormal_Methods_ZL26PyvtkPolygon_ComputeNormalP7_objectS0_.cold_ZL21PyvtkPolygon_IsTypeOfP7_objectS0__ZL29PyvtkPolygon_GetCellDimensionP7_objectS0__ZL24PyvtkPolygon_GetCellTypeP7_objectS0__ZL29PyvtkPolygon_GetNumberOfFacesP7_objectS0__ZL26PyvtkPolygon_IsPrimaryCellP7_objectS0__ZL35PyvtkPolygon_GetUseMVCInterpolationP7_objectS0__ZL29PyvtkPolygon_GetNumberOfEdgesP7_objectS0__ZL20PyvtkPolygon_GetFaceP7_objectS0__ZL37PyvtkPolygon_NonDegenerateTriangulateP7_objectS0__ZL31PyvtkPolygon_BoundedTriangulateP7_objectS0__ZL35PyvtkPolygon_SetUseMVCInterpolationP7_objectS0__ZL16PyvtkPolygon_IsAP7_objectS0__ZL24PyvtkPolygon_NewInstanceP7_objectS0__ZL32PyvtkPolygon_ParameterizePolygonP7_objectS0__ZL24PyvtkPolygon_ComputeAreaP7_objectS0__ZL24PyvtkPolygon_ComputeAreaP7_objectS0_.cold_ZL17PyvtkPolygon_Type_ZL20PyvtkPolygon_Methods_GLOBAL__sub_I_vtkPolygonPython.cxx_ZL33PyvtkPolygon_InterpolateFunctionsP7_objectS0__ZL33PyvtkPolygon_InterpolateFunctionsP7_objectS0_.cold_ZL24PyvtkPolygon_DerivativesP7_objectS0__ZL24PyvtkPolygon_DerivativesP7_objectS0_.cold_ZL24PyvtkPolygon_TriangulateP7_objectS0__ZL30PyvtkPolygon_IntersectWithLineP7_objectS0__ZL29PyvtkPolygon_EvaluateLocationP7_objectS0__ZL29PyvtkPolygon_EvaluateLocationP7_objectS0_.cold_ZL29PyvtkPolygon_EvaluatePositionP7_objectS0__ZL29PyvtkPolygon_EvaluatePositionP7_objectS0_.cold_ZL17PyvtkPolygon_ClipP7_objectS0__ZL20PyvtkPolygon_ContourP7_objectS0__ZL25PyvtkPolygon_CellBoundaryP7_objectS0__ZL20PyvtkPolygon_GetEdgeP7_objectS0__ZL25PyvtkPolyhedron_StaticNewv_ZL28PyvtkPolyhedron_SafeDownCastP7_objectS0__ZL24PyvtkPolyhedron_IsTypeOfP7_objectS0__ZL24PyvtkPolyhedron_IsConvexP7_objectS0__ZL27PyvtkPolyhedron_GetPolyDataP7_objectS0__ZL29PyvtkPolyhedron_IsPrimaryCellP7_objectS0__ZL27PyvtkPolyhedron_GetCellTypeP7_objectS0__ZL38PyvtkPolyhedron_RequiresInitializationP7_objectS0__ZL50PyvtkPolyhedron_RequiresExplicitFaceRepresentationP7_objectS0__ZL35PyvtkPolyhedron_GetParametricCenterP7_objectS0__ZL24PyvtkPolyhedron_IsInsideP7_objectS0__ZL29PyvtkPolyhedron_GetFacePointsP7_objectS0__ZL29PyvtkPolyhedron_GetFacePointsP7_objectS0_.cold_ZL29PyvtkPolyhedron_GetEdgePointsP7_objectS0__ZL29PyvtkPolyhedron_GetEdgePointsP7_objectS0_.cold_ZL27PyvtkPolyhedron_NewInstanceP7_objectS0__ZL19PyvtkPolyhedron_IsAP7_objectS0__ZL20PyvtkPolyhedron_Type_ZL23PyvtkPolyhedron_Methods_GLOBAL__sub_I_vtkPolyhedronPython.cxx_ZL24PyvtkPolyhedron_GetFacesP7_objectS0__ZL24PyvtkPolyhedron_SetFacesP7_objectS0__ZL24PyvtkPolyhedron_SetFacesP7_objectS0_.cold_ZL33PyvtkPolyhedron_InterpolateDerivsP7_objectS0__ZL33PyvtkPolyhedron_InterpolateDerivsP7_objectS0_.cold_ZL36PyvtkPolyhedron_InterpolateFunctionsP7_objectS0__ZL36PyvtkPolyhedron_InterpolateFunctionsP7_objectS0_.cold_ZL28PyvtkPolyhedron_CellBoundaryP7_objectS0__ZL27PyvtkPolyhedron_DerivativesP7_objectS0__ZL27PyvtkPolyhedron_DerivativesP7_objectS0_.cold_ZL27PyvtkPolyhedron_TriangulateP7_objectS0__ZL33PyvtkPolyhedron_IntersectWithLineP7_objectS0__ZL32PyvtkPolyhedron_EvaluateLocationP7_objectS0__ZL32PyvtkPolyhedron_EvaluateLocationP7_objectS0_.cold_ZL32PyvtkPolyhedron_EvaluatePositionP7_objectS0__ZL32PyvtkPolyhedron_EvaluatePositionP7_objectS0_.cold_ZL20PyvtkPolyhedron_ClipP7_objectS0__ZL23PyvtkPolyhedron_ContourP7_objectS0__ZL23PyvtkPolyhedron_GetFaceP7_objectS0__ZL32PyvtkPolyhedron_GetNumberOfFacesP7_objectS0__ZL23PyvtkPolyhedron_GetEdgeP7_objectS0__ZL32PyvtkPolyhedron_GetNumberOfEdgesP7_objectS0__ZL26PyvtkPolyhedron_InitializeP7_objectS0__ZL35PyvtkPolyhedron_GetParametricCoordsP7_objectS0__ZL23PyvtkPolyLine_StaticNewv_ZL26PyvtkPolyLine_SafeDownCastP7_objectS0__ZL36PyvtkPolyLine_GenerateSlidingNormalsP7_objectS0__ZL36PyvtkPolyLine_GenerateSlidingNormalsP7_objectS0_.cold_ZL22PyvtkPolyLine_IsTypeOfP7_objectS0__ZL25PyvtkPolyLine_GetCellTypeP7_objectS0__ZL27PyvtkPolyLine_IsPrimaryCellP7_objectS0__ZL30PyvtkPolyLine_GetCellDimensionP7_objectS0__ZL30PyvtkPolyLine_GetNumberOfEdgesP7_objectS0__ZL30PyvtkPolyLine_GetNumberOfFacesP7_objectS0__ZL21PyvtkPolyLine_GetFaceP7_objectS0__ZL21PyvtkPolyLine_GetEdgeP7_objectS0__ZL17PyvtkPolyLine_IsAP7_objectS0__ZL25PyvtkPolyLine_NewInstanceP7_objectS0__ZL18PyvtkPolyLine_Type_ZL21PyvtkPolyLine_Methods_GLOBAL__sub_I_vtkPolyLinePython.cxx_ZL33PyvtkPolyLine_GetParametricCenterP7_objectS0__ZL25PyvtkPolyLine_DerivativesP7_objectS0__ZL25PyvtkPolyLine_DerivativesP7_objectS0_.cold_ZL25PyvtkPolyLine_TriangulateP7_objectS0__ZL31PyvtkPolyLine_IntersectWithLineP7_objectS0__ZL30PyvtkPolyLine_EvaluateLocationP7_objectS0__ZL30PyvtkPolyLine_EvaluateLocationP7_objectS0_.cold_ZL30PyvtkPolyLine_EvaluatePositionP7_objectS0__ZL30PyvtkPolyLine_EvaluatePositionP7_objectS0_.cold_ZL18PyvtkPolyLine_ClipP7_objectS0__ZL21PyvtkPolyLine_ContourP7_objectS0__ZL26PyvtkPolyLine_CellBoundaryP7_objectS0__ZL25PyvtkPolyVertex_StaticNewv_ZL28PyvtkPolyVertex_SafeDownCastP7_objectS0__ZL24PyvtkPolyVertex_IsTypeOfP7_objectS0__ZL27PyvtkPolyVertex_GetCellTypeP7_objectS0__ZL32PyvtkPolyVertex_GetCellDimensionP7_objectS0__ZL32PyvtkPolyVertex_GetNumberOfEdgesP7_objectS0__ZL29PyvtkPolyVertex_IsPrimaryCellP7_objectS0__ZL32PyvtkPolyVertex_GetNumberOfFacesP7_objectS0__ZL23PyvtkPolyVertex_GetFaceP7_objectS0__ZL23PyvtkPolyVertex_GetEdgeP7_objectS0__ZL19PyvtkPolyVertex_IsAP7_objectS0__ZL27PyvtkPolyVertex_NewInstanceP7_objectS0__ZL20PyvtkPolyVertex_Type_ZL23PyvtkPolyVertex_Methods_GLOBAL__sub_I_vtkPolyVertexPython.cxx_ZL35PyvtkPolyVertex_GetParametricCenterP7_objectS0__ZL27PyvtkPolyVertex_DerivativesP7_objectS0__ZL27PyvtkPolyVertex_DerivativesP7_objectS0_.cold_ZL27PyvtkPolyVertex_TriangulateP7_objectS0__ZL33PyvtkPolyVertex_IntersectWithLineP7_objectS0__ZL32PyvtkPolyVertex_EvaluateLocationP7_objectS0__ZL32PyvtkPolyVertex_EvaluateLocationP7_objectS0_.cold_ZL32PyvtkPolyVertex_EvaluatePositionP7_objectS0__ZL32PyvtkPolyVertex_EvaluatePositionP7_objectS0_.cold_ZL20PyvtkPolyVertex_ClipP7_objectS0__ZL23PyvtkPolyVertex_ContourP7_objectS0__ZL28PyvtkPolyVertex_CellBoundaryP7_objectS0__ZL22PyvtkPyramid_StaticNewv_ZL25PyvtkPyramid_GetFaceArrayP7_objectS0__ZL25PyvtkPyramid_GetEdgeArrayP7_objectS0__ZL32PyvtkPyramid_InterpolationDerivsP7_objectS0__ZL35PyvtkPyramid_InterpolationFunctionsP7_objectS0__ZL25PyvtkPyramid_SafeDownCastP7_objectS0__ZL21PyvtkPyramid_IsTypeOfP7_objectS0__ZL29PyvtkPyramid_GetNumberOfEdgesP7_objectS0__ZL29PyvtkPyramid_GetNumberOfFacesP7_objectS0__ZL24PyvtkPyramid_GetCellTypeP7_objectS0__ZL29PyvtkPyramid_GetCellDimensionP7_objectS0__ZL32PyvtkPyramid_GetParametricCenterP7_objectS0__ZL24PyvtkPyramid_NewInstanceP7_objectS0__ZL16PyvtkPyramid_IsAP7_objectS0__ZL33PyvtkPyramid_InterpolateFunctionsP7_objectS0__ZL30PyvtkPyramid_InterpolateDerivsP7_objectS0__ZL17PyvtkPyramid_Type_ZL20PyvtkPyramid_Methods_GLOBAL__sub_I_vtkPyramidPython.cxx_ZL32PyvtkPyramid_GetParametricCoordsP7_objectS0__ZL24PyvtkPyramid_DerivativesP7_objectS0__ZL24PyvtkPyramid_DerivativesP7_objectS0_.cold_ZL24PyvtkPyramid_TriangulateP7_objectS0__ZL30PyvtkPyramid_IntersectWithLineP7_objectS0__ZL29PyvtkPyramid_EvaluateLocationP7_objectS0__ZL29PyvtkPyramid_EvaluateLocationP7_objectS0_.cold_ZL29PyvtkPyramid_EvaluatePositionP7_objectS0__ZL29PyvtkPyramid_EvaluatePositionP7_objectS0_.cold_ZL20PyvtkPyramid_ContourP7_objectS0__ZL25PyvtkPyramid_CellBoundaryP7_objectS0__ZL20PyvtkPyramid_GetFaceP7_objectS0__ZL20PyvtkPyramid_GetEdgeP7_objectS0__ZL26PyvtkPyramid_GetFacePointsP7_objectS0__ZL26PyvtkPyramid_GetFacePointsP7_objectS0_.cold_ZL26PyvtkPyramid_GetEdgePointsP7_objectS0__ZL26PyvtkPyramid_GetEdgePointsP7_objectS0_.cold_ZL19PyvtkQuad_StaticNewv_ZL29PyvtkQuad_InterpolationDerivsP7_objectS0__ZL32PyvtkQuad_InterpolationFunctionsP7_objectS0__ZL22PyvtkQuad_SafeDownCastP7_objectS0__ZL18PyvtkQuad_IsTypeOfP7_objectS0__ZL26PyvtkQuad_GetCellDimensionP7_objectS0__ZL26PyvtkQuad_GetNumberOfEdgesP7_objectS0__ZL21PyvtkQuad_GetCellTypeP7_objectS0__ZL26PyvtkQuad_GetNumberOfFacesP7_objectS0__ZL17PyvtkQuad_GetFaceP7_objectS0__ZL22PyvtkQuad_GetEdgeArrayP7_objectS0__ZL29PyvtkQuad_GetParametricCenterP7_objectS0__ZL13PyvtkQuad_IsAP7_objectS0__ZL21PyvtkQuad_NewInstanceP7_objectS0__ZL27PyvtkQuad_InterpolateDerivsP7_objectS0__ZL30PyvtkQuad_InterpolateFunctionsP7_objectS0__ZL14PyvtkQuad_Type_ZL17PyvtkQuad_Methods_GLOBAL__sub_I_vtkQuadPython.cxx_ZL14PyvtkQuad_ClipP7_objectS0__ZL29PyvtkQuad_GetParametricCoordsP7_objectS0__ZL21PyvtkQuad_DerivativesP7_objectS0__ZL21PyvtkQuad_DerivativesP7_objectS0_.cold_ZL21PyvtkQuad_TriangulateP7_objectS0__ZL27PyvtkQuad_IntersectWithLineP7_objectS0__ZL26PyvtkQuad_EvaluateLocationP7_objectS0__ZL26PyvtkQuad_EvaluateLocationP7_objectS0_.cold_ZL26PyvtkQuad_EvaluatePositionP7_objectS0__ZL26PyvtkQuad_EvaluatePositionP7_objectS0_.cold_ZL17PyvtkQuad_ContourP7_objectS0__ZL22PyvtkQuad_CellBoundaryP7_objectS0__ZL17PyvtkQuad_GetEdgeP7_objectS0__ZL28PyvtkQuadraticEdge_StaticNewv_ZL38PyvtkQuadraticEdge_InterpolationDerivsP7_objectS0__ZL41PyvtkQuadraticEdge_InterpolationFunctionsP7_objectS0__ZL31PyvtkQuadraticEdge_SafeDownCastP7_objectS0__ZL27PyvtkQuadraticEdge_IsTypeOfP7_objectS0__ZL30PyvtkQuadraticEdge_GetCellTypeP7_objectS0__ZL35PyvtkQuadraticEdge_GetCellDimensionP7_objectS0__ZL35PyvtkQuadraticEdge_GetNumberOfEdgesP7_objectS0__ZL35PyvtkQuadraticEdge_GetNumberOfFacesP7_objectS0__ZL26PyvtkQuadraticEdge_GetFaceP7_objectS0__ZL26PyvtkQuadraticEdge_GetEdgeP7_objectS0__ZL38PyvtkQuadraticEdge_GetParametricCenterP7_objectS0__ZL30PyvtkQuadraticEdge_NewInstanceP7_objectS0__ZL22PyvtkQuadraticEdge_IsAP7_objectS0__ZL36PyvtkQuadraticEdge_InterpolateDerivsP7_objectS0__ZL39PyvtkQuadraticEdge_InterpolateFunctionsP7_objectS0__ZL23PyvtkQuadraticEdge_Type_ZL26PyvtkQuadraticEdge_Methods_GLOBAL__sub_I_vtkQuadraticEdgePython.cxx_ZL36PyvtkQuadraticEdge_IntersectWithLineP7_objectS0__ZL23PyvtkQuadraticEdge_ClipP7_objectS0__ZL38PyvtkQuadraticEdge_GetParametricCoordsP7_objectS0__ZL30PyvtkQuadraticEdge_DerivativesP7_objectS0__ZL30PyvtkQuadraticEdge_DerivativesP7_objectS0_.cold_ZL30PyvtkQuadraticEdge_TriangulateP7_objectS0__ZL35PyvtkQuadraticEdge_EvaluateLocationP7_objectS0__ZL35PyvtkQuadraticEdge_EvaluateLocationP7_objectS0_.cold_ZL35PyvtkQuadraticEdge_EvaluatePositionP7_objectS0__ZL35PyvtkQuadraticEdge_EvaluatePositionP7_objectS0_.cold_ZL26PyvtkQuadraticEdge_ContourP7_objectS0__ZL31PyvtkQuadraticEdge_CellBoundaryP7_objectS0__ZL34PyvtkQuadraticHexahedron_StaticNewv_ZL37PyvtkQuadraticHexahedron_GetFaceArrayP7_objectS0__ZL44PyvtkQuadraticHexahedron_InterpolationDerivsP7_objectS0__ZL47PyvtkQuadraticHexahedron_InterpolationFunctionsP7_objectS0__ZL37PyvtkQuadraticHexahedron_SafeDownCastP7_objectS0__ZL33PyvtkQuadraticHexahedron_IsTypeOfP7_objectS0__ZL37PyvtkQuadraticHexahedron_GetEdgeArrayP7_objectS0__ZL36PyvtkQuadraticHexahedron_GetCellTypeP7_objectS0__ZL41PyvtkQuadraticHexahedron_GetNumberOfEdgesP7_objectS0__ZL41PyvtkQuadraticHexahedron_GetCellDimensionP7_objectS0__ZL41PyvtkQuadraticHexahedron_GetNumberOfFacesP7_objectS0__ZL36PyvtkQuadraticHexahedron_NewInstanceP7_objectS0__ZL28PyvtkQuadraticHexahedron_IsAP7_objectS0__ZL42PyvtkQuadraticHexahedron_InterpolateDerivsP7_objectS0__ZL45PyvtkQuadraticHexahedron_InterpolateFunctionsP7_objectS0__ZL29PyvtkQuadraticHexahedron_Type_ZL32PyvtkQuadraticHexahedron_Methods_GLOBAL__sub_I_vtkQuadraticHexahedronPython.cxx_ZL42PyvtkQuadraticHexahedron_IntersectWithLineP7_objectS0__ZL29PyvtkQuadraticHexahedron_ClipP7_objectS0__ZL44PyvtkQuadraticHexahedron_GetParametricCoordsP7_objectS0__ZL36PyvtkQuadraticHexahedron_DerivativesP7_objectS0__ZL36PyvtkQuadraticHexahedron_DerivativesP7_objectS0_.cold_ZL36PyvtkQuadraticHexahedron_TriangulateP7_objectS0__ZL41PyvtkQuadraticHexahedron_EvaluateLocationP7_objectS0__ZL41PyvtkQuadraticHexahedron_EvaluateLocationP7_objectS0_.cold_ZL41PyvtkQuadraticHexahedron_EvaluatePositionP7_objectS0__ZL41PyvtkQuadraticHexahedron_EvaluatePositionP7_objectS0_.cold_ZL32PyvtkQuadraticHexahedron_ContourP7_objectS0__ZL37PyvtkQuadraticHexahedron_CellBoundaryP7_objectS0__ZL32PyvtkQuadraticHexahedron_GetFaceP7_objectS0__ZL32PyvtkQuadraticHexahedron_GetEdgeP7_objectS0__ZL34PyvtkQuadraticLinearQuad_StaticNewv_ZL37PyvtkQuadraticLinearQuad_GetEdgeArrayP7_objectS0__ZL44PyvtkQuadraticLinearQuad_InterpolationDerivsP7_objectS0__ZL47PyvtkQuadraticLinearQuad_InterpolationFunctionsP7_objectS0__ZL37PyvtkQuadraticLinearQuad_SafeDownCastP7_objectS0__ZL33PyvtkQuadraticLinearQuad_IsTypeOfP7_objectS0__ZL41PyvtkQuadraticLinearQuad_GetCellDimensionP7_objectS0__ZL41PyvtkQuadraticLinearQuad_GetNumberOfEdgesP7_objectS0__ZL36PyvtkQuadraticLinearQuad_GetCellTypeP7_objectS0__ZL41PyvtkQuadraticLinearQuad_GetNumberOfFacesP7_objectS0__ZL32PyvtkQuadraticLinearQuad_GetFaceP7_objectS0__ZL44PyvtkQuadraticLinearQuad_GetParametricCenterP7_objectS0__ZL36PyvtkQuadraticLinearQuad_NewInstanceP7_objectS0__ZL28PyvtkQuadraticLinearQuad_IsAP7_objectS0__ZL45PyvtkQuadraticLinearQuad_InterpolateFunctionsP7_objectS0__ZL42PyvtkQuadraticLinearQuad_InterpolateDerivsP7_objectS0__ZL29PyvtkQuadraticLinearQuad_Type_ZL32PyvtkQuadraticLinearQuad_Methods_GLOBAL__sub_I_vtkQuadraticLinearQuadPython.cxx_ZL42PyvtkQuadraticLinearQuad_IntersectWithLineP7_objectS0__ZL29PyvtkQuadraticLinearQuad_ClipP7_objectS0__ZL44PyvtkQuadraticLinearQuad_GetParametricCoordsP7_objectS0__ZL36PyvtkQuadraticLinearQuad_DerivativesP7_objectS0__ZL36PyvtkQuadraticLinearQuad_DerivativesP7_objectS0_.cold_ZL36PyvtkQuadraticLinearQuad_TriangulateP7_objectS0__ZL41PyvtkQuadraticLinearQuad_EvaluateLocationP7_objectS0__ZL41PyvtkQuadraticLinearQuad_EvaluateLocationP7_objectS0_.cold_ZL41PyvtkQuadraticLinearQuad_EvaluatePositionP7_objectS0__ZL41PyvtkQuadraticLinearQuad_EvaluatePositionP7_objectS0_.cold_ZL32PyvtkQuadraticLinearQuad_ContourP7_objectS0__ZL37PyvtkQuadraticLinearQuad_CellBoundaryP7_objectS0__ZL32PyvtkQuadraticLinearQuad_GetEdgeP7_objectS0__ZL35PyvtkQuadraticLinearWedge_StaticNewv_ZL38PyvtkQuadraticLinearWedge_GetFaceArrayP7_objectS0__ZL45PyvtkQuadraticLinearWedge_InterpolationDerivsP7_objectS0__ZL48PyvtkQuadraticLinearWedge_InterpolationFunctionsP7_objectS0__ZL38PyvtkQuadraticLinearWedge_SafeDownCastP7_objectS0__ZL34PyvtkQuadraticLinearWedge_IsTypeOfP7_objectS0__ZL38PyvtkQuadraticLinearWedge_GetEdgeArrayP7_objectS0__ZL42PyvtkQuadraticLinearWedge_GetNumberOfEdgesP7_objectS0__ZL42PyvtkQuadraticLinearWedge_GetCellDimensionP7_objectS0__ZL37PyvtkQuadraticLinearWedge_GetCellTypeP7_objectS0__ZL42PyvtkQuadraticLinearWedge_GetNumberOfFacesP7_objectS0__ZL45PyvtkQuadraticLinearWedge_GetParametricCenterP7_objectS0__ZL37PyvtkQuadraticLinearWedge_NewInstanceP7_objectS0__ZL29PyvtkQuadraticLinearWedge_IsAP7_objectS0__ZL43PyvtkQuadraticLinearWedge_InterpolateDerivsP7_objectS0__ZL46PyvtkQuadraticLinearWedge_InterpolateFunctionsP7_objectS0__ZL30PyvtkQuadraticLinearWedge_Type_ZL33PyvtkQuadraticLinearWedge_Methods_GLOBAL__sub_I_vtkQuadraticLinearWedgePython.cxx_ZL43PyvtkQuadraticLinearWedge_IntersectWithLineP7_objectS0__ZL30PyvtkQuadraticLinearWedge_ClipP7_objectS0__ZL45PyvtkQuadraticLinearWedge_GetParametricCoordsP7_objectS0__ZL37PyvtkQuadraticLinearWedge_DerivativesP7_objectS0__ZL37PyvtkQuadraticLinearWedge_DerivativesP7_objectS0_.cold_ZL37PyvtkQuadraticLinearWedge_TriangulateP7_objectS0__ZL42PyvtkQuadraticLinearWedge_EvaluateLocationP7_objectS0__ZL42PyvtkQuadraticLinearWedge_EvaluateLocationP7_objectS0_.cold_ZL42PyvtkQuadraticLinearWedge_EvaluatePositionP7_objectS0__ZL42PyvtkQuadraticLinearWedge_EvaluatePositionP7_objectS0_.cold_ZL33PyvtkQuadraticLinearWedge_ContourP7_objectS0__ZL38PyvtkQuadraticLinearWedge_CellBoundaryP7_objectS0__ZL33PyvtkQuadraticLinearWedge_GetFaceP7_objectS0__ZL33PyvtkQuadraticLinearWedge_GetEdgeP7_objectS0__ZL31PyvtkQuadraticPolygon_StaticNewv_ZL44PyvtkQuadraticPolygon_IntersectConvex2DCellsP7_objectS0__ZL49PyvtkQuadraticPolygon_IntersectPolygonWithPolygonP7_objectS0__ZL49PyvtkQuadraticPolygon_IntersectPolygonWithPolygonP7_objectS0_.cold_ZL39PyvtkQuadraticPolygon_DistanceToPolygonP7_objectS0__ZL39PyvtkQuadraticPolygon_DistanceToPolygonP7_objectS0_.cold_ZL36PyvtkQuadraticPolygon_PointInPolygonP7_objectS0__ZL36PyvtkQuadraticPolygon_PointInPolygonP7_objectS0_.cold_ZL37PyvtkQuadraticPolygon_ComputeCentroidP7_objectS0__ZL34PyvtkQuadraticPolygon_SafeDownCastP7_objectS0__ZL30PyvtkQuadraticPolygon_IsTypeOfP7_objectS0__ZL35PyvtkQuadraticPolygon_IsPrimaryCellP7_objectS0__ZL38PyvtkQuadraticPolygon_GetNumberOfFacesP7_objectS0__ZL38PyvtkQuadraticPolygon_GetCellDimensionP7_objectS0__ZL33PyvtkQuadraticPolygon_GetCellTypeP7_objectS0__ZL44PyvtkQuadraticPolygon_GetUseMVCInterpolationP7_objectS0__ZL38PyvtkQuadraticPolygon_GetNumberOfEdgesP7_objectS0__ZL29PyvtkQuadraticPolygon_GetFaceP7_objectS0__ZL46PyvtkQuadraticPolygon_NonDegenerateTriangulateP7_objectS0__ZL44PyvtkQuadraticPolygon_SetUseMVCInterpolationP7_objectS0__ZL33PyvtkQuadraticPolygon_NewInstanceP7_objectS0__ZL25PyvtkQuadraticPolygon_IsAP7_objectS0__ZL41PyvtkQuadraticPolygon_ParameterizePolygonP7_objectS0__ZL26PyvtkQuadraticPolygon_Type_ZL29PyvtkQuadraticPolygon_Methods_GLOBAL__sub_I_vtkQuadraticPolygonPython.cxx_ZL33PyvtkQuadraticPolygon_DerivativesP7_objectS0__ZL33PyvtkQuadraticPolygon_DerivativesP7_objectS0_.cold_ZL33PyvtkQuadraticPolygon_TriangulateP7_objectS0__ZL42PyvtkQuadraticPolygon_InterpolateFunctionsP7_objectS0__ZL42PyvtkQuadraticPolygon_InterpolateFunctionsP7_objectS0_.cold_ZL39PyvtkQuadraticPolygon_IntersectWithLineP7_objectS0__ZL38PyvtkQuadraticPolygon_EvaluateLocationP7_objectS0__ZL38PyvtkQuadraticPolygon_EvaluateLocationP7_objectS0_.cold_ZL38PyvtkQuadraticPolygon_EvaluatePositionP7_objectS0__ZL38PyvtkQuadraticPolygon_EvaluatePositionP7_objectS0_.cold_ZL26PyvtkQuadraticPolygon_ClipP7_objectS0__ZL29PyvtkQuadraticPolygon_ContourP7_objectS0__ZL34PyvtkQuadraticPolygon_CellBoundaryP7_objectS0__ZL29PyvtkQuadraticPolygon_GetEdgeP7_objectS0__ZL31PyvtkQuadraticPyramid_StaticNewv_ZL34PyvtkQuadraticPyramid_GetFaceArrayP7_objectS0__ZL41PyvtkQuadraticPyramid_InterpolationDerivsP7_objectS0__ZL44PyvtkQuadraticPyramid_InterpolationFunctionsP7_objectS0__ZL34PyvtkQuadraticPyramid_SafeDownCastP7_objectS0__ZL30PyvtkQuadraticPyramid_IsTypeOfP7_objectS0__ZL34PyvtkQuadraticPyramid_GetEdgeArrayP7_objectS0__ZL38PyvtkQuadraticPyramid_GetNumberOfEdgesP7_objectS0__ZL38PyvtkQuadraticPyramid_GetCellDimensionP7_objectS0__ZL33PyvtkQuadraticPyramid_GetCellTypeP7_objectS0__ZL38PyvtkQuadraticPyramid_GetNumberOfFacesP7_objectS0__ZL41PyvtkQuadraticPyramid_GetParametricCenterP7_objectS0__ZL33PyvtkQuadraticPyramid_NewInstanceP7_objectS0__ZL25PyvtkQuadraticPyramid_IsAP7_objectS0__ZL39PyvtkQuadraticPyramid_InterpolateDerivsP7_objectS0__ZL42PyvtkQuadraticPyramid_InterpolateFunctionsP7_objectS0__ZL26PyvtkQuadraticPyramid_Type_ZL29PyvtkQuadraticPyramid_Methods_GLOBAL__sub_I_vtkQuadraticPyramidPython.cxx_ZL39PyvtkQuadraticPyramid_IntersectWithLineP7_objectS0__ZL26PyvtkQuadraticPyramid_ClipP7_objectS0__ZL41PyvtkQuadraticPyramid_GetParametricCoordsP7_objectS0__ZL33PyvtkQuadraticPyramid_DerivativesP7_objectS0__ZL33PyvtkQuadraticPyramid_DerivativesP7_objectS0_.cold_ZL33PyvtkQuadraticPyramid_TriangulateP7_objectS0__ZL38PyvtkQuadraticPyramid_EvaluateLocationP7_objectS0__ZL38PyvtkQuadraticPyramid_EvaluateLocationP7_objectS0_.cold_ZL38PyvtkQuadraticPyramid_EvaluatePositionP7_objectS0__ZL38PyvtkQuadraticPyramid_EvaluatePositionP7_objectS0_.cold_ZL29PyvtkQuadraticPyramid_ContourP7_objectS0__ZL34PyvtkQuadraticPyramid_CellBoundaryP7_objectS0__ZL29PyvtkQuadraticPyramid_GetFaceP7_objectS0__ZL29PyvtkQuadraticPyramid_GetEdgeP7_objectS0__ZL28PyvtkQuadraticQuad_StaticNewv_ZL38PyvtkQuadraticQuad_InterpolationDerivsP7_objectS0__ZL41PyvtkQuadraticQuad_InterpolationFunctionsP7_objectS0__ZL31PyvtkQuadraticQuad_SafeDownCastP7_objectS0__ZL27PyvtkQuadraticQuad_IsTypeOfP7_objectS0__ZL35PyvtkQuadraticQuad_GetCellDimensionP7_objectS0__ZL35PyvtkQuadraticQuad_GetNumberOfFacesP7_objectS0__ZL35PyvtkQuadraticQuad_GetNumberOfEdgesP7_objectS0__ZL30PyvtkQuadraticQuad_GetCellTypeP7_objectS0__ZL26PyvtkQuadraticQuad_GetFaceP7_objectS0__ZL38PyvtkQuadraticQuad_GetParametricCenterP7_objectS0__ZL30PyvtkQuadraticQuad_NewInstanceP7_objectS0__ZL22PyvtkQuadraticQuad_IsAP7_objectS0__ZL39PyvtkQuadraticQuad_InterpolateFunctionsP7_objectS0__ZL36PyvtkQuadraticQuad_InterpolateDerivsP7_objectS0__ZL23PyvtkQuadraticQuad_Type_ZL26PyvtkQuadraticQuad_Methods_GLOBAL__sub_I_vtkQuadraticQuadPython.cxx_ZL36PyvtkQuadraticQuad_IntersectWithLineP7_objectS0__ZL23PyvtkQuadraticQuad_ClipP7_objectS0__ZL38PyvtkQuadraticQuad_GetParametricCoordsP7_objectS0__ZL30PyvtkQuadraticQuad_DerivativesP7_objectS0__ZL30PyvtkQuadraticQuad_DerivativesP7_objectS0_.cold_ZL30PyvtkQuadraticQuad_TriangulateP7_objectS0__ZL35PyvtkQuadraticQuad_EvaluateLocationP7_objectS0__ZL35PyvtkQuadraticQuad_EvaluateLocationP7_objectS0_.cold_ZL35PyvtkQuadraticQuad_EvaluatePositionP7_objectS0__ZL35PyvtkQuadraticQuad_EvaluatePositionP7_objectS0_.cold_ZL26PyvtkQuadraticQuad_ContourP7_objectS0__ZL31PyvtkQuadraticQuad_CellBoundaryP7_objectS0__ZL26PyvtkQuadraticQuad_GetEdgeP7_objectS0__ZL29PyvtkQuadraticTetra_StaticNewv_ZL32PyvtkQuadraticTetra_GetFaceArrayP7_objectS0__ZL39PyvtkQuadraticTetra_InterpolationDerivsP7_objectS0__ZL42PyvtkQuadraticTetra_InterpolationFunctionsP7_objectS0__ZL32PyvtkQuadraticTetra_SafeDownCastP7_objectS0__ZL28PyvtkQuadraticTetra_IsTypeOfP7_objectS0__ZL32PyvtkQuadraticTetra_GetEdgeArrayP7_objectS0__ZL36PyvtkQuadraticTetra_GetNumberOfEdgesP7_objectS0__ZL36PyvtkQuadraticTetra_GetCellDimensionP7_objectS0__ZL31PyvtkQuadraticTetra_GetCellTypeP7_objectS0__ZL36PyvtkQuadraticTetra_GetNumberOfFacesP7_objectS0__ZL31PyvtkQuadraticTetra_NewInstanceP7_objectS0__ZL23PyvtkQuadraticTetra_IsAP7_objectS0__ZL37PyvtkQuadraticTetra_InterpolateDerivsP7_objectS0__ZL40PyvtkQuadraticTetra_InterpolateFunctionsP7_objectS0__ZL24PyvtkQuadraticTetra_Type_ZL27PyvtkQuadraticTetra_Methods_GLOBAL__sub_I_vtkQuadraticTetraPython.cxx_ZL41PyvtkQuadraticTetra_GetParametricDistanceP7_objectS0__ZL39PyvtkQuadraticTetra_GetParametricCenterP7_objectS0__ZL37PyvtkQuadraticTetra_IntersectWithLineP7_objectS0__ZL24PyvtkQuadraticTetra_ClipP7_objectS0__ZL39PyvtkQuadraticTetra_GetParametricCoordsP7_objectS0__ZL31PyvtkQuadraticTetra_DerivativesP7_objectS0__ZL31PyvtkQuadraticTetra_DerivativesP7_objectS0_.cold_ZL31PyvtkQuadraticTetra_TriangulateP7_objectS0__ZL36PyvtkQuadraticTetra_EvaluateLocationP7_objectS0__ZL36PyvtkQuadraticTetra_EvaluateLocationP7_objectS0_.cold_ZL36PyvtkQuadraticTetra_EvaluatePositionP7_objectS0__ZL36PyvtkQuadraticTetra_EvaluatePositionP7_objectS0_.cold_ZL27PyvtkQuadraticTetra_ContourP7_objectS0__ZL32PyvtkQuadraticTetra_CellBoundaryP7_objectS0__ZL27PyvtkQuadraticTetra_GetFaceP7_objectS0__ZL27PyvtkQuadraticTetra_GetEdgeP7_objectS0__ZL32PyvtkQuadraticTriangle_StaticNewv_ZL42PyvtkQuadraticTriangle_InterpolationDerivsP7_objectS0__ZL45PyvtkQuadraticTriangle_InterpolationFunctionsP7_objectS0__ZL35PyvtkQuadraticTriangle_SafeDownCastP7_objectS0__ZL31PyvtkQuadraticTriangle_IsTypeOfP7_objectS0__ZL39PyvtkQuadraticTriangle_GetNumberOfFacesP7_objectS0__ZL39PyvtkQuadraticTriangle_GetCellDimensionP7_objectS0__ZL39PyvtkQuadraticTriangle_GetNumberOfEdgesP7_objectS0__ZL34PyvtkQuadraticTriangle_GetCellTypeP7_objectS0__ZL30PyvtkQuadraticTriangle_GetFaceP7_objectS0__ZL42PyvtkQuadraticTriangle_GetParametricCenterP7_objectS0__ZL34PyvtkQuadraticTriangle_NewInstanceP7_objectS0__ZL26PyvtkQuadraticTriangle_IsAP7_objectS0__ZL43PyvtkQuadraticTriangle_InterpolateFunctionsP7_objectS0__ZL40PyvtkQuadraticTriangle_InterpolateDerivsP7_objectS0__ZL27PyvtkQuadraticTriangle_Type_ZL30PyvtkQuadraticTriangle_Methods_GLOBAL__sub_I_vtkQuadraticTrianglePython.cxx_ZL44PyvtkQuadraticTriangle_GetParametricDistanceP7_objectS0__ZL40PyvtkQuadraticTriangle_IntersectWithLineP7_objectS0__ZL27PyvtkQuadraticTriangle_ClipP7_objectS0__ZL42PyvtkQuadraticTriangle_GetParametricCoordsP7_objectS0__ZL34PyvtkQuadraticTriangle_DerivativesP7_objectS0__ZL34PyvtkQuadraticTriangle_DerivativesP7_objectS0_.cold_ZL34PyvtkQuadraticTriangle_TriangulateP7_objectS0__ZL39PyvtkQuadraticTriangle_EvaluateLocationP7_objectS0__ZL39PyvtkQuadraticTriangle_EvaluateLocationP7_objectS0_.cold_ZL39PyvtkQuadraticTriangle_EvaluatePositionP7_objectS0__ZL39PyvtkQuadraticTriangle_EvaluatePositionP7_objectS0_.cold_ZL30PyvtkQuadraticTriangle_ContourP7_objectS0__ZL35PyvtkQuadraticTriangle_CellBoundaryP7_objectS0__ZL30PyvtkQuadraticTriangle_GetEdgeP7_objectS0__ZL29PyvtkQuadraticWedge_StaticNewv_ZL32PyvtkQuadraticWedge_GetFaceArrayP7_objectS0__ZL39PyvtkQuadraticWedge_InterpolationDerivsP7_objectS0__ZL42PyvtkQuadraticWedge_InterpolationFunctionsP7_objectS0__ZL32PyvtkQuadraticWedge_SafeDownCastP7_objectS0__ZL28PyvtkQuadraticWedge_IsTypeOfP7_objectS0__ZL32PyvtkQuadraticWedge_GetEdgeArrayP7_objectS0__ZL36PyvtkQuadraticWedge_GetNumberOfEdgesP7_objectS0__ZL36PyvtkQuadraticWedge_GetCellDimensionP7_objectS0__ZL31PyvtkQuadraticWedge_GetCellTypeP7_objectS0__ZL36PyvtkQuadraticWedge_GetNumberOfFacesP7_objectS0__ZL39PyvtkQuadraticWedge_GetParametricCenterP7_objectS0__ZL31PyvtkQuadraticWedge_NewInstanceP7_objectS0__ZL23PyvtkQuadraticWedge_IsAP7_objectS0__ZL37PyvtkQuadraticWedge_InterpolateDerivsP7_objectS0__ZL40PyvtkQuadraticWedge_InterpolateFunctionsP7_objectS0__ZL24PyvtkQuadraticWedge_Type_ZL27PyvtkQuadraticWedge_Methods_GLOBAL__sub_I_vtkQuadraticWedgePython.cxx_ZL37PyvtkQuadraticWedge_IntersectWithLineP7_objectS0__ZL24PyvtkQuadraticWedge_ClipP7_objectS0__ZL39PyvtkQuadraticWedge_GetParametricCoordsP7_objectS0__ZL31PyvtkQuadraticWedge_DerivativesP7_objectS0__ZL31PyvtkQuadraticWedge_DerivativesP7_objectS0_.cold_ZL31PyvtkQuadraticWedge_TriangulateP7_objectS0__ZL36PyvtkQuadraticWedge_EvaluateLocationP7_objectS0__ZL36PyvtkQuadraticWedge_EvaluateLocationP7_objectS0_.cold_ZL36PyvtkQuadraticWedge_EvaluatePositionP7_objectS0__ZL36PyvtkQuadraticWedge_EvaluatePositionP7_objectS0_.cold_ZL27PyvtkQuadraticWedge_ContourP7_objectS0__ZL32PyvtkQuadraticWedge_CellBoundaryP7_objectS0__ZL27PyvtkQuadraticWedge_GetFaceP7_objectS0__ZL27PyvtkQuadraticWedge_GetEdgeP7_objectS0__ZL41PyvtkQuadratureSchemeDefinition_StaticNewv_ZL44PyvtkQuadratureSchemeDefinition_SafeDownCastP7_objectS0__ZL60PyvtkQuadratureSchemeDefinition_QUADRATURE_OFFSET_ARRAY_NAMEP7_objectS0__ZL42PyvtkQuadratureSchemeDefinition_DICTIONARYP7_objectS0__ZL40PyvtkQuadratureSchemeDefinition_IsTypeOfP7_objectS0__ZL48PyvtkQuadratureSchemeDefinition_GetQuadratureKeyP7_objectS0__ZL48PyvtkQuadratureSchemeDefinition_GetNumberOfNodesP7_objectS0__ZL43PyvtkQuadratureSchemeDefinition_GetCellTypeP7_objectS0__ZL59PyvtkQuadratureSchemeDefinition_GetNumberOfQuadraturePointsP7_objectS0__ZL37PyvtkQuadratureSchemeDefinition_ClearP7_objectS0__ZL52PyvtkQuadratureSchemeDefinition_GetQuadratureWeightsP7_objectS0__ZL40PyvtkQuadratureSchemeDefinition_DeepCopyP7_objectS0__ZL41PyvtkQuadratureSchemeDefinition_SaveStateP7_objectS0__ZL44PyvtkQuadratureSchemeDefinition_RestoreStateP7_objectS0__ZL35PyvtkQuadratureSchemeDefinition_IsAP7_objectS0__ZL43PyvtkQuadratureSchemeDefinition_NewInstanceP7_objectS0__ZL55PyvtkQuadratureSchemeDefinition_GetShapeFunctionWeightsP7_objectS0__ZL42PyvtkQuadratureSchemeDefinition_InitializeP7_objectS0__ZL42PyvtkQuadratureSchemeDefinition_InitializeP7_objectS0_.cold_ZL36PyvtkQuadratureSchemeDefinition_Type_ZL39PyvtkQuadratureSchemeDefinition_Methods_GLOBAL__sub_I_vtkQuadratureSchemeDefinitionPython.cxx_ZL30PyvtkRectilinearGrid_StaticNewv_ZL33PyvtkRectilinearGrid_SafeDownCastP7_objectS0__ZL31PyvtkRectilinearGrid_GetData_s1P7_objectS0__ZL31PyvtkRectilinearGrid_GetData_s2P7_objectS0__ZL29PyvtkRectilinearGrid_IsTypeOfP7_objectS0__ZL35PyvtkRectilinearGrid_GetMaxCellSizeP7_objectS0__ZL34PyvtkRectilinearGrid_GetExtentTypeP7_objectS0__ZL38PyvtkRectilinearGrid_GetDataObjectTypeP7_objectS0__ZL30PyvtkRectilinearGrid_GetExtentP7_objectS0__ZL34PyvtkRectilinearGrid_GetDimensionsP7_objectS0__ZL37PyvtkRectilinearGrid_GetDataDimensionP7_objectS0__ZL36PyvtkRectilinearGrid_GetXCoordinatesP7_objectS0__ZL36PyvtkRectilinearGrid_GetZCoordinatesP7_objectS0__ZL36PyvtkRectilinearGrid_GetYCoordinatesP7_objectS0__ZL38PyvtkRectilinearGrid_GetNumberOfPointsP7_objectS0__ZL30PyvtkRectilinearGrid_GetPointsP7_objectS0__ZL37PyvtkRectilinearGrid_GetNumberOfCellsP7_objectS0__ZL34PyvtkRectilinearGrid_GetPointCellsP7_objectS0__ZL34PyvtkRectilinearGrid_GetCellPointsP7_objectS0__ZL35PyvtkRectilinearGrid_ComputePointIdP7_objectS0__ZL32PyvtkRectilinearGrid_NewInstanceP7_objectS0__ZL34PyvtkRectilinearGrid_ComputeCellIdP7_objectS0__ZL24PyvtkRectilinearGrid_IsAP7_objectS0__ZL49PyvtkRectilinearGrid_ComputeStructuredCoordinatesP7_objectS0__ZL28PyvtkRectilinearGrid_GetDataP7_objectS0__ZL36PyvtkRectilinearGrid_GetData_Methods_ZL34PyvtkRectilinearGrid_SetDimensionsP7_objectS0__ZL30PyvtkRectilinearGrid_SetExtentP7_objectS0__ZL25PyvtkRectilinearGrid_Type_ZL28PyvtkRectilinearGrid_Methods_GLOBAL__sub_I_vtkRectilinearGridPython.cxx_ZL25PyvtkRectilinearGrid_CropP7_objectS0__ZL25PyvtkRectilinearGrid_CropP7_objectS0_.cold_ZL29PyvtkRectilinearGrid_DeepCopyP7_objectS0__ZL32PyvtkRectilinearGrid_ShallowCopyP7_objectS0__ZL40PyvtkRectilinearGrid_GetActualMemorySizeP7_objectS0__ZL36PyvtkRectilinearGrid_SetZCoordinatesP7_objectS0__ZL36PyvtkRectilinearGrid_SetYCoordinatesP7_objectS0__ZL36PyvtkRectilinearGrid_SetXCoordinatesP7_objectS0__ZL37PyvtkRectilinearGrid_GetCellNeighborsP7_objectS0__ZL34PyvtkRectilinearGrid_ComputeBoundsP7_objectS0__ZL32PyvtkRectilinearGrid_GetCellTypeP7_objectS0__ZL35PyvtkRectilinearGrid_FindAndGetCellP7_objectS0__ZL35PyvtkRectilinearGrid_FindAndGetCellP7_objectS0_.cold_ZL29PyvtkRectilinearGrid_FindCellP7_objectS0__ZL29PyvtkRectilinearGrid_FindCellP7_objectS0_.cold_ZL30PyvtkRectilinearGrid_FindPointP7_objectS0__ZL34PyvtkRectilinearGrid_GetCellBoundsP7_objectS0__ZL28PyvtkRectilinearGrid_GetCellP7_objectS0__ZL29PyvtkRectilinearGrid_GetPointP7_objectS0__ZL31PyvtkRectilinearGrid_InitializeP7_objectS0__ZL34PyvtkRectilinearGrid_CopyStructureP7_objectS0__ZL32PyvtkSmoothErrorMetric_StaticNewv_ZL35PyvtkSmoothErrorMetric_SafeDownCastP7_objectS0__ZL31PyvtkSmoothErrorMetric_IsTypeOfP7_objectS0__ZL40PyvtkSmoothErrorMetric_GetAngleToleranceP7_objectS0__ZL40PyvtkSmoothErrorMetric_SetAngleToleranceP7_objectS0__ZL26PyvtkSmoothErrorMetric_IsAP7_objectS0__ZL34PyvtkSmoothErrorMetric_NewInstanceP7_objectS0__ZL27PyvtkSmoothErrorMetric_Type_ZL30PyvtkSmoothErrorMetric_Methods_GLOBAL__sub_I_vtkSmoothErrorMetricPython.cxx_ZL31PyvtkSmoothErrorMetric_GetErrorP7_objectS0__ZL31PyvtkSmoothErrorMetric_GetErrorP7_objectS0_.cold_ZL46PyvtkSmoothErrorMetric_RequiresEdgeSubdivisionP7_objectS0__ZL46PyvtkSmoothErrorMetric_RequiresEdgeSubdivisionP7_objectS0_.cold_ZL21PyvtkSphere_StaticNewv_ZL33PyvtkSphere_ComputeBoundingSphereP7_objectS0__ZL33PyvtkSphere_ComputeBoundingSphereP7_objectS0_.cold_ZL24PyvtkSphere_SafeDownCastP7_objectS0__ZL20PyvtkSphere_IsTypeOfP7_objectS0__ZL21PyvtkSphere_GetCenterP7_objectS0__ZL21PyvtkSphere_GetRadiusP7_objectS0__ZL21PyvtkSphere_SetRadiusP7_objectS0__ZL23PyvtkSphere_NewInstanceP7_objectS0__ZL15PyvtkSphere_IsAP7_objectS0__ZL21PyvtkSphere_SetCenterP7_objectS0__ZL16PyvtkSphere_Type_ZL19PyvtkSphere_Methods_GLOBAL__sub_I_vtkSpherePython.cxx_ZL28PyvtkSphere_EvaluateGradientP7_objectS0__ZL28PyvtkSphere_EvaluateFunctionP7_objectS0__ZL32PyvtkStaticCellLocator_StaticNewv_ZL35PyvtkStaticCellLocator_SafeDownCastP7_objectS0__ZL31PyvtkStaticCellLocator_IsTypeOfP7_objectS0__ZL34PyvtkStaticCellLocator_GetLargeIdsP7_objectS0__ZL52PyvtkStaticCellLocator_GetMaxNumberOfBucketsMinValueP7_objectS0__ZL52PyvtkStaticCellLocator_GetMaxNumberOfBucketsMaxValueP7_objectS0__ZL35PyvtkStaticCellLocator_GetDivisionsP7_objectS0__ZL44PyvtkStaticCellLocator_GetMaxNumberOfBucketsP7_objectS0__ZL44PyvtkStaticCellLocator_SetMaxNumberOfBucketsP7_objectS0__ZL34PyvtkStaticCellLocator_NewInstanceP7_objectS0__ZL26PyvtkStaticCellLocator_IsAP7_objectS0__ZL35PyvtkStaticCellLocator_SetDivisionsP7_objectS0__ZL27PyvtkStaticCellLocator_Type_ZL30PyvtkStaticCellLocator_Methods_GLOBAL__sub_I_vtkStaticCellLocatorPython.cxx_ZL35PyvtkStaticCellLocator_BuildLocatorP7_objectS0__ZL42PyvtkStaticCellLocator_FreeSearchStructureP7_objectS0__ZL45PyvtkStaticCellLocator_GenerateRepresentationP7_objectS0__ZL40PyvtkStaticCellLocator_IntersectWithLineP7_objectS0__ZL44PyvtkStaticCellLocator_FindCellsWithinBoundsP7_objectS0__ZL44PyvtkStaticCellLocator_FindCellsWithinBoundsP7_objectS0_.cold_ZL31PyvtkStaticCellLocator_FindCellP7_objectS0__ZL31PyvtkStaticCellLocator_FindCellP7_objectS0_.cold_ZL33PyvtkStaticPointLocator_StaticNewv_ZL36PyvtkStaticPointLocator_SafeDownCastP7_objectS0__ZL32PyvtkStaticPointLocator_IsTypeOfP7_objectS0__ZL35PyvtkStaticPointLocator_GetLargeIdsP7_objectS0__ZL53PyvtkStaticPointLocator_GetMaxNumberOfBucketsMinValueP7_objectS0__ZL58PyvtkStaticPointLocator_GetNumberOfPointsPerBucketMinValueP7_objectS0__ZL58PyvtkStaticPointLocator_GetNumberOfPointsPerBucketMaxValueP7_objectS0__ZL53PyvtkStaticPointLocator_GetMaxNumberOfBucketsMaxValueP7_objectS0__ZL36PyvtkStaticPointLocator_GetDivisionsP7_objectS0__ZL50PyvtkStaticPointLocator_GetNumberOfPointsPerBucketP7_objectS0__ZL45PyvtkStaticPointLocator_GetMaxNumberOfBucketsP7_objectS0__ZL49PyvtkStaticPointLocator_GetNumberOfPointsInBucketP7_objectS0__ZL36PyvtkStaticPointLocator_GetBucketIdsP7_objectS0__ZL50PyvtkStaticPointLocator_SetNumberOfPointsPerBucketP7_objectS0__ZL45PyvtkStaticPointLocator_SetMaxNumberOfBucketsP7_objectS0__ZL35PyvtkStaticPointLocator_NewInstanceP7_objectS0__ZL27PyvtkStaticPointLocator_IsAP7_objectS0__ZL36PyvtkStaticPointLocator_SetDivisionsP7_objectS0__ZL28PyvtkStaticPointLocator_Type_ZL31PyvtkStaticPointLocator_Methods_GLOBAL__sub_I_vtkStaticPointLocatorPython.cxx_ZL33PyvtkStaticPointLocator_GetBoundsP7_objectS0__ZL33PyvtkStaticPointLocator_GetBoundsP7_objectS0_.cold_ZL46PyvtkStaticPointLocator_GenerateRepresentationP7_objectS0__ZL36PyvtkStaticPointLocator_BuildLocatorP7_objectS0__ZL43PyvtkStaticPointLocator_FreeSearchStructureP7_objectS0__ZL34PyvtkStaticPointLocator_InitializeP7_objectS0__ZL46PyvtkStaticPointLocator_FindPointsWithinRadiusP7_objectS0__ZL42PyvtkStaticPointLocator_FindClosestNPointsP7_objectS0__ZL52PyvtkStaticPointLocator_FindClosestPointWithinRadiusP7_objectS0__ZL40PyvtkStaticPointLocator_FindClosestPointP7_objectS0__ZL31PyvtkStructuredExtent_StaticNewv_ZL35PyvtkStructuredExtent_GetDimensionsP7_objectS0__ZL31PyvtkStructuredExtent_TransformP7_objectS0__ZL27PyvtkStructuredExtent_ClampP7_objectS0__ZL27PyvtkStructuredExtent_ClampP7_objectS0_.cold_ZL34PyvtkStructuredExtent_SafeDownCastP7_objectS0__ZL37PyvtkStructuredExtent_StrictlySmallerP7_objectS0__ZL26PyvtkStructuredExtent_GrowP7_objectS0__ZL30PyvtkStructuredExtent_IsTypeOfP7_objectS0__ZL25PyvtkStructuredExtent_IsAP7_objectS0__ZL29PyvtkStructuredExtent_SmallerP7_objectS0__ZL33PyvtkStructuredExtent_NewInstanceP7_objectS0__ZL26PyvtkStructuredExtent_Type_ZL29PyvtkStructuredExtent_Methods_GLOBAL__sub_I_vtkStructuredExtentPython.cxx_ZL29PyvtkStructuredGrid_StaticNewv_ZL32PyvtkStructuredGrid_SafeDownCastP7_objectS0__ZL30PyvtkStructuredGrid_GetData_s1P7_objectS0__ZL30PyvtkStructuredGrid_GetData_s2P7_objectS0__ZL28PyvtkStructuredGrid_IsTypeOfP7_objectS0__ZL33PyvtkStructuredGrid_GetExtentTypeP7_objectS0__ZL34PyvtkStructuredGrid_GetMaxCellSizeP7_objectS0__ZL37PyvtkStructuredGrid_GetDataObjectTypeP7_objectS0__ZL29PyvtkStructuredGrid_GetExtentP7_objectS0__ZL36PyvtkStructuredGrid_GetDataDimensionP7_objectS0__ZL32PyvtkStructuredGrid_UnBlankPointP7_objectS0__ZL29PyvtkStructuredGrid_BlankCellP7_objectS0__ZL31PyvtkStructuredGrid_UnBlankCellP7_objectS0__ZL30PyvtkStructuredGrid_BlankPointP7_objectS0__ZL33PyvtkStructuredGrid_IsCellVisibleP7_objectS0__ZL34PyvtkStructuredGrid_IsPointVisibleP7_objectS0__ZL37PyvtkStructuredGrid_GetNumberOfPointsP7_objectS0__ZL36PyvtkStructuredGrid_GetNumberOfCellsP7_objectS0__ZL31PyvtkStructuredGrid_GetCellDimsP7_objectS0__ZL33PyvtkStructuredGrid_GetPointCellsP7_objectS0__ZL31PyvtkStructuredGrid_NewInstanceP7_objectS0__ZL23PyvtkStructuredGrid_IsAP7_objectS0__ZL27PyvtkStructuredGrid_GetDataP7_objectS0__ZL35PyvtkStructuredGrid_GetData_Methods_ZL33PyvtkStructuredGrid_SetDimensionsP7_objectS0__ZL29PyvtkStructuredGrid_SetExtentP7_objectS0__ZL28PyvtkStructuredGrid_GetPointP7_objectS0__ZL24PyvtkStructuredGrid_Type_ZL27PyvtkStructuredGrid_Methods_GLOBAL__sub_I_vtkStructuredGridPython.cxx_ZL24PyvtkStructuredGrid_CropP7_objectS0__ZL24PyvtkStructuredGrid_CropP7_objectS0_.cold_ZL36PyvtkStructuredGrid_HasAnyBlankCellsP7_objectS0__ZL37PyvtkStructuredGrid_HasAnyBlankPointsP7_objectS0__ZL28PyvtkStructuredGrid_DeepCopyP7_objectS0__ZL31PyvtkStructuredGrid_ShallowCopyP7_objectS0__ZL39PyvtkStructuredGrid_GetActualMemorySizeP7_objectS0__ZL33PyvtkStructuredGrid_GetDimensionsP7_objectS0__ZL36PyvtkStructuredGrid_GetCellNeighborsP7_objectS0__ZL36PyvtkStructuredGrid_GetCellNeighborsP7_objectS0_.cold_ZL30PyvtkStructuredGrid_InitializeP7_objectS0__ZL33PyvtkStructuredGrid_GetCellPointsP7_objectS0__ZL31PyvtkStructuredGrid_GetCellTypeP7_objectS0__ZL33PyvtkStructuredGrid_GetCellBoundsP7_objectS0__ZL27PyvtkStructuredGrid_GetCellP7_objectS0__ZL33PyvtkStructuredGrid_CopyStructureP7_objectS0__ZL20PyvtkTable_StaticNewv_ZL23PyvtkTable_SafeDownCastP7_objectS0__ZL21PyvtkTable_GetData_s1P7_objectS0__ZL21PyvtkTable_GetData_s2P7_objectS0__ZL19PyvtkTable_IsTypeOfP7_objectS0__ZL26PyvtkTable_GetNumberOfRowsP7_objectS0__ZL29PyvtkTable_GetNumberOfColumnsP7_objectS0__ZL28PyvtkTable_GetDataObjectTypeP7_objectS0__ZL21PyvtkTable_GetRowDataP7_objectS0__ZL20PyvtkTable_AddColumnP7_objectS0__ZL23PyvtkTable_RemoveColumnP7_objectS0__ZL20PyvtkTable_RemoveRowP7_objectS0__ZL26PyvtkTable_SetNumberOfRowsP7_objectS0__ZL29PyvtkTable_RemoveColumnByNameP7_objectS0__ZL24PyvtkTable_InsertNextRowP7_objectS0__ZL20PyvtkTable_GetColumnP7_objectS0__ZL26PyvtkTable_GetColumnByNameP7_objectS0__ZL29PyvtkTable_InsertNextBlankRowP7_objectS0__ZL17PyvtkTable_SetRowP7_objectS0__ZL24PyvtkTable_GetColumnNameP7_objectS0__ZL19PyvtkTable_GetValueP7_objectS0__ZL19PyvtkTable_GetValueP7_objectS0_.cold_ZL25PyvtkTable_GetValueByNameP7_objectS0__ZL25PyvtkTable_GetValueByNameP7_objectS0_.cold_ZL15PyvtkTable_DumpP7_objectS0__ZL14PyvtkTable_IsAP7_objectS0__ZL22PyvtkTable_NewInstanceP7_objectS0__ZL19PyvtkTable_SetValueP7_objectS0__ZL19PyvtkTable_SetValueP7_objectS0_.cold_ZL25PyvtkTable_SetValueByNameP7_objectS0__ZL25PyvtkTable_SetValueByNameP7_objectS0_.cold_ZL18PyvtkTable_GetDataP7_objectS0__ZL26PyvtkTable_GetData_Methods_ZL17PyvtkTable_GetRowP7_objectS0__ZL15PyvtkTable_Type_ZL18PyvtkTable_Methods_GLOBAL__sub_I_vtkTablePython.cxx_ZL30PyvtkTable_GetNumberOfElementsP7_objectS0__ZL35PyvtkTable_GetAttributesAsFieldDataP7_objectS0__ZL19PyvtkTable_DeepCopyP7_objectS0__ZL22PyvtkTable_ShallowCopyP7_objectS0__ZL21PyvtkTable_InitializeP7_objectS0__ZL21PyvtkTable_SetRowDataP7_objectS0__ZL30PyvtkTable_GetActualMemorySizeP7_objectS0__ZL20PyvtkTetra_StaticNewv_ZL23PyvtkTetra_GetFaceArrayP7_objectS0__ZL23PyvtkTetra_GetEdgeArrayP7_objectS0__ZL30PyvtkTetra_InterpolationDerivsP7_objectS0__ZL33PyvtkTetra_InterpolationFunctionsP7_objectS0__ZL24PyvtkTetra_ComputeVolumeP7_objectS0__ZL28PyvtkTetra_BarycentricCoordsP7_objectS0__ZL19PyvtkTetra_InsphereP7_objectS0__ZL23PyvtkTetra_CircumsphereP7_objectS0__ZL22PyvtkTetra_TetraCenterP7_objectS0__ZL23PyvtkTetra_SafeDownCastP7_objectS0__ZL19PyvtkTetra_IsTypeOfP7_objectS0__ZL22PyvtkTetra_GetCellTypeP7_objectS0__ZL27PyvtkTetra_GetNumberOfEdgesP7_objectS0__ZL27PyvtkTetra_GetNumberOfFacesP7_objectS0__ZL30PyvtkTetra_GetParametricCenterP7_objectS0__ZL22PyvtkTetra_NewInstanceP7_objectS0__ZL14PyvtkTetra_IsAP7_objectS0__ZL28PyvtkTetra_InterpolateDerivsP7_objectS0__ZL31PyvtkTetra_InterpolateFunctionsP7_objectS0__ZL15PyvtkTetra_Type_ZL18PyvtkTetra_Methods_GLOBAL__sub_I_vtkTetraPython.cxx_ZL32PyvtkTetra_GetParametricDistanceP7_objectS0__ZL23PyvtkTetra_CellBoundaryP7_objectS0__ZL30PyvtkTetra_GetParametricCoordsP7_objectS0__ZL22PyvtkTetra_DerivativesP7_objectS0__ZL22PyvtkTetra_DerivativesP7_objectS0_.cold_ZL22PyvtkTetra_TriangulateP7_objectS0__ZL28PyvtkTetra_IntersectWithLineP7_objectS0__ZL27PyvtkTetra_EvaluateLocationP7_objectS0__ZL27PyvtkTetra_EvaluateLocationP7_objectS0_.cold_ZL27PyvtkTetra_EvaluatePositionP7_objectS0__ZL27PyvtkTetra_EvaluatePositionP7_objectS0_.cold_ZL15PyvtkTetra_ClipP7_objectS0__ZL18PyvtkTetra_ContourP7_objectS0__ZL18PyvtkTetra_GetFaceP7_objectS0__ZL18PyvtkTetra_GetEdgeP7_objectS0__ZL24PyvtkTetra_GetFacePointsP7_objectS0__ZL24PyvtkTetra_GetFacePointsP7_objectS0_.cold_ZL24PyvtkTetra_GetEdgePointsP7_objectS0__ZL24PyvtkTetra_GetEdgePointsP7_objectS0_.cold_ZL23PyvtkTriangle_StaticNewv_ZL28PyvtkTriangle_TriangleCenterP7_objectS0__ZL31PyvtkTriangle_ComputeQuadric_s2P7_objectS0__ZL31PyvtkTriangle_ComputeQuadric_s1P7_objectS0__ZZL31PyvtkTriangle_ComputeQuadric_s1P7_objectS0_E5size3_ZL29PyvtkTriangle_PointInTriangleP7_objectS0__ZL32PyvtkTriangle_TrianglesIntersectP7_objectS0__ZL30PyvtkTriangle_ComputeNormal_s2P7_objectS0__ZL30PyvtkTriangle_ComputeNormal_s1P7_objectS0__ZL30PyvtkTriangle_ComputeNormal_s1P7_objectS0_.cold_ZL25PyvtkTriangle_ProjectTo2DP7_objectS0__ZL31PyvtkTriangle_BarycentricCoordsP7_objectS0__ZL26PyvtkTriangle_CircumcircleP7_objectS0__ZL33PyvtkTriangle_InterpolationDerivsP7_objectS0__ZL36PyvtkTriangle_InterpolationFunctionsP7_objectS0__ZL26PyvtkTriangle_SafeDownCastP7_objectS0__ZL28PyvtkTriangle_ComputeQuadricP7_objectS0__ZL36PyvtkTriangle_ComputeQuadric_Methods_ZL27PyvtkTriangle_ComputeNormalP7_objectS0__ZL35PyvtkTriangle_ComputeNormal_Methods_ZL22PyvtkTriangle_IsTypeOfP7_objectS0__ZL25PyvtkTriangle_ComputeAreaP7_objectS0__ZL30PyvtkTriangle_GetNumberOfFacesP7_objectS0__ZL30PyvtkTriangle_GetNumberOfEdgesP7_objectS0__ZL30PyvtkTriangle_GetCellDimensionP7_objectS0__ZL25PyvtkTriangle_GetCellTypeP7_objectS0__ZL26PyvtkTriangle_TriangleAreaP7_objectS0__ZL21PyvtkTriangle_GetFaceP7_objectS0__ZL26PyvtkTriangle_GetEdgeArrayP7_objectS0__ZL33PyvtkTriangle_GetParametricCenterP7_objectS0__ZL17PyvtkTriangle_IsAP7_objectS0__ZL25PyvtkTriangle_NewInstanceP7_objectS0__ZL36PyvtkTriangle_ComputeNormalDirectionP7_objectS0__ZL31PyvtkTriangle_InterpolateDerivsP7_objectS0__ZL34PyvtkTriangle_InterpolateFunctionsP7_objectS0__ZL18PyvtkTriangle_Type_ZL21PyvtkTriangle_Methods_GLOBAL__sub_I_vtkTrianglePython.cxx_ZL35PyvtkTriangle_GetParametricDistanceP7_objectS0__ZL31PyvtkTriangle_IntersectWithLineP7_objectS0__ZL18PyvtkTriangle_ClipP7_objectS0__ZL33PyvtkTriangle_GetParametricCoordsP7_objectS0__ZL25PyvtkTriangle_DerivativesP7_objectS0__ZL25PyvtkTriangle_DerivativesP7_objectS0_.cold_ZL25PyvtkTriangle_TriangulateP7_objectS0__ZL30PyvtkTriangle_EvaluateLocationP7_objectS0__ZL30PyvtkTriangle_EvaluateLocationP7_objectS0_.cold_ZL30PyvtkTriangle_EvaluatePositionP7_objectS0__ZL30PyvtkTriangle_EvaluatePositionP7_objectS0_.cold_ZL21PyvtkTriangle_ContourP7_objectS0__ZL26PyvtkTriangle_CellBoundaryP7_objectS0__ZL21PyvtkTriangle_GetEdgeP7_objectS0__ZL28PyvtkTriangleStrip_StaticNewv_ZL33PyvtkTriangleStrip_DecomposeStripP7_objectS0__ZL33PyvtkTriangleStrip_DecomposeStripP7_objectS0_.cold_ZL31PyvtkTriangleStrip_SafeDownCastP7_objectS0__ZL27PyvtkTriangleStrip_IsTypeOfP7_objectS0__ZL35PyvtkTriangleStrip_GetCellDimensionP7_objectS0__ZL32PyvtkTriangleStrip_IsPrimaryCellP7_objectS0__ZL30PyvtkTriangleStrip_GetCellTypeP7_objectS0__ZL35PyvtkTriangleStrip_GetNumberOfFacesP7_objectS0__ZL35PyvtkTriangleStrip_GetNumberOfEdgesP7_objectS0__ZL26PyvtkTriangleStrip_GetFaceP7_objectS0__ZL22PyvtkTriangleStrip_IsAP7_objectS0__ZL30PyvtkTriangleStrip_NewInstanceP7_objectS0__ZL23PyvtkTriangleStrip_Type_ZL26PyvtkTriangleStrip_Methods_GLOBAL__sub_I_vtkTriangleStripPython.cxx_ZL38PyvtkTriangleStrip_GetParametricCenterP7_objectS0__ZL30PyvtkTriangleStrip_DerivativesP7_objectS0__ZL30PyvtkTriangleStrip_DerivativesP7_objectS0_.cold_ZL30PyvtkTriangleStrip_TriangulateP7_objectS0__ZL36PyvtkTriangleStrip_IntersectWithLineP7_objectS0__ZL35PyvtkTriangleStrip_EvaluateLocationP7_objectS0__ZL35PyvtkTriangleStrip_EvaluateLocationP7_objectS0_.cold_ZL35PyvtkTriangleStrip_EvaluatePositionP7_objectS0__ZL35PyvtkTriangleStrip_EvaluatePositionP7_objectS0_.cold_ZL23PyvtkTriangleStrip_ClipP7_objectS0__ZL26PyvtkTriangleStrip_ContourP7_objectS0__ZL31PyvtkTriangleStrip_CellBoundaryP7_objectS0__ZL26PyvtkTriangleStrip_GetEdgeP7_objectS0__ZL37PyvtkTriQuadraticHexahedron_StaticNewv_ZL40PyvtkTriQuadraticHexahedron_GetFaceArrayP7_objectS0__ZL47PyvtkTriQuadraticHexahedron_InterpolationDerivsP7_objectS0__ZL50PyvtkTriQuadraticHexahedron_InterpolationFunctionsP7_objectS0__ZL40PyvtkTriQuadraticHexahedron_SafeDownCastP7_objectS0__ZL36PyvtkTriQuadraticHexahedron_IsTypeOfP7_objectS0__ZL40PyvtkTriQuadraticHexahedron_GetEdgeArrayP7_objectS0__ZL39PyvtkTriQuadraticHexahedron_GetCellTypeP7_objectS0__ZL44PyvtkTriQuadraticHexahedron_GetNumberOfEdgesP7_objectS0__ZL44PyvtkTriQuadraticHexahedron_GetCellDimensionP7_objectS0__ZL44PyvtkTriQuadraticHexahedron_GetNumberOfFacesP7_objectS0__ZL39PyvtkTriQuadraticHexahedron_NewInstanceP7_objectS0__ZL31PyvtkTriQuadraticHexahedron_IsAP7_objectS0__ZL45PyvtkTriQuadraticHexahedron_InterpolateDerivsP7_objectS0__ZL48PyvtkTriQuadraticHexahedron_InterpolateFunctionsP7_objectS0__ZL32PyvtkTriQuadraticHexahedron_Type_ZL35PyvtkTriQuadraticHexahedron_Methods_GLOBAL__sub_I_vtkTriQuadraticHexahedronPython.cxx_ZL45PyvtkTriQuadraticHexahedron_IntersectWithLineP7_objectS0__ZL32PyvtkTriQuadraticHexahedron_ClipP7_objectS0__ZL47PyvtkTriQuadraticHexahedron_GetParametricCoordsP7_objectS0__ZL39PyvtkTriQuadraticHexahedron_DerivativesP7_objectS0__ZL39PyvtkTriQuadraticHexahedron_DerivativesP7_objectS0_.cold_ZL39PyvtkTriQuadraticHexahedron_TriangulateP7_objectS0__ZL44PyvtkTriQuadraticHexahedron_EvaluateLocationP7_objectS0__ZL44PyvtkTriQuadraticHexahedron_EvaluateLocationP7_objectS0_.cold_ZL44PyvtkTriQuadraticHexahedron_EvaluatePositionP7_objectS0__ZL44PyvtkTriQuadraticHexahedron_EvaluatePositionP7_objectS0_.cold_ZL35PyvtkTriQuadraticHexahedron_ContourP7_objectS0__ZL40PyvtkTriQuadraticHexahedron_CellBoundaryP7_objectS0__ZL35PyvtkTriQuadraticHexahedron_GetFaceP7_objectS0__ZL35PyvtkTriQuadraticHexahedron_GetEdgeP7_objectS0__ZL26PyvtkUniformGrid_StaticNewv_ZL29PyvtkUniformGrid_SafeDownCastP7_objectS0__ZL27PyvtkUniformGrid_GetData_s1P7_objectS0__ZL27PyvtkUniformGrid_GetData_s2P7_objectS0__ZL25PyvtkUniformGrid_IsTypeOfP7_objectS0__ZL35PyvtkUniformGrid_GetGridDescriptionP7_objectS0__ZL31PyvtkUniformGrid_GetMaxCellSizeP7_objectS0__ZL34PyvtkUniformGrid_GetDataObjectTypeP7_objectS0__ZL30PyvtkUniformGrid_GetPointCellsP7_objectS0__ZL30PyvtkUniformGrid_GetCellPointsP7_objectS0__ZL28PyvtkUniformGrid_NewInstanceP7_objectS0__ZL20PyvtkUniformGrid_IsAP7_objectS0__ZL24PyvtkUniformGrid_GetDataP7_objectS0__ZL32PyvtkUniformGrid_GetData_Methods_ZL21PyvtkUniformGrid_Type_ZL24PyvtkUniformGrid_Methods_GLOBAL__sub_I_vtkUniformGridPython.cxx_ZL33PyvtkUniformGrid_NewImageDataCopyP7_objectS0__ZL30PyvtkUniformGrid_IsCellVisibleP7_objectS0__ZL31PyvtkUniformGrid_IsPointVisibleP7_objectS0__ZL34PyvtkUniformGrid_HasAnyBlankPointsP7_objectS0__ZL33PyvtkUniformGrid_HasAnyBlankCellsP7_objectS0__ZL28PyvtkUniformGrid_UnBlankCellP7_objectS0__ZL26PyvtkUniformGrid_BlankCellP7_objectS0__ZL29PyvtkUniformGrid_UnBlankPointP7_objectS0__ZL27PyvtkUniformGrid_BlankPointP7_objectS0__ZL27PyvtkUniformGrid_InitializeP7_objectS0__ZL28PyvtkUniformGrid_GetCellTypeP7_objectS0__ZL31PyvtkUniformGrid_FindAndGetCellP7_objectS0__ZL31PyvtkUniformGrid_FindAndGetCellP7_objectS0_.cold_ZL25PyvtkUniformGrid_FindCellP7_objectS0__ZL25PyvtkUniformGrid_FindCellP7_objectS0_.cold_ZL24PyvtkUniformGrid_GetCellP7_objectS0__ZL30PyvtkUniformGrid_CopyStructureP7_objectS0__ZL31PyvtkUnstructuredGrid_StaticNewv_ZL49PyvtkUnstructuredGrid_DecomposeAPolyhedronCell_s3P7_objectS0__ZL49PyvtkUnstructuredGrid_DecomposeAPolyhedronCell_s3P7_objectS0_.cold_ZL49PyvtkUnstructuredGrid_DecomposeAPolyhedronCell_s2P7_objectS0__ZL49PyvtkUnstructuredGrid_DecomposeAPolyhedronCell_s2P7_objectS0_.cold_ZL49PyvtkUnstructuredGrid_DecomposeAPolyhedronCell_s1P7_objectS0__ZL34PyvtkUnstructuredGrid_SafeDownCastP7_objectS0__ZL32PyvtkUnstructuredGrid_GetData_s1P7_objectS0__ZL32PyvtkUnstructuredGrid_GetData_s2P7_objectS0__ZL46PyvtkUnstructuredGrid_DecomposeAPolyhedronCellP7_objectS0__ZL54PyvtkUnstructuredGrid_DecomposeAPolyhedronCell_Methods_ZL47PyvtkUnstructuredGrid_ConvertFaceStreamPointIdsP7_objectS0__ZL47PyvtkUnstructuredGrid_ConvertFaceStreamPointIdsP7_objectS0_.cold_ZL30PyvtkUnstructuredGrid_IsTypeOfP7_objectS0__ZL43PyvtkUnstructuredGrid_GetCellLocationsArrayP7_objectS0__ZL39PyvtkUnstructuredGrid_GetCellTypesArrayP7_objectS0__ZL30PyvtkUnstructuredGrid_GetCellsP7_objectS0__ZL34PyvtkUnstructuredGrid_GetCellLinksP7_objectS0__ZL38PyvtkUnstructuredGrid_GetFaceLocationsP7_objectS0__ZL32PyvtkUnstructuredGrid_BuildLinksP7_objectS0__ZL38PyvtkUnstructuredGrid_RemoveGhostCellsP7_objectS0__ZL27PyvtkUnstructuredGrid_ResetP7_objectS0__ZL39PyvtkUnstructuredGrid_GetDataObjectTypeP7_objectS0__ZL51PyvtkUnstructuredGrid_InitializeFacesRepresentationP7_objectS0__ZL43PyvtkUnstructuredGrid_RemoveReferenceToCellP7_objectS0__ZL33PyvtkUnstructuredGrid_SetCells_s1P7_objectS0__ZL40PyvtkUnstructuredGrid_AddReferenceToCellP7_objectS0__ZL36PyvtkUnstructuredGrid_ResizeCellListP7_objectS0__ZL33PyvtkUnstructuredGrid_NewInstanceP7_objectS0__ZL33PyvtkUnstructuredGrid_SetCells_s2P7_objectS0__ZL33PyvtkUnstructuredGrid_SetCells_s2P7_objectS0_.cold_ZL42PyvtkUnstructuredGrid_InsertNextLinkedCellP7_objectS0__ZL42PyvtkUnstructuredGrid_InsertNextLinkedCellP7_objectS0_.cold_ZL25PyvtkUnstructuredGrid_IsAP7_objectS0__ZL29PyvtkUnstructuredGrid_GetDataP7_objectS0__ZL37PyvtkUnstructuredGrid_GetData_Methods_ZL30PyvtkUnstructuredGrid_GetFacesP7_objectS0__ZL35PyvtkUnstructuredGrid_GetFaceStreamP7_objectS0__ZL35PyvtkUnstructuredGrid_GetFaceStreamP7_objectS0_.cold_ZL30PyvtkUnstructuredGrid_SetCellsP7_objectS0__ZL38PyvtkUnstructuredGrid_SetCells_Methods_ZL26PyvtkUnstructuredGrid_Type_ZL29PyvtkUnstructuredGrid_Methods_GLOBAL__sub_I_vtkUnstructuredGridPython.cxx_ZL34PyvtkUnstructuredGrid_GetMeshMTimeP7_objectS0__ZL35PyvtkUnstructuredGrid_IsHomogeneousP7_objectS0__ZL41PyvtkUnstructuredGrid_GetIdsOfCellsOfTypeP7_objectS0__ZL30PyvtkUnstructuredGrid_DeepCopyP7_objectS0__ZL33PyvtkUnstructuredGrid_ShallowCopyP7_objectS0__ZL41PyvtkUnstructuredGrid_GetActualMemorySizeP7_objectS0__ZL35PyvtkUnstructuredGrid_GetGhostLevelP7_objectS0__ZL39PyvtkUnstructuredGrid_GetNumberOfPiecesP7_objectS0__ZL30PyvtkUnstructuredGrid_GetPieceP7_objectS0__ZL38PyvtkUnstructuredGrid_GetCellNeighborsP7_objectS0__ZL33PyvtkUnstructuredGrid_ReplaceCellP7_objectS0__ZL33PyvtkUnstructuredGrid_ReplaceCellP7_objectS0_.cold_ZL36PyvtkUnstructuredGrid_GetMaxCellSizeP7_objectS0__ZL32PyvtkUnstructuredGrid_InitializeP7_objectS0__ZL29PyvtkUnstructuredGrid_SqueezeP7_objectS0__ZL33PyvtkUnstructuredGrid_GetCellTypeP7_objectS0__ZL37PyvtkUnstructuredGrid_NewCellIteratorP7_objectS0__ZL35PyvtkUnstructuredGrid_GetPointCellsP7_objectS0__ZL35PyvtkUnstructuredGrid_GetCellPointsP7_objectS0__ZL35PyvtkUnstructuredGrid_GetCellPointsP7_objectS0_.cold_ZL35PyvtkUnstructuredGrid_GetCellBoundsP7_objectS0__ZL29PyvtkUnstructuredGrid_GetCellP7_objectS0__ZL29PyvtkUnstructuredGrid_GetCellP7_objectS0_.cold_ZL38PyvtkUnstructuredGrid_GetNumberOfCellsP7_objectS0__ZL35PyvtkUnstructuredGrid_CopyStructureP7_objectS0__ZL36PyvtkUnstructuredGrid_InsertNextCellP7_objectS0__ZL36PyvtkUnstructuredGrid_InsertNextCellP7_objectS0_.cold_ZL30PyvtkUnstructuredGrid_AllocateP7_objectS0__ZL38PyvtkUnstructuredGridBase_SafeDownCastP7_objectS0__ZL36PyvtkUnstructuredGridBase_GetData_s1P7_objectS0__ZL36PyvtkUnstructuredGridBase_GetData_s2P7_objectS0__ZL34PyvtkUnstructuredGridBase_IsTypeOfP7_objectS0__ZL43PyvtkUnstructuredGridBase_GetDataObjectTypeP7_objectS0__ZL39PyvtkUnstructuredGridBase_IsHomogeneousP7_objectS0__ZL45PyvtkUnstructuredGridBase_GetIdsOfCellsOfTypeP7_objectS0__ZL34PyvtkUnstructuredGridBase_AllocateP7_objectS0__ZL37PyvtkUnstructuredGridBase_NewInstanceP7_objectS0__ZL29PyvtkUnstructuredGridBase_IsAP7_objectS0__ZL37PyvtkUnstructuredGridBase_ReplaceCellP7_objectS0__ZL37PyvtkUnstructuredGridBase_ReplaceCellP7_objectS0_.cold_ZL40PyvtkUnstructuredGridBase_InsertNextCellP7_objectS0__ZL40PyvtkUnstructuredGridBase_InsertNextCellP7_objectS0_.cold_ZL33PyvtkUnstructuredGridBase_GetDataP7_objectS0__ZL41PyvtkUnstructuredGridBase_GetData_Methods_ZL30PyvtkUnstructuredGridBase_Type_ZL33PyvtkUnstructuredGridBase_Methods_GLOBAL__sub_I_vtkUnstructuredGridBasePython.cxx_ZL34PyvtkUnstructuredGridBase_DeepCopyP7_objectS0__ZL21PyvtkVertex_StaticNewv_ZL31PyvtkVertex_InterpolationDerivsP7_objectS0__ZL34PyvtkVertex_InterpolationFunctionsP7_objectS0__ZL24PyvtkVertex_SafeDownCastP7_objectS0__ZL20PyvtkVertex_IsTypeOfP7_objectS0__ZL23PyvtkVertex_GetCellTypeP7_objectS0__ZL28PyvtkVertex_GetNumberOfFacesP7_objectS0__ZL28PyvtkVertex_GetCellDimensionP7_objectS0__ZL28PyvtkVertex_GetNumberOfEdgesP7_objectS0__ZL19PyvtkVertex_GetFaceP7_objectS0__ZL19PyvtkVertex_GetEdgeP7_objectS0__ZL31PyvtkVertex_GetParametricCenterP7_objectS0__ZL15PyvtkVertex_IsAP7_objectS0__ZL23PyvtkVertex_NewInstanceP7_objectS0__ZL32PyvtkVertex_InterpolateFunctionsP7_objectS0__ZL29PyvtkVertex_InterpolateDerivsP7_objectS0__ZL16PyvtkVertex_Type_ZL19PyvtkVertex_Methods_GLOBAL__sub_I_vtkVertexPython.cxx_ZL23PyvtkVertex_DerivativesP7_objectS0__ZL23PyvtkVertex_DerivativesP7_objectS0_.cold_ZL23PyvtkVertex_TriangulateP7_objectS0__ZL29PyvtkVertex_IntersectWithLineP7_objectS0__ZL19PyvtkVertex_ContourP7_objectS0__ZL24PyvtkVertex_CellBoundaryP7_objectS0__ZL31PyvtkVertex_GetParametricCoordsP7_objectS0__ZL28PyvtkVertex_EvaluateLocationP7_objectS0__ZL28PyvtkVertex_EvaluateLocationP7_objectS0_.cold_ZL28PyvtkVertex_EvaluatePositionP7_objectS0__ZL28PyvtkVertex_EvaluatePositionP7_objectS0_.cold_ZL16PyvtkVertex_ClipP7_objectS0__ZL20PyvtkVoxel_StaticNewv_ZL23PyvtkVoxel_GetFaceArrayP7_objectS0__ZL23PyvtkVoxel_GetEdgeArrayP7_objectS0__ZL33PyvtkVoxel_InterpolationFunctionsP7_objectS0__ZL30PyvtkVoxel_InterpolationDerivsP7_objectS0__ZL23PyvtkVoxel_SafeDownCastP7_objectS0__ZL19PyvtkVoxel_IsTypeOfP7_objectS0__ZL27PyvtkVoxel_GetNumberOfEdgesP7_objectS0__ZL27PyvtkVoxel_GetNumberOfFacesP7_objectS0__ZL22PyvtkVoxel_GetCellTypeP7_objectS0__ZL27PyvtkVoxel_GetCellDimensionP7_objectS0__ZL22PyvtkVoxel_NewInstanceP7_objectS0__ZL14PyvtkVoxel_IsAP7_objectS0__ZL31PyvtkVoxel_InterpolateFunctionsP7_objectS0__ZL28PyvtkVoxel_InterpolateDerivsP7_objectS0__ZL15PyvtkVoxel_Type_ZL18PyvtkVoxel_Methods_GLOBAL__sub_I_vtkVoxelPython.cxx_ZL22PyvtkVoxel_DerivativesP7_objectS0__ZL22PyvtkVoxel_DerivativesP7_objectS0_.cold_ZL22PyvtkVoxel_TriangulateP7_objectS0__ZL28PyvtkVoxel_IntersectWithLineP7_objectS0__ZL27PyvtkVoxel_EvaluateLocationP7_objectS0__ZL27PyvtkVoxel_EvaluateLocationP7_objectS0_.cold_ZL27PyvtkVoxel_EvaluatePositionP7_objectS0__ZL27PyvtkVoxel_EvaluatePositionP7_objectS0_.cold_ZL18PyvtkVoxel_ContourP7_objectS0__ZL23PyvtkVoxel_CellBoundaryP7_objectS0__ZL18PyvtkVoxel_GetFaceP7_objectS0__ZL18PyvtkVoxel_GetEdgeP7_objectS0__ZL30PyvtkVoxel_GetParametricCoordsP7_objectS0__ZL24PyvtkVoxel_GetFacePointsP7_objectS0__ZL24PyvtkVoxel_GetFacePointsP7_objectS0_.cold_ZL24PyvtkVoxel_GetEdgePointsP7_objectS0__ZL24PyvtkVoxel_GetEdgePointsP7_objectS0_.cold_ZL20PyvtkWedge_StaticNewv_ZL23PyvtkWedge_GetFaceArrayP7_objectS0__ZL23PyvtkWedge_GetEdgeArrayP7_objectS0__ZL30PyvtkWedge_InterpolationDerivsP7_objectS0__ZL33PyvtkWedge_InterpolationFunctionsP7_objectS0__ZL23PyvtkWedge_SafeDownCastP7_objectS0__ZL19PyvtkWedge_IsTypeOfP7_objectS0__ZL27PyvtkWedge_GetNumberOfEdgesP7_objectS0__ZL27PyvtkWedge_GetNumberOfFacesP7_objectS0__ZL22PyvtkWedge_GetCellTypeP7_objectS0__ZL27PyvtkWedge_GetCellDimensionP7_objectS0__ZL30PyvtkWedge_GetParametricCenterP7_objectS0__ZL22PyvtkWedge_NewInstanceP7_objectS0__ZL14PyvtkWedge_IsAP7_objectS0__ZL31PyvtkWedge_InterpolateFunctionsP7_objectS0__ZL28PyvtkWedge_InterpolateDerivsP7_objectS0__ZL15PyvtkWedge_Type_ZL18PyvtkWedge_Methods_GLOBAL__sub_I_vtkWedgePython.cxx_ZL30PyvtkWedge_GetParametricCoordsP7_objectS0__ZL22PyvtkWedge_DerivativesP7_objectS0__ZL22PyvtkWedge_DerivativesP7_objectS0_.cold_ZL22PyvtkWedge_TriangulateP7_objectS0__ZL28PyvtkWedge_IntersectWithLineP7_objectS0__ZL27PyvtkWedge_EvaluateLocationP7_objectS0__ZL27PyvtkWedge_EvaluateLocationP7_objectS0_.cold_ZL27PyvtkWedge_EvaluatePositionP7_objectS0__ZL27PyvtkWedge_EvaluatePositionP7_objectS0_.cold_ZL18PyvtkWedge_ContourP7_objectS0__ZL23PyvtkWedge_CellBoundaryP7_objectS0__ZL18PyvtkWedge_GetFaceP7_objectS0__ZL18PyvtkWedge_GetEdgeP7_objectS0__ZL24PyvtkWedge_GetFacePointsP7_objectS0__ZL24PyvtkWedge_GetFacePointsP7_objectS0_.cold_ZL24PyvtkWedge_GetEdgePointsP7_objectS0__ZL24PyvtkWedge_GetEdgePointsP7_objectS0_.cold_ZL29PyvtkXMLDataElement_StaticNewv_ZL32PyvtkXMLDataElement_SafeDownCastP7_objectS0__ZL41PyvtkXMLDataElement_GetVectorAttribute_s2P7_objectS0__ZL41PyvtkXMLDataElement_GetVectorAttribute_s2P7_objectS0_.cold_ZL38PyvtkXMLDataElement_SetVectorAttributeP7_objectS0__ZL46PyvtkXMLDataElement_SetVectorAttribute_Methods_ZL38PyvtkXMLDataElement_GetVectorAttributeP7_objectS0__ZL46PyvtkXMLDataElement_GetVectorAttribute_Methods_ZL38PyvtkXMLDataElement_GetScalarAttributeP7_objectS0__ZL46PyvtkXMLDataElement_GetScalarAttribute_Methods_ZL28PyvtkXMLDataElement_IsTypeOfP7_objectS0__ZL29PyvtkXMLDataElement_GetParentP7_objectS0__ZL45PyvtkXMLDataElement_GetNumberOfNestedElementsP7_objectS0__ZL48PyvtkXMLDataElement_GetAttributeEncodingMinValueP7_objectS0__ZL48PyvtkXMLDataElement_GetAttributeEncodingMaxValueP7_objectS0__ZL41PyvtkXMLDataElement_GetCharacterDataWidthP7_objectS0__ZL40PyvtkXMLDataElement_GetAttributeEncodingP7_objectS0__ZL41PyvtkXMLDataElement_GetNumberOfAttributesP7_objectS0__ZL35PyvtkXMLDataElement_GetXMLByteIndexP7_objectS0__ZL36PyvtkXMLDataElement_AddNestedElementP7_objectS0__ZL29PyvtkXMLDataElement_SetParentP7_objectS0__ZL28PyvtkXMLDataElement_PrintXMLP7_objectS0__ZL36PyvtkXMLDataElement_GetNestedElementP7_objectS0__ZL37PyvtkXMLDataElement_FindNestedElementP7_objectS0__ZL33PyvtkXMLDataElement_LookupElementP7_objectS0__ZL45PyvtkXMLDataElement_FindNestedElementWithNameP7_objectS0__ZL41PyvtkXMLDataElement_LookupElementWithNameP7_objectS0__ZL36PyvtkXMLDataElement_GetCharacterDataP7_objectS0__ZL27PyvtkXMLDataElement_GetNameP7_objectS0__ZL25PyvtkXMLDataElement_GetIdP7_objectS0__ZL36PyvtkXMLDataElement_SetCharacterDataP7_objectS0__ZL38PyvtkXMLDataElement_SetDoubleAttributeP7_objectS0__ZL44PyvtkXMLDataElement_SetUnsignedLongAttributeP7_objectS0__ZL35PyvtkXMLDataElement_SetIntAttributeP7_objectS0__ZL37PyvtkXMLDataElement_SetFloatAttributeP7_objectS0__ZL32PyvtkXMLDataElement_SetAttributeP7_objectS0__ZL50PyvtkXMLDataElement_FindNestedElementWithNameAndIdP7_objectS0__ZL36PyvtkXMLDataElement_GetAttributeNameP7_objectS0__ZL37PyvtkXMLDataElement_GetAttributeValueP7_objectS0__ZL32PyvtkXMLDataElement_GetAttributeP7_objectS0__ZL41PyvtkXMLDataElement_GetScalarAttribute_s4P7_objectS0__ZL35PyvtkXMLDataElement_SetXMLByteIndexP7_objectS0__ZL41PyvtkXMLDataElement_SetCharacterDataWidthP7_objectS0__ZL41PyvtkXMLDataElement_GetScalarAttribute_s1P7_objectS0__ZL40PyvtkXMLDataElement_GetWordTypeAttributeP7_objectS0__ZL41PyvtkXMLDataElement_GetScalarAttribute_s2P7_objectS0__ZL41PyvtkXMLDataElement_GetScalarAttribute_s3P7_objectS0__ZL40PyvtkXMLDataElement_SetAttributeEncodingP7_objectS0__ZL57PyvtkXMLDataElement_FindNestedElementWithNameAndAttributeP7_objectS0__ZL23PyvtkXMLDataElement_IsAP7_objectS0__ZL41PyvtkXMLDataElement_SetVectorAttribute_s2P7_objectS0__ZL41PyvtkXMLDataElement_SetVectorAttribute_s2P7_objectS0_.cold_ZL41PyvtkXMLDataElement_SetVectorAttribute_s3P7_objectS0__ZL41PyvtkXMLDataElement_SetVectorAttribute_s3P7_objectS0_.cold_ZL41PyvtkXMLDataElement_SetVectorAttribute_s1P7_objectS0__ZL41PyvtkXMLDataElement_SetVectorAttribute_s1P7_objectS0_.cold_ZL41PyvtkXMLDataElement_SetVectorAttribute_s4P7_objectS0__ZL41PyvtkXMLDataElement_SetVectorAttribute_s4P7_objectS0_.cold_ZL31PyvtkXMLDataElement_NewInstanceP7_objectS0__ZL36PyvtkXMLDataElement_AddCharacterDataP7_objectS0__ZL41PyvtkXMLDataElement_GetVectorAttribute_s3P7_objectS0__ZL41PyvtkXMLDataElement_GetVectorAttribute_s3P7_objectS0_.cold_ZL41PyvtkXMLDataElement_GetVectorAttribute_s4P7_objectS0__ZL41PyvtkXMLDataElement_GetVectorAttribute_s4P7_objectS0_.cold_ZL41PyvtkXMLDataElement_GetVectorAttribute_s1P7_objectS0__ZL41PyvtkXMLDataElement_GetVectorAttribute_s1P7_objectS0_.cold_ZL25PyvtkXMLDataElement_SetIdP7_objectS0__ZL24PyvtkXMLDataElement_Type_ZL27PyvtkXMLDataElement_Methods_GLOBAL__sub_I_vtkXMLDataElementPython.cxx_ZL28PyvtkXMLDataElement_DeepCopyP7_objectS0__ZL29PyvtkXMLDataElement_IsEqualToP7_objectS0__ZL43PyvtkXMLDataElement_RemoveAllNestedElementsP7_objectS0__ZL39PyvtkXMLDataElement_RemoveNestedElementP7_objectS0__ZL27PyvtkXMLDataElement_GetRootP7_objectS0__ZL39PyvtkXMLDataElement_RemoveAllAttributesP7_objectS0__ZL35PyvtkXMLDataElement_RemoveAttributeP7_objectS0__ZL27PyvtkXMLDataElement_SetNameP7_objectS0__ZL22PyvtkBoundingBox_CCopyPKv_ZL34PyvtkBoundingBox_vtkBoundingBox_s4P7_objectS0__ZL23PyvtkBoundingBox_DeleteP7_object_ZL28PyvtkBoundingBox_RichCompareP7_objectS0_i_ZL21PyvtkBoundingBox_Type_ZL21PyvtkBoundingBox_HashP7_object_ZL20PyvtkBoundingBox_NewP11_typeobjectP7_objectS2__ZL39PyvtkBoundingBox_vtkBoundingBox_Methods_ZL20PyvtkBoundingBox_NewP11_typeobjectP7_objectS2_.cold_ZL34PyvtkBoundingBox_vtkBoundingBox_s2P7_objectS0__ZL34PyvtkBoundingBox_vtkBoundingBox_s2P7_objectS0_.cold_ZL29PyvtkBoundingBox_GetMaxLengthP7_objectS0__ZL34PyvtkBoundingBox_GetDiagonalLengthP7_objectS0__ZL22PyvtkBoundingBox_ResetP7_objectS0__ZL26PyvtkBoundingBox_GetLengthP7_objectS0__ZL25PyvtkBoundingBox_GetBoundP7_objectS0__ZL23PyvtkBoundingBox_AddBoxP7_objectS0__ZL27PyvtkBoundingBox_IntersectsP7_objectS0__ZL25PyvtkBoundingBox_ContainsP7_objectS0__ZL29PyvtkBoundingBox_IntersectBoxP7_objectS0__ZL26PyvtkBoundingBox_AddBoundsP7_objectS0__ZL26PyvtkBoundingBox_AddBoundsP7_objectS0_.cold_ZL27PyvtkBoundingBox_GetLengthsP7_objectS0__ZL26PyvtkBoundingBox_GetCenterP7_objectS0__ZL31PyvtkBoundingBox_IntersectPlaneP7_objectS0__ZL33PyvtkBoundingBox_ComputeDivisionsP7_objectS0__ZL24PyvtkBoundingBox_IsValidP7_objectS0__ZL24PyvtkBoundingBox_InflateP7_objectS0__ZL28PyvtkBoundingBox_GetMaxPointP7_objectS0__ZL28PyvtkBoundingBox_GetMinPointP7_objectS0__ZL25PyvtkBoundingBox_AddPointP7_objectS0__ZL22PyvtkBoundingBox_ScaleP7_objectS0__ZL26PyvtkBoundingBox_SetBoundsP7_objectS0__ZL28PyvtkBoundingBox_SetMinPointP7_objectS0__ZL28PyvtkBoundingBox_SetMaxPointP7_objectS0__ZL30PyvtkBoundingBox_ContainsPointP7_objectS0__ZL26PyvtkBoundingBox_GetBoundsP7_objectS0__ZL24PyvtkBoundingBox_Methods_GLOBAL__sub_I_vtkBoundingBoxPython.cxx_ZL29PyvtkOverlappingAMR_StaticNewv_ZL32PyvtkOverlappingAMR_SafeDownCastP7_objectS0__ZL30PyvtkOverlappingAMR_GetData_s1P7_objectS0__ZL30PyvtkOverlappingAMR_GetData_s2P7_objectS0__ZL38PyvtkOverlappingAMR_GetRefinementRatioP7_objectS0__ZL46PyvtkOverlappingAMR_GetRefinementRatio_Methods_ZL44PyvtkOverlappingAMR_NUMBER_OF_BLANKED_POINTSP7_objectS0__ZL28PyvtkOverlappingAMR_IsTypeOfP7_objectS0__ZL50PyvtkOverlappingAMR_GenerateParentChildInformationP7_objectS0__ZL25PyvtkOverlappingAMR_AuditP7_objectS0__ZL42PyvtkOverlappingAMR_HasChildrenInformationP7_objectS0__ZL37PyvtkOverlappingAMR_GetDataObjectTypeP7_objectS0__ZL30PyvtkOverlappingAMR_GetAMRInfoP7_objectS0__ZL41PyvtkOverlappingAMR_GetRefinementRatio_s1P7_objectS0__ZL41PyvtkOverlappingAMR_GetRefinementRatio_s2P7_objectS0__ZL30PyvtkOverlappingAMR_SetSpacingP7_objectS0__ZL40PyvtkOverlappingAMR_PrintParentChildInfoP7_objectS0__ZL38PyvtkOverlappingAMR_SetRefinementRatioP7_objectS0__ZL42PyvtkOverlappingAMR_GetAMRBlockSourceIndexP7_objectS0__ZL29PyvtkOverlappingAMR_GetAMRBoxP7_objectS0__ZL42PyvtkOverlappingAMR_SetAMRBlockSourceIndexP7_objectS0__ZL29PyvtkOverlappingAMR_SetOriginP7_objectS0__ZL29PyvtkOverlappingAMR_SetOriginP7_objectS0_.cold_ZL29PyvtkOverlappingAMR_SetAMRBoxP7_objectS0__ZL31PyvtkOverlappingAMR_GetChildrenP7_objectS0__ZL30PyvtkOverlappingAMR_GetSpacingP7_objectS0__ZL30PyvtkOverlappingAMR_GetParentsP7_objectS0__ZL31PyvtkOverlappingAMR_NewInstanceP7_objectS0__ZL28PyvtkOverlappingAMR_FindGridP7_objectS0__ZL23PyvtkOverlappingAMR_IsAP7_objectS0__ZL27PyvtkOverlappingAMR_GetDataP7_objectS0__ZL35PyvtkOverlappingAMR_GetData_Methods_ZL29PyvtkOverlappingAMR_GetOriginP7_objectS0__ZL29PyvtkOverlappingAMR_GetBoundsP7_objectS0__ZL29PyvtkOverlappingAMR_GetBoundsP7_objectS0_.cold_ZL24PyvtkOverlappingAMR_Type_ZL27PyvtkOverlappingAMR_Methods_GLOBAL__sub_I_vtkOverlappingAMRPython.cxx_ZL30PyvtkOverlappingAMR_SetAMRInfoP7_objectS0__ZL31PyvtkOverlappingAMR_NewIteratorP7_objectS0__ZL29PyvtkAMRInformation_StaticNewv_ZL32PyvtkAMRInformation_SafeDownCastP7_objectS0__ZL28PyvtkAMRInformation_FindGridP7_objectS0__ZL36PyvtkAMRInformation_FindGrid_Methods_ZL28PyvtkAMRInformation_IsTypeOfP7_objectS0__ZL50PyvtkAMRInformation_GenerateParentChildInformationP7_objectS0__ZL43PyvtkAMRInformation_GenerateRefinementRatioP7_objectS0__ZL42PyvtkAMRInformation_GetTotalNumberOfBlocksP7_objectS0__ZL25PyvtkAMRInformation_AuditP7_objectS0__ZL42PyvtkAMRInformation_HasChildrenInformationP7_objectS0__ZL38PyvtkAMRInformation_HasRefinementRatioP7_objectS0__ZL38PyvtkAMRInformation_GetGridDescriptionP7_objectS0__ZL37PyvtkAMRInformation_GetNumberOfLevelsP7_objectS0__ZL38PyvtkAMRInformation_SetGridDescriptionP7_objectS0__ZL28PyvtkAMRInformation_DeepCopyP7_objectS0__ZL39PyvtkAMRInformation_GetNumberOfDataSetsP7_objectS0__ZL30PyvtkAMRInformation_HasSpacingP7_objectS0__ZL38PyvtkAMRInformation_GetRefinementRatioP7_objectS0__ZL42PyvtkAMRInformation_GetAMRBlockSourceIndexP7_objectS0__ZL38PyvtkAMRInformation_SetRefinementRatioP7_objectS0__ZL42PyvtkAMRInformation_SetAMRBlockSourceIndexP7_objectS0__ZL40PyvtkAMRInformation_PrintParentChildInfoP7_objectS0__ZL28PyvtkAMRInformation_GetIndexP7_objectS0__ZL29PyvtkAMRInformation_GetAMRBoxP7_objectS0__ZL38PyvtkAMRInformation_GetCoarsenedAMRBoxP7_objectS0__ZL29PyvtkAMRInformation_SetOriginP7_objectS0__ZL29PyvtkAMRInformation_SetOriginP7_objectS0_.cold_ZL29PyvtkAMRInformation_SetAMRBoxP7_objectS0__ZL30PyvtkAMRInformation_InitializeP7_objectS0__ZL30PyvtkAMRInformation_InitializeP7_objectS0_.cold_ZL23PyvtkAMRInformation_IsAP7_objectS0__ZL30PyvtkAMRInformation_SetSpacingP7_objectS0__ZL30PyvtkAMRInformation_SetSpacingP7_objectS0_.cold_ZL36PyvtkAMRInformation_ComputeIndexPairP7_objectS0__ZL30PyvtkAMRInformation_GetParentsP7_objectS0__ZL30PyvtkAMRInformation_GetSpacingP7_objectS0__ZL31PyvtkAMRInformation_GetChildrenP7_objectS0__ZL31PyvtkAMRInformation_NewInstanceP7_objectS0__ZL31PyvtkAMRInformation_FindGrid_s1P7_objectS0__ZL31PyvtkAMRInformation_FindGrid_s2P7_objectS0__ZL28PyvtkAMRInformation_FindCellP7_objectS0__ZL29PyvtkAMRInformation_GetBoundsP7_objectS0__ZL29PyvtkAMRInformation_GetBoundsP7_objectS0_.cold_ZL29PyvtkAMRInformation_GetOriginP7_objectS0__ZL29PyvtkAMRInformation_GetOriginP7_objectS0_.cold_ZL24PyvtkAMRInformation_Type_ZL27PyvtkAMRInformation_Methods_GLOBAL__sub_I_vtkAMRInformationPython.cxx_ZL29PyvtkUniformGridAMR_StaticNewv_ZL32PyvtkUniformGridAMR_SafeDownCastP7_objectS0__ZL30PyvtkUniformGridAMR_GetData_s1P7_objectS0__ZL30PyvtkUniformGridAMR_GetData_s2P7_objectS0__ZL28PyvtkUniformGridAMR_IsTypeOfP7_objectS0__ZL38PyvtkUniformGridAMR_GetGridDescriptionP7_objectS0__ZL37PyvtkUniformGridAMR_GetNumberOfLevelsP7_objectS0__ZL37PyvtkUniformGridAMR_GetDataObjectTypeP7_objectS0__ZL38PyvtkUniformGridAMR_SetGridDescriptionP7_objectS0__ZL39PyvtkUniformGridAMR_GetNumberOfDataSetsP7_objectS0__ZL37PyvtkUniformGridAMR_GetCompositeIndexP7_objectS0__ZL26PyvtkUniformGridAMR_GetMinP7_objectS0__ZL26PyvtkUniformGridAMR_GetMaxP7_objectS0__ZL36PyvtkUniformGridAMR_GetLevelAndIndexP7_objectS0__ZL31PyvtkUniformGridAMR_NewInstanceP7_objectS0__ZL23PyvtkUniformGridAMR_IsAP7_objectS0__ZL27PyvtkUniformGridAMR_GetDataP7_objectS0__ZL35PyvtkUniformGridAMR_GetData_Methods_ZL29PyvtkUniformGridAMR_GetBoundsP7_objectS0__ZL24PyvtkUniformGridAMR_Type_ZL27PyvtkUniformGridAMR_Methods_GLOBAL__sub_I_vtkUniformGridAMRPython.cxx_ZL33PyvtkUniformGridAMR_CopyStructureP7_objectS0__ZL28PyvtkUniformGridAMR_DeepCopyP7_objectS0__ZL31PyvtkUniformGridAMR_ShallowCopyP7_objectS0__ZL30PyvtkUniformGridAMR_GetDataSetP7_objectS0__ZL30PyvtkUniformGridAMR_SetDataSetP7_objectS0__ZL42PyvtkUniformGridAMR_GetTotalNumberOfBlocksP7_objectS0__ZL30PyvtkUniformGridAMR_InitializeP7_objectS0__ZL30PyvtkUniformGridAMR_InitializeP7_objectS0_.cold_ZL31PyvtkUniformGridAMR_NewIteratorP7_objectS0__ZL26PyvtkHyperOctree_StaticNewv_ZL29PyvtkHyperOctree_SafeDownCastP7_objectS0__ZL27PyvtkHyperOctree_GetData_s1P7_objectS0__ZL27PyvtkHyperOctree_GetData_s2P7_objectS0__ZL39PyvtkHyperOctreeLightWeightCursor_CCopyPKv_ZL68PyvtkHyperOctreeLightWeightCursor_vtkHyperOctreeLightWeightCursor_s2P7_objectS0__ZL44PyvtkHyperOctreeLightWeightCursor_InitializeP7_objectS0__ZL40PyvtkHyperOctreeLightWeightCursor_DeleteP7_object_ZL38PyvtkHyperOctreeLightWeightCursor_HashP7_object_ZL22PyvtkHyperOctree_SIZESP7_objectS0__ZL26PyvtkHyperOctree_DIMENSIONP7_objectS0__ZL23PyvtkHyperOctree_LEVELSP7_objectS0__ZL37PyvtkHyperOctreeLightWeightCursor_NewP11_typeobjectP7_objectS2__ZL37PyvtkHyperOctreeLightWeightCursor_NewP11_typeobjectP7_objectS2_.cold_ZL25PyvtkHyperOctree_IsTypeOfP7_objectS0__ZL46PyvtkHyperOctreeLightWeightCursor_GetLeafIndexP7_objectS0__ZL42PyvtkHyperOctreeLightWeightCursor_GetLevelP7_objectS0__ZL41PyvtkHyperOctreeLightWeightCursor_GetTreeP7_objectS0__ZL40PyvtkHyperOctreeLightWeightCursor_ToRootP7_objectS0__ZL43PyvtkHyperOctreeLightWeightCursor_GetIsLeafP7_objectS0__ZL41PyvtkHyperOctreeLightWeightCursor_ToChildP7_objectS0__ZL34PyvtkHyperOctree_GetNumberOfLeavesP7_objectS0__ZL29PyvtkHyperOctree_GetDimensionP7_objectS0__ZL34PyvtkHyperOctree_GetNumberOfLevelsP7_objectS0__ZL30PyvtkHyperOctree_NewCellCursorP7_objectS0__ZL28PyvtkHyperOctree_GetLeafDataP7_objectS0__ZL26PyvtkHyperOctree_GetOriginP7_objectS0__ZL24PyvtkHyperOctree_GetSizeP7_objectS0__ZL32PyvtkHyperOctree_GetDualGridFlagP7_objectS0__ZL32PyvtkHyperOctree_SetDualGridFlagP7_objectS0__ZL29PyvtkHyperOctree_SetDimensionP7_objectS0__ZL37PyvtkHyperOctree_CollapseTerminalNodeP7_objectS0__ZL30PyvtkHyperOctree_SubdivideLeafP7_objectS0__ZL47PyvtkHyperOctree_GetMaxNumberOfPointsOnBoundaryP7_objectS0__ZL46PyvtkHyperOctree_GetMaxNumberOfCellsOnBoundaryP7_objectS0__ZL37PyvtkHyperOctree_GetMaxNumberOfPointsP7_objectS0__ZL32PyvtkHyperOctree_GetPointsOnFaceP7_objectS0__ZL34PyvtkHyperOctree_GetPointsOnEdge2DP7_objectS0__ZL40PyvtkHyperOctree_GetPointsOnParentEdge2DP7_objectS0__ZL28PyvtkHyperOctree_NewInstanceP7_objectS0__ZL32PyvtkHyperOctree_GetPointsOnEdgeP7_objectS0__ZL38PyvtkHyperOctree_GetPointsOnParentEdgeP7_objectS0__ZL20PyvtkHyperOctree_IsAP7_objectS0__ZL39PyvtkHyperOctree_GetPointsOnParentFacesP7_objectS0__ZL24PyvtkHyperOctree_GetDataP7_objectS0__ZL32PyvtkHyperOctree_GetData_Methods_ZL26PyvtkHyperOctree_SetOriginP7_objectS0__ZL24PyvtkHyperOctree_SetSizeP7_objectS0__ZL21PyvtkHyperOctree_Type_ZL24PyvtkHyperOctree_Methods_ZL38PyvtkHyperOctreeLightWeightCursor_Type_ZL73PyvtkHyperOctreeLightWeightCursor_vtkHyperOctreeLightWeightCursor_Methods_ZL41PyvtkHyperOctreeLightWeightCursor_Methods_GLOBAL__sub_I_vtkHyperOctreePython.cxx_ZL36PyvtkHyperOctree_GetActualMemorySizeP7_objectS0__ZL25PyvtkHyperOctree_DeepCopyP7_objectS0__ZL28PyvtkHyperOctree_ShallowCopyP7_objectS0__ZL31PyvtkHyperOctree_GetMaxCellSizeP7_objectS0__ZL27PyvtkHyperOctree_InitializeP7_objectS0__ZL25PyvtkHyperOctree_FindCellP7_objectS0__ZL25PyvtkHyperOctree_FindCellP7_objectS0_.cold_ZL26PyvtkHyperOctree_FindPointP7_objectS0__ZL33PyvtkHyperOctree_GetCellNeighborsP7_objectS0__ZL30PyvtkHyperOctree_GetPointCellsP7_objectS0__ZL30PyvtkHyperOctree_GetCellPointsP7_objectS0__ZL30PyvtkHyperOctree_GetCellPointsP7_objectS0_.cold_ZL28PyvtkHyperOctree_GetCellTypeP7_objectS0__ZL24PyvtkHyperOctree_GetCellP7_objectS0__ZL24PyvtkHyperOctree_GetCellP7_objectS0_.cold_ZL25PyvtkHyperOctree_GetPointP7_objectS0__ZL34PyvtkHyperOctree_GetNumberOfPointsP7_objectS0__ZL33PyvtkHyperOctree_GetNumberOfCellsP7_objectS0__ZL30PyvtkHyperOctree_CopyStructureP7_objectS0__ZL34PyvtkHyperOctree_GetDataObjectTypeP7_objectS0__ZL33PyvtkHyperOctreeCursor_MoveToNodeP7_objectS0__ZL33PyvtkHyperOctreeCursor_MoveToNodeP7_objectS0_.cold_ZL35PyvtkHyperOctreeCursor_SafeDownCastP7_objectS0__ZL31PyvtkHyperOctreeCursor_IsTypeOfP7_objectS0__ZL29PyvtkHyperOctreeCursor_ToRootP7_objectS0__ZL31PyvtkHyperOctreeCursor_ToParentP7_objectS0__ZL44PyvtkHyperOctreeCursor_CurrentIsTerminalNodeP7_objectS0__ZL32PyvtkHyperOctreeCursor_GetLeafIdP7_objectS0__ZL28PyvtkHyperOctreeCursor_FoundP7_objectS0__ZL36PyvtkHyperOctreeCursor_CurrentIsLeafP7_objectS0__ZL36PyvtkHyperOctreeCursor_CurrentIsRootP7_objectS0__ZL38PyvtkHyperOctreeCursor_GetCurrentLevelP7_objectS0__ZL36PyvtkHyperOctreeCursor_GetChildIndexP7_objectS0__ZL28PyvtkHyperOctreeCursor_CloneP7_objectS0__ZL42PyvtkHyperOctreeCursor_GetNumberOfChildrenP7_objectS0__ZL35PyvtkHyperOctreeCursor_GetDimensionP7_objectS0__ZL30PyvtkHyperOctreeCursor_ToChildP7_objectS0__ZL31PyvtkHyperOctreeCursor_GetIndexP7_objectS0__ZL33PyvtkHyperOctreeCursor_ToSameNodeP7_objectS0__ZL30PyvtkHyperOctreeCursor_IsEqualP7_objectS0__ZL31PyvtkHyperOctreeCursor_SameTreeP7_objectS0__ZL26PyvtkHyperOctreeCursor_IsAP7_objectS0__ZL34PyvtkHyperOctreeCursor_NewInstanceP7_objectS0__ZL27PyvtkHyperOctreeCursor_Type_ZL30PyvtkHyperOctreeCursor_Methods_ZZ33PyVTKAddFile_vtkHyperOctreeCursorE9constants_ZZ33PyVTKAddFile_vtkHyperOctreeCursorE9constants_0_GLOBAL__sub_I_vtkHyperOctreeCursorPython.cxx_ZL32PyvtkAbstractCellLinks_GetIdTypeP7_objectS0__ZL35PyvtkAbstractCellLinks_SafeDownCastP7_objectS0__ZL33PyvtkAbstractCellLinks_BuildLinksP7_objectS0__ZL31PyvtkAbstractCellLinks_IsTypeOfP7_objectS0__ZL26PyvtkAbstractCellLinks_IsAP7_objectS0__ZL34PyvtkAbstractCellLinks_NewInstanceP7_objectS0__ZL27PyvtkAbstractCellLinks_Type_ZL30PyvtkAbstractCellLinks_Methods_GLOBAL__sub_I_vtkAbstractCellLinksPython.cxx_ZL37PyvtkAdjacentVertexIterator_StaticNewv_ZL40PyvtkAdjacentVertexIterator_SafeDownCastP7_objectS0__ZL36PyvtkAdjacentVertexIterator_IsTypeOfP7_objectS0__ZL31PyvtkAdjacentVertexIterator_IsAP7_objectS0__ZL35PyvtkAdjacentVertexIterator_HasNextP7_objectS0__ZL32PyvtkAdjacentVertexIterator_NextP7_objectS0__ZL37PyvtkAdjacentVertexIterator_GetVertexP7_objectS0__ZL36PyvtkAdjacentVertexIterator_GetGraphP7_objectS0__ZL38PyvtkAdjacentVertexIterator_InitializeP7_objectS0__ZL39PyvtkAdjacentVertexIterator_NewInstanceP7_objectS0__ZL32PyvtkAdjacentVertexIterator_Type_ZL35PyvtkAdjacentVertexIterator_Methods_GLOBAL__sub_I_vtkAdjacentVertexIteratorPython.cxx_ZL51PyvtkAMRUtilities_HasPartiallyOverlappingGhostCellsP7_objectS0__ZL34PyvtkAMRUtilities_StripGhostLayersP7_objectS0__ZL30PyvtkAMRUtilities_SafeDownCastP7_objectS0__ZL28PyvtkAMRUtilities_BlankCellsP7_objectS0__ZL26PyvtkAMRUtilities_IsTypeOfP7_objectS0__ZL21PyvtkAMRUtilities_IsAP7_objectS0__ZL29PyvtkAMRUtilities_NewInstanceP7_objectS0__ZL22PyvtkAMRUtilities_Type_ZL25PyvtkAMRUtilities_Methods_GLOBAL__sub_I_vtkAMRUtilitiesPython.cxx_ZL29PyvtkAnimationScene_StaticNewv_ZL32PyvtkAnimationScene_SafeDownCastP7_objectS0__ZL28PyvtkAnimationScene_IsTypeOfP7_objectS0__ZL31PyvtkAnimationScene_NewInstanceP7_objectS0__ZL28PyvtkAnimationScene_IsInPlayP7_objectS0__ZL33PyvtkAnimationScene_RemoveAllCuesP7_objectS0__ZL24PyvtkAnimationScene_StopP7_objectS0__ZL35PyvtkAnimationScene_GetNumberOfCuesP7_objectS0__ZL32PyvtkAnimationScene_GetFrameRateP7_objectS0__ZL31PyvtkAnimationScene_GetPlayModeP7_objectS0__ZL27PyvtkAnimationScene_GetLoopP7_objectS0__ZL36PyvtkAnimationScene_SetAnimationTimeP7_objectS0__ZL26PyvtkAnimationScene_AddCueP7_objectS0__ZL29PyvtkAnimationScene_RemoveCueP7_objectS0__ZL37PyvtkAnimationScene_SetModeToRealTimeP7_objectS0__ZL37PyvtkAnimationScene_SetModeToSequenceP7_objectS0__ZL31PyvtkAnimationScene_SetPlayModeP7_objectS0__ZL32PyvtkAnimationScene_SetFrameRateP7_objectS0__ZL27PyvtkAnimationScene_SetLoopP7_objectS0__ZL23PyvtkAnimationScene_IsAP7_objectS0__ZL34PyvtkAnimationScene_PlayModes_Type_ZL24PyvtkAnimationScene_Type_ZL27PyvtkAnimationScene_Methods_GLOBAL__sub_I_vtkAnimationScenePython.cxx_ZL31PyvtkAnimationScene_SetTimeModeP7_objectS0__ZL24PyvtkAnimationScene_PlayP7_objectS0__ZL25PyvtkAnnotation_StaticNewv_ZL28PyvtkAnnotation_SafeDownCastP7_objectS0__ZL26PyvtkAnnotation_GetData_s1P7_objectS0__ZL26PyvtkAnnotation_GetData_s2P7_objectS0__ZL20PyvtkAnnotation_DATAP7_objectS0__ZL20PyvtkAnnotation_HIDEP7_objectS0__ZL22PyvtkAnnotation_ENABLEP7_objectS0__ZL26PyvtkAnnotation_ICON_INDEXP7_objectS0__ZL23PyvtkAnnotation_OPACITYP7_objectS0__ZL21PyvtkAnnotation_COLORP7_objectS0__ZL21PyvtkAnnotation_LABELP7_objectS0__ZL24PyvtkAnnotation_IsTypeOfP7_objectS0__ZL19PyvtkAnnotation_IsAP7_objectS0__ZL28PyvtkAnnotation_GetSelectionP7_objectS0__ZL27PyvtkAnnotation_NewInstanceP7_objectS0__ZL23PyvtkAnnotation_GetDataP7_objectS0__ZL31PyvtkAnnotation_GetData_Methods_ZL20PyvtkAnnotation_Type_ZL23PyvtkAnnotation_Methods_GLOBAL__sub_I_vtkAnnotationPython.cxx_ZL24PyvtkAnnotation_GetMTimeP7_objectS0__ZL24PyvtkAnnotation_DeepCopyP7_objectS0__ZL27PyvtkAnnotation_ShallowCopyP7_objectS0__ZL26PyvtkAnnotation_InitializeP7_objectS0__ZL28PyvtkAnnotation_SetSelectionP7_objectS0__ZL31PyvtkAnnotationLayers_StaticNewv_ZL34PyvtkAnnotationLayers_SafeDownCastP7_objectS0__ZL32PyvtkAnnotationLayers_GetData_s1P7_objectS0__ZL32PyvtkAnnotationLayers_GetData_s2P7_objectS0__ZL30PyvtkAnnotationLayers_IsTypeOfP7_objectS0__ZL33PyvtkAnnotationLayers_NewInstanceP7_objectS0__ZL44PyvtkAnnotationLayers_GetNumberOfAnnotationsP7_objectS0__ZL42PyvtkAnnotationLayers_GetCurrentAnnotationP7_objectS0__ZL35PyvtkAnnotationLayers_AddAnnotationP7_objectS0__ZL38PyvtkAnnotationLayers_RemoveAnnotationP7_objectS0__ZL35PyvtkAnnotationLayers_GetAnnotationP7_objectS0__ZL25PyvtkAnnotationLayers_IsAP7_objectS0__ZL29PyvtkAnnotationLayers_GetDataP7_objectS0__ZL37PyvtkAnnotationLayers_GetData_Methods_ZL26PyvtkAnnotationLayers_Type_ZL29PyvtkAnnotationLayers_Methods_GLOBAL__sub_I_vtkAnnotationLayersPython.cxx_ZL30PyvtkAnnotationLayers_GetMTimeP7_objectS0__ZL30PyvtkAnnotationLayers_DeepCopyP7_objectS0__ZL33PyvtkAnnotationLayers_ShallowCopyP7_objectS0__ZL32PyvtkAnnotationLayers_InitializeP7_objectS0__ZL41PyvtkAnnotationLayers_GetCurrentSelectionP7_objectS0__ZL41PyvtkAnnotationLayers_SetCurrentSelectionP7_objectS0__ZL42PyvtkAnnotationLayers_SetCurrentAnnotationP7_objectS0__ZL24PyvtkArrayData_StaticNewv_ZL27PyvtkArrayData_SafeDownCastP7_objectS0__ZL25PyvtkArrayData_GetData_s1P7_objectS0__ZL25PyvtkArrayData_GetData_s2P7_objectS0__ZL23PyvtkArrayData_IsTypeOfP7_objectS0__ZL18PyvtkArrayData_IsAP7_objectS0__ZL26PyvtkArrayData_ClearArraysP7_objectS0__ZL32PyvtkArrayData_GetNumberOfArraysP7_objectS0__ZL32PyvtkArrayData_GetDataObjectTypeP7_objectS0__ZL23PyvtkArrayData_AddArrayP7_objectS0__ZL23PyvtkArrayData_GetArrayP7_objectS0__ZL29PyvtkArrayData_GetArrayByNameP7_objectS0__ZL26PyvtkArrayData_NewInstanceP7_objectS0__ZL22PyvtkArrayData_GetDataP7_objectS0__ZL30PyvtkArrayData_GetData_Methods_ZL19PyvtkArrayData_Type_ZL22PyvtkArrayData_Methods_GLOBAL__sub_I_vtkArrayDataPython.cxx_ZL23PyvtkArrayData_DeepCopyP7_objectS0__ZL26PyvtkArrayData_ShallowCopyP7_objectS0__GLOBAL__sub_I_vtkArrayListTemplatePython.cxx_ZL18PyvtkBox_StaticNewv_ZL27PyvtkBox_IntersectWithPlaneP7_objectS0__ZL26PyvtkBox_IntersectWithLineP7_objectS0__ZL21PyvtkBox_IntersectBoxP7_objectS0__ZL21PyvtkBox_SafeDownCastP7_objectS0__ZL17PyvtkBox_IsTypeOfP7_objectS0__ZL18PyvtkBox_AddBoundsP7_objectS0__ZL12PyvtkBox_IsAP7_objectS0__ZL20PyvtkBox_NewInstanceP7_objectS0__ZL18PyvtkBox_SetBoundsP7_objectS0__ZL16PyvtkBox_SetXMaxP7_objectS0__ZL16PyvtkBox_SetXMinP7_objectS0__ZL16PyvtkBox_GetXMinP7_objectS0__ZL16PyvtkBox_GetXMaxP7_objectS0__ZL18PyvtkBox_GetBoundsP7_objectS0__ZL13PyvtkBox_Type_ZL16PyvtkBox_Methods_GLOBAL__sub_I_vtkBoxPython.cxx_ZL25PyvtkBox_EvaluateGradientP7_objectS0__ZL25PyvtkBox_EvaluateFunctionP7_objectS0__ZL23PyvtkCellData_StaticNewv_ZL26PyvtkCellData_SafeDownCastP7_objectS0__ZL22PyvtkCellData_IsTypeOfP7_objectS0__ZL17PyvtkCellData_IsAP7_objectS0__ZL25PyvtkCellData_NewInstanceP7_objectS0__ZL18PyvtkCellData_Type_ZL21PyvtkCellData_Methods_GLOBAL__sub_I_vtkCellDataPython.cxx_ZL24PyvtkCellTypes_StaticNewv_ZL23PyvtkCellTypes_IsLinearP7_objectS0__ZL37PyvtkCellTypes_GetTypeIdFromClassNameP7_objectS0__ZL37PyvtkCellTypes_GetClassNameFromTypeIdP7_objectS0__ZL27PyvtkCellTypes_SafeDownCastP7_objectS0__ZL27PyvtkCellTypes_SetCellTypesP7_objectS0__ZL35PyvtkCellTypes_SetCellTypes_Methods_ZL23PyvtkCellTypes_IsTypeOfP7_objectS0__ZL26PyvtkCellTypes_NewInstanceP7_objectS0__ZL22PyvtkCellTypes_SqueezeP7_objectS0__ZL31PyvtkCellTypes_GetNumberOfTypesP7_objectS0__ZL20PyvtkCellTypes_ResetP7_objectS0__ZL34PyvtkCellTypes_GetActualMemorySizeP7_objectS0__ZL23PyvtkCellTypes_DeepCopyP7_objectS0__ZL25PyvtkCellTypes_DeleteCellP7_objectS0__ZL26PyvtkCellTypes_GetCellTypeP7_objectS0__ZL29PyvtkCellTypes_InsertNextTypeP7_objectS0__ZL30PyvtkCellTypes_GetCellLocationP7_objectS0__ZL29PyvtkCellTypes_InsertNextCellP7_objectS0__ZL21PyvtkCellTypes_IsTypeP7_objectS0__ZL25PyvtkCellTypes_InsertCellP7_objectS0__ZL30PyvtkCellTypes_SetCellTypes_s1P7_objectS0__ZL30PyvtkCellTypes_SetCellTypes_s2P7_objectS0__ZL23PyvtkCellTypes_AllocateP7_objectS0__ZL18PyvtkCellTypes_IsAP7_objectS0__ZL19PyvtkCellTypes_Type_ZL22PyvtkCellTypes_Methods_GLOBAL__sub_I_vtkCellTypesPython.cxx_ZL34PyvtkCompositeDataSet_SafeDownCastP7_objectS0__ZL32PyvtkCompositeDataSet_GetData_s1P7_objectS0__ZL32PyvtkCompositeDataSet_GetData_s2P7_objectS0__ZL52PyvtkCompositeDataSet_CURRENT_PROCESS_CAN_LOAD_BLOCKP7_objectS0__ZL26PyvtkCompositeDataSet_NAMEP7_objectS0__ZL30PyvtkCompositeDataSet_IsTypeOfP7_objectS0__ZL39PyvtkCompositeDataSet_GetDataObjectTypeP7_objectS0__ZL33PyvtkCompositeDataSet_NewInstanceP7_objectS0__ZL35PyvtkCompositeDataSet_CopyStructureP7_objectS0__ZL32PyvtkCompositeDataSet_GetDataSetP7_objectS0__ZL32PyvtkCompositeDataSet_SetDataSetP7_objectS0__ZL33PyvtkCompositeDataSet_NewIteratorP7_objectS0__ZL25PyvtkCompositeDataSet_IsAP7_objectS0__ZL29PyvtkCompositeDataSet_GetDataP7_objectS0__ZL37PyvtkCompositeDataSet_GetData_Methods_ZL26PyvtkCompositeDataSet_Type_ZL29PyvtkCompositeDataSet_Methods_GLOBAL__sub_I_vtkCompositeDataSetPython.cxx_ZL39PyvtkCompositeDataSet_GetNumberOfPointsP7_objectS0__ZL30PyvtkCompositeDataSet_DeepCopyP7_objectS0__ZL33PyvtkCompositeDataSet_ShallowCopyP7_objectS0__ZL32PyvtkCompositeDataSet_InitializeP7_objectS0__ZL41PyvtkCompositeDataSet_GetActualMemorySizeP7_objectS0__ZL39PyvtkCompositeDataIterator_SafeDownCastP7_objectS0__ZL35PyvtkCompositeDataIterator_IsTypeOfP7_objectS0__ZL38PyvtkCompositeDataIterator_NewInstanceP7_objectS0__ZL40PyvtkCompositeDataIterator_GoToFirstItemP7_objectS0__ZL39PyvtkCompositeDataIterator_GoToNextItemP7_objectS0__ZL44PyvtkCompositeDataIterator_GetSkipEmptyNodesP7_objectS0__ZL37PyvtkCompositeDataIterator_GetReverseP7_objectS0__ZL37PyvtkCompositeDataIterator_GetDataSetP7_objectS0__ZL46PyvtkCompositeDataIterator_GetCurrentFlatIndexP7_objectS0__ZL46PyvtkCompositeDataIterator_IsDoneWithTraversalP7_objectS0__ZL47PyvtkCompositeDataIterator_GetCurrentDataObjectP7_objectS0__ZL45PyvtkCompositeDataIterator_GetCurrentMetaDataP7_objectS0__ZL45PyvtkCompositeDataIterator_HasCurrentMetaDataP7_objectS0__ZL44PyvtkCompositeDataIterator_SetSkipEmptyNodesP7_objectS0__ZL43PyvtkCompositeDataIterator_SkipEmptyNodesOnP7_objectS0__ZL44PyvtkCompositeDataIterator_SkipEmptyNodesOffP7_objectS0__ZL30PyvtkCompositeDataIterator_IsAP7_objectS0__ZL31PyvtkCompositeDataIterator_Type_ZL34PyvtkCompositeDataIterator_Methods_GLOBAL__sub_I_vtkCompositeDataIteratorPython.cxx_ZL47PyvtkCompositeDataIterator_InitReverseTraversalP7_objectS0__ZL40PyvtkCompositeDataIterator_InitTraversalP7_objectS0__ZL37PyvtkCompositeDataIterator_SetDataSetP7_objectS0__ZL19PyvtkCone_StaticNewv_ZL22PyvtkCone_SafeDownCastP7_objectS0__ZL18PyvtkCone_IsTypeOfP7_objectS0__ZL26PyvtkCone_GetAngleMaxValueP7_objectS0__ZL26PyvtkCone_GetAngleMinValueP7_objectS0__ZL18PyvtkCone_GetAngleP7_objectS0__ZL18PyvtkCone_SetAngleP7_objectS0__ZL21PyvtkCone_NewInstanceP7_objectS0__ZL13PyvtkCone_IsAP7_objectS0__ZL14PyvtkCone_Type_ZL17PyvtkCone_Methods_GLOBAL__sub_I_vtkConePython.cxx_ZL26PyvtkCone_EvaluateGradientP7_objectS0__ZL26PyvtkCone_EvaluateFunctionP7_objectS0__ZL23PyvtkCylinder_StaticNewv_ZL26PyvtkCylinder_SafeDownCastP7_objectS0__ZL22PyvtkCylinder_IsTypeOfP7_objectS0__ZL23PyvtkCylinder_GetCenterP7_objectS0__ZL21PyvtkCylinder_GetAxisP7_objectS0__ZL23PyvtkCylinder_GetRadiusP7_objectS0__ZL23PyvtkCylinder_SetRadiusP7_objectS0__ZL17PyvtkCylinder_IsAP7_objectS0__ZL25PyvtkCylinder_NewInstanceP7_objectS0__ZL21PyvtkCylinder_SetAxisP7_objectS0__ZL23PyvtkCylinder_SetCenterP7_objectS0__ZL18PyvtkCylinder_Type_ZL21PyvtkCylinder_Methods_GLOBAL__sub_I_vtkCylinderPython.cxx_ZL30PyvtkCylinder_EvaluateGradientP7_objectS0__ZL30PyvtkCylinder_EvaluateFunctionP7_objectS0__ZL34PyvtkDataSetCellIterator_StaticNewv_ZL37PyvtkDataSetCellIterator_SafeDownCastP7_objectS0__ZL33PyvtkDataSetCellIterator_IsTypeOfP7_objectS0__ZL28PyvtkDataSetCellIterator_IsAP7_objectS0__ZL36PyvtkDataSetCellIterator_NewInstanceP7_objectS0__ZL29PyvtkDataSetCellIterator_Type_ZL32PyvtkDataSetCellIterator_Methods_GLOBAL__sub_I_vtkDataSetCellIteratorPython.cxx_ZL34PyvtkDataSetCellIterator_GetCellIdP7_objectS0__ZL44PyvtkDataSetCellIterator_IsDoneWithTraversalP7_objectS0__ZL35PyvtkDataObjectCollection_StaticNewv_ZL38PyvtkDataObjectCollection_SafeDownCastP7_objectS0__ZL34PyvtkDataObjectCollection_IsTypeOfP7_objectS0__ZL37PyvtkDataObjectCollection_GetNextItemP7_objectS0__ZL33PyvtkDataObjectCollection_AddItemP7_objectS0__ZL33PyvtkDataObjectCollection_GetItemP7_objectS0__ZL29PyvtkDataObjectCollection_IsAP7_objectS0__ZL37PyvtkDataObjectCollection_NewInstanceP7_objectS0__ZL30PyvtkDataObjectCollection_Type_ZL33PyvtkDataObjectCollection_Methods_GLOBAL__sub_I_vtkDataObjectCollectionPython.cxx_ZL30PyvtkDataObjectTypes_StaticNewv_ZL37PyvtkDataObjectTypes_NewDataObject_s2P7_objectS0__ZL37PyvtkDataObjectTypes_NewDataObject_s1P7_objectS0__ZL43PyvtkDataObjectTypes_GetTypeIdFromClassNameP7_objectS0__ZL43PyvtkDataObjectTypes_GetClassNameFromTypeIdP7_objectS0__ZL33PyvtkDataObjectTypes_SafeDownCastP7_objectS0__ZL34PyvtkDataObjectTypes_NewDataObjectP7_objectS0__ZL42PyvtkDataObjectTypes_NewDataObject_Methods_ZL29PyvtkDataObjectTypes_IsTypeOfP7_objectS0__ZL24PyvtkDataObjectTypes_IsAP7_objectS0__ZL32PyvtkDataObjectTypes_NewInstanceP7_objectS0__ZL25PyvtkDataObjectTypes_Type_ZL28PyvtkDataObjectTypes_Methods_GLOBAL__sub_I_vtkDataObjectTypesPython.cxx_ZL32PyvtkDataObjectTree_SafeDownCastP7_objectS0__ZL30PyvtkDataObjectTree_GetData_s1P7_objectS0__ZL30PyvtkDataObjectTree_GetData_s2P7_objectS0__ZL28PyvtkDataObjectTree_IsTypeOfP7_objectS0__ZL23PyvtkDataObjectTree_IsAP7_objectS0__ZL34PyvtkDataObjectTree_SetDataSetFromP7_objectS0__ZL31PyvtkDataObjectTree_NewInstanceP7_objectS0__ZL27PyvtkDataObjectTree_GetDataP7_objectS0__ZL35PyvtkDataObjectTree_GetData_Methods_ZL24PyvtkDataObjectTree_Type_ZL27PyvtkDataObjectTree_Methods_GLOBAL__sub_I_vtkDataObjectTreePython.cxx_ZL37PyvtkDataObjectTree_GetNumberOfPointsP7_objectS0__ZL28PyvtkDataObjectTree_DeepCopyP7_objectS0__ZL31PyvtkDataObjectTree_ShallowCopyP7_objectS0__ZL30PyvtkDataObjectTree_InitializeP7_objectS0__ZL39PyvtkDataObjectTree_GetActualMemorySizeP7_objectS0__ZL31PyvtkDataObjectTree_HasMetaDataP7_objectS0__ZL31PyvtkDataObjectTree_GetMetaDataP7_objectS0__ZL30PyvtkDataObjectTree_GetDataSetP7_objectS0__ZL30PyvtkDataObjectTree_SetDataSetP7_objectS0__ZL33PyvtkDataObjectTree_CopyStructureP7_objectS0__ZL31PyvtkDataObjectTree_NewIteratorP7_objectS0__ZL35PyvtkDataObjectTree_NewTreeIteratorP7_objectS0__ZL37PyvtkDataObjectTreeIterator_StaticNewv_ZL40PyvtkDataObjectTreeIterator_SafeDownCastP7_objectS0__ZL36PyvtkDataObjectTreeIterator_IsTypeOfP7_objectS0__ZL39PyvtkDataObjectTreeIterator_NewInstanceP7_objectS0__ZL46PyvtkDataObjectTreeIterator_GetVisitOnlyLeavesP7_objectS0__ZL46PyvtkDataObjectTreeIterator_GetTraverseSubTreeP7_objectS0__ZL46PyvtkDataObjectTreeIterator_SetTraverseSubTreeP7_objectS0__ZL46PyvtkDataObjectTreeIterator_SetVisitOnlyLeavesP7_objectS0__ZL46PyvtkDataObjectTreeIterator_TraverseSubTreeOffP7_objectS0__ZL45PyvtkDataObjectTreeIterator_TraverseSubTreeOnP7_objectS0__ZL46PyvtkDataObjectTreeIterator_VisitOnlyLeavesOffP7_objectS0__ZL45PyvtkDataObjectTreeIterator_VisitOnlyLeavesOnP7_objectS0__ZL31PyvtkDataObjectTreeIterator_IsAP7_objectS0__ZL32PyvtkDataObjectTreeIterator_Type_ZL35PyvtkDataObjectTreeIterator_Methods_GLOBAL__sub_I_vtkDataObjectTreeIteratorPython.cxx_ZL47PyvtkDataObjectTreeIterator_GetCurrentFlatIndexP7_objectS0__ZL46PyvtkDataObjectTreeIterator_HasCurrentMetaDataP7_objectS0__ZL46PyvtkDataObjectTreeIterator_GetCurrentMetaDataP7_objectS0__ZL48PyvtkDataObjectTreeIterator_GetCurrentDataObjectP7_objectS0__ZL47PyvtkDataObjectTreeIterator_IsDoneWithTraversalP7_objectS0__ZL40PyvtkDataObjectTreeIterator_GoToNextItemP7_objectS0__ZL41PyvtkDataObjectTreeIterator_GoToFirstItemP7_objectS0__ZL32PyvtkDataSetCollection_StaticNewv_ZL35PyvtkDataSetCollection_SafeDownCastP7_objectS0__ZL31PyvtkDataSetCollection_IsTypeOfP7_objectS0__ZL34PyvtkDataSetCollection_GetNextItemP7_objectS0__ZL37PyvtkDataSetCollection_GetNextDataSetP7_objectS0__ZL26PyvtkDataSetCollection_IsAP7_objectS0__ZL30PyvtkDataSetCollection_AddItemP7_objectS0__ZL30PyvtkDataSetCollection_GetItemP7_objectS0__ZL33PyvtkDataSetCollection_GetDataSetP7_objectS0__ZL34PyvtkDataSetCollection_NewInstanceP7_objectS0__ZL27PyvtkDataSetCollection_Type_ZL30PyvtkDataSetCollection_Methods_GLOBAL__sub_I_vtkDataSetCollectionPython.cxx_ZL35PyvtkDirectedAcyclicGraph_StaticNewv_ZL38PyvtkDirectedAcyclicGraph_SafeDownCastP7_objectS0__ZL36PyvtkDirectedAcyclicGraph_GetData_s1P7_objectS0__ZL36PyvtkDirectedAcyclicGraph_GetData_s2P7_objectS0__ZL43PyvtkDirectedAcyclicGraph_GetDataObjectTypeP7_objectS0__ZL34PyvtkDirectedAcyclicGraph_IsTypeOfP7_objectS0__ZL29PyvtkDirectedAcyclicGraph_IsAP7_objectS0__ZL37PyvtkDirectedAcyclicGraph_NewInstanceP7_objectS0__ZL33PyvtkDirectedAcyclicGraph_GetDataP7_objectS0__ZL41PyvtkDirectedAcyclicGraph_GetData_Methods_ZL30PyvtkDirectedAcyclicGraph_Type_ZL33PyvtkDirectedAcyclicGraph_Methods_GLOBAL__sub_I_vtkDirectedAcyclicGraphPython.cxx_ZL28PyvtkDirectedGraph_StaticNewv_ZL31PyvtkDirectedGraph_SafeDownCastP7_objectS0__ZL29PyvtkDirectedGraph_GetData_s1P7_objectS0__ZL29PyvtkDirectedGraph_GetData_s2P7_objectS0__ZL36PyvtkDirectedGraph_GetDataObjectTypeP7_objectS0__ZL27PyvtkDirectedGraph_IsTypeOfP7_objectS0__ZL22PyvtkDirectedGraph_IsAP7_objectS0__ZL30PyvtkDirectedGraph_NewInstanceP7_objectS0__ZL26PyvtkDirectedGraph_GetDataP7_objectS0__ZL34PyvtkDirectedGraph_GetData_Methods_ZL23PyvtkDirectedGraph_Type_ZL26PyvtkDirectedGraph_Methods_GLOBAL__sub_I_vtkDirectedGraphPython.cxx_ZL35PyvtkDirectedGraph_IsStructureValidP7_objectS0__ZL40PyvtkDistributedGraphHelper_SafeDownCastP7_objectS0__ZL46PyvtkDistributedGraphHelper_DISTRIBUTEDEDGEIDSP7_objectS0__ZL48PyvtkDistributedGraphHelper_DISTRIBUTEDVERTEXIDSP7_objectS0__ZL36PyvtkDistributedGraphHelper_IsTypeOfP7_objectS0__ZL31PyvtkDistributedGraphHelper_IsAP7_objectS0__ZL39PyvtkDistributedGraphHelper_SynchronizeP7_objectS0__ZL33PyvtkDistributedGraphHelper_CloneP7_objectS0__ZL42PyvtkDistributedGraphHelper_GetVertexIndexP7_objectS0__ZL40PyvtkDistributedGraphHelper_GetEdgeOwnerP7_objectS0__ZL40PyvtkDistributedGraphHelper_GetEdgeIndexP7_objectS0__ZL42PyvtkDistributedGraphHelper_GetVertexOwnerP7_objectS0__ZL54PyvtkDistributedGraphHelper_GetVertexOwnerByPedigreeIdP7_objectS0__ZL45PyvtkDistributedGraphHelper_MakeDistributedIdP7_objectS0__ZL39PyvtkDistributedGraphHelper_NewInstanceP7_objectS0__ZL32PyvtkDistributedGraphHelper_Type_ZL35PyvtkDistributedGraphHelper_Methods_GLOBAL__sub_I_vtkDistributedGraphHelperPython.cxx_ZL31PyvtkEdgeListIterator_StaticNewv_ZL34PyvtkEdgeListIterator_SafeDownCastP7_objectS0__ZL30PyvtkEdgeListIterator_IsTypeOfP7_objectS0__ZL25PyvtkEdgeListIterator_IsAP7_objectS0__ZL35PyvtkEdgeListIterator_NextGraphEdgeP7_objectS0__ZL29PyvtkEdgeListIterator_HasNextP7_objectS0__ZL26PyvtkEdgeListIterator_NextP7_objectS0__ZL30PyvtkEdgeListIterator_GetGraphP7_objectS0__ZL33PyvtkEdgeListIterator_NewInstanceP7_objectS0__ZL26PyvtkEdgeListIterator_Type_ZL29PyvtkEdgeListIterator_Methods_GLOBAL__sub_I_vtkEdgeListIteratorPython.cxx_ZL30PyvtkEdgeListIterator_SetGraphP7_objectS0__ZL24PyvtkEdgeTable_StaticNewv_ZL27PyvtkEdgeTable_SafeDownCastP7_objectS0__ZL25PyvtkEdgeTable_InsertEdgeP7_objectS0__ZL33PyvtkEdgeTable_InsertEdge_Methods_ZL23PyvtkEdgeTable_IsTypeOfP7_objectS0__ZL25PyvtkEdgeTable_InitializeP7_objectS0__ZL28PyvtkEdgeTable_InitTraversalP7_objectS0__ZL20PyvtkEdgeTable_ResetP7_objectS0__ZL31PyvtkEdgeTable_GetNumberOfEdgesP7_objectS0__ZL21PyvtkEdgeTable_IsEdgeP7_objectS0__ZL33PyvtkEdgeTable_InitPointInsertionP7_objectS0__ZL28PyvtkEdgeTable_InsertEdge_s2P7_objectS0__ZL32PyvtkEdgeTable_InitEdgeInsertionP7_objectS0__ZL26PyvtkEdgeTable_GetNextEdgeP7_objectS0__ZL28PyvtkEdgeTable_InsertEdge_s3P7_objectS0__ZL18PyvtkEdgeTable_IsAP7_objectS0__ZL26PyvtkEdgeTable_NewInstanceP7_objectS0__ZL32PyvtkEdgeTable_InsertUniquePointP7_objectS0__ZL19PyvtkEdgeTable_Type_ZL22PyvtkEdgeTable_Methods_GLOBAL__sub_I_vtkEdgeTablePython.cxx_ZL42PyvtkExtractStructuredGridHelper_StaticNewv_ZL59PyvtkExtractStructuredGridHelper_GetPartitionedOutputExtentP7_objectS0__ZL50PyvtkExtractStructuredGridHelper_GetPartitionedVOIP7_objectS0__ZL51PyvtkExtractStructuredGridHelper_ComputeBeginAndEndP7_objectS0__ZL45PyvtkExtractStructuredGridHelper_SafeDownCastP7_objectS0__ZL41PyvtkExtractStructuredGridHelper_IsTypeOfP7_objectS0__ZL40PyvtkExtractStructuredGridHelper_IsValidP7_objectS0__ZL53PyvtkExtractStructuredGridHelper_GetOutputWholeExtentP7_objectS0__ZL40PyvtkExtractStructuredGridHelper_GetSizeP7_objectS0__ZL47PyvtkExtractStructuredGridHelper_GetMappedIndexP7_objectS0__ZL62PyvtkExtractStructuredGridHelper_GetMappedExtentValueFromIndexP7_objectS0__ZL62PyvtkExtractStructuredGridHelper_GetMappedIndexFromExtentValueP7_objectS0__ZL53PyvtkExtractStructuredGridHelper_GetMappedExtentValueP7_objectS0__ZL36PyvtkExtractStructuredGridHelper_IsAP7_objectS0__ZL44PyvtkExtractStructuredGridHelper_NewInstanceP7_objectS0__ZL45PyvtkExtractStructuredGridHelper_CopyCellDataP7_objectS0__ZL55PyvtkExtractStructuredGridHelper_CopyPointsAndPointDataP7_objectS0__ZL43PyvtkExtractStructuredGridHelper_InitializeP7_objectS0__ZL37PyvtkExtractStructuredGridHelper_Type_ZL40PyvtkExtractStructuredGridHelper_Methods_GLOBAL__sub_I_vtkExtractStructuredGridHelperPython.cxx_ZL24PyvtkFieldData_StaticNewv_ZL27PyvtkFieldData_SafeDownCastP7_objectS0__ZL26PyvtkFieldData_RemoveArrayP7_objectS0__ZL34PyvtkFieldData_RemoveArray_Methods_ZL31PyvtkFieldData_GetAbstractArrayP7_objectS0__ZL39PyvtkFieldData_GetAbstractArray_Methods_ZL23PyvtkFieldData_IsTypeOfP7_objectS0__ZL32PyvtkFieldData_GetNumberOfArraysP7_objectS0__ZL22PyvtkFieldData_SqueezeP7_objectS0__ZL20PyvtkFieldData_ResetP7_objectS0__ZL36PyvtkFieldData_GetNumberOfComponentsP7_objectS0__ZL32PyvtkFieldData_GetNumberOfTuplesP7_objectS0__ZL32PyvtkFieldData_SetNumberOfTuplesP7_objectS0__ZL28PyvtkFieldData_CopyStructureP7_objectS0__ZL29PyvtkFieldData_AllocateArraysP7_objectS0__ZL26PyvtkFieldData_GetArray_s1P7_objectS0__ZL34PyvtkFieldData_GetAbstractArray_s1P7_objectS0__ZL23PyvtkFieldData_AddArrayP7_objectS0__ZL26PyvtkFieldData_CopyFieldOnP7_objectS0__ZL27PyvtkFieldData_CopyFieldOffP7_objectS0__ZL26PyvtkFieldData_GetArray_s3P7_objectS0__ZL34PyvtkFieldData_GetAbstractArray_s3P7_objectS0__ZL23PyvtkFieldData_HasArrayP7_objectS0__ZL23PyvtkFieldData_GetFieldP7_objectS0__ZL30PyvtkFieldData_InsertNextTupleP7_objectS0__ZL42PyvtkFieldData_GetArrayContainingComponentP7_objectS0__ZL23PyvtkFieldData_AllocateP7_objectS0__ZL23PyvtkFieldData_SetTupleP7_objectS0__ZL26PyvtkFieldData_InsertTupleP7_objectS0__ZL18PyvtkFieldData_IsAP7_objectS0__ZL27PyvtkFieldData_GetArrayNameP7_objectS0__ZL26PyvtkFieldData_NewInstanceP7_objectS0__ZL23PyvtkFieldData_GetArrayP7_objectS0__ZL31PyvtkFieldData_GetArray_Methods_ZL19PyvtkFieldData_Type_ZL22PyvtkFieldData_Methods_GLOBAL__sub_I_vtkFieldDataPython.cxx_ZL23PyvtkFieldData_GetMTimeP7_objectS0__ZL34PyvtkFieldData_GetActualMemorySizeP7_objectS0__ZL26PyvtkFieldData_ShallowCopyP7_objectS0__ZL23PyvtkFieldData_DeepCopyP7_objectS0__ZL25PyvtkFieldData_CopyAllOffP7_objectS0__ZL24PyvtkFieldData_CopyAllOnP7_objectS0__ZL23PyvtkFieldData_PassDataP7_objectS0__ZL29PyvtkFieldData_RemoveArray_s2P7_objectS0__ZL29PyvtkFieldData_RemoveArray_s1P7_objectS0__ZL25PyvtkFieldData_InitializeP7_objectS0__ZL37PyvtkGenericCellIterator_SafeDownCastP7_objectS0__ZL33PyvtkGenericCellIterator_IsTypeOfP7_objectS0__ZL29PyvtkGenericCellIterator_NextP7_objectS0__ZL30PyvtkGenericCellIterator_BeginP7_objectS0__ZL32PyvtkGenericCellIterator_IsAtEndP7_objectS0__ZL32PyvtkGenericCellIterator_NewCellP7_objectS0__ZL28PyvtkGenericCellIterator_IsAP7_objectS0__ZL36PyvtkGenericCellIterator_NewInstanceP7_objectS0__ZL32PyvtkGenericCellIterator_GetCellP7_objectS0__ZL29PyvtkGenericCellIterator_Type_ZL32PyvtkGenericCellIterator_Methods_GLOBAL__sub_I_vtkGenericCellIteratorPython.cxx_ZL32PyvtkGenericDataSet_SafeDownCastP7_objectS0__ZL30PyvtkGenericDataSet_GetData_s1P7_objectS0__ZL30PyvtkGenericDataSet_GetData_s2P7_objectS0__ZL28PyvtkGenericDataSet_IsTypeOfP7_objectS0__ZL33PyvtkGenericDataSet_ComputeBoundsP7_objectS0__ZL37PyvtkGenericDataSet_GetNumberOfPointsP7_objectS0__ZL36PyvtkGenericDataSet_GetCellDimensionP7_objectS0__ZL36PyvtkGenericDataSet_GetEstimatedSizeP7_objectS0__ZL36PyvtkGenericDataSet_NewPointIteratorP7_objectS0__ZL34PyvtkGenericDataSet_GetTessellatorP7_objectS0__ZL36PyvtkGenericDataSet_GetNumberOfCellsP7_objectS0__ZL35PyvtkGenericDataSet_NewCellIteratorP7_objectS0__ZL39PyvtkGenericDataSet_NewBoundaryIteratorP7_objectS0__ZL29PyvtkGenericDataSet_FindPointP7_objectS0__ZL23PyvtkGenericDataSet_IsAP7_objectS0__ZL31PyvtkGenericDataSet_NewInstanceP7_objectS0__ZL27PyvtkGenericDataSet_GetDataP7_objectS0__ZL35PyvtkGenericDataSet_GetData_Methods_ZL24PyvtkGenericDataSet_Type_ZL27PyvtkGenericDataSet_Methods_GLOBAL__sub_I_vtkGenericDataSetPython.cxx_ZL37PyvtkGenericDataSet_GetDataObjectTypeP7_objectS0__ZL39PyvtkGenericDataSet_GetActualMemorySizeP7_objectS0__ZL34PyvtkGenericDataSet_SetTessellatorP7_objectS0__ZL33PyvtkGenericDataSet_GetAttributesP7_objectS0__ZL29PyvtkGenericDataSet_GetLengthP7_objectS0__ZL29PyvtkGenericDataSet_GetCenterP7_objectS0__ZL29PyvtkGenericDataSet_GetBoundsP7_objectS0__ZL28PyvtkGenericDataSet_GetMTimeP7_objectS0__ZL32PyvtkGenericDataSet_GetCellTypesP7_objectS0__ZL38PyvtkGenericPointIterator_SafeDownCastP7_objectS0__ZL34PyvtkGenericPointIterator_IsTypeOfP7_objectS0__ZL31PyvtkGenericPointIterator_BeginP7_objectS0__ZL30PyvtkGenericPointIterator_NextP7_objectS0__ZL33PyvtkGenericPointIterator_IsAtEndP7_objectS0__ZL31PyvtkGenericPointIterator_GetIdP7_objectS0__ZL29PyvtkGenericPointIterator_IsAP7_objectS0__ZL37PyvtkGenericPointIterator_NewInstanceP7_objectS0__ZL37PyvtkGenericPointIterator_GetPositionP7_objectS0__ZL30PyvtkGenericPointIterator_Type_ZL33PyvtkGenericPointIterator_Methods_GLOBAL__sub_I_vtkGenericPointIteratorPython.cxx_ZL24PyvtkGraphEdge_StaticNewv_ZL27PyvtkGraphEdge_SafeDownCastP7_objectS0__ZL23PyvtkGraphEdge_IsTypeOfP7_objectS0__ZL18PyvtkGraphEdge_IsAP7_objectS0__ZL20PyvtkGraphEdge_GetIdP7_objectS0__ZL24PyvtkGraphEdge_GetSourceP7_objectS0__ZL24PyvtkGraphEdge_GetTargetP7_objectS0__ZL20PyvtkGraphEdge_SetIdP7_objectS0__ZL24PyvtkGraphEdge_SetSourceP7_objectS0__ZL24PyvtkGraphEdge_SetTargetP7_objectS0__ZL26PyvtkGraphEdge_NewInstanceP7_objectS0__ZL19PyvtkGraphEdge_Type_ZL22PyvtkGraphEdge_Methods_GLOBAL__sub_I_vtkGraphEdgePython.cxx_ZL42PyvtkHierarchicalBoxDataIterator_StaticNewv_ZL45PyvtkHierarchicalBoxDataIterator_SafeDownCastP7_objectS0__ZL41PyvtkHierarchicalBoxDataIterator_IsTypeOfP7_objectS0__ZL36PyvtkHierarchicalBoxDataIterator_IsAP7_objectS0__ZL44PyvtkHierarchicalBoxDataIterator_NewInstanceP7_objectS0__ZL37PyvtkHierarchicalBoxDataIterator_Type_ZL40PyvtkHierarchicalBoxDataIterator_Methods_GLOBAL__sub_I_vtkHierarchicalBoxDataIteratorPython.cxx_ZL37PyvtkHierarchicalBoxDataSet_StaticNewv_ZL40PyvtkHierarchicalBoxDataSet_SafeDownCastP7_objectS0__ZL38PyvtkHierarchicalBoxDataSet_GetData_s1P7_objectS0__ZL38PyvtkHierarchicalBoxDataSet_GetData_s2P7_objectS0__ZL45PyvtkHierarchicalBoxDataSet_GetDataObjectTypeP7_objectS0__ZL36PyvtkHierarchicalBoxDataSet_IsTypeOfP7_objectS0__ZL31PyvtkHierarchicalBoxDataSet_IsAP7_objectS0__ZL39PyvtkHierarchicalBoxDataSet_NewInstanceP7_objectS0__ZL35PyvtkHierarchicalBoxDataSet_GetDataP7_objectS0__ZL43PyvtkHierarchicalBoxDataSet_GetData_Methods_ZL32PyvtkHierarchicalBoxDataSet_Type_ZL35PyvtkHierarchicalBoxDataSet_Methods_GLOBAL__sub_I_vtkHierarchicalBoxDataSetPython.cxx_ZL39PyvtkHierarchicalBoxDataSet_NewIteratorP7_objectS0__ZL27PyvtkHyperTree_SafeDownCastP7_objectS0__ZL29PyvtkHyperTree_CreateInstanceP7_objectS0__ZL23PyvtkHyperTree_GetScaleP7_objectS0__ZL31PyvtkHyperTree_GetScale_Methods_ZL23PyvtkHyperTree_IsTypeOfP7_objectS0__ZL26PyvtkHyperTree_NewInstanceP7_objectS0__ZL25PyvtkHyperTree_InitializeP7_objectS0__ZL32PyvtkHyperTree_GetNumberOfLevelsP7_objectS0__ZL34PyvtkHyperTree_GetNumberOfVerticesP7_objectS0__ZL31PyvtkHyperTree_GetNumberOfNodesP7_objectS0__ZL32PyvtkHyperTree_GetNumberOfLeavesP7_objectS0__ZL30PyvtkHyperTree_GetBranchFactorP7_objectS0__ZL27PyvtkHyperTree_GetDimensionP7_objectS0__ZL34PyvtkHyperTree_GetNumberOfChildrenP7_objectS0__ZL24PyvtkHyperTree_NewCursorP7_objectS0__ZL34PyvtkHyperTree_GetActualMemorySizeP7_objectS0__ZL34PyvtkHyperTree_SetGlobalIndexStartP7_objectS0__ZL28PyvtkHyperTree_SubdivideLeafP7_objectS0__ZL26PyvtkHyperTree_GetScale_s2P7_objectS0__ZL38PyvtkHyperTree_GetGlobalIndexFromLocalP7_objectS0__ZL38PyvtkHyperTree_SetGlobalIndexFromLocalP7_objectS0__ZL23PyvtkHyperTree_SetScaleP7_objectS0__ZL26PyvtkHyperTree_GetScale_s1P7_objectS0__ZL18PyvtkHyperTree_IsAP7_objectS0__ZL19PyvtkHyperTree_Type_ZL22PyvtkHyperTree_Methods_GLOBAL__sub_I_vtkHyperTreePython.cxx_ZL34PyvtkHyperTree_FindChildParametersP7_objectS0__ZL30PyvtkHyperTree_FindParentIndexP7_objectS0__ZL33PyvtkHyperTreeCursor_SafeDownCastP7_objectS0__ZL29PyvtkHyperTreeCursor_IsTypeOfP7_objectS0__ZL32PyvtkHyperTreeCursor_NewInstanceP7_objectS0__ZL27PyvtkHyperTreeCursor_ToRootP7_objectS0__ZL29PyvtkHyperTreeCursor_ToParentP7_objectS0__ZL33PyvtkHyperTreeCursor_GetDimensionP7_objectS0__ZL26PyvtkHyperTreeCursor_CloneP7_objectS0__ZL40PyvtkHyperTreeCursor_GetNumberOfChildrenP7_objectS0__ZL28PyvtkHyperTreeCursor_GetTreeP7_objectS0__ZL32PyvtkHyperTreeCursor_GetVertexIdP7_objectS0__ZL27PyvtkHyperTreeCursor_IsLeafP7_objectS0__ZL27PyvtkHyperTreeCursor_IsRootP7_objectS0__ZL29PyvtkHyperTreeCursor_GetLevelP7_objectS0__ZL34PyvtkHyperTreeCursor_GetChildIndexP7_objectS0__ZL28PyvtkHyperTreeCursor_ToChildP7_objectS0__ZL28PyvtkHyperTreeCursor_SetTreeP7_objectS0__ZL33PyvtkHyperTreeCursor_ToSameVertexP7_objectS0__ZL29PyvtkHyperTreeCursor_SameTreeP7_objectS0__ZL28PyvtkHyperTreeCursor_IsEqualP7_objectS0__ZL24PyvtkHyperTreeCursor_IsAP7_objectS0__ZL25PyvtkHyperTreeCursor_Type_ZL28PyvtkHyperTreeCursor_Methods_GLOBAL__sub_I_vtkHyperTreeCursorPython.cxx_ZL34PyvtkHyperTreeGridCursor_StaticNewv_ZL37PyvtkHyperTreeGridCursor_SafeDownCastP7_objectS0__ZL33PyvtkHyperTreeGridCursor_IsTypeOfP7_objectS0__ZL36PyvtkHyperTreeGridCursor_NewInstanceP7_objectS0__ZL43PyvtkHyperTreeGridCursor_GetNumberOfCursorsP7_objectS0__ZL32PyvtkHyperTreeGridCursor_GetTreeP7_objectS0__ZL33PyvtkHyperTreeGridCursor_GetLevelP7_objectS0__ZL32PyvtkHyperTreeGridCursor_GetGridP7_objectS0__ZL32PyvtkHyperTreeGridCursor_GetSizeP7_objectS0__ZL34PyvtkHyperTreeGridCursor_GetOriginP7_objectS0__ZL34PyvtkHyperTreeGridCursor_GetCursorP7_objectS0__ZL37PyvtkHyperTreeGridCursor_ToSameVertexP7_objectS0__ZL32PyvtkHyperTreeGridCursor_IsEqualP7_objectS0__ZL33PyvtkHyperTreeGridCursor_SameTreeP7_objectS0__ZL41PyvtkHyperTreeGridCursor_GetCornerCursorsP7_objectS0__ZL33PyvtkHyperTreeGridCursor_GetPointP7_objectS0__ZL34PyvtkHyperTreeGridCursor_GetBoundsP7_objectS0__ZL28PyvtkHyperTreeGridCursor_IsAP7_objectS0__ZL29PyvtkHyperTreeGridCursor_Type_ZL32PyvtkHyperTreeGridCursor_Methods_GLOBAL__sub_I_vtkHyperTreeGridCursorPython.cxx_ZL37PyvtkHyperTreeGridCursor_GetDimensionP7_objectS0__ZL44PyvtkHyperTreeGridCursor_GetNumberOfChildrenP7_objectS0__ZL32PyvtkHyperTreeGridCursor_ToChildP7_objectS0__ZL33PyvtkHyperTreeGridCursor_ToParentP7_objectS0__ZL31PyvtkHyperTreeGridCursor_ToRootP7_objectS0__ZL38PyvtkHyperTreeGridCursor_GetChildIndexP7_objectS0__ZL31PyvtkHyperTreeGridCursor_IsRootP7_objectS0__ZL31PyvtkHyperTreeGridCursor_IsLeafP7_objectS0__ZL43PyvtkHyperTreeGridCursor_GetGlobalNodeIndexP7_objectS0__ZL36PyvtkHyperTreeGridCursor_GetVertexIdP7_objectS0__ZL32PyvtkHyperTreeGridCursor_SetTreeP7_objectS0__ZL32PyvtkHyperTreeGridCursor_SetGridP7_objectS0__ZL35PyvtkHyperTreeGridCursor_InitializeP7_objectS0__ZL30PyvtkHyperTreeGridCursor_CloneP7_objectS0__ZL30PyvtkImplicitBoolean_StaticNewv_ZL33PyvtkImplicitBoolean_SafeDownCastP7_objectS0__ZL29PyvtkImplicitBoolean_IsTypeOfP7_objectS0__ZL32PyvtkImplicitBoolean_GetFunctionP7_objectS0__ZL45PyvtkImplicitBoolean_GetOperationTypeMinValueP7_objectS0__ZL45PyvtkImplicitBoolean_GetOperationTypeMaxValueP7_objectS0__ZL37PyvtkImplicitBoolean_GetOperationTypeP7_objectS0__ZL32PyvtkImplicitBoolean_AddFunctionP7_objectS0__ZL35PyvtkImplicitBoolean_RemoveFunctionP7_objectS0__ZL45PyvtkImplicitBoolean_GetOperationTypeAsStringP7_objectS0__ZL56PyvtkImplicitBoolean_SetOperationTypeToUnionOfMagnitudesP7_objectS0__ZL44PyvtkImplicitBoolean_SetOperationTypeToUnionP7_objectS0__ZL49PyvtkImplicitBoolean_SetOperationTypeToDifferenceP7_objectS0__ZL51PyvtkImplicitBoolean_SetOperationTypeToIntersectionP7_objectS0__ZL24PyvtkImplicitBoolean_IsAP7_objectS0__ZL32PyvtkImplicitBoolean_NewInstanceP7_objectS0__ZL37PyvtkImplicitBoolean_SetOperationTypeP7_objectS0__ZL39PyvtkImplicitBoolean_OperationType_Type_ZL28PyvtkImplicitBoolean_Methods_ZL25PyvtkImplicitBoolean_Type_ZZ29PyvtkImplicitBoolean_ClassNewE9constants_GLOBAL__sub_I_vtkImplicitBooleanPython.cxx_ZL29PyvtkImplicitBoolean_GetMTimeP7_objectS0__ZL37PyvtkImplicitBoolean_EvaluateGradientP7_objectS0__ZL37PyvtkImplicitBoolean_EvaluateFunctionP7_objectS0__ZL30PyvtkImplicitDataSet_StaticNewv_ZL33PyvtkImplicitDataSet_SafeDownCastP7_objectS0__ZL29PyvtkImplicitDataSet_IsTypeOfP7_objectS0__ZL35PyvtkImplicitDataSet_GetOutGradientP7_objectS0__ZL32PyvtkImplicitDataSet_GetOutValueP7_objectS0__ZL31PyvtkImplicitDataSet_GetDataSetP7_objectS0__ZL32PyvtkImplicitDataSet_SetOutValueP7_objectS0__ZL24PyvtkImplicitDataSet_IsAP7_objectS0__ZL32PyvtkImplicitDataSet_NewInstanceP7_objectS0__ZL35PyvtkImplicitDataSet_SetOutGradientP7_objectS0__ZL25PyvtkImplicitDataSet_Type_ZL28PyvtkImplicitDataSet_Methods_GLOBAL__sub_I_vtkImplicitDataSetPython.cxx_ZL31PyvtkImplicitDataSet_SetDataSetP7_objectS0__ZL37PyvtkImplicitDataSet_EvaluateGradientP7_objectS0__ZL37PyvtkImplicitDataSet_EvaluateFunctionP7_objectS0__ZL29PyvtkImplicitDataSet_GetMTimeP7_objectS0__ZL41PyvtkImplicitFunctionCollection_StaticNewv_ZL44PyvtkImplicitFunctionCollection_SafeDownCastP7_objectS0__ZL43PyvtkImplicitFunctionCollection_GetNextItemP7_objectS0__ZL39PyvtkImplicitFunctionCollection_AddItemP7_objectS0__ZL40PyvtkImplicitFunctionCollection_IsTypeOfP7_objectS0__ZL35PyvtkImplicitFunctionCollection_IsAP7_objectS0__ZL43PyvtkImplicitFunctionCollection_NewInstanceP7_objectS0__ZL36PyvtkImplicitFunctionCollection_Type_ZL39PyvtkImplicitFunctionCollection_Methods_GLOBAL__sub_I_vtkImplicitFunctionCollectionPython.cxx_ZL34PyvtkImplicitFunction_SafeDownCastP7_objectS0__ZL34PyvtkImplicitFunction_SetTransformP7_objectS0__ZL42PyvtkImplicitFunction_SetTransform_Methods_ZL30PyvtkImplicitFunction_IsTypeOfP7_objectS0__ZL34PyvtkImplicitFunction_GetTransformP7_objectS0__ZL25PyvtkImplicitFunction_IsAP7_objectS0__ZL33PyvtkImplicitFunction_NewInstanceP7_objectS0__ZL38PyvtkImplicitFunction_EvaluateGradientP7_objectS0__ZL38PyvtkImplicitFunction_FunctionGradientP7_objectS0__ZL26PyvtkImplicitFunction_Type_ZL29PyvtkImplicitFunction_Methods_GLOBAL__sub_I_vtkImplicitFunctionPython.cxx_ZL38PyvtkImplicitFunction_EvaluateFunctionP7_objectS0__ZL37PyvtkImplicitFunction_SetTransform_s2P7_objectS0__ZL37PyvtkImplicitFunction_SetTransform_s1P7_objectS0__ZL35PyvtkImplicitFunction_FunctionValueP7_objectS0__ZL30PyvtkImplicitFunction_GetMTimeP7_objectS0__ZL27PyvtkImplicitHalo_StaticNewv_ZL30PyvtkImplicitHalo_SafeDownCastP7_objectS0__ZL26PyvtkImplicitHalo_IsTypeOfP7_objectS0__ZL27PyvtkImplicitHalo_GetCenterP7_objectS0__ZL27PyvtkImplicitHalo_GetRadiusP7_objectS0__ZL28PyvtkImplicitHalo_GetFadeOutP7_objectS0__ZL27PyvtkImplicitHalo_SetRadiusP7_objectS0__ZL28PyvtkImplicitHalo_SetFadeOutP7_objectS0__ZL21PyvtkImplicitHalo_IsAP7_objectS0__ZL29PyvtkImplicitHalo_NewInstanceP7_objectS0__ZL27PyvtkImplicitHalo_SetCenterP7_objectS0__ZL22PyvtkImplicitHalo_Type_ZL25PyvtkImplicitHalo_Methods_GLOBAL__sub_I_vtkImplicitHaloPython.cxx_ZL34PyvtkImplicitHalo_EvaluateGradientP7_objectS0__ZL34PyvtkImplicitHalo_EvaluateFunctionP7_objectS0__ZL36PyvtkImplicitSelectionLoop_StaticNewv_ZL39PyvtkImplicitSelectionLoop_SafeDownCastP7_objectS0__ZL35PyvtkImplicitSelectionLoop_IsTypeOfP7_objectS0__ZL36PyvtkImplicitSelectionLoop_GetNormalP7_objectS0__ZL34PyvtkImplicitSelectionLoop_GetLoopP7_objectS0__ZL55PyvtkImplicitSelectionLoop_GetAutomaticNormalGenerationP7_objectS0__ZL55PyvtkImplicitSelectionLoop_SetAutomaticNormalGenerationP7_objectS0__ZL54PyvtkImplicitSelectionLoop_AutomaticNormalGenerationOnP7_objectS0__ZL55PyvtkImplicitSelectionLoop_AutomaticNormalGenerationOffP7_objectS0__ZL30PyvtkImplicitSelectionLoop_IsAP7_objectS0__ZL38PyvtkImplicitSelectionLoop_NewInstanceP7_objectS0__ZL36PyvtkImplicitSelectionLoop_SetNormalP7_objectS0__ZL31PyvtkImplicitSelectionLoop_Type_ZL34PyvtkImplicitSelectionLoop_Methods_GLOBAL__sub_I_vtkImplicitSelectionLoopPython.cxx_ZL35PyvtkImplicitSelectionLoop_GetMTimeP7_objectS0__ZL34PyvtkImplicitSelectionLoop_SetLoopP7_objectS0__ZL43PyvtkImplicitSelectionLoop_EvaluateGradientP7_objectS0__ZL43PyvtkImplicitSelectionLoop_EvaluateFunctionP7_objectS0__ZL26PyvtkImplicitSum_StaticNewv_ZL29PyvtkImplicitSum_SafeDownCastP7_objectS0__ZL25PyvtkImplicitSum_IsTypeOfP7_objectS0__ZL35PyvtkImplicitSum_RemoveAllFunctionsP7_objectS0__ZL37PyvtkImplicitSum_GetNormalizeByWeightP7_objectS0__ZL34PyvtkImplicitSum_SetFunctionWeightP7_objectS0__ZL37PyvtkImplicitSum_SetNormalizeByWeightP7_objectS0__ZL37PyvtkImplicitSum_NormalizeByWeightOffP7_objectS0__ZL36PyvtkImplicitSum_NormalizeByWeightOnP7_objectS0__ZL20PyvtkImplicitSum_IsAP7_objectS0__ZL28PyvtkImplicitSum_NewInstanceP7_objectS0__ZL28PyvtkImplicitSum_AddFunctionP7_objectS0__ZL21PyvtkImplicitSum_Type_ZL24PyvtkImplicitSum_Methods_GLOBAL__sub_I_vtkImplicitSumPython.cxx_ZL25PyvtkImplicitSum_GetMTimeP7_objectS0__ZL33PyvtkImplicitSum_EvaluateGradientP7_objectS0__ZL33PyvtkImplicitSum_EvaluateFunctionP7_objectS0__ZL29PyvtkImplicitVolume_StaticNewv_ZL32PyvtkImplicitVolume_SafeDownCastP7_objectS0__ZL28PyvtkImplicitVolume_IsTypeOfP7_objectS0__ZL34PyvtkImplicitVolume_GetOutGradientP7_objectS0__ZL31PyvtkImplicitVolume_GetOutValueP7_objectS0__ZL29PyvtkImplicitVolume_GetVolumeP7_objectS0__ZL31PyvtkImplicitVolume_SetOutValueP7_objectS0__ZL23PyvtkImplicitVolume_IsAP7_objectS0__ZL31PyvtkImplicitVolume_NewInstanceP7_objectS0__ZL34PyvtkImplicitVolume_SetOutGradientP7_objectS0__ZL24PyvtkImplicitVolume_Type_ZL27PyvtkImplicitVolume_Methods_GLOBAL__sub_I_vtkImplicitVolumePython.cxx_ZL29PyvtkImplicitVolume_SetVolumeP7_objectS0__ZL36PyvtkImplicitVolume_EvaluateGradientP7_objectS0__ZL36PyvtkImplicitVolume_EvaluateFunctionP7_objectS0__ZL28PyvtkImplicitVolume_GetMTimeP7_objectS0__ZL37PyvtkImplicitWindowFunction_StaticNewv_ZL40PyvtkImplicitWindowFunction_SafeDownCastP7_objectS0__ZL36PyvtkImplicitWindowFunction_IsTypeOfP7_objectS0__ZL43PyvtkImplicitWindowFunction_GetWindowValuesP7_objectS0__ZL42PyvtkImplicitWindowFunction_GetWindowRangeP7_objectS0__ZL47PyvtkImplicitWindowFunction_GetImplicitFunctionP7_objectS0__ZL31PyvtkImplicitWindowFunction_IsAP7_objectS0__ZL39PyvtkImplicitWindowFunction_NewInstanceP7_objectS0__ZL42PyvtkImplicitWindowFunction_SetWindowRangeP7_objectS0__ZL43PyvtkImplicitWindowFunction_SetWindowValuesP7_objectS0__ZL32PyvtkImplicitWindowFunction_Type_ZL35PyvtkImplicitWindowFunction_Methods_GLOBAL__sub_I_vtkImplicitWindowFunctionPython.cxx_ZL36PyvtkImplicitWindowFunction_GetMTimeP7_objectS0__ZL47PyvtkImplicitWindowFunction_SetImplicitFunctionP7_objectS0__ZL44PyvtkImplicitWindowFunction_EvaluateGradientP7_objectS0__ZL44PyvtkImplicitWindowFunction_EvaluateFunctionP7_objectS0__ZL41PyvtkIncrementalPointLocator_SafeDownCastP7_objectS0__ZL37PyvtkIncrementalPointLocator_IsTypeOfP7_objectS0__ZL53PyvtkIncrementalPointLocator_FindClosestInsertedPointP7_objectS0__ZL44PyvtkIncrementalPointLocator_InsertNextPointP7_objectS0__ZL40PyvtkIncrementalPointLocator_InsertPointP7_objectS0__ZL46PyvtkIncrementalPointLocator_InsertUniquePointP7_objectS0__ZL40PyvtkIncrementalPointLocator_NewInstanceP7_objectS0__ZL32PyvtkIncrementalPointLocator_IsAP7_objectS0__ZL44PyvtkIncrementalPointLocator_IsInsertedPointP7_objectS0__ZL47PyvtkIncrementalPointLocator_InitPointInsertionP7_objectS0__ZL33PyvtkIncrementalPointLocator_Type_ZL36PyvtkIncrementalPointLocator_Methods_GLOBAL__sub_I_vtkIncrementalPointLocatorPython.cxx_ZL29PyvtkInEdgeIterator_StaticNewv_ZL32PyvtkInEdgeIterator_SafeDownCastP7_objectS0__ZL28PyvtkInEdgeIterator_IsTypeOfP7_objectS0__ZL23PyvtkInEdgeIterator_IsAP7_objectS0__ZL27PyvtkInEdgeIterator_HasNextP7_objectS0__ZL33PyvtkInEdgeIterator_NextGraphEdgeP7_objectS0__ZL28PyvtkInEdgeIterator_GetGraphP7_objectS0__ZL29PyvtkInEdgeIterator_GetVertexP7_objectS0__ZL24PyvtkInEdgeIterator_NextP7_objectS0__ZL30PyvtkInEdgeIterator_InitializeP7_objectS0__ZL31PyvtkInEdgeIterator_NewInstanceP7_objectS0__ZL24PyvtkInEdgeIterator_Type_ZL27PyvtkInEdgeIterator_Methods_GLOBAL__sub_I_vtkInEdgeIteratorPython.cxx_ZL45PyvtkIterativeClosestPointTransform_StaticNewv_ZL48PyvtkIterativeClosestPointTransform_SafeDownCastP7_objectS0__ZL44PyvtkIterativeClosestPointTransform_IsTypeOfP7_objectS0__ZL39PyvtkIterativeClosestPointTransform_IsAP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_GetMeanDistanceModeMaxValueP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_GetMeanDistanceModeMinValueP7_objectS0__ZL58PyvtkIterativeClosestPointTransform_GetMaximumMeanDistanceP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_GetMaximumNumberOfLandmarksP7_objectS0__ZL55PyvtkIterativeClosestPointTransform_GetMeanDistanceModeP7_objectS0__ZL56PyvtkIterativeClosestPointTransform_GetCheckMeanDistanceP7_objectS0__ZL56PyvtkIterativeClosestPointTransform_GetLandmarkTransformP7_objectS0__ZL45PyvtkIterativeClosestPointTransform_GetSourceP7_objectS0__ZL45PyvtkIterativeClosestPointTransform_GetTargetP7_objectS0__ZL51PyvtkIterativeClosestPointTransform_GetMeanDistanceP7_objectS0__ZL64PyvtkIterativeClosestPointTransform_GetMaximumNumberOfIterationsP7_objectS0__ZL57PyvtkIterativeClosestPointTransform_GetNumberOfIterationsP7_objectS0__ZL46PyvtkIterativeClosestPointTransform_GetLocatorP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_GetStartByMatchingCentroidsP7_objectS0__ZL46PyvtkIterativeClosestPointTransform_SetLocatorP7_objectS0__ZL45PyvtkIterativeClosestPointTransform_SetSourceP7_objectS0__ZL45PyvtkIterativeClosestPointTransform_SetTargetP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_GetMeanDistanceModeAsStringP7_objectS0__ZL70PyvtkIterativeClosestPointTransform_SetMeanDistanceModeToAbsoluteValueP7_objectS0__ZL60PyvtkIterativeClosestPointTransform_SetMeanDistanceModeToRMSP7_objectS0__ZL58PyvtkIterativeClosestPointTransform_SetMaximumMeanDistanceP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_SetMaximumNumberOfLandmarksP7_objectS0__ZL64PyvtkIterativeClosestPointTransform_SetMaximumNumberOfIterationsP7_objectS0__ZL56PyvtkIterativeClosestPointTransform_SetCheckMeanDistanceP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_SetStartByMatchingCentroidsP7_objectS0__ZL56PyvtkIterativeClosestPointTransform_CheckMeanDistanceOffP7_objectS0__ZL62PyvtkIterativeClosestPointTransform_StartByMatchingCentroidsOnP7_objectS0__ZL63PyvtkIterativeClosestPointTransform_StartByMatchingCentroidsOffP7_objectS0__ZL55PyvtkIterativeClosestPointTransform_CheckMeanDistanceOnP7_objectS0__ZL55PyvtkIterativeClosestPointTransform_SetMeanDistanceModeP7_objectS0__ZL47PyvtkIterativeClosestPointTransform_NewInstanceP7_objectS0__ZL40PyvtkIterativeClosestPointTransform_Type_ZL43PyvtkIterativeClosestPointTransform_Methods_GLOBAL__sub_I_vtkIterativeClosestPointTransformPython.cxx_ZL49PyvtkIterativeClosestPointTransform_MakeTransformP7_objectS0__ZL43PyvtkIterativeClosestPointTransform_InverseP7_objectS0__ZL33PyvtkKdTreePointLocator_StaticNewv_ZL36PyvtkKdTreePointLocator_SafeDownCastP7_objectS0__ZL32PyvtkKdTreePointLocator_IsTypeOfP7_objectS0__ZL27PyvtkKdTreePointLocator_IsAP7_objectS0__ZL35PyvtkKdTreePointLocator_NewInstanceP7_objectS0__ZL28PyvtkKdTreePointLocator_Type_ZL31PyvtkKdTreePointLocator_Methods_GLOBAL__sub_I_vtkKdTreePointLocatorPython.cxx_ZL46PyvtkKdTreePointLocator_GenerateRepresentationP7_objectS0__ZL36PyvtkKdTreePointLocator_BuildLocatorP7_objectS0__ZL43PyvtkKdTreePointLocator_FreeSearchStructureP7_objectS0__ZL46PyvtkKdTreePointLocator_FindPointsWithinRadiusP7_objectS0__ZL42PyvtkKdTreePointLocator_FindClosestNPointsP7_objectS0__ZL52PyvtkKdTreePointLocator_FindClosestPointWithinRadiusP7_objectS0__ZL40PyvtkKdTreePointLocator_FindClosestPointP7_objectS0__ZL25PyvtkLocator_SafeDownCastP7_objectS0__ZL21PyvtkLocator_IsTypeOfP7_objectS0__ZL24PyvtkLocator_NewInstanceP7_objectS0__ZL33PyvtkLocator_GetToleranceMinValueP7_objectS0__ZL32PyvtkLocator_GetMaxLevelMinValueP7_objectS0__ZL33PyvtkLocator_GetToleranceMaxValueP7_objectS0__ZL32PyvtkLocator_GetMaxLevelMaxValueP7_objectS0__ZL25PyvtkLocator_BuildLocatorP7_objectS0__ZL32PyvtkLocator_FreeSearchStructureP7_objectS0__ZL24PyvtkLocator_GetMaxLevelP7_objectS0__ZL21PyvtkLocator_GetLevelP7_objectS0__ZL23PyvtkLocator_GetDataSetP7_objectS0__ZL25PyvtkLocator_GetToleranceP7_objectS0__ZL25PyvtkLocator_GetAutomaticP7_objectS0__ZL25PyvtkLocator_GetBuildTimeP7_objectS0__ZL35PyvtkLocator_GenerateRepresentationP7_objectS0__ZL25PyvtkLocator_SetAutomaticP7_objectS0__ZL25PyvtkLocator_AutomaticOffP7_objectS0__ZL24PyvtkLocator_AutomaticOnP7_objectS0__ZL24PyvtkLocator_SetMaxLevelP7_objectS0__ZL25PyvtkLocator_SetToleranceP7_objectS0__ZL16PyvtkLocator_IsAP7_objectS0__ZL17PyvtkLocator_Type_ZL20PyvtkLocator_Methods_GLOBAL__sub_I_vtkLocatorPython.cxx_ZL23PyvtkLocator_InitializeP7_objectS0__ZL19PyvtkLocator_UpdateP7_objectS0__ZL23PyvtkLocator_SetDataSetP7_objectS0__GLOBAL__sub_I_vtkMappedUnstructuredGridPython.cxx_GLOBAL__sub_I_vtkMappedUnstructuredGridCellIteratorPython.cxx_ZL35PyvtkMarchingSquaresLineCases_CCopyPKv_ZL60PyvtkMarchingSquaresLineCases_vtkMarchingSquaresLineCases_s2P7_objectS0__ZL34PyvtkMarchingSquaresLineCases_HashP7_object_ZL36PyvtkMarchingSquaresLineCases_DeleteP7_object_ZL33PyvtkMarchingSquaresLineCases_NewP11_typeobjectP7_objectS2__ZL34PyvtkMarchingSquaresLineCases_Type_ZL65PyvtkMarchingSquaresLineCases_vtkMarchingSquaresLineCases_Methods_ZL37PyvtkMarchingSquaresLineCases_Methods_GLOBAL__sub_I_vtkMarchingSquaresLineCasesPython.cxx_ZL37PyvtkMarchingCubesTriangleCases_CCopyPKv_ZL64PyvtkMarchingCubesTriangleCases_vtkMarchingCubesTriangleCases_s2P7_objectS0__ZL36PyvtkMarchingCubesTriangleCases_HashP7_object_ZL38PyvtkMarchingCubesTriangleCases_DeleteP7_object_ZL35PyvtkMarchingCubesTriangleCases_NewP11_typeobjectP7_objectS2__ZL36PyvtkMarchingCubesTriangleCases_Type_ZL69PyvtkMarchingCubesTriangleCases_vtkMarchingCubesTriangleCases_Methods_ZL39PyvtkMarchingCubesTriangleCases_Methods_GLOBAL__sub_I_vtkMarchingCubesTriangleCasesPython.cxx_ZL26PyvtkMergePoints_StaticNewv_ZL29PyvtkMergePoints_SafeDownCastP7_objectS0__ZL25PyvtkMergePoints_IsTypeOfP7_objectS0__ZL20PyvtkMergePoints_IsAP7_objectS0__ZL28PyvtkMergePoints_NewInstanceP7_objectS0__ZL21PyvtkMergePoints_Type_ZL24PyvtkMergePoints_Methods_GLOBAL__sub_I_vtkMergePointsPython.cxx_ZL34PyvtkMergePoints_InsertUniquePointP7_objectS0__ZL32PyvtkMergePoints_IsInsertedPointP7_objectS0__ZL32PyvtkMultiBlockDataSet_StaticNewv_ZL35PyvtkMultiBlockDataSet_SafeDownCastP7_objectS0__ZL33PyvtkMultiBlockDataSet_GetData_s1P7_objectS0__ZL33PyvtkMultiBlockDataSet_GetData_s2P7_objectS0__ZL34PyvtkMultiBlockDataSet_GetMetaDataP7_objectS0__ZL42PyvtkMultiBlockDataSet_GetMetaData_Methods_ZL34PyvtkMultiBlockDataSet_HasMetaDataP7_objectS0__ZL42PyvtkMultiBlockDataSet_HasMetaData_Methods_ZL31PyvtkMultiBlockDataSet_IsTypeOfP7_objectS0__ZL26PyvtkMultiBlockDataSet_IsAP7_objectS0__ZL40PyvtkMultiBlockDataSet_GetNumberOfBlocksP7_objectS0__ZL40PyvtkMultiBlockDataSet_GetDataObjectTypeP7_objectS0__ZL34PyvtkMultiBlockDataSet_RemoveBlockP7_objectS0__ZL40PyvtkMultiBlockDataSet_SetNumberOfBlocksP7_objectS0__ZL37PyvtkMultiBlockDataSet_HasMetaData_s1P7_objectS0__ZL37PyvtkMultiBlockDataSet_GetMetaData_s1P7_objectS0__ZL31PyvtkMultiBlockDataSet_GetBlockP7_objectS0__ZL31PyvtkMultiBlockDataSet_SetBlockP7_objectS0__ZL34PyvtkMultiBlockDataSet_NewInstanceP7_objectS0__ZL30PyvtkMultiBlockDataSet_GetDataP7_objectS0__ZL38PyvtkMultiBlockDataSet_GetData_Methods_ZL27PyvtkMultiBlockDataSet_Type_ZL30PyvtkMultiBlockDataSet_Methods_GLOBAL__sub_I_vtkMultiBlockDataSetPython.cxx_ZL37PyvtkMultiBlockDataSet_GetMetaData_s2P7_objectS0__ZL37PyvtkMultiBlockDataSet_HasMetaData_s2P7_objectS0__ZL32PyvtkMultiPieceDataSet_StaticNewv_ZL35PyvtkMultiPieceDataSet_SafeDownCastP7_objectS0__ZL33PyvtkMultiPieceDataSet_GetData_s1P7_objectS0__ZL33PyvtkMultiPieceDataSet_GetData_s2P7_objectS0__ZL34PyvtkMultiPieceDataSet_GetMetaDataP7_objectS0__ZL42PyvtkMultiPieceDataSet_GetMetaData_Methods_ZL34PyvtkMultiPieceDataSet_HasMetaDataP7_objectS0__ZL42PyvtkMultiPieceDataSet_HasMetaData_Methods_ZL31PyvtkMultiPieceDataSet_IsTypeOfP7_objectS0__ZL26PyvtkMultiPieceDataSet_IsAP7_objectS0__ZL40PyvtkMultiPieceDataSet_GetNumberOfPiecesP7_objectS0__ZL40PyvtkMultiPieceDataSet_GetDataObjectTypeP7_objectS0__ZL40PyvtkMultiPieceDataSet_SetNumberOfPiecesP7_objectS0__ZL37PyvtkMultiPieceDataSet_GetMetaData_s1P7_objectS0__ZL31PyvtkMultiPieceDataSet_GetPieceP7_objectS0__ZL43PyvtkMultiPieceDataSet_GetPieceAsDataObjectP7_objectS0__ZL37PyvtkMultiPieceDataSet_HasMetaData_s1P7_objectS0__ZL31PyvtkMultiPieceDataSet_SetPieceP7_objectS0__ZL34PyvtkMultiPieceDataSet_NewInstanceP7_objectS0__ZL30PyvtkMultiPieceDataSet_GetDataP7_objectS0__ZL38PyvtkMultiPieceDataSet_GetData_Methods_ZL27PyvtkMultiPieceDataSet_Type_ZL30PyvtkMultiPieceDataSet_Methods_GLOBAL__sub_I_vtkMultiPieceDataSetPython.cxx_ZL37PyvtkMultiPieceDataSet_GetMetaData_s2P7_objectS0__ZL37PyvtkMultiPieceDataSet_HasMetaData_s2P7_objectS0__ZL35PyvtkMutableDirectedGraph_StaticNewv_ZL38PyvtkMutableDirectedGraph_SafeDownCastP7_objectS0__ZL37PyvtkMutableDirectedGraph_LazyAddEdgeP7_objectS0__ZL45PyvtkMutableDirectedGraph_LazyAddEdge_Methods_ZL33PyvtkMutableDirectedGraph_AddEdgeP7_objectS0__ZL41PyvtkMutableDirectedGraph_AddEdge_Methods_ZL34PyvtkMutableDirectedGraph_IsTypeOfP7_objectS0__ZL38PyvtkMutableDirectedGraph_RemoveVertexP7_objectS0__ZL40PyvtkMutableDirectedGraph_RemoveVerticesP7_objectS0__ZL37PyvtkMutableDirectedGraph_RemoveEdgesP7_objectS0__ZL36PyvtkMutableDirectedGraph_RemoveEdgeP7_objectS0__ZL42PyvtkMutableDirectedGraph_LazyAddVertex_s2P7_objectS0__ZL38PyvtkMutableDirectedGraph_AddVertex_s2P7_objectS0__ZL42PyvtkMutableDirectedGraph_LazyAddVertex_s3P7_objectS0__ZL38PyvtkMutableDirectedGraph_AddVertex_s3P7_objectS0__ZL38PyvtkMutableDirectedGraph_AddGraphEdgeP7_objectS0__ZL36PyvtkMutableDirectedGraph_AddEdge_s1P7_objectS0__ZL36PyvtkMutableDirectedGraph_AddEdge_s2P7_objectS0__ZL40PyvtkMutableDirectedGraph_LazyAddEdge_s1P7_objectS0__ZL40PyvtkMutableDirectedGraph_LazyAddEdge_s2P7_objectS0__ZL40PyvtkMutableDirectedGraph_LazyAddEdge_s3P7_objectS0__ZL36PyvtkMutableDirectedGraph_AddEdge_s3P7_objectS0__ZL36PyvtkMutableDirectedGraph_AddEdge_s4P7_objectS0__ZL37PyvtkMutableDirectedGraph_NewInstanceP7_objectS0__ZL40PyvtkMutableDirectedGraph_LazyAddEdge_s4P7_objectS0__ZL36PyvtkMutableDirectedGraph_AddEdge_s5P7_objectS0__ZL29PyvtkMutableDirectedGraph_IsAP7_objectS0__ZL39PyvtkMutableDirectedGraph_LazyAddVertexP7_objectS0__ZL47PyvtkMutableDirectedGraph_LazyAddVertex_Methods_ZL35PyvtkMutableDirectedGraph_AddVertexP7_objectS0__ZL43PyvtkMutableDirectedGraph_AddVertex_Methods_ZL34PyvtkMutableDirectedGraph_AddChildP7_objectS0__ZL30PyvtkMutableDirectedGraph_Type_ZL33PyvtkMutableDirectedGraph_Methods_GLOBAL__sub_I_vtkMutableDirectedGraphPython.cxx_ZL45PyvtkMutableDirectedGraph_SetNumberOfVerticesP7_objectS0__ZL37PyvtkMutableUndirectedGraph_StaticNewv_ZL40PyvtkMutableUndirectedGraph_SafeDownCastP7_objectS0__ZL39PyvtkMutableUndirectedGraph_LazyAddEdgeP7_objectS0__ZL47PyvtkMutableUndirectedGraph_LazyAddEdge_Methods_ZL35PyvtkMutableUndirectedGraph_AddEdgeP7_objectS0__ZL43PyvtkMutableUndirectedGraph_AddEdge_Methods_ZL37PyvtkMutableUndirectedGraph_AddVertexP7_objectS0__ZL45PyvtkMutableUndirectedGraph_AddVertex_Methods_ZL36PyvtkMutableUndirectedGraph_IsTypeOfP7_objectS0__ZL44PyvtkMutableUndirectedGraph_LazyAddVertex_s2P7_objectS0__ZL40PyvtkMutableUndirectedGraph_RemoveVertexP7_objectS0__ZL38PyvtkMutableUndirectedGraph_RemoveEdgeP7_objectS0__ZL42PyvtkMutableUndirectedGraph_RemoveVerticesP7_objectS0__ZL39PyvtkMutableUndirectedGraph_RemoveEdgesP7_objectS0__ZL40PyvtkMutableUndirectedGraph_AddVertex_s2P7_objectS0__ZL44PyvtkMutableUndirectedGraph_LazyAddVertex_s3P7_objectS0__ZL42PyvtkMutableUndirectedGraph_LazyAddEdge_s1P7_objectS0__ZL40PyvtkMutableUndirectedGraph_AddGraphEdgeP7_objectS0__ZL40PyvtkMutableUndirectedGraph_AddVertex_s3P7_objectS0__ZL38PyvtkMutableUndirectedGraph_AddEdge_s1P7_objectS0__ZL42PyvtkMutableUndirectedGraph_LazyAddEdge_s2P7_objectS0__ZL38PyvtkMutableUndirectedGraph_AddEdge_s2P7_objectS0__ZL42PyvtkMutableUndirectedGraph_LazyAddEdge_s4P7_objectS0__ZL42PyvtkMutableUndirectedGraph_LazyAddEdge_s3P7_objectS0__ZL38PyvtkMutableUndirectedGraph_AddEdge_s3P7_objectS0__ZL38PyvtkMutableUndirectedGraph_AddEdge_s4P7_objectS0__ZL39PyvtkMutableUndirectedGraph_NewInstanceP7_objectS0__ZL42PyvtkMutableUndirectedGraph_LazyAddEdge_s5P7_objectS0__ZL38PyvtkMutableUndirectedGraph_AddEdge_s5P7_objectS0__ZL31PyvtkMutableUndirectedGraph_IsAP7_objectS0__ZL41PyvtkMutableUndirectedGraph_LazyAddVertexP7_objectS0__ZL49PyvtkMutableUndirectedGraph_LazyAddVertex_Methods_ZL32PyvtkMutableUndirectedGraph_Type_ZL35PyvtkMutableUndirectedGraph_Methods_GLOBAL__sub_I_vtkMutableUndirectedGraphPython.cxx_ZL47PyvtkMutableUndirectedGraph_SetNumberOfVerticesP7_objectS0__ZL31PyvtkNonLinearCell_SafeDownCastP7_objectS0__ZL27PyvtkNonLinearCell_IsLinearP7_objectS0__ZL27PyvtkNonLinearCell_IsTypeOfP7_objectS0__ZL22PyvtkNonLinearCell_IsAP7_objectS0__ZL30PyvtkNonLinearCell_NewInstanceP7_objectS0__ZL23PyvtkNonLinearCell_Type_ZL26PyvtkNonLinearCell_Methods_GLOBAL__sub_I_vtkNonLinearCellPython.cxx_ZL37PyvtkNonMergingPointLocator_StaticNewv_ZL40PyvtkNonMergingPointLocator_SafeDownCastP7_objectS0__ZL36PyvtkNonMergingPointLocator_IsTypeOfP7_objectS0__ZL31PyvtkNonMergingPointLocator_IsAP7_objectS0__ZL43PyvtkNonMergingPointLocator_IsInsertedPointP7_objectS0__ZL39PyvtkNonMergingPointLocator_NewInstanceP7_objectS0__ZL32PyvtkNonMergingPointLocator_Type_ZL35PyvtkNonMergingPointLocator_Methods_GLOBAL__sub_I_vtkNonMergingPointLocatorPython.cxx_ZL45PyvtkNonMergingPointLocator_InsertUniquePointP7_objectS0__ZL34PyvtkOrderedTriangulator_StaticNewv_ZL37PyvtkOrderedTriangulator_SafeDownCastP7_objectS0__ZL33PyvtkOrderedTriangulator_IsTypeOfP7_objectS0__ZL36PyvtkOrderedTriangulator_TriangulateP7_objectS0__ZL43PyvtkOrderedTriangulator_InitTetraTraversalP7_objectS0__ZL42PyvtkOrderedTriangulator_GetNumberOfPointsP7_objectS0__ZL41PyvtkOrderedTriangulator_GetUseTwoSortIdsP7_objectS0__ZL37PyvtkOrderedTriangulator_GetPreSortedP7_objectS0__ZL40PyvtkOrderedTriangulator_GetUseTemplatesP7_objectS0__ZL35PyvtkOrderedTriangulator_GetPointIdP7_objectS0__ZL40PyvtkOrderedTriangulator_UpdatePointTypeP7_objectS0__ZL41PyvtkOrderedTriangulator_GetPointPositionP7_objectS0__ZL41PyvtkOrderedTriangulator_GetPointLocationP7_objectS0__ZL34PyvtkOrderedTriangulator_GetTetrasP7_objectS0__ZL37PyvtkOrderedTriangulator_AddTetras_s2P7_objectS0__ZL37PyvtkOrderedTriangulator_AddTetras_s1P7_objectS0__ZL37PyvtkOrderedTriangulator_SetPreSortedP7_objectS0__ZL41PyvtkOrderedTriangulator_SetUseTwoSortIdsP7_objectS0__ZL44PyvtkOrderedTriangulator_TemplateTriangulateP7_objectS0__ZL40PyvtkOrderedTriangulator_SetUseTemplatesP7_objectS0__ZL40PyvtkOrderedTriangulator_UseTemplatesOffP7_objectS0__ZL40PyvtkOrderedTriangulator_UseTwoSortIdsOnP7_objectS0__ZL39PyvtkOrderedTriangulator_UseTemplatesOnP7_objectS0__ZL36PyvtkOrderedTriangulator_PreSortedOnP7_objectS0__ZL37PyvtkOrderedTriangulator_PreSortedOffP7_objectS0__ZL41PyvtkOrderedTriangulator_UseTwoSortIdsOffP7_objectS0__ZL28PyvtkOrderedTriangulator_IsAP7_objectS0__ZL37PyvtkOrderedTriangulator_GetNextTetraP7_objectS0__ZL36PyvtkOrderedTriangulator_NewInstanceP7_objectS0__ZL37PyvtkOrderedTriangulator_AddTrianglesP7_objectS0__ZL42PyvtkOrderedTriangulator_InitTriangulationP7_objectS0__ZL34PyvtkOrderedTriangulator_AddTetrasP7_objectS0__ZL42PyvtkOrderedTriangulator_AddTetras_Methods_ZL36PyvtkOrderedTriangulator_InsertPointP7_objectS0__ZL29PyvtkOrderedTriangulator_Type_ZL32PyvtkOrderedTriangulator_Methods_GLOBAL__sub_I_vtkOrderedTriangulatorPython.cxx_ZL30PyvtkOutEdgeIterator_StaticNewv_ZL33PyvtkOutEdgeIterator_SafeDownCastP7_objectS0__ZL29PyvtkOutEdgeIterator_IsTypeOfP7_objectS0__ZL24PyvtkOutEdgeIterator_IsAP7_objectS0__ZL28PyvtkOutEdgeIterator_HasNextP7_objectS0__ZL34PyvtkOutEdgeIterator_NextGraphEdgeP7_objectS0__ZL29PyvtkOutEdgeIterator_GetGraphP7_objectS0__ZL30PyvtkOutEdgeIterator_GetVertexP7_objectS0__ZL25PyvtkOutEdgeIterator_NextP7_objectS0__ZL31PyvtkOutEdgeIterator_InitializeP7_objectS0__ZL32PyvtkOutEdgeIterator_NewInstanceP7_objectS0__ZL25PyvtkOutEdgeIterator_Type_ZL28PyvtkOutEdgeIterator_Methods_GLOBAL__sub_I_vtkOutEdgeIteratorPython.cxx_ZL26PyvtkPerlinNoise_StaticNewv_ZL29PyvtkPerlinNoise_SafeDownCastP7_objectS0__ZL25PyvtkPerlinNoise_IsTypeOfP7_objectS0__ZL25PyvtkPerlinNoise_GetPhaseP7_objectS0__ZL29PyvtkPerlinNoise_GetFrequencyP7_objectS0__ZL29PyvtkPerlinNoise_GetAmplitudeP7_objectS0__ZL29PyvtkPerlinNoise_SetAmplitudeP7_objectS0__ZL20PyvtkPerlinNoise_IsAP7_objectS0__ZL28PyvtkPerlinNoise_NewInstanceP7_objectS0__ZL25PyvtkPerlinNoise_SetPhaseP7_objectS0__ZL29PyvtkPerlinNoise_SetFrequencyP7_objectS0__ZL21PyvtkPerlinNoise_Type_ZL24PyvtkPerlinNoise_Methods_GLOBAL__sub_I_vtkPerlinNoisePython.cxx_ZL33PyvtkPerlinNoise_EvaluateGradientP7_objectS0__ZL33PyvtkPerlinNoise_EvaluateFunctionP7_objectS0__ZL24PyvtkPixelTransfer_CCopyPKv_ZL38PyvtkPixelTransfer_vtkPixelTransfer_s2P7_objectS0__ZL23PyvtkPixelTransfer_HashP7_object_ZL25PyvtkPixelTransfer_DeleteP7_object_ZL22PyvtkPixelTransfer_NewP11_typeobjectP7_objectS2__ZL23PyvtkPixelTransfer_BlitP7_objectS0__ZL23PyvtkPixelTransfer_Type_ZL43PyvtkPixelTransfer_vtkPixelTransfer_Methods_ZL26PyvtkPixelTransfer_Methods_GLOBAL__sub_I_vtkPixelTransferPython.cxx_ZL30PyvtkPlaneCollection_StaticNewv_ZL33PyvtkPlaneCollection_SafeDownCastP7_objectS0__ZL29PyvtkPlaneCollection_IsTypeOfP7_objectS0__ZL32PyvtkPlaneCollection_GetNextItemP7_objectS0__ZL28PyvtkPlaneCollection_AddItemP7_objectS0__ZL28PyvtkPlaneCollection_GetItemP7_objectS0__ZL24PyvtkPlaneCollection_IsAP7_objectS0__ZL32PyvtkPlaneCollection_NewInstanceP7_objectS0__ZL25PyvtkPlaneCollection_Type_ZL28PyvtkPlaneCollection_Methods_GLOBAL__sub_I_vtkPlaneCollectionPython.cxx_ZL20PyvtkPlane_StaticNewv_ZL19PyvtkPlane_EvaluateP7_objectS0__ZL23PyvtkPlane_SafeDownCastP7_objectS0__ZL31PyvtkPlane_IntersectWithLine_s1P7_objectS0_.constprop.0_ZL19PyvtkPlane_IsTypeOfP7_objectS0__ZL20PyvtkPlane_GetOriginP7_objectS0__ZL20PyvtkPlane_GetNormalP7_objectS0__ZL15PyvtkPlane_PushP7_objectS0__ZL14PyvtkPlane_IsAP7_objectS0__ZL22PyvtkPlane_NewInstanceP7_objectS0__ZL28PyvtkPlane_IntersectWithLineP7_objectS0__ZL26PyvtkPlane_DistanceToPlaneP7_objectS0__ZL34PyvtkPlane_GeneralizedProjectPointP7_objectS0__ZL23PyvtkPlane_ProjectPointP7_objectS0__ZL24PyvtkPlane_ProjectVectorP7_objectS0__ZL20PyvtkPlane_SetNormalP7_objectS0__ZL20PyvtkPlane_SetOriginP7_objectS0__ZL15PyvtkPlane_Type_ZL18PyvtkPlane_Methods_GLOBAL__sub_I_vtkPlanePython.cxx_ZL27PyvtkPlane_EvaluateGradientP7_objectS0__ZL27PyvtkPlane_EvaluateFunctionP7_objectS0__ZL21PyvtkPlanes_StaticNewv_ZL24PyvtkPlanes_SafeDownCastP7_objectS0__ZL20PyvtkPlanes_IsTypeOfP7_objectS0__ZL29PyvtkPlanes_GetNumberOfPlanesP7_objectS0__ZL21PyvtkPlanes_GetPointsP7_objectS0__ZL22PyvtkPlanes_GetNormalsP7_objectS0__ZL22PyvtkPlanes_SetNormalsP7_objectS0__ZL28PyvtkPlanes_SetFrustumPlanesP7_objectS0__ZL15PyvtkPlanes_IsAP7_objectS0__ZL23PyvtkPlanes_NewInstanceP7_objectS0__ZL20PyvtkPlanes_GetPlaneP7_objectS0__ZL21PyvtkPlanes_SetBoundsP7_objectS0__ZL16PyvtkPlanes_Type_ZL19PyvtkPlanes_Methods_GLOBAL__sub_I_vtkPlanesPython.cxx_ZL21PyvtkPlanes_SetPointsP7_objectS0__ZL28PyvtkPlanes_EvaluateGradientP7_objectS0__ZL28PyvtkPlanes_EvaluateFunctionP7_objectS0__ZL24PyvtkPointData_StaticNewv_ZL27PyvtkPointData_SafeDownCastP7_objectS0__ZL24PyvtkPointData_NullPointP7_objectS0__ZL23PyvtkPointData_IsTypeOfP7_objectS0__ZL18PyvtkPointData_IsAP7_objectS0__ZL26PyvtkPointData_NewInstanceP7_objectS0__ZL19PyvtkPointData_Type_ZL22PyvtkPointData_Methods_GLOBAL__sub_I_vtkPointDataPython.cxx_ZL27PyvtkPointLocator_StaticNewv_ZL30PyvtkPointLocator_SafeDownCastP7_objectS0__ZL26PyvtkPointLocator_IsTypeOfP7_objectS0__ZL52PyvtkPointLocator_GetNumberOfPointsPerBucketMinValueP7_objectS0__ZL52PyvtkPointLocator_GetNumberOfPointsPerBucketMaxValueP7_objectS0__ZL30PyvtkPointLocator_GetDivisionsP7_objectS0__ZL27PyvtkPointLocator_GetPointsP7_objectS0__ZL44PyvtkPointLocator_GetNumberOfPointsPerBucketP7_objectS0__ZL44PyvtkPointLocator_SetNumberOfPointsPerBucketP7_objectS0__ZL29PyvtkPointLocator_NewInstanceP7_objectS0__ZL21PyvtkPointLocator_IsAP7_objectS0__ZL30PyvtkPointLocator_SetDivisionsP7_objectS0__ZL22PyvtkPointLocator_Type_ZL25PyvtkPointLocator_Methods_GLOBAL__sub_I_vtkPointLocatorPython.cxx_ZL40PyvtkPointLocator_GenerateRepresentationP7_objectS0__ZL30PyvtkPointLocator_BuildLocatorP7_objectS0__ZL37PyvtkPointLocator_FreeSearchStructureP7_objectS0__ZL28PyvtkPointLocator_InitializeP7_objectS0__ZL35PyvtkPointLocator_GetPointsInBucketP7_objectS0__ZL40PyvtkPointLocator_FindPointsWithinRadiusP7_objectS0__ZL39PyvtkPointLocator_FindDistributedPointsP7_objectS0__ZL36PyvtkPointLocator_FindClosestNPointsP7_objectS0__ZL42PyvtkPointLocator_FindClosestInsertedPointP7_objectS0__ZL35PyvtkPointLocator_InsertUniquePointP7_objectS0__ZL33PyvtkPointLocator_IsInsertedPointP7_objectS0__ZL33PyvtkPointLocator_InsertNextPointP7_objectS0__ZL29PyvtkPointLocator_InsertPointP7_objectS0__ZL36PyvtkPointLocator_InitPointInsertionP7_objectS0__ZL46PyvtkPointLocator_FindClosestPointWithinRadiusP7_objectS0__ZL34PyvtkPointLocator_FindClosestPointP7_objectS0__ZL35PyvtkPointSetCellIterator_StaticNewv_ZL38PyvtkPointSetCellIterator_SafeDownCastP7_objectS0__ZL34PyvtkPointSetCellIterator_IsTypeOfP7_objectS0__ZL29PyvtkPointSetCellIterator_IsAP7_objectS0__ZL37PyvtkPointSetCellIterator_NewInstanceP7_objectS0__ZL30PyvtkPointSetCellIterator_Type_ZL33PyvtkPointSetCellIterator_Methods_GLOBAL__sub_I_vtkPointSetCellIteratorPython.cxx_ZL35PyvtkPointSetCellIterator_GetCellIdP7_objectS0__ZL45PyvtkPointSetCellIterator_IsDoneWithTraversalP7_objectS0__ZL33PyvtkPolyDataCollection_StaticNewv_ZL36PyvtkPolyDataCollection_SafeDownCastP7_objectS0__ZL35PyvtkPolyDataCollection_GetNextItemP7_objectS0__ZL31PyvtkPolyDataCollection_AddItemP7_objectS0__ZL32PyvtkPolyDataCollection_IsTypeOfP7_objectS0__ZL27PyvtkPolyDataCollection_IsAP7_objectS0__ZL35PyvtkPolyDataCollection_NewInstanceP7_objectS0__ZL28PyvtkPolyDataCollection_Type_ZL31PyvtkPolyDataCollection_Methods_GLOBAL__sub_I_vtkPolyDataCollectionPython.cxx_ZL24PyvtkPolyPlane_StaticNewv_ZL27PyvtkPolyPlane_SafeDownCastP7_objectS0__ZL23PyvtkPolyPlane_IsTypeOfP7_objectS0__ZL26PyvtkPolyPlane_GetPolyLineP7_objectS0__ZL18PyvtkPolyPlane_IsAP7_objectS0__ZL26PyvtkPolyPlane_NewInstanceP7_objectS0__ZL19PyvtkPolyPlane_Type_ZL22PyvtkPolyPlane_Methods_GLOBAL__sub_I_vtkPolyPlanePython.cxx_ZL23PyvtkPolyPlane_GetMTimeP7_objectS0__ZL26PyvtkPolyPlane_SetPolyLineP7_objectS0__ZL31PyvtkPolyPlane_EvaluateGradientP7_objectS0__ZL31PyvtkPolyPlane_EvaluateFunctionP7_objectS0__ZL22PyvtkQuadric_StaticNewv_ZL25PyvtkQuadric_SafeDownCastP7_objectS0__ZL21PyvtkQuadric_IsTypeOfP7_objectS0__ZL28PyvtkQuadric_GetCoefficientsP7_objectS0__ZL16PyvtkQuadric_IsAP7_objectS0__ZL24PyvtkQuadric_NewInstanceP7_objectS0__ZL28PyvtkQuadric_SetCoefficientsP7_objectS0__ZL17PyvtkQuadric_Type_ZL20PyvtkQuadric_Methods_GLOBAL__sub_I_vtkQuadricPython.cxx_ZL29PyvtkQuadric_EvaluateGradientP7_objectS0__ZL29PyvtkQuadric_EvaluateFunctionP7_objectS0__ZL24PyvtkReebGraph_StaticNewv_ZL27PyvtkReebGraph_SafeDownCastP7_objectS0__ZL20PyvtkReebGraph_BuildP7_objectS0__ZL28PyvtkReebGraph_Build_Methods_ZL23PyvtkReebGraph_IsTypeOfP7_objectS0__ZL18PyvtkReebGraph_IsAP7_objectS0__ZL26PyvtkReebGraph_CloseStreamP7_objectS0__ZL32PyvtkReebGraph_GetDataObjectTypeP7_objectS0__ZL18PyvtkReebGraph_SetP7_objectS0__ZL23PyvtkReebGraph_SimplifyP7_objectS0__ZL23PyvtkReebGraph_Build_s3P7_objectS0__ZL23PyvtkReebGraph_Build_s4P7_objectS0__ZL23PyvtkReebGraph_Build_s5P7_objectS0__ZL23PyvtkReebGraph_Build_s6P7_objectS0__ZL23PyvtkReebGraph_Build_s1P7_objectS0__ZL23PyvtkReebGraph_Build_s2P7_objectS0__ZL26PyvtkReebGraph_NewInstanceP7_objectS0__ZL29PyvtkReebGraph_StreamTriangleP7_objectS0__ZL32PyvtkReebGraph_StreamTetrahedronP7_objectS0__ZL22PyvtkReebGraph_Methods_ZL19PyvtkReebGraph_Type_ZZ23PyvtkReebGraph_ClassNewE9constants_GLOBAL__sub_I_vtkReebGraphPython.cxx_ZL23PyvtkReebGraph_DeepCopyP7_objectS0__ZL44PyvtkReebGraphSimplificationMetric_StaticNewv_ZL47PyvtkReebGraphSimplificationMetric_SafeDownCastP7_objectS0__ZL43PyvtkReebGraphSimplificationMetric_IsTypeOfP7_objectS0__ZL48PyvtkReebGraphSimplificationMetric_GetLowerBoundP7_objectS0__ZL48PyvtkReebGraphSimplificationMetric_GetUpperBoundP7_objectS0__ZL48PyvtkReebGraphSimplificationMetric_SetLowerBoundP7_objectS0__ZL48PyvtkReebGraphSimplificationMetric_SetUpperBoundP7_objectS0__ZL38PyvtkReebGraphSimplificationMetric_IsAP7_objectS0__ZL46PyvtkReebGraphSimplificationMetric_NewInstanceP7_objectS0__ZL39PyvtkReebGraphSimplificationMetric_Type_ZL42PyvtkReebGraphSimplificationMetric_Methods_GLOBAL__sub_I_vtkReebGraphSimplificationMetricPython.cxx_ZL48PyvtkReebGraphSimplificationMetric_ComputeMetricP7_objectS0__ZL24PyvtkSelection_StaticNewv_ZL27PyvtkSelection_SafeDownCastP7_objectS0__ZL25PyvtkSelection_GetData_s1P7_objectS0__ZL25PyvtkSelection_GetData_s2P7_objectS0__ZL23PyvtkSelection_SubtractP7_objectS0__ZL31PyvtkSelection_Subtract_Methods_ZL20PyvtkSelection_UnionP7_objectS0__ZL28PyvtkSelection_Union_Methods_ZL25PyvtkSelection_RemoveNodeP7_objectS0__ZL33PyvtkSelection_RemoveNode_Methods_ZL23PyvtkSelection_IsTypeOfP7_objectS0__ZL26PyvtkSelection_NewInstanceP7_objectS0__ZL31PyvtkSelection_GetNumberOfNodesP7_objectS0__ZL32PyvtkSelection_GetDataObjectTypeP7_objectS0__ZL18PyvtkSelection_IsAP7_objectS0__ZL22PyvtkSelection_GetDataP7_objectS0__ZL30PyvtkSelection_GetData_Methods_ZL19PyvtkSelection_Type_ZL22PyvtkSelection_Methods_GLOBAL__sub_I_vtkSelectionPython.cxx_ZL19PyvtkSelection_DumpP7_objectS0__ZL23PyvtkSelection_GetMTimeP7_objectS0__ZL26PyvtkSelection_Subtract_s2P7_objectS0__ZL26PyvtkSelection_Subtract_s1P7_objectS0__ZL23PyvtkSelection_Union_s2P7_objectS0__ZL23PyvtkSelection_Union_s1P7_objectS0__ZL26PyvtkSelection_ShallowCopyP7_objectS0__ZL23PyvtkSelection_DeepCopyP7_objectS0__ZL29PyvtkSelection_RemoveAllNodesP7_objectS0__ZL28PyvtkSelection_RemoveNode_s2P7_objectS0__ZL28PyvtkSelection_RemoveNode_s1P7_objectS0__ZL22PyvtkSelection_AddNodeP7_objectS0__ZL22PyvtkSelection_GetNodeP7_objectS0__ZL25PyvtkSelection_InitializeP7_objectS0__ZL28PyvtkSelectionNode_StaticNewv_ZL31PyvtkSelectionNode_SafeDownCastP7_objectS0__ZL55PyvtkSelectionNode_ConvertAttributeTypeToSelectionFieldP7_objectS0__ZL55PyvtkSelectionNode_ConvertSelectionFieldToAttributeTypeP7_objectS0__ZL35PyvtkSelectionNode_INDEXED_VERTICESP7_objectS0__ZL37PyvtkSelectionNode_HIERARCHICAL_INDEXP7_objectS0__ZL37PyvtkSelectionNode_HIERARCHICAL_LEVELP7_objectS0__ZL34PyvtkSelectionNode_COMPOSITE_INDEXP7_objectS0__ZL29PyvtkSelectionNode_PROCESS_IDP7_objectS0__ZL26PyvtkSelectionNode_PROP_IDP7_objectS0__ZL23PyvtkSelectionNode_PROPP7_objectS0__ZL28PyvtkSelectionNode_SOURCE_IDP7_objectS0__ZL25PyvtkSelectionNode_SOURCEP7_objectS0__ZL30PyvtkSelectionNode_PIXEL_COUNTP7_objectS0__ZL26PyvtkSelectionNode_INVERSEP7_objectS0__ZL35PyvtkSelectionNode_COMPONENT_NUMBERP7_objectS0__ZL35PyvtkSelectionNode_CONTAINING_CELLSP7_objectS0__ZL26PyvtkSelectionNode_EPSILONP7_objectS0__ZL29PyvtkSelectionNode_FIELD_TYPEP7_objectS0__ZL31PyvtkSelectionNode_CONTENT_TYPEP7_objectS0__ZL27PyvtkSelectionNode_IsTypeOfP7_objectS0__ZL30PyvtkSelectionNode_NewInstanceP7_objectS0__ZL35PyvtkSelectionNode_GetSelectionDataP7_objectS0__ZL32PyvtkSelectionNode_GetPropertiesP7_objectS0__ZL37PyvtkSelectionNode_UnionSelectionListP7_objectS0__ZL40PyvtkSelectionNode_SubtractSelectionListP7_objectS0__ZL33PyvtkSelectionNode_GetQueryStringP7_objectS0__ZL34PyvtkSelectionNode_EqualPropertiesP7_objectS0__ZL22PyvtkSelectionNode_IsAP7_objectS0__ZL33PyvtkSelectionNode_SetQueryStringP7_objectS0__ZL40PyvtkSelectionNode_SelectionContent_Type_ZL38PyvtkSelectionNode_SelectionField_Type_ZL23PyvtkSelectionNode_Type_ZL26PyvtkSelectionNode_Methods_ZZ27PyvtkSelectionNode_ClassNewE9constants_ZZ27PyvtkSelectionNode_ClassNewE9constants_0_GLOBAL__sub_I_vtkSelectionNodePython.cxx_ZL31PyvtkSelectionNode_GetFieldTypeP7_objectS0__ZL31PyvtkSelectionNode_SetFieldTypeP7_objectS0__ZL33PyvtkSelectionNode_GetContentTypeP7_objectS0__ZL33PyvtkSelectionNode_SetContentTypeP7_objectS0__ZL27PyvtkSelectionNode_GetMTimeP7_objectS0__ZL30PyvtkSelectionNode_ShallowCopyP7_objectS0__ZL27PyvtkSelectionNode_DeepCopyP7_objectS0__ZL35PyvtkSelectionNode_SetSelectionDataP7_objectS0__ZL35PyvtkSelectionNode_GetSelectionListP7_objectS0__ZL35PyvtkSelectionNode_SetSelectionListP7_objectS0__ZL29PyvtkSelectionNode_InitializeP7_objectS0__ZL36PyvtkSimpleCellTessellator_StaticNewv_ZL39PyvtkSimpleCellTessellator_SafeDownCastP7_objectS0__ZL35PyvtkSimpleCellTessellator_IsTypeOfP7_objectS0__ZL32PyvtkSimpleCellTessellator_ResetP7_objectS0__ZL47PyvtkSimpleCellTessellator_GetFixedSubdivisionsP7_objectS0__ZL49PyvtkSimpleCellTessellator_GetMaxSubdivisionLevelP7_objectS0__ZL53PyvtkSimpleCellTessellator_GetMaxAdaptiveSubdivisionsP7_objectS0__ZL41PyvtkSimpleCellTessellator_GetGenericCellP7_objectS0__ZL47PyvtkSimpleCellTessellator_SetFixedSubdivisionsP7_objectS0__ZL49PyvtkSimpleCellTessellator_SetMaxSubdivisionLevelP7_objectS0__ZL47PyvtkSimpleCellTessellator_SetSubdivisionLevelsP7_objectS0__ZL30PyvtkSimpleCellTessellator_IsAP7_objectS0__ZL38PyvtkSimpleCellTessellator_NewInstanceP7_objectS0__ZL31PyvtkSimpleCellTessellator_Type_ZL34PyvtkSimpleCellTessellator_Methods_GLOBAL__sub_I_vtkSimpleCellTessellatorPython.cxx_ZL37PyvtkSimpleCellTessellator_InitializeP7_objectS0__ZL38PyvtkSimpleCellTessellator_TriangulateP7_objectS0__ZL37PyvtkSimpleCellTessellator_TessellateP7_objectS0__ZL41PyvtkSimpleCellTessellator_TessellateFaceP7_objectS0__ZL28PyvtkSortFieldData_StaticNewv_ZL31PyvtkSortFieldData_SafeDownCastP7_objectS0__ZL27PyvtkSortFieldData_IsTypeOfP7_objectS0__ZL22PyvtkSortFieldData_IsAP7_objectS0__ZL30PyvtkSortFieldData_NewInstanceP7_objectS0__ZL23PyvtkSortFieldData_SortP7_objectS0__ZL23PyvtkSortFieldData_Type_ZL26PyvtkSortFieldData_Methods_GLOBAL__sub_I_vtkSortFieldDataPython.cxx_ZL24PyvtkSpline_SafeDownCastP7_objectS0__ZL20PyvtkSpline_IsTypeOfP7_objectS0__ZL27PyvtkSpline_RemoveAllPointsP7_objectS0__ZL29PyvtkSpline_GetNumberOfPointsP7_objectS0__ZL37PyvtkSpline_GetLeftConstraintMinValueP7_objectS0__ZL37PyvtkSpline_GetLeftConstraintMaxValueP7_objectS0__ZL38PyvtkSpline_GetRightConstraintMinValueP7_objectS0__ZL38PyvtkSpline_GetRightConstraintMaxValueP7_objectS0__ZL19PyvtkSpline_ComputeP7_objectS0__ZL30PyvtkSpline_GetRightConstraintP7_objectS0__ZL29PyvtkSpline_GetLeftConstraintP7_objectS0__ZL25PyvtkSpline_GetRightValueP7_objectS0__ZL24PyvtkSpline_GetLeftValueP7_objectS0__ZL21PyvtkSpline_GetClosedP7_objectS0__ZL25PyvtkSpline_GetClampValueP7_objectS0__ZL23PyvtkSpline_RemovePointP7_objectS0__ZL20PyvtkSpline_EvaluateP7_objectS0__ZL20PyvtkSpline_AddPointP7_objectS0__ZL25PyvtkSpline_SetRightValueP7_objectS0__ZL24PyvtkSpline_SetLeftValueP7_objectS0__ZL25PyvtkSpline_SetClampValueP7_objectS0__ZL21PyvtkSpline_SetClosedP7_objectS0__ZL25PyvtkSpline_ClampValueOffP7_objectS0__ZL24PyvtkSpline_ClampValueOnP7_objectS0__ZL21PyvtkSpline_ClosedOffP7_objectS0__ZL20PyvtkSpline_ClosedOnP7_objectS0__ZL29PyvtkSpline_SetLeftConstraintP7_objectS0__ZL30PyvtkSpline_SetRightConstraintP7_objectS0__ZL30PyvtkSpline_GetParametricRangeP7_objectS0__ZL15PyvtkSpline_IsAP7_objectS0__ZL23PyvtkSpline_NewInstanceP7_objectS0__ZL30PyvtkSpline_SetParametricRangeP7_objectS0__ZL16PyvtkSpline_Type_ZL19PyvtkSpline_Methods_GLOBAL__sub_I_vtkSplinePython.cxx_ZL20PyvtkSpline_DeepCopyP7_objectS0__ZL20PyvtkSpline_GetMTimeP7_objectS0__ZL30PyvtkStaticCellLinks_StaticNewv_ZL33PyvtkStaticCellLinks_SafeDownCastP7_objectS0__ZL29PyvtkStaticCellLinks_IsTypeOfP7_objectS0__ZL24PyvtkStaticCellLinks_IsAP7_objectS0__ZL30PyvtkStaticCellLinks_GetNcellsP7_objectS0__ZL37PyvtkStaticCellLinks_GetNumberOfCellsP7_objectS0__ZL31PyvtkStaticCellLinks_BuildLinksP7_objectS0__ZL29PyvtkStaticCellLinks_GetCellsP7_objectS0__ZL32PyvtkStaticCellLinks_NewInstanceP7_objectS0__ZL31PyvtkStaticCellLinks_InitializeP7_objectS0__ZL25PyvtkStaticCellLinks_Type_ZL28PyvtkStaticCellLinks_Methods_GLOBAL__sub_I_vtkStaticCellLinksPython.cxx_GLOBAL__sub_I_vtkStaticCellLinksTemplatePython.cxx_ZL48PyvtkStructuredData_ComputePointStructuredCoordsP7_objectS0__ZL47PyvtkStructuredData_ComputeCellStructuredCoordsP7_objectS0__ZL56PyvtkStructuredData_ComputeCellStructuredCoordsForExtentP7_objectS0__ZL50PyvtkStructuredData_GetGlobalStructuredCoordinatesP7_objectS0__ZL49PyvtkStructuredData_GetLocalStructuredCoordinatesP7_objectS0__ZL56PyvtkStructuredData_GetCellDimensionsFromPointDimensionsP7_objectS0__ZL47PyvtkStructuredData_GetCellDimensionsFromExtentP7_objectS0__ZL43PyvtkStructuredData_GetDimensionsFromExtentP7_objectS0__ZL48PyvtkStructuredData_GetCellExtentFromPointExtentP7_objectS0__ZL33PyvtkStructuredData_ComputeCellIdP7_objectS0__ZL34PyvtkStructuredData_ComputePointIdP7_objectS0__ZL42PyvtkStructuredData_ComputeCellIdForExtentP7_objectS0__ZL43PyvtkStructuredData_ComputePointIdForExtentP7_objectS0__ZL36PyvtkStructuredData_GetNumberOfCellsP7_objectS0__ZL37PyvtkStructuredData_GetNumberOfPointsP7_objectS0__ZL33PyvtkStructuredData_GetPointCellsP7_objectS0__ZL33PyvtkStructuredData_GetCellPointsP7_objectS0__ZL39PyvtkStructuredData_GetDataDimension_s2P7_objectS0__ZL39PyvtkStructuredData_GetDataDimension_s1P7_objectS0__ZL48PyvtkStructuredData_GetDataDescriptionFromExtentP7_objectS0__ZL38PyvtkStructuredData_GetDataDescriptionP7_objectS0__ZL29PyvtkStructuredData_SetExtentP7_objectS0__ZL33PyvtkStructuredData_SetDimensionsP7_objectS0__ZL32PyvtkStructuredData_SafeDownCastP7_objectS0__ZL36PyvtkStructuredData_GetDataDimensionP7_objectS0__ZL44PyvtkStructuredData_GetDataDimension_Methods_ZL36PyvtkStructuredData_GetCellNeighborsP7_objectS0__ZL57PyvtkStructuredData_ComputePointStructuredCoordsForExtentP7_objectS0__ZL28PyvtkStructuredData_IsTypeOfP7_objectS0__ZL23PyvtkStructuredData_IsAP7_objectS0__ZL31PyvtkStructuredData_NewInstanceP7_objectS0__ZL24PyvtkStructuredData_Type_ZL27PyvtkStructuredData_Methods_ZZ30PyVTKAddFile_vtkStructuredDataE9constants_GLOBAL__sub_I_vtkStructuredDataPython.cxx_ZL41PyvtkStructuredPointsCollection_StaticNewv_ZL44PyvtkStructuredPointsCollection_SafeDownCastP7_objectS0__ZL43PyvtkStructuredPointsCollection_GetNextItemP7_objectS0__ZL39PyvtkStructuredPointsCollection_AddItemP7_objectS0__ZL40PyvtkStructuredPointsCollection_IsTypeOfP7_objectS0__ZL35PyvtkStructuredPointsCollection_IsAP7_objectS0__ZL43PyvtkStructuredPointsCollection_NewInstanceP7_objectS0__ZL36PyvtkStructuredPointsCollection_Type_ZL39PyvtkStructuredPointsCollection_Methods_GLOBAL__sub_I_vtkStructuredPointsCollectionPython.cxx_ZL31PyvtkStructuredPoints_StaticNewv_ZL34PyvtkStructuredPoints_SafeDownCastP7_objectS0__ZL39PyvtkStructuredPoints_GetDataObjectTypeP7_objectS0__ZL30PyvtkStructuredPoints_IsTypeOfP7_objectS0__ZL25PyvtkStructuredPoints_IsAP7_objectS0__ZL33PyvtkStructuredPoints_NewInstanceP7_objectS0__ZL26PyvtkStructuredPoints_Type_ZL29PyvtkStructuredPoints_Methods_GLOBAL__sub_I_vtkStructuredPointsPython.cxx_ZL27PyvtkSuperquadric_StaticNewv_ZL30PyvtkSuperquadric_SafeDownCastP7_objectS0__ZL26PyvtkSuperquadric_IsTypeOfP7_objectS0__ZL38PyvtkSuperquadric_GetThicknessMinValueP7_objectS0__ZL38PyvtkSuperquadric_GetThicknessMaxValueP7_objectS0__ZL27PyvtkSuperquadric_GetCenterP7_objectS0__ZL26PyvtkSuperquadric_GetScaleP7_objectS0__ZL33PyvtkSuperquadric_GetPhiRoundnessP7_objectS0__ZL35PyvtkSuperquadric_GetThetaRoundnessP7_objectS0__ZL29PyvtkSuperquadric_GetToroidalP7_objectS0__ZL30PyvtkSuperquadric_GetThicknessP7_objectS0__ZL25PyvtkSuperquadric_GetSizeP7_objectS0__ZL35PyvtkSuperquadric_SetThetaRoundnessP7_objectS0__ZL33PyvtkSuperquadric_SetPhiRoundnessP7_objectS0__ZL25PyvtkSuperquadric_SetSizeP7_objectS0__ZL29PyvtkSuperquadric_SetToroidalP7_objectS0__ZL29PyvtkSuperquadric_ToroidalOffP7_objectS0__ZL28PyvtkSuperquadric_ToroidalOnP7_objectS0__ZL30PyvtkSuperquadric_SetThicknessP7_objectS0__ZL21PyvtkSuperquadric_IsAP7_objectS0__ZL29PyvtkSuperquadric_NewInstanceP7_objectS0__ZL26PyvtkSuperquadric_SetScaleP7_objectS0__ZL27PyvtkSuperquadric_SetCenterP7_objectS0__ZL22PyvtkSuperquadric_Type_ZL25PyvtkSuperquadric_Methods_GLOBAL__sub_I_vtkSuperquadricPython.cxx_ZL34PyvtkSuperquadric_EvaluateGradientP7_objectS0__ZL34PyvtkSuperquadric_EvaluateFunctionP7_objectS0__ZL30PyvtkTreeBFSIterator_StaticNewv_ZL33PyvtkTreeBFSIterator_SafeDownCastP7_objectS0__ZL29PyvtkTreeBFSIterator_IsTypeOfP7_objectS0__ZL24PyvtkTreeBFSIterator_IsAP7_objectS0__ZL32PyvtkTreeBFSIterator_NewInstanceP7_objectS0__ZL25PyvtkTreeBFSIterator_Type_ZL28PyvtkTreeBFSIterator_Methods_GLOBAL__sub_I_vtkTreeBFSIteratorPython.cxx_ZL19PyvtkTree_StaticNewv_ZL22PyvtkTree_SafeDownCastP7_objectS0__ZL20PyvtkTree_GetData_s1P7_objectS0__ZL20PyvtkTree_GetData_s2P7_objectS0__ZL18PyvtkTree_IsTypeOfP7_objectS0__ZL13PyvtkTree_IsAP7_objectS0__ZL27PyvtkTree_GetDataObjectTypeP7_objectS0__ZL17PyvtkTree_GetRootP7_objectS0__ZL16PyvtkTree_IsLeafP7_objectS0__ZL19PyvtkTree_GetParentP7_objectS0__ZL18PyvtkTree_GetLevelP7_objectS0__ZL23PyvtkTree_GetParentEdgeP7_objectS0__ZL29PyvtkTree_GetNumberOfChildrenP7_objectS0__ZL18PyvtkTree_GetChildP7_objectS0__ZL21PyvtkTree_GetChildrenP7_objectS0__ZL21PyvtkTree_NewInstanceP7_objectS0__ZL17PyvtkTree_GetDataP7_objectS0__ZL25PyvtkTree_GetData_Methods_ZL14PyvtkTree_Type_ZL17PyvtkTree_Methods_GLOBAL__sub_I_vtkTreePython.cxx_ZL25PyvtkTree_ReorderChildrenP7_objectS0__ZL30PyvtkTreeDFSIterator_StaticNewv_ZL33PyvtkTreeDFSIterator_SafeDownCastP7_objectS0__ZL28PyvtkTreeDFSIterator_GetModeP7_objectS0__ZL28PyvtkTreeDFSIterator_SetModeP7_objectS0__ZL29PyvtkTreeDFSIterator_IsTypeOfP7_objectS0__ZL24PyvtkTreeDFSIterator_IsAP7_objectS0__ZL32PyvtkTreeDFSIterator_NewInstanceP7_objectS0__ZL34PyvtkTreeDFSIterator_ModeType_Type_ZL25PyvtkTreeDFSIterator_Type_ZL28PyvtkTreeDFSIterator_Methods_GLOBAL__sub_I_vtkTreeDFSIteratorPython.cxx_ZL30PyvtkUndirectedGraph_StaticNewv_ZL33PyvtkUndirectedGraph_SafeDownCastP7_objectS0__ZL31PyvtkUndirectedGraph_GetData_s1P7_objectS0__ZL31PyvtkUndirectedGraph_GetData_s2P7_objectS0__ZL29PyvtkUndirectedGraph_IsTypeOfP7_objectS0__ZL38PyvtkUndirectedGraph_GetDataObjectTypeP7_objectS0__ZL24PyvtkUndirectedGraph_IsAP7_objectS0__ZL32PyvtkUndirectedGraph_NewInstanceP7_objectS0__ZL28PyvtkUndirectedGraph_GetDataP7_objectS0__ZL36PyvtkUndirectedGraph_GetData_Methods_ZL25PyvtkUndirectedGraph_Type_ZL28PyvtkUndirectedGraph_Methods_GLOBAL__sub_I_vtkUndirectedGraphPython.cxx_ZL37PyvtkUndirectedGraph_IsStructureValidP7_objectS0__ZL31PyvtkUndirectedGraph_GetInEdgesP7_objectS0__ZL30PyvtkUndirectedGraph_GetInEdgeP7_objectS0__ZL32PyvtkUndirectedGraph_GetInDegreeP7_objectS0__ZL43PyvtkUnstructuredGridCellIterator_StaticNewv_ZL46PyvtkUnstructuredGridCellIterator_SafeDownCastP7_objectS0__ZL42PyvtkUnstructuredGridCellIterator_IsTypeOfP7_objectS0__ZL37PyvtkUnstructuredGridCellIterator_IsAP7_objectS0__ZL45PyvtkUnstructuredGridCellIterator_NewInstanceP7_objectS0__ZL38PyvtkUnstructuredGridCellIterator_Type_ZL41PyvtkUnstructuredGridCellIterator_Methods_GLOBAL__sub_I_vtkUnstructuredGridCellIteratorPython.cxx_ZL43PyvtkUnstructuredGridCellIterator_GetCellIdP7_objectS0__ZL53PyvtkUnstructuredGridCellIterator_IsDoneWithTraversalP7_objectS0__ZL33PyvtkVertexListIterator_StaticNewv_ZL36PyvtkVertexListIterator_SafeDownCastP7_objectS0__ZL32PyvtkVertexListIterator_IsTypeOfP7_objectS0__ZL28PyvtkVertexListIterator_NextP7_objectS0__ZL31PyvtkVertexListIterator_HasNextP7_objectS0__ZL27PyvtkVertexListIterator_IsAP7_objectS0__ZL32PyvtkVertexListIterator_GetGraphP7_objectS0__ZL35PyvtkVertexListIterator_NewInstanceP7_objectS0__ZL28PyvtkVertexListIterator_Type_ZL31PyvtkVertexListIterator_Methods_GLOBAL__sub_I_vtkVertexListIteratorPython.cxx_ZL32PyvtkVertexListIterator_SetGraphP7_objectS0__ZL30PyvtkTreeIterator_SafeDownCastP7_objectS0__ZL26PyvtkTreeIterator_IsTypeOfP7_objectS0__ZL21PyvtkTreeIterator_IsAP7_objectS0__ZL25PyvtkTreeIterator_RestartP7_objectS0__ZL22PyvtkTreeIterator_NextP7_objectS0__ZL25PyvtkTreeIterator_HasNextP7_objectS0__ZL25PyvtkTreeIterator_GetTreeP7_objectS0__ZL32PyvtkTreeIterator_GetStartVertexP7_objectS0__ZL32PyvtkTreeIterator_SetStartVertexP7_objectS0__ZL25PyvtkTreeIterator_SetTreeP7_objectS0__ZL29PyvtkTreeIterator_NewInstanceP7_objectS0__ZL22PyvtkTreeIterator_Type_ZL25PyvtkTreeIterator_Methods_GLOBAL__sub_I_vtkTreeIteratorPython.cxx_ZL15PyvtkAtom_CCopyPKv_ZL17PyvtkAtom_vtkAtomP7_objectS0__ZL14PyvtkAtom_HashP7_object_ZL16PyvtkAtom_DeleteP7_object_ZL21PyvtkAtom_GetMoleculeP7_objectS0__ZL15PyvtkAtom_GetIdP7_objectS0__ZL25PyvtkAtom_GetAtomicNumberP7_objectS0__ZL25PyvtkAtom_SetAtomicNumberP7_objectS0__ZL24PyvtkAtom_SetPosition_s1P7_objectS0__ZL24PyvtkAtom_SetPosition_s3P7_objectS0__ZL21PyvtkAtom_SetPositionP7_objectS0__ZL29PyvtkAtom_SetPosition_Methods_ZL21PyvtkAtom_GetPositionP7_objectS0__ZL13PyvtkAtom_NewP11_typeobjectP7_objectS2__ZL14PyvtkAtom_Type_ZL25PyvtkAtom_vtkAtom_Methods_ZL17PyvtkAtom_Methods_GLOBAL__sub_I_vtkAtomPython.cxx_ZL15PyvtkBond_CCopyPKv_ZL17PyvtkBond_vtkBondP7_objectS0__ZL20PyvtkBond_GetEndAtomP7_objectS0__ZL14PyvtkBond_HashP7_object_ZL16PyvtkBond_DeleteP7_object_ZL15PyvtkBond_GetIdP7_objectS0__ZL21PyvtkBond_GetMoleculeP7_objectS0__ZL24PyvtkBond_GetBeginAtomIdP7_objectS0__ZL22PyvtkBond_GetEndAtomIdP7_objectS0__ZL18PyvtkBond_GetOrderP7_objectS0__ZL19PyvtkBond_GetLengthP7_objectS0__ZL22PyvtkBond_GetBeginAtomP7_objectS0__ZL13PyvtkBond_NewP11_typeobjectP7_objectS2__ZL14PyvtkBond_Type_ZL25PyvtkBond_vtkBond_Methods_ZL17PyvtkBond_Methods_GLOBAL__sub_I_vtkBondPython.cxx_ZL23PyvtkMolecule_StaticNewv_ZL26PyvtkMolecule_SafeDownCastP7_objectS0__ZL24PyvtkMolecule_AppendBondP7_objectS0__ZL32PyvtkMolecule_AppendBond_Methods_ZL30PyvtkMolecule_GetPlaneFromBondP7_objectS0__ZL22PyvtkMolecule_IsTypeOfP7_objectS0__ZL26PyvtkMolecule_ClearLatticeP7_objectS0__ZL24PyvtkMolecule_HasLatticeP7_objectS0__ZL36PyvtkMolecule_GetAtomicPositionArrayP7_objectS0__ZL30PyvtkMolecule_GetNumberOfAtomsP7_objectS0__ZL30PyvtkMolecule_GetNumberOfBondsP7_objectS0__ZL34PyvtkMolecule_GetAtomicNumberArrayP7_objectS0__ZL31PyvtkMolecule_GetDataObjectTypeP7_objectS0__ZL31PyvtkMolecule_GetElectronicDataP7_objectS0__ZL30PyvtkMolecule_GetLatticeOriginP7_objectS0__ZL26PyvtkMolecule_GetBondOrderP7_objectS0__ZL33PyvtkMolecule_GetAtomAtomicNumberP7_objectS0__ZL27PyvtkMolecule_GetBondLengthP7_objectS0__ZL21PyvtkMolecule_GetAtomP7_objectS0__ZL21PyvtkMolecule_GetBondP7_objectS0__ZL33PyvtkMolecule_SetAtomAtomicNumberP7_objectS0__ZL26PyvtkMolecule_SetBondOrderP7_objectS0__ZL27PyvtkMolecule_AppendBond_s1P7_objectS0__ZL25PyvtkMolecule_NewInstanceP7_objectS0__ZL30PyvtkMolecule_SetLatticeOriginP7_objectS0__ZL27PyvtkMolecule_AppendBond_s2P7_objectS0__ZL17PyvtkMolecule_IsAP7_objectS0__ZL29PyvtkMolecule_GetAtomPositionP7_objectS0__ZL29PyvtkMolecule_SetAtomPositionP7_objectS0__ZL24PyvtkMolecule_SetLatticeP7_objectS0__ZL24PyvtkMolecule_GetLatticeP7_objectS0__ZL24PyvtkMolecule_AppendAtomP7_objectS0__ZL18PyvtkMolecule_Type_ZL21PyvtkMolecule_Methods_GLOBAL__sub_I_vtkMoleculePython.cxx_ZL32PyvtkMolecule_DeepCopyAttributesP7_objectS0__ZL35PyvtkMolecule_ShallowCopyAttributesP7_objectS0__ZL31PyvtkMolecule_DeepCopyStructureP7_objectS0__ZL34PyvtkMolecule_ShallowCopyStructureP7_objectS0__ZL22PyvtkMolecule_DeepCopyP7_objectS0__ZL25PyvtkMolecule_ShallowCopyP7_objectS0__ZL29PyvtkMolecule_CheckedDeepCopyP7_objectS0__ZL32PyvtkMolecule_CheckedShallowCopyP7_objectS0__ZL31PyvtkMolecule_SetElectronicDataP7_objectS0__ZL24PyvtkMolecule_InitializeP7_objectS0__ZL40PyvtkAbstractElectronicData_SafeDownCastP7_objectS0__ZL36PyvtkAbstractElectronicData_IsTypeOfP7_objectS0__ZL39PyvtkAbstractElectronicData_NewInstanceP7_objectS0__ZL42PyvtkAbstractElectronicData_GetNumberOfMOsP7_objectS0__ZL48PyvtkAbstractElectronicData_GetNumberOfElectronsP7_objectS0__ZL46PyvtkAbstractElectronicData_GetElectronDensityP7_objectS0__ZL38PyvtkAbstractElectronicData_GetPaddingP7_objectS0__ZL48PyvtkAbstractElectronicData_GetLUMOOrbitalNumberP7_objectS0__ZL33PyvtkAbstractElectronicData_GetMOP7_objectS0__ZL48PyvtkAbstractElectronicData_GetHOMOOrbitalNumberP7_objectS0__ZL34PyvtkAbstractElectronicData_IsLUMOP7_objectS0__ZL35PyvtkAbstractElectronicData_GetLUMOP7_objectS0__ZL34PyvtkAbstractElectronicData_IsHOMOP7_objectS0__ZL35PyvtkAbstractElectronicData_GetHOMOP7_objectS0__ZL31PyvtkAbstractElectronicData_IsAP7_objectS0__ZL32PyvtkAbstractElectronicData_Type_ZL35PyvtkAbstractElectronicData_Methods_GLOBAL__sub_I_vtkAbstractElectronicDataPython.cxx_ZL36PyvtkAbstractElectronicData_DeepCopyP7_objectS0__ZL25PyvtkVector_IdLi4EE_CCopyPKv_ZL25PyvtkVector_IfLi4EE_CCopyPKv_ZL25PyvtkVector_IiLi4EE_CCopyPKv_ZL25PyvtkVector_IdLi2EE_CCopyPKv_ZL25PyvtkVector_IfLi2EE_CCopyPKv_ZL25PyvtkVector_IiLi2EE_CCopyPKv_ZL25PyvtkVector_IdLi3EE_CCopyPKv_ZL25PyvtkVector_IfLi3EE_CCopyPKv_ZL25PyvtkVector_IiLi3EE_CCopyPKv_ZL22PyvtkVector2_IdE_CCopyPKv_ZL22PyvtkVector2_IfE_CCopyPKv_ZL22PyvtkVector2_IiE_CCopyPKv_ZL22PyvtkVector3_IdE_CCopyPKv_ZL22PyvtkVector3_IfE_CCopyPKv_ZL22PyvtkVector3_IiE_CCopyPKv_ZL19PyvtkVector2i_CCopyPKv_ZL19PyvtkVector2f_CCopyPKv_ZL19PyvtkVector2d_CCopyPKv_ZL19PyvtkVector3i_CCopyPKv_ZL19PyvtkVector3f_CCopyPKv_ZL19PyvtkVector3d_CCopyPKv_ZL32PyvtkVector_IdLi4EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IfLi4EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IiLi4EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IdLi2EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IfLi2EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IiLi2EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IdLi3EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IfLi3EE_vtkVector_s4P7_objectS0__ZL32PyvtkVector_IiLi3EE_vtkVector_s4P7_objectS0__ZL30PyvtkVector2_IdE_vtkVector2_s5P7_objectS0__ZL30PyvtkVector2_IfE_vtkVector2_s5P7_objectS0__ZL30PyvtkVector2_IiE_vtkVector2_s5P7_objectS0__ZL30PyvtkVector3_IdE_vtkVector3_s5P7_objectS0__ZL30PyvtkVector3_IfE_vtkVector3_s5P7_objectS0__ZL30PyvtkVector3_IiE_vtkVector3_s5P7_objectS0__ZL28PyvtkVector2i_vtkVector2i_s7P7_objectS0__ZL28PyvtkVector2f_vtkVector2f_s7P7_objectS0__ZL28PyvtkVector2d_vtkVector2d_s7P7_objectS0__ZL28PyvtkVector3i_vtkVector3i_s7P7_objectS0__ZL28PyvtkVector3f_vtkVector3f_s7P7_objectS0__ZL28PyvtkVector3d_vtkVector3d_s7P7_objectS0__ZL28PyvtkVector2d_vtkVector2d_s6P7_objectS0__ZL28PyvtkVector2d_vtkVector2d_s5P7_objectS0__ZL28PyvtkVector2f_vtkVector2f_s6P7_objectS0__ZL28PyvtkVector2f_vtkVector2f_s5P7_objectS0__ZL28PyvtkVector2i_vtkVector2i_s6P7_objectS0__ZL28PyvtkVector2i_vtkVector2i_s5P7_objectS0__ZL28PyvtkVector3d_vtkVector3d_s6P7_objectS0__ZL28PyvtkVector3d_vtkVector3d_s5P7_objectS0__ZL28PyvtkVector3f_vtkVector3f_s6P7_objectS0__ZL28PyvtkVector3f_vtkVector3f_s5P7_objectS0__ZL28PyvtkVector3i_vtkVector3i_s6P7_objectS0__ZL28PyvtkVector3i_vtkVector3i_s5P7_objectS0__ZL32PyvtkVector_IdLi4EE_vtkVector_s3P7_objectS0__ZL32PyvtkVector_IdLi2EE_vtkVector_s3P7_objectS0__ZL30PyvtkVector2_IdE_vtkVector2_s3P7_objectS0__ZL28PyvtkVector2d_vtkVector2d_s4P7_objectS0__ZL32PyvtkVector_IdLi3EE_vtkVector_s3P7_objectS0__ZL30PyvtkVector3_IdE_vtkVector3_s3P7_objectS0__ZL28PyvtkVector3d_vtkVector3d_s4P7_objectS0__ZL32PyvtkVector_IdLi4EE_vtkVector_s2P7_objectS0__ZL32PyvtkVector_IdLi2EE_vtkVector_s2P7_objectS0__ZL30PyvtkVector2_IdE_vtkVector2_s2P7_objectS0__ZL28PyvtkVector2d_vtkVector2d_s3P7_objectS0__ZL32PyvtkVector_IdLi3EE_vtkVector_s2P7_objectS0__ZL30PyvtkVector3_IdE_vtkVector3_s2P7_objectS0__ZL28PyvtkVector3d_vtkVector3d_s3P7_objectS0__ZL19PyvtkVector3f_CrossP7_objectS0__ZL26PyvtkVector_IdLi4EE_DeleteP7_object_ZL26PyvtkVector_IfLi4EE_DeleteP7_object_ZL26PyvtkVector_IiLi4EE_DeleteP7_object_ZL26PyvtkVector_IdLi2EE_DeleteP7_object_ZL26PyvtkVector_IfLi2EE_DeleteP7_object_ZL26PyvtkVector_IiLi2EE_DeleteP7_object_ZL26PyvtkVector_IdLi3EE_DeleteP7_object_ZL26PyvtkVector_IfLi3EE_DeleteP7_object_ZL26PyvtkVector_IiLi3EE_DeleteP7_object_ZL23PyvtkVector2_IdE_DeleteP7_object_ZL23PyvtkVector2_IfE_DeleteP7_object_ZL23PyvtkVector2_IiE_DeleteP7_object_ZL23PyvtkVector3_IdE_DeleteP7_object_ZL23PyvtkVector3_IfE_DeleteP7_object_ZL23PyvtkVector3_IiE_DeleteP7_object_ZL20PyvtkVector2i_DeleteP7_object_ZL20PyvtkVector2f_DeleteP7_object_ZL20PyvtkVector2d_DeleteP7_object_ZL20PyvtkVector3i_DeleteP7_object_ZL20PyvtkVector3f_DeleteP7_object_ZL20PyvtkVector3d_DeleteP7_object_ZL24PyvtkVector_IdLi4EE_HashP7_object_ZL32PyvtkVector_IfLi4EE_vtkVector_s3P7_objectS0__ZL32PyvtkVector_IfLi2EE_vtkVector_s3P7_objectS0__ZL30PyvtkVector2_IfE_vtkVector2_s3P7_objectS0__ZL28PyvtkVector2f_vtkVector2f_s4P7_objectS0__ZL32PyvtkVector_IfLi3EE_vtkVector_s3P7_objectS0__ZL30PyvtkVector3_IfE_vtkVector3_s3P7_objectS0__ZL28PyvtkVector3f_vtkVector3f_s4P7_objectS0__ZL32PyvtkVector_IfLi4EE_vtkVector_s2P7_objectS0__ZL32PyvtkVector_IfLi2EE_vtkVector_s2P7_objectS0__ZL30PyvtkVector2_IfE_vtkVector2_s2P7_objectS0__ZL28PyvtkVector2f_vtkVector2f_s3P7_objectS0__ZL32PyvtkVector_IfLi3EE_vtkVector_s2P7_objectS0__ZL30PyvtkVector3_IfE_vtkVector3_s2P7_objectS0__ZL28PyvtkVector3f_vtkVector3f_s3P7_objectS0__ZL32PyvtkVector_IiLi4EE_vtkVector_s3P7_objectS0__ZL32PyvtkVector_IiLi2EE_vtkVector_s3P7_objectS0__ZL30PyvtkVector2_IiE_vtkVector2_s3P7_objectS0__ZL28PyvtkVector2i_vtkVector2i_s4P7_objectS0__ZL32PyvtkVector_IiLi3EE_vtkVector_s3P7_objectS0__ZL30PyvtkVector3_IiE_vtkVector3_s3P7_objectS0__ZL28PyvtkVector3i_vtkVector3i_s4P7_objectS0__ZL32PyvtkVector_IiLi4EE_vtkVector_s2P7_objectS0__ZL32PyvtkVector_IiLi2EE_vtkVector_s2P7_objectS0__ZL30PyvtkVector2_IiE_vtkVector2_s2P7_objectS0__ZL28PyvtkVector2i_vtkVector2i_s3P7_objectS0__ZL32PyvtkVector_IiLi3EE_vtkVector_s2P7_objectS0__ZL30PyvtkVector3_IiE_vtkVector3_s2P7_objectS0__ZL28PyvtkVector3i_vtkVector3i_s3P7_objectS0__ZL28PyvtkVector2_IdE_RichCompareP7_objectS0_i_ZL21PyvtkVector2_IdE_Type_ZL28PyvtkVector2_IfE_RichCompareP7_objectS0_i_ZL21PyvtkVector2_IfE_Type_ZL28PyvtkVector2_IiE_RichCompareP7_objectS0_i_ZL21PyvtkVector2_IiE_Type_ZL28PyvtkVector3_IdE_RichCompareP7_objectS0_i_ZL21PyvtkVector3_IdE_Type_ZL28PyvtkVector3_IfE_RichCompareP7_objectS0_i_ZL21PyvtkVector3_IfE_Type_ZL28PyvtkVector3_IiE_RichCompareP7_objectS0_i_ZL21PyvtkVector3_IiE_Type_ZL17PyvtkVector3f_NewP11_typeobjectP7_objectS2__ZL33PyvtkVector3f_vtkVector3f_Methods_ZL18PyvtkVector3d_HashP7_object_ZL24PyvtkVector_IfLi4EE_HashP7_object_ZL24PyvtkVector_IiLi4EE_HashP7_object_ZL24PyvtkVector_IdLi2EE_HashP7_object_ZL24PyvtkVector_IfLi2EE_HashP7_object_ZL24PyvtkVector_IiLi2EE_HashP7_object_ZL24PyvtkVector_IdLi3EE_HashP7_object_ZL24PyvtkVector_IfLi3EE_HashP7_object_ZL24PyvtkVector_IiLi3EE_HashP7_object_ZL21PyvtkVector2_IdE_HashP7_object_ZL21PyvtkVector2_IfE_HashP7_object_ZL21PyvtkVector2_IiE_HashP7_object_ZL21PyvtkVector3_IdE_HashP7_object_ZL21PyvtkVector3_IfE_HashP7_object_ZL21PyvtkVector3_IiE_HashP7_object_ZL18PyvtkVector2i_HashP7_object_ZL18PyvtkVector2f_HashP7_object_ZL18PyvtkVector2d_HashP7_object_ZL18PyvtkVector3i_HashP7_object_ZL18PyvtkVector3f_HashP7_object_ZL23PyvtkVector_IdLi2EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IdLi2EE_vtkVector_Methods_ZL23PyvtkVector_IfLi2EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IfLi2EE_vtkVector_Methods_ZL23PyvtkVector_IiLi2EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IiLi2EE_vtkVector_Methods_ZL23PyvtkVector_IdLi3EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IdLi3EE_vtkVector_Methods_ZL23PyvtkVector_IiLi3EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IiLi3EE_vtkVector_Methods_ZL23PyvtkVector_IfLi3EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IfLi3EE_vtkVector_Methods_ZL23PyvtkVector_IfLi4EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IfLi4EE_vtkVector_Methods_ZL23PyvtkVector_IdLi4EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IdLi4EE_vtkVector_Methods_ZL23PyvtkVector_IiLi4EE_NewP11_typeobjectP7_objectS2__ZL37PyvtkVector_IiLi4EE_vtkVector_Methods_ZL21PyvtkVector3_IfE_GetYP7_objectS0__ZL21PyvtkVector3_IiE_GetYP7_objectS0__ZL21PyvtkVector3_IdE_GetXP7_objectS0__ZL21PyvtkVector3_IiE_GetXP7_objectS0__ZL21PyvtkVector3_IfE_GetXP7_objectS0__ZL21PyvtkVector3_IdE_GetYP7_objectS0__ZL21PyvtkVector3_IiE_GetZP7_objectS0__ZL21PyvtkVector2_IdE_GetXP7_objectS0__ZL21PyvtkVector2_IfE_GetXP7_objectS0__ZL21PyvtkVector2_IfE_GetYP7_objectS0__ZL21PyvtkVector3_IfE_GetZP7_objectS0__ZL21PyvtkVector3_IdE_GetZP7_objectS0__ZL21PyvtkVector2_IiE_GetXP7_objectS0__ZL21PyvtkVector2_IiE_GetYP7_objectS0__ZL21PyvtkVector2_IdE_GetYP7_objectS0__ZL31PyvtkVector_IiLi2EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IfLi3EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IfLi4EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IdLi4EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IiLi3EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IdLi2EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IfLi2EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IdLi3EE_SquaredNormP7_objectS0__ZL31PyvtkVector_IiLi4EE_SquaredNormP7_objectS0__ZL21PyvtkVector2_IiE_SetXP7_objectS0__ZL21PyvtkVector3_IiE_SetXP7_objectS0__ZL21PyvtkVector2_IiE_SetYP7_objectS0__ZL21PyvtkVector2_IdE_SetYP7_objectS0__ZL21PyvtkVector3_IiE_SetZP7_objectS0__ZL21PyvtkVector2_IfE_SetXP7_objectS0__ZL21PyvtkVector2_IdE_SetXP7_objectS0__ZL21PyvtkVector2_IfE_SetYP7_objectS0__ZL21PyvtkVector3_IdE_SetYP7_objectS0__ZL21PyvtkVector3_IdE_SetZP7_objectS0__ZL21PyvtkVector3_IfE_SetYP7_objectS0__ZL21PyvtkVector3_IfE_SetZP7_objectS0__ZL21PyvtkVector3_IdE_SetXP7_objectS0__ZL21PyvtkVector3_IfE_SetXP7_objectS0__ZL21PyvtkVector3_IiE_SetYP7_objectS0__ZL24PyvtkVector_IfLi4EE_NormP7_objectS0__ZL24PyvtkVector_IfLi2EE_NormP7_objectS0__ZL24PyvtkVector_IdLi4EE_NormP7_objectS0__ZL24PyvtkVector_IdLi2EE_NormP7_objectS0__ZL24PyvtkVector_IfLi3EE_NormP7_objectS0__ZL24PyvtkVector_IdLi3EE_NormP7_objectS0__ZL24PyvtkVector_IiLi4EE_NormP7_objectS0__ZL24PyvtkVector_IiLi3EE_NormP7_objectS0__ZL24PyvtkVector_IiLi2EE_NormP7_objectS0__ZL20PyvtkVector2_IdE_NewP11_typeobjectP7_objectS2__ZL35PyvtkVector2_IdE_vtkVector2_Methods_ZL20PyvtkVector2_IiE_NewP11_typeobjectP7_objectS2__ZL35PyvtkVector2_IiE_vtkVector2_Methods_ZL17PyvtkVector2i_NewP11_typeobjectP7_objectS2__ZL33PyvtkVector2i_vtkVector2i_Methods_ZL20PyvtkVector2_IfE_NewP11_typeobjectP7_objectS2__ZL35PyvtkVector2_IfE_vtkVector2_Methods_ZL17PyvtkVector2f_NewP11_typeobjectP7_objectS2__ZL33PyvtkVector2f_vtkVector2f_Methods_ZL17PyvtkVector2d_NewP11_typeobjectP7_objectS2__ZL33PyvtkVector2d_vtkVector2d_Methods_ZL20PyvtkVector2_IdE_SetP7_objectS0__ZL20PyvtkVector2_IiE_SetP7_objectS0__ZL20PyvtkVector2_IfE_SetP7_objectS0__ZL29PyvtkVector_IfLi2EE_NormalizeP7_objectS0__ZL29PyvtkVector_IfLi3EE_NormalizeP7_objectS0__ZL29PyvtkVector_IdLi3EE_NormalizeP7_objectS0__ZL29PyvtkVector_IdLi4EE_NormalizeP7_objectS0__ZL29PyvtkVector_IfLi4EE_NormalizeP7_objectS0__ZL29PyvtkVector_IdLi2EE_NormalizeP7_objectS0__ZL29PyvtkVector_IiLi4EE_NormalizeP7_objectS0__ZL29PyvtkVector_IiLi2EE_NormalizeP7_objectS0__ZL29PyvtkVector_IiLi3EE_NormalizeP7_objectS0__ZL20PyvtkVector3_IdE_NewP11_typeobjectP7_objectS2__ZL35PyvtkVector3_IdE_vtkVector3_Methods_ZL20PyvtkVector3_IiE_NewP11_typeobjectP7_objectS2__ZL35PyvtkVector3_IiE_vtkVector3_Methods_ZL17PyvtkVector3d_NewP11_typeobjectP7_objectS2__ZL33PyvtkVector3d_vtkVector3d_Methods_ZL17PyvtkVector3i_NewP11_typeobjectP7_objectS2__ZL33PyvtkVector3i_vtkVector3i_Methods_ZL20PyvtkVector3_IfE_NewP11_typeobjectP7_objectS2__ZL35PyvtkVector3_IfE_vtkVector3_Methods_ZL30PyvtkVector_IdLi4EE_NormalizedP7_objectS0__ZL30PyvtkVector_IdLi3EE_NormalizedP7_objectS0__ZL20PyvtkVector3_IfE_SetP7_objectS0__ZL30PyvtkVector_IfLi2EE_NormalizedP7_objectS0__ZL20PyvtkVector3_IdE_SetP7_objectS0__ZL20PyvtkVector3_IiE_SetP7_objectS0__ZL30PyvtkVector_IdLi2EE_NormalizedP7_objectS0__ZL30PyvtkVector_IfLi3EE_NormalizedP7_objectS0__ZL30PyvtkVector_IiLi2EE_NormalizedP7_objectS0__ZL23PyvtkVector_IiLi4EE_DotP7_objectS0__ZL23PyvtkVector_IfLi3EE_DotP7_objectS0__ZL23PyvtkVector_IdLi4EE_DotP7_objectS0__ZL23PyvtkVector_IiLi2EE_DotP7_objectS0__ZL23PyvtkVector_IdLi3EE_DotP7_objectS0__ZL23PyvtkVector_IiLi3EE_DotP7_objectS0__ZL23PyvtkVector_IdLi2EE_DotP7_objectS0__ZL23PyvtkVector_IfLi2EE_DotP7_objectS0__ZL23PyvtkVector_IfLi4EE_DotP7_objectS0__ZL30PyvtkVector_IfLi4EE_NormalizedP7_objectS0__ZL24PyvtkVector3d_NormalizedP7_objectS0__ZL30PyvtkVector_IiLi3EE_NormalizedP7_objectS0__ZL30PyvtkVector_IiLi4EE_NormalizedP7_objectS0__ZL24PyvtkVector2f_NormalizedP7_objectS0__ZL24PyvtkVector2d_NormalizedP7_objectS0__ZL24PyvtkVector3f_NormalizedP7_objectS0__ZL24PyvtkVector2i_NormalizedP7_objectS0__ZL22PyvtkVector3_IiE_CrossP7_objectS0__ZL22PyvtkVector3_IdE_CrossP7_objectS0__ZL22PyvtkVector3_IfE_CrossP7_objectS0__ZL24PyvtkVector3i_NormalizedP7_objectS0__ZL19PyvtkVector3d_CrossP7_objectS0__ZL19PyvtkVector3i_CrossP7_objectS0__ZL24PyvtkVector_IdLi4EE_Type_ZL27PyvtkVector_IdLi4EE_Methods_ZL24PyvtkVector_IfLi4EE_Type_ZL27PyvtkVector_IfLi4EE_Methods_ZL24PyvtkVector_IiLi4EE_Type_ZL27PyvtkVector_IiLi4EE_Methods_ZL24PyvtkVector_IdLi2EE_Type_ZL27PyvtkVector_IdLi2EE_Methods_ZL24PyvtkVector_IfLi2EE_Type_ZL27PyvtkVector_IfLi2EE_Methods_ZL24PyvtkVector_IiLi2EE_Type_ZL27PyvtkVector_IiLi2EE_Methods_ZL24PyvtkVector_IdLi3EE_Type_ZL27PyvtkVector_IdLi3EE_Methods_ZL24PyvtkVector_IfLi3EE_Type_ZL27PyvtkVector_IfLi3EE_Methods_ZL24PyvtkVector_IiLi3EE_Type_ZL27PyvtkVector_IiLi3EE_Methods_ZL24PyvtkVector2_IdE_Methods_ZL24PyvtkVector2_IfE_Methods_ZL24PyvtkVector2_IiE_Methods_ZL24PyvtkVector3_IdE_Methods_ZL24PyvtkVector3_IfE_Methods_ZL24PyvtkVector3_IiE_Methods_ZL18PyvtkVector2i_Type_ZL21PyvtkVector2i_Methods_ZL18PyvtkVector2f_Type_ZL21PyvtkVector2f_Methods_ZL18PyvtkVector2d_Type_ZL21PyvtkVector2d_Methods_ZL18PyvtkVector3i_Type_ZL21PyvtkVector3i_Methods_ZL18PyvtkVector3f_Type_ZL21PyvtkVector3f_Methods_ZL18PyvtkVector3d_Type_ZL21PyvtkVector3d_Methods_GLOBAL__sub_I_vtkVectorPython.cxx_GLOBAL__sub_I_vtkVectorOperatorsPython.cxx_ZL21PyvtkColor3_IdE_CCopyPKv_ZL21PyvtkColor3_IfE_CCopyPKv_ZL21PyvtkColor3_IhE_CCopyPKv_ZL21PyvtkColor4_IdE_CCopyPKv_ZL21PyvtkColor4_IfE_CCopyPKv_ZL21PyvtkColor4_IhE_CCopyPKv_ZL18PyvtkColor3f_CCopyPKv_ZL18PyvtkColor3d_CCopyPKv_ZL18PyvtkColor4f_CCopyPKv_ZL18PyvtkColor4d_CCopyPKv_ZL28PyvtkColor3_IdE_vtkColor3_s5P7_objectS0__ZL28PyvtkColor3_IfE_vtkColor3_s5P7_objectS0__ZL28PyvtkColor3_IhE_vtkColor3_s5P7_objectS0__ZL28PyvtkColor4_IdE_vtkColor4_s5P7_objectS0__ZL28PyvtkColor4_IfE_vtkColor4_s5P7_objectS0__ZL28PyvtkColor4_IhE_vtkColor4_s5P7_objectS0__ZL28PyvtkColor3ub_vtkColor3ub_s5P7_objectS0__ZL26PyvtkColor3f_vtkColor3f_s5P7_objectS0__ZL26PyvtkColor3d_vtkColor3d_s5P7_objectS0__ZL28PyvtkColor4ub_vtkColor4ub_s6P7_objectS0__ZL26PyvtkColor4f_vtkColor4f_s5P7_objectS0__ZL26PyvtkColor4d_vtkColor4d_s5P7_objectS0__ZL28PyvtkColor4ub_vtkColor4ub_s5P7_objectS0__ZL28PyvtkColor3_IdE_vtkColor3_s3P7_objectS0__ZL26PyvtkColor3d_vtkColor3d_s3P7_objectS0__ZL28PyvtkColor4_IdE_vtkColor4_s3P7_objectS0__ZL26PyvtkColor4d_vtkColor4d_s3P7_objectS0__ZL28PyvtkColor3_IdE_vtkColor3_s2P7_objectS0__ZL26PyvtkColor3d_vtkColor3d_s2P7_objectS0__ZL28PyvtkColor4_IdE_vtkColor4_s2P7_objectS0__ZL26PyvtkColor4d_vtkColor4d_s2P7_objectS0__ZL22PyvtkColor3_IdE_DeleteP7_object_ZL22PyvtkColor3_IfE_DeleteP7_object_ZL22PyvtkColor3_IhE_DeleteP7_object_ZL22PyvtkColor4_IdE_DeleteP7_object_ZL22PyvtkColor4_IfE_DeleteP7_object_ZL22PyvtkColor4_IhE_DeleteP7_object_ZL19PyvtkColor3f_DeleteP7_object_ZL19PyvtkColor3d_DeleteP7_object_ZL19PyvtkColor4f_DeleteP7_object_ZL19PyvtkColor4d_DeleteP7_object_ZL20PyvtkColor3_IdE_HashP7_object_ZL28PyvtkColor3_IfE_vtkColor3_s3P7_objectS0__ZL26PyvtkColor3f_vtkColor3f_s3P7_objectS0__ZL28PyvtkColor4_IfE_vtkColor4_s3P7_objectS0__ZL26PyvtkColor4f_vtkColor4f_s3P7_objectS0__ZL28PyvtkColor3_IfE_vtkColor3_s2P7_objectS0__ZL26PyvtkColor3f_vtkColor3f_s2P7_objectS0__ZL28PyvtkColor4_IfE_vtkColor4_s2P7_objectS0__ZL26PyvtkColor4f_vtkColor4f_s2P7_objectS0__ZL28PyvtkColor3_IhE_vtkColor3_s3P7_objectS0__ZL28PyvtkColor3ub_vtkColor3ub_s2P7_objectS0__ZL28PyvtkColor4_IhE_vtkColor4_s3P7_objectS0__ZL28PyvtkColor4ub_vtkColor4ub_s2P7_objectS0__ZL28PyvtkColor3_IhE_vtkColor3_s2P7_objectS0__ZL28PyvtkColor4_IhE_vtkColor4_s2P7_objectS0__ZL28PyvtkColor3ub_vtkColor3ub_s3P7_objectS0__ZL28PyvtkColor4ub_vtkColor4ub_s3P7_objectS0__ZL17PyvtkColor4ub_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor4ub_vtkColor4ub_Methods_ZL17PyvtkColor4d_HashP7_object_ZL20PyvtkColor3_IfE_HashP7_object_ZL20PyvtkColor3_IhE_HashP7_object_ZL20PyvtkColor4_IdE_HashP7_object_ZL20PyvtkColor4_IfE_HashP7_object_ZL20PyvtkColor4_IhE_HashP7_object_ZL18PyvtkColor3ub_HashP7_object_ZL17PyvtkColor3f_HashP7_object_ZL17PyvtkColor3d_HashP7_object_ZL18PyvtkColor4ub_HashP7_object_ZL17PyvtkColor4f_HashP7_object_ZL19PyvtkColor4ub_CCopyPKv_ZL19PyvtkColor3ub_CCopyPKv_ZL20PyvtkColor4ub_DeleteP7_object_ZL20PyvtkColor3ub_DeleteP7_object_ZL19PyvtkColor3_IfE_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor3_IfE_vtkColor3_Methods_ZL16PyvtkColor3f_NewP11_typeobjectP7_objectS2__ZL31PyvtkColor3f_vtkColor3f_Methods_ZL19PyvtkColor3_IdE_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor3_IdE_vtkColor3_Methods_ZL19PyvtkColor3_IhE_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor3_IhE_vtkColor3_Methods_ZL17PyvtkColor3ub_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor3ub_vtkColor3ub_Methods_ZL16PyvtkColor3d_NewP11_typeobjectP7_objectS2__ZL31PyvtkColor3d_vtkColor3d_Methods_ZL19PyvtkColor4_IdE_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor4_IdE_vtkColor4_Methods_ZL19PyvtkColor4_IhE_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor4_IhE_vtkColor4_Methods_ZL19PyvtkColor4_IfE_NewP11_typeobjectP7_objectS2__ZL33PyvtkColor4_IfE_vtkColor4_Methods_ZL16PyvtkColor4f_NewP11_typeobjectP7_objectS2__ZL31PyvtkColor4f_vtkColor4f_Methods_ZL16PyvtkColor4d_NewP11_typeobjectP7_objectS2__ZL31PyvtkColor4d_vtkColor4d_Methods_ZL22PyvtkColor4_IhE_GetRedP7_objectS0__ZL23PyvtkColor4_IdE_GetBlueP7_objectS0__ZL23PyvtkColor4_IfE_GetBlueP7_objectS0__ZL24PyvtkColor4_IhE_GetGreenP7_objectS0__ZL24PyvtkColor4_IdE_GetGreenP7_objectS0__ZL23PyvtkColor4_IhE_GetBlueP7_objectS0__ZL22PyvtkColor4_IdE_GetRedP7_objectS0__ZL22PyvtkColor4_IfE_GetRedP7_objectS0__ZL24PyvtkColor4_IfE_GetGreenP7_objectS0__ZL22PyvtkColor3_IdE_GetRedP7_objectS0__ZL24PyvtkColor3_IdE_GetGreenP7_objectS0__ZL22PyvtkColor3_IfE_GetRedP7_objectS0__ZL24PyvtkColor4_IfE_GetAlphaP7_objectS0__ZL24PyvtkColor4_IhE_GetAlphaP7_objectS0__ZL24PyvtkColor3_IhE_GetGreenP7_objectS0__ZL24PyvtkColor4_IdE_GetAlphaP7_objectS0__ZL23PyvtkColor3_IhE_GetBlueP7_objectS0__ZL22PyvtkColor3_IhE_GetRedP7_objectS0__ZL23PyvtkColor3_IdE_GetBlueP7_objectS0__ZL24PyvtkColor3_IfE_GetGreenP7_objectS0__ZL23PyvtkColor3_IfE_GetBlueP7_objectS0__ZL24PyvtkColor4_IhE_SetGreenP7_objectS0__ZL22PyvtkColor4_IhE_SetRedP7_objectS0__ZL23PyvtkColor4_IhE_SetBlueP7_objectS0__ZL24PyvtkColor4_IfE_SetAlphaP7_objectS0__ZL24PyvtkColor4_IdE_SetAlphaP7_objectS0__ZL24PyvtkColor4_IfE_SetGreenP7_objectS0__ZL23PyvtkColor4_IfE_SetBlueP7_objectS0__ZL24PyvtkColor3_IfE_SetGreenP7_objectS0__ZL23PyvtkColor3_IfE_SetBlueP7_objectS0__ZL22PyvtkColor3_IhE_SetRedP7_objectS0__ZL24PyvtkColor3_IhE_SetGreenP7_objectS0__ZL23PyvtkColor3_IdE_SetBlueP7_objectS0__ZL22PyvtkColor3_IdE_SetRedP7_objectS0__ZL24PyvtkColor3_IdE_SetGreenP7_objectS0__ZL24PyvtkColor4_IdE_SetGreenP7_objectS0__ZL23PyvtkColor4_IdE_SetBlueP7_objectS0__ZL24PyvtkColor4_IhE_SetAlphaP7_objectS0__ZL23PyvtkColor3_IhE_SetBlueP7_objectS0__ZL22PyvtkColor3_IfE_SetRedP7_objectS0__ZL22PyvtkColor4_IdE_SetRedP7_objectS0__ZL22PyvtkColor4_IfE_SetRedP7_objectS0__ZL19PyvtkColor3_IfE_SetP7_objectS0__ZL19PyvtkColor3_IdE_SetP7_objectS0__ZL19PyvtkColor3_IhE_SetP7_objectS0__ZL22PyvtkColor4_IhE_Set_s1P7_objectS0__ZL19PyvtkColor4_IhE_SetP7_objectS0__ZL19PyvtkColor4_IdE_SetP7_objectS0__ZL19PyvtkColor4_IfE_SetP7_objectS0__ZL20PyvtkColor3_IdE_Type_ZL23PyvtkColor3_IdE_Methods_ZL20PyvtkColor3_IfE_Type_ZL23PyvtkColor3_IfE_Methods_ZL20PyvtkColor3_IhE_Type_ZL23PyvtkColor3_IhE_Methods_ZL20PyvtkColor4_IdE_Type_ZL23PyvtkColor4_IdE_Methods_ZL20PyvtkColor4_IfE_Type_ZL23PyvtkColor4_IfE_Methods_ZL20PyvtkColor4_IhE_Type_ZL23PyvtkColor4_IhE_Methods_ZL18PyvtkColor3ub_Type_ZL21PyvtkColor3ub_Methods_ZL17PyvtkColor3f_Type_ZL20PyvtkColor3f_Methods_ZL17PyvtkColor3d_Type_ZL20PyvtkColor3d_Methods_ZL18PyvtkColor4ub_Type_ZL21PyvtkColor4ub_Methods_ZL17PyvtkColor4f_Type_ZL20PyvtkColor4f_Methods_ZL17PyvtkColor4d_Type_ZL20PyvtkColor4d_Methods_GLOBAL__sub_I_vtkColorPython.cxx_ZL19PyvtkRect_IdE_CCopyPKv_ZL19PyvtkRect_IfE_CCopyPKv_ZL19PyvtkRect_IiE_CCopyPKv_ZL16PyvtkRecti_CCopyPKv_ZL16PyvtkRectf_CCopyPKv_ZL16PyvtkRectd_CCopyPKv_ZL24PyvtkRect_IdE_vtkRect_s4P7_objectS0__ZL24PyvtkRect_IfE_vtkRect_s4P7_objectS0__ZL24PyvtkRect_IiE_vtkRect_s4P7_objectS0__ZL22PyvtkRecti_vtkRecti_s4P7_objectS0__ZL22PyvtkRectf_vtkRectf_s4P7_objectS0__ZL22PyvtkRectd_vtkRectd_s4P7_objectS0__ZL24PyvtkRect_IdE_vtkRect_s3P7_objectS0__ZL22PyvtkRectd_vtkRectd_s3P7_objectS0__ZL20PyvtkRect_IdE_DeleteP7_object_ZL20PyvtkRect_IfE_DeleteP7_object_ZL20PyvtkRect_IiE_DeleteP7_object_ZL17PyvtkRecti_DeleteP7_object_ZL17PyvtkRectf_DeleteP7_object_ZL17PyvtkRectd_DeleteP7_object_ZL18PyvtkRect_IdE_HashP7_object_ZL24PyvtkRect_IfE_vtkRect_s3P7_objectS0__ZL22PyvtkRectf_vtkRectf_s3P7_objectS0__ZL24PyvtkRect_IiE_vtkRect_s3P7_objectS0__ZL22PyvtkRecti_vtkRecti_s3P7_objectS0__ZL14PyvtkRectd_NewP11_typeobjectP7_objectS2__ZL27PyvtkRectd_vtkRectd_Methods_ZL15PyvtkRectd_HashP7_object_ZL18PyvtkRect_IfE_HashP7_object_ZL18PyvtkRect_IiE_HashP7_object_ZL15PyvtkRecti_HashP7_object_ZL15PyvtkRectf_HashP7_object_ZL17PyvtkRect_IiE_NewP11_typeobjectP7_objectS2__ZL29PyvtkRect_IiE_vtkRect_Methods_ZL17PyvtkRect_IfE_NewP11_typeobjectP7_objectS2__ZL29PyvtkRect_IfE_vtkRect_Methods_ZL14PyvtkRectf_NewP11_typeobjectP7_objectS2__ZL27PyvtkRectf_vtkRectf_Methods_ZL14PyvtkRecti_NewP11_typeobjectP7_objectS2__ZL27PyvtkRecti_vtkRecti_Methods_ZL17PyvtkRect_IdE_NewP11_typeobjectP7_objectS2__ZL29PyvtkRect_IdE_vtkRect_Methods_ZL18PyvtkRect_IdE_GetXP7_objectS0__ZL22PyvtkRect_IdE_GetWidthP7_objectS0__ZL23PyvtkRect_IdE_GetHeightP7_objectS0__ZL21PyvtkRect_IdE_GetLeftP7_objectS0__ZL23PyvtkRect_IdE_GetBottomP7_objectS0__ZL21PyvtkRect_IiE_GetLeftP7_objectS0__ZL23PyvtkRect_IiE_GetBottomP7_objectS0__ZL18PyvtkRect_IfE_GetXP7_objectS0__ZL18PyvtkRect_IfE_GetYP7_objectS0__ZL22PyvtkRect_IfE_GetWidthP7_objectS0__ZL23PyvtkRect_IfE_GetHeightP7_objectS0__ZL21PyvtkRect_IfE_GetLeftP7_objectS0__ZL23PyvtkRect_IfE_GetBottomP7_objectS0__ZL18PyvtkRect_IiE_GetXP7_objectS0__ZL18PyvtkRect_IiE_GetYP7_objectS0__ZL22PyvtkRect_IiE_GetWidthP7_objectS0__ZL23PyvtkRect_IiE_GetHeightP7_objectS0__ZL18PyvtkRect_IdE_GetYP7_objectS0__ZL22PyvtkRect_IiE_GetRightP7_objectS0__ZL20PyvtkRect_IiE_GetTopP7_objectS0__ZL22PyvtkRect_IdE_GetRightP7_objectS0__ZL20PyvtkRect_IdE_GetTopP7_objectS0__ZL22PyvtkRect_IfE_GetRightP7_objectS0__ZL20PyvtkRect_IfE_GetTopP7_objectS0__ZL27PyvtkRect_IfE_GetBottomLeftP7_objectS0__ZL27PyvtkRect_IdE_GetBottomLeftP7_objectS0__ZL27PyvtkRect_IiE_GetBottomLeftP7_objectS0__ZL24PyvtkRect_IfE_GetTopLeftP7_objectS0__ZL28PyvtkRect_IfE_GetBottomRightP7_objectS0__ZL24PyvtkRect_IiE_GetTopLeftP7_objectS0__ZL28PyvtkRect_IiE_GetBottomRightP7_objectS0__ZL24PyvtkRect_IdE_GetTopLeftP7_objectS0__ZL28PyvtkRect_IdE_GetBottomRightP7_objectS0__ZL25PyvtkRect_IdE_GetTopRightP7_objectS0__ZL25PyvtkRect_IfE_GetTopRightP7_objectS0__ZL22PyvtkRect_IiE_SetWidthP7_objectS0__ZL23PyvtkRect_IiE_SetHeightP7_objectS0__ZL18PyvtkRect_IiE_SetXP7_objectS0__ZL18PyvtkRect_IiE_SetYP7_objectS0__ZL23PyvtkRect_IdE_SetHeightP7_objectS0__ZL25PyvtkRect_IiE_GetTopRightP7_objectS0__ZL23PyvtkRect_IfE_SetHeightP7_objectS0__ZL18PyvtkRect_IfE_SetYP7_objectS0__ZL22PyvtkRect_IfE_SetWidthP7_objectS0__ZL18PyvtkRect_IfE_SetXP7_objectS0__ZL22PyvtkRect_IdE_SetWidthP7_objectS0__ZL18PyvtkRect_IdE_SetYP7_objectS0__ZL18PyvtkRect_IdE_SetXP7_objectS0__ZL17PyvtkRect_IiE_SetP7_objectS0__ZL17PyvtkRect_IfE_SetP7_objectS0__ZL17PyvtkRect_IdE_SetP7_objectS0__ZL28PyvtkRect_IfE_IntersectsWithP7_objectS0__ZL28PyvtkRect_IiE_IntersectsWithP7_objectS0__ZL28PyvtkRect_IdE_IntersectsWithP7_objectS0__ZL21PyvtkRect_IiE_AddRectP7_objectS0__ZL21PyvtkRect_IfE_AddRectP7_objectS0__ZL21PyvtkRect_IdE_AddRectP7_objectS0__ZL22PyvtkRect_IdE_AddPointP7_objectS0__ZL22PyvtkRect_IiE_AddPointP7_objectS0__ZL22PyvtkRect_IfE_AddPointP7_objectS0__ZL18PyvtkRect_IdE_Type_ZL21PyvtkRect_IdE_Methods_ZL18PyvtkRect_IfE_Type_ZL21PyvtkRect_IfE_Methods_ZL18PyvtkRect_IiE_Type_ZL21PyvtkRect_IiE_Methods_ZL15PyvtkRecti_Type_ZL18PyvtkRecti_Methods_ZL15PyvtkRectf_Type_ZL18PyvtkRectf_Methods_ZL15PyvtkRectd_Type_ZL18PyvtkRectd_Methods_GLOBAL__sub_I_vtkRectPython.cxx_ZL32PyvtkNonOverlappingAMR_StaticNewv_ZL35PyvtkNonOverlappingAMR_SafeDownCastP7_objectS0__ZL33PyvtkNonOverlappingAMR_GetData_s1P7_objectS0__ZL33PyvtkNonOverlappingAMR_GetData_s2P7_objectS0__ZL40PyvtkNonOverlappingAMR_GetDataObjectTypeP7_objectS0__ZL31PyvtkNonOverlappingAMR_IsTypeOfP7_objectS0__ZL26PyvtkNonOverlappingAMR_IsAP7_objectS0__ZL34PyvtkNonOverlappingAMR_NewInstanceP7_objectS0__ZL30PyvtkNonOverlappingAMR_GetDataP7_objectS0__ZL38PyvtkNonOverlappingAMR_GetData_Methods_ZL27PyvtkNonOverlappingAMR_Type_ZL30PyvtkNonOverlappingAMR_Methods_GLOBAL__sub_I_vtkNonOverlappingAMRPython.cxx_ZL31PyvtkAMRDataInternals_StaticNewv_ZL34PyvtkAMRDataInternals_SafeDownCastP7_objectS0__ZL30PyvtkAMRDataInternals_IsTypeOfP7_objectS0__ZL25PyvtkAMRDataInternals_IsAP7_objectS0__ZL32PyvtkAMRDataInternals_InitializeP7_objectS0__ZL39PyvtkAMRDataInternals_GetNumberOfBlocksP7_objectS0__ZL27PyvtkAMRDataInternals_EmptyP7_objectS0__ZL32PyvtkAMRDataInternals_GetDataSetP7_objectS0__ZL28PyvtkAMRDataInternals_InsertP7_objectS0__ZL33PyvtkAMRDataInternals_NewInstanceP7_objectS0__ZL26PyvtkAMRDataInternals_Type_ZL29PyvtkAMRDataInternals_Methods_GLOBAL__sub_I_vtkAMRDataInternalsPython.cxx_ZL33PyvtkAMRDataInternals_ShallowCopyP7_objectS0__ZL41PyvtkUniformGridAMRDataIterator_StaticNewv_ZL44PyvtkUniformGridAMRDataIterator_SafeDownCastP7_objectS0__ZL40PyvtkUniformGridAMRDataIterator_IsTypeOfP7_objectS0__ZL35PyvtkUniformGridAMRDataIterator_IsAP7_objectS0__ZL50PyvtkUniformGridAMRDataIterator_HasCurrentMetaDataP7_objectS0__ZL43PyvtkUniformGridAMRDataIterator_NewInstanceP7_objectS0__ZL36PyvtkUniformGridAMRDataIterator_Type_ZL39PyvtkUniformGridAMRDataIterator_Methods_GLOBAL__sub_I_vtkUniformGridAMRDataIteratorPython.cxx_ZL51PyvtkUniformGridAMRDataIterator_IsDoneWithTraversalP7_objectS0__ZL44PyvtkUniformGridAMRDataIterator_GoToNextItemP7_objectS0__ZL45PyvtkUniformGridAMRDataIterator_GoToFirstItemP7_objectS0__ZL47PyvtkUniformGridAMRDataIterator_GetCurrentIndexP7_objectS0__ZL47PyvtkUniformGridAMRDataIterator_GetCurrentLevelP7_objectS0__ZL51PyvtkUniformGridAMRDataIterator_GetCurrentFlatIndexP7_objectS0__ZL52PyvtkUniformGridAMRDataIterator_GetCurrentDataObjectP7_objectS0__ZL50PyvtkUniformGridAMRDataIterator_GetCurrentMetaDataP7_objectS0__ZL50PyvtkHyperOctreePointsGrabber_InsertPointWithMergeP7_objectS0__ZL42PyvtkHyperOctreePointsGrabber_SafeDownCastP7_objectS0__ZL38PyvtkHyperOctreePointsGrabber_IsTypeOfP7_objectS0__ZL42PyvtkHyperOctreePointsGrabber_GetDimensionP7_objectS0__ZL48PyvtkHyperOctreePointsGrabber_InitPointInsertionP7_objectS0__ZL42PyvtkHyperOctreePointsGrabber_SetDimensionP7_objectS0__ZL33PyvtkHyperOctreePointsGrabber_IsAP7_objectS0__ZL43PyvtkHyperOctreePointsGrabber_InsertPoint2DP7_objectS0__ZL41PyvtkHyperOctreePointsGrabber_InsertPointP7_objectS0__ZL41PyvtkHyperOctreePointsGrabber_NewInstanceP7_objectS0__ZL34PyvtkHyperOctreePointsGrabber_Type_ZL37PyvtkHyperOctreePointsGrabber_Methods_GLOBAL__sub_I_vtkHyperOctreePointsGrabberPython.cxx_ZL33PyvtkCommonDataModelPython_Module_GLOBAL__sub_I_vtkCommonDataModelPythonInitImpl.cxx_ZL34PyvtkCommonDataModelPython_Methodscrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryvtkImageIteratorPython.cxxvtkCellTypePython.cxx_ZZ24PyVTKAddFile_vtkCellTypeE9constantsvtkDataArrayDispatcherPython.cxxvtkDispatcherPython.cxxvtkDoubleDispatcherPython.cxx__FRAME_END____GNU_EH_FRAME_HDR__dso_handleDW.ref.__gxx_personality_v0_fini_init_DYNAMIC__TMC_END___GLOBAL_OFFSET_TABLE_PyVTKAddFile_vtkImplicitHalo_ZN20vtkDataSetAttributes11RemoveArrayEi_ZNK16vtkDirectedGraph19NewInstanceInternalEv_ZN10vtkPolygon11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkSelectionNode4PROPEv_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEPKdPd_ZN17vtkOverlappingAMR10GetAMRInfoEv_ZN16vtkLagrangeWedge11GetCellTypeEv_ZN8vtkGraph9GetBoundsEv_ZN25vtkGenericCellTessellator14SetMeasurementEi_ZN6vtkBox12IntersectBoxEPdS0_S0_S0_Rd_ZN16vtkSelectionNode10PROCESS_IDEvPyvtkNonLinearCell_ClassNew_Znam@GLIBCXX_3.4_ZN8vtkPlane3NewEvPyVTKObject_Delete_ZN12vtkImageData8FindCellEPdP7vtkCellxdRiS0_S0__ZN12vtkFieldData17GetNumberOfTuplesEv_ZN19vtkGenericEdgeTable10InitializeExPyVTKAddFile_vtkHexagonalPrism_ZN8vtkPlane9SetOriginEddd_ZNK25vtkDistributedGraphHelper14GetVertexOwnerEx_ZNK22vtkQuadraticLinearQuad19NewInstanceInternalEvPyVTKAddFile_vtkOctreePointLocator_ZN29vtkQuadratureSchemeDefinition10DICTIONARYEv_ZN24vtkIncrementalOctreeNode17GetNumberOfPointsEv_ZN20vtkDataSetAttributes18SetActiveGlobalIdsEPKcPyvtkVector3f_TypeNew_ZN17vtkAMRInformation9GetOriginEjjPd_ZN20vtkPiecewiseFunction7GetDataEP14vtkInformation_ZN17vtkQuadraticWedge12CellBoundaryEiPdP9vtkIdList_ZN29vtkGenericAttributeCollection21GetNumberOfComponentsEv_ZN11vtkCylinder7SetAxisEPdPyVTKAddFile_vtkQuadraticPolygon_ZN25vtkImplicitWindowFunction15GetWindowValuesEv_ZN17vtkAnimationScene11SetPlayModeEi_ZN9vtkKdTree11NewGeometryEv_ZN9vtkKdTree7SetCutsEP10vtkBSPCuts_ZN17vtkInEdgeIterator13NextGraphEdgeEv_ZN20vtkPiecewiseFunction8GetValueEd_ZN13vtkPolyVertex3NewEv_ZN16vtkLagrangeTetra19GetParametricCoordsEv_ZN20vtkDataSetAttributes18GetCopyPedigreeIdsEi_ZN22vtkHyperTreeGridCursor3NewEv_ZN17vtkStructuredGrid7GetCellEiii_ZN17vtkQuadraticTetra4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkQuadraticPyramid11DerivativesEiPdS0_iS0__ZN20vtkQuadraticTriangle19GetParametricCoordsEv_ZN9vtkVertex11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkQuadraticPolygon12CellBoundaryEiPdP9vtkIdList_ZN13vtkPythonArgs16PureVirtualErrorEvPyVTKAddFile_vtkIterativeClosestPointTransform_ZN22vtkQuadraticLinearQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN25vtkMutableUndirectedGraph13LazyAddVertexERK10vtkVariant_ZN7vtkCone3NewEvPyvtkGenericAttribute_ClassNew_ZN20vtkPiecewiseFunction24GetAllowDuplicateScalarsEv_ZNK25vtkMutableUndirectedGraph19NewInstanceInternalEv_ZN25vtkOctreePointLocatorNode12GetMinBoundsEv_ZN16vtkQuadraticQuad19InterpolationDerivsEPdS0__ZN18vtkPentagonalPrism12GetFaceArrayEi_ZN9vtkKdTree19FreeSearchStructureEv_ZN18vtkDataObjectTypes13NewDataObjectEPKc_ZN13vtkPythonUtil13ManglePointerEPKvPKc_ZN20vtkDataSetAttributes10SetNormalsEP12vtkDataArrayPyvtkGenericDataSet_ClassNew_ZN28vtkBiQuadraticQuadraticWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN24vtkIncrementalOctreeNode27GetDistance2ToInnerBoundaryEPKdPS__ZN14vtkHyperOctree10InitializeEv_ZN13vtkHexahedron19GetParametricCoordsEv_ZN17vtkAnimationScene13RemoveAllCuesEv_ZN10vtkDataSet9GetBoundsEv_ZN14vtkPerlinNoise12GetFrequencyEv_ZN13vtkDataObject22SetActiveAttributeInfoEP14vtkInformationiiPKciii_ZN20vtkPiecewiseFunction10InitializeEv_ZN15vtkPointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN25vtkMutableUndirectedGraph9AddVertexERK10vtkVariant_ZN19vtkAnnotationLayers3IsAEPKc_ZN9vtkPlanes16SetFrustumPlanesEPd_ZN9vtkKdTree16FindClosestPointEdddRd_ZN14vtkPerlinNoise12SetAmplitudeEd_ZN20vtkDataSetAttributes15InterpolateEdgeEPS_xxxd_ZN9vtkKdTree24GetNumberOfRegionsOrLessEv_ZN14vtkGenericCell16EvaluatePositionEPdS0_RiS0_RdS0__ZN10vtkPolygon24NonDegenerateTriangulateEP9vtkIdList_ZN25vtkDataObjectTreeIterator19IsDoneWithTraversalEv_ZN16vtkLagrangeCurve20InterpolateFunctionsEPdS0__ZN17vtkAnimationScene12GetFrameRateEv_ZN17vtkQuadraticWedge20InterpolateFunctionsEPdS0__ZN11vtkCylinder9SetRadiusEd_ZN21vtkPlanesIntersection17SetRegionVerticesEP9vtkPoints_ZN20vtkNonOverlappingAMR17GetDataObjectTypeEv_ZN24vtkLagrangeInterpolation23Tensor1ShapeDerivativesEPKiPKdPd_ZN18vtkTreeDFSIterator7GetModeEv_ZN11vtkCylinder9GetRadiusEv_ZN12vtkFieldData8AddArrayEP16vtkAbstractArray_ZN25vtkMutableUndirectedGraph13LazyAddVertexEP15vtkVariantArray_ZN24vtkCompositeDataIterator10GetDataSetEv_ZNK18vtkImplicitDataSet19NewInstanceInternalEv_ZN12vtkImageData28SetScalarComponentFromDoubleEiiiid_ZN13vtkPolyhedron10InitializeEv_ZN9vtkAMRBox28ComputeStructuredCoordinatesERKS_PKdS3_S3_PiPdPyVTKAddFile_vtkLagrangeTetra_ZN21vtkGenericAdaptorCell3IsAEPKc_Z45PyvtkLagrangeInterpolation_Constants_FromEnumi_ZNK8vtkVoxel19NewInstanceInternalEv_ZN11vtkMolecule10GetLatticeEv_ZN19vtkQuadraticPolygon22GetUseMVCInterpolationEvPyVTKAddFile_vtkEmptyCell_ZN18vtkPentagonalPrism7GetEdgeEi_ZN19vtkBSPIntersections7GetCutsEvPyvtkHexahedron_ClassNew_ZN14vtkGenericCell3IsAEPKc_ZN18vtkImplicitBoolean24GetOperationTypeMaxValueEv_ZN18vtkImplicitBoolean24GetOperationTypeMinValueEv_ZN18vtkPentagonalPrism3IsAEPKc_ZN11vtkTriangle14ComputeQuadricEPdS0_S0_PA4_d_ZN17vtkStructuredData16GetDataDimensionEi_ZN17vtkQuadraticTetra7GetEdgeEi_ZN12vtkGraphEdge9SetSourceEx_ZN18vtkRectilinearGrid16GetCellNeighborsExP9vtkIdListS1_PyVTKAddFile_vtkImplicitSelectionLoop_ZN14vtkHyperOctree13NewCellCursorEv_ZN12vtkEdgeTable17InsertUniquePointExxPdRx_ZN19vtkAnnotationLayers20SetCurrentAnnotationEP13vtkAnnotation_ZN12vtkImageData9SetOriginEdddPyvtkVector2i_TypeNew_ZN20vtkDataSetAttributes14CopyTensorsOffEv_ZN28vtkBiQuadraticQuadraticWedge19GetParametricCoordsEv_ZN17vtkStructuredData16GetCellNeighborsExP9vtkIdListS1_PiS2__ZNK23vtkQuadraticLinearWedge19NewInstanceInternalEv_ZN11vtkPolyData17GetNumberOfPiecesEv_ZN13vtkPolyVertex16GetNumberOfFacesEv_ZN13vtkPolyhedron3NewEv_ZN7vtkLine12IntersectionEPKdS1_S1_S1_RdS2__ZN9vtkAMRBox5ShiftEiii_ZN17vtkStructuredGrid17GetDataObjectTypeEvPyvtkMutableUndirectedGraph_ClassNew_ZN30vtkExtractStructuredGridHelper22CopyPointsAndPointDataEPiS0_P12vtkPointDataP9vtkPointsS2_S4_PyvtkVector2d_TypeNew_ZN22vtkHyperTreeGridCursor16GetCornerCursorsEjjP9vtkIdList_ZN17vtkHexagonalPrism12GetFaceArrayEi_ZN7vtkPath15InsertNextPointEdddiPyVTKAddFile_vtkGenericAttribute_ZN20vtkDataSetAttributes16SetCopyGlobalIdsEii_ZN16vtkHyperTreeGrid8GetPointEx_ZN11vtkTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZNK27vtkHyperOctreePointsGrabber19NewInstanceInternalEv_ZN10vtkPolygon7GetEdgeEi_ZN17vtkOverlappingAMR11NewIteratorEv_ZN8vtkGraph15GetTargetVertexEx_ZN20vtkDataSetAttributes16SetActiveScalarsEPKc_ZNK25vtkOctreePointLocatorNode19NewInstanceInternalEv_ZN25vtkImplicitWindowFunction3IsAEPKc_ZN19vtkGenericDataArrayI23vtkAOSDataArrayTemplateIxExE11DataChangedEv_ZN12vtkReebGraph17GetDataObjectTypeEv_ZN25vtkMutableUndirectedGraph11LazyAddEdgeERK10vtkVariantxP15vtkVariantArray_ZN33vtkBiQuadraticQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkGenericEdgeTable3NewEv_ZNK17vtkOverlappingAMR19NewInstanceInternalEv_ZN18vtkImplicitBoolean16GetOperationTypeEv_ZN12vtkImageData14GetMaxCellSizeEv_ZN32vtkReebGraphSimplificationMetric13GetLowerBoundEv_ZN17vtkStructuredData18GetDataDescriptionEPi_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey6ResizeEP14vtkInformationiPyVTKAddFile_vtkHyperOctreePointsGrabber_ZN18vtkTreeDFSIterator3NewEv_ZN13vtkHexahedron16EvaluateLocationERiPdS1_S1__ZN9vtkSpline9ClosedOffEv_ZN11vtkPolyData3NewEv_ZNK23vtkMutableDirectedGraph19NewInstanceInternalEv_ZN25vtkOctreePointLocatorNode9SetBoundsEdddddd_ZN11vtkPolyLine4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkImplicitVolume3IsAEPKc_ZN17vtkUniformGridAMR18GetGridDescriptionEv_ZN23vtkQuadraticLinearWedge16GetNumberOfFacesEv_ZN17vtkStructuredData16GetDataDimensionEPiPyvtkRectf_TypeNew_ZN16vtkLagrangeWedge24SubCellCoordinatesFromIdER11vtkVector3ii_ZN17vtkXMLDataElement20SetAttributeEncodingEi_ZN19vtkUnstructuredGrid13GetCellBoundsExPd_ZN20vtkQuadraticTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN28vtkBiQuadraticQuadraticWedge7GetEdgeEi_ZN9vtkAMRBox9SerializeERPhRx_ZNK12vtkSelection19NewInstanceInternalEv_Z24PyvtkVector3_TemplateNewv_ZN9vtkPlanes9SetPointsEP9vtkPoints_ZN23vtkAbstractPointLocator9GetBoundsEv_ZN7vtkPath5ResetEv_ZN17vtkStructuredGrid13GetCellPointsExP9vtkIdList_ZN11vtkTriangle16GetNumberOfEdgesEv_ZN25vtkHierarchicalBoxDataSet7GetDataEP14vtkInformation_ZN17vtkQuadraticWedge19GetParametricCenterEPd_ZN9vtkPlanes17GetNumberOfPlanesEvPyvtkHyperTree_ClassNew_ZN11vtkPolyData13CopyStructureEP10vtkDataSet_ZN13vtkDataObject17DATA_PIECE_NUMBEREv_ZN12vtkImageData27GetNumberOfScalarComponentsEP14vtkInformation_ZN8vtkPlane16EvaluateFunctionEPd_ZN12vtkFieldData17SetNumberOfTuplesEx_ZN25vtkMutableUndirectedGraph9AddVertexEP15vtkVariantArray_ZN7vtkCell8DeepCopyEPS__ZN14vtkGenericCell16GetCellDimensionEvPyVTKAddFile_vtkAbstractPointLocator_ZN6vtkBox9SetBoundsEPKd_ZN8vtkWedge12GetFaceArrayEi_ZN9vtkPlanes8GetPlaneEiP8vtkPlane_ZN24vtkLagrangeInterpolation3NewEv_ZN11vtkPointSet15NewCellIteratorEv_ZN11vtkPolyLine17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN11vtkPointSet9GetPointsEv_ZN16vtkHyperTreeGrid16GetCellNeighborsExP9vtkIdListS1__ZN16vtkLagrangeTetra16GetNumberOfEdgesEv_ZN17vtkAMRInformation8FindCellEPdjjRi_ZN19vtkUnstructuredGrid16GetNumberOfCellsEv_ZNK7vtkBond9GetLengthEv_ZN32vtkIncrementalOctreePointLocator11InsertPointExPKd_ZN17vtkGenericDataSet12GetCellTypesEP12vtkCellTypes_ZN12vtkReebGraph8DeepCopyEP13vtkDataObject_ZN25vtkOctreePointLocatorNode3NewEv_ZN9vtkSpline18GetRightConstraintEv_ZN14vtkHyperOctree16GetCellNeighborsExP9vtkIdListS1__ZN21vtkGenericAdaptorCell4ClipEdP19vtkImplicitFunctionP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatoriP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataP11vtkCellDataSB_SB_SD__ZN19vtkQuadraticPolygon13IsPrimaryCellEv_ZN21vtkGenericAdaptorCell15TriangulateFaceEP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatoriP9vtkPointsP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataSB_P11vtkCellData_ZN17vtkUniformGridAMR8DeepCopyEP13vtkDataObject_ZN25vtkOctreePointLocatorNode3IsAEPKc_ZN14vtkGenericCell9SetPointsEP9vtkPoints_ZN25vtkOctreePointLocatorNode28ComputeOctreeNodeInformationEPS_RiS1_Pf_ZN12vtkCubicLine11GetCellTypeEvPyvtkCellData_ClassNew_ZNK25vtkDistributedGraphHelper14GetVertexIndexExPyVTKAddFile_vtkOctreePointLocatorNodePyVTKAddFile_vtkBond_ZN9vtkKdNode17IntersectsSphere2Eddddi_ZN33vtkIterativeClosestPointTransform27GetMaximumNumberOfLandmarksEv_ZN33vtkIterativeClosestPointTransform22GetMaximumMeanDistanceEv_ZN14vtkHyperOctree22GetPointsOnParentFacesEPiiP20vtkHyperOctreeCursorP27vtkHyperOctreePointsGrabber_ZN13vtkDataObject7GetDataEP14vtkInformation_ZN22vtkOrderedTriangulator11TriangulateEv_ZN17vtkXMLDataElement5GetIdEvPyvtkSelectionNode_ClassNew_ZN19vtkUnstructuredGrid14InsertNextCellEiP9vtkIdList_ZN20vtkDataSetAttributes13CopyTensorsOnEv_ZN24vtkLagrangeInterpolation23Tensor3ShapeDerivativesEPKiPKdPd_ZN8vtkGraph17GetGraphInternalsEb_ZN25vtkOctreePointLocatorNode16CreateChildNodesEv_ZN25vtkImplicitWindowFunction8GetMTimeEv_ZN20vtkDataSetAttributes14SetPedigreeIdsEP16vtkAbstractArray_ZN8vtkGraph11GetVerticesEP21vtkVertexListIterator_ZN22vtkHyperTreeGridCursor7IsEqualEP18vtkHyperTreeCursor_ZN24vtkCompositeDataIterator20InitReverseTraversalEvPyvtkCubicLine_ClassNew_ZN20vtkMultiPieceDataSet20GetPieceAsDataObjectEj_ZNK15vtkTreeIterator19NewInstanceInternalEv_ZN22vtkBiQuadraticTriangle16EvaluateLocationERiPdS1_S1__ZN12vtkImageData13GetIncrementsEv_ZN13vtkPythonArgs8GetValueERfPyVTKAddFile_vtkEdgeTable_ZN19vtkUnstructuredGrid13GetGhostLevelEv_ZN8vtkTable9RemoveRowEx_ZN18vtkBiQuadraticQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN10vtkDataSet9GetBoundsEPd_ZN16vtkQuadraticEdge16EvaluateLocationERiPdS1_S1__ZN33vtkBiQuadraticQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkHyperTreeGrid20GetMaterialMaskIndexEv_ZN8vtkPixel16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkImplicitFunction8GetMTimeEv_ZN21vtkOctreePointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN23vtkGeometricErrorMetric3IsAEPKc_ZN13vtkAnnotation5COLOREv_ZN16vtkQuadraticEdge12CellBoundaryEiPdP9vtkIdList_ZN9vtkPlanes16EvaluateFunctionEPd_ZN20vtkStaticCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRx_ZN10vtkBSPCuts7GetDataEP20vtkInformationVectori_ZN21vtkPlanesIntersection17SetRegionVerticesEPdi_ZN13vtkPolyVertex19GetParametricCenterEPd_ZN32vtkReebGraphSimplificationMetric3NewEv_ZNK49vtkInformationQuadratureSchemeDefinitionVectorKey19NewInstanceInternalEv_ZN14vtkHyperOctree14GetMaxCellSizeEv_ZN22vtkOrderedTriangulator9GetTetrasEiP19vtkUnstructuredGrid_ZN17vtkQuadraticWedge16GetNumberOfEdgesEv_ZN23vtkMutableDirectedGraph11LazyAddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN18vtkImplicitDataSet10GetDataSetEv_ZN14vtkHyperOctree15GetPointsOnFaceEP20vtkHyperOctreeCursoriiP27vtkHyperOctreePointsGrabber_ZN17vtkOverlappingAMR8FindGridEPdRjS1__ZN17vtkQuadraticWedge11DerivativesEiPdS0_iS0__ZN21vtkLagrangeHexahedron25TransformFaceToCellParamsEiPd_ZN17vtkUniformGridAMR3IsAEPKc_ZN16vtkHyperTreeGrid16GetNumberOfCellsEv_ZN9vtkKdTree19GetRegionDataBoundsEiPd_ZN13vtkAnnotation10InitializeEv_ZN20vtkDataSetAttributes16InterpolatePointEPS_xP9vtkIdListPd_ZN24vtkLagrangeQuadrilateral20InterpolateFunctionsEPdS0__ZN13vtkPolyhedron7GetEdgeEi_ZN22vtkAbstractCellLocator17SetLazyEvaluationEi_ZNK16vtkQuadraticEdge19NewInstanceInternalEv_ZN8vtkTetra17InterpolateDerivsEPdS0__ZN9vtkKdTree15GetRegionBoundsEiPd_ZTVSt9basic_iosIcSt11char_traitsIcEE@GLIBCXX_3.4_ZN12vtkImageData27CopyInformationFromPipelineEP14vtkInformation_ZN18vtkRectilinearGrid13CopyStructureEP10vtkDataSet_ZNK12vtkHyperTree19NewInstanceInternalEv_ZNK14vtkPerlinNoise19NewInstanceInternalEv_ZN11vtkPolyData27GetScalarFieldCriticalIndexExi_ZN8vtkWedge7GetFaceEi_ZN15vtkSuperquadric17SetThetaRoundnessEd_ZN14vtkUniformGrid7GetCellExP14vtkGenericCell_ZNK9vtkKdNode13GetDataBoundsEPd_ZN24vtkLagrangeInterpolation22EvaluateShapeFunctionsEidPd_ZN29vtkImplicitFunctionCollection3IsAEPKc_ZN20vtkDataSetCollection3IsAEPKc_ZN9vtkCell3D25GetMergeToleranceMinValueEv_ZN22vtkOrderedTriangulator12AddTrianglesEP12vtkCellArrayPyvtkInEdgeIterator_ClassNew_ZN25vtkTriQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN9vtkVertex3NewEvPyVTKAddFile_vtkHierarchicalBoxDataIterator_ZN19vtkQuadraticPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN14vtkImplicitSum8GetMTimeEv_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPi_ZN16vtkQuadraticQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyvtkTuple_IiLi4EE_TypeNew_ZN8vtkTable18InsertNextBlankRowEd_ZN12vtkEdgeTable17InitEdgeInsertionExi_ZN24vtkLagrangeInterpolation30GetPointIndicesBoundingHexEdgeEi_ZN20vtkPiecewiseFunction3IsAEPKc_ZN19vtkCompositeDataSet17GetNumberOfPointsEv_ZN16vtkQuadraticEdge19GetParametricCenterEPd_ZN33vtkIterativeClosestPointTransform21GetNumberOfIterationsEv_ZN19vtkEdgeListIterator8SetGraphEP8vtkGraph_ZN8vtkWedge11DerivativesEiPdS0_iS0__ZN16vtkLagrangeCurve21GetParametricDistanceEPd_ZN17vtkUniformGridAMR13CopyStructureEP19vtkCompositeDataSet_ZN8vtkTetra7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN8vtkGraph15CheckedDeepCopyEPS__ZN13vtkPolyVertex3IsAEPKcPyVTKAddFile_vtkAdjacentVertexIterator_ZN14vtkCellLocator17ForceBuildLocatorEvPyvtkKdNode_ClassNew_ZN19vtkQuadraticPolygon17DistanceToPolygonEPdiS0_S0_S0__ZN17vtkStructuredGrid16HasAnyBlankCellsEv_ZN9vtkAMRBox12GetBoxOriginERKS_PKdS3_Pd_ZN17vtkAMRInformation9GetBoundsEvPyvtkDataObjectTypes_ClassNew_ZN11vtkMolecule7GetBondEx_ZN11vtkTriangle19GetParametricCenterEPd_ZN24vtkImplicitSelectionLoop9SetNormalEPdPyVTKAddFile_vtkCellData_ZN10vtkPyramid19GetParametricCenterEPd_ZN17vtkStructuredGrid16GetNumberOfCellsEv_ZN19vtkLagrangeTriangle12CellBoundaryEiPdP9vtkIdList_ZN8vtkTetra3NewEv_ZN22vtkOrderedTriangulator10GetPointIdEx_ZN12vtkGraphEdge9GetSourceEv_ZN8vtkTetra12GetEdgeArrayEi_ZN11vtkMolecule12ClearLatticeEv_ZN23vtkAbstractPointLocator18FindClosestNPointsEidddP9vtkIdListPyvtkColor3_IfE_TypeNew_ZN22vtkOrderedTriangulator19TemplateTriangulateEiii_ZN19vtkCompositeDataSet7GetDataEP14vtkInformation_ZN16vtkHyperTreeGrid15SetMaterialMaskEP11vtkBitArray_ZN13vtkAnnotation12GetSelectionEv_ZN10vtkLocator20GetToleranceMinValueEvPyVTKAddFile_vtkBSPIntersections_ZN9vtkKdNode8GetMinIDEv_ZN29vtkUniformGridAMRDataIterator18HasCurrentMetaDataEv_ZN16vtkSelectionNode10FIELD_TYPEEv_ZN18vtkDataObjectTypes22GetClassNameFromTypeIdEiPyVTKObject_Traverse_ZNK9vtkAMRBox16GetNumberOfCellsEv_ZN22vtkBiQuadraticTriangle20InterpolateFunctionsEPdS0__ZN19vtkAnnotationLayers8GetMTimeEv_ZN14vtkHyperOctree7GetCellExP14vtkGenericCell_ZN16vtkAbstractArray7GetNameEv_ZN8vtkTetra11DerivativesEiPdS0_iS0__ZN19vtkUnstructuredGrid5ResetEv_ZN17vtkOverlappingAMR18GetRefinementRatioEj_ZN17vtkAMRInformation8FindGridEPdRjS1__ZN19vtkBSPIntersections18GetNumberOfRegionsEvPyvtkColor4_IfE_TypeNew_ZN22vtkHyperTreeGridCursor18GetNumberOfCursorsEv_ZN16vtkDirectedGraph17GetDataObjectTypeEv_ZN14vtkPixelExtent6ShrinkERKS_iPyVTKObject_Check_ZN22vtkQuadraticHexahedron16GetCellDimensionEv_ZN8vtkPlane13ProjectVectorEPdS0__ZN9vtkSpline13ClampValueOffEv_ZN8vtkTable6GetRowExP15vtkVariantArray_ZN20vtkDataSetAttributes16GetCopyGlobalIdsEi_ZN9vtkSpline12SetLeftValueEd_ZNK28vtkBiQuadraticQuadraticWedge19NewInstanceInternalEv_ZN10vtkDataSet17HasAnyGhostPointsEv_ZN12vtkSelection10InitializeEv_ZN21vtkPlanesIntersection17GetRegionVerticesEPdi_ZN8vtkGraph7SqueezeEv_ZN16vtkQuadraticEdge19GetParametricCoordsEv_ZN11vtkTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN22vtkHyperTreeGridCursor6IsRootEv_ZN13vtkDataObject24GetGlobalReleaseDataFlagEv_ZN8vtkGraph15GetInducedEdgesEP14vtkIdTypeArrayS1__ZN22vtkQuadraticLinearQuad22InterpolationFunctionsEPdS0__ZN16vtkHyperTreeGrid14GetMaxCellSizeEv_ZN9vtkSphere9GetRadiusEv_ZN8vtkGraph9GetPointsEv_ZN11vtkTriangle15PointInTriangleEPdS0_S0_S0_d_ZN7vtkLine7GetFaceEi_ZN22vtkBiQuadraticTriangle12CellBoundaryEiPdP9vtkIdList_ZN33vtkBiQuadraticQuadraticHexahedron16GetNumberOfFacesEv_ZN29vtkGenericAttributeCollection21GetNumberOfAttributesEv_ZN13vtkHexahedron3IsAEPKc_ZN13vtkPolyhedron8GetFacesEv_ZN8vtkPixel16GetNumberOfEdgesEv_ZN20vtkAbstractCellLinks9GetIdTypeExxP12vtkCellArray_ZN32vtkIncrementalOctreePointLocator22GenerateRepresentationEiP11vtkPolyData_ZNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEED1Ev@GLIBCXX_3.4.21_ZN16vtkTriangleStrip19GetParametricCenterEPd_ZN12vtkImageData9GetOriginEv_ZN11vtkPolyData10BuildLinksEi_ZN11vtkTriangle22InterpolationFunctionsEPdS0__ZN13vtkDataObject21DATA_NUMBER_OF_PIECESEv_ZN7vtkQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN20vtkQuadraticTriangle11DerivativesEiPdS0_iS0__ZN18vtkImplicitBoolean8GetMTimeEv_ZNK14vtkBoundingBox8ContainsERKS__ZN9vtkSphere9SetCenterEPd_ZN11vtkPointSet8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN9vtkKdTree14GetFudgeFactorEv_ZN12vtkImageData27SetScalarComponentFromFloatEiiiifPyVTKAddFile_vtkUndirectedGraph_ZNK8vtkGraph19NewInstanceInternalEv_ZNK18vtkBiQuadraticQuad19NewInstanceInternalEv_ZN19vtkGenericAttribute3IsAEPKc_ZN8vtkPlane9GetOriginEv_ZN13vtkDataObject12PIECE_EXTENTEv_ZN17vtkOverlappingAMR22GetAMRBlockSourceIndexEjjPyvtkIncrementalOctreeNode_ClassNew_ZN13vtkDataObject6ORIGINEv_ZN11vtkPolyData7SqueezeEv_ZN7vtkAtom11SetPositionEfff_ZN14vtkImplicitSum11AddFunctionEP19vtkImplicitFunctiondPyvtkDataObjectTree_ClassNew_ZN17vtkAMRInformation16ComputeIndexPairEjRjS0_PyVTKAddFile_vtkAMRInformation_ZN20vtkMultiBlockDataSet3NewEv_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKx_ZN8vtkTetra17BarycentricCoordsEPdS0_S0_S0_S0_S0__ZN12vtkPointData9NullPointEx_ZN18vtkRectilinearGrid7GetDataEP14vtkInformation_ZNK23vtkDirectedAcyclicGraph19NewInstanceInternalEv_ZN9vtkKdTree22GenerateRepresentationEPiiP11vtkPolyData_ZN9vtkAMRBox13SetDimensionsEPKii_ZN16vtkDirectedGraph7GetDataEP20vtkInformationVectori_ZN19vtkCompositeDataSet11ShallowCopyEP13vtkDataObject_ZN12vtkEmptyCell17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN24vtkSimpleCellTessellator3NewEv_ZN18vtkRectilinearGrid13GetCellPointsExP9vtkIdList_ZN12vtkEdgeTable5ResetEvPyvtkTree_ClassNew_ZN13vtkDataObject22FIELD_NUMBER_OF_TUPLESEv_ZN16vtkHyperTreeGrid20SetMaterialMaskIndexEP14vtkIdTypeArray_ZN14vtkCellLocator12BuildLocatorEv_ZN23vtkQuadraticLinearWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN14vtkUniformGrid10BlankPointEiiiPyvtkQuad_ClassNew_ZN10vtkDataSet16HasAnyGhostCellsEv_ZN24vtkLagrangeQuadrilateral8GetOrderEvPyVTKAddFile_vtkNonOverlappingAMR_ZNK22vtkGenericCellIterator19NewInstanceInternalEv_ZN16vtkLagrangeCurve24SubCellCoordinatesFromIdER11vtkVector3ii_ZN11vtkMolecule3IsAEPKc_ZN10vtkDataSet3IsAEPKc_ZN17vtkConvexPointSet3IsAEPKc_ZN17vtkOStreamWrapperlsEPKc_ZN18vtkRectilinearGrid19GetActualMemorySizeEv_ZN32vtkReebGraphSimplificationMetric13SetUpperBoundEd_Z39PyvtkDataObject_AttributeTypes_FromEnumi_ZN24vtkAttributesErrorMetric21GetAttributeToleranceEv_ZN12vtkArrayData11ShallowCopyEP13vtkDataObject_ZN24vtkLagrangeQuadrilateral17PointIndexFromIJKEiiPKiPyvtkCompositeDataIterator_ClassNew_ZN25vtkTriQuadraticHexahedron7GetEdgeEi_ZN24vtkImplicitSelectionLoop28GetAutomaticNormalGenerationEv_ZN24vtkLagrangeQuadrilateral21GetParametricDistanceEPd_ZN17vtkXMLDataElement13LookupElementEPKc_ZN22vtkAbstractCellLocator31GetNumberOfCellsPerNodeMaxValueEv_ZN17vtkDataObjectTree16GetChildMetaDataEjPyVTKAddFile_vtkImageData_ZN25vtkTriQuadraticHexahedron16GetCellDimensionEv_ZN8vtkPixel11GetCellTypeEv_ZN11vtkPolyData21InsertNextLinkedPointEi_ZN14vtkImplicitSum16EvaluateFunctionEPd_ZN14vtkHyperOctree3NewEv_ZN22vtkQuadraticHexahedron16EvaluateLocationERiPdS1_S1__ZN17vtkGenericDataSet13GetAttributesEi_ZN30vtkExtractStructuredGridHelper29GetMappedIndexFromExtentValueEii_ZN17vtkOverlappingAMR22HasChildrenInformationEv_ZN13vtkPolyhedron11GetCellTypeEv_ZN9vtkKdTree9GetBoundsEPd_ZN10vtkDataSet19GetNumberOfElementsEi_ZN16vtkLagrangeWedge16EvaluateLocationERiPdS1_S1__ZN17vtkQuadraticTetra19InterpolationDerivsEPdS0__ZN17vtkDataObjectTree10SetDataSetEP24vtkCompositeDataIteratorP13vtkDataObject_ZN12vtkImageData13GetDimensionsEPi_ZN12vtkCellArray3NewEv_ZN16vtkHyperTreeGrid9NewCursorExb_ZN17vtkInEdgeIterator3NewEv_ZNK24vtkLagrangeQuadrilateral19NewInstanceInternalEv_ZN9vtkSpline13GetClampValueEv_ZN10vtkLocator12SetAutomaticEiPyvtkAMRInformation_ClassNew_ZN11vtkMolecule12SetBondOrderExt_ZN13vtkDataObject27RemoveNamedFieldInformationEP14vtkInformationiPKc_ZN16vtkLagrangeCurve11DerivativesEiPdS0_iS0__ZN11vtkCylinder9SetCenterEPd_ZN14vtkHyperOctree3IsAEPKc_ZN17vtkXMLDataElement16AddNestedElementEPS__ZN20vtkQuadraticTriangle7GetEdgeEi_ZN10vtkDataSet18GenerateGhostArrayEPib_ZN30vtkExtractStructuredGridHelper26GetPartitionedOutputExtentEPKiS1_S1_S1_bPi_ZN6vtkBox9GetBoundsERdS0_S0_S0_S0_S0__ZN12vtkImageData13GetIncrementsEP12vtkDataArrayPxPyVTKAddFile_vtkImplicitBoolean_ZNSt8ios_baseC2Ev@GLIBCXX_3.4_ZN19vtkUnstructuredGrid19GetActualMemorySizeEv_ZN13vtkPythonArgs11SetArgValueEiPKxi_ZN19vtkQuadraticPolygon3IsAEPKc_ZN17vtkOverlappingAMR9SetAMRBoxEjjRK9vtkAMRBox_ZN11vtkPolyData27GetScalarFieldCriticalIndexExP12vtkDataArray_ZN29vtkGenericAttributeCollection7IsEmptyEv_ZN33vtkBiQuadraticQuadraticHexahedron17InterpolateDerivsEPdS0__ZN23vtkMutableDirectedGraph9AddVertexEv_ZNK22vtkBiQuadraticTriangle19NewInstanceInternalEv_ZN22vtkAbstractCellLocator17CacheCellBoundsOnEv_ZN12vtkCubicLine20InterpolateFunctionsEPdS0__ZN8vtkGraph12AddEdgePointExPd_ZN12vtkImageData13GetScalarTypeEP14vtkInformation_ZN32vtkIncrementalOctreePointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN9vtkSpline9GetClosedEv_ZN10vtkLocator12GetToleranceEv_ZN9vtkVertex17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN29vtkQuadratureSchemeDefinition3IsAEPKc_ZN24vtkCompositeDataIterator17SkipEmptyNodesOffEv_ZN13vtkPolyVertex4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkHyperTreeGrid24NewVonNeumannSuperCursorExb_ZN18vtkImplicitBoolean14RemoveFunctionEP19vtkImplicitFunctionPyvtkBSPCuts_ClassNew_ZN20vtkDataSetAttributes19InterpolateAllocateEPS_xxi_ZN16vtkSelectionNode3NewEv_ZN24vtkSimpleCellTessellator14GetGenericCellEv_ZN23vtkDirectedAcyclicGraph3IsAEPKc_ZN17vtkGenericDataSet13GetAttributesEv_ZN17vtkXMLDataElement16GetAttributeNameEi_ZN33vtkBiQuadraticQuadraticHexahedron16EvaluateLocationERiPdS1_S1__ZN17vtkUniformGridAMR11ShallowCopyEP13vtkDataObjectPyVTKAddFile_vtkQuadraticPyramid_ZN10vtkPolygon11GetCellTypeEv_ZN20vtkDataSetAttributes14CopyTCoordsOffEv_ZN22vtkQuadraticLinearQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkMolecule10SetLatticeEP12vtkMatrix3x3_ZN19vtkUnstructuredGrid7SqueezeEv_ZN8vtkWedge12CellBoundaryEiPdP9vtkIdList_ZN11vtkMolecule10InitializeEv_ZN15vtkPointLocator3NewEv_ZN19vtkGenericEdgeTable10RemoveEdgeExx_ZN18vtkImplicitBoolean3NewEv_ZN7vtkPath7GetDataEP20vtkInformationVectori_ZN9vtkCell3D3IsAEPKc_ZN11vtkPolyLine11DerivativesEiPdS0_iS0__ZN7vtkTree15ReorderChildrenExP14vtkIdTypeArray_ZN9vtkKdNode6GetDimEv_ZN12vtkImageData11GetCellTypeEx_ZN17vtkStructuredGrid8GetPointEx_ZN24vtkIncrementalOctreeNode28ExportAllPointIdsByInsertionEP9vtkIdListPyvtkPentagonalPrism_ClassNew_ZN20vtkSmoothErrorMetric3IsAEPKc_ZN16vtkNonLinearCell3IsAEPKc_ZN20vtkQuadraticTriangle16EvaluateLocationERiPdS1_S1__ZN12vtkImageData27GetNumberOfScalarComponentsEv_ZN8vtkVoxel13GetFacePointsEiRPi_ZN12vtkSelection8SubtractEPS__ZN19vtkQuadraticPyramid11TriangulateEiP9vtkIdListP9vtkPoints_ZN33vtkBiQuadraticQuadraticHexahedron11GetCellTypeEv_ZN12vtkCubicLine19GetParametricCoordsEv_ZN12vtkArrayData8GetArrayEx_ZN13vtkPolyhedron8IsInsideEPdd_ZN14vtkUniformGrid8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN25vtkTriQuadraticHexahedron16GetNumberOfEdgesEv_ZN18vtkImplicitDataSet14SetOutGradientEddd_ZN29vtkGenericAttributeCollection11ShallowCopyEPS_PyVTKAddFile_vtkFieldData_ZN12vtkImageData13GetIncrementsEPx_ZN13vtkPythonArgs8GetArrayEPmi_ZN21vtkGenericAdaptorCell9GetBoundsEv_ZN18vtkUndirectedGraph17GetDataObjectTypeEv_ZNK17vtkAMRInformation18GetRefinementRatioEj_ZN11vtkPolyLine19GetParametricCenterEPd_ZN10vtkLocator11AutomaticOnEv_ZN21vtkStaticPointLocator12BuildLocatorEv_ZN16vtkLagrangeWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN32vtkIncrementalOctreePointLocator15IsInsertedPointEPKd_ZN16vtkLagrangeTetra7ToIndexEPKx_ZN12vtkCellTypes19GetActualMemorySizeEv_ZN8vtkTetra11TriangulateEiP9vtkIdListP9vtkPoints_ZN17vtkGenericDataSet8GetMTimeEv_ZN20vtkDataSetAttributes20SetActivePedigreeIdsEPKc_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRi_ZNK17vtkQuadraticWedge19NewInstanceInternalEv_ZN31vtkUnstructuredGridCellIterator3IsAEPKc_ZN14vtkHyperOctree15SetDualGridFlagEi_ZN24vtkLagrangeQuadrilateral7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkPythonArgs5ArrayIxEC1El_ZN18vtkImplicitBoolean3IsAEPKc_ZN18vtkPentagonalPrism22InterpolationFunctionsEPdS0__ZN10vtkDataSet8GetMTimeEvPyVTKAddFile_vtkGenericSubdivisionErrorMetric_ZN17vtkConvexPointSet16EvaluateLocationERiPdS1_S1__ZN16vtkQuadraticQuad11DerivativesEiPdS0_iS0__ZN16vtkSelectionNode13GetPropertiesEv_ZN14vtkHyperOctree20GetMaxNumberOfPointsEi_ZN16vtkQuadraticQuad3NewEvPyVTKAddFile_vtkHyperTree_ZN12vtkImageData24GetArrayPointerForExtentEP12vtkDataArrayPi_ZN17vtkGenericDataSet19GetActualMemorySizeEv_ZN10vtkPyramid3IsAEPKc_ZN16vtkLagrangeCurve8GetOrderEv_ZN15vtkPointLocator12SetDivisionsEPi_ZN21vtkLagrangeHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN24vtkIncrementalOctreeNode3NewEvPyVTKAddFile_vtkQuadraticWedge_ZN20vtkStaticCellLocator21FindCellsWithinBoundsEPdP9vtkIdList_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey3GetEP14vtkInformationi_ZN17vtkOStreamWrapperlsEi_ZN8vtkGraph19GetAdjacentVerticesExP25vtkAdjacentVertexIterator_ZN18vtkRectilinearGrid13SetDimensionsEiii_ZN19vtkQuadraticPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0__ZNSt8ios_baseD2Ev@GLIBCXX_3.4_ZN7vtkPath7GetCellEx_ZN21vtkStaticPointLocator25GetNumberOfPointsInBucketEx_ZN12vtkImageData10GetSpacingEv_ZN12vtkCellArray7GetCellExP9vtkIdList_ZN14vtkGenericCell4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN32vtkIncrementalOctreePointLocator16GetLocatorPointsEv_ZN18vtkPentagonalPrism16GetNumberOfEdgesEv_ZN19vtkUnstructuredGrid11ShallowCopyEP13vtkDataObject_ZNK21vtkGenericAdaptorCell19NewInstanceInternalEv_ZN17vtkAMRInformation18SetGridDescriptionEi_ZNK9vtkSpline19NewInstanceInternalEv_ZN22vtkOrderedTriangulator12AddTrianglesExP12vtkCellArray_ZN16vtkQuadraticEdge22InterpolationFunctionsEPdS0__ZN17vtkDataObjectTree16HasChildMetaDataEj_ZN13vtkPolyVertex17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPolyhedron34RequiresExplicitFaceRepresentationEv_ZN11vtkPolyData14InsertNextCellEiP9vtkIdList_ZN12vtkImageData13SetDimensionsEPKi_ZN25vtkDataObjectTreeIterator19GetCurrentFlatIndexEvPyVTKAddFile_vtkMarchingCubesTriangleCases_ZN17vtkDataObjectTree11ShallowCopyEP13vtkDataObject_ZN9vtkSpline17SetLeftConstraintEi_ZN16vtkHyperTreeGrid13GetCellPointsExP9vtkIdListPyvtkVector2f_TypeNew_ZN17vtkUniformGridAMR18SetGridDescriptionEi_ZN18vtkBiQuadraticQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN22vtkQuadraticLinearQuad19InterpolationDerivsEPdS0_PyvtkMultiBlockDataSet_ClassNew_ZN17vtkUniformGridAMR10InitializeEiPKi_ZN9vtkKdNode7SetLeftEPS__ZN13vtkPythonArgs8SetArrayEiPKfi_ZN7vtkPath17GetDataObjectTypeEv_ZN17vtkQuadraticWedge16GetNumberOfFacesEv_ZN16vtkHyperTreeGrid23GetInterfaceNormalsNameEv_ZN19vtkUnstructuredGrid29InitializeFacesRepresentationEx_ZN10vtkDataSet10InitializeEvPyvtkSortFieldData_ClassNew_ZN7vtkQuad19GetParametricCenterEPd_ZN12vtkEdgeTable16GetNumberOfEdgesEvPyvtkOutEdgeIterator_ClassNewPyVTKAddFile_vtkPiecewiseFunctionPyvtkVector_IdLi2EE_TypeNew_ZN12vtkImageData25GetScalarPointerForExtentEPi_ZN11vtkPolyLine3IsAEPKc_ZN17vtkConvexPointSet16EvaluatePositionEPdS0_RiS0_RdS0__ZN20vtkStaticCellLocator12SetDivisionsEPiPyvtkBSPIntersections_ClassNew_ZN16vtkLagrangeTetra18ToBarycentricIndexExPx_ZN12vtkImageData14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN7vtkCell10InitializeEvPyObject_GenericSetAttr_ZN19vtkAMRDataInternals11ShallowCopyEP9vtkObject_ZN7vtkLine16GetNumberOfEdgesEv_ZN10vtkBSPCuts7GetDataEP14vtkInformation_ZN33vtkBiQuadraticQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_ZN18vtkImplicitDataSet14GetOutGradientEv_ZSt17__throw_bad_allocv@GLIBCXX_3.4_ZN17vtkXMLDataElement37FindNestedElementWithNameAndAttributeEPKcS1_S1__ZNK14vtkBoundingBox12GetMaxLengthEv_ZN17vtkStructuredGrid17HasAnyBlankPointsEv_ZN11vtkPolyData14InsertNextCellEiiPx_ZN11vtkCylinder9SetCenterEddd_ZN25vtkOctreePointLocatorNode8GetChildEi_ZN14vtkUniformGrid7GetDataEP20vtkInformationVectori_ZN8vtkTetra13ComputeVolumeEPdS0_S0_S0__ZN35vtkGenericInterpolatedVelocityField13ClearLastCellEv_ZN9vtkSpline8GetMTimeEv_ZN22vtkAbstractCellLocator18GetCacheCellBoundsEv_ZN9vtkKdNode9PrintNodeEi_ZN23vtkMutableDirectedGraph7AddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN33vtkIterativeClosestPointTransform20GetCheckMeanDistanceEv_ZN12vtkArrayData7GetDataEP14vtkInformationPyvtkGeometricErrorMetric_ClassNew_ZN16vtkQuadraticQuad17InterpolateDerivsEPdS0__ZN20vtkDataSetAttributes18CopyStructuredDataEPS_PKiS2_b_ZN20vtkPiecewiseFunction8DeepCopyEP13vtkDataObject_ZN15vtkCellIterator10FetchFacesEv_ZN12vtkReebGraph8SimplifyEdP32vtkReebGraphSimplificationMetricPyvtkMultiPieceDataSet_ClassNew_ZN22vtkPointsProjectedHull22RectangleIntersectionXEdddd_ZN22vtkBiQuadraticTriangle11TriangulateEiP9vtkIdListP9vtkPointsPyvtkLocator_ClassNew_ZNK24vtkLagrangeInterpolation19NewInstanceInternalEv_ZN12vtkEmptyCell16GetNumberOfFacesEvPyvtkAnnotation_ClassNew_ZN6vtkBox3IsAEPKc_ZN17vtkGenericDataSet9GetCenterEPdPyvtkCellLocator_ClassNew_ZN9vtkKdTree16PrintVerboseTreeEv_ZN22vtkAbstractCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRxP14vtkGenericCell_ZN13vtkDataObject28SetPointDataActiveScalarInfoEP14vtkInformationii_ZN12vtkHyperTree15FindParentIndexERx_ZN20vtkMultiPieceDataSet7GetDataEP20vtkInformationVectori_ZNK17vtkXMLDataElement19NewInstanceInternalEv_ZNK9vtkAMRBox16GetNumberOfNodesEv_ZN24vtkAttributesErrorMetric21SetAttributeToleranceEdPyVTKAddFile_vtkSelectionNode_ZN19vtkLagrangeTriangle16GetNumberOfEdgesEv_ZN12vtkReebGraph3SetEP23vtkMutableDirectedGraph_ZN24vtkIncrementalOctreeNode3IsAEPKc_ZN19vtkStructuredPoints17GetDataObjectTypeEv_ZN9vtkKdTree24FindClosestPointInRegionEiPdRd_ZN25vtkMutableUndirectedGraph14RemoveVerticesEP14vtkIdTypeArray_ZN19vtkQuadraticPolygon20InterpolateFunctionsEPdS0_PyVTKAddFile_vtkBiQuadraticQuadraticWedge_ZN16vtkHyperTreeGrid9DIMENSIONEvPyvtkHexagonalPrism_ClassNew_ZN21vtkOctreePointLocator12BuildLocatorEv_ZN20vtkDataSetAttributes18CopyPedigreeIdsOffEv_ZN9vtkKdTree22BuildLocatorFromPointsEP11vtkPointSet_ZN32vtkIncrementalOctreePointLocator19GetMaxPointsPerLeafEv_ZN14vtkHyperOctree9SetOriginEPd_ZN11vtkPolyData8SetPolysEP12vtkCellArray_ZN15vtkPointLocator12SetDivisionsEiii_ZN22vtkAbstractCellLocator29UseExistingSearchStructureOffEv_ZN23vtkGeometricErrorMetric11GetRelativeEv_ZN22vtkBiQuadraticTriangle21GetParametricDistanceEPd_ZN19vtkQuadraticPolygon11DerivativesEiPdS0_iS0__ZN12vtkImageData27SetNumberOfScalarComponentsEiP14vtkInformation_ZN11vtkPolyData6IsEdgeExx_ZN13vtkPolyhedron19GetParametricCenterEPd_ZNK11vtkPolyLine19NewInstanceInternalEv_ZN32vtkIncrementalOctreePointLocator19GetBuildCubicOctreeEv_ZN17vtkQuadraticWedge16EvaluatePositionEPdS0_RiS0_RdS0_PyVTKAddFile_vtkSplinePyVTKAddFile_vtkQuadraticLinearQuad_ZNK12vtkCellLinks19NewInstanceInternalEv_ZN16vtkSelectionNode12SetFieldTypeEi_ZN25vtkDataObjectTreeIterator18HasCurrentMetaDataEv_ZN29vtkGenericAttributeCollection18GetActiveComponentEv_ZN32vtkIncrementalOctreePointLocator15InsertNextPointEPKd_ZN14vtkGenericCell11ShallowCopyEP7vtkCellPyvtkWedge_ClassNew_ZN18vtkRectilinearGrid9SetExtentEPi_ZN11vtkPointSet8FindCellEPdP7vtkCellxdRiS0_S0__ZN14vtkHyperOctree20CollapseTerminalNodeEP20vtkHyperOctreeCursor_ZN25vtkDataObjectTreeIterator20GetCurrentDataObjectEv_ZN8vtkTable9GetColumnEx_ZN19vtkUnstructuredGrid3IsAEPKc_ZN24vtkLagrangeInterpolation29GetFixedParametersOfWedgeEdgeEi_Z42PyvtkDataObject_FieldAssociations_FromEnumi_ZN14vtkPixelExtent5ShiftEPiS0__ZN25vtkMutableUndirectedGraph11LazyAddEdgeExRK10vtkVariantP15vtkVariantArray_ZN20vtkDataSetAttributes16SetActiveNormalsEPKc_ZN29vtkQuadratureSchemeDefinition12RestoreStateEP17vtkXMLDataElement_ZN17vtkAMRInformation8FindGridEPdiRj_ZN24vtkAttributesErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_d_ZN18vtkStaticCellLinks10BuildLinksEP10vtkDataSet_ZN16vtkSelectionNode3IsAEPKc_ZN17vtkGenericDataSet9GetBoundsEPd_ZNK19vtkAMRDataInternals19NewInstanceInternalEv_ZN13vtkPolyVertex12CellBoundaryEiPdP9vtkIdList_ZN13vtkPolyhedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN12vtkEdgeTable6IsEdgeExx_ZN22vtkOrderedTriangulator16GetPointPositionEx_ZN15vtkSuperquadric11SetToroidalEi_ZN21vtkLagrangeHexahedron16GetNumberOfFacesEvPyVTKAddFile_vtkSortFieldData_ZN12vtkImageData7GetCellEiii_ZN19vtkQuadraticPyramid16GetNumberOfEdgesEv_ZN11vtkTriangle11DerivativesEiPdS0_iS0__ZN10vtkPolygon13IsPrimaryCellEv_ZN9vtkVertex19GetParametricCoordsEv_ZN21vtkStaticPointLocator12GetBucketIdsExP9vtkIdListPyVTKAddFile_vtkSmoothErrorMetric_ZN11vtkPolyData16GetNumberOfLinesEv_ZN11vtkPolyData11DeleteCellsEv_ZN29vtkStructuredPointsCollection3IsAEPKc_ZN17vtkAnimationScene3IsAEPKcPyType_IsSubtype_ZN12vtkImageData23GetContinuousIncrementsEP12vtkDataArrayPiRxS3_S3__ZN18vtkPentagonalPrism20InterpolateFunctionsEPdS0__ZN18vtkRectilinearGrid9FindPointEPd_ZN17vtkConvexPointSet13GetFacePointsEiRPi_ZN14vtkHyperOctree9GetOriginEv_ZN24vtkLagrangeInterpolation27GetParametricHexCoordinatesEi_ZN15vtkTreeIterator7HasNextEvPyvtkImplicitVolume_ClassNew_ZN11vtkPolyLine7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN9vtkSpline11RemovePointEd_ZN7vtkQuad19InterpolationDerivsEPdS0__ZN9vtkVertex17InterpolateDerivsEPdS0__ZN23vtkQuadraticLinearWedge22InterpolationFunctionsEPdS0_PyvtkDirectedAcyclicGraph_ClassNew_ZN19vtkLagrangeTriangle16EvaluateLocationERiPdS1_S1__ZN8vtkTetra11TetraCenterEPdS0_S0_S0_S0__ZN11vtkTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN10vtkPyramid12GetEdgeArrayEi_ZN29vtkGenericAttributeCollection15RemoveAttributeEi_ZN23vtkDataObjectCollection3IsAEPKc_ZN11vtkPointSet19GetActualMemorySizeEv_ZN13vtkAnnotation3IsAEPKc_ZN14vtkHyperOctree9FindPointEPd_ZN13vtkObjectBase8IsTypeOfEPKcPyVTKAddFile_vtkLagrangeQuadrilateral_ZN24vtkIncrementalOctreeNode22GetDistance2ToBoundaryEPKdPdPS_iPyvtkLagrangeWedge_ClassNew_ZN16vtkHyperTreeGrid15HasMaterialMaskEv_ZN25vtkDataObjectTreeIterator18GetCurrentMetaDataEv_ZN9vtkSpline26GetRightConstraintMinValueEv_ZN9vtkAMRBoxD2Ev_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRxPyModule_GetDict_ZN25vtkTriQuadraticHexahedron20InterpolateFunctionsEPdS0__ZN17vtkHexagonalPrism12CellBoundaryEiPdP9vtkIdList_ZN9vtkObject23GetGlobalWarningDisplayEv_ZN13vtkPythonArgs8GetArrayEPli_ZN12vtkEmptyCell7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN25vtkMutableUndirectedGraph19SetNumberOfVerticesExPyVTKAddFile_vtkHyperTreeGridCursor_ZN11vtkCellData3NewEvPyVTKAddFile_vtkPointSetCellIterator_ZN9vtkKdNode5GetIDEv_ZN9vtkKdNode13SetDataBoundsEdddddd_ZN32vtkIncrementalOctreePointLocator3IsAEPKc_ZN12vtkCellTypes14InsertNextCellEhx_ZN14vtkPixelExtent7GrowLowERKS_ii_ZN13vtkHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey3SetEP14vtkInformationP29vtkQuadratureSchemeDefinitioni_ZN15vtkImplicitHalo9SetCenterEPd_ZN13vtkObjectBaseC1Ev_ZN10vtkPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPdPyvtkLinearTransform_ClassNew_ZN14vtkUniformGrid7GetDataEP14vtkInformation_ZN17vtkHexagonalPrism13GetEdgePointsEiRPi_ZN13vtkPythonArgs8GetValueERm_ZN19vtkUnstructuredGrid15NewCellIteratorEv_ZN17vtkHexagonalPrism16EvaluateLocationERiPdS1_S1__ZN24vtkLagrangeQuadrilateral24SubCellCoordinatesFromIdER11vtkVector3ii_ZN33vtkIterativeClosestPointTransform10GetLocatorEv_ZN13vtkPolyhedron8IsConvexEv_ZN25vtkGenericCellTessellator12GetMaxErrorsEPd_ZN20vtkDataSetAttributes11ShallowCopyEP12vtkFieldData_ZN13vtkDataObject14SetInformationEP14vtkInformation_ZN32vtkIncrementalOctreePointLocator19BuildCubicOctreeOffEv_ZNK14vtkBoundingBox17GetDiagonalLengthEv_ZN24vtkCompositeDataIterator10SetDataSetEP19vtkCompositeDataSet_ZN12vtkSelection8SubtractEP16vtkSelectionNodePyvtkPyramid_ClassNew_ZN14vtkBoundingBox8AddPointEPd_ZN20vtkQuadraticTriangle16GetNumberOfEdgesEv_ZN20vtkPiecewiseFunction14GetUseLogScaleEv_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridP12vtkDataArray_ZN23vtkGeometricErrorMetric29SetRelativeGeometricToleranceEdP17vtkGenericDataSet_ZN9vtkKdTree24SetNumberOfRegionsOrMoreEiPyVTKObject_New_ZN17vtkUniformGridAMR17GetCompositeIndexEjjPyvtkDistributedGraphHelper_ClassNew__cxa_finalize@GLIBC_2.2.5_ZN23vtkDataObjectCollection3NewEv_ZN25vtkDataObjectTreeIterator18TraverseSubTreeOffEv_ZN14vtkPerlinNoise12SetFrequencyEdddstrlen@GLIBC_2.2.5_ZN8vtkTable8GetValueExx_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPx_ZN18vtkBiQuadraticQuad17InterpolateDerivsEPdS0__ZN8vtkTable15SetNumberOfRowsEx_ZN14vtkGenericCell7GetFaceEi_ZN16vtkQuadraticQuad16GetNumberOfEdgesEv_ZN14vtkUniformGrid13GetPointCellsExP9vtkIdList_ZN11vtkTriangle13ComputeNormalEP9vtkPointsiPxPdPyvtkCell_ClassNew_ZN29vtkGenericAttributeCollection24GetMaxNumberOfComponentsEv_ZN17vtkAMRInformation18HasRefinementRatioEv_ZN28vtkBiQuadraticQuadraticWedge19InterpolationDerivsEPdS0__ZN10vtkDataSet8DeepCopyEP13vtkDataObject_ZN21vtkKdTreePointLocator19FreeSearchStructureEv_ZN6vtkBox7SetXMaxEddd_ZN8vtkTetra7GetFaceEi_ZN14vtkBoundingBox11SetMaxPointEddd_ZN30vtkCommonInformationKeyManagerC1Ev_ZN12vtkImageData28ComputeStructuredCoordinatesEPKdPiPdPKiS1_S1_S1__ZN22vtkAbstractCellLocator17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZNK22vtkAbstractCellLocator19NewInstanceInternalEv_ZN9vtkAMRBox11DeserializeEPhRKx_ZN15vtkPointLocator26GetNumberOfPointsPerBucketEvPyvtkHierarchicalBoxDataIterator_ClassNew_ZN12vtkPolyPlane16EvaluateGradientEPdS0__ZN9vtkKdTree23GetRegionContainingCellEx_ZN8vtkGraph13SetEdgePointsExxPd_ZN11vtkPolyData18AddReferenceToCellExx_ZN7vtkCell34RequiresExplicitFaceRepresentationEv_ZN12vtkImageData21ComputeInternalExtentEPiS0_S0__ZN8vtkGraph4DumpEv_ZN20vtkQuadraticTriangle16GetNumberOfFacesEv_ZN11vtkMolecule21ShallowCopyAttributesEPS__ZN18vtkBiQuadraticQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN32vtkIncrementalOctreePointLocator9GetBoundsEv_ZN17vtkConvexPointSet3NewEvPyVTKAddFile_vtkImplicitVolumePyVTKAddFile_vtkDirectedGraph_ZN17vtkInEdgeIterator10InitializeEP8vtkGraphx_ZN17vtkStructuredGrid9GetExtentEvPyVTKAddFile_vtkAnimationScene_ZN7vtkPath3IsAEPKc_ZN33vtkIterativeClosestPointTransform27StartByMatchingCentroidsOffEv_ZN21vtkGenericAdaptorCell10TessellateEP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatorP9vtkPointsP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataSB_P11vtkCellDataP20vtkUnsignedCharArray_ZN20vtkSmoothErrorMetric8GetErrorEPdS0_S0_d_ZN8vtkGraph18CheckedShallowCopyEPS__ZNK20vtkDataSetCollection19NewInstanceInternalEvPyvtkLagrangeTetra_ClassNewPyVTKAddFile_vtkNonLinearCell_ZN8vtkTable6GetRowEx_ZN8vtkTable11ShallowCopyEP13vtkDataObject_ZN11vtkMolecule16GetLatticeOriginEv_ZN24vtkIncrementalOctreeNode9SetBoundsEdddddd_ZN22vtkPointsProjectedHull11GetCCWHullXEPdi_ZN20vtkDataSetAttributes6UpdateEvPyVTKAddFile_vtkPlaneCollection_ZN24vtkImplicitSelectionLoop9GetNormalEv_ZN22vtkAbstractCellLocator17RetainCellListsOnEv_ZN12vtkImageData3IsAEPKc_ZN16vtkQuadraticEdge20InterpolateFunctionsEPdS0__ZN22vtkQuadraticHexahedron12GetFaceArrayEi_ZN26vtkIncrementalPointLocator3IsAEPKc_ZN18vtkRectilinearGrid9SetExtentEiiiiii_ZN33vtkBiQuadraticQuadraticHexahedron3NewEv_ZN16vtkLagrangeTetra3NewEv_ZN20vtkMultiBlockDataSet17SetNumberOfBlocksEj_ZN13vtkDataObject7SPACINGEv_ZN9vtkAMRBox9IntersectERKS_PyvtkGenericCellTessellator_ClassNew_ZNK29vtkQuadratureSchemeDefinition19NewInstanceInternalEv_ZN14vtkImplicitSum20NormalizeByWeightOffEv_ZNK10vtkQuadric19NewInstanceInternalEv_ZN16vtkHyperTreeGrid18NewGeometricCursorExb_ZN9vtkKdTree12GetCellListsEP11vtkIntArrayP9vtkIdListS3__ZN22vtkOrderedTriangulator17InitTriangulationEPdi_ZN20vtkMultiBlockDataSet7GetDataEP20vtkInformationVectori_ZN10vtkQuadric16EvaluateGradientEPdS0_PyVTKAddFile_vtkCellLocator_ZN16vtkSelectionNode9SOURCE_IDEv_ZN10vtkPyramid16EvaluateLocationERiPdS1_S1__ZN16vtkSelectionNode11ShallowCopyEPS__ZN11vtkTriangle11GetCellTypeEv_ZN18vtkBiQuadraticQuad26InterpolationDerivsPrivateEPdS0__ZN25vtkTriQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZNK17vtkHexagonalPrism19NewInstanceInternalEv_ZN23vtkQuadraticLinearWedge12GetFaceArrayEi_ZN17vtkDataObjectTree11NewIteratorEv_ZNK17vtkAMRInformation19NewInstanceInternalEv_ZN9vtkKdTree24SetNumberOfRegionsOrLessEi_ZN16vtkLagrangeWedge22RequiresInitializationEv_ZN13vtkPythonArgs5ArrayIiEC1El_ZN14vtkHyperOctree11GetCellTypeEx_ZN16vtkHyperTreeGrid15GetYCoordinatesEvPyVTKAddFile_vtkReebGraph_ZN17vtkConvexPointSet19GetParametricCenterEPd_ZN19vtkAMRDataInternals10GetDataSetEj_ZNK9vtkSphere19NewInstanceInternalEvPyvtkTriangleStrip_ClassNew_ZN23vtkQuadraticLinearWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN9vtkKdTree39GenerateRepresentationUsingDataBoundsOnEv_ZN9vtkKdNode16DeleteChildNodesEv_ZN20vtkMultiPieceDataSet8GetPieceEj_ZN22vtkQuadraticLinearQuad7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN10vtkLocator19GetMaxLevelMinValueEv_ZN20vtkQuadraticTriangle19GetParametricCenterEPd_ZN23vtkMutableDirectedGraph13LazyAddVertexEv_ZN19vtkAnnotationLayers19GetCurrentSelectionEv_ZN32vtkReebGraphSimplificationMetric13GetUpperBoundEv_ZN16vtkHyperTreeGrid25GetTransposedRootIndexingEvPyVTKAddFile_vtkLagrangeWedge_ZN12vtkGraphEdge3NewEv_ZN17vtkXMLDataElement19RemoveNestedElementEPS__ZN16vtkHyperTreeGrid16GetNumberOfTreesEv_ZN10vtkPolygon15ComputeCentroidEP9vtkPointsiPxPd_ZN12vtkSelection10RemoveNodeEP16vtkSelectionNode_ZN9vtkKdNode16PrintVerboseNodeEi_ZN20vtkPiecewiseFunction17GetDataObjectTypeEv_ZN16vtkHyperTreeGrid11GetGridSizeEv_ZN14vtkHyperOctree9SetOriginEddd_ZN11vtkPolyLine7GetFaceEi_ZN18vtkUndirectedGraph9GetInEdgeExxP12vtkGraphEdgePyvtkGraphEdge_ClassNew_ZN10vtkBSPCuts9GetArraysEiPiPdS0_S0_S1_S1_S0_PyvtkVertex_ClassNew_Py_FatalErrorFuncPyVTKAddFile_vtkUniformGrid_ZN19vtkGenericEdgeTable20InsertPointAndScalarExPdS0__ZN22vtkPointsProjectedHull22RectangleIntersectionYEP9vtkPoints_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey6AppendEP14vtkInformationP29vtkQuadratureSchemeDefinition_ZN22vtkBiQuadraticTriangle11GetCellTypeEvPyvtkSelection_ClassNew_ZN8vtkGraph12GetEdgePointExx_ZN9vtkKdTree11GetDataSetsEv_ZN22vtkQuadraticLinearQuad16GetNumberOfEdgesEv_ZN12vtkImageData10SetSpacingEddd_ZN13vtkPythonArgs13CheckSizeHintEill_ZN16vtkHyperTreeGrid15GetXCoordinatesEv_ZN12vtkArrayData14GetArrayByNameEPKc_ZN16vtkSelectionNode10InitializeEv_ZN16vtkLagrangeCurve7GetEdgeEi_ZN32vtkIncrementalOctreePointLocator29FindPointsWithinSquaredRadiusEdPKdP9vtkIdList_ZNK22vtkPointsProjectedHull19NewInstanceInternalEv_ZN12vtkImageData15AllocateScalarsEP14vtkInformation_ZN6vtkBox7GetXMaxEPd_ZN21vtkStaticPointLocator18FindClosestNPointsEiPKdP9vtkIdListPyvtkDataObjectCollection_ClassNew_ZN16vtkHyperTreeGrid19GetPureMaterialMaskEv_ZN7vtkBond12GetBeginAtomEvPyvtkQuadraticTetra_ClassNew_ZN32vtkIncrementalOctreePointLocator17InsertUniquePointEPKdRx_ZN22vtkAbstractCellLocator18SetRetainCellListsEi_ZNK23vtkPointSetCellIterator19NewInstanceInternalEv_ZN11vtkPolyData11GetCellTypeEx_ZN19vtkGenericEdgeTable10CheckPointExPdS0__ZN15vtkAMRUtilities16StripGhostLayersEP17vtkOverlappingAMRS1__ZN33vtkIterativeClosestPointTransform27SetStartByMatchingCentroidsEi_ZN9vtkKdNode7GetLeftEv_ZN7vtkQuad11GetCellTypeEv_ZN15vtkTreeIterator14GetStartVertexEv_ZN12vtkFieldData8GetArrayEi_ZN17vtkAnimationScene7GetLoopEv_ZNK17vtkGenericDataSet19NewInstanceInternalEv_ZN20vtkDataSetAttributes13CopyVectorsOnEvPyvtkHyperOctreeCursor_ClassNew_ZN13vtkPythonArgs10GetArgSizeEiPyVTKAddFile_vtkMultiPieceDataSet_ZN24vtkSimpleCellTessellator11TriangulateEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData_ZN16vtkHyperTreeGrid13NewGridCursorExbPyVTKAddFile_vtkSelection_ZN19vtkEdgeListIterator3IsAEPKc_ZN14vtkMergePoints3NewEv_ZN16vtkLagrangeWedge30GetNumberOfApproximatingWedgesEPKi_ZN20vtkPiecewiseFunction10ClampingOnEv_ZN16vtkHyperTreeGrid17GetNumberOfPointsEv_ZN15vtkPointLocator22GenerateRepresentationEiP11vtkPolyDataPyvtkDataSetCollection_ClassNew_ZN17vtkUniformGridAMR9GetBoundsEv_ZN12vtkArrayData17GetDataObjectTypeEv_ZN16vtkQuadraticEdge17InterpolateDerivsEPdS0__ZN19vtkQuadraticPyramid19GetParametricCoordsEv_ZN10vtkDataSet22AllocateCellGhostArrayEv_ZN14vtkHyperOctree5SIZESEvPyvtkVector2_IiE_TypeNew_ZN28vtkBiQuadraticQuadraticWedge11DerivativesEiPdS0_iS0__ZN11vtkMolecule15CheckedDeepCopyEP8vtkGraph_ZN17vtkHexagonalPrism3NewEvPyvtkQuadraticTriangle_ClassNew_ZN12vtkFieldData8GetMTimeEv_ZN9vtkAMRBoxC1ERKS__ZN9vtkKdNode16SetMinDataBoundsEPKd_ZNK9vtkAMRBox16GetNumberOfNodesEPi_ZNK24vtkAttributesErrorMetric19NewInstanceInternalEv_ZN14vtkUniformGrid17GetDataObjectTypeEv_ZN16vtkHyperTreeGrid12SetDimensionEj_ZN19vtkUnstructuredGrid25ConvertFaceStreamPointIdsExPxS0__ZN17vtkUniformGridAMR10SetDataSetEP24vtkCompositeDataIteratorP13vtkDataObject_ZN9vtkPlanes8GetPlaneEi_ZN14vtkPerlinNoise3NewEv_Py_NoneStruct_ZNK19vtkLagrangeTriangle19NewInstanceInternalEv_ZN16vtkHyperTreeGrid32GetLevelZeroCoordinatesFromIndexExRjS0_S0__ZN8vtkPixel19InterpolationDerivsEPdS0__ZN9vtkVertex4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN16vtkLagrangeTetra20InterpolateFunctionsEPdS0__ZN19vtkUnstructuredGrid21RemoveReferenceToCellExx_ZN17vtkQuadraticWedge19InterpolationDerivsEPdS0__ZN9vtkKdTree17OmitYPartitioningEv_ZN17vtkStructuredGrid8GetPointEiiiPdb_ZN14vtkHyperOctree7SetSizeEddd_ZN14vtkHyperOctree17GetDataObjectTypeEv_ZN9vtkSpline25GetLeftConstraintMaxValueEv_ZN12vtkCubicLine16EvaluatePositionEPdS0_RiS0_RdS0__ZN28vtkBiQuadraticQuadraticWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyVTKAddFile_vtkSuperquadricPyVTKAddFile_vtkQuadraticHexahedron_ZN17vtkQuadraticTetra19GetParametricCoordsEv_ZN9vtkKdNode27GetDistance2ToInnerBoundaryEdddPyvtkVector2_IdE_TypeNew_ZN24vtkAttributesErrorMetric29GetAbsoluteAttributeToleranceEv_ZN12vtkImageData14ComputePointIdEPiPyvtkColor4_IdE_TypeNew_ZN24vtkLagrangeQuadrilateral17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkLagrangeWedge3IsAEPKc_ZN22vtkOrderedTriangulator9AddTetrasEiP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS5_P11vtkCellDataxS7__ZN8vtkPixel17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkQuadraticWedge17InterpolateDerivsEPdS0__ZN13vtkAnnotation5LABELEv_ZNK22vtkDataSetCellIterator19NewInstanceInternalEv_ZN21vtkLagrangeHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN14vtkGenericCell20InterpolateFunctionsEPdS0__ZN9vtkPlanes16EvaluateGradientEPdS0__ZN24vtkImplicitSelectionLoop16EvaluateGradientEPdS0_PyDict_SetItemString_ZN14vtkGenericCell7GetEdgeEi_ZN19vtkGenericEdgeTable10InsertEdgeExxxi_ZN17vtkQuadraticTetra16GetNumberOfFacesEv_ZN22vtkQuadraticLinearQuad12GetEdgeArrayEi_ZN9vtkKdTree15CreateCellListsEiPii_ZNK25vtkHierarchicalBoxDataSet19NewInstanceInternalEv_ZN7vtkQuad3NewEvPyvtkCell3D_ClassNew_ZN10vtkDataSet14CopyAttributesEPS__ZN17vtkAMRInformation22GetAMRBlockSourceIndexEi_ZN33vtkBiQuadraticQuadraticHexahedron19InterpolationDerivsEPdS0__ZNK7vtkBond12GetEndAtomIdEv_ZN29vtkQuadratureSchemeDefinition10InitializeEiiiPdS0__ZN11vtkPointSet11ShallowCopyEP13vtkDataObject_ZN16vtkLagrangeWedge16GetNumberOfFacesEv_ZN22vtkAbstractCellLocator17IntersectWithLineEPKdS1_P9vtkPointsP9vtkIdList_ZN19vtkAnnotationLayers7GetDataEP14vtkInformation_ZN13vtkPythonArgs8GetArrayEPxi_ZN20vtkPiecewiseFunction24AllowDuplicateScalarsOffEv_ZN8vtkGraph25GetDistributedGraphHelperEv_ZN17vtkStructuredGrid11GetCellTypeEx_ZN16vtkLagrangeCurve19GetParametricCoordsEvPyVTKAddFile_vtkMarchingSquaresLineCases_ZN12vtkCellLinks8DeepCopyEPS__ZN10vtkDataSet18GenerateGhostArrayEPi_ZN19vtkBSPIntersections3IsAEPKc_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_M_assignERKS4_@GLIBCXX_3.4.21_ZN9vtkVertex7GetFaceEi_ZN19vtkUnstructuredGrid16GetCellNeighborsExP9vtkIdListS1__ZN21vtkStaticPointLocator29GetMaxNumberOfBucketsMaxValueEv_ZN10vtkDataSet24GetAttributesAsFieldDataEi_ZNK9vtkKdNode9GetBoundsEPd_ZN18vtkBiQuadraticQuad16GetNumberOfFacesEv_ZN12vtkCellArray8SetCellsExP14vtkIdTypeArray_ZN12vtkReebGraph5BuildEP11vtkPolyDatax_ZN17vtkQuadraticTetra16GetNumberOfEdgesEvPyvtkRectd_TypeNew_ZN17vtkHexagonalPrism16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkWedge19GetParametricCoordsEv_ZN16vtkHyperTreeGrid17GetNumberOfLevelsEv_ZN20vtkDataSetAttributes10SetVectorsEP12vtkDataArray_ZN14vtkGenericCell8GetFacesEv_ZN14vtkHyperOctree21GetPointsOnParentEdgeEP20vtkHyperOctreeCursoriiiiP27vtkHyperOctreePointsGrabber_ZN14vtkGenericCell16EvaluateLocationERiPdS1_S1__ZN8vtkVoxel16GetNumberOfEdgesEv_ZN13vtkPythonArgs11SetArgValueEiPKii_ZN9vtkKdTree7GetCutsEv_ZN24vtkLagrangeInterpolation29GetParametricWedgeCoordinatesEi_ZN17vtkImplicitVolume3NewEv_ZN14vtkHyperOctree19GetActualMemorySizeEv_ZN19vtkQuadraticPyramid16EvaluateLocationERiPdS1_S1_PyVTKAddFile_vtkBiQuadraticQuadraticHexahedron_ZN10vtkPolygon20InterpolateFunctionsEPdS0__ZN10vtkLocator12AutomaticOffEv_ZN23vtkAbstractPointLocator9GetBoundsEPd_ZN22vtkQuadraticLinearQuad16EvaluateLocationERiPdS1_S1__ZN28vtkBiQuadraticQuadraticWedge20InterpolateFunctionsEPdS0_PyVTKAddFile_vtkPixel_ZN17vtkXMLDataElement5SetIdEPKc_ZN7vtkCell3IsAEPKc_Z51PyvtkDataSetAttributes_AttributeLimitTypes_FromEnumi_ZN20vtkDataSetAttributes15CopyGlobalIdsOnEv_ZN17vtkStructuredGrid4CropEPKi_ZN20vtkOStrStreamWrapperC1EvPyvtkQuadraticLinearQuad_ClassNewPyVTKAddFile_vtkStructuredPointsCollection_ZN7vtkLine11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkXMLDataElement21GetNumberOfAttributesEv_ZN21vtkLagrangeHexahedron21GetParametricDistanceEPd_ZN22vtkAbstractCellLocator18FindCellsAlongLineEPdS0_dP9vtkIdList_ZN15vtkPointLocator17GetPointsInBucketEPKdPiPyvtkEdgeListIterator_ClassNew_ZN22vtkAbstractCellLocator28FindClosestPointWithinRadiusEPddS0_P14vtkGenericCellRxRiRdS4__ZN18vtkUndirectedGraph11GetInDegreeEx_ZN25vtkAbstractElectronicData10GetPaddingEv_ZN8vtkPlane12ProjectPointEPdS0__ZN9vtkAMRBoxC1EPKdPKiS1_S1_i_ZN16vtkQuadraticEdge7GetFaceEi_ZN7vtkLine7GetEdgeEiPyType_Type_ZN25vtkMutableUndirectedGraph11LazyAddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN18vtkPentagonalPrism19InterpolationDerivsEPdS0__ZN10vtkPyramid12CellBoundaryEiPdP9vtkIdList_ZN13vtkDataObject15GetDataReleasedEv_ZN19vtkUnstructuredGrid7GetDataEP20vtkInformationVectori_ZN16vtkTriangleStrip11TriangulateEiP9vtkIdListP9vtkPoints_ZN9vtkPlanes3NewEv_ZN20vtkMultiBlockDataSet11GetMetaDataEP24vtkCompositeDataIterator_ZN8vtkVoxel12CellBoundaryEiPdP9vtkIdList_ZN19vtkUnstructuredGrid10InitializeEvPyVTKAddFile_vtkIncrementalOctreeNode_ZN8vtkWedge16GetCellDimensionEv_ZN13vtkDataObject3IsAEPKcPyBytes_FromStringAndSize_ZN20vtkMultiPieceDataSet8SetPieceEjP13vtkDataObject_ZN8vtkGraph11GetEdgeDataEv_ZN19vtkUnstructuredGrid13IsHomogeneousEvPyvtkEdgeTable_ClassNew_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey5ClearEP14vtkInformation_ZN16vtkLagrangeWedge11DerivativesEiPdS0_iS0__ZN20vtkDataSetAttributes12SetupForCopyEPS__ZN24vtkLagrangeQuadrilateral7GetEdgeEi_ZNK14vtkCellLocator19NewInstanceInternalEv_ZN22vtkPointsProjectedHull3NewEv_ZN10vtkPolygon18BoundedTriangulateEP9vtkIdListd_ZN13vtkHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN9vtkVertex11GetCellTypeEv_ZN22vtkQuadraticHexahedron22InterpolationFunctionsEPdS0__ZN17vtkAnimationScene7SetLoopEi_ZN24vtkSimpleCellTessellator20SetFixedSubdivisionsEi_ZN33vtkIterativeClosestPointTransform20SetCheckMeanDistanceEi_ZN9vtkKdTree13RemoveDataSetEi_ZN18vtkBiQuadraticQuad3NewEv_ZN9vtkKdNode13IntersectsBoxEddddddi_ZNK12vtkFieldData19NewInstanceInternalEv_ZN10vtkBSPCuts11ShallowCopyEP13vtkDataObjectPyVTKAddFile_vtkCellType_ZN8vtkPlane16EvaluateFunctionEP12vtkDataArrayS1__ZN17vtkAnimationScene9RemoveCueEP15vtkAnimationCuePyvtkVector_IfLi4EE_TypeNew_ZN12vtkImageData13GetIncrementsEP12vtkDataArray_ZN23vtkDirectedAcyclicGraph17GetDataObjectTypeEv_ZN23vtkQuadraticLinearWedge20InterpolateFunctionsEPdS0__ZN13vtkPolyhedron11GetPolyDataEv_ZNK7vtkTree19NewInstanceInternalEv_ZN12vtkFieldData8SetTupleExxPS__ZN14vtkHyperOctree11GetLeafDataEv_ZN14vtkGenericCell15InstantiateCellEi_ZN14vtkGenericCell11SetCellTypeEi_ZN12vtkImageData8GetPointExPdPyvtkVector3i_TypeNew_ZN16vtkHyperTreeGrid15GetZCoordinatesEv_ZNK21vtkStaticPointLocator19NewInstanceInternalEv_ZN19vtkGenericEdgeTable10LoadFactorEv_ZNK12vtkPolyPlane19NewInstanceInternalEv_ZN21vtkStaticPointLocator12SetDivisionsEiii_ZN16vtkHyperTreeGrid7GetCellEx_ZN19vtkQuadraticPolygon11TriangulateEiP9vtkIdListP9vtkPoints_ZN12vtkCubicLine17InterpolateDerivsEPdS0__ZN21vtkLagrangeHexahedron3IsAEPKc_ZN11vtkMolecule16GetNumberOfAtomsEv_ZN9vtkKdNode5SetIDEi_ZN12vtkSelection5UnionEP16vtkSelectionNodePyvtkColor4_IhE_TypeNewPyVTKAddFile_vtkHierarchicalBoxDataSet_ZN7vtkTree9GetParentEx_ZN24vtkLagrangeQuadrilateral4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_Z44PyvtkSelectionNode_SelectionContent_FromEnumi_ZN21vtkKdTreePointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN12vtkPointData3IsAEPKc_ZNK16vtkNonLinearCell19NewInstanceInternalEv_ZN22vtkQuadraticLinearQuad7GetFaceEiPyVTKAddFile_vtkHyperTreeGrid_ZN22vtkAbstractCellLocator18GetRetainCellListsEv_ZN10vtkLocator10SetDataSetEP10vtkDataSet_ZN16vtkLagrangeTetra12CellBoundaryEiPdP9vtkIdList_ZN17vtkDataObjectTree11GetMetaDataEP24vtkCompositeDataIterator_ZN12vtkReebGraph17StreamTetrahedronExdxdxdxdPyvtkPlanesIntersection_ClassNew_ZN16vtkQuadraticQuad7GetFaceEi_ZN15vtkSuperquadric11GetToroidalEv_ZN19vtkGenericEdgeTable11InsertPointExPd_ZN21vtkGenericAdaptorCell24GetHighestOrderAttributeEP29vtkGenericAttributeCollection_ZN12vtkCellTypes22GetClassNameFromTypeIdEi_ZN17vtkAMRInformation9SetOriginEPKd_ZN12vtkFieldData14CopyFieldOnOffEPKci_ZN11vtkPolyData7GetCellExP14vtkGenericCell_ZN21vtkLagrangeHexahedron19GetParametricCenterEPd_ZN10vtkDataSet9GetCenterEv_ZN24vtkSimpleCellTessellator26GetMaxAdaptiveSubdivisionsEv_ZN22vtkBiQuadraticTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZNK11vtkPointSet19NewInstanceInternalEv_ZN13vtkPythonArgs11SetArgValueEiPKdi_ZN10vtkBSPCuts11PrintArraysEv_ZN20vtkDataSetAttributes16SetActiveVectorsEPKc_ZN16vtkLagrangeTetra7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN33vtkIterativeClosestPointTransform19SetMeanDistanceModeEi_ZNK14vtkImplicitSum19NewInstanceInternalEv_ZN17vtkXMLDataElement12GetAttributeEPKc_ZN13vtkPythonArgs8SetArrayEiPKhi_ZN7vtkLine11GetCellTypeEvPyVTKAddFile_vtkTable_ZN10vtkLocator12GetBuildTimeEvPyVTKAddFile_vtkKdTree_ZN15vtkPointLocator11InsertPointExPKdPyvtkMolecule_ClassNew_ZN11vtkPointSet13ComputeBoundsEv_ZN17vtkUniformGridAMR17GetDataObjectTypeEv_ZN7vtkQuad12GetEdgeArrayEi_ZN16vtkHyperTreeGrid7GetCellExP14vtkGenericCell_ZN11vtkPolyData7GetDataEP14vtkInformation_ZN20vtkSmoothErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_d_ZN24vtkLagrangeInterpolation21Tensor2ShapeFunctionsEPKiPKdPd_ZN17vtkHexagonalPrism19GetParametricCenterEPd_ZN17vtkImplicitVolume14SetOutGradientEddd_ZN25vtkTriQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN14vtkHyperOctree17GetPointsOnEdge2DEP20vtkHyperOctreeCursoriiP27vtkHyperOctreePointsGrabber_ZN24vtkLagrangeInterpolation21Tensor1ShapeFunctionsEPKiPKdPd_ZN24vtkImplicitSelectionLoop3NewEv_ZN16vtkTriangleStrip17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN20vtkDataSetAttributes12SetAttributeEP16vtkAbstractArrayi_ZN12vtkImageData13GetIncrementsERxS0_S0__ZN8vtkVoxel17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN19vtkLagrangeTriangle19GetParametricCenterEPdPyvtkBiQuadraticQuad_ClassNew_ZNK20vtkAbstractCellLinks19NewInstanceInternalEv_ZN11vtkPolyLine22GenerateSlidingNormalsEP9vtkPointsP12vtkCellArrayP12vtkDataArrayPd_ZN23vtkGeometricErrorMetric8GetErrorEPdS0_S0_dPyvtkImageData_ClassNew_ZN25vtkMutableUndirectedGraph3NewEv_ZN11vtkPolyData11ReplaceCellExiPx_ZN16vtkQuadraticQuad19GetParametricCoordsEv_ZNK11vtkPolyData19NewInstanceInternalEv_ZN20vtkStaticCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRxP14vtkGenericCell_ZNK9vtkAMRBox8ContainsEPKi_ZN29vtkQuadratureSchemeDefinition8DeepCopyEPKS__ZN14vtkMergePoints17InsertUniquePointEPKdRx_ZN9vtkKdTree30ViewOrderAllRegionsInDirectionEPKdP11vtkIntArray_ZN17vtkHexagonalPrism12GetEdgeArrayEiPyvtkTuple_IiLi2EE_TypeNewPyVTKAddFile_vtkIncrementalPointLocatorPyVTKAddFile_vtkGenericAttributeCollection_ZN20vtkPiecewiseFunction22BuildFunctionFromTableEddiPdi_ZN25vtkAbstractElectronicData3IsAEPKc_ZN8vtkVoxel11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkPolyVertex16EvaluatePositionEPdS0_RiS0_RdS0__ZN20vtkDataSetAttributes14SetCopyTCoordsEii_ZN23vtkDirectedAcyclicGraph7GetDataEP14vtkInformationPyVTKAddFile_vtkCellArray_ZN11vtkPolyData21RemoveReferenceToCellExx_ZN18vtkRectilinearGrid15GetZCoordinatesEvPyvtkHyperOctreeLightWeightCursor_TypeNew_ZN13vtkDataObject16EDGE_DATA_VECTOREv_ZN16vtkHyperTreeGrid19NewMooreSuperCursorExb_ZN19vtkBSPIntersections13IntersectsBoxEPiiPd_ZN16vtkHyperTreeGrid15GetMaterialMaskEv_ZN17vtkGenericDataSet14GetTessellatorEv_ZN11vtkMolecule10GetLatticeER11vtkVector3dS1_S1_S1__ZN14vtkBoundingBox7InflateEv_ZN8vtkWedge17InterpolateDerivsEPdS0__ZN16vtkHyperTreeGrid10InitializeEv_ZN10vtkLocator19GetMaxLevelMaxValueEv_ZN32vtkIncrementalOctreePointLocator19SetBuildCubicOctreeEi_ZN24vtkLagrangeInterpolation29GetEdgeIndicesBoundingHexFaceEi_ZN8vtkGraph25SetDistributedGraphHelperEP25vtkDistributedGraphHelper_ZN22vtkAbstractCellLocator8FindCellEPd_ZN13vtkPythonArgs5ArrayImEC1El_ZN8vtkTetra16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkWedge12GetEdgeArrayEi_ZN31vtkHyperOctreeLightWeightCursor7ToChildEiPyVTKAddFile_vtkTreeBFSIterator_ZN6vtkBox18IntersectWithPlaneEPdS0_S0__ZN8vtkTetra16EvaluateLocationERiPdS1_S1__ZN20vtkNonOverlappingAMR3IsAEPKc_ZN22vtkGenericCellIterator3IsAEPKc_ZN9vtkKdTree12BuildLocatorEv_ZN22vtkOrderedTriangulator15GetUseTemplatesEv_ZN22vtkQuadraticLinearQuad3IsAEPKc_ZN12vtkCellLinks10InitializeEv_ZN33vtkIterativeClosestPointTransform20CheckMeanDistanceOffEvPyvtkDataSetAttributes_ClassNew_ZN11vtkMolecule16GetPlaneFromBondERK7vtkBondRK11vtkVector3fP8vtkPlane_ZN13vtkDataObject26GetAssociationTypeAsStringEiPyVTKSpecialObject_New_ZN7vtkLine3NewEv_ZN25vtkTriQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_ZN9vtkPlanes9SetBoundsEdddddd_ZN29vtkGenericAttributeCollection13FindAttributeEPKc_ZN24vtkImplicitSelectionLoop16EvaluateFunctionEPd_ZNK9vtkAMRBoxeqERKS__ZN14vtkCellLocator19FreeSearchStructureEv_ZN14vtkPixelExtent10CellToNodeERKS__ZN12vtkCellArray16GetNumberOfCellsEv_ZN17vtkHexagonalPrism7GetEdgeEi_ZN16vtkLagrangeTetra19GetParametricCenterEPd_ZN13vtkPythonArgs8GetValueERt_ZN32vtkIncrementalOctreePointLocator10InitializeEv_ZN17vtkQuadraticTetra22InterpolationFunctionsEPdS0__ZN22vtkHyperTreeGridCursor7GetGridEv_ZN20vtkDataSetAttributes8CopyDataEPS_xx_ZN25vtkMutableUndirectedGraph11LazyAddEdgeExxP15vtkVariantArray_ZN7vtkCell10InitializeEiP9vtkPoints_ZN16vtkLagrangeCurve16GetNumberOfEdgesEv_ZN28vtkBiQuadraticQuadraticWedge16GetNumberOfFacesEv_ZN24vtkAttributesErrorMetric3IsAEPKcPyvtkSphere_ClassNew_ZN12vtkImageData16GetScalarPointerEPi_ZNK9vtkAMRBox14GetGhostVectorEiPiPyvtkStructuredGrid_ClassNew_ZN21vtkGenericAdaptorCell10GetLength2Ev_ZN9vtkVertex20InterpolateFunctionsEPdS0_PyvtkPerlinNoise_ClassNewPyvtkTuple_IdLi2EE_TypeNew_ZNK8vtkTable19NewInstanceInternalEv_ZN10vtkBSPCuts10CreateCutsEP9vtkKdNode_ZN12vtkCellTypes7SqueezeEv_ZN16vtkQuadraticQuad16GetNumberOfFacesEv_ZN17vtkQuadraticWedge7GetEdgeEi_ZN30vtkHierarchicalBoxDataIterator3IsAEPKc_ZN10vtkLocator11GetMaxLevelEv_ZN10vtkPyramid3NewEv_ZN10vtkPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkDataObject17PrepareForNewDataEv_ZN10vtkLocator3IsAEPKc_ZNK32vtkIncrementalOctreePointLocator19NewInstanceInternalEvPyVTKAddFile_vtkQuadraticEdge_ZN16vtkHyperTreeGrid13GetCellPointsExRxRPx_ZN18vtkPentagonalPrism11GetCellTypeEv_ZN17vtkQuadraticWedge3NewEv_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey11ShallowCopyEP14vtkInformationS1__ZN19vtkQuadraticPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPd_ZN19vtkBSPIntersections17IntersectsSphere2EPiidddd_ZN30vtkExtractStructuredGridHelper14GetMappedIndexEii_ZN16vtkQuadraticQuad7GetEdgeEi_ZN32vtkGenericSubdivisionErrorMetric10SetDataSetEP17vtkGenericDataSet_ZN25vtkHierarchicalBoxDataSet17GetDataObjectTypeEv_ZTVSt15basic_streambufIcSt11char_traitsIcEE@GLIBCXX_3.4_ZN22vtkOrderedTriangulator12PreSortedOffEv_ZN14vtkPerlinNoise16EvaluateFunctionEPd_ZN23vtkPointSetCellIterator19IsDoneWithTraversalEv_ZN8vtkTetra12CellBoundaryEiPdP9vtkIdList_ZN22vtkHyperTreeGridCursor9GetOriginEv_ZN15vtkPointLocator26SetNumberOfPointsPerBucketEi_ZN22vtkOrderedTriangulator15UseTwoSortIdsOnEv_ZN23vtkQuadraticLinearWedge19GetParametricCoordsEv_Z23PyvtkColor3_TemplateNewv_ZN13vtkPythonArgs8GetValueERl_ZN17vtkQuadraticTetra19GetParametricCenterEPd_ZN13vtkPythonArgs8GetValueERd_ZN19vtkQuadraticPolygon16EvaluateLocationERiPdS1_S1__ZN31vtkHyperOctreeLightWeightCursor10InitializeEP14vtkHyperOctree_ZN16vtkLagrangeCurve7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyVTKAddFile_vtkCone_ZN8vtkPixel7GetEdgeEi_ZN11vtkPolyLine12CellBoundaryEiPdP9vtkIdListPyvtkPoints_ClassNew_ZN16vtkHyperTreeGrid19GetActualMemorySizeEv_ZN10vtkPyramid17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN14vtkHyperOctree15GetDualGridFlagEv_ZN12vtkImageData15GetArrayPointerEP12vtkDataArrayPi_ZN11vtkPolyLine16GetCellDimensionEv_ZN9vtkKdTree18OmitXYPartitioningEv_ZN9vtkKdTree29SetIncludeRegionBoundaryCellsEi_ZN12vtkSelection8GetMTimeEv_ZN9vtkKdTree31ViewOrderAllRegionsFromPositionEPKdP11vtkIntArrayPyvtkRectilinearGrid_ClassNewPyBuffer_Release_ZN9vtkKdTree10AddDataSetEP10vtkDataSet_ZN19vtkQuadraticPyramid12GetEdgeArrayEiPyVTKObject_AsBuffer_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey4SizeEP14vtkInformation_ZNK17vtkAMRInformation19GetNumberOfDataSetsEj_ZN14vtkBoundingBox12IntersectBoxERKS__ZN12vtkFieldData13CopyStructureEPS__ZN17vtkStructuredGrid12UnBlankPointEx_ZN14vtkGenericCell34RequiresExplicitFaceRepresentationEv_ZN19vtkAMRDataInternals3IsAEPKc_ZNK17vtkQuadraticTetra19NewInstanceInternalEv_ZN13vtkPythonArgs5ArrayIlEC1El_ZN13vtkHexahedron7GetEdgeEi_ZN9vtkVertex12CellBoundaryEiPdP9vtkIdList_ZN23vtkAOSDataArrayTemplateIxE10GetPointerEx_ZNK10vtkDataSet19NewInstanceInternalEv_ZN7vtkLine20DistanceBetweenLinesEPdS0_S0_S0_S0_S0_RdS1__ZN16vtkHyperTreeGrid23SetInterfaceNormalsNameEPKc_ZN21vtkOctreePointLocator3NewEv_ZN35vtkMeanValueCoordinatesInterpolator3IsAEPKc_ZN11vtkMolecule10HasLatticeEv_ZN13vtkPythonArgs10BuildTupleEPKji_ZN19vtkAnnotationLayers16RemoveAnnotationEP13vtkAnnotation_ZN30vtkExtractStructuredGridHelper20GetMappedExtentValueEii_ZN11vtkPolyData16RemoveGhostCellsEv_ZN16vtkLagrangeWedge7GetEdgeEi_ZN18vtkBiQuadraticQuad12CellBoundaryEiPdP9vtkIdList_ZN33vtkIterativeClosestPointTransform3IsAEPKc_ZN9vtkObject12BreakOnErrorEv_ZN15vtkPointLocator34GetNumberOfPointsPerBucketMaxValueEv_ZNK7vtkBond14GetBeginAtomIdEv_ZN25vtkHierarchicalBoxDataSet3IsAEPKc_ZN20vtkPiecewiseFunction14SetUseLogScaleEbPyvtkColor3d_TypeNew_Z40vtkOutputWindowDisplayGenericWarningTextPKc_ZN18vtkOutEdgeIterator9GetVertexEv_ZN24vtkLagrangeQuadrilateral11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkBSPIntersections14IntersectsCellEiP7vtkCelli_ZNK20vtkHyperOctreeCursor19NewInstanceInternalEvPyvtkBox_ClassNew_ZN14vtkUniformGrid8FindCellEPdP7vtkCellxdRiS0_S0__ZN23vtkMutableDirectedGraph12AddGraphEdgeExx_ZN18vtkPentagonalPrism11TriangulateEiP9vtkIdListP9vtkPoints_ZN8vtkGraph15IsSameStructureEPS__ZN16vtkSelectionNode7EPSILONEv_ZN16vtkLagrangeCurve17PointIndexFromIJKEiii_ZN12vtkFieldData11ShallowCopyEPS__ZN23vtkQuadraticLinearWedge12CellBoundaryEiPdP9vtkIdList_ZN10vtkPyramid16GetCellDimensionEv_ZN9vtkAMRBoxC1EPKiS1__ZN25vtkGenericCellTessellator16InitErrorMetricsEP17vtkGenericDataSet_ZN22vtkQuadraticHexahedron12GetEdgeArrayEi_ZN17vtkGenericDataSet9GetCenterEv_ZN19vtkAnnotationLayers3NewEv_ZN35vtkGenericInterpolatedVelocityField11GetLastCellEvPyVTKAddFile_vtkTriangle_ZN32vtkIncrementalOctreePointLocator9GetBoundsEPd_ZN13vtkHexahedron11GetCellTypeEv_ZN11vtkPointSet9FindPointEPd_ZN13vtkHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN17vtkAMRInformation23GenerateRefinementRatioEv_ZN22vtkAbstractCellLocator18SetCacheCellBoundsEi_ZN24vtkSimpleCellTessellator5ResetEv_ZN11vtkPolyData13GetPointCellsExP9vtkIdList_ZN21vtkStaticPointLocator3IsAEPKcPyvtkCylinder_ClassNew_ZN17vtkHexagonalPrism16GetNumberOfFacesEvPyvtkHyperTreeGrid_ClassNew_ZN13vtkHexahedron20InterpolateFunctionsEPdS0__ZN17vtkAnimationScene15GetNumberOfCuesEvPyVTKAddFile_vtkLagrangeTriangle_ZN19vtkQuadraticPyramid12GetFaceArrayEi_ZN25vtkNonMergingPointLocator15IsInsertedPointEPKd_ZN8vtkWedge7GetEdgeEi_ZN18vtkOutEdgeIterator13NextGraphEdgeEv_ZN25vtkGenericCellTessellator15GetErrorMetricsEv_ZN17vtkImplicitVolume11SetOutValueEd_ZN12vtkPolyPlane8GetMTimeEv_ZN8vtkTable15GetColumnByNameEPKc_ZN12vtkEmptyCell11TriangulateEiP9vtkIdListP9vtkPoints_ZNK13vtkHexahedron19NewInstanceInternalEvPyvtkGenericAttributeCollection_ClassNew_ZN11vtkMolecule15SetAtomPositionExRK11vtkVector3f_ZN19vtkAnnotationLayers13GetAnnotationEj_ZN7vtkPath7GetDataEP14vtkInformation_ZN20vtkMultiBlockDataSet11RemoveBlockEj_ZN16vtkQuadraticEdge11TriangulateEiP9vtkIdListP9vtkPointsPyVTKAddFile_vtkStaticPointLocatorPyVTKAddFile_vtkDataSet_ZN33vtkBiQuadraticQuadraticHexahedron7GetEdgeEi_ZN19vtkLagrangeTriangle22RequiresInitializationEv_ZN17vtkUniformGridAMR6GetMinEPdPyvtkTuple_IfLi4EE_TypeNew_ZN16vtkHyperTreeGrid5SIZESEv_ZN13vtkHexahedron22InterpolationFunctionsEPdS0__ZN12vtkEdgeTable10InsertEdgeExxx_ZN24vtkImplicitSelectionLoop27AutomaticNormalGenerationOnEv_ZN9vtkKdTree10SetDataSetEP10vtkDataSet_ZN8vtkTetra19InterpolationDerivsEPdS0_PyFloat_FromDouble_ZN11vtkMolecule10AppendAtomEtRK11vtkVector3f_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKd_ZN25vtkMutableUndirectedGraph7AddEdgeExRK10vtkVariantP15vtkVariantArray_ZN13vtkPolyhedron16GetNumberOfEdgesEv_ZN9vtkKdTree22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN8vtkVoxel22InterpolationFunctionsEPdS0_PyvtkImplicitWindowFunction_ClassNew_ZNK12vtkGraphEdge19NewInstanceInternalEv_ZN10vtkPolygon8IsConvexEP9vtkPoints_ZN22vtkHyperTreeGridCursor6IsLeafEv_ZN20vtkMultiPieceDataSet11GetMetaDataEP24vtkCompositeDataIterator_ZN16vtkHyperTreeGrid26SetInterfaceInterceptsNameEPKc_ZNK19vtkQuadraticPyramid19NewInstanceInternalEv_ZN25vtkDataObjectTreeIterator17VisitOnlyLeavesOnEv_ZN19vtkQuadraticPolygon22SetUseMVCInterpolationEb_ZN9vtkSpline25GetLeftConstraintMinValueEv_ZN12vtkImageData13GetPointCellsExP9vtkIdList_ZN25vtkOctreePointLocatorNode16DeleteChildNodesEv_ZN16vtkQuadraticQuad11GetCellTypeEv_ZN11vtkPolyData17GetDataObjectTypeEv_ZN10vtkPolygon11ComputeAreaEv_ZNK21vtkVertexListIterator19NewInstanceInternalEv_ZN28vtkBiQuadraticQuadraticWedge3IsAEPKc_ZN13vtkPolyVertex11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkMolecule16GetPlaneFromBondERK7vtkAtomS2_RK11vtkVector3fP8vtkPlane_ZN22vtkPointsProjectedHull15GetSizeCCWHullYEv_ZN22vtkQuadraticHexahedron7GetFaceEi_ZN20vtkMultiBlockDataSet17GetDataObjectTypeEv_ZN9vtkPlanes9SetBoundsEPKd_ZN7vtkCell20InterpolateFunctionsEPdS0__ZN13vtkDataObject11FIELD_RANGEEv_ZN17vtkConvexPointSet16HasFixedTopologyEv_ZN14vtkHyperOctree12SetDimensionEi_ZN20vtkDataSetAttributes10GetTCoordsEv_ZN12vtkFieldData11RemoveArrayEPKc_ZN21vtkPlanesIntersection16IntersectsRegionEP9vtkPoints_ZN17vtkInEdgeIterator8GetGraphEv_ZN32vtkGenericSubdivisionErrorMetric3IsAEPKc_ZN20vtkDataSetAttributes10SetTCoordsEP12vtkDataArray_ZN19vtkLagrangeTriangle21GetParametricDistanceEPd_ZN9vtkKdNode12SetMaxBoundsEPKd_ZN16vtkLagrangeCurve7GetFaceEi_ZNK33vtkBiQuadraticQuadraticHexahedron19NewInstanceInternalEv_ZN20vtkDataSetAttributes18SetCopyPedigreeIdsEii_ZN19vtkGenericEdgeTable3IsAEPKc_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN9vtkSpline12GetLeftValueEv_ZN23vtkMutableDirectedGraph3IsAEPKc_ZN14vtkUniformGrid13IsCellVisibleEx_ZN13vtkPythonArgs8GetValueERPc_ZN8vtkTetra12CircumsphereEPdS0_S0_S0_S0__ZN22vtkPointsProjectedHull3IsAEPKc_ZN17vtkXMLDataElement12SetAttributeEPKcS1__ZN23vtkQuadraticLinearWedge16GetCellDimensionEv_ZN19vtkUnstructuredGrid14GetMaxCellSizeEv_ZN19vtkLagrangeTriangle3IsAEPKc_ZN14vtkBoundingBox8AddPointEddd_ZNK8vtkPixel19NewInstanceInternalEv_ZN31vtkHyperOctreeLightWeightCursor9GetIsLeafEv_ZNK18vtkPentagonalPrism19NewInstanceInternalEvPyvtkEdgeBase_TypeNew_ZN8vtkPixel11DerivativesEiPdS0_iS0__ZN16vtkQuadraticEdge11DerivativesEiPdS0_iS0__ZN13vtkDataObject3SILEv_ZN9vtkSpline17GetNumberOfPointsEv_ZN17vtkAMRInformation20PrintParentChildInfoEjj_ZN18vtkRectilinearGrid13SetDimensionsEPi_ZNK25vtkGenericCellTessellator19NewInstanceInternalEv_ZN22vtkQuadraticLinearQuad19GetParametricCoordsEv_ZN8vtkVoxel16EvaluatePositionEPdS0_RiS0_RdS0__ZN22vtkQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN8vtkTable10GetRowDataEvPyVTKObject_GetSet_ZN19vtkUnstructuredGrid13CopyStructureEP10vtkDataSet_ZN9vtkAMRBox13SetDimensionsEiiiiiii_ZN21vtkPlanesIntersection13Convert3DCellEP7vtkCell_ZN8vtkPixel17InterpolateDerivsEPdS0__ZN21vtkStaticPointLocator34GetNumberOfPointsPerBucketMaxValueEv_ZN13vtkHexahedron13GetEdgePointsEiRPi_ZN13vtkPolyVertex16GetCellDimensionEv_ZN20vtkQuadraticTriangle17InterpolateDerivsEPdS0__ZN33vtkBiQuadraticQuadraticHexahedron12GetFaceArrayEi_ZN9vtkAMRBox8HasPointERKS_PKdS3_ddd_ZN23vtkQuadraticLinearWedge12GetEdgeArrayEi_ZN18vtkImplicitBoolean16EvaluateFunctionEPd_ZN10vtkVariantC1ERKS_PyVTKAddFile_vtkQuadraticTrianglePyVTKAddFile_vtkPath_ZN10vtkLocator6UpdateEvPyVTKAddFile_vtkArrayDataPyVTKAddFile_vtkLagrangeHexahedron_ZN24vtkLagrangeQuadrilateral16GetNumberOfFacesEvPyvtkReebGraphSimplificationMetric_ClassNew_ZN10vtkLocator12GetAutomaticEv_ZN14vtkImplicitSum17SetFunctionWeightEP19vtkImplicitFunctiond_ZN8vtkTable3NewEv_ZN8vtkTetra20InterpolateFunctionsEPdS0__ZN20vtkDataSetAttributes10SetScalarsEP12vtkDataArray_ZN16vtkTriangleStrip11GetCellTypeEv_ZN9vtkKdTree10GetDataSetEi_ZN8vtkPlane15DistanceToPlaneEPd_ZN12vtkCellTypes3NewEv_ZN22vtkHyperTreeGridCursor12ToSameVertexEP18vtkHyperTreeCursor_ZN28vtkBiQuadraticQuadraticWedge12GetFaceArrayEiPyVTKAddFile_vtkDataSetCollection_ZN19vtkLagrangeTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN13vtkAnnotation4HIDEEv_ZN17vtkUniformGridAMR19GetNumberOfDataSetsEj_ZN17vtkUniformGridAMR10GetDataSetEP24vtkCompositeDataIterator_ZN20vtkOStrStreamWrapper3strEv_ZN16vtkLagrangeTetra3IsAEPKc_ZN25vtkImplicitWindowFunction15SetWindowValuesEdd_ZN20vtkDataSetAttributes17CopyPedigreeIdsOnEv_ZN17vtkQuadraticTetra3IsAEPKc_ZN9vtkVertex19GetParametricCenterEPdPyvtkAnnotationLayers_ClassNew_ZN13vtkPythonArgs11SetArgValueEix_ZN7vtkLine19GetParametricCenterEPd_ZN8vtkWedge16EvaluatePositionEPdS0_RiS0_RdS0__ZN18vtkRectilinearGrid8GetPointEiiiPd_ZN17vtkUniformGridAMR17GetNumberOfLevelsEv_ZN19vtkAnnotationLayers10InitializeEv_ZN20vtkQuadraticTriangle7GetFaceEiPyvtkSortDataArray_ClassNew_ZN17vtkUniformGridAMR6GetMaxEPd_ZN16vtkLagrangeWedge24SubCellCoordinatesFromIdERiS0_S0_iPyVTKAddFile_vtkQuadraticLinearWedge_Z40PyvtkDataObject_FieldOperations_FromEnumi_ZN17vtkUniformGridAMR16GetLevelAndIndexEjRjS0__ZN16vtkTriangleStrip3IsAEPKc_ZN16vtkTriangleStrip11DerivativesEiPdS0_iS0__ZN10vtkLocator10GetDataSetEv_ZN17vtkHexagonalPrism19InterpolationDerivsEPdS0__ZNK15vtkPointLocator19NewInstanceInternalEv_ZN12vtkCellTypes12SetCellTypesExP20vtkUnsignedCharArrayP14vtkIdTypeArray_ZN24vtkLagrangeInterpolation32GetPointIndicesBoundingWedgeFaceEi_ZNK23vtkDataObjectCollection19NewInstanceInternalEv_Py_Dealloc_ZN22vtkHyperTreeGridCursor12GetDimensionEvPyVTKAddFile_vtkTree_ZN22vtkPointsProjectedHull22RectangleIntersectionZEdddd_ZN11vtkPolyData21InsertNextLinkedPointEPdiPyVTKAddFile_vtkAnnotationPyCFunction_Type_ZNK20vtkPiecewiseFunction19NewInstanceInternalEv_ZN19vtkImplicitFunction13FunctionValueEPKd_ZN11vtkPolyData8SetLinesEP12vtkCellArray_ZN13vtkPythonArgs9GetBufferERPvP10bufferinfo_ZN20vtkDataSetAttributes14CopyNormalsOffEv_ZN19vtkLagrangeTriangle5d_etaExxd_ZN17vtkUniformGridAMR10InitializeEv_ZN11vtkPolyLine11GetCellTypeEv_ZSt28__throw_bad_array_new_lengthv@GLIBCXX_3.4.29_ZN18vtkRectilinearGrid17GetNumberOfPointsEv_ZNK17vtkGraphInternals19NewInstanceInternalEv_ZN21vtkStaticPointLocator28FindClosestPointWithinRadiusEdPKddRd_ZN8vtkTable18RemoveColumnByNameEPKc_ZN19vtkImplicitFunction13FunctionValueEP12vtkDataArrayS1__ZN10vtkQuadric3IsAEPKc_ZN20vtkDataSetAttributes8DeepCopyEP12vtkFieldData_ZN14vtkHyperOctree17GetNumberOfLevelsEv_ZN16vtkLagrangeCurve17InterpolateDerivsEPdS0__ZN16vtkLagrangeTetra16EvaluateLocationERiPdS1_S1__ZN33vtkIterativeClosestPointTransform28GetMaximumNumberOfIterationsEv_ZN17vtkQuadraticTetra12GetFaceArrayEi_ZN14vtkUniformGrid14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN11vtkCylinder3NewEv_ZN9vtkSpline18SetParametricRangeEddPyvtkUniformGridAMR_ClassNewPyvtkTuple_IfLi2EE_TypeNewPyVTKAddFile_vtkArrayListTemplate_ZNK9vtkAMRBox30DoesBoxIntersectAlongDimensionERKS_i_ZN9vtkKdTree12SetNewBoundsEPd_ZN17vtkConvexPointSet16GetNumberOfEdgesEv_ZN22vtkBiQuadraticTriangle3NewEvsqrt@GLIBC_2.2.5_ZN17vtkXMLDataElement15RemoveAttributeEPKc_ZN18vtkPentagonalPrism16GetNumberOfFacesEv_ZNK30vtkExtractStructuredGridHelper19NewInstanceInternalEv_ZN19vtkAMRDataInternals6InsertEjP14vtkUniformGrid_ZN16vtkHyperTreeGrid7GetDataEP20vtkInformationVectori_ZN32vtkGenericSubdivisionErrorMetric10GetDataSetEv_ZN8vtkTable14GetValueByNameExPKc_ZN9vtkSpline12ClampValueOnEv_ZN18vtkRectilinearGrid17GetDataObjectTypeEv_ZN8vtkTetra3IsAEPKc_ZN22vtkBiQuadraticTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN12vtkImageData13HasScalarTypeEP14vtkInformation_ZNK24vtkImplicitSelectionLoop19NewInstanceInternalEvPyvtkTuple_IhLi3EE_TypeNew_ZN17vtkConvexPointSet16GetNumberOfFacesEv_ZN16vtkLagrangeCurve17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs10BuildTupleEPKxi_ZN17vtkImplicitVolume16EvaluateGradientEPdS0__ZN19vtkUnstructuredGrid8SetCellsEiP12vtkCellArray_ZN17vtkOverlappingAMR10SetAMRInfoEP17vtkAMRInformation_ZN33vtkIterativeClosestPointTransform27GetStartByMatchingCentroidsEv_ZN12vtkPointData3NewEv_ZN7vtkQuad16GetNumberOfFacesEv_ZN16vtkTriangleStrip7GetEdgeEi_ZN18vtkRectilinearGrid14FindAndGetCellEPdP7vtkCellxdRiS0_S0_PyvtkFieldData_ClassNew_ZN24vtkImplicitSelectionLoop9SetNormalEddd_ZNK13vtkObjectBase12GetClassNameEvPyvtkQuadric_ClassNew_ZN15vtkSuperquadric10ToroidalOnEv_ZN22vtkHyperTreeGridCursor13GetChildIndexEvreal_initvtkCommonDataModelPython_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEdddPd_ZN19vtkQuadraticPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2_Py_BuildValue_ZN11vtkTriangle20InterpolateFunctionsEPdS0__ZN12vtkGraphEdge3IsAEPKc_ZN17vtkXMLDataElement25FindNestedElementWithNameEPKc_ZN22vtkPointsProjectedHull11GetCCWHullYEPdi_ZNK6vtkBox19NewInstanceInternalEv_ZN16vtkLagrangeCurve16EvaluateLocationERiPdS1_S1__ZN29vtkQuadratureSchemeDefinition10InitializeEiiiPdPyVTKAddFile_vtkLocator_ZN21vtkOctreePointLocator19FreeSearchStructureEv_ZN25vtkTriQuadraticHexahedron19InterpolationDerivsEPdS0__ZN12vtkSelection5UnionEPS__ZN33vtkIterativeClosestPointTransform27GetMeanDistanceModeAsStringEvPyVTKAddFile_vtkStructuredData_ZN13vtkPythonArgs8GetArrayEPdi_ZNK11vtkCellData19NewInstanceInternalEv_ZNK25vtkTriQuadraticHexahedron19NewInstanceInternalEv_ZN24vtkLagrangeInterpolation30GetPointIndicesBoundingHexFaceEi_ZN20vtkSmoothErrorMetric3NewEv_ZN14vtkGenericCell10InitializeEv_ZN24vtkSimpleCellTessellator22SetMaxSubdivisionLevelEi_ZN14vtkGenericCell7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN29vtkUniformGridAMRDataIterator12GoToNextItemEv_ZN24vtkAttributesErrorMetric3NewEv_ZN15vtkAMRUtilities3IsAEPKc_ZN23vtkMutableDirectedGraph14RemoveVerticesEP14vtkIdTypeArray_ZN17vtkAMRInformation10InitializeEiPKi_ZN22vtkPointsProjectedHull22RectangleIntersectionXEP9vtkPoints_ZN16vtkSortFieldData3NewEv_ZN19vtkQuadraticPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN12vtkCellTypes5ResetEv_ZN16vtkHyperTreeGrid7SetTreeExP12vtkHyperTree_ZN19vtkGenericEdgeTable21SetNumberOfComponentsEi_ZN22vtkQuadraticLinearQuad11DerivativesEiPdS0_iS0__ZN25vtkDataObjectTreeIterator18SetTraverseSubTreeEi_ZN12vtkImageData13GetCellPointsExP9vtkIdList_ZN23vtkPointSetCellIterator9GetCellIdEv_ZN30vtkCommonInformationKeyManagerD1Ev_ZN14vtkHyperOctree15GetPointsOnEdgeEP20vtkHyperOctreeCursoriiiiP27vtkHyperOctreePointsGrabber_ZN16vtkLagrangeCurve27TransformApproxToCellParamsEiPd_ZN17vtkQuadraticTetra17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN9vtkSpline9SetClosedEi_ZN7vtkCell8IsLinearEv_ZN19vtkGenericDataArrayI23vtkAOSDataArrayTemplateIxExE7SqueezeEv_ZN16vtkHyperTreeGrid15HasInterfaceOffEv_ZN17vtkGenericDataSet9GetLengthEv_ZN11vtkMolecule22GetAtomicPositionArrayEv_ZNK17vtkAMRInformation9GetAMRBoxEjj_ZN11vtkPolyData17GetNumberOfStripsEv_ZN30vtkExtractStructuredGridHelper3IsAEPKc_ZN17vtkAnimationScene16SetAnimationTimeEd_ZN14vtkGenericCell8IsLinearEvPyVTKAddFile_vtkImplicitFunction_ZN21vtkStaticPointLocator26GetNumberOfPointsPerBucketEv_ZN15vtkAMRUtilities10BlankCellsEP17vtkOverlappingAMR_ZN20vtkDataSetAttributes10GetTensorsEPKc_ZN25vtkMutableUndirectedGraph12AddGraphEdgeExx_ZN9vtkKdTree19GetBoundaryCellListEi_ZN9vtkKdTree18OmitYZPartitioningEv_ZN17vtkAnimationScene4StopEv_ZN14vtkHyperOctree13GetPointCellsExP9vtkIdList_ZN12vtkCellLinks10BuildLinksEP10vtkDataSet_ZN20vtkMultiBlockDataSet8GetBlockEj_ZN19vtkGenericEdgeTable9CheckEdgeExxRx_ZN12vtkCellLinks19GetActualMemorySizeEv_ZN16vtkLagrangeCurve3NewEv_ZN16vtkSelectionNode16GetSelectionListEv_ZN17vtkStructuredGrid9SetExtentEPi_ZN17vtkDataObjectTree7GetDataEP20vtkInformationVectori_ZN21vtkGenericAdaptorCell16IsGeometryLinearEv_ZN12vtkImageData15CopyAndCastFromEPS_Pi_ZN14vtkBoundingBox5ScaleEPd_ZN23vtkQuadraticLinearWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyVTKAddFile_vtkStaticCellLinksTemplatememcpy@GLIBC_2.14_ZN33vtkBiQuadraticQuadraticHexahedron22InterpolationFunctionsEPdS0__ZN15vtkPointLocator24FindClosestInsertedPointEPKd_ZN33vtkBiQuadraticQuadraticHexahedron3IsAEPKc_ZN11vtkPointSet8GetPointExPyvtkTreeDFSIterator_ClassNew_ZN14vtkHyperOctree29GetMaxNumberOfCellsOnBoundaryEiPyvtkGraph_ClassNew_ZNK17vtkConvexPointSet19NewInstanceInternalEv_ZN17vtkStructuredData28GetDataDescriptionFromExtentEPi_ZN20vtkDataSetAttributes8CopyDataEPS_P9vtkIdListS2__ZN11vtkTriangle16GetNumberOfFacesEv_ZN18vtkImplicitDataSet8GetMTimeEv_ZN8vtkGraph24GetAttributesAsFieldDataEi_ZN29vtkUniformGridAMRDataIterator20GetCurrentDataObjectEv_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey12RestoreStateEP14vtkInformationP17vtkXMLDataElement_ZN14vtkGenericCell16GetNumberOfEdgesEv_ZN18vtkRectilinearGrid7GetCellEiii_ZN7vtkLine12CellBoundaryEiPdP9vtkIdList_ZN17vtkXMLDataElement16GetNestedElementEi_ZN14vtkUniformGrid11UnBlankCellEiii_ZNK13vtkPolyhedron19NewInstanceInternalEv_ZN13vtkAnnotation6ENABLEEvPyvtkUndirectedGraph_ClassNewPyvtkCellLinks_ClassNewPyVTKAddFile_vtkTreeIterator_ZN18vtkRectilinearGrid9GetExtentEvPyvtkSuperquadric_ClassNew_ZN9vtkKdTree11PrintRegionEi_ZN17vtkStructuredGrid3IsAEPKc_ZN25vtkAdjacentVertexIterator10InitializeEP8vtkGraphx_ZN7vtkCone16GetAngleMaxValueEvPyvtkQuadraticEdge_ClassNew_ZN25vtkGenericCellTessellator3IsAEPKc_ZNK7vtkAtom11GetPositionEv_ZN13vtkPolyhedron13GetFacePointsEiRPi_ZN10vtkPolygon22SetUseMVCInterpolationEb_ZNK32vtkGenericSubdivisionErrorMetric19NewInstanceInternalEv_ZN19vtkEdgeListIterator3NewEv_ZN16vtkLagrangeTetra5IndexEPKxx_ZN25vtkGenericCellTessellator14GetMeasurementEv_ZN24vtkLagrangeQuadrilateral11DerivativesEiPdS0_iS0__ZN14vtkBoundingBox9SetBoundsEdddddd_ZN13vtkDataObject10InitializeEv_ZN22vtkOrderedTriangulator11PreSortedOnEv_ZN11vtkTriangle19InterpolationDerivsEPdS0__ZN33vtkIterativeClosestPointTransform9GetTargetEv_ZN13vtkPolyhedron13IsPrimaryCellEv_ZN10vtkDataSet15CheckAttributesEv_ZN15vtkPointLocator16FindClosestPointEPKd_ZN11vtkMolecule13GetBondLengthEx_ZN29vtkUniformGridAMRDataIterator19GetCurrentFlatIndexEv_ZN15vtkPointLocator18InitPointInsertionEP9vtkPointsPKd_ZN23vtkUnstructuredGridBase17GetDataObjectTypeEv_ZN21vtkVertexListIterator3IsAEPKc_ZN20vtkDebugLeaksManagerD1Ev_ZN7vtkPath3NewEv_ZN14vtkUniformGrid13GetCellPointsExP9vtkIdList_ZN17vtkHexagonalPrism13GetFacePointsEiRPi_ZN18vtkRectilinearGrid13GetPointCellsExP9vtkIdList_ZNK22vtkHyperTreeGridCursor19NewInstanceInternalEv_ZN18vtkRectilinearGrid8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN13vtkPolyhedron19GetParametricCoordsEv_ZN10vtkLocator20GetToleranceMaxValueEvPyUnicode_FromString_ZN20vtkPiecewiseFunction15RemoveAllPointsEv_ZN14vtkUniformGrid14IsPointVisibleEx_ZNK25vtkOctreePointLocatorNode9GetBoundsEPd_ZN12vtkEmptyCell11GetCellTypeEv_ZN9vtkKdTree27ViewOrderRegionsInDirectionEP11vtkIntArrayPKdS1__Z23PyvtkColor4_TemplateNewvPyVTKAddFile_vtkDataObjectTypes_ZNK20vtkDataSetAttributes19NewInstanceInternalEv_ZN17vtkGenericDataSet7GetDataEP14vtkInformation_ZN25vtkNonMergingPointLocator17InsertUniquePointEPKdRx_ZN14vtkGenericCell19GetParametricCenterEPd_ZN17vtkDataObjectTree19GetActualMemorySizeEv_ZNK12vtkImageData19NewInstanceInternalEv_ZN22vtkOrderedTriangulator11InsertPointExxxPdS0_i_ZN19vtkLagrangeTriangle11GetCellTypeEv_ZN24vtkCompositeDataIterator17SetSkipEmptyNodesEiPyVTKAddFile_vtkMultiBlockDataSet_ZN19vtkAnnotationLayers20GetCurrentAnnotationEv_ZN22vtkAbstractCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRx_ZN8vtkTable13InsertNextRowEP15vtkVariantArray_ZN17vtkXMLDataElement7GetNameEv_ZN16vtkLagrangeTetra11GetCellTypeEv_ZN19vtkLagrangeTriangle10InitializeEv_ZN24vtkLagrangeQuadrilateral22RequiresInitializationEv_ZN14vtkBoundingBox14IntersectPlaneEPdS0__ZN11vtkMolecule17DeepCopyStructureEPS__ZN25vtkImplicitWindowFunction14SetWindowRangeEddPyvtkQuadraticPolygon_ClassNew_ZN14vtkImplicitSum3NewEv_ZN22vtkOrderedTriangulator9AddTetrasEiP12vtkCellArray_ZN11vtkPolyData16GetNumberOfVertsEv_ZN24vtkLagrangeQuadrilateral3IsAEPKcPyvtkTuple_IdLi4EE_TypeNew_ZN16vtkLagrangeTetra7GetEdgeEi_ZN8vtkWedge13GetFacePointsEiRPiPyVTKAddFile_vtkDataSetAttributes_ZN8vtkGraph9GetInEdgeExx_ZN32vtkIncrementalOctreePointLocator26InsertPointWithoutCheckingEPKdRxi_ZN17vtkOverlappingAMR18GetRefinementRatioEP24vtkCompositeDataIterator_ZN9vtkKdTree12GetCellListsEP11vtkIntArrayiP9vtkIdListS3__ZN18vtkRectilinearGrid13GetDimensionsEv_ZN12vtkImageData9SetExtentEPi_ZN14vtkCellLocator22GenerateRepresentationEiP11vtkPolyData_ZN18vtkRectilinearGrid8DeepCopyEP13vtkDataObject_ZN21vtkLagrangeHexahedron22RequiresInitializationEv_ZN7vtkQuad17InterpolateDerivsEPdS0__ZN21vtkLagrangeHexahedron17PointIndexFromIJKEiii_ZN18vtkRectilinearGrid15GetXCoordinatesEv_ZN13vtkPolyhedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN12vtkCellArray11GetNextCellEP9vtkIdList_ZN15vtkPointLocator12GetDivisionsEv_ZN11vtkPolyData10InitializeEv_ZN33vtkIterativeClosestPointTransform26StartByMatchingCentroidsOnEv_ZN25vtkMutableUndirectedGraph7AddEdgeExx_ZN12vtkPolyPlane3NewEv_ZN21vtkOctreePointLocator14SetFudgeFactorEd_ZN11vtkMolecule15GetAtomPositionEx_ZN11vtkPolyData8GetPolysEv_ZN8vtkTetra7GetEdgeEiPyvtkQuadraticLinearWedge_ClassNew_ZN25vtkTriQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyvtkColor3ub_TypeNew_ZN16vtkHyperTreeGrid14GetOrientationEv_ZN9vtkSpline15RemoveAllPointsEvPyVTKAddFile_vtkPointData_ZN20vtkDataSetAttributes19GetAttributeIndicesEPi_ZN17vtkStructuredData13SetDimensionsEPiS0__ZN24vtkLagrangeQuadrilateral16EvaluatePositionEPdS0_RiS0_RdS0__ZNK31vtkUnstructuredGridCellIterator19NewInstanceInternalEv_ZN15vtkPointLocator10InitializeEv_ZN8vtkGraph3IsAEPKc_ZN19vtkAnnotationLayers13AddAnnotationEP13vtkAnnotation__cxa_atexit@GLIBC_2.2.5_ZN12vtkCellArray10InitializeEv_ZN17vtkConvexPointSet11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkAnnotationLayers8DeepCopyEP13vtkDataObject_ZN12vtkImageData9GetExtentEv_ZN20vtkPiecewiseFunction13UseLogScaleOnEv_ZN11vtkPolyLine16GetNumberOfEdgesEv_ZN8vtkTetra19GetParametricCoordsEv_ZN21vtkGenericAdaptorCell7ContourEP16vtkContourValuesP19vtkImplicitFunctionP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatorP26vtkIncrementalPointLocatorP12vtkCellArraySB_SB_P12vtkPointDataP11vtkCellDataSD_SD_SF__ZN17vtkAMRInformation9SetAMRBoxEjjRK9vtkAMRBox_ZN9vtkKdTree12GetCellListsEP11vtkIntArrayP10vtkDataSetP9vtkIdListS5__ZN8vtkTable3IsAEPKcPyvtkTuple_IiLi3EE_TypeNew_ZN7vtkQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN10vtkPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0__ZN20vtkPiecewiseFunction14GetDataPointerEv_ZN18vtkRectilinearGrid8GetPointEx_ZN22vtkOrderedTriangulator11InsertPointExPdS0_i_ZN18vtkRectilinearGrid3NewEv_ZN11vtkCylinder16EvaluateGradientEPdS0__ZN25vtkOctreePointLocatorNode12GetMaxBoundsEvPyVTKAddFile_vtkCellIterator_ZN20vtkDataSetAttributes10GetVectorsEPKc_ZN24vtkSimpleCellTessellator20SetSubdivisionLevelsEii_ZN10vtkDataSet14GetScalarRangeEv_ZN19vtkBSPIntersections3NewEv_ZN20vtkStaticCellLocator21SetMaxNumberOfBucketsEx_ZN15vtkPointLocator21FindDistributedPointsEidddP9vtkIdListi_ZN16vtkHyperTreeGrid11ShallowCopyEP13vtkDataObject_ZN11vtkMolecule20ShallowCopyStructureEPS__ZN20vtkDataSetAttributes12CopyAllocateEPS_xxi_ZN18vtkPentagonalPrism17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkXMLDataElement15GetXMLByteIndexEv_ZNK9vtkPlanes19NewInstanceInternalEv_ZN25vtkDataObjectTreeIterator17TraverseSubTreeOnEv_ZN16vtkSortFieldData4SortEP12vtkFieldDataPKciii_ZN13vtkHexahedron16GetNumberOfEdgesEv_ZN11vtkMolecule7GetAtomEx_ZN17vtkHexagonalPrism19GetParametricCoordsEv_ZN7vtkQuad16GetNumberOfEdgesEv_ZN10vtkDataSet8GetPointExPdPyVTKAddFile_vtkHexahedron_ZNK35vtkMeanValueCoordinatesInterpolator19NewInstanceInternalEv_ZN12vtkSelection4DumpEv_ZN24vtkImplicitSelectionLoop28AutomaticNormalGenerationOffEv_ZN11vtkCylinder9GetCenterEv_ZN8vtkGraph9SetPointsEP9vtkPoints_ZN18vtkPentagonalPrism16GetCellDimensionEv_ZN15vtkSuperquadric20GetThicknessMaxValueEv_ZN12vtkSelection7GetNodeEjPyvtkPointData_ClassNew_ZN8vtkPixel4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN22vtkOrderedTriangulator16GetUseTwoSortIdsEvPyvtkTuple_IfLi3EE_TypeNew_ZN19vtkBSPIntersections37ComputeIntersectionsUsingDataBoundsOnEv_ZN21vtkKdTreePointLocator3IsAEPKc_ZN21vtkOctreePointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN17vtkQuadraticTetra12CellBoundaryEiPdP9vtkIdList_ZN32vtkReebGraphSimplificationMetric13ComputeMetricEP10vtkDataSetP12vtkDataArrayxP16vtkAbstractArrayx_ZN20vtkDataSetAttributes14SetCopyScalarsEii_ZN17vtkXMLDataElement21LookupElementWithNameEPKc_ZN14vtkCellLocator20BuildLocatorInternalEv_ZN8vtkWedge22InterpolationFunctionsEPdS0__ZN8vtkGraph7GetDataEP20vtkInformationVectori_ZN19vtkQuadraticPyramid19GetParametricCenterEPd_ZN28vtkBiQuadraticQuadraticWedge19GetParametricCenterEPd_ZN9vtkKdNode3IsAEPKcPyVTKAddFile_vtkPentagonalPrism_ZN18vtkPentagonalPrism19GetParametricCenterEPd_ZN22vtkHyperTreeGridCursor18GetGlobalNodeIndexEv_ZN22vtkHyperTreeGridCursor5CloneEv_ZN12vtkGraphEdge5GetIdEv_ZN33vtkBiQuadraticQuadraticHexahedron16GetNumberOfEdgesEv_ZN7vtkCell11ShallowCopyEPS__ZNK19vtkStructuredExtent19NewInstanceInternalEv_ZN13vtkDataObject24GetNamedFieldInformationEP14vtkInformationiPKc_ZN12vtkFieldData8DeepCopyEPS__ZN12vtkCubicLine7GetEdgeEi_ZN9vtkKdTree29GetIncludeRegionBoundaryCellsEv_ZN35vtkGenericInterpolatedVelocityField11GetCacheHitEv_ZN7vtkCell19GetParametricCenterEPd_ZN9vtkVertex11DerivativesEiPdS0_iS0__ZN20vtkQuadraticTriangle16GetCellDimensionEv_ZN16vtkHyperTreeGrid3NewEv_ZN22vtkOrderedTriangulator16SetUseTwoSortIdsEi_ZN23vtkMutableDirectedGraph7AddEdgeExxP15vtkVariantArrayPyVTKAddFile_vtkUnstructuredGridBase_ZN7vtkQuad7GetFaceEi_ZN28vtkBiQuadraticQuadraticWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN13vtkDataObject15FIELD_OPERATIONEv_ZNK12vtkCellTypes19NewInstanceInternalEv_ZN11vtkPolyData10BuildCellsEv_ZN16vtkQuadraticQuad22InterpolationFunctionsEPdS0_PyVTKAddFile_vtkCellLinks_ZN16vtkHyperTreeGrid11ORIENTATIONEv_ZN10vtkDataSet12GetCellTypesEP12vtkCellTypes_ZN12vtkFieldData15InsertNextTupleExPS__ZN17vtkXMLDataElement20GetWordTypeAttributeEPKcRi_ZN11vtkPolyData13GetCellPointsExP9vtkIdList_ZN13vtkPolyVertex11GetCellTypeEvPyVTKAddFile_vtkAMRBoxPyVTKAddFile_vtkStaticCellLinks_ZN7vtkLine16GetCellDimensionEv_ZN24vtkLagrangeQuadrilateral12CellBoundaryEiPdP9vtkIdList_ZN18vtkRectilinearGrid8FindCellEPdP7vtkCellxdRiS0_S0__ZN13vtkHexahedron12GetFaceArrayEiPyvtkDataObject_ClassNew_ZN12vtkImageData13GetCellBoundsExPd_ZNK17vtkStructuredData19NewInstanceInternalEv_ZN9vtkKdTree15CreateCellListsEv_ZNK9vtkAMRBox13GetDimensionsEPiS0__ZN10vtkDataSet17HasAnyBlankPointsEv_ZN7vtkQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN12vtkImageData7GetCellExP14vtkGenericCellPyVTKAddFile_vtkCell_ZN12vtkFieldData16GetAbstractArrayEPKcRi_ZN11vtkPolyData3IsAEPKc_ZNK24vtkCompositeDataIterator19NewInstanceInternalEv_ZN8vtkWedge19InterpolationDerivsEPdS0__ZN16vtkSelectionNode6SOURCEEv_ZN21vtkLagrangeHexahedron7GetEdgeEi_ZN16vtkPixelTransfer4BlitERK14vtkPixelExtentS2_S2_S2_iiPviiS3__ZN12vtkCellTypes12SetCellTypesExP20vtkUnsignedCharArrayP11vtkIntArray_ZN20vtkDataSetAttributes16SetCopyAttributeEiii_ZN16vtkSelectionNode14SetQueryStringEPKcPyvtkVector_IiLi3EE_TypeNew_ZN19vtkGenericEdgeTable10CheckPointEx_ZN19vtkUnstructuredGrid19GetIdsOfCellsOfTypeEiP14vtkIdTypeArrayPyvtkRect_IfE_TypeNew_ZN15vtkImplicitHalo9GetCenterEv_ZN11vtkTriangle11ComputeAreaEv_ZN13vtkPythonArgs8SetArrayEiPKdi_ZNK9vtkAMRBox16GetNumberOfCellsEPiPyVTKAddFile_vtkGenericCellIterator_ZN6vtkBox7GetXMaxERdS0_S0__ZNK12vtkEmptyCell19NewInstanceInternalEv_ZN9vtkVertex22InterpolationFunctionsEPdS0__ZNK9vtkKdTree19NewInstanceInternalEv_ZN19vtkUnstructuredGrid18AddReferenceToCellExx_ZN20vtkMultiPieceDataSet7GetDataEP14vtkInformationPyVTKAddFile_vtkPointLocator_ZN8vtkTetra16GetNumberOfEdgesEv_ZN23vtkQuadraticLinearWedge19GetParametricCenterEPd_ZN32vtkIncrementalOctreePointLocator19FreeSearchStructureEv_ZN21vtkLagrangeHexahedron19GetParametricCoordsEv_ZN12vtkArrayData8AddArrayEP8vtkArray_ZN20vtkPiecewiseFunction14UseLogScaleOffEv_ZN22vtkPointsProjectedHull22RectangleIntersectionYEddddPyVTKAddFile_vtkIncrementalOctreePointLocator_ZN15vtkImplicitHalo3NewEvPyVTKAddFile_vtkCellTypes_ZN13vtkPythonArgs8GetArrayEPii_ZN25vtkDataObjectTreeIterator3IsAEPKc_ZNK11vtkMolecule19NewInstanceInternalEvPyvtkReebGraph_ClassNew_ZN16vtkLagrangeTetra16GetNumberOfFacesEv_ZN17vtkStructuredGrid10InitializeEv_ZN19vtkEdgeListIterator7HasNextEv_ZN17vtkQuadraticTetra3NewEv_ZN12vtkSelection10RemoveNodeEjPyvtkPointSet_ClassNew_ZN31vtkObjectFactoryRegistryCleanupD1EvPyvtkPlanes_ClassNew_ZdlPv@GLIBCXX_3.4_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKm_ZN22vtkPointsProjectedHull11GetCCWHullZEPdi_ZN12vtkPolyPlane11SetPolyLineEP11vtkPolyLine_ZNK32vtkReebGraphSimplificationMetric19NewInstanceInternalEv_ZN12vtkSelection16GetNumberOfNodesEvPyVTKObject_String_ZN19vtkStructuredPoints3NewEv_ZN11vtkTriangle3NewEvPyvtkPolyVertex_ClassNew_ZN14vtkGenericCell11GetCellTypeEv_ZN17vtkQuadraticTetra12GetEdgeArrayEi_ZN20vtkQuadraticTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN20vtkPiecewiseFunction3NewEv_ZN8vtkTable19GetNumberOfElementsEi_ZN19vtkGenericEdgeTable21GetNumberOfComponentsEv_ZN9vtkCell3D17GetMergeToleranceEv_ZN8vtkGraph12GetOutDegreeEx_ZN18vtkOutEdgeIterator3NewEv_ZN21vtkOctreePointLocator3IsAEPKc_ZN12vtkImageData13SetScalarTypeEiP14vtkInformation_ZN7vtkCell21GetParametricDistanceEPd_ZN8vtkGraph8GetPointEx_ZNK23vtkAbstractPointLocator19NewInstanceInternalEv_ZN19vtkUnstructuredGrid20InsertNextLinkedCellEiiPx_ZN18vtkRectilinearGrid9GetPointsEP9vtkPoints_ZN13vtkPythonArgs8SetArrayEiPKji_ZN17vtkUniformGridAMR7GetDataEP14vtkInformation_ZN19vtkImplicitFunction16EvaluateFunctionEP12vtkDataArrayS1_PyvtkColor3f_TypeNew_ZN21vtkPolyDataCollection3NewEv_ZN20vtkDataSetAttributes3NewEv_ZN20vtkQuadraticTriangle11GetCellTypeEv_ZN12vtkArrayData11ClearArraysEv_ZN20vtkMultiPieceDataSet3NewEv_ZN13vtkDataObject10FIELD_NAMEEv_ZN8vtkPixel3IsAEPKcPyvtkInformationQuadratureSchemeDefinitionVectorKey_ClassNew_ZN13vtkPythonArgs10BuildTupleEPKii_ZN14vtkCellLocator8GetCellsEi_ZN6vtkBox7SetXMinEddd_ZN14vtkGenericCell8DeepCopyEP7vtkCell_ZN9vtkKdNode19GetDivisionPositionEv_ZN20vtkMultiBlockDataSet7GetDataEP14vtkInformationPyVTKAddFile_vtkTriQuadraticHexahedron_ZN22vtkAbstractCellLocator18RetainCellListsOffEv_ZN9vtkAMRBoxD1EvPyVTKAddFile_vtkCompositeDataIterator_ZN18vtkOutEdgeIterator8GetGraphEv_ZN12vtkFieldData8GetArrayEPKcRi_ZN12vtkImageData17GetDataObjectTypeEv_ZN21vtkVertexListIterator8SetGraphEP8vtkGraph_ZN18vtkStaticCellLinks3IsAEPKcPyVTKAddFile_vtkGenericPointIterator_ZN14vtkUniformGrid10BlankPointEx_ZN16vtkQuadraticQuad3IsAEPKc_ZN15vtkPointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN16vtkLagrangeTetra11DerivativesEiPdS0_iS0__ZN13vtkAnnotation10ICON_INDEXEv_ZN9vtkSphere9SetCenterEddd_ZN15vtkSuperquadric15GetPhiRoundnessEv_ZN29vtkGenericAttributeCollection18GetActiveAttributeEv_ZN8vtkTable17GetDataObjectTypeEvPyvtkMutableDirectedGraph_ClassNewPyVTKAddFile_vtkEdgeListIterator_ZN20vtkDataSetAttributes24GetAttributeTypeAsStringEi_ZN12vtkEdgeTable18InitPointInsertionEP9vtkPointsx_ZN17vtkOverlappingAMR11GetChildrenEjjRjPyVTKAddFile_vtkPlanes_ZN10vtkBSPCuts3NewEv_ZN16vtkQuadraticQuad11TriangulateEiP9vtkIdListP9vtkPoints_ZN12vtkImageData13GetExtentTypeEv_ZN25vtkImplicitWindowFunction14GetWindowRangeEv_ZN12vtkImageData10SetSpacingEPd_ZTVNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEEE@GLIBCXX_3.4.21_ZN10vtkDataSet19GetActualMemorySizeEv_ZN23vtkMutableDirectedGraph11RemoveEdgesEP14vtkIdTypeArrayPyErr_Clear_ZN33vtkIterativeClosestPointTransform15GetMeanDistanceEv_ZN9vtkKdNode17GetNumberOfPointsEvPyvtkCellIterator_ClassNew_ZN9vtkKdTree11GetMinCellsEvPyvtkRect_IdE_TypeNew_ZN16vtkLagrangeWedge19GetParametricCoordsEv_ZN7vtkCell22RequiresInitializationEv_ZN29vtkStructuredPointsCollection3NewEvPyVTKAddFile_vtkCell3DPyVTKAddFile_vtkStructuredGrid_ZN17vtkStructuredGrid9SetExtentEiiiiii_ZNK16vtkTriangleStrip19NewInstanceInternalEv_ZN11vtkPointSet8DeepCopyEP13vtkDataObject_ZN16vtkLagrangeWedge20InterpolateFunctionsEPdS0__ZN12vtkImageData16GetScalarTypeMinEv_ZN29vtkGenericAttributeCollection12HasAttributeEiPii_ZN10vtkDataSet14GetScalarRangeEPd_ZN10vtkDataSet9GetCenterEPd_ZN12vtkImageData16GetScalarTypeMaxEv_ZN12vtkFieldData11RemoveArrayEi_ZN18vtkRectilinearGrid7GetDataEP20vtkInformationVectori_ZN13vtkDataObject20FIELD_ATTRIBUTE_TYPEEv_ZN13vtkAnnotation4DATAEv_ZN11vtkMolecule18CheckedShallowCopyEP8vtkGraph_ZN13vtkPythonArgs11SetArgValueEii_ZN13vtkPythonUtil27GetPointerFromSpecialObjectEP7_objectPKcPS1__ZN33vtkIterativeClosestPointTransform22SetMaximumMeanDistanceEd_ZN19vtkImplicitFunction12GetTransformEv_ZN20vtkDataSetAttributes8PassDataEP12vtkFieldData_ZNK20vtkNonOverlappingAMR19NewInstanceInternalEv_ZN16vtkQuadraticEdge19InterpolationDerivsEPdS0__ZN15vtkImplicitHalo10SetFadeOutEd_ZN7vtkTree3NewEv_ZN8vtkPixel7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN7vtkQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN7vtkLine20InterpolateFunctionsEPdS0__ZN18vtkBiQuadraticQuad16GetCellDimensionEv_ZNK9vtkAMRBox8ContainsEiii_ZN19vtkLagrangeTriangle16BarycentricIndexExPxx_ZN14vtkHyperOctree6LEVELSEv_ZN14vtkUniformGrid9BlankCellEiii_ZN15vtkImplicitHalo9SetRadiusEd_ZN16vtkQuadraticEdge16GetCellDimensionEv_ZN16vtkHyperTreeGrid13GenerateTreesEv_ZN19vtkBSPIntersections14IntersectsCellEPiiP7vtkCelli_ZN14vtkHyperOctree8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__Znwm@GLIBCXX_3.4PyvtkVector2_IfE_TypeNew_ZN15vtkImplicitHalo10GetFadeOutEvPyvtkVector_IdLi3EE_TypeNew_ZN25vtkAdjacentVertexIterator3NewEv_ZN16vtkQuadraticEdge16GetNumberOfEdgesEv_ZN17vtkXMLDataElement30FindNestedElementWithNameAndIdEPKcS1__ZN25vtkOctreePointLocatorNode8GetMinIDEv_ZN16vtkSelectionNode14GetQueryStringEv_ZN9vtkKdTree28ViewOrderRegionsFromPositionEP11vtkIntArrayPKdS1__ZN13vtkDataObject13GetExtentTypeEv_ZN10vtkPolygon8IsConvexEv_ZN25vtkMutableUndirectedGraph10RemoveEdgeExPyVTKAddFile_vtkInEdgeIterator_ZN17vtkAMRInformation22SetAMRBlockSourceIndexEii_ZN20vtkQuadraticTriangle12CellBoundaryEiPdP9vtkIdList_ZNK18vtkTreeBFSIterator19NewInstanceInternalEv_ZN8vtkPixel16EvaluateLocationERiPdS1_S1__ZN13vtkPolyhedron22RequiresInitializationEv_ZN20vtkDataSetAttributes18IsArrayAnAttributeEi_ZN13vtkPythonArgs8GetArrayEPfi_ZN7vtkLine14DistanceToLineEPKdS1_S1_RdPd_ZN18vtkRectilinearGrid4CropEPKi_ZN29vtkUniformGridAMRDataIterator13GoToFirstItemEv_ZN9vtkKdTree14SetFudgeFactorEd_ZN24vtkLagrangeInterpolation28GetVaryingParameterOfHexEdgeEi_ZN12vtkFieldData21GetNumberOfComponentsEv_ZN20vtkPiecewiseFunction19FillFromDataPointerEiPd_ZN12vtkImageData13GetScalarTypeEvPyvtkBoundingBox_TypeNew_ZN25vtkOctreePointLocatorNode22GetDistance2ToBoundaryEdddPdPS_i_ZN19vtkCompositeDataSet19GetActualMemorySizeEv_ZN8vtkPlane9SetNormalEddd_ZN12vtkImageData13SetDimensionsEiii_ZN11vtkPolyLine16EvaluatePositionEPdS0_RiS0_RdS0_PyvtkPixelTransfer_TypeNew_ZN12vtkFieldData10InitializeEv_ZN8vtkGraph8DeepCopyEP13vtkDataObject_ZN11vtkPolyData11ReverseCellEx_ZN16vtkHyperTreeGrid3IsAEPKc_ZN23vtkAbstractPointLocator18GetNumberOfBucketsEv_ZN12vtkImageData16GetPointGradientEiiiP12vtkDataArrayPdPyvtkUnstructuredGrid_ClassNew_ZN21vtkLagrangeHexahedron8GetOrderEv_ZN16vtkHyperTreeGrid19GetNumberOfChildrenEv_ZN9vtkKdTree3IsAEPKc_ZN22vtkOrderedTriangulator17GetNumberOfPointsEv_ZN11vtkMolecule15SetAtomPositionExdddPyvtkImplicitBoolean_ClassNewPyVTKAddFile_vtkUnstructuredGridCellIterator_ZN16vtkLagrangeWedge25TransformFaceToCellParamsEiPd_ZN20vtkSmoothErrorMetric17GetAngleToleranceEv_ZN35vtkGenericInterpolatedVelocityField23GetLastLocalCoordinatesEPd_ZN17vtkOverlappingAMR9GetBoundsEjjPd_ZN14vtkGenericCell11TriangulateEiP9vtkIdListP9vtkPoints_ZN16vtkLagrangeTetra10InitializeEv_ZN19vtkCompositeDataSet7GetDataEP20vtkInformationVectori_ZN9vtkKdTree17RemoveAllDataSetsEv_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRl_ZN17vtkAMRInformation30GenerateParentChildInformationEv_ZN14vtkBoundingBox11SetMinPointEddd_ZN25vtkDataObjectTreeIterator18GetVisitOnlyLeavesEv_ZN8vtkPlane9GetNormalEv_ZNK18vtkDataObjectTypes19NewInstanceInternalEv_ZN29vtkGenericAttributeCollection12GetAttributeEi_ZN23vtkQuadraticLinearWedge11DerivativesEiPdS0_iS0__ZN25vtkDataObjectTreeIterator3NewEv_ZN19vtkImplicitFunction3IsAEPKc_ZN14vtkUniformGrid17HasAnyBlankPointsEv_ZN20vtkQuadraticTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN30vtkExtractStructuredGridHelper10InitializeEPiS0_S0_b_ZN17vtkImplicitVolume16EvaluateFunctionEPd_ZN15vtkSuperquadric20GetThicknessMinValueEv_ZN9vtkKdTree24GetRegionContainingPointEddd_ZN12vtkSelection8DeepCopyEP13vtkDataObject_ZNK13vtkAnnotation19NewInstanceInternalEv_ZN13vtkPythonArgs9SetNArrayEiPKdiPKi_ZN17vtkXMLDataElement18GetScalarAttributeEPKcRd_ZN11vtkPointSet17GetNumberOfPointsEv_ZN13vtkCollection7AddItemEP9vtkObject_ZN22vtkPointsProjectedHull5ResetEv_ZN21vtkLagrangeHexahedron17InterpolateDerivsEPdS0__ZN17vtkOverlappingAMR3NewEv_ZN14vtkUniformGrid18GetGridDescriptionEv_ZN16vtkHyperTreeGrid11SetGridSizeEPj_ZN14vtkImplicitSum3IsAEPKc_ZNK10vtkLocator19NewInstanceInternalEv_ZN12vtkEmptyCell7GetEdgeEi_ZN22vtkOrderedTriangulator15UseTemplatesOffEv_ZN13vtkPolyhedron8SetFacesEPxPyVTKAddFile_vtkKdNodePyvtkAbstractCellLocator_ClassNew_ZN17vtkConvexPointSet7GetEdgeEi_ZN22vtkHyperTreeGridCursor7GetSizeEv_ZN17vtkStructuredGrid16GetCellNeighborsExP9vtkIdListS1_Pi_ZN21vtkLagrangeHexahedron27TransformApproxToCellParamsEiPd_ZN21vtkOctreePointLocator16FindPointsInAreaEPdP14vtkIdTypeArrayb_ZN9vtkKdNode22GetDistance2ToBoundaryEdddi_ZN9vtkKdTree3NewEv_ZN24vtkLagrangeQuadrilateral19GetParametricCoordsEv_ZN17vtkXMLDataElement20GetAttributeEncodingEvPyVTKAddFile_vtkKdTreePointLocator_ZN20vtkDataSetAttributes16CopyGlobalIdsOffEv_ZN16vtkHyperTreeGrid32GetIndexFromLevelZeroCoordinatesERxjjjPyvtkStaticPointLocator_ClassNewPyvtkPointsProjectedHull_ClassNew_ZN25vtkTriQuadraticHexahedron22InterpolationFunctionsEPdS0__ZN35vtkGenericInterpolatedVelocityField9CachingOnEv_ZN8vtkTable15GetNumberOfRowsEv_ZN24vtkLagrangeInterpolation31GetEdgeIndicesBoundingWedgeFaceEi_ZN12vtkImageData16GetScalarPointerEiii_ZN17vtkHexagonalPrism11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkDataObject8GetMTimeEv_ZN20vtkDataSetAttributes9CopyTupleEP16vtkAbstractArrayS1_xx_ZN17vtkImplicitVolume14SetOutGradientEPd_ZN20vtkDataSetAttributes12GetAttributeEi_ZN20vtkStaticCellLocator29GetMaxNumberOfBucketsMaxValueEv_ZN8vtkGraph10InitializeEv_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey3IsAEPKc_ZN16vtkLagrangeWedge21GetParametricDistanceEPd_ZN8vtkVoxel17InterpolateDerivsEPdS0__ZN17vtkQuadraticWedge16EvaluateLocationERiPdS1_S1__ZN14vtkHyperOctree13SubdivideLeafEP20vtkHyperOctreeCursor_ZN9vtkKdTree9GetTimingEv_ZN7vtkLine11DerivativesEiPdS0_iS0__ZN22vtkBiQuadraticTriangle7GetEdgeEi_ZN7vtkCone16EvaluateGradientEPdS0__ZN8vtkGraph21GetNumberOfEdgePointsEx_ZN12vtkFieldData8PassDataEPS__ZN7vtkAtom15SetAtomicNumberEt_ZN17vtkAnimationScene12SetFrameRateEd_ZN16vtkSelectionNode18HIERARCHICAL_INDEXEvPyvtkPiecewiseFunction_ClassNew_ZN24vtkLagrangeInterpolation13WedgeEvaluateEPKiPKdPdiS4_PyvtkImplicitFunction_ClassNew_ZN11vtkMolecule3NewEv_ZNK16vtkSelectionNode19NewInstanceInternalEv_ZN24vtkCompositeDataIterator10GetReverseEv_ZN12vtkEmptyCell16EvaluatePositionEPdS0_RiS0_RdS0__ZN9vtkKdNode8GetMaxIDEv_ZN8vtkWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyvtkColor4ub_TypeNew_ZN18vtkPlaneCollection3NewEv_ZN16vtkLagrangeWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN24vtkSimpleCellTessellator20GetFixedSubdivisionsEv_ZN25vtkHierarchicalBoxDataSet11NewIteratorEvPyVTKAddFile_vtkGenericDataSet_ZN22vtkAbstractCellLocator28FindClosestPointWithinRadiusEPddS0_RxRiRd_ZN9vtkSpline3IsAEPKc_ZN35vtkGenericInterpolatedVelocityField19SetVectorsSelectionEPKc_ZN16vtkHyperTreeGrid15SetZCoordinatesEP12vtkDataArray_ZN19vtkAnnotationLayers19SetCurrentSelectionEP12vtkSelection_ZN24vtkLagrangeInterpolation21WedgeShapeDerivativesEPKiPKdPd_ZN18vtkPentagonalPrism16EvaluateLocationERiPdS1_S1__ZN11vtkPolyData8AllocateExi_ZN11vtkPolyData16GetNumberOfPolysEv_ZN12vtkImageData9SetExtentEiiiiii_ZN14vtkPixelExtent10NodeToCellERKS__ZN12vtkCellTypes22GetTypeIdFromClassNameEPKc_ZN22vtkQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_ZN10vtkBSPCuts6EqualsEPS_d_ZN20vtkMultiPieceDataSet11HasMetaDataEP24vtkCompositeDataIteratorPyVTKAddFile_vtkDirectedAcyclicGraph_ZNK21vtkLagrangeHexahedron19NewInstanceInternalEv_ZN35vtkGenericInterpolatedVelocityField10AddDataSetEP17vtkGenericDataSetPyvtkAbstractCellLinks_ClassNew_ZN32vtkGenericSubdivisionErrorMetric14GetGenericCellEv_ZN9vtkAMRBoxD0Ev_ZN7vtkLine22InterpolationFunctionsEPdS0__ZN21vtkLagrangeHexahedron7GetFaceEi_ZN24vtkIncrementalOctreeNode22GetDistance2ToBoundaryEPKdPS_i_ZN19vtkGenericEdgeTable10InsertEdgeExxxiRx_ZN17vtkUniformGridAMR11NewIteratorEv_ZN20vtkPiecewiseFunction26EstimateMinNumberOfSamplesERKdS1__ZN17vtkQuadraticTetra17InterpolateDerivsEPdS0__ZNK9vtkVertex19NewInstanceInternalEv_ZN10vtkPyramid19GetParametricCoordsEv_ZN18vtkRectilinearGrid11ShallowCopyEP13vtkDataObject_ZN29vtkUniformGridAMRDataIterator18GetCurrentMetaDataEv_ZN33vtkBiQuadraticQuadraticHexahedron19GetParametricCoordsEvPyvtkPixelExtent_TypeNew_ZN15vtkCellIterator16GetCellDimensionEv_ZN9vtkKdNode5SetUpEPS__ZN29vtkGenericAttributeCollection17GetAttributeIndexEi_ZN17vtkImplicitVolume9GetVolumeEv_ZN19vtkStructuredExtent3IsAEPKc_ZN13vtkObjectBase20InitializeObjectBaseEv_ZN17vtkXMLDataElement7GetRootEv_ZN24vtkLagrangeInterpolation28GetFixedParameterOfWedgeFaceEi_ZN8vtkPixel11TriangulateEiP9vtkIdListP9vtkPoints_ZN11vtkTriangle7GetFaceEi_ZN12vtkFieldData3NewEv_ZN13vtkPythonArgs5ArrayIfEC1El_ZN9vtkVertex16EvaluatePositionEPdS0_RiS0_RdS0__ZN21vtkStaticPointLocator12SetDivisionsEPi_ZN9vtkKdNode6SetDimEi_ZN9vtkKdTree18InvalidateGeometryEv_ZN13vtkPolyhedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZTTNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEEE@GLIBCXX_3.4.21_ZN20vtkDataSetAttributes13CopyTCoordsOnEv_Z43PyvtkImplicitBoolean_OperationType_FromEnumi_ZN7vtkPath15InsertNextPointEPdi_ZN12vtkPolyPlane3IsAEPKc_ZN27vtkHyperOctreePointsGrabber3IsAEPKc_ZN12vtkCubicLine7GetFaceEi_ZN16vtkLagrangeTetra7GetFaceEi_ZN19vtkUnstructuredGrid3NewEv_ZN17vtkAMRInformation9GetOriginEv_ZN16vtkNonLinearCell8IsLinearEv_ZN14vtkGenericCell12CellBoundaryEiPdP9vtkIdList_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridPKc_ZN14vtkHyperOctree9DIMENSIONEv_ZN22vtkAbstractCellLocator28UseExistingSearchStructureOnEv_ZN16vtkHyperTreeGrid11SetGridSizeEjjj_ZN22vtkDataSetCellIterator19IsDoneWithTraversalEv_ZN33vtkIterativeClosestPointTransform9SetSourceEP10vtkDataSet_ZN8vtkGraph15ClearEdgePointsExPyvtkVector_IiLi2EE_TypeNew_ZN12vtkReebGraph5BuildEP11vtkPolyDataPKc_ZN22vtkPointsProjectedHull15GetSizeCCWHullXEv_ZN35vtkGenericInterpolatedVelocityField3NewEv_ZN16vtkHyperTreeGrid8FindCellEPdP7vtkCellxdRiS0_S0__ZN18vtkRectilinearGrid13GetExtentTypeEv_ZN10vtkDataSet15NewCellIteratorEv_ZN12vtkFieldData14AllocateArraysEiPyVTKAddFile_vtkXMLDataElement_ZNK30vtkHierarchicalBoxDataIterator19NewInstanceInternalEv_ZN17vtkOStreamWrapperlsEPv_ZN14vtkBoundingBox7InflateEd_ZN25vtkHierarchicalBoxDataSet7GetDataEP20vtkInformationVectori_ZN12vtkImageData19SetAxisUpdateExtentEiiiPKiPi_ZN10vtkDataSet7GetCellEiii_ZN14vtkGenericCell17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN18vtkHyperTreeCursor3IsAEPKc_ZN17vtkAMRInformation18GetGridDescriptionEv_ZN25vtkDataObjectTreeIterator18GetTraverseSubTreeEv_ZN17vtkConvexPointSet7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN32vtkIncrementalOctreePointLocator3NewEv_ZN11vtkTriangle17BarycentricCoordsEPdS0_S0_S0_S0__ZN19vtkUnstructuredGrid13GetCellPointsExP9vtkIdList_ZN25vtkAdjacentVertexIterator9GetVertexEv_ZN28vtkBiQuadraticQuadraticWedge16GetNumberOfEdgesEv_ZN6vtkBox9GetBoundsEv_ZN23vtkQuadraticLinearWedge7GetEdgeEi_ZN16vtkLagrangeCurve12CellBoundaryEiPdP9vtkIdList_ZN18vtkPentagonalPrism7GetFaceEi_ZN19vtkQuadraticPolygon11GetCellTypeEv_ZN13vtkPolyhedron11DerivativesEiPdS0_iS0__ZN11vtkMolecule12GetBondOrderExPyvtkGenericPointIterator_ClassNew_ZN10vtkDataSet13ComputeBoundsEv_ZN13vtkPolyhedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkUnstructuredGrid24DecomposeAPolyhedronCellEP12vtkCellArrayRxS2_S1_P14vtkIdTypeArray_ZN13vtkDataObject17FIELD_ASSOCIATIONEv_ZN9vtkKdTree15CreateCellListsEPii_ZN24vtkLagrangeInterpolation19WedgeShapeFunctionsEPKiPKdPd_ZN9vtkKdTree9FindPointEddd_ZN8vtkGraph13GetEdgePointsExRxRPd_ZN16vtkTriangleStrip16GetNumberOfEdgesEv_ZN24vtkCompositeDataIterator17GetSkipEmptyNodesEv_ZN9vtkKdTree23GetRegionContainingCellEP10vtkDataSetx_ZN14vtkUniformGrid16NewImageDataCopyEv_ZNK24vtkIncrementalOctreeNode19NewInstanceInternalEvPyvtkEdgeType_TypeNew_ZN14vtkPixelExtent5ShiftEPii_ZN24vtkIncrementalOctreeNode13GetPointIdSetEv_ZN17vtkUniformGridAMR10SetAMRInfoEP17vtkAMRInformation_ZN8vtkTable6SetRowExP15vtkVariantArrayPyVTKObject_GetObject_ZN17vtkXMLDataElement21GetCharacterDataWidthEv__stack_chk_fail@GLIBC_2.4_ZN20vtkDebugLeaksManagerC1EvPyvtkPolyData_ClassNew_ZN14vtkBoundingBox5ScaleEddd_ZN23vtkAbstractPointLocator16FindClosestPointEddd_ZN13vtkAnnotation8GetMTimeEv_ZN9vtkPlanes10GetNormalsEv_ZN17vtkOverlappingAMR9GetOriginEjjPd_ZNK18vtkRectilinearGrid19NewInstanceInternalEv_ZN19vtkQuadraticPyramid7GetFaceEi_ZN33vtkIterativeClosestPointTransform19GetMeanDistanceModeEv_ZN35vtkGenericInterpolatedVelocityField10GetCachingEv_ZN15vtkTreeIterator7SetTreeEP7vtkTree_ZN16vtkLagrangeWedge17PointIndexFromIJKEiiiPKi_ZN10vtkPolygon7GetFaceEi_ZNK25vtkDistributedGraphHelper12GetEdgeIndexEx_ZN22vtkQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN11vtkPolyLine3NewEv_ZN22vtkQuadraticHexahedron7GetEdgeEi_ZN11vtkMolecule17GetDataObjectTypeEv_ZN16vtkHyperTreeGrid25SetTransposedRootIndexingEb_ZN22vtkPointsProjectedHull22RectangleIntersectionZEP9vtkPoints_ZN17vtkXMLDataElement25GetNumberOfNestedElementsEv_ZN17vtkXMLDataElement18SetDoubleAttributeEPKcd_ZN13vtkPolyhedron7GetFaceEi_ZN12vtkFieldData7SqueezeEv_ZN17vtkQuadraticTetra16EvaluateLocationERiPdS1_S1__ZN20vtkQuadraticTriangle20InterpolateFunctionsEPdS0__ZN16vtkHyperTreeGrid17GetNumberOfLeavesEv_ZNK14vtkHyperOctree19NewInstanceInternalEv_ZN28vtkBiQuadraticQuadraticWedge22InterpolationFunctionsEPdS0__ZN13vtkPolyVertex7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN9vtkKdTree16FindClosestPointEPdRd_ZN8vtkWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkDataObject18VERTEX_DATA_VECTOREv_ZN10vtkPolygon13ComputeNormalEiPdS0__ZN20vtkPiecewiseFunction24SetAllowDuplicateScalarsEi_ZN12vtkCellLinks3NewEv_ZNK21vtkPlanesIntersection19NewInstanceInternalEv_ZN10vtkBSPCuts9PrintTreeEv_ZN17vtkHexagonalPrism17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN20vtkDataSetAttributes16SetActiveTCoordsEPKcPyVTKAddFile_vtkImplicitSum_ZN20vtkMultiBlockDataSet17GetNumberOfBlocksEv_ZN8vtkGraph8GetPointExPd_ZN9vtkObject3NewEv_ZN30vtkExtractStructuredGridHelper3NewEv_ZNK19vtkImplicitFunction19NewInstanceInternalEv_ZN20vtkMultiPieceDataSet17GetNumberOfPiecesEv_ZN28vtkBiQuadraticQuadraticWedge16GetCellDimensionEv_ZN9vtkAMRBox12RemoveGhostsEi_ZN12vtkEdgeTable10InitializeEv_ZN20vtkDataSetAttributes10InitializeEv_ZN22vtkHyperTreeGridCursor8ToParentEv_ZN8vtkTable7GetDataEP14vtkInformation_ZNK11vtkTriangle19NewInstanceInternalEv_ZN11vtkPolyData11DeleteLinksEv_ZN13vtkPythonArgs8GetValueERb_ZN20vtkPiecewiseFunction8AddPointEdd_ZN19vtkGenericEdgeTable27IncrementEdgeReferenceCountExxx_ZN30vtkExtractStructuredGridHelper18ComputeBeginAndEndEPiS0_S0_S0_PyErr_SetString_ZN16vtkQuadraticEdge3IsAEPKc_ZN20vtkStaticCellLocator29GetMaxNumberOfBucketsMinValueEv_ZN22vtkQuadraticLinearQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkLagrangeCurve10InitializeEv_ZN11vtkPointSet10InitializeEv_ZN10vtkPyramid7GetEdgeEi_ZN12vtkSelection7GetDataEP20vtkInformationVectori_ZNK15vtkSuperquadric19NewInstanceInternalEv_ZN13vtkPythonArgs8GetValueERj_ZN21vtkStaticPointLocator21SetMaxNumberOfBucketsEx_ZN10vtkPyramid13GetFacePointsEiRPi_ZN25vtkGenericCellTessellator15SetErrorMetricsEP13vtkCollection_ZN19vtkUnstructuredGrid14InsertNextCellEixPxxS0__ZN10vtkDataSet14FindAndGetCellEPdP7vtkCellxdRiS0_S0__ZN19vtkAMRDataInternals3NewEvPyvtkPolyhedron_ClassNew_ZN8vtkGraph9GetBoundsEPdPyvtkAbstractElectronicData_ClassNew_ZN20vtkStaticCellLocator19FreeSearchStructureEvPyvtkQuadratureSchemeDefinition_ClassNew_ZN18vtkImplicitDataSet16EvaluateFunctionEPd_ZN8vtkGraph8GetMTimeEvPyVTKAddFile_vtkOutEdgeIterator_ZN14vtkUniformGrid10InitializeEv_ZN10vtkDataSet13GetCellBoundsExPd_ZN18vtkRectilinearGrid10InitializeEv_ZN21vtkKdTreePointLocator18FindClosestNPointsEiPKdP9vtkIdList_ZN11vtkPolyData16GetCellNeighborsExP9vtkIdListS1_PyvtkCompositeDataSet_ClassNew_ZN19vtkUnstructuredGrid13GetFaceStreamExP9vtkIdList_ZN10vtkPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2__ZN13vtkPolyhedron20InterpolateFunctionsEPdS0_PyvtkOverlappingAMR_ClassNew_ZN8vtkGraph21ShallowCopyEdgePointsEPS__ZN8vtkTable12RemoveColumnExPyvtkGenericInterpolatedVelocityField_ClassNewPyVTKAddFile_vtkPyramid_ZN10vtkDataSet7SqueezeEv_ZN22vtkOrderedTriangulator12GetPreSortedEv_ZN19vtkImplicitFunction16EvaluateFunctionEddd_ZN23vtkGeometricErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_d_ZNK19vtkAnnotationLayers19NewInstanceInternalEv_ZN23vtkMutableDirectedGraph10RemoveEdgeEx_ZN29vtkImplicitFunctionCollection3NewEv_ZN19vtkQuadraticPyramid22InterpolationFunctionsEPdS0__ZN17vtkAnimationScene4PlayEv_ZN11vtkTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyvtkHyperOctreePointsGrabber_ClassNew_ZN8vtkVoxel20InterpolateFunctionsEPdS0__ZN24vtkLagrangeInterpolation21Tensor3ShapeFunctionsEPKiPKdPd_ZN19vtkUnstructuredGrid7GetCellExP14vtkGenericCellPyvtkExtractStructuredGridHelper_ClassNew_ZN17vtkGraphInternals3IsAEPKc_ZN12vtkImageData16GetDataDimensionEv_ZN13vtkPythonArgs9GetNArrayEPdiPKi_ZN19vtkUnstructuredGrid17GetNumberOfPiecesEvPyvtkTreeBFSIterator_ClassNew_ZN14vtkCellLocator20BuildLocatorIfNeededEv_ZN16vtkTriangleStrip16GetCellDimensionEv_ZN12vtkImageData15AllocateScalarsEii_ZN24vtkLagrangeInterpolation24EvaluateShapeAndGradientEidPdS0__ZN18vtkRectilinearGrid8GetPointExPd_ZNK12vtkEdgeTable19NewInstanceInternalEv_ZN16vtkTriangleStrip7GetFaceEi_ZN10vtkPolygon13ComputeNormalEP9vtkPointsiPxPd_ZN16vtkHyperTreeGrid13SetGridExtentEPi_ZN18vtkBiQuadraticQuad16GetNumberOfEdgesEv_ZN18vtkUndirectedGraph16IsStructureValidEP8vtkGraph_ZN16vtkDirectedGraph16IsStructureValidEP8vtkGraph_ZN12vtkEdgeTable10InsertEdgeExx_ZN16vtkQuadraticEdge17IntersectWithLineEPdS0_dRdS0_S0_RiPyVTKAddFile_vtkGenericCellTessellator_ZN14vtkHyperOctree17GetNumberOfLeavesEv_ZN22vtkBiQuadraticTriangle16GetCellDimensionEv_ZN16vtkLagrangeCurve11GetCellTypeEv_ZN16vtkSelectionNode16GetSelectionDataEv_ZN16vtkQuadraticQuad16EvaluateLocationERiPdS1_S1_PyvtkDirectedGraph_ClassNew_ZN10vtkPyramid7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkDataObject28GetAssociationTypeFromStringEPKc_ZN20vtkStaticCellLocator12GetDivisionsEv_ZN10vtkDataSet17GetDataObjectTypeEv_ZN19vtkLagrangeTriangle5IndexEPKxxPyvtkGraphInternals_ClassNew_ZN23vtkQuadraticLinearWedge3NewEv_ZN12vtkImageData8GetPointEx_ZN10vtkDataSet9GetLengthEvPyVTKAddFile_vtkGenericAdaptorCell_ZN14vtkPixelExtent4GrowERKS_i_ZN22vtkHyperTreeGridCursor7SetGridEP16vtkHyperTreeGridPyVTKAddFile_vtkGeometricErrorMetricPyVTKSpecialType_Add_ZN10vtkBSPCuts8DeepCopyEP13vtkDataObject_ZN22vtkQuadraticLinearQuad16GetCellDimensionEv_ZN17vtkOverlappingAMR30GenerateParentChildInformationEv_ZN13vtkDataObject25CopyInformationToPipelineEP14vtkInformation_ZN23vtkQuadraticLinearWedge19InterpolationDerivsEPdS0__ZN8vtkPlane13ProjectVectorEPdS0_S0_S0__ZN22vtkAbstractCellLocator18CacheCellBoundsOffEv_ZN17vtkQuadraticWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN21vtkStaticPointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN16vtkLagrangeWedge12CellBoundaryEiPdP9vtkIdList_ZN22vtkBiQuadraticTriangle16GetNumberOfFacesEv_ZN17vtkConvexPointSet13GetEdgePointsEiRPi_ZN23vtkAbstractPointLocator22FindPointsWithinRadiusEddddP9vtkIdListfree@GLIBC_2.2.5_ZN20vtkPiecewiseFunction10AddSegmentEdddd_ZN17vtkStructuredGrid14GetMaxCellSizeEv_ZN8vtkGraph9GetEdgeIdExx_ZN23vtkUnstructuredGridBase3IsAEPKc_ZN20vtkStaticCellLocator3NewEv_ZNK26vtkIncrementalPointLocator19NewInstanceInternalEvPyvtkArrayData_ClassNew_ZN12vtkCellLinks5ResetEv_ZN11vtkTriangle19GetParametricCoordsEv_ZN15vtkSuperquadric12GetThicknessEv_ZN22vtkOrderedTriangulator12SetPreSortedEiPyVTKAddFile_vtkPolyData_ZN17vtkStructuredGrid9BlankCellEx_ZN16vtkLagrangeCurve19GetParametricCenterEPdPyVTKAddFile_vtkAMRDataInternals_ZN25vtkDistributedGraphHelper17MakeDistributedIdEixPyvtkMarchingSquaresLineCases_TypeNewPyVTKAddFile_vtkSimpleCellTessellator_ZN8vtkTetra16GetNumberOfFacesEv_ZN21vtkOctreePointLocator16FindClosestPointEdddRd_ZN10vtkPolygon16GetNumberOfFacesEv_ZN17vtkXMLDataElement17FindNestedElementEPKc_ZN19vtkQuadraticPyramid12CellBoundaryEiPdP9vtkIdListPyvtkUnstructuredGridCellIterator_ClassNew_ZN13vtkHexahedron12GetEdgeArrayEi_ZN9vtkKdNode14IntersectsCellEP7vtkCelliiPd_ZN9vtkKdNode8SetMaxIDEi_ZN19vtkLagrangeTriangle7ToIndexEPKx_ZN8vtkPlane23GeneralizedProjectPointEPdS0__ZN35vtkGenericInterpolatedVelocityField10CachingOffEv_ZNK19vtkQuadraticPolygon19NewInstanceInternalEv_ZN25vtkDataObjectTreeIterator18SetVisitOnlyLeavesEi_ZN9vtkKdTree17OmitXPartitioningEv_ZNK19vtkBSPIntersections19NewInstanceInternalEv_ZN24vtkSimpleCellTessellator10TessellateEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData_ZN10vtkPolygon3IsAEPKc_ZN16vtkLagrangeCurve16GetCellDimensionEv_ZN17vtkXMLDataElement23RemoveAllNestedElementsEv_ZN20vtkMultiBlockDataSet8SetBlockEjP13vtkDataObject_ZN23vtkQuadraticLinearWedge17InterpolateDerivsEPdS0__ZN14vtkCellLocator16FindClosestPointEPdS0_P14vtkGenericCellRxRiRd_ZN12vtkEdgeTable3IsAEPKc_ZN17vtkXMLDataElement9SetParentEPS__ZN18vtkBiQuadraticQuad19GetParametricCoordsEv_ZNK24vtkSimpleCellTessellator19NewInstanceInternalEv_ZN17vtkConvexPointSet12CellBoundaryEiPdP9vtkIdList_ZN19vtkImplicitFunction12SetTransformEP20vtkAbstractTransform_ZN16vtkLagrangeTetra11TriangulateEiP9vtkIdListP9vtkPointsPyvtkTuple_IhLi4EE_TypeNew_ZN11vtkMolecule17SetElectronicDataEP25vtkAbstractElectronicDataPyVTKAddFile_vtkRectilinearGrid_ZN14vtkHyperOctree7GetCellEx_ZN22vtkHyperTreeGridCursor7GetTreeEv_ZN19vtkUnstructuredGrid16RemoveGhostCellsEv_ZN10vtkDataSet7GetDataEP14vtkInformation_ZN8vtkGraph19GetNumberOfElementsEi_ZN20vtkStaticCellLocator8FindCellEPddP14vtkGenericCellS0_S0__ZN18vtkRectilinearGrid15SetZCoordinatesEP12vtkDataArray_ZN7vtkTree3IsAEPKc_ZN14vtkMergePoints15IsInsertedPointEPKd_ZN8vtkTetra22InterpolationFunctionsEPdS0__ZN14vtkImplicitSum20GetNormalizeByWeightEvPyVTKAddFile_vtkPolyLine_ZN9vtkKdNode5GetUpEv_ZN16vtkLagrangeWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN7vtkCone16EvaluateFunctionEPdPyvtkAnimationCue_ClassNew_ZN17vtkAMRInformation3IsAEPKc_ZN15vtkPointLocator18InitPointInsertionEP9vtkPointsPKdx_ZN24vtkLagrangeInterpolation26GetFixedParameterOfHexFaceEi_ZN12vtkEdgeTable11GetNextEdgeERxS0__ZN17vtkQuadraticWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN10vtkPyramid19InterpolationDerivsEPdS0_PyvtkQuadraticPyramid_ClassNew_ZN11vtkPolyData13ComputeBoundsEv_ZN9vtkPlanes10SetNormalsEP12vtkDataArray_ZN23vtkGeometricErrorMetric3NewEv_ZN17vtkAMRInformation10GetParentsEjjRj_ZN17vtkXMLDataElement3NewEv_ZN12vtkImageData25GetScalarComponentAsFloatEiiii_ZN13vtkPythonArgs11SetArgValueEib_ZN16vtkTriangleStrip16GetNumberOfFacesEv_ZN13vtkAnnotation7GetDataEP20vtkInformationVectori_ZN21vtkLagrangeHexahedron24SubCellCoordinatesFromIdER11vtkVector3ii_ZN19vtkUnstructuredGrid14InsertNextCellEixPx_ZN22vtkHyperTreeGridCursor6ToRootEv_ZN8vtkTable7GetDataEP20vtkInformationVectori_ZN13vtkPythonArgs11SetArgValueEij_ZN15vtkSuperquadric3IsAEPKc_ZN32vtkIncrementalOctreePointLocator22FindPointsWithinRadiusEdPKdP9vtkIdListPyVTKAddFile_vtkDataObjectTreeIterator_ZN8vtkGraph8GetEdgesEP19vtkEdgeListIterator_ZN8vtkWedge3IsAEPKc_ZNK9vtkAMRBox16GetValidHiCornerEPi_ZN20vtkStaticCellLocator8FindCellEPd_ZN12vtkEdgeTable10InsertEdgeExxPv_ZN18vtkBiQuadraticQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN8vtkVoxel16GetCellDimensionEv_ZN16vtkSelectionNode36ConvertAttributeTypeToSelectionFieldEi_ZNK33vtkIterativeClosestPointTransform19NewInstanceInternalEv_ZN11vtkTriangle17InterpolateDerivsEPdS0__ZN29vtkUniformGridAMRDataIterator3IsAEPKc_ZN9vtkKdNode16IntersectsRegionEP21vtkPlanesIntersectioni_ZN9vtkVertex16GetNumberOfEdgesEv_ZN8vtkTetra13GetFacePointsEiRPi_ZN10vtkQuadric15GetCoefficientsEv_ZN17vtkStructuredGrid13GetDimensionsEv_ZNK17vtkUniformGridAMR19NewInstanceInternalEv_ZN8vtkPixel16GetNumberOfFacesEv_ZN8vtkGraph12SetEdgePointExxPd_ZN33vtkIterativeClosestPointTransform13MakeTransformEv_ZN7vtkAtom11SetPositionERK11vtkVector3f_ZN16vtkHyperTreeGrid15GetHasInterfaceEv_ZN23vtkMutableDirectedGraph8AddChildExP15vtkVariantArray_ZN8vtkPlane4PushEdPyvtkCollection_ClassNew_ZN13vtkDataObject14DATA_TIME_STEPEvPyvtkImplicitFunctionCollection_ClassNew_ZN33vtkBiQuadraticQuadraticHexahedron20InterpolateFunctionsEPdS0__ZN22vtkBiQuadraticTriangle19GetParametricCoordsEv_ZN11vtkTriangle16EvaluateLocationERiPdS1_S1__ZN18vtkBiQuadraticQuad11DerivativesEiPdS0_iS0__ZN9vtkVertex3IsAEPKcPyvtkVector3_IdE_TypeNew_Z35PyvtkDataSet_FieldDataType_FromEnumi_ZN20vtkQuadraticTriangle3NewEv_ZN21vtkVertexListIterator3NewEv_ZN19vtkUnstructuredGrid8SetCellsEP20vtkUnsignedCharArrayP14vtkIdTypeArrayP12vtkCellArrayS3_S3__ZN11vtkTriangle12CircumcircleEPdS0_S0_S0__ZNK9vtkAMRBox13GetDimensionsEPi_ZN21vtkStaticPointLocator12GetDivisionsEv_ZN17vtkDataObjectTree3IsAEPKc_ZN13vtkDataObject11ShallowCopyEPS__ZN12vtkCellTypes8AllocateEii_ZN14vtkPixelExtent4GrowERKS_S1_i_ZN22vtkQuadraticHexahedron19InterpolationDerivsEPdS0__ZN7vtkCone3IsAEPKc_ZN11vtkTriangle3IsAEPKc_ZN16vtkLagrangeCurve24SubCellCoordinatesFromIdERii_ZNK24vtkIncrementalOctreeNode9GetBoundsEPd_ZNK7vtkAtom15GetAtomicNumberEv_ZN20vtkQuadraticTriangle21GetParametricDistanceEPd_ZN20vtkAbstractCellLinks3IsAEPKc_ZN8vtkVoxel3NewEv_ZNK25vtkOctreePointLocatorNode13GetDataBoundsEPd_ZN19vtkUnstructuredGrid8SetCellsEP20vtkUnsignedCharArrayP14vtkIdTypeArrayP12vtkCellArray_ZN14vtkHyperOctree7GetSizeEv_ZN17vtkStructuredGrid19GetActualMemorySizeEv_ZN12vtkCellLinks15InsertNextPointEi_ZN35vtkMeanValueCoordinatesInterpolator27ComputeInterpolationWeightsEPdP9vtkPointsP9vtkIdListS0__ZN12vtkImageData25CopyInformationToPipelineEP14vtkInformation_ZN21vtkGenericAdaptorCell17IsAttributeLinearEP19vtkGenericAttribute_ZN12vtkFieldData19GetActualMemorySizeEv_ZN28vtkBiQuadraticQuadraticWedge12CellBoundaryEiPdP9vtkIdList_ZN15vtkTreeIterator14SetStartVertexEx_ZN19vtkBSPIntersections17IntersectsSphere2Eidddd_ZN13vtkDataObject16FIELD_ARRAY_TYPEEv_ZN15vtkSuperquadric7SetSizeEd_ZN17vtkStructuredData16GetCellNeighborsExP9vtkIdListS1_Pi_ZN20vtkMultiPieceDataSet17SetNumberOfPiecesEj_ZN8vtkTetra12GetFaceArrayEi_ZN11vtkPointSet8GetPointExPd_ZN18vtkImplicitDataSet10SetDataSetEP10vtkDataSet_ZNK8vtkWedge19NewInstanceInternalEv_ZN16vtkSelectionNode15EqualPropertiesEPS_b_ZN7vtkLine19InterpolationDerivsEPdS0__ZN16vtkLagrangeTetra21GetParametricDistanceEPd_ZN8vtkTetra17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN20vtkDataSetAttributes10GetScalarsEvPyVTKAddFile_vtkVoxel_ZN16vtkLagrangeWedge8GetOrderEv_ZN12vtkGraphEdge5SetIdEx_ZN20vtkPiecewiseFunction8AddPointEdddd_ZN18vtkImplicitDataSet3IsAEPKc_ZN16vtkHyperTreeGrid6LEVELSEv_ZdaPv@GLIBCXX_3.4_ZN8vtkVoxel7GetFaceEiPyvtkConvexPointSet_ClassNew_ZN16vtkSelectionNode36ConvertSelectionFieldToAttributeTypeEi_ZN16vtkHyperTreeGrid15SetHasInterfaceEb_ZN23vtkMutableDirectedGraph19SetNumberOfVerticesEx_ZN12vtkCubicLine16EvaluateLocationERiPdS1_S1__ZN9vtkAMRBox5ShiftEPKi_ZN21vtkOctreePointLocator19GetRegionDataBoundsEiPd_ZN12vtkArrayData8DeepCopyEP13vtkDataObject_ZN8vtkPlane17IntersectWithLineEPdS0_RdS0__ZN10vtkQuadric15SetCoefficientsEdddddddddd_ZN24vtkLagrangeInterpolation23WedgeEvaluateDerivativeEPKiPKdPdiS4__ZN13vtkDataObject13GetUpdateTimeEv_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey8DeepCopyEP14vtkInformationS1__ZN13vtkDataObject20DataHasBeenGeneratedEv_ZN10vtkDataSet17GetCellGhostArrayEv_ZN13vtkDataObject19GetActualMemorySizeEv_ZN18vtkPentagonalPrism12GetEdgeArrayEi_ZN22vtkAbstractCellLocator29SetUseExistingSearchStructureEi_ZNK29vtkImplicitFunctionCollection19NewInstanceInternalEv_ZN9vtkObject11InvokeEventEPKcPvPyvtkHierarchicalBoxDataSet_ClassNew_ZN7vtkPath11GetCellTypeEx_ZN8vtkGraph13GetVertexDataEv_ZN12vtkFieldData10CopyAllOffEi_ZN17vtkAnimationScene3NewEv_ZN7vtkCell9GetBoundsEPdPyVTKAddFile_vtkColor_ZN17vtkQuadraticWedge7GetFaceEi_ZN16vtkLagrangeCurve16GetNumberOfFacesEv_ZN9vtkKdTree13RemoveDataSetEP10vtkDataSet_ZN17vtkGenericDataSet9GetBoundsEv_ZN20vtkQuadraticTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkGenericEdgeTable9DumpTableEv_ZN7vtkCell14IsExplicitCellEv_ZN16vtkLagrangeWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkQuadraticPolygon16GetNumberOfFacesEv_ZN19vtkLagrangeTriangle7GetFaceEi_ZN14vtkBoundingBox6AddBoxERKS__ZN16vtkSelectionNode16SetSelectionListEP16vtkAbstractArray_ZN13vtkPolyhedron11TriangulateEiP9vtkIdListP9vtkPointsPyvtkCellTypes_ClassNew_ZN23vtkMutableDirectedGraph9AddVertexEP15vtkVariantArray_ZN18vtkPentagonalPrism16EvaluatePositionEPdS0_RiS0_RdS0__ZN16vtkTriangleStrip7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN12vtkFieldData9CopyAllOnEi_ZN11vtkPointSet7GetDataEP20vtkInformationVectori_ZN9vtkKdTree18FindClosestNPointsEiPKdP9vtkIdListPyVTKAddFile_vtkSphere_ZN17vtkConvexPointSet11GetCellTypeEv_ZN9vtkSpline8ClosedOnEv_ZN21vtkStaticPointLocator3NewEv_ZN10vtkBSPCuts10CreateCutsEPdiPiS0_S1_S1_S0_S0_S1__ZN20vtkDataSetAttributes10GetTCoordsEPKc_ZN15vtkTreeIterator7RestartEv_ZN9vtkKdTree9SetTimingEi_ZN12vtkEmptyCell11DerivativesEiPdS0_iS0_PyvtkLagrangeInterpolation_ClassNew_Z21PyvtkRect_TemplateNewv_ZN9vtkAMRBoxC1EPKi_ZN17vtkOverlappingAMR9GetAMRBoxEjjPyVTKAddFile_vtkPointsProjectedHull_ZN18vtkImplicitDataSet16EvaluateGradientEPdS0__ZNK14vtkUniformGrid19NewInstanceInternalEv_ZN9vtkCell3D17SetMergeToleranceEd_ZN24vtkLagrangeInterpolation30GetVaryingParameterOfWedgeEdgeEi_ZN18vtkStaticCellLinks3NewEv_ZN25vtkMutableUndirectedGraph7AddEdgeERK10vtkVariantS2_P15vtkVariantArray_ZN16vtkLagrangeTetra16GetCellDimensionEv_ZN35vtkGenericInterpolatedVelocityField12GetCacheMissEv_ZN12vtkImageData8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN15vtkImplicitHalo16EvaluateGradientEPdS0__ZN16vtkHyperTreeGrid9FindPointEPd_ZN31vtkUnstructuredGridCellIterator19IsDoneWithTraversalEv_ZN19vtkAnnotationLayers7GetDataEP20vtkInformationVectoriPyVTKAddFile_vtkUniformGridAMR_ZN29vtkGenericAttributeCollection15InsertAttributeEiP19vtkGenericAttribute_ZN9vtkKdTree11SetMinCellsEi_ZN12vtkImageData13GetDimensionsEv_ZNK20vtkStaticCellLocator19NewInstanceInternalEv_ZN16vtkHyperTreeGrid15SetYCoordinatesEP12vtkDataArray_ZN17vtkGenericDataSet17GetDataObjectTypeEv_ZN17vtkStructuredData13GetPointCellsExP9vtkIdListPi_ZN18vtkImplicitDataSet11GetOutValueEv_ZN12vtkCellArray8DeepCopyEPS__ZN13vtkCollection15GetItemAsObjectEi_ZN17vtkConvexPointSet20InterpolateFunctionsEPdS0__ZN17vtkHexagonalPrism20InterpolateFunctionsEPdS0__ZN20vtkDataSetAttributes14GetCopyTCoordsEi_ZN32vtkIncrementalOctreePointLocator27GetMaxPointsPerLeafMinValueEv_ZN15vtkSuperquadric16EvaluateGradientEPdS0__ZN33vtkIterativeClosestPointTransform27GetMeanDistanceModeMinValueEv_ZN13vtkDataObject12SetFieldDataEP12vtkFieldData_ZN16vtkQuadraticEdge16GetNumberOfFacesEv_ZN19vtkUnstructuredGrid13GetCellPointsExRxRPx_ZN17vtkStructuredGrid14IsPointVisibleEx_ZN9vtkSphere16EvaluateGradientEPdS0__ZN19vtkUnstructuredGrid17GetDataObjectTypeEv_ZN23vtkMutableDirectedGraph11LazyAddEdgeExxP15vtkVariantArray_ZN9vtkObject11HasObserverEPKcPyvtkTriQuadraticHexahedron_ClassNew_ZN12vtkFieldData8AllocateExx_ZN12vtkArrayData17GetNumberOfArraysEv_ZNK18vtkOutEdgeIterator19NewInstanceInternalEv_ZN13vtkHexahedron13GetFacePointsEiRPi_ZN12vtkReebGraph5BuildEP11vtkPolyDataP12vtkDataArray_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPd_ZN17vtkQuadraticWedge12GetFaceArrayEi_ZN7vtkPath13GetCellPointsExP9vtkIdList_ZN25vtkTriQuadraticHexahedron3IsAEPKc_ZNK9vtkKdNode19NewInstanceInternalEv_ZN17vtkInEdgeIterator3IsAEPKc_ZN17vtkHexagonalPrism17InterpolateDerivsEPdS0__ZN17vtkQuadraticWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9_PyVTKObject_SetFlag_ZN16vtkHyperTreeGrid19GetNumberOfVerticesEv_ZN7vtkQuad19GetParametricCoordsEv_ZN7vtkCone8SetAngleEd_ZN9vtkCell3D7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkQuadraticPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0__ZN20vtkDataSetAttributes14CopyScalarsOffEv_ZN19vtkUnstructuredGrid11ReplaceCellExiPxPyVTKAddFile_vtkPlane_ZN12vtkEmptyCell4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN20vtkDataSetAttributes13CopyScalarsOnEv_ZN19vtkBSPIntersections38SetComputeIntersectionsUsingDataBoundsEi_ZN29vtkGenericAttributeCollection8DeepCopyEPS_PyVTKClass_Add_ZN8vtkGraph15GetSourceVertexEx_ZN12vtkReebGraph14StreamTriangleExdxdxd_ZN35vtkGenericInterpolatedVelocityField14CopyParametersEPS__ZN22vtkDataSetCellIterator3IsAEPKc_ZN16vtkSelectionNode18HIERARCHICAL_LEVELEv_ZNK16vtkLagrangeWedge19NewInstanceInternalEv_ZNK7vtkLine19NewInstanceInternalEv_ZN21vtkPlanesIntersection3NewEv_ZN17vtkHexagonalPrism11GetCellTypeEv_ZN35vtkMeanValueCoordinatesInterpolator27ComputeInterpolationWeightsEPdP9vtkPointsP12vtkCellArrayS0__ZN13vtkPythonArgs11SetArgValueEiPKhi_ZN9vtkVertex16GetNumberOfFacesEv_ZN10vtkPolygon13ComputeNormalEP14vtkIdTypeArrayP9vtkPointsPd_ZN33vtkIterativeClosestPointTransform20GetLandmarkTransformEv_ZN12vtkCellArray14GetMaxCellSizeEv_ZN29vtkGenericAttributeCollection26SetAttributesToInterpolateEiPi_ZNK21vtkPolyDataCollection19NewInstanceInternalEv_ZN11vtkMolecule17GetElectronicDataEv_ZN12vtkEmptyCell7GetFaceEi_ZN13vtkDataObject4CropEPKi_ZN17vtkXMLDataElement8PrintXMLEPKc_ZNK20vtkMultiPieceDataSet19NewInstanceInternalEv_ZN15vtkTreeIterator3IsAEPKc_ZN29vtkGenericAttributeCollection18SetActiveAttributeEii_ZN17vtkHexagonalPrism3IsAEPKc_ZNSt9basic_iosIcSt11char_traitsIcEE4initEPSt15basic_streambufIcS1_E@GLIBCXX_3.4_ZN11vtkPolyLine7GetEdgeEi_ZN14vtkGenericCell19GetParametricCoordsEv_ZN10vtkPyramid11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkPythonArgs8SetArrayEiPKliPyVTKAddFile_vtkAbstractElectronicDataPyvtkMarchingCubesTriangleCases_TypeNewPyVTKAddFile_vtkQuadraticQuad_ZN23vtkAOSDataArrayTemplateIxE12WritePointerExx_ZN10vtkLocator10InitializeEv_ZN17vtkConvexPointSet22RequiresInitializationEv_ZN8vtkTetra11GetCellTypeEv_ZN25vtkTriQuadraticHexahedron3NewEv_ZN22vtkHyperTreeGridCursor10InitializeEP16vtkHyperTreeGridxPyVTKAddFile_vtkMutableDirectedGraph_ZN17vtkHexagonalPrism7GetFaceEi_ZN19vtkImplicitFunction12SetTransformEPKd_ZN12vtkImageData16GetScalarTypeMinEP14vtkInformation_ZN7vtkTree7GetDataEP20vtkInformationVectori_ZN8vtkGraph10GetOutEdgeExxP12vtkGraphEdge_ZN16vtkHyperTreeGrid13GetExtentTypeEv_ZN24vtkLagrangeQuadrilateral11GetCellTypeEv_ZN12vtkFieldData27GetArrayContainingComponentEiRi_ZN13vtkDataObject22FIELD_ACTIVE_ATTRIBUTEEv_ZN23vtkMutableDirectedGraph13LazyAddVertexERK10vtkVariant_ZN20vtkDataSetAttributes14SetCopyNormalsEii_ZN20vtkMultiPieceDataSet3IsAEPKc_ZN25vtkOctreePointLocatorNode27GetDistance2ToInnerBoundaryEdddPS__ZN7vtkQuad7GetEdgeEi_ZN21vtkVertexListIterator8GetGraphEvPyvtkPolyPlane_ClassNew_ZN17vtkGenericDataSet7GetDataEP20vtkInformationVectori_ZN11vtkPolyData16GetNumberOfCellsEvPyVTKAddFile_vtkPolyVertex_ZN13vtkPythonArgs12PrecondErrorEPKc_ZN11vtkTriangle12CellBoundaryEiPdP9vtkIdList_ZN24vtkLagrangeQuadrilateral27TransformApproxToCellParamsEiPd_ZN15vtkSuperquadric9GetCenterEv_ZN17vtkDataObjectTree17GetNumberOfPointsEv_ZN29vtkGenericAttributeCollection19InsertNextAttributeEP19vtkGenericAttribute_ZN18vtkDataObjectTypes3IsAEPKc_ZN16vtkTriangleStrip4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN24vtkLagrangeQuadrilateral7GetFaceEi_ZN12vtkCubicLine7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkDataObject14GetInformationEv_ZN20vtkDataSetAttributes14SetCopyVectorsEii_ZN20vtkDataSetAttributes14GetCopyVectorsEi_ZN32vtkIncrementalOctreePointLocator12BuildLocatorEvPyObject_GC_Del_ZNK25vtkDistributedGraphHelper19NewInstanceInternalEv_ZN10vtkPyramid20InterpolateFunctionsEPdS0__ZN20vtkDataSetAttributes10CopyAllOffEi_ZN22vtkPointsProjectedHull10InitializeEv_ZN17vtkDataObjectTree7GetDataEP14vtkInformationPyVTKAddFile_vtkConvexPointSetPyVTKAddFile_vtkBoundingBox_ZN24vtkCompositeDataIterator13InitTraversalEv_ZN16vtkLagrangeWedge27TransformApproxToCellParamsEiPd_ZN17vtkQuadraticTetra11DerivativesEiPdS0_iS0__ZN9vtkKdNode8SetRightEPS_PyvtkVector_IfLi2EE_TypeNew_ZN15vtkPointLocator21FindDistributedPointsEiPKdP9vtkIdListi_ZN12vtkImageData16GetScalarTypeMaxEP14vtkInformation_ZNK16vtkSortFieldData19NewInstanceInternalEv_ZN14vtkUniformGrid11GetCellTypeEx_ZN19vtkLagrangeTriangle3NewEv_Py_NotImplementedStruct_ZN17vtkStructuredGrid17GetNumberOfPointsEv_ZN25vtkMutableUndirectedGraph13LazyAddVertexEv_ZN8vtkGraph17GetDataObjectTypeEv_Z24PyvtkVector2_TemplateNewv_ZNK9vtkAMRBox13DoesIntersectERKS__ZN21vtkLagrangeHexahedron17PointIndexFromIJKEiiiPKi_ZN19vtkUnstructuredGrid10BuildLinksEv_ZN21vtkOctreePointLocator14GetFudgeFactorEv_ZN6vtkBox16EvaluateGradientEPdS0__ZN8vtkGraph10FindVertexERK10vtkVariant_ZN12vtkReebGraph5BuildEP19vtkUnstructuredGridx_ZN22vtkQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_Z35PyvtkPath_ControlPointType_FromEnumi_ZN19vtkEdgeListIterator4NextEvPyvtkBiQuadraticQuadraticHexahedron_ClassNew_ZN17vtkUniformGridAMR10SetDataSetEjjP14vtkUniformGridPyVTKAddFile_vtkWedge_ZN24vtkLagrangeInterpolation23Tensor2ShapeDerivativesEPKiPKdPdPyVTKAddFile_vtkPolyhedron_ZN22vtkAbstractCellLocator16FindClosestPointEPdS0_P14vtkGenericCellRxRiRd_ZN22vtkBiQuadraticTriangle11DerivativesEiPdS0_iS0__ZN23vtkGeometricErrorMetric29GetAbsoluteGeometricToleranceEv_ZN9vtkAMRBox6ShrinkEi_ZN16vtkHyperTreeGrid37RecursivelyInitializePureMaterialMaskEP22vtkHyperTreeGridCursor_ZN17vtkUniformGridAMR10GetDataSetEjj_ZN6vtkBox9GetBoundsEPd_ZN7vtkQuad16EvaluateLocationERiPdS1_S1__ZN13vtkDataObject27CopyInformationFromPipelineEP14vtkInformation_ZN25vtkNonMergingPointLocator3IsAEPKc_ZN13vtkDataObject7GetDataEP20vtkInformationVectori_ZN9vtkSpline17GetLeftConstraintEv_ZN16vtkLagrangeWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN14vtkPixelExtent6ShrinkERKS_S1_i_ZN12vtkEmptyCell12CellBoundaryEiPdP9vtkIdList_ZN24vtkLagrangeQuadrilateral16GetNumberOfEdgesEv_ZN16vtkSelectionNode16CONTAINING_CELLSEv_ZN28vtkBiQuadraticQuadraticWedge3NewEv_ZN17vtkXMLDataElement18GetVectorAttributeEPKciPl_ZN16vtkSelectionNode8DeepCopyEPS__ZN13vtkDataObject16DATA_EXTENT_TYPEEv_ZN17vtkConvexPointSet17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN33vtkBiQuadraticQuadraticHexahedron7GetFaceEi_ZN20vtkMultiBlockDataSet11HasMetaDataEP24vtkCompositeDataIterator_ZN25vtkTriQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPointsPyVTKAddFile_vtkGenericInterpolatedVelocityField_ZN18vtkBiQuadraticQuad20InterpolateFunctionsEPdS0__ZN9vtkPlanes3IsAEPKc_ZN21vtkStaticPointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN13vtkHexahedron19InterpolationDerivsEPdS0__ZN23vtkQuadraticLinearWedge16EvaluateLocationERiPdS1_S1__ZN13vtkDataObject19GetNumberOfElementsEiPyvtkLagrangeQuadrilateral_ClassNew_ZN19vtkCompositeDataSet8DeepCopyEP13vtkDataObject_ZN22vtkOrderedTriangulator18InitTetraTraversalEv_ZN17vtkStructuredGrid8DeepCopyEP13vtkDataObjectPyVTKAddFile_vtkGenericEdgeTable_ZN27vtkHyperOctreePointsGrabber12GetDimensionEv_ZN8vtkPlane23GeneralizedProjectPointEPdS0_S0_S0__ZN13vtkDataObject16CELL_DATA_VECTOREv_ZN13vtkPythonArgs8GetValueERi_ZN10vtkPolygon22GetUseMVCInterpolationEvPyObject_Free_ZNK15vtkImplicitHalo19NewInstanceInternalEvPyVTKObject_Repr_ZN17vtkConvexPointSet19GetParametricCoordsEv_ZN11vtkTriangle18TrianglesIntersectEPdS0_S0_S0_S0_S0__ZN19vtkLagrangeTriangle11DerivativesEiPdS0_iS0__ZN14vtkUniformGrid11UnBlankCellEx_ZN19vtkQuadraticPolygon11TriangulateEP9vtkIdListPyvtkFunctionSet_ClassNewPyvtkKdTreePointLocator_ClassNewPyVTKAddFile_vtkQuadratureSchemeDefinition_ZN17vtkGenericDataSet3IsAEPKc_ZN7vtkCell10InitializeEiPxP9vtkPoints_ZN10vtkPyramid7GetFaceEi_ZN14vtkCellLocator3NewEv_ZN23vtkMutableDirectedGraph7AddEdgeERK10vtkVariantxP15vtkVariantArray_ZN11vtkTriangle14ComputeQuadricEPdS0_S0_P10vtkQuadric_ZN9vtkCell3D16GetCellDimensionEv_ZN8vtkWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN14vtkPerlinNoise8GetPhaseEv_ZN19vtkLagrangeTriangle16GetNumberOfFacesEv_ZN25vtkOctreePointLocatorNode22GetDistance2ToBoundaryEdddPS_i_ZNK25vtkAbstractElectronicData19NewInstanceInternalEv_ZN11vtkMolecule11ShallowCopyEP13vtkDataObject_ZN16vtkLagrangeWedge3NewEv_ZN28vtkBiQuadraticQuadraticWedge12GetEdgeArrayEi_ZN18vtkUndirectedGraph9GetInEdgeExx_ZN15vtkPointLocator15IsInsertedPointEPKd_ZN14vtkHyperOctree8GetPointEx_ZN11vtkPolyData19GetActualMemorySizeEv_ZN9vtkKdTree17OmitZPartitioningEv_ZN12vtkCellArray19GetActualMemorySizeEvstrcmp@GLIBC_2.2.5PyExc_TypeError_ZN25vtkMutableUndirectedGraph11RemoveEdgesEP14vtkIdTypeArray_ZN21vtkOctreePointLocator24FindClosestPointInRegionEiPdRdPyVTKAddFile_vtkCylinderPyVTKSpecialObject_Repr_ZN23vtkMutableDirectedGraph9AddVertexERK10vtkVariant_ZN10vtkPyramid11DerivativesEiPdS0_iS0__ZN25vtkNonMergingPointLocator15IsInsertedPointEddd_ZN18vtkDataObjectTypes22GetTypeIdFromClassNameEPKc_ZNK19vtkGenericEdgeTable19NewInstanceInternalEv_ZN25vtkTriQuadraticHexahedron12GetEdgeArrayEi_ZN7vtkQuad16GetCellDimensionEvPyVTKAddFile_vtkDoubleDispatcher_ZN11vtkMolecule16GetNumberOfBondsEv_ZN23vtkMutableDirectedGraph3NewEv_ZN16vtkSelectionNode18UnionSelectionListEPS_PyVTKAddFile_vtkTriangleStrip_ZN35vtkGenericInterpolatedVelocityField14FunctionValuesEPdS0__ZN9vtkKdTree22GenerateRepresentationEiP11vtkPolyData_ZNK20vtkMultiBlockDataSet19NewInstanceInternalEv_ZN8vtkGraph19GetNumberOfVerticesEv_ZN7vtkPath8AllocateExi_ZNSt6localeD1Ev@GLIBCXX_3.4_ZN8vtkGraph13CopyStructureEPS__ZN24vtkLagrangeInterpolation25Tensor3EvaluateDerivativeEPKiPKdPdiS4_PyvtkNonMergingPointLocator_ClassNewPyvtkHyperTreeCursor_ClassNew_ZN25vtkTriQuadraticHexahedron16EvaluateLocationERiPdS1_S1_PyVTKAddFile_vtkPolygon_ZNK19vtkStructuredPoints19NewInstanceInternalEv_ZN21vtkOctreePointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN19vtkUnstructuredGrid8GetPieceEv_ZN25vtkAbstractElectronicData8DeepCopyEP13vtkDataObject_ZN21vtkLagrangeHexahedron20InterpolateFunctionsEPdS0__ZN12vtkArrayData3IsAEPKc_ZN22vtkQuadraticLinearQuad3NewEvPyvtkBiQuadraticQuadraticWedge_ClassNew_ZN23vtkUnstructuredGridBase7GetDataEP20vtkInformationVectori_ZN8vtkTetra8InsphereEPdS0_S0_S0_S0__ZN19vtkLagrangeTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN28vtkBiQuadraticQuadraticWedge7GetFaceEi_ZN8vtkGraph11GetInDegreeEx_ZN17vtkStructuredGrid8GetPointExPd_ZN22vtkOrderedTriangulator9AddTetrasEiP9vtkIdListP9vtkPoints_ZN9vtkSphere3IsAEPKc_ZN7vtkLine14DistanceToLineEPKdS1_S1__ZN14vtkPerlinNoise8SetPhaseEPd_ZN16vtkSortFieldData3IsAEPKc_ZN16vtkLagrangeTetra17InterpolateDerivsEPdS0__ZNK21vtkOctreePointLocator19NewInstanceInternalEv_ZN13vtkDataObject13GetAttributesEi_ZN18vtkTreeBFSIterator3IsAEPKcPyvtkAtom_TypeNew_ZN12vtkImageData13CopyStructureEP10vtkDataSet_ZN9vtkPlanes9GetPointsEv__cxa_throw_bad_array_new_length@CXXABI_1.3.8PyvtkAnimationScene_ClassNew_ZN10vtkBSPCuts10InitializeEv_ZN7vtkQuad20InterpolateFunctionsEPdS0__ZN12vtkCellLinks7SqueezeEv_ZN24vtkImplicitSelectionLoop7GetLoopEv_ZN22vtkAbstractCellLocator28FindClosestPointWithinRadiusEPddS0_P14vtkGenericCellRxRiRd_ZN12vtkPolyPlane16EvaluateFunctionEPd_ZN33vtkBiQuadraticQuadraticHexahedron11DerivativesEiPdS0_iS0__ZN17vtkConvexPointSet11DerivativesEiPdS0_iS0__ZN19vtkGenericEdgeTable11RemovePointEx_ZN17vtkOverlappingAMR9SetOriginEPKd_ZNK12vtkArrayData19NewInstanceInternalEv_ZN22vtkHyperTreeGridCursor8GetLevelEv_ZN19vtkEdgeListIterator13NextGraphEdgeEv_ZN22vtkOrderedTriangulator17InitTriangulationEddddddi_ZN22vtkOrderedTriangulator11InsertPointExxPdS0_i_ZN9vtkKdTree15DeleteCellListsEvPyType_Ready_ZN20vtkDataSetAttributes10GetNormalsEPKc_ZN14vtkUniformGrid7GetCellEx_ZN8vtkTable18GetNumberOfColumnsEv_ZN33vtkIterativeClosestPointTransform28SetMaximumNumberOfIterationsEi_ZN20vtkOStrStreamWrapper6freezeEi_ZN19vtkQuadraticPyramid4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN23vtkGenericPointIterator3IsAEPKc_ZN23vtkQuadraticLinearWedge16GetNumberOfEdgesEv_ZN18vtkRectilinearGrid11GetCellTypeEx_ZN35vtkGenericInterpolatedVelocityField14GetLastDataSetEv_ZN10vtkPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0__ZN20vtkPiecewiseFunction11SetClampingEi_ZN19vtkUnstructuredGrid12GetMeshMTimeEvPyvtkCellArray_ClassNew_ZN33vtkIterativeClosestPointTransform27GetMeanDistanceModeMaxValueEv_ZN16vtkLagrangeWedge16GetCellDimensionEv_ZN24vtkLagrangeInterpolation29GetVaryingParametersOfHexFaceEi_ZN26vtkStaticCellLinksTemplateIxE10InitializeEv_ZN12vtkImageData13GetScalarSizeEP14vtkInformationPyVTKAddFile_vtkPixelTransfer_Z55PyvtkDataSetAttributes_AttributeCopyOperations_FromEnumi_ZN8vtkGraph18ReorderOutVerticesExP14vtkIdTypeArray_Z46PyvtkDataSetAttributes_CellGhostTypes_FromEnumi_ZN14vtkHyperOctree16GetNumberOfCellsEv_ZN17vtkDataObjectTree10GetDataSetEP24vtkCompositeDataIterator_ZN9vtkKdTree18GetNumberOfRegionsEv_ZN29vtkGenericAttributeCollection3NewEv_ZN18vtkImplicitDataSet11SetOutValueEd_ZN12vtkReebGraph3NewEv_ZN20vtkDataSetAttributes8CopyDataEPS_xxxPyVTKAddFile_vtkUniformGridAMRDataIterator_ZN15vtkPointLocator12BuildLocatorEv_ZNK10vtkBSPCuts19NewInstanceInternalEv_ZN29vtkGenericAttributeCollection3IsAEPKc_ZN32vtkIncrementalOctreePointLocator18BuildCubicOctreeOnEvPyvtkTetra_ClassNew_ZN11vtkMolecule19SetAtomAtomicNumberExtPyvtkVector_IdLi4EE_TypeNew_ZN8vtkWedge16GetNumberOfEdgesEv_ZN9vtkKdNode9SetBoundsEddddddPyvtkAMRBox_TypeNew_ZN22vtkHyperTreeGridCursor11GetVertexIdEv_ZN7vtkCell13IsPrimaryCellEv_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN15vtkSuperquadric8SetScaleEddd_ZN24vtkLagrangeQuadrilateral16EvaluateLocationERiPdS1_S1_PyvtkIterativeClosestPointTransform_ClassNew_ZN21vtkKdTreePointLocator22FindPointsWithinRadiusEdPKdP9vtkIdList_ZN13vtkHexahedron11DerivativesEiPdS0_iS0__ZN23vtkMutableDirectedGraph7AddEdgeExx_ZN8vtkVoxel3IsAEPKc_ZN17vtkXMLDataElement21SetCharacterDataWidthEi_ZN20vtkOStrStreamWrapperD1Ev_ZN14vtkPerlinNoise12SetFrequencyEPd_ZN16vtkHyperTreeGrid12GetChildMaskEj_ZN17vtkXMLDataElement3IsAEPKc_ZN16vtkLagrangeCurve11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkAnnotationLayers22GetNumberOfAnnotationsEv_ZN22vtkQuadraticLinearQuad7GetEdgeEi_ZN22vtkAbstractCellLocator16LazyEvaluationOnEv_ZN10vtkPyramid11GetCellTypeEv_ZN17vtkOverlappingAMR18SetRefinementRatioEjiPyVTKAddFile_vtkUnstructuredGrid_ZN12vtkSelection14RemoveAllNodesEv_ZN8vtkTable8SetValueExx10vtkVariant_ZN11vtkMolecule8DeepCopyEP13vtkDataObject_ZN9vtkKdTree28FindClosestPointWithinRadiusEdPKdRd_ZNK7vtkAtom11GetPositionEPdPyVTKAddFile_vtkNonMergingPointLocator_ZN17vtkDataObjectTree15NewTreeIteratorEv_ZNK7vtkCone19NewInstanceInternalEv_ZN9vtkSpline13SetClampValueEiPyVTKAddFile_vtkAbstractCellLinks_ZN12vtkImageData19GetActualMemorySizeEv_ZN16vtkQuadraticEdge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkDataObject24GetAttributesAsFieldDataEi_ZN29vtkGenericAttributeCollection19GetActualMemorySizeEv_ZN13vtkHexahedron12CellBoundaryEiPdP9vtkIdList_ZN19vtkImplicitFunction16FunctionGradientEPKdPd_ZN22vtkBiQuadraticTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN31vtkHyperOctreeLightWeightCursorC1Ev_ZN21vtkStaticPointLocator21GetMaxNumberOfBucketsEv_ZN19vtkUnstructuredGrid7GetCellEx_ZN20vtkNonOverlappingAMR3NewEv_ZN12vtkCellTypes3IsAEPKc_ZN25vtkAdjacentVertexIterator3IsAEPKc_ZN17vtkStructuredGrid13GetPointCellsExP9vtkIdList_ZN32vtkIncrementalOctreePointLocator19SetMaxPointsPerLeafEi_ZN10vtkLocator11SetMaxLevelEi_ZN14vtkPerlinNoise16EvaluateGradientEPdS0__ZN23vtkDirectedAcyclicGraph7GetDataEP20vtkInformationVectoriPyvtkGenericCell_ClassNew_ZN17vtkStructuredGrid16GetCellNeighborsExP9vtkIdListS1__ZN15vtkCellIterator7GetCellEP14vtkGenericCell_ZN21vtkLagrangeHexahedron16GetCellDimensionEvPyvtkSimpleCellTessellator_ClassNew_ZN11vtkPolyLine22GenerateSlidingNormalsEP9vtkPointsP12vtkCellArrayP12vtkDataArray_ZN11vtkPolyLine16EvaluateLocationERiPdS1_S1__ZN8vtkTable19GetActualMemorySizeEv_ZN15vtkImplicitHalo16EvaluateFunctionEPd_ZN13vtkDataObject25GetActiveFieldInformationEP14vtkInformationii_ZN19vtkLagrangeTriangle3etaExxd_ZN25vtkTriQuadraticHexahedron16GetNumberOfFacesEvPyvtkColor4f_TypeNew_ZN8vtkGraph9GetInEdgeExxP12vtkGraphEdge_ZN12vtkSelection7AddNodeEP16vtkSelectionNodePyVTKAddFile_vtkGenericCell_ZN16vtkQuadraticQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN8vtkGraph10GetInEdgesExP17vtkInEdgeIterator_ZN14vtkUniformGrid12UnBlankPointEiii_ZNK18vtkImplicitBoolean19NewInstanceInternalEv_ZN17vtkQuadraticTetra7GetFaceEi_ZN19vtkLagrangeTriangle7GetEdgeEi_ZN18vtkUndirectedGraph3NewEvPyvtkOctreePointLocator_ClassNew_ZN29vtkGenericAttributeCollection34GetNumberOfPointCenteredComponentsEv_ZN32vtkIncrementalOctreePointLocator15IsInsertedPointEdddPyvtkOctreePointLocatorNode_ClassNew_ZN24vtkLagrangeInterpolation32GetPointIndicesBoundingWedgeEdgeEi_ZNK16vtkLagrangeTetra19NewInstanceInternalEv_ZN9vtkKdTree11GetCellListEi_ZN25vtkDataObjectTreeIterator12GoToNextItemEv_ZN17vtkAMRInformation11GetChildrenEjjRj_ZN18vtkBiQuadraticQuad19GetParametricCenterEPd_ZN7vtkLine16GetNumberOfFacesEv_ZN13vtkAnnotation11ShallowCopyEP13vtkDataObject_ZN19vtkUnstructuredGrid24DecomposeAPolyhedronCellEPxRxS1_P12vtkCellArrayP14vtkIdTypeArray_ZN21vtkOctreePointLocator21SetCreateCubicOctantsEi_ZN17vtkAMRInformation9GetOriginEPd_ZN25vtkImplicitWindowFunction19SetImplicitFunctionEP19vtkImplicitFunction_ZN29vtkQuadratureSchemeDefinition5ClearEv_ZN14vtkMergePoints15IsInsertedPointEddd_ZN11vtkPolyData14GetMaxCellSizeEv_ZN17vtkImplicitVolume9SetVolumeEP12vtkImageData_ZN17vtkStructuredGrid13SetDimensionsEiii_ZN13vtkDataObject17ALL_PIECES_EXTENTEv_ZN19vtkCompositeDataSet4NAMEEv_ZN16vtkQuadraticQuad16GetCellDimensionEv_ZN13vtkDataObject24SetGlobalReleaseDataFlagEi_ZN9vtkKdTree26AllGetRegionContainingCellEv_ZN16vtkSelectionNode7PROP_IDEv_ZN29vtkGenericAttributeCollection34GetNumberOfAttributesToInterpolateEv_ZN17vtkAMRInformation22HasChildrenInformationEv_ZN24vtkAttributesErrorMetric29SetAbsoluteAttributeToleranceEdPyvtkLine_ClassNewPyVTKAddFile_vtkRect_ZN8vtkVoxel19GetParametricCoordsEv_ZNK9vtkAMRBox9SerializeEPi_ZN16vtkTriangleStrip13IsPrimaryCellEv_ZN11vtkPolyData18RemoveDeletedCellsEv_ZN24vtkAttributesErrorMetric8GetErrorEPdS0_S0_d_ZN11vtkPointSet3IsAEPKc_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN19vtkAMRDataInternals10InitializeEv_ZN20vtkPiecewiseFunction8GetTableEddiPdi_ZN10vtkQuadric16EvaluateFunctionEPdPyVTKAddFile_vtkMergePointsPyVTKAddFile_vtkInformationQuadratureSchemeDefinitionVectorKeyPyVTKAddFile_vtkHyperTreeCursor_ZN24vtkLagrangeQuadrilateral16GetCellDimensionEv_ZN13vtkPolyVertex7GetEdgeEi_ZN9vtkAMRBoxC1Eiiiiii_ZN20vtkDataSetAttributes10GetNormalsEv_ZN13vtkPythonArgs10BuildTupleEPKdi_ZNK13vtkDataObject19NewInstanceInternalEv_ZN13vtkPythonArgs8SetArrayEiPKxi_ZN8vtkTetra4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN13vtkPythonArgs5ArrayIdEC1El_ZN17vtkStructuredGrid13IsCellVisibleEx_ZN20vtkDataSetAttributes10GetVectorsEv_ZN22vtkDataSetCellIterator3NewEv_ZN16vtkLagrangeWedge17InterpolateDerivsEPdS0__ZN9vtkVertex16EvaluateLocationERiPdS1_S1__ZN14vtkBoundingBox9AddBoundsEPKd_ZN8vtkTetra21GetParametricDistanceEPdPyLong_FromLong_ZN21vtkOctreePointLocator25GetMaximumPointsPerRegionEv_ZN21vtkOctreePointLocator9GetBoundsEv_ZN17vtkStructuredGrid13GetExtentTypeEv_ZN8vtkTable9AddColumnEP16vtkAbstractArray_ZN9vtkKdTree22BuildLocatorFromPointsEP9vtkPoints_ZN18vtkOutEdgeIterator3IsAEPKc_ZN24vtkLagrangeInterpolation27GetFixedParametersOfHexEdgeEi_ZN10vtkPyramid16GetNumberOfEdgesEv_ZN16vtkQuadraticQuad12CellBoundaryEiPdP9vtkIdListPyvtkPolygon_ClassNew_ZN11vtkPolyData8GetVertsEv_ZN9vtkCell3D4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN20vtkDataSetAttributes10SetTensorsEP12vtkDataArray_ZN10vtkDataSet16GetCellNeighborsExP9vtkIdListS1__ZN23vtkQuadraticLinearWedge7GetFaceEi_ZN8vtkGraph15ToDirectedGraphEP16vtkDirectedGraphPyvtkPlaneCollection_ClassNew_ZN12vtkHyperTree14CreateInstanceEjj_ZN17vtkXMLDataElement16GetCharacterDataEv_ZN17vtkXMLDataElement24SetUnsignedLongAttributeEPKcm_ZN22vtkQuadraticHexahedron11GetCellTypeEv_ZN9vtkKdNode22GetDistance2ToBoundaryEdddPdi_ZN24vtkSimpleCellTessellator10InitializeEP17vtkGenericDataSetPyvtkVoxel_ClassNew_ZN12vtkFieldData5ResetEv_ZN17vtkHexagonalPrism22InterpolationFunctionsEPdS0__ZN18vtkBiQuadraticQuad17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZNK29vtkGenericAttributeCollection19NewInstanceInternalEv_ZN22vtkQuadraticLinearQuad19GetParametricCenterEPd_ZN20vtkDataSetAttributes13CopyNormalsOnEv_ZN18vtkImplicitBoolean16SetOperationTypeEiPyvtkGenericEdgeTable_ClassNew_ZN22vtkAbstractCellLocator23GetNumberOfCellsPerNodeEvPyLong_FromLongLongPyVTKAddFile_vtkBiQuadraticTriangle_ZN16vtkHyperTreeGrid13SubdivideLeafEP18vtkHyperTreeCursorxPyVTKAddFile_vtkVectorOperators_ZN7vtkLine7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkDataObject11DATA_EXTENTEv_ZN19vtkBSPIntersections7SetCutsEP10vtkBSPCutsPyVTKAddFile_vtkPerlinNoise_ZN12vtkCubicLine12CellBoundaryEiPdP9vtkIdList_ZN11vtkMolecule10GetLatticeER11vtkVector3dS1_S1__ZN8vtkPixel16GetCellDimensionEv_ZN25vtkImplicitWindowFunction3NewEv_ZN24vtkLagrangeQuadrilateral24SubCellCoordinatesFromIdERiS0_S0_i_ZN24vtkLagrangeQuadrilateral17PointIndexFromIJKEiii_ZN22vtkQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN12vtkCubicLine3NewEv_ZNK18vtkTreeDFSIterator19NewInstanceInternalEv_ZN20vtkDataSetAttributes18SetActiveAttributeEPKciPyObject_CallMethod_ZN23vtkMutableDirectedGraph12RemoveVertexExPyvtkStructuredData_ClassNew_ZN19vtkQuadraticPyramid3NewEvPyVTKAddFile_vtkImplicitFunctionCollection_ZN12vtkImageData7GetDataEP14vtkInformation_ZN10vtkPolygon11TriangulateEP9vtkIdList_ZN12vtkFieldData8GetFieldEP9vtkIdListPS__ZN11vtkPointSet9SetPointsEP9vtkPoints_ZN7vtkQuad12CellBoundaryEiPdP9vtkIdListPyvtkPointLocator_ClassNew_ZN25vtkOctreePointLocatorNode16GetMaxDataBoundsEv_ZN25vtkOctreePointLocatorNode16GetMinDataBoundsEv_ZN14vtkUniformGrid3IsAEPKc_ZN10vtkPolygon11ComputeAreaEP9vtkPointsxPxPd_ZN9vtkKdNode11ContainsBoxEddddddi_ZNK21vtkKdTreePointLocator19NewInstanceInternalEv_ZN25vtkNonMergingPointLocator3NewEvPyVTKAddFile_vtkBiQuadraticQuad_ZN19vtkBSPIntersections38GetComputeIntersectionsUsingDataBoundsEv_ZN9vtkSpline8DeepCopyEPS__ZN14vtkHyperOctree23GetPointsOnParentEdge2DEP20vtkHyperOctreeCursoriiP27vtkHyperOctreePointsGrabber_ZN12vtkSelection11ShallowCopyEP13vtkDataObject_ZN18vtkPlaneCollection3IsAEPKc_ZN18vtkBiQuadraticQuad7GetEdgeEi_ZN12vtkFieldData3IsAEPKc_ZN11vtkPolyData8SetVertsEP12vtkCellArray_ZN21vtkStaticPointLocator34GetNumberOfPointsPerBucketMinValueEv_ZN24vtkLagrangeInterpolation3IsAEPKc_ZN20vtkMultiBlockDataSet3IsAEPKc_ZN15vtkPointLocator3IsAEPKc_ZN22vtkHyperTreeGridCursor7ToChildEi_ZNSt8ios_base4InitC1Ev@GLIBCXX_3.4_ZN11vtkMolecule19GetAtomAtomicNumberExPyVTKAddFile_vtkExtractStructuredGridHelper_ZN22vtkOrderedTriangulator14UseTemplatesOnEv_ZNK19vtkCompositeDataSet19NewInstanceInternalEv_ZN14vtkHyperOctree8GetPointExPd_ZN7vtkPath16GetNumberOfCellsEv_ZN21vtkLagrangeHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN25vtkOctreePointLocatorNode13SetDataBoundsEdddddd_ZN21vtkOctreePointLocator24GetRegionContainingPointEddd_ZN12vtkSelection7GetDataEP14vtkInformation_ZN18vtkDataObjectTypes3NewEv_ZN12vtkImageData10InitializeEv_ZNK23vtkGenericPointIterator19NewInstanceInternalEv_ZN17vtkStructuredGrid7GetDataEP14vtkInformation_ZN10vtkDataSet25UpdateCellGhostArrayCacheEv_ZN8vtkPixel19GetParametricCenterEPd_ZN19vtkQuadraticPyramid7GetEdgeEi_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE10_M_replaceEmmPKcm@GLIBCXX_3.4.21_ZN33vtkIterativeClosestPointTransform9GetSourceEv_ZN9vtkKdTree16FindPointsInAreaEPdP14vtkIdTypeArrayb_ZN22vtkQuadraticLinearQuad11GetCellTypeEv_ZN12vtkCubicLine4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkConvexPointSet7GetFaceEi_ZN33vtkIterativeClosestPointTransform27SetMaximumNumberOfLandmarksEi_ZN8vtkVoxel11DerivativesEiPdS0_iS0__ZN12vtkCubicLine19GetParametricCenterEPd_ZN19vtkUnstructuredGrid11GetCellTypeEx_ZN19vtkQuadraticPyramid16GetCellDimensionEv_ZN19vtkLagrangeTriangle19GetParametricCoordsEv_ZN16vtkLagrangeTetra22RequiresInitializationEv_ZN29vtkGenericAttributeCollection5ResetEv_ZN10vtkPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN21vtkStaticPointLocator19FreeSearchStructureEvPyvtkTreeIterator_ClassNew_ZN7vtkPath8GetCodesEv_ZN15vtkPointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN13vtkDataObject12BOUNDING_BOXEv_ZN17vtkQuadraticTetra16EvaluatePositionEPdS0_RiS0_RdS0_PyvtkEmptyCell_ClassNew_ZN21vtkStaticPointLocator29GetMaxNumberOfBucketsMinValueEvPyVTKAddFile_vtkDispatcher_ZN16vtkQuadraticEdge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN7vtkBond10GetEndAtomEv_ZN9vtkSphere21ComputeBoundingSphereEPdxS0_Px_ZN7vtkPath14GetMaxCellSizeEv_ZN11vtkPolyData13GetGhostLevelEv_ZN15vtkSuperquadric12SetThicknessEd_ZN16vtkSelectionNode14SetContentTypeEi_ZN25vtkDataObjectTreeIterator18VisitOnlyLeavesOffEv_ZN17vtkQuadraticWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN16vtkSelectionNode14GetContentTypeEv_ZN12vtkImageData13ComputeCellIdEPi_ZN20vtkDataSetAttributes3IsAEPKc_ZN20vtkQuadraticTriangle19InterpolationDerivsEPdS0__Z23PyvtkVector_TemplateNewv_ZN19vtkQuadraticPolygon24NonDegenerateTriangulateEP9vtkIdList_ZN10vtkPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN10vtkPolygon16GetNumberOfEdgesEv_ZN17vtkXMLDataElement17SetFloatAttributeEPKcf_ZN21vtkKdTreePointLocator22GenerateRepresentationEiP11vtkPolyData_ZN22vtkBiQuadraticTriangle17InterpolateDerivsEPdS0__ZN17vtkStructuredData13GetCellPointsExP9vtkIdListiPi_ZN15vtkImplicitHalo3IsAEPKc_ZN6vtkBox16EvaluateFunctionEPd_ZN7vtkTree8GetChildExx_ZN12vtkArrayData7GetDataEP20vtkInformationVectori_ZN20vtkDataSetCollection3NewEv_ZN22vtkOrderedTriangulator12GetNextTetraEiP8vtkTetraP12vtkDataArrayP14vtkDoubleArray_ZN17vtkXMLDataElement28GetAttributeEncodingMaxValueEv_ZN19vtkQuadraticPolygon14PointInPolygonEPdiS0_S0_S0_PyvtkMergePoints_ClassNew_ZN18vtkBiQuadraticQuad29InterpolationFunctionsPrivateEPdS0__ZN9vtkAMRBox7CoarsenEiPyModule_Create2_ZN33vtkIterativeClosestPointTransform7InverseEv_ZN13vtkDataObject12GetFieldDataEv_ZNK18vtkStaticCellLinks19NewInstanceInternalEv_ZN16vtkHyperTreeGrid15SetXCoordinatesEP12vtkDataArray_ZN22vtkBiQuadraticTriangle16GetNumberOfEdgesEv_Z38PyvtkTreeDFSIterator_ModeType_FromEnumi_ZN19vtkEdgeListIterator8GetGraphEv_ZN17vtkOverlappingAMR10GetSpacingEjPd_ZN16vtkSelectionNode12CONTENT_TYPEEv_ZN25vtkDistributedGraphHelper18DISTRIBUTEDEDGEIDSEv_ZN8vtkPlane9SetOriginEPd_ZN14vtkCellLocator8FindCellEPddP14vtkGenericCellS0_S0__ZN20vtkStaticCellLocator22GenerateRepresentationEiP11vtkPolyData_ZN14vtkGenericCell16GetNumberOfFacesEv_ZN17vtkStructuredGrid13SetDimensionsEPi_ZN12vtkImageData9FindPointEPd_ZN12vtkImageData8DeepCopyEP13vtkDataObject_ZN30vtkHierarchicalBoxDataIterator3NewEv_ZNK9vtkAMRBox8ContainsERKS_PyVTKTemplate_New_Z42PyvtkSelectionNode_SelectionField_FromEnumi_ZN12vtkCellArray16SetNumberOfCellsEx_ZNK16vtkLagrangeCurve19NewInstanceInternalEv_ZN18vtkRectilinearGrid7GetCellEx_ZN19vtkLagrangeTriangle12ComputeOrderEv_ZN14vtkHyperOctree13GetCellPointsExRxRPx_ZN49vtkInformationQuadratureSchemeDefinitionVectorKey9SaveStateEP14vtkInformationP17vtkXMLDataElement_ZN13vtkPolyhedron12CellBoundaryEiPdP9vtkIdList_ZN7vtkCell19GetParametricCoordsEv_ZN13vtkDataObject11ReleaseDataEv_ZN11vtkMolecule10AppendBondExxt_ZN16vtkLagrangeWedge19GetParametricCenterEPd_ZN22vtkOrderedTriangulator3NewEv_ZN7vtkLine17InterpolateDerivsEPdS0__ZN20vtkSmoothErrorMetric17SetAngleToleranceEd_ZN22vtkAbstractCellLocator17LazyEvaluationOffEv_ZN24vtkSimpleCellTessellator14TessellateFaceEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionxP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData_ZN15vtkAMRUtilities33HasPartiallyOverlappingGhostCellsEP17vtkOverlappingAMR_ZN20vtkDataSetAttributes10CopyTuplesEP16vtkAbstractArrayS1_xxx_ZN10vtkLocator12SetToleranceEd_ZN18vtkRectilinearGrid13GetCellBoundsExPd_ZN32vtkReebGraphSimplificationMetric3IsAEPKc_ZN18vtkPentagonalPrism3NewEv_ZN17vtkOverlappingAMR9GetOriginEv_ZN8vtkWedge19GetParametricCenterEPd_ZN17vtkStructuredGrid13GetCellBoundsExPd_ZN17vtkImplicitVolume14GetOutGradientEv_ZN9vtkKdTree9TimingOffEv_ZN9vtkKdTree9FindPointEPd_ZNK18vtkUndirectedGraph19NewInstanceInternalEv_ZN17vtkDataObjectTree8DeepCopyEP13vtkDataObject_ZN17vtkQuadraticTetra11TriangulateEiP9vtkIdListP9vtkPointsPyvtkColor4d_TypeNew_ZlsRSoRK14vtkPixelExtent_ZNK17vtkAMRInformation18GetCoarsenedAMRBoxEjjR9vtkAMRBox_ZN24vtkImplicitSelectionLoop7SetLoopEP9vtkPoints_ZN16vtkLagrangeTetra12ComputeOrderEvPyvtkAttributesErrorMetric_ClassNew_ZN18vtkRectilinearGrid14GetMaxCellSizeEv_ZN20vtkDataSetAttributes14CopyVectorsOffEv_ZN22vtkBiQuadraticTriangle7GetFaceEi_ZNK15vtkAMRUtilities19NewInstanceInternalEv_ZN16vtkDirectedGraph3IsAEPKc_ZN8vtkGraph13ComputeBoundsEv_ZNK25vtkAdjacentVertexIterator19NewInstanceInternalEv_ZN17vtkAnimationScene11SetTimeModeEi_ZN10vtkPyramid17InterpolateDerivsEPdS0_PyvtkMeanValueCoordinatesInterpolator_ClassNew_ZN24vtkSimpleCellTessellator22GetMaxSubdivisionLevelEv_ZN19vtkUnstructuredGrid25ConvertFaceStreamPointIdsEP9vtkIdListPx_ZN18vtkTreeDFSIterator3IsAEPKc_ZN8vtkTable10SetRowDataEP20vtkDataSetAttributes_ZN8vtkPlane12ProjectPointEPdS0_S0_S0__ZN18vtkBiQuadraticQuad3IsAEPKc_ZN11vtkPolyData11ShallowCopyEP13vtkDataObject_ZN10vtkPolygon11DerivativesEiPdS0_iS0_PyVTKAddFile_vtkPolyPlane_ZN17vtkDataObjectTree11HasMetaDataEP24vtkCompositeDataIterator_ZN8vtkTable8DeepCopyEP13vtkDataObject_ZN16vtkLagrangeTetra17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs8GetValueERx_ZN22vtkQuadraticHexahedron3IsAEPKc_ZN21vtkOctreePointLocator17GetPointsInRegionEi_ZN22vtkQuadraticLinearQuad12CellBoundaryEiPdP9vtkIdList_ZN14vtkPerlinNoise12GetAmplitudeEv_ZN11vtkPolyData20InsertNextLinkedCellEiiPx_ZN11vtkCellData3IsAEPKc_ZN32vtkIncrementalOctreePointLocator28FindClosestPointWithinRadiusEdPKdRd_ZN7vtkCell17InterpolateDerivsEPdS0__ZN16vtkDirectedGraph3NewEv_ZN20vtkDataSetAttributes14SetCopyTensorsEii_ZN25vtkImplicitWindowFunction16EvaluateGradientEPdS0__ZN15vtkTreeIterator4NextEv_ZN15vtkPointLocator28FindClosestPointWithinRadiusEdPKddRd_ZN15vtkSuperquadric3NewEv_ZNK13vtkPolyVertex19NewInstanceInternalEv_ZN7vtkQuad22InterpolationFunctionsEPdS0__ZN16vtkHyperTreeGrid12GetDimensionEv_ZN19vtkLagrangeTriangle17IntersectWithLineEPdS0_dRdS0_S0_RiPyvtkColor3_IdE_TypeNew_ZN8vtkVoxel16EvaluateLocationERiPdS1_S1__ZN8vtkWedge11GetCellTypeEv_ZN18vtkPentagonalPrism13GetFacePointsEiRPi_ZN20vtkStaticCellLocator17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkHexagonalPrism16GetCellDimensionEv_ZN20vtkStaticCellLocator12SetDivisionsEiiiPyVTKAddFile_vtkGraph_ZN9vtkSphere16EvaluateFunctionEPd_ZN9vtkKdTree15CreateCellListsEP10vtkDataSetPii_ZN21vtkLagrangeHexahedron12CellBoundaryEiPdP9vtkIdList_ZN22vtkQuadraticHexahedron17InterpolateDerivsEPdS0_PyvtkVector3_IfE_TypeNew_ZN8vtkPixel3NewEv_ZN13vtkPythonArgs8GetArrayEPhi_ZN17vtkConvexPointSet17InterpolateDerivsEPdS0__ZN7vtkCone8GetAngleEv_ZN17vtkXMLDataElement7SetNameEPKc_ZN8vtkPlane3IsAEPKc_ZlsRSo11vtkEdgeBase_ZN13vtkPythonArgs8GetValueERh_ZN7vtkQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_iPyVTKAddFile_vtkHyperOctreeCursorPyVTKAddFile_vtkPlanesIntersection_ZN14vtkImplicitSum18RemoveAllFunctionsEv_ZN10vtkPolygon16EvaluatePositionEPdS0_RiS0_RdS0__ZN12vtkCubicLine22InterpolationFunctionsEPdS0__ZN9vtkSphere3NewEv_ZN16vtkLagrangeCurve4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN7vtkTree13GetParentEdgeEx_ZN18vtkBiQuadraticQuad7GetFaceEi_ZN7vtkTree7GetRootEv_ZN18vtkRectilinearGrid7GetCellExP14vtkGenericCell_ZN14vtkUniformGrid13CopyStructureEP10vtkDataSet_ZN16vtkQuadraticEdge7GetEdgeEi_ZN7vtkPath13GetPointCellsExP9vtkIdList_ZN23vtkMutableDirectedGraph11LazyAddEdgeExRK10vtkVariantP15vtkVariantArray_ZN18vtkPentagonalPrism11DerivativesEiPdS0_iS0__ZN22vtkAbstractCellLocator17GetLazyEvaluationEv_ZN8vtkPlane9SetNormalEPd_ZN17vtkUniformGridAMR7GetDataEP20vtkInformationVectori_ZN8vtkTable14SetValueByNameExPKc10vtkVariantPyErr_Occurred_ZN10vtkPyramid22InterpolationFunctionsEPdS0__ZN12vtkEdgeTable13InitTraversalEv_ZN11vtkTriangle12GetEdgeArrayEi_ZN22vtkAbstractCellLocator8FindCellEPddP14vtkGenericCellS0_S0__ZN10vtkQuadric15SetCoefficientsEPd_ZN17vtkXMLDataElement19RemoveAllAttributesEv_ZN9vtkKdTree40GetGenerateRepresentationUsingDataBoundsEv_ZN24vtkLagrangeQuadrilateral10InitializeEv_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN25vtkMutableUndirectedGraph11LazyAddEdgeExx_ZN20vtkPiecewiseFunction11RemovePointEd_ZN7vtkAtom11SetPositionEPKf_ZN9vtkVertex16GetCellDimensionEv_ZN23vtkMutableDirectedGraph11LazyAddEdgeERK10vtkVariantxP15vtkVariantArray_ZN9vtkKdNode8SetMinIDEiPyObject_GenericGetAttrPyvtkUniformGrid_ClassNew_ZN16vtkTriangleStrip12CellBoundaryEiPdP9vtkIdListmemmove@GLIBC_2.2.5PyVTKAddFile_vtkQuadric_ZN9vtkKdNode16SetMaxDataBoundsEPKd_ZNK14vtkBoundingBox10IntersectsERKS__ZN12vtkCubicLine16GetNumberOfEdgesEv_ZN16vtkHyperTreeGrid24GetShiftedLevelZeroIndexExiii_ZN13vtkPolyhedron3IsAEPKc_ZN13vtkAnnotation7GetDataEP14vtkInformation_ZN12vtkImageData17GetNumberOfPointsEvPyvtkUnstructuredGridBase_ClassNew_ZN13vtkAnnotation8DeepCopyEP13vtkDataObject_ZN13vtkPythonArgs8SetArrayEiPKii_ZN33vtkBiQuadraticQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN15vtkSuperquadric11ToroidalOffEv_ZNK23vtkGeometricErrorMetric19NewInstanceInternalEv_ZN25vtkDataObjectTreeIterator13GoToFirstItemEv_ZN24vtkIncrementalOctreeNode11InsertPointEP9vtkPointsPKdiPxi_ZN11vtkPolyData7GetCellExPyVTKAddFile_vtkCompositeDataSet_ZN28vtkBiQuadraticQuadraticWedge11GetCellTypeEv_ZN23vtkQuadraticLinearWedge11GetCellTypeEv_ZNK14vtkMergePoints19NewInstanceInternalEvPyVTKAddFile_vtkDataSetCellIterator_ZN14vtkHyperOctree7GetDataEP20vtkInformationVectori_ZN12vtkEmptyCell16GetCellDimensionEv_ZN12vtkGraphEdge9SetTargetEx_ZN20vtkPiecewiseFunction11AdjustRangeEPd_ZN19vtkCompositeDataSet3IsAEPKcrealloc@GLIBC_2.2.5_ZN12vtkCubicLine3IsAEPKcPyLong_Type_ZN12vtkImageData4CropEPKi_ZNK18vtkPlaneCollection19NewInstanceInternalEv_ZN23vtkAbstractPointLocator3IsAEPKc_ZN12vtkCubicLine19InterpolationDerivsEPdS0__ZN22vtkAbstractCellLocator31GetNumberOfCellsPerNodeMinValueEv_ZN9vtkVertex19InterpolationDerivsEPdS0_PyVTKAddFile_vtkStructuredPoints_ZN14vtkImplicitSum20SetNormalizeByWeightEi_ZN11vtkPolyData8DeepCopyEP13vtkDataObject_ZN7vtkCell8GetFacesEv_ZN19vtkQuadraticPolygon16EvaluatePositionEPdS0_RiS0_RdS0__ZN17vtkXMLDataElement16SetCharacterDataEPKci_ZN11vtkCylinder16EvaluateFunctionEPd_ZN12vtkCubicLine17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkGraphInternals3NewEv_ZN7vtkLine14Intersection3DEPdS0_S0_S0_RdS1__ZNK19vtkGenericAttribute19NewInstanceInternalEvPyVTKAddFile_vtkStaticCellLocator_ZN22vtkQuadraticLinearQuad16GetNumberOfFacesEv_ZNK19vtkEdgeListIterator19NewInstanceInternalEv_ZNK9vtkCell3D19NewInstanceInternalEv_ZN12vtkPolyPlane11GetPolyLineEv_ZN32vtkGenericSubdivisionErrorMetric14SetGenericCellEP21vtkGenericAdaptorCellPyvtkVertexListIterator_ClassNewPyvtkStructuredPoints_ClassNew_ZN17vtkStructuredGrid11GetCellDimsEPi_ZN31vtkObjectFactoryRegistryCleanupC1Ev_ZN13vtkHexahedron17InterpolateDerivsEPdS0_PyvtkColor3_IhE_TypeNew__gxx_personality_v0@CXXABI_1.3_ZN17vtkOverlappingAMR17GetDataObjectTypeEv_ZN19vtkLagrangeTriangle17InterpolateDerivsEPdS0_PyVTKAddFile_vtkQuad_ZN10vtkVariantD1EvPyVTKAddFile_vtkDataObject_ZN21vtkPolyDataCollection3IsAEPKc_ZN17vtkConvexPointSet10InitializeEv_ZN11vtkPointSet7SqueezeEvPyvtkRecti_TypeNew_ZN18vtkTreeDFSIterator7SetModeEi_ZN22vtkHyperTreeGridCursor9GetCursorEj_ZN13vtkAnnotation12SetSelectionEP12vtkSelection_ZN7vtkPath8SetCodesEP11vtkIntArray_ZN22vtkOrderedTriangulator15UpdatePointTypeExi_ZN17vtkQuadraticTetra11GetCellTypeEv_ZN9vtkKdTree8CopyTreeEP9vtkKdNode_ZN17vtkStructuredGrid10BlankPointExPyvtkVector_IiLi4EE_TypeNew_ZN30vtkExtractStructuredGridHelper20GetOutputWholeExtentEv_ZN20vtkMultiPieceDataSet17GetDataObjectTypeEv_ZN18vtkUndirectedGraph7GetDataEP14vtkInformation_ZN22vtkOrderedTriangulator3IsAEPKcPyvtkXMLDataElement_ClassNewPyvtkTuple_IdLi3EE_TypeNew_ZN16vtkTriangleStrip16EvaluatePositionEPdS0_RiS0_RdS0__ZN20vtkQuadraticTriangle22InterpolationFunctionsEPdS0__ZN33vtkBiQuadraticQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkXMLDataElement28GetAttributeEncodingMinValueEv_ZN18vtkImplicitBoolean16EvaluateGradientEPdS0_PyVTKAddFile_vtkVector_ZN24vtkImplicitSelectionLoop28SetAutomaticNormalGenerationEi_ZN16vtkHyperTreeGrid13SetGridExtentEiiiiii_ZN19vtkQuadraticPolygon16GetCellDimensionEv_ZN15vtkSuperquadric15SetPhiRoundnessEd_ZN17vtkAMRInformation9GetBoundsEjjPd_ZNK8vtkPlane19NewInstanceInternalEv_ZN12vtkSelection17GetDataObjectTypeEv_ZN20vtkQuadraticTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN12vtkEmptyCell16GetNumberOfEdgesEv_ZN29vtkQuadratureSchemeDefinition28QUADRATURE_OFFSET_ARRAY_NAMEEv_ZN9vtkCell3D25GetMergeToleranceMaxValueEv_ZN14vtkHyperOctree7GetDataEP14vtkInformation_ZN10vtkPyramid13GetEdgePointsEiRPi_ZN16vtkLagrangeTetra16BarycentricIndexExPxxPyvtkSpline_ClassNew_ZN32vtkIncrementalOctreePointLocator18InitPointInsertionEP9vtkPointsPKdx_ZN21vtkOctreePointLocator16FindClosestPointEPKd_ZN31vtkHyperOctreeLightWeightCursor6ToRootEv_ZN8vtkGraph11GetOutEdgesExP18vtkOutEdgeIterator_ZN9vtkKdTree26BuildMapForDuplicatePointsEf_ZN9vtkKdNode13AddChildNodesEPS_S0_PyObject_HashNotImplemented_ZN19vtkUnstructuredGrid13GetFaceStreamExRxRPx_ZN7vtkCell8SetFacesEPx_ZN19vtkGenericEdgeTable28IncrementPointReferenceCountEx_ZN14vtkGenericCell3NewEv_ZN12vtkEmptyCell3NewEv_ZN7vtkCell10GetLength2Ev_ZN16vtkHyperTreeGrid8FindCellEPdP7vtkCellP14vtkGenericCellxdRiS0_S0__ZN10vtkDataSet7GetDataEP20vtkInformationVectori_ZN12vtkCellTypes8DeepCopyEPS__ZN8vtkGraph9GetDegreeEx_ZN33vtkIterativeClosestPointTransform9SetTargetEP10vtkDataSet_ZN12vtkCubicLine16GetNumberOfFacesEv_ZN9vtkAMRBox13SetDimensionsEPKiS1_i_ZN9vtkKdTree23GetRegionContainingCellEix_ZN17vtkQuadraticTetra7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkStructuredExtent3NewEv_ZN14vtkGenericCell22RequiresInitializationEv_ZN13vtkPolyVertex16EvaluateLocationERiPdS1_S1__ZN19vtkLagrangeTriangle18ToBarycentricIndexExPx_ZN7vtkLine3IsAEPKc_ZN19vtkBSPIntersections13IntersectsBoxEPiidddddd_ZN8vtkPixel20InterpolateFunctionsEPdS0__ZN9vtkKdTree19GetNumberOfDataSetsEv_ZN12vtkImageData13ComputeBoundsEv_ZN17vtkDataObjectTree13CopyStructureEP19vtkCompositeDataSetPyvtkStaticCellLocator_ClassNew_ZN22vtkBiQuadraticTriangle3IsAEPKcPyVTKAddFile_vtkMutableUndirectedGraph_ZN17vtkAMRInformation3NewEv_ZN11vtkTriangle16GetCellDimensionEv_ZN19vtkQuadraticPolygon3NewEv_ZN20vtkDataSetAttributes12GetGlobalIdsEPKc_ZN20vtkPiecewiseFunction12GetNodeValueEiPd_ZN10vtkPyramid16GetNumberOfFacesEv_ZN13vtkDataObject24GetAttributeTypeForArrayEP16vtkAbstractArray_ZN14vtkMergePoints3IsAEPKc_ZN22vtkOrderedTriangulator16UseTwoSortIdsOffEv_ZN20vtkPiecewiseFunction7GetSizeEvPyvtkStructuredExtent_ClassNew_ZN19vtkUnstructuredGrid8SetCellsEPiP12vtkCellArray_ZN13vtkPolyhedron17InterpolateDerivsEPdS0__ZN20vtkHyperOctreeCursor3IsAEPKc_ZN21vtkStaticPointLocator10InitializeEv_ZN14vtkHyperOctree11ShallowCopyEP13vtkDataObject_ZN28vtkBiQuadraticQuadraticWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN11vtkPolyData9SetStripsEP12vtkCellArray_ZN21vtkLagrangeHexahedron10InitializeEv_ZN20vtkPiecewiseFunction7GetTypeEv_ZNK7vtkPath19NewInstanceInternalEvPyVTKSpecialObject_CopyNew_ZN18vtkDataObjectTypes13NewDataObjectEi_ZN13vtkPolyhedron13GetEdgePointsEiRPi_ZN20vtkStaticCellLocator21GetMaxNumberOfBucketsEv_ZN9vtkKdTree24FindClosestPointInRegionEidddRdPyvtkPointSetCellIterator_ClassNew_ZN25vtkHierarchicalBoxDataSet3NewEv_ZN12vtkImageData7GetCellEx_ZN18vtkUndirectedGraph3IsAEPKc_ZN22vtkPointsProjectedHull15GetSizeCCWHullZEv_ZN12vtkImageData9SetOriginEPd_ZN19vtkLagrangeTriangle23ComputeParametricCoordsEPdx_ZN19vtkQuadraticPolygon7GetFaceEi_ZN21vtkStaticPointLocator16FindClosestPointEPKdPyvtkAbstractPointLocator_ClassNew_ZN14vtkUniformGrid12UnBlankPointEx_ZN12vtkImageData7GetDataEP20vtkInformationVectori_ZN20vtkDataSetAttributes10CopyTuplesEP16vtkAbstractArrayS1_P9vtkIdListS3_PyVTKAddFile_vtkPointSetPyvtkPolyLine_ClassNew_ZNK17vtkImplicitVolume19NewInstanceInternalEv_ZN10vtkDataSet23AllocatePointGhostArrayEv_ZN20vtkPiecewiseFunction20GetFirstNonZeroValueEv_ZN21vtkKdTreePointLocator16FindClosestPointEPKd_ZN23vtkDirectedAcyclicGraph3NewEv_ZN13vtkPythonArgs11SetArgValueEid_ZN7vtkBond8GetOrderEv_ZN23vtkQuadraticLinearWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN9vtkVertex7GetEdgeEiPyVTKAddFile_vtkGraphInternals_ZNK20vtkQuadraticTriangle19NewInstanceInternalEv_ZN22vtkHyperTreeGridCursor3IsAEPKc_ZN12vtkEmptyCell16EvaluateLocationERiPdS1_S1__ZN12vtkImageData13GetIncrementsEP12vtkDataArrayRxS2_S2__ZN9vtkAMRBox9GetBoundsERKS_PKdS3_Pd_ZN25vtkMutableUndirectedGraph7AddEdgeExxP15vtkVariantArrayPyvtkVector3_IiE_TypeNew_ZNK25vtkNonMergingPointLocator19NewInstanceInternalEv_ZN10vtkBSPCuts15GetNumberOfCutsEv_ZN17vtkUniformGridAMR22GetTotalNumberOfBlocksEv_ZN22vtkAbstractCellLocator3IsAEPKc_ZN24vtkLagrangeQuadrilateral19GetParametricCenterEPd_ZN24vtkLagrangeQuadrilateral17InterpolateDerivsEPdS0__ZN16vtkLagrangeCurve16EvaluatePositionEPdS0_RiS0_RdS0__ZN9vtkKdTree40GenerateRepresentationUsingDataBoundsOffEv_ZNK9vtkSpline18GetParametricRangeEPd_ZNK17vtkAnimationScene19NewInstanceInternalEv_ZN20vtkPiecewiseFunction8GetRangeEv_ZN22vtkBiQuadraticTriangle19InterpolationDerivsEPdS0__ZN14vtkImplicitSum19NormalizeByWeightOnEvPyVTKAddFile_vtkAnnotationLayers_ZN16vtkLagrangeWedge7GetFaceEi_ZN8vtkVoxel11GetCellTypeEv_ZN7vtkLine16EvaluatePositionEPdS0_RiS0_RdS0_PyVTKAddFile_vtkReebGraphSimplificationMetric_ZN8vtkGraph16GetNumberOfEdgesEv_ZN8vtkGraph11ShallowCopyEP13vtkDataObject_ZN22vtkAbstractCellLocator16InsideCellBoundsEPdx_ZN14vtkHyperOctree8FindCellEPdP7vtkCellxdRiS0_S0__ZN17vtkStructuredGrid7GetDataEP20vtkInformationVectori_ZN13vtkPythonArgs11SetArgValueEil_ZN17vtkStructuredGrid3NewEv_ZN12vtkCubicLine21GetParametricDistanceEPd_ZN16vtkHyperTreeGrid15GetBranchFactorEv_ZN14vtkHyperOctree13GetCellPointsExP9vtkIdList_ZN10vtkPolygon12CellBoundaryEiPdP9vtkIdList_ZN15vtkPointLocator19FreeSearchStructureEv_ZN12vtkImageData28ComputeStructuredCoordinatesEPKdPiPd_ZN9vtkKdNode17SetNumberOfPointsEi_ZN13vtkHexahedron16GetNumberOfFacesEv_ZN8vtkWedge16GetNumberOfFacesEv_ZN13vtkDataObject27DATA_NUMBER_OF_GHOST_LEVELSEv_ZN13vtkPolyhedron16GetNumberOfFacesEv_ZN16vtkHyperTreeGrid17GetDataObjectTypeEv_Z38PyvtkAnimationScene_PlayModes_FromEnumiPyVTKAddFile_vtkImageIterator_ZN16vtkHyperTreeGrid15SetBranchFactorEj_ZN25vtkDistributedGraphHelper20DISTRIBUTEDVERTEXIDSEv_ZN20vtkDataSetAttributes15InterpolateTimeEPS_S0_xdPyVTKAddFile_vtkVertexListIteratorPyVTKAddFile_vtkStructuredExtent_ZN8vtkWedge20InterpolateFunctionsEPdS0__ZN20vtkStaticCellLocator12BuildLocatorEv_ZN9vtkVertex7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN20vtkPiecewiseFunction7GetDataEP20vtkInformationVectori_ZN18vtkUndirectedGraph10GetInEdgesExP17vtkInEdgeIterator_ZNK12vtkPointData19NewInstanceInternalEv_ZN12vtkImageData16GetScalarPointerEv_Z47PyvtkDataSetAttributes_PointGhostTypes_FromEnumi_ZNK12vtkReebGraph19NewInstanceInternalEv_ZN13vtkPythonArgs11SetArgValueEit_ZN23vtkQuadraticLinearWedge3IsAEPKc_ZN11vtkPolyData8GetPieceEv_ZN24vtkSimpleCellTessellator3IsAEPKc_ZN7vtkLine4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN15vtkImplicitHalo9GetRadiusEv_ZN18vtkOutEdgeIterator10InitializeEP8vtkGraphx_ZN12vtkCellArray3IsAEPKc_ZN14vtkImplicitSum16EvaluateGradientEPdS0__ZN13vtkHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZNK11vtkCylinder19NewInstanceInternalEv_ZN17vtkStructuredGrid11ShallowCopyEP13vtkDataObject_ZN17vtkAMRInformation5AuditEv_ZN16vtkLagrangeTetra16EvaluatePositionEPdS0_RiS0_RdS0_PyVTKAddFile_vtkVertexPyvtkBiQuadraticTriangle_ClassNew_ZN21vtkKdTreePointLocator3NewEv_ZN6vtkBox3NewEv_ZN13vtkPythonArgs8GetArrayEPjiPyvtkHyperOctree_ClassNew_ZN17vtkQuadraticWedge16GetCellDimensionEv_ZN7vtkLine17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZNK22vtkOrderedTriangulator19NewInstanceInternalEv_ZN22vtkBiQuadraticTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN29vtkQuadratureSchemeDefinition9SaveStateEP17vtkXMLDataElement_ZN17vtkAMRInformation10GetSpacingEjPd_ZN21vtkLagrangeHexahedron11GetCellTypeEvPyVTKAddFile_vtkLagrangeCurve_ZN21vtkOctreePointLocator9GetBoundsEPd_ZN15vtkPointLocator17InsertUniquePointEPKdRx_ZN17vtkAMRInformation18SetRefinementRatioEji_ZN8vtkPixel22InterpolationFunctionsEPdS0__ZN12vtkCubicLine11DerivativesEiPdS0_iS0__ZN29vtkUniformGridAMRDataIterator19IsDoneWithTraversalEvPyvtkPolyDataCollection_ClassNew_ZN7vtkTree8GetLevelEx_ZN16vtkHyperTreeGrid11GetCellTypeEx_ZNK9vtkAMRBox16ComputeDimensionEv_ZN12vtkImageData18GetArrayIncrementsEP12vtkDataArrayPx_ZN22vtkQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN10vtkPolygon16EvaluateLocationERiPdS1_S1__ZN22vtkDataSetCellIterator9GetCellIdEv_ZN11vtkPolyData13GetCellBoundsExPd_ZN13vtkPolyVertex7GetFaceEi_ZN19vtkBSPIntersections38ComputeIntersectionsUsingDataBoundsOffEvPyvtkImplicitSelectionLoop_ClassNew_ZN21vtkOctreePointLocator21GetCreateCubicOctantsEv_ZN8vtkVoxel13GetEdgePointsEiRPi_ZN14vtkHyperOctree13CopyStructureEP10vtkDataSetPyDict_Size_ZN6vtkBox7GetXMinEPd_ZN16vtkQuadraticQuad20InterpolateFunctionsEPdS0__ZN25vtkTriQuadraticHexahedron7GetFaceEi_ZN22vtkQuadraticLinearQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZNK30vtkExtractStructuredGridHelper7IsValidEv_ZN14vtkCellLocator17IntersectWithLineEPdS0_dRdS0_S0_RiRxP14vtkGenericCell_ZN18vtkPentagonalPrism17InterpolateDerivsEPdS0__ZN12vtkImageData16GetVoxelGradientEiiiP12vtkDataArrayS1__ZN9vtkKdNode13SetDataBoundsEPf_ZN20vtkDataSetAttributes12SetGlobalIdsEP12vtkDataArray_ZN8vtkPlane16EvaluateGradientEPdS0__ZN17vtkHexagonalPrism16GetNumberOfEdgesEv_ZN22vtkQuadraticHexahedron20InterpolateFunctionsEPdS0__ZN12vtkImageData3NewEv_Zeq11vtkEdgeBaseS_PyVTKAddFile_vtkPolyDataCollection_ZN8vtkGraph17ToUndirectedGraphEP18vtkUndirectedGraph_ZN19vtkUnstructuredGrid13GetPointCellsExP9vtkIdList_ZN19vtkQuadraticPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN11vtkCylinder3IsAEPKc_ZN15vtkSuperquadric7GetSizeEv_ZN8vtkVoxel12GetEdgeArrayEi_ZNK16vtkQuadraticQuad19NewInstanceInternalEv_ZN28vtkBiQuadraticQuadraticWedge11TriangulateEiP9vtkIdListP9vtkPoints_ZN14vtkPerlinNoise8SetPhaseEddd_ZN24vtkLagrangeInterpolation31GetVaryingParametersOfWedgeFaceEi_ZN6vtkBox17IntersectWithLineEPKdS1_S1_RdS2_PdS3_RiS4__ZN18vtkImplicitDataSet3NewEv_ZN20vtkPiecewiseFunction11GetClampingEv_ZN8vtkTable13GetColumnNameEx_ZN19vtkBSPIntersections15GetRegionBoundsEiPd_ZN30vtkExtractStructuredGridHelper12CopyCellDataEPiS0_P11vtkCellDataS2__ZN20vtkDataSetAttributes9CopyAllOnEi_ZN22vtkHyperTreeGridCursor9GetBoundsEPd_ZN20vtkDataSetAttributes16SetActiveTensorsEPKc_ZN9vtkKdTree18OmitZXPartitioningEv_ZN17vtkXMLDataElement9IsEqualToEPS__ZN24vtkLagrangeQuadrilateral3NewEv_ZN8vtkPixel19GetParametricCoordsEvPyvtkOrderedTriangulator_ClassNew_ITM_deregisterTMCloneTable_ZN17vtkAnimationScene11GetPlayModeEv_ZN8vtkPixel7GetFaceEi_ZNK29vtkUniformGridAMRDataIterator19NewInstanceInternalEv_ZN32vtkIncrementalOctreePointLocator27GetMaxPointsPerLeafMaxValueEv_ZN11vtkPointSet13CopyStructureEP10vtkDataSet_ZN19vtkLagrangeTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN11vtkMolecule10SetLatticeERK11vtkVector3dS2_S2__ZN7vtkQuad11DerivativesEiPdS0_iS0__ZNK20vtkSmoothErrorMetric19NewInstanceInternalEv_ZN16vtkHyperTreeGrid8DeepCopyEP13vtkDataObject_ZN33vtkIterativeClosestPointTransform3NewEv_ZN15vtkSuperquadric17GetThetaRoundnessEv_ZN19vtkUnstructuredGrid7GetDataEP14vtkInformation_ZN13vtkPolyVertex16GetNumberOfEdgesEv_ZN19vtkLagrangeTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_iPyvtkQuadraticWedge_ClassNew_ZN19vtkQuadraticPyramid17InterpolateDerivsEPdS0__ZN19vtkBSPIntersections13IntersectsBoxEidddddd_ZN14vtkCellLocator28FindClosestPointWithinRadiusEPddS0_P14vtkGenericCellRxRiRdS4__ZN8vtkGraph7GetDataEP14vtkInformation_Unwind_Resume@GCC_3.0_ZN16vtkTriangleStrip14DecomposeStripEiPxP12vtkCellArray_ZN19vtkCompositeDataSet17GetDataObjectTypeEv_ZN16vtkQuadraticEdge16EvaluatePositionEPdS0_RiS0_RdS0_PyvtkVector_IfLi3EE_TypeNew_ZN16vtkSelectionNode16COMPONENT_NUMBEREv_ZN35vtkGenericInterpolatedVelocityField19GetVectorsSelectionEv_ZN17vtkImplicitVolume8GetMTimeEv_ZN7vtkTree17GetDataObjectTypeEv_ZN9vtkSpline13SetRightValueEd_ZN8vtkTetra13GetEdgePointsEiRPi_ZN9vtkKdNode8GetRightEv_ZN12vtkHyperTree3IsAEPKc_ZN25vtkImplicitWindowFunction19GetImplicitFunctionEv_ZNK25vtkDataObjectTreeIterator19NewInstanceInternalEvPyvtkVertexAdjacencyList_TypeNewPyvtkBond_TypeNew_ZN10vtkDataSet18GetPointGhostArrayEv_ZN30vtkExtractStructuredGridHelper7GetSizeEi_ZN11vtkPolyLine13IsPrimaryCellEv_ZN16vtkLagrangeWedge17PointIndexFromIJKEiii_ZN9vtkKdTree17GetPointsInRegionEiPyvtkSmoothErrorMetric_ClassNew_ZN17vtkQuadraticTetra21GetParametricDistanceEPdPyVTKAddFile_vtkAttributesErrorMetric_ZN17vtkAMRInformation8DeepCopyEPS__ZN20vtkDataSetAttributes14GetPedigreeIdsEPKc_ZNK14vtkBoundingBox16ComputeDivisionsExPdPi_ZN16vtkHyperTreeGrid14HasInterfaceOnEv_ZNK7vtkCell19NewInstanceInternalEv_ZN10vtkLocator8GetLevelEv_ZN16vtkQuadraticQuad4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkCompositeDataSet30CURRENT_PROCESS_CAN_LOAD_BLOCKEv_ZN22vtkHyperTreeGridCursor7SetTreeEP12vtkHyperTree_ZN15vtkSuperquadric8GetScaleEv_ZN10vtkPolygon13ComputeNormalEP9vtkPointsPd_ZN17vtkStructuredGrid13CopyStructureEP10vtkDataSet_ZN21vtkLagrangeHexahedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkBSPIntersections13IntersectsBoxEiPd_ZN11vtkMolecule16SetLatticeOriginE11vtkVector3d_ZN17vtkXMLDataElement8DeepCopyEPS__ZN12vtkEmptyCell3IsAEPKc_ZN10vtkPyramid12GetFaceArrayEiPyVTKAddFile_vtkQuadraticTetra_ZN18vtkRectilinearGrid15SetYCoordinatesEP12vtkDataArray_ZN8vtkVoxel16GetNumberOfFacesEv_ZN19vtkGenericEdgeTable23CheckEdgeReferenceCountExxPyvtkTriangle_ClassNew_ZN16vtkQuadraticQuad16EvaluatePositionEPdS0_RiS0_RdS0__ZN21vtkLagrangeHexahedron16GetNumberOfEdgesEv_ZN16vtkHyperTreeGrid7GetDataEP14vtkInformation_ZN12vtkSelection3IsAEPKc_ZN33vtkIterativeClosestPointTransform19CheckMeanDistanceOnEvPyvtkPath_ClassNew_ZN14vtkUniformGrid7GetCellEiii_ZN25vtkMutableUndirectedGraph3IsAEPKcPyVTKAddFile_vtkMeanValueCoordinatesInterpolator_ZN17vtkXMLDataElement15SetXMLByteIndexEx_ZN19vtkUnstructuredGrid14ResizeCellListExi_ZN17vtkOverlappingAMR10GetParentsEjjRj_ZN13vtkDataObject26FIELD_NUMBER_OF_COMPONENTSEvPyvtkInEdgeType_TypeNew_ZN11vtkPointSet7GetDataEP14vtkInformation_ZN14vtkCellLocator3IsAEPKc_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_object_ZN24vtkImplicitSelectionLoop3IsAEPKc_ZN12vtkReebGraph3IsAEPKcPyLong_FromUnsignedLong_ZN30vtkExtractStructuredGridHelper17GetPartitionedVOIEPKiS1_S1_bPi_ZN21vtkLagrangeHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN17vtkImplicitVolume11GetOutValueEv_ZN10vtkDataSet16HasAnyBlankCellsEv_ZN11vtkTriangle7GetEdgeEi_ZN33vtkBiQuadraticQuadraticHexahedron16GetCellDimensionEv_ZN18vtkRectilinearGrid13ComputeBoundsEv_ZN17vtkGenericDataSet14SetTessellatorEP25vtkGenericCellTessellator_ZN14vtkPerlinNoise3IsAEPKcPyVTKAddFile_vtkBox_ZN11vtkTriangle11ProjectTo2DEPdS0_S0_S0_S0_S0__ZN21vtkOctreePointLocator20GetNumberOfLeafNodesEv_ZN13vtkHexahedron3NewEv_ZN10vtkQuadric3NewEv_ZN11vtkPolyLine16GetNumberOfFacesEvPyvtkOutEdgeType_TypeNew_ZN17vtkStructuredData3IsAEPKc_ZN32vtkIncrementalOctreePointLocator16FindClosestPointEPKd_ZN29vtkUniformGridAMRDataIterator15GetCurrentLevelEv_ZN9vtkSphere9GetCenterEv_ZNK14vtkGenericCell19NewInstanceInternalEv_ZN25vtkMutableUndirectedGraph12RemoveVertexExPyVTKAddFile_vtkDataObjectTree_ZN23vtkUnstructuredGridBase8DeepCopyEP13vtkDataObject_ZN10vtkPyramid16EvaluatePositionEPdS0_RiS0_RdS0__ZN10vtkBSPCuts3IsAEPKc_ZN14vtkUniformGrid16HasAnyBlankCellsEv_ZN16vtkQuadraticQuad19GetParametricCenterEPd_ZN17vtkDataObjectTree14SetDataSetFromEP25vtkDataObjectTreeIteratorP13vtkDataObject_ZN16vtkLagrangeCurve3IsAEPKc_ZN17vtkOverlappingAMR22SetAMRBlockSourceIndexEjji_ZN20vtkPiecewiseFunction11ShallowCopyEP13vtkDataObject_ZN13vtkDataObject3NewEv_ZN19vtkUnstructuredGrid8GetFacesEx_ZN23vtkMutableDirectedGraph7AddEdgeExRK10vtkVariantP15vtkVariantArrayPyVTKAddFile_vtkOrderedTriangulator_ZN18vtkRectilinearGrid3IsAEPKc_ZN25vtkTriQuadraticHexahedron17InterpolateDerivsEPdS0__ZN18vtkPentagonalPrism13GetEdgePointsEiRPi_ZN24vtkIncrementalOctreeNode12GetMaxBoundsEv_ZN13vtkPolyVertex13IsPrimaryCellEv_ZN17vtkAnimationScene6AddCueEP15vtkAnimationCue_ZN8vtkTable4DumpEjiPyvtkQuadraticQuad_ClassNew_ZN25vtkOctreePointLocatorNode16IntersectsRegionEP21vtkPlanesIntersectioni_ZN20vtkDataSetAttributes14GetCopyTensorsEi_ZN9vtkKdNode3NewEv_ZN21vtkLagrangeHexahedron11DerivativesEiPdS0_iS0_PyvtkGenericAdaptorCell_ClassNewPyvtkAMRDataInternals_ClassNewPyvtkPlane_ClassNew_ZN7vtkCone16GetAngleMinValueEv_ZN32vtkReebGraphSimplificationMetric13SetLowerBoundEd_ZN8vtkVoxel7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN16vtkHyperTreeGrid26GetInterfaceInterceptsNameEv_ZN15vtkPointLocator9GetPointsEv_ZN9vtkKdNode12SetMinBoundsEPKd_ZN18vtkPentagonalPrism12CellBoundaryEiPdP9vtkIdList_ZN12vtkImageData23GetContinuousIncrementsEPiRxS1_S1_PyVTKAddFile_vtkTreeDFSIterator_ZN15vtkCellIterator3IsAEPKc_ZN20vtkDataSetAttributes20GetAbstractAttributeEi_ZN14vtkHyperOctree17GetNumberOfPointsEvPyVTKAddFile_vtkLine_ZN14vtkHyperOctree30GetMaxNumberOfPointsOnBoundaryEi_ZN9vtkKdTree29IncludeRegionBoundaryCellsOffEv_ZN32vtkIncrementalOctreePointLocator18InitPointInsertionEP9vtkPointsPKdPyVTKAddFile_vtkImplicitWindowFunction_ZN12vtkFieldData16GetAbstractArrayEi_ZNK22vtkQuadraticHexahedron19NewInstanceInternalEv_ZN16vtkLagrangeWedge16GetNumberOfEdgesEv_ZN9vtkAMRBox18GetCellLinearIndexERKS_iiiPi_ZN25vtkTriQuadraticHexahedron11DerivativesEiPdS0_iS0__ZN12vtkEdgeTable3NewEv_ZN17vtkOverlappingAMR20PrintParentChildInfoEjj_ZN20vtkDataSetAttributes14GetPedigreeIdsEv_ZN15vtkSuperquadric16EvaluateFunctionEPdPyvtkCone_ClassNew_ZN8vtkTetra19GetParametricCenterEPdPyVTKAddFile_vtkCubicLine_ZN22vtkQuadraticHexahedron16GetNumberOfFacesEv_ZN19vtkStructuredPoints3IsAEPKc_ZN19vtkBSPIntersections19GetRegionDataBoundsEiPd_ZN7vtkCell9GetBoundsEv_ZN11vtkPolyLine11TriangulateEiP9vtkIdListP9vtkPoints_ZN22vtkAbstractCellLocator23SetNumberOfCellsPerNodeEi_ZN22vtkQuadraticHexahedron11DerivativesEiPdS0_iS0__ZN19vtkQuadraticPyramid17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN21vtkStaticPointLocator22GenerateRepresentationEiP11vtkPolyData_ZNK7vtkQuad19NewInstanceInternalEv_ZN18vtkBiQuadraticQuad11GetCellTypeEv_ZN18vtkPentagonalPrism19GetParametricCoordsEv_ZN17vtkConvexPointSet4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN17vtkStructuredGrid13GetDimensionsEPi_ZN19vtkQuadraticPolygon16GetNumberOfEdgesEv_ZN8vtkTable24GetAttributesAsFieldDataEi_ZN16vtkTriangleStrip16EvaluateLocationERiPdS1_S1_PyvtkIncrementalPointLocator_ClassNewPyVTKAddFile_vtkLagrangeInterpolation_ZN14vtkUniformGrid3NewEv_ZN32vtkIncrementalOctreePointLocator17GetNumberOfPointsEv_ZN11vtkCylinder7GetAxisEv_ZN17vtkUniformGridAMR9GetBoundsEPd_ZNK10vtkPolygon19NewInstanceInternalEv_ZN11vtkPointSet8GetMTimeEv_ZN12vtkImageData19GetAxisUpdateExtentEiRiS0_PKi_ZN14vtkCellLocator21FindCellsWithinBoundsEPdP9vtkIdList_ZN17vtkQuadraticWedge11GetCellTypeEv_ZN14vtkGenericCell11SetPointIdsEP9vtkIdListPyvtkLagrangeCurve_ClassNew_ZN14vtkHyperOctree8DeepCopyEP13vtkDataObject_ZNK17vtkStructuredGrid19NewInstanceInternalEv_ZN18vtkImplicitDataSet14SetOutGradientEPd_ZN18vtkImplicitBoolean11AddFunctionEP19vtkImplicitFunction_ZN19vtkQuadraticPyramid16GetNumberOfFacesEv_ZN16vtkHyperTreeGrid7GetCellEiii_ZN21vtkPlanesIntersection25GetNumberOfRegionVerticesEv_Z31vtkOutputWindowDisplayErrorTextPKc_ZN24vtkIncrementalOctreeNode12GetMinBoundsEv_ZN21vtkLagrangeHexahedron3NewEv_ZN25vtkTriQuadraticHexahedron19GetParametricCoordsEv_ZN10vtkPolygon8IsConvexEP9vtkPointsiPx_ZN9vtkKdTree28IncludeRegionBoundaryCellsOnEv_ZN22vtkQuadraticLinearQuad20InterpolateFunctionsEPdS0__ZN29vtkQuadratureSchemeDefinition3NewEv_ZN14vtkGenericCell11DerivativesEiPdS0_iS0_PyvtkAMRUtilities_ClassNew_ZN16vtkSelectionNode16SetSelectionDataEP20vtkDataSetAttributes_ZN22vtkQuadraticHexahedron3NewEv_ZN8vtkWedge13GetEdgePointsEiRPiPyvtkTable_ClassNew_ZN11vtkMolecule20GetAtomicNumberArrayEv_ZNK17vtkInEdgeIterator19NewInstanceInternalEv_ZN17vtkStructuredGrid7GetCellExP14vtkGenericCell_ZNK9vtkObject19NewInstanceInternalEv_ZN17vtkQuadraticTetra16GetCellDimensionEv_ZN24vtkCompositeDataIterator3IsAEPKc_ZN13vtkDataObject8DeepCopyEPS__ZN14vtkGenericCell8SetFacesEPx_ZN12vtkImageData13GetScalarSizeEv_ZNK25vtkImplicitWindowFunction19NewInstanceInternalEv_ZN13vtkPythonArgs5ArrayIhEC1El_ZN35vtkGenericInterpolatedVelocityField3IsAEPKc_ZN6vtkBox9SetBoundsEdddddd_ZNK25vtkDistributedGraphHelper12GetEdgeOwnerEx_ZN9vtkKdTree24GetNumberOfRegionsOrMoreEv_ZN8vtkGraph18DeepCopyEdgePointsEPS__ZN10vtkDataSet26UpdatePointGhostArrayCacheEv_ZN16vtkSelectionNode11PIXEL_COUNTEv_ZN14vtkCellLocator18FindCellsAlongLineEPdS0_dP9vtkIdListPyvtkGenericSubdivisionErrorMetric_ClassNew_ZN9vtkSpline8AddPointEdd_ZN18vtkRectilinearGrid15GetYCoordinatesEv_ZN22vtkQuadraticLinearQuad17InterpolateDerivsEPdS0__ZN17vtkStructuredGrid11UnBlankCellExPyvtkQuadraticHexahedron_ClassNew_ZN20vtkPiecewiseFunction23AllowDuplicateScalarsOnEv_ZN10vtkPolygon3NewEvPyvtkDataSet_ClassNewPyVTKAddFile_vtkMappedUnstructuredGridCellIterator_ZN13vtkDataObject18SetActiveAttributeEP14vtkInformationiPKciPyvtkIncrementalOctreePointLocator_ClassNew_ZN20vtkPiecewiseFunction11ClampingOffEv_ZN21vtkStaticPointLocator26SetNumberOfPointsPerBucketEi_ZN21vtkPlanesIntersection3IsAEPKc_ZN25vtkDistributedGraphHelper3IsAEPKc_ZN19vtkQuadraticPyramid20InterpolateFunctionsEPdS0__ZN14vtkHyperOctree7SetSizeEPd_ZN8vtkTable10InitializeEv_ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN7vtkLine16EvaluateLocationERiPdS1_S1__ZN19vtkCompositeDataSet10InitializeEv_Z46PyvtkDataSetAttributes_AttributeTypes_FromEnumi_ZN20vtkDataSetAttributes14GetCopyScalarsEi_ZN10vtkPolygon17DistanceToPolygonEPdiS0_S0_S0__ZN11vtkPolyData9GetStripsEv_ZN11vtkPolyData5ResetEv_ZN19vtkAnnotationLayers11ShallowCopyEP13vtkDataObject_ZN29vtkGenericAttributeCollection26GetAttributesToInterpolateEv_ZN29vtkGenericAttributeCollection8GetMTimeEv_ZN17vtkInEdgeIterator9GetVertexEv_ZN15vtkPointLocator34GetNumberOfPointsPerBucketMinValueEv_ZN12vtkImageData17PrepareForNewDataEv_ZN17vtkQuadraticWedge3IsAEPKc_ZN12vtkImageData27HasNumberOfScalarComponentsEP14vtkInformation_ZN13vtkPythonUtil12AddEnumToMapEP11_typeobject_ZN25vtkMutableUndirectedGraph7AddEdgeERK10vtkVariantxP15vtkVariantArray_ZN17vtkXMLDataElement9GetParentEv_ZN18vtkRectilinearGrid16GetNumberOfCellsEv_ZN11vtkPolyData9CopyCellsEPS_P9vtkIdListP15vtkPointLocator_ZN16vtkLagrangeWedge10InitializeEv_ZN11vtkMolecule18DeepCopyAttributesEPS__ZN30vtkExtractStructuredGridHelper29GetMappedExtentValueFromIndexEii_ZN25vtkTriQuadraticHexahedron11GetCellTypeEv_ZN12vtkImageData9FindPointEdddPyvtkGenericCellIterator_ClassNew_ZN17vtkOverlappingAMR24NUMBER_OF_BLANKED_POINTSEv_ZN17vtkQuadraticTetra20InterpolateFunctionsEPdS0__ZN11vtkPolyData27GetScalarFieldCriticalIndexExPKc_ZN7vtkTree6IsLeafEx_ZNK12vtkCellArray19NewInstanceInternalEv_ZN11vtkPolyData8AllocateEPS_xi_ZN12vtkReebGraph11CloseStreamEv_ZN22vtkHyperTreeGridCursor8GetPointEPdPyvtkLagrangeHexahedron_ClassNew_ZN12vtkCellTypes10InsertCellExhx_ZN17vtkHexagonalPrism11DerivativesEiPdS0_iS0__ZN22vtkOrderedTriangulator15SetUseTemplatesEi_ZN13vtkAnnotation7OPACITYEv_ZN15vtkTreeIterator7GetTreeEv_ZN19vtkQuadraticPyramid11GetCellTypeEv_ZN33vtkBiQuadraticQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN10vtkDataSet11ShallowCopyEP13vtkDataObject_ZN13vtkPythonArgs13ArgCountErrorEii_ZNK19vtkUnstructuredGrid19NewInstanceInternalEv_ZN11vtkMolecule15GetAtomPositionExPf_ZN18vtkBiQuadraticQuad16EvaluateLocationERiPdS1_S1__ZN20vtkDataSetAttributes28GetLongAttributeTypeAsStringEi_ZN25vtkOctreePointLocatorNode5GetIDEv_ZN9vtkKdTree18OmitNoPartitioningEv_ZNK17vtkDataObjectTree19NewInstanceInternalEv_ZN25vtkMutableUndirectedGraph9AddVertexEv_ZN11vtkPolyData17ReplaceLinkedCellExiPxPyvtkNonOverlappingAMR_ClassNew_ZN20vtkDataSetAttributes12GetGlobalIdsEv_ZN19vtkLagrangeTriangle16GetCellDimensionEv_ZN19vtkLagrangeTriangle20InterpolateFunctionsEPdS0__ZN22vtkAbstractCellLocator21FindCellsWithinBoundsEPdP9vtkIdList_ZN23vtkMutableDirectedGraph13LazyAddVertexEP15vtkVariantArray_ZNK10vtkPyramid19NewInstanceInternalEvPyvtkPixel_ClassNewPyVTKAddFile_vtkBSPCuts_ZN25vtkDistributedGraphHelper26GetVertexOwnerByPedigreeIdERK10vtkVariant_ZN20vtkDataSetAttributes10GetScalarsEPKc_ZN11vtkCylinder7SetAxisEddd_ZN15vtkPointLocator15IsInsertedPointEddd_ZN12vtkGraphEdge9GetTargetEv_ZN12vtkHyperTree19FindChildParametersEiRxRb__gmon_start___ZN12vtkCubicLine16GetCellDimensionEv_ZN20vtkDataSetAttributes14GetCopyNormalsEi_ZN16vtkSelectionNode21SubtractSelectionListEPS__ZN9vtkAMRBox6RefineEi_ZN8vtkGraph10GetOutEdgeExx_ZN16vtkQuadraticEdge11GetCellTypeEv_ZN7vtkLine19GetParametricCoordsEv_ZN15vtkPointLocator15InsertNextPointEPKd_ZN32vtkIncrementalOctreePointLocator24FindClosestInsertedPointEPKd_ZN29vtkUniformGridAMRDataIterator3NewEv_ZN16vtkTriangleStrip3NewEv_ZN12vtkSelection3NewEvPyvtkDataSetCellIterator_ClassNew_ZN17vtkOverlappingAMR10SetSpacingEjPKd_ZN23vtkUnstructuredGridBase7GetDataEP14vtkInformation_ZN6vtkBox9AddBoundsEPKd_ZN23vtkQuadraticLinearWedge16EvaluatePositionEPdS0_RiS0_RdS0_PyVTKAddFile_vtkAtom_ZN13vtkDataObject17POINT_DATA_VECTOREv_ZNK12vtkCubicLine19NewInstanceInternalEv_ZN13vtkDataObject17GetDataObjectTypeEv_ZN14vtkCellLocator18GetNumberOfBucketsEv_ZN12vtkImageData16GetNumberOfCellsEv_ZN9vtkAMRBox4GrowEi_ZN9vtkKdTree9PrintTreeEv_ZN16vtkQuadraticEdge3NewEv_ZN33vtkIterativeClosestPointTransform10SetLocatorEP14vtkCellLocator_ZN29vtkGenericAttributeCollection31SetAttributesToInterpolateToAllEv_ZN31vtkUnstructuredGridCellIterator9GetCellIdEvPyvtkAdjacentVertexIterator_ClassNew_ZN14vtkUniformGrid9BlankCellEx_ITM_registerTMCloneTable_ZN15vtkSuperquadric9SetCenterEPd_ZN17vtkQuadraticWedge19GetParametricCoordsEv_ZN17vtkUniformGridAMR3NewEvPyvtkRect_IiE_TypeNew_ZN17vtkStructuredGrid7GetCellEx_ZN17vtkXMLDataElement18SetVectorAttributeEPKciPKiPyVTKAddFile_vtkDataObjectCollectionPyVTKAddFile_vtkHyperOctree_ZN21vtkOctreePointLocator15GetRegionBoundsEiPd_ZN22vtkBiQuadraticTriangle19GetParametricCenterEPd_ZN9vtkSpline13GetRightValueEv_ZN25vtkOctreePointLocatorNode17GetSubOctantIndexEPdi_ZN10vtkPolygon14PointInPolygonEPdiS0_S0_S0__ZN8vtkVoxel7GetEdgeEi_ZN11vtkTriangle21GetParametricDistanceEPd_ZNK16vtkHyperTreeGrid19NewInstanceInternalEv_ZN22vtkPointsProjectedHull6UpdateEv_ZN22vtkHyperTreeGridCursor8SameTreeEP18vtkHyperTreeCursor_ZN21vtkLagrangeHexahedron16EvaluateLocationERiPdS1_S1__ZN16vtkHyperTreeGrid14SetOrientationEj_ZN20vtkOStrStreamWrapper5rdbufEv_ZN7vtkPath7GetCellExP14vtkGenericCell_ZNK8vtkTetra19NewInstanceInternalEv_ZN35vtkGenericInterpolatedVelocityField10SetCachingEi_ZN18vtkUndirectedGraph7GetDataEP20vtkInformationVectori_ZN16vtkSelectionNode8GetMTimeEv_ZN20vtkStaticCellLocator17IntersectWithLineEPKdS1_P9vtkPointsP9vtkIdList_ZN22vtkOrderedTriangulator9AddTetrasEiP19vtkUnstructuredGrid_ZN31vtkUnstructuredGridCellIterator3NewEvPyVTKTemplate_AddItem_ZN16vtkHyperTreeGrid13GetPointCellsExP9vtkIdList_ZN11vtkPolyData12GetMeshMTimeEv_ZN21vtkPlanesIntersection21PolygonIntersectsBBoxEPdP9vtkPoints_ZN18vtkRectilinearGrid28ComputeStructuredCoordinatesEPdPiS0__ZN17vtkQuadraticWedge12GetEdgeArrayEi_ZN9vtkSpline26GetRightConstraintMaxValueEv_ZN8vtkWedge16EvaluateLocationERiPdS1_S1__Zne11vtkEdgeBaseS__ZN14vtkUniformGrid14GetMaxCellSizeEv_ZN12vtkCellLinks3IsAEPKcPyVTKAddFile_vtkAMRUtilitiesPyvtkImplicitHalo_ClassNew_ZN20vtkDataSetAttributes18SetActiveAttributeEii_ZN22vtkHyperTreeGridCursor19GetNumberOfChildrenEv_ZN24vtkIncrementalOctreeNode16DeleteChildNodesEv_ZN16vtkDirectedGraph7GetDataEP14vtkInformation_ZN21vtkLagrangeHexahedron24SubCellCoordinatesFromIdERiS0_S0_i_ZN16vtkSelectionNode12GetFieldTypeEv_ZN15vtkImplicitHalo9SetCenterEddd_ZN7vtkLine27DistanceBetweenLineSegmentsEPdS0_S0_S0_S0_S0_RdS1__ZN18vtkRectilinearGrid15SetXCoordinatesEP12vtkDataArray_ZN21vtkKdTreePointLocator12BuildLocatorEv_ZN19vtkQuadraticPolygon7GetEdgeEi_ZNK18vtkHyperTreeCursor19NewInstanceInternalEv_ZN13vtkPolyhedron16EvaluateLocationERiPdS1_S1__ZN21vtkOctreePointLocator25SetMaximumPointsPerRegionEi_ZN12vtkCellLinks10BuildLinksEP10vtkDataSetP12vtkCellArray_ZN21vtkOctreePointLocator22GenerateRepresentationEiP11vtkPolyDataPyVTKAddFile_vtkTetra_ZN25vtkOctreePointLocatorNode13ContainsPointEdddi_ZN18vtkTreeBFSIterator3NewEv_ZN7vtkQuad3IsAEPKc_ZN13vtkDataObject11DATA_OBJECTEv_ZN28vtkBiQuadraticQuadraticWedge16EvaluateLocationERiPdS1_S1__ZN23vtkPointSetCellIterator3IsAEPKc_ZN17vtkQuadraticWedge22InterpolationFunctionsEPdS0__ZN17vtkOverlappingAMR3IsAEPKcPyvtkObject_ClassNew_ZN32vtkIncrementalOctreePointLocator35FindClosestPointWithinSquaredRadiusEdPKdRdPyvtkLagrangeTriangle_ClassNewPyVTKAddFile_vtkOverlappingAMRPyvtkDataObjectTreeIterator_ClassNew_ZN25vtkImplicitWindowFunction16EvaluateFunctionEPd_ZN24vtkCompositeDataIterator16SkipEmptyNodesOnEvPyvtkInformationKey_ClassNew_ZN13vtkPolyVertex11DerivativesEiPdS0_iS0_PyvtkImplicitSum_ClassNew_ZN17vtkXMLDataElement17GetAttributeValueEi_ZN22vtkAbstractCellLocator29GetUseExistingSearchStructureEv_ZN16vtkHyperTreeGrid8GetPointExPdPyVTKAddFile_vtkGraphEdge_ZN24vtkIncrementalOctreeNode28ExportAllPointIdsByDirectSetEPxP9vtkIdList_ZN25vtkTriQuadraticHexahedron12GetFaceArrayEi_ZN23vtkGeometricErrorMetric29SetAbsoluteGeometricToleranceEd_ZN17vtkOverlappingAMR5AuditEv_ZN9vtkKdTree10GetDataSetEv_ZN20vtkQuadraticTriangle3IsAEPKc_ZN19vtkQuadraticPyramid16EvaluatePositionEPdS0_RiS0_RdS0__ZN12vtkImageData11ShallowCopyEP13vtkDataObjectPyVTKAddFile_vtkPixelExtent_ZN20vtkDataSetAttributes16GetCopyAttributeEii_ZN35vtkMeanValueCoordinatesInterpolator3NewEv_ZN13vtkDataObject14DATA_TYPE_NAMEEv_ZN16vtkSelectionNode16INDEXED_VERTICESEv_ZN9vtkAMRBoxC1Ev_ZN14vtkPixelExtent8GrowHighERKS_iiPyVTKAddFile_vtkDistributedGraphHelper_ZN15vtkSuperquadric9SetCenterEddd_ZN20vtkStaticCellLocator3IsAEPKc_ZN16vtkSelectionNode7INVERSEEv_ZN8vtkPixel12CellBoundaryEiPdP9vtkIdList_ZN33vtkBiQuadraticQuadraticHexahedron12GetEdgeArrayEi_ZN9vtkSphere9SetRadiusEdPyVTKAddFile_vtkMappedUnstructuredGrid_ZN13vtkHexahedron7GetFaceEi_ZN12vtkFieldData11InsertTupleExxPS__ZN32vtkIncrementalOctreePointLocator16FindClosestPointEdddPyvtkStructuredPointsCollection_ClassNew_ZN19vtkUnstructuredGrid8DeepCopyEP13vtkDataObject_ZN29vtkUniformGridAMRDataIterator15GetCurrentIndexEv_ZN25vtkOctreePointLocatorNode17GetNumberOfPointsEv_ZN8vtkPlane17IntersectWithLineEPdS0_S0_S0_RdS0_PyVTKAddFile_vtkDataArrayDispatcher_ZN19vtkQuadraticPyramid3IsAEPKc_ZN22vtkAbstractCellLocator16FindClosestPointEPdS0_RxRiRdPyVTKAddFile_vtkImplicitDataSet_ZNK29vtkStructuredPointsCollection19NewInstanceInternalEv_ZN23vtkPointSetCellIterator3NewEv_ZN12vtkArrayData3NewEv_ZN8vtkVoxel19InterpolationDerivsEPdS0_PyVTKAddFile_vtkMolecule_ZN12vtkImageData26GetScalarComponentAsDoubleEiiii_ZN11vtkPolyData7GetDataEP20vtkInformationVectori_ZN10vtkPolygon8IsConvexEP14vtkIdTypeArrayP9vtkPointsPyvtkImplicitDataSet_ClassNew_ZN17vtkAMRInformation10HasSpacingEjPyvtkKdTree_ClassNew_ZN17vtkStructuredData9SetExtentEPiS0_PyvtkHyperTreeGridCursor_ClassNewPyUnicode_FromStringAndSize_ZN19vtkQuadraticPyramid7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkUnstructuredGrid24DecomposeAPolyhedronCellExPxRxP12vtkCellArrayP14vtkIdTypeArray_ZN13vtkAnnotation3NewEv_ZN17vtkDataObjectTree10InitializeEv_ZN22vtkQuadraticHexahedron19GetParametricCoordsEv_ZN7vtkTree7GetDataEP14vtkInformation_ZN16vtkLagrangeCurve22RequiresInitializationEv_ZN10vtkPolygon16GetCellDimensionEv_ZTVNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEEE@GLIBCXX_3.4.21_ZNK35vtkGenericInterpolatedVelocityField19NewInstanceInternalEv_ZN11vtkPolyData8GetLinesEvPyvtkUniformGridAMRDataIterator_ClassNew_ZN14vtkGenericCell17InterpolateDerivsEPdS0__ZN8vtkWedge3NewEv_ZN19vtkUnstructuredGrid8AllocateExi_ZN17vtkAMRInformation10SetSpacingEjPKd_ZN16vtkSelectionNode15COMPOSITE_INDEXEvPyvtkStaticCellLinks_ClassNew_ZN17vtkXMLDataElement15SetIntAttributeEPKci_ZN17vtkConvexPointSet13IsPrimaryCellEv_ZN19vtkBSPIntersections9GetBoundsEPd_ZN16vtkHyperTreeGrid13CopyStructureEP10vtkDataSet_ZN20vtkPiecewiseFunction12SetNodeValueEiPd_ZN20vtkDataSetAttributes10GetTensorsEvPyVTKAddFile_vtkAbstractCellLocator_ZN28vtkBiQuadraticQuadraticWedge17InterpolateDerivsEPdS0__ZN15vtkSuperquadric8SetScaleEPd_ZN8vtkVoxel12GetFaceArrayEi_ZN9vtkKdNode13ContainsPointEdddi_ZN9vtkKdTree15GetDataSetIndexEP10vtkDataSet_ZN11vtkPolyData20GetCellEdgeNeighborsExxxP9vtkIdList_ZN12vtkCellLinks8AllocateExxPyvtkVector3d_TypeNew_ZN24vtkImplicitSelectionLoop8GetMTimeEv_ZN14vtkGenericCell13IsPrimaryCellEv_ZN6vtkBox7GetXMinERdS0_S0__ZNSt6localeC1Ev@GLIBCXX_3.4_ZN14vtkHyperOctree12GetDimensionEv_ZN25vtkAdjacentVertexIterator8GetGraphEv_ZNSt8ios_base4InitD1Ev@GLIBCXX_3.4_ZN16vtkHyperTreeGrid17GetNumberOfLevelsEx_ZN22vtkQuadraticHexahedron16GetNumberOfEdgesEv_ZN22vtkBiQuadraticTriangle22InterpolationFunctionsEPdS0__ZN9vtkKdTree8TimingOnEvPyBool_FromLong_ZN9vtkSpline18SetRightConstraintEi_ZN16vtkHyperTreeGrid7GetTreeEx_ZN19vtkQuadraticPyramid19InterpolationDerivsEPdS0__ZN12vtkCubicLine11TriangulateEiP9vtkIdListP9vtkPoints_ZN21vtkOctreePointLocator24FindClosestPointInRegionEidddRd_ZN16vtkLagrangeTetra4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN9vtkKdTree40SetGenerateRepresentationUsingDataBoundsEi_ZN22vtkOrderedTriangulator16GetPointLocationEx.symtab.strtab.shstrtab.note.gnu.property.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.gcc_except_table.init_array.fini_array.data.rel.ro.dynamic.got.plt.data.bss.comment .$Ao3K p6p6Shh[oX X j$ho//w008B ;P P  P P p""""`d Y/Y/ `/`/#I$>$>??L4?D4?D;DDDDDD DDpDD'DDHi`9E`)E< @vI(fI #0(fI+XfI5 MU,