ELF>@@8 @ 0000:JJnn;KKPP $$Std Ptd<<QtdRtd:JJGNUGNU:wR`lW͹  @@ @,gGJHQ@(D0!"'?41" `TTP1L$uBp!J X  H 0"]p    !"#%&(*+,-.1345689;=>?@ABDEG g(d{cs#I{&\Nw!9=w4U$1=#ĺ*ÌZ+\yӞyuOqdV$cLkkME´E|/ e'ML'hz[JpO&ts=NwF RŚ0v`v42vy+Hx9IC>ޙ,$g ]~t5|k#_by[i ^˘˧(A<NŌż4*/+sV#IM|U6* vj.zئ1s[?LwJH^D *fj;D,jl\ N张\ьzBbgNxR * |{0Ez[-~iRL }̓<0vx[ݴ)b}iMPs;{wߋeFԟ3=UVV_>(ye]=Sw$?SwJ6˴`1pDTYH&Ri *W-z?3Zـ+_!z 6 !3 PN $#& L(Xl!t ~t#_.d! F""4p.J & Xn ]!  .$) `&t Oc#X!  !#0 T  #d&K  .!#dyv^H 9B!U!R"A . !0 x2!%K  ;O#ON."[%%o  R [$1  !S x'&! g AR!qq g  y, ="') C "@ p,O(i 1+ppX,PrX$"`A"C<"PC1"`dX9 M"AN`?MD'0hX%PC #PMz" e ,ps] "O "r- -+%@C )lM"`BF*o"P<v "0O H " rQ -Av n` `pO+0q]2"ЅX"`<j " O,A#"2}"P  "qXq-A_+p]%eY"C S"C +"dQ(i "M%`C "B PoHM/$"P;COE,rY4#"Cd"0Q,A#M-@A"PB 0&Pfz"B *0mm*pn;-A'(i M" ",<"PC 9"C +pYp B"0eO"`C!"`k"@X9*m&f5)j&g%"C<'i ?O"@B 1.-A", "r uM$"p6O)i  ,M" i)Pk(i U"A)kV-PA"0B T(i a" C) NO"C "r D"C -`A-A pNH"B)#"3"Q+qXs,sX"C z$"`= 0IO"C6"MjO"C #"P5 "@O<) "r<'i *oX$"p>+qX"pA"OPjM"B T O> "O'pi Og" A__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_ZN18vtkAmoebaMinimizer16SetFunctionValueEd_ZN18vtkAmoebaMinimizer19SetContractionRatioEd_ZN18vtkAmoebaMinimizer27GetContractionRatioMinValueEv_ZN18vtkAmoebaMinimizer27GetContractionRatioMaxValueEv_ZN18vtkAmoebaMinimizer19GetContractionRatioEv_ZN18vtkAmoebaMinimizer17SetExpansionRatioEd_ZN18vtkAmoebaMinimizer25GetExpansionRatioMinValueEv_ZN18vtkAmoebaMinimizer25GetExpansionRatioMaxValueEv_ZN18vtkAmoebaMinimizer17GetExpansionRatioEv_ZN18vtkAmoebaMinimizer12SetToleranceEd_ZN18vtkAmoebaMinimizer12GetToleranceEv_ZN18vtkAmoebaMinimizer21SetParameterToleranceEd_ZN18vtkAmoebaMinimizer21GetParameterToleranceEv_ZN18vtkAmoebaMinimizer16SetMaxIterationsEi_ZN18vtkAmoebaMinimizer16GetMaxIterationsEv_ZN18vtkAmoebaMinimizer13GetIterationsEv_ZN18vtkAmoebaMinimizer22GetFunctionEvaluationsEv_ZN18vtkAmoebaMinimizer3NewEv_ZNK18vtkAmoebaMinimizer19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN18vtkAmoebaMinimizer3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_PyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyFloat_FromDouble_ZN18vtkAmoebaMinimizer10InitializeEv_Py_NoneStruct_ZN18vtkAmoebaMinimizer16EvaluateFunctionEv_ZN13vtkPythonArgs8GetValueERi_ZN18vtkAmoebaMinimizer17GetParameterScaleEPKc_ZN18vtkAmoebaMinimizer17GetParameterValueEPKc_ZN13vtkPythonArgs8GetValueERd_ZN18vtkAmoebaMinimizer17SetParameterValueEid_ZN18vtkAmoebaMinimizer17SetParameterScaleEid_ZN18vtkAmoebaMinimizer17SetParameterValueEPKcd_ZN18vtkAmoebaMinimizer17SetParameterScaleEPKcdstrlenPyUnicode_FromStringAndSizePyErr_ClearPyBytes_FromStringAndSize_ZN13vtkPythonArgs11GetFunctionERP7_object_Z17vtkPythonVoidFuncPv_ZN18vtkAmoebaMinimizer11SetFunctionEPFvPvES0__Z26vtkPythonVoidFuncArgDeletePv_ZN18vtkAmoebaMinimizer20SetFunctionArgDeleteEPFvPvEPyvtkAmoebaMinimizer_ClassNewPyVTKClass_AddPyvtkObject_ClassNewPyType_ReadyPyVTKAddFile_vtkAmoebaMinimizerPyDict_SetItemString_Py_Dealloc_ZN18vtkAmoebaMinimizer7IterateEv_ZN18vtkAmoebaMinimizer8MinimizeEvPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del_ZN14vtkFunctionSet20GetNumberOfFunctionsEv_ZN14vtkFunctionSet31GetNumberOfIndependentVariablesEv_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN13vtkPythonArgs16PureVirtualErrorEv_ZN13vtkPythonArgs8GetArrayEPdi_ZN13vtkPythonArgs8SetArrayEiPKdi__gxx_personality_v0_Unwind_Resume_ZNK14vtkFunctionSet19NewInstanceInternalEv_ZN9vtkObject3NewEv_ZN14vtkFunctionSet3IsAEPKcPyvtkFunctionSet_ClassNewPyVTKAddFile_vtkFunctionSet_ZN28vtkInitialValueProblemSolver15ComputeNextStepEPdS0_dRddS1__ZN28vtkInitialValueProblemSolver15ComputeNextStepEPdS0_S0_dRddS1__ZN28vtkInitialValueProblemSolver14GetFunctionSetEv_ZN28vtkInitialValueProblemSolver10IsAdaptiveEv_ZNK28vtkInitialValueProblemSolver19NewInstanceInternalEv_ZN28vtkInitialValueProblemSolver3IsAEPKc_ZN13vtkPythonArgs11SetArgValueEid_Z50PyvtkInitialValueProblemSolver_ErrorCodes_FromEnumiPy_BuildValuePyLong_TypePyvtkInitialValueProblemSolver_ClassNew_ZN13vtkPythonUtil12AddEnumToMapEP11_typeobjectPyVTKAddFile_vtkInitialValueProblemSolver_ZN28vtkInitialValueProblemSolver14SetFunctionSetEP14vtkFunctionSetPyObject_Free_ZN12vtkMatrix3x33NewEv_ZNK12vtkMatrix3x319NewInstanceInternalEv_ZN12vtkMatrix3x37AdjointEPKdPd_ZN12vtkMatrix3x311Multiply3x3EPKdS1_Pd_ZN12vtkMatrix3x39TransposeEPKdPd_ZN12vtkMatrix3x36InvertEPKdPd_ZN12vtkMatrix3x38DeepCopyEPdPKd_ZN12vtkMatrix3x313MultiplyPointEPKdS1_Pd_ZN12vtkMatrix3x33IsAEPKc_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromStringPyBool_FromLong_ZN12vtkMatrix3x311DeterminantEPKd_ZN12vtkMatrix3x38IdentityEPd_ZN12vtkMatrix3x34ZeroEPdPyvtkMatrix3x3_ClassNewPyVTKAddFile_vtkMatrix3x3_ZN12vtkMatrix4x43NewEv_ZNK12vtkMatrix4x419NewInstanceInternalEv_ZN12vtkMatrix4x47AdjointEPKdPd_ZN12vtkMatrix4x413MultiplyPointEPKdS1_Pd_ZN12vtkMatrix4x49TransposeEPKdPd_ZN12vtkMatrix4x46InvertEPKdPd_ZN12vtkMatrix4x48DeepCopyEPdPKd_ZN12vtkMatrix4x411DeterminantEPKd_ZN12vtkMatrix4x48IdentityEPd_ZN12vtkMatrix4x44ZeroEPd_ZN12vtkMatrix4x43IsAEPKc_ZN13vtkPythonArgs10BuildTupleEPKdi_ZN13vtkPythonArgs8GetArrayEPfi_ZN12vtkMatrix4x413MultiplyPointEPKdPKfPf_ZN13vtkPythonArgs10BuildTupleEPKfiPyvtkMatrix4x4_ClassNewPyVTKAddFile_vtkMatrix4x4_ZN30vtkPolynomialSolversUnivariate3NewEv_ZNK30vtkPolynomialSolversUnivariate19NewInstanceInternalEv_ZN13vtkPythonArgs5ArrayIiEC1El_ZN13vtkPythonArgs8GetArrayEPii_ZN30vtkPolynomialSolversUnivariate14SolveQuadraticEPdS0_Pi_ZN13vtkPythonArgs8SetArrayEiPKii_ZN30vtkPolynomialSolversUnivariate20TartagliaCardanSolveEPdS0_Pid_ZN30vtkPolynomialSolversUnivariate12FerrariSolveEPdS0_Pid_ZN30vtkPolynomialSolversUnivariate16LinBairstowSolveEPdiS0_Rd_ZN30vtkPolynomialSolversUnivariate11FilterRootsEPdiS0_id_ZN30vtkPolynomialSolversUnivariate20SetDivisionToleranceEd_ZN30vtkPolynomialSolversUnivariate20GetDivisionToleranceEv_ZN30vtkPolynomialSolversUnivariate14SolveQuadraticEdddPdS0_Pi_ZN30vtkPolynomialSolversUnivariate10SolveCubicEddddPdS0_S0_Pi_ZN30vtkPolynomialSolversUnivariate10SolveCubicEdddd_ZN30vtkPolynomialSolversUnivariate19SturmBisectionSolveEPdiS0_S0_di_ZN13vtkPythonArgs8GetValueERb_ZN30vtkPolynomialSolversUnivariate19SturmBisectionSolveEPdiS0_S0_dib_ZN30vtkPolynomialSolversUnivariate19SturmBisectionSolveEPdiS0_S0_d_ZN30vtkPolynomialSolversUnivariate21HabichtBisectionSolveEPdiS0_S0_di_ZN30vtkPolynomialSolversUnivariate21HabichtBisectionSolveEPdiS0_S0_dib_ZN30vtkPolynomialSolversUnivariate21HabichtBisectionSolveEPdiS0_S0_d_ZN30vtkPolynomialSolversUnivariate3IsAEPKc_ZN30vtkPolynomialSolversUnivariate14SolveQuadraticEddd_ZN30vtkPolynomialSolversUnivariate11SolveLinearEdd_ZN30vtkPolynomialSolversUnivariate11SolveLinearEddPdPiPyvtkPolynomialSolversUnivariate_ClassNewPyVTKAddFile_vtkPolynomialSolversUnivariate_ZN25vtkQuaternionInterpolator20SetInterpolationTypeEi_ZN25vtkQuaternionInterpolator28GetInterpolationTypeMinValueEv_ZN25vtkQuaternionInterpolator28GetInterpolationTypeMaxValueEv_ZN25vtkQuaternionInterpolator20GetInterpolationTypeEv_ZN25vtkQuaternionInterpolator3NewEv_ZNK25vtkQuaternionInterpolator19NewInstanceInternalEv_ZN25vtkQuaternionInterpolator3IsAEPKc_ZN25vtkQuaternionInterpolator10InitializeEv_ZN25vtkQuaternionInterpolator11GetMinimumTEv_ZN25vtkQuaternionInterpolator11GetMaximumTEv_ZN25vtkQuaternionInterpolator22GetNumberOfQuaternionsEv_ZN25vtkQuaternionInterpolator16RemoveQuaternionEd_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_object_ZN25vtkQuaternionInterpolator21InterpolateQuaternionEdR14vtkQuaterniond_ZN25vtkQuaternionInterpolator13AddQuaternionEdRK14vtkQuaterniond_ZN25vtkQuaternionInterpolator13AddQuaternionEdPd_ZN25vtkQuaternionInterpolator21InterpolateQuaternionEdPdPyvtkQuaternionInterpolator_ClassNewPyVTKAddFile_vtkQuaternionInterpolator_ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__cxa_atexit_ZN14vtkRungeKutta215ComputeNextStepEPdS0_dRddS1__ZN14vtkRungeKutta215ComputeNextStepEPdS0_S0_dRddS1__ZN14vtkRungeKutta23NewEv_ZNK14vtkRungeKutta219NewInstanceInternalEv_ZN14vtkRungeKutta23IsAEPKcPyvtkRungeKutta2_ClassNewPyVTKAddFile_vtkRungeKutta2_ZN14vtkRungeKutta215ComputeNextStepEPdS0_S0_dRdS1_dddS1__ZN14vtkRungeKutta415ComputeNextStepEPdS0_dRddS1__ZN14vtkRungeKutta415ComputeNextStepEPdS0_S0_dRddS1__ZN14vtkRungeKutta43NewEv_ZNK14vtkRungeKutta419NewInstanceInternalEv_ZN14vtkRungeKutta43IsAEPKcPyvtkRungeKutta4_ClassNewPyVTKAddFile_vtkRungeKutta4_ZN14vtkRungeKutta415ComputeNextStepEPdS0_S0_dRdS1_dddS1__ZN15vtkRungeKutta4515ComputeNextStepEPdS0_dRddS1__ZN15vtkRungeKutta4515ComputeNextStepEPdS0_S0_dRddS1__ZN15vtkRungeKutta453NewEv_ZNK15vtkRungeKutta4519NewInstanceInternalEv_ZN15vtkRungeKutta453IsAEPKcPyvtkRungeKutta45_ClassNewPyVTKAddFile_vtkRungeKutta45_ZN15vtkRungeKutta4515ComputeNextStepEPdS0_S0_dRdS1_dddS1__ZnwmPyVTKSpecialObject_New_ZdlPvPyObject_HashNotImplemented_ZN13vtkPythonArgs8GetValueERfPyVTKSpecialObject_CopyNewPyDict_SizePyExc_TypeErrorPyErr_SetStringsqrtfsqrtsincossincosf_ZN13vtkPythonArgs8SetArrayEiPKfiatan2atan2f_ZN13vtkPythonArgs9GetNArrayEPdiPKimemcpy_ZN13vtkPythonArgs9SetNArrayEiPKdiPKi_ZN13vtkPythonArgs9GetNArrayEPfiPKi_ZN13vtkPythonArgs9SetNArrayEiPKfiPKiPyvtkQuaternion_IdE_TypeNewPyVTKSpecialType_AddPyvtkTuple_IdLi4EE_TypeNewPyvtkQuaternion_IfE_TypeNewPyvtkTuple_IfLi4EE_TypeNew_Z27PyvtkQuaternion_TemplateNewvPyVTKTemplate_NewPyVTKTemplate_AddItemPyvtkQuaternionf_TypeNewPyvtkQuaterniond_TypeNewPyVTKAddFile_vtkQuaternionPyObject_CallMethodPyCFunction_TypePyType_IsSubtype_ZNK13vtkQuaternionIfE5SlerpEfRKS0_acosfsinsinf_ZNK13vtkQuaternionIdE5SlerpEdRKS0_acos_ZN13vtkQuaternionIdE9ToUnitLogEv_ZNK13vtkQuaternionIdE10InnerPointERKS0_S2__ZN13vtkQuaternionIdE13FromMatrix3x3EPA3_Kd_ZN7vtkMath7JacobiNEPPdiS0_S1__ZN13vtkQuaternionIfE9ToUnitLogEv_ZNK13vtkQuaternionIfE10InnerPointERKS0_S2__ZN13vtkQuaternionIfE13FromMatrix3x3EPA3_Kf_ZN7vtkMath7JacobiNEPPfiS0_S1_PyVTKSpecialObject_Repr_Z31PyvtkTuple_IdLi4EE_SequenceSizeP7_object_Z31PyvtkTuple_IhLi2EE_SequenceSizeP7_object_Z31PyvtkTuple_IhLi3EE_SequenceSizeP7_object_ZN13vtkPythonArgs8GetArrayEPhi_ZN13vtkPythonArgs8GetValueERh_Z31PyvtkTuple_IdLi4EE_SequenceItemP7_objectlPyExc_IndexError_Z34PyvtkTuple_IdLi3EE_SequenceSetItemP7_objectlS0__ZN13vtkPythonArgs8GetValueEP7_objectRd_Z34PyvtkTuple_IfLi3EE_SequenceSetItemP7_objectlS0__ZN13vtkPythonArgs8GetValueEP7_objectRf_Z34PyvtkTuple_IhLi4EE_SequenceSetItemP7_objectlS0__ZN13vtkPythonArgs8GetValueEP7_objectRh_Z34PyvtkTuple_IiLi4EE_SequenceSetItemP7_objectlS0__ZN13vtkPythonArgs8GetValueEP7_objectRi_Z31PyvtkTuple_IdLi3EE_SequenceSizeP7_object_Z31PyvtkTuple_IfLi4EE_SequenceSizeP7_object_Z31PyvtkTuple_IhLi4EE_SequenceSizeP7_object_Z31PyvtkTuple_IiLi2EE_SequenceSizeP7_object_Z31PyvtkTuple_IiLi3EE_SequenceSizeP7_object_Z31PyvtkTuple_IiLi4EE_SequenceSizeP7_object_Z31PyvtkTuple_IfLi2EE_SequenceSizeP7_object_Z31PyvtkTuple_IfLi3EE_SequenceSizeP7_object_Z31PyvtkTuple_IdLi2EE_SequenceSizeP7_object_Z34PyvtkTuple_IdLi2EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IhLi2EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IfLi2EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IiLi2EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IfLi4EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IhLi3EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IdLi4EE_SequenceSetItemP7_objectlS0__Z34PyvtkTuple_IiLi3EE_SequenceSetItemP7_objectlS0__Z31PyvtkTuple_IiLi2EE_SequenceItemP7_objectl_Z31PyvtkTuple_IdLi2EE_SequenceItemP7_objectl_Z31PyvtkTuple_IhLi2EE_SequenceItemP7_objectl_Z31PyvtkTuple_IfLi2EE_SequenceItemP7_objectl_Z31PyvtkTuple_IfLi3EE_SequenceItemP7_objectl_Z31PyvtkTuple_IhLi4EE_SequenceItemP7_objectl_Z31PyvtkTuple_IiLi3EE_SequenceItemP7_objectl_Z31PyvtkTuple_IhLi3EE_SequenceItemP7_objectl_Z31PyvtkTuple_IdLi3EE_SequenceItemP7_objectl_Z31PyvtkTuple_IiLi4EE_SequenceItemP7_objectl_Z31PyvtkTuple_IfLi4EE_SequenceItemP7_objectlPyvtkTuple_IhLi2EE_TypeNewPyvtkTuple_IhLi3EE_TypeNewPyvtkTuple_IhLi4EE_TypeNewPyvtkTuple_IiLi2EE_TypeNewPyvtkTuple_IiLi3EE_TypeNewPyvtkTuple_IiLi4EE_TypeNewPyvtkTuple_IfLi2EE_TypeNewPyvtkTuple_IfLi3EE_TypeNewPyvtkTuple_IdLi2EE_TypeNewPyvtkTuple_IdLi3EE_TypeNew_Z22PyvtkTuple_TemplateNewvPyVTKAddFile_vtkTuplePyVTKSpecialObject_SequenceStringreal_initvtkCommonMathPythonPyModule_Create2PyModule_GetDict_Py_FatalErrorFunclibvtkCommonCorePython310D-8.1.so.1libvtkCommonMath-8.1.so.1libvtkWrappingPython310Core-8.1.so.1libvtkCommonCore-8.1.so.1libstdc++.so.6libm.so.6libgcc_s.so.1libc.so.6libvtkCommonMathPython310D-8.1.so.1GCC_3.0CXXABI_1.3GLIBCXX_3.4GLIBC_2.4GLIBC_2.14GLIBC_2.2.5/mnt/storage/workspace/med-ubuntu-free/build/ExtProjs/VTK/lib:/ P&y U//0ӯk]/t)h/'/@ii t/~/ui //ui /J JJKKKK0 KP(K0K8K@KHK`PK@XK`KpK KVVVXvX`XشXAX>XXX@XضXXPXPY5Y<Y Yd(Y8Yh@YRHYXY`Y@hYpxYY.Y YYY2Y(YYYYYPYpZMZ@Z ZE(Z@8Z@ZHZ8XZH`ZhZxZZ!Z;ZHZΰZZ0ZZ Z(ZLZ$Z [[`9[ [ (["8[@[H[!X[`[:h[#x[[[`5[h[[)[[ʱ[4[p[n[&[\\6\ \(\'8\8@\`H\%X\`\h\(x\\\ \\-\V\*\(],8]VH]+X]]1]Y]/]]]0]Y^p.^]X^_v_H_ش`A`K` `(`H8`@`H`MX`x``h`Dx```J```I`ab@dvHd`PXdش`dAhdSxdddOd(ddpTdddUd ddpdee0Rep e(ePQ8exegvggش gA(g8g@gHgXg`ghgxgHgggg<gg8ggggggghh`hp h(h`8h@hHhЄXhp`hhhxhph0hhh%h@hhh@h`hhhiipiHiPXixhisxi,iPuii`viAjxj(jy8j,hj |xjj }j,jjNjj_kpk,(k8khxkhmvmmش mA(m8m@mHmpXm`mhm xmmmйmHm<mmmgmmmmPmnnn n(n8n@nHn@Xn8`nhn@xnnnnXnnPn n0n n n%nnoo@o` o(op8o hoPxo oo,oo ooA(p 8p+HpЧXpAp`p p`p,pp qq,HqXq5hq@xqFq q,qqhqhsvsp"sشsAs`#sss sss$s8t tt tz (tP8th@t9 HtpXt0"`t( htxt($t t@t&t tt )to tt,t tPt/u u@'u2 uE (u8u4@uZ HuXu5u0&u uu up?wvw.wشwAw=www -w?ww/w(@x7xp3x@ x~7(x18x A@x7Hx2Xx@B`xhx1xx`Cxp7xP.xCx7x6xExZ7x.xhFxG8x <xHy7y04yI y7(y58y0K@y7Hy6XyL`y 8hy8xyPNy*8y9yOy7y8y@y8(z:8z8Hz>Xz8zR |v(|E8|ش@|AH|FX|`|h| Dx|S||pG|S||I|S|([~v~pf~ش~A~pg~~~e~P[~~h~[jSX^vشA (8 _@HPX_`h`x_؁s`8``xhy@؃00 xp8`І؇HPXhhЭxh hgȈ؈shth u h(8u@hH$Xv`hhpxv!h`wh!`xhȉp'؉xi(@8 iH0Xig@yhP 8zhȊ ؊zh({h+{ h( 8P|@!hHX(}`hhx}hp.h~ȋ؋i i@#i@gHX(`ghxggP8fhȌ ،h0hg h(88@HX`hh`xPh+ȃh0*hhȍ`؍(hphȆ !h( 8@H XX`>hhxH h0ȉgп8hȎ@؎ggx g(P8@gHXP`ghxBh(hPZhȏ؏h00h0ؑ h(,88hxhh@8igg g(8@gHX@`fhhpxhpghȑؑPhp h(#8ȃ@hH#X`hhx(hph Ȇ!hȒؒ `>h@X  h( 8؛@gHXH`hhPxgP(gpgȓмؓg`xg Bh(p8X@hHX8`Zhh0xh0)h hȔ%ؔxи0Xhxj8v`0XhxPj8s@0Xhx@j80x0Xhxpj8uh0pXhx`j8z0PXhxj8Pv00Xhxj8uX0Xhxj8x0Whx0j8w0Whx j8pt0Whxj8hx0WhxW8pyUh(R8hHpPXpP@hȭUح`Th(0R8hHOX@hȮخ\i(pZ8 iHNXЧphhȯدл[i(Y8 iHMX0@hhȰ0ذ0e(c8HLX0hȱPرpd(@b8HKXhȲ}زоc(a8HJX+pЗhȳ@س`?(^8CHIXJphȴش `?(^8CHHX^zhȵpصp_?(P]8CHGXr0|hȶض0[i(Y8 iHFX0hhȷطSh(pQ8hHEXp{|@hȸظ(@MMMMNNNN; N(N0N58N"@NEHNPN/XN,`NhNpN#xNNNNNNFNNNNN2NN%NNNNOO OO O{(O0O 8O@OcHOPO:XO`OhO(pOAxOO'O OOOCOO)OOO-OO8OV1H^1a1b1he1hk1q1u1z1|1H1ȁ1h111111111111111Wp^0aekrvz}p8Ww^wXawewkw8rw8vwzw8}wwhWQ^QaQeQkQhrQhvQ{Qh}QQpW^aekprpv{p}P0xW^aekxrxv{x}W8^8a8f8l8r8v8 {8}88W^aflrv8{}W?8_?a?Xf?Xl?r?v?x{?}?8?X!x_!8b!f!l!s!w!{!~!x! Xs_s@bsfsls ss ws{s ~ss`cvvv@vv@v@v@v@v@v@v@v@v@v@v@v@v||X||X|X|X|X|X|X|X|X|X|X|X|X|999999999999FȖȘȚ Ȝ!1Ȟ$0Ƞ=Ȣ?ȤȦ Ȩ<ȪȬPG P(P0P8P@PHPPPXP`P hP pP xPP"PP PP P9PPPPPPPP.PPQQQQ Q(Q0Q8Q@QHQ4PQ XQ#`Q$hQ%pQ&xQ'Q(Q)Q*Q+Q-Q.QDQ/Q0Q2Q3Q4QQQ5Q6RR7R&R@ R:(R;0R<8R=@R>HR@PRAXRB`RhRCpRDxRERRGRRHRIRJRKRLRHRMRRRRRNROSPSRSSST SU(SV0SW8SX@SYHSZPS[XSB`S\hS]pSxS^S_S3SSS`SSaSSbScSdSeSfSgShSiTjTkT*T Tl(Tm0Tn8T@ToHTpPTqXTr`T hTtpTuxTvT,TxTTyTzT}T~TTTT6TTTTTUUUU U(U0U8U@UHUPUXU`UhUpUxUU+UUUUUUUUUUUUUUUVVVV V(V70V>8V@VHVPVXV`VhVpVxVVVVVVVVHH_HtH5_%_hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhh%PD%RD%RD%}RD%uRD%mRD%eRD%]RD%URD%MRD%ERD%=RD%5RD%-RD%%RD%RD%RD% RD%RD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%QD%}QD%uQD%mQD%eQD%]QD%UQD%MQD%EQD%=QD%5QD%-QD%%QD%QD%QD% QD%QD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%PD%}PD%uPD%mPD%ePD%]PD%UPD%MPD%EPD%=PD%5PD%-PD%%PD%PD%PD% PD%PD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%OD%}OD%uOD%mOD%eOD%]OD%UOD%MOD%EOD%=OD%5OD%-OD%%OD%OD%OD% OD%OD%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%ND%}ND%uND%mND%eND%]ND%UND%MND%END%=ND%5ND%-ND%%ND%ND%ND% ND%ND%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%MD%}MD%uMD%mMD%eMD%]MD%UMD%MMD%EMD%=MD%5MD%-MD%%MD%MD%MD% MD%MD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%LD%}LD%uLD%mLD%eLD%]LD%ULD%MLD%ELD%=LD%5LD%-LD%%LD%LD%LD% LD%LD%KD%KDH|$pHD$xH9t HtH|$0HtHD$8H9tHH}HtHEH9tHPHtHXH9trHHH9t HtUHH}HEH9t Ht6HPHXH9t HtHH}HEH9t HtHPHXH9t HtHHH9t HtH(H}HEH9t HtHPHXH9t HtHH|$PHD$XH9t HtcH$H$H9t HtDH|$pHD$xH9t Ht+HH|$`HD$hH9t Ht H$H$H9t HtH$H$H9t HtH4H|$`HD$hH9t HtH$H$H9t HtH$H$H9t HtmHH$H$H9t HtFH|$@HD$HH9t Ht-HH$H$H9t HtH|$@HD$HH9t HtHUH|$pHtHD$xH9tH$H$H9t HtH$H$H9t HtHH$H$H9t HtgH$ H$(H9t HtHH$H$H9t Ht)H$H$H9t Ht HrH$HtH$H9tH$H$H9t HtH|$pHD$xH9t HtHH$H$H9t HtH$HtH$H9teH|$pHtHD$xH9tLHH$H$H9t Ht%H$H$H9t HtH|$pHtHD$xH9tHUH$HtH$H9tH$H$H9t HtH|$pHD$xH9t HtHH$H$H9t HtgH$HtH$H9tHH|$pHtHD$xH9t/HH$H$H9t HtH$H$H9t HtH|$pHtHD$xH9tH8H|$@HD$HH9t HtH|$`HD$hH9t HtHH}HtHEH9twHPHtHXH9tZHHH9t Ht=HH}HEH9t HtHPHXH9t HtHiH}HEH9t HtHPHXH9t HtHHH9t HtHH}HEH9t HtHPHXH9t HtlHH}HtHEH9tMHPHtHXH9t0HHH9t HtH{H}HEH9t HtHPHXH9t HtH?H}HEH9t HtHPHXH9t HtHHH9t Ht~HH}HEH9t Ht_HPHXH9t HtBHH}HtHEH9t#HPHtHXH9tHHH9t HtHQH}HEH9t HtHPHXH9t HtHH}HEH9t HtHPHXH9t HtqHHH9t HtTHH}HEH9t Ht5HPHXH9t HtHH՝HBf.H}H.Jf.HUHLf.H}HQf.HEHVf.HHN]f.UH-%HH=u:HHKAfH?#]HafDH;Hef.HCHgf.H=FHjf.UH-H\H=9HH@HT]H'qH XHyoHZ[HmHd\Hlf.fUH-HH=e9HH;@VHה]HHH HHHHH>HߌHhHъHjHÈHlHHnHHxHHHHH}~f.fUH-tH H=8H]HZ?uDH=HH9tH7Ht H=H5H)HH?HHHtH7HtfD=u+UH=B6Ht H=>idm]wwUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5L|$HtHt+HH5<HPt"HuH1 Huff.fHGI~H)ǃuHH=wCLHH5˖X1HÐHGI~H)ǃuHH=CLHH51HÐHGI~H)ǃuHH=CL/HH5O1HÐHGI~H)ǃuHH=CLHH5h1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$R1HT$8dH+%(utHH[]fHt$H|$tHl$H=HtHH=JtuHuHc@HpATH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@HHufHHRxH;3IMtoI$H5LPtZHuLhIHoHtbLd1HHP@L'8fE1xH"DIj)fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u3H0[fDHHuӐXHHuHcd@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(uH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(u9H8HHuҐHuHR/Hff.@H8fnFdH%(HD$(1HyH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8KHHuҐ{FHuH.Hff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{HHuӐt,,fH~jHufHnfHHH;-fH~tfH~fSH0fnFdH%(HD$(1HՏH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{HHuӐt,4fH~jHufHnfHHH;,fH~tfH~fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{HHuӐt,<fH~jHufHnfH HH;+fH~tfH~fSH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{HHuӐt,4fH~jHufHnfHHH;7+fH~tfH~fSH0fnFdH%(HD$(1H%H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{HHuӐt$WxfH~mHufHn@HHH;*u_xfH~ffH~fSH0fnFdH%(HD$(1H7H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fD{HHuӐt$WpfH~mHufHn@HHH;O)u_pfH~ffH~fSH0fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD{HHuӐtqHuHcfHH(H;(tЉfSH0fnFdH%(HD$(1HyH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDHHuӐt,fH~HufHn fHHH;?'ufH~fDfH~ f.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐtHuHcfHH H;&tЉ"fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐtHuHcfHH0H;&tЉBfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fDHHuӐt,fH~HufHn;fHHH;$ufH~fDfH~:f.SH@fnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@[f.HHuϐHt$ H|$tHcT$ HCXHHufHn EDSH@fnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@[f.HHuϐHt$ H|$tHcT$ HC`HHufHnUDUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$1HT$8dH+%(uRH@]ÐHHuؐHt$H|$qtHt$H fH~HufHn'`UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHD$Ho(Ht!D$ +D$$t=H|$ 1HT$8dH+%(uRH@]ÐHHuؐHt$H|$tHt$H0fH~HufHn7pATUHHfnFdH%(HD$81H́Ht$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$ 1HT$8dH+%(unHH]A\fDHHuѐLd$Ht$LtHt$LtD$t$H'HuHHkff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(unHH]A\fDHHuѐLd$Ht$LtHt$L tD$t$HwHuHH[ff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uRHo(H$Ht!D$ +D$$tLH|$1HT$8dH+%(uwHH]A\fDHHufLd$HL`tHt$LtD$H4$HYHuHHy:f.ATUHHfnFdH%(HD$81H{~Ht$HD$HGfnȉD$(fbfD$ uRHo(H$Ht!D$ +D$$tLH|$1HT$8dH+%(uwHH]A\fDHHufLd$HL@tHt$LtD$H4$HdHuHHyf.ATUSH@fnFdH%(HD$81H~Ht$HD$HGfnȉD$(fbfD$ uIH_(Ht!D$ +D$$tCH|$1HT$8dH+%(H@[]A\HHuҐHt$ H|$tHcT$ HCPH,kHuHt1HIHHIHuLHtHqHcff.UH@fnFdH%(HD$81H}Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD[HHuϐHt$H|$tD$$D$t?f.ztHEHHuHUHt@HEHH;u$f.ztHDHff.UH@fnFdH%(HD$81H[|Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$H|$AtD$$D$t?f.ztHEHHuHHt@HEHH;Fu$f.ztHDH,ff.UH@fnFdH%(HD$81H{Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDHHuϐHt$ H|$tD$$t$ t99tHEHaHuHH|@HEHH;.u;tƉHHff.UH@fnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDKHHuϐHt$H|$tD$$D$t?f.EhztHEEhHHuHKHzf.HEHH;Vuf.EhztEhHH@UH@fnFdH%(HD$81HxHt$HD$HGfn؉D$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fDHHuϐHt$H|$AtD$$D$t_ Uxf/ ]f(f.ztHEExHH^HHPHEHH;u\ $Uxf/w) ]f(f.ztExH듐f(f.f(_HhUH@fnFdH%(HD$81HvHt$HD$HGfn؉D$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fDKHHuϐHt$H|$tD$$D$t_ ߔUpf/ Д]f(f.ztHEEpHH^H!HPHEHH;u\ lUpf/w9 a]f(f.ztEpH듐f(of(f.Hh!USHHfnFdH%(HD$81HOuHt$HD$HGfnȉD$(fbfD$ uSHD$Ho(Ht!D$ +D$$tLH|$1HT$8dH+%(HH[]HHufHt$H|$tHT$HH9tLH5uHHD$1H9t HH5Hn9HhHH^@11DATUSH@fnFdH%(HD$81HtHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\KHHuːHt$H|$tD$$Ld$uXHELH@H;u\H= qtLH=Ss}u)HeHcZfDLLh@HЉfATL%sH HpH5LFuLH>LA\ATIUHHt HH5IpLHtHmtH]A\HH]A\1SH0fnFdH%(HD$(1H rH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uMH0[fDkHHuӐu$H\HuHcD f.H8fnFdH%(HD$(1HIqH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$H~HuH H@,f.ff.GhzufHGhf ܎Wpf/w ю]f(f.zuf(f.HGpfGpfD dWxf/w) Y]f(f.zuHGxff(f. GxfDf.z uHf.z uH9tHDf.DDDDUH=?lHu]ÐHH=gntH]餻@AWAVAUATUHSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ .Hm(L|$1LH|$04AHcH$H\$0Et IcHH$L覻4H|$pAHcSHD$Lt$pEt IcIHD$H{D$$|$ LLt$pE1MtHD$xI9tLSH|$0HD$8H9t Ht:H$dH+%(gHĸL[]A\A]A^A_fDLfDSHHfDHL¼XDLL謼BE~[HCH9$AD$D1HfH $HH9uDAt E~^IFH9D$0AE#D1HfAHL$HH9uDAt AHELHHIc1E 8HH9t/H $f.zt HuDH1L+E~KIc1 @HH9t7HL$Af.ztHuDLL޻fDHHcҿLt$pIDE1D1AHL$HH9uf.D1H $HH9uhHHff.@UH@dH%(HD$81HgHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|g*|$HtHt+HH5@HPtRHuH19Huff.fUSHHdH%(HD$81HegHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$?tHl$H=^HtHH=hu[HuHc~@HSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11辿1HT$(dH+%(uUH0[fD苼HHuӐt_4脽HuHc觼DHHH;tЉ"fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11޾1HT$(dH+%(uUH0[fD諻HHuӐt_0褼HuHcǻDHHH;tЉBfATUSH@fnFdH%(HD$81HyfHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\諺HHuːHt$H|$QtD$$Ld$uXHELH@H;u\H=TtLH=eݹu)THeHcsZfDLLȲ@HЉfATH0fnFdH%(HD$(1HYcH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝼E1HD$(dH+%(H0LA\@cHHufHHRxH;"7IMtoI$H5LPtZ%HuL踳IHoHİbL贶1HHP@Lw8fE1ȹH"DIjyfATL%1HiH5SL;Mu譻LHLA\ATIUH}Ht HH5 LH裱tHmtH]A\HH]A\!G0G4ǵUH=HHPHvHBDHuӹ LH!ʈf.AUATUSHHdH%(HD$81HgHt$HD$HFHD$$D$ t;H|$藍1HT$8dH+%(HH[]A\A]fDLl$Hl$L%gLHL|$HtHLL|$HtHp0H{0HEHHpHHHb‡fAUATUHdH%(H$1HfH4$HD$HFHD$D$t?H蕌1H$dH+%(H]A\A]Ld$ H LHЄtLl$p HL跄tfoL$pLLfo$fo$H$fo$)$H$)$)$)$跆D$pf.$D$xf.$$f.$$f.$$f.$}u{$f.$zgue$f.$zQuO$f.$z;u9$f.$z%u#HPH&HBDˈHuӹ LHуzf.AUATUHdH%(H$1HOdH4$HD$HFHD$D$t?HE1H$dH+%(H]A\A]Ld$ H LH耂tL$ HLdtfoL$ foT$0LLfo\$@fod$PHD$`)L$p)$H$)$)$cD$ f.D$pD$(f.D$xD$0f.$D$8f.$}D$@f.$zlujD$Hf.$zYuWD$Pf.$zFuDD$Xf.$z3u1D$`f.$z uɆH{HHm諆Huع L1H贁]ff.fATUHdH%(H$1H1bHt$HD$HFHD$$D$ t8H|$$1H$dH+%(H]A\Ld$0Hl$ LHftHT$H5bH~|$tfoL$0foT$@Hp0Lfo\$Pfod$`HT$p)$)$H$)$)$FD$0f.$D$8f.$D$@f.$D$Hf.$u~D$Pf.$zmukD$Xf.$zZuXD$`f.$zGuED$hf.$z4u2D$pf.$z!u誄H}HHo苄Hu׹ L1H=ff.fUH@dH%(HD$81H0,Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H5+节|$HtHt+HH5`HPt貃HuHE}1虃Hu]ff.fHFuHHH=qHH5 _1HHFuHHH=1HH5^辄1HHFHwHHH=fDHH5^v1Hff.@AVAUATUHdH%(H$HFtDcH5V^1H$dH+%(H]A\A]A^DH^Ht$ HD$(HGD$0D$4D$8Lg(MtLl$`Hl$ LHe|pL$HLE|Pf($I|$0LL$fD$)$T$諂f($f.$L$f.$T$f.$z6HHnHDHl$ Ht$ H\HD$(L$HHnLD$8HD$0V{aLl$@HL9{DLt$`HL{'f(D$`LLLd$pfD$)$d$芁f($f.D$`z&u$\$f.\$hzud$f.d$pz2HLH4{~HL`(MD$0+D$4H|$ ȁ1VHxLHz^d|@USHHdH%(HD$81H'Ht$HD$HFHD$$D$ HD$t6H|$21HT$8dH+%(utHH[]fHt$H|$xtHl$H=1[Hg}tHH=*)T}u~HuHc}@HPvw{SH0fnFdH%(HD$(1HkZH4$HD$HGfnȉD$fbfD$u=H_(HtD$9D$t:H11.1HT$(dH+%(u@H0[fD|HHuӐ}HuH{0H5YsHxzUSHHfnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$Q1HT$8dH+%(uvHH[]|HHuАHl$Ht$H.{tHt$ H{tHcD$HcT$ H@HDH|HufHn^vzy@AUATUSHHfnFdH%(HD$81HJXHt$HD$HGfnȉD$(fbfD$ H(t!D$ +D$$t?H|$;~1HT$8dH+%(HH[]A\A]f.Ll$Hl$L%AXLHLz|$HtLLHz|$HtH0H{0B|{HyHHk@zHH,OUxDATUHxfnFdH%(HD$h1H2WH4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEH}1HT$hdH+%(ujHx]A\fyHHuΐLd$ H L;utH}0L{|HEHzHuHHRwfUH@fnFdH%(HD$81H4VHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$|1HT$8dH+%(unH@]f.xHHuϐHT$H|$H5Vjx|$tHp0H}0v{HEHyHuHпHMvff.fUH0fnFdH%(HD$(1HUUH4$HD$HGfnЉD$fbfD$u=HG(HtT$9T$t:H11z1HT$(dH+%(H0]fwHHuӐ@0 Af.z]u[f.HPzTuRf.HpzKuIff.@8z>uotHc$HcT$D$H @HLLf.z&u$uHfHHXfDH@HHDDHEMrff.fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11vE1HD$(dH+%(H0LA\@sHHufHHRxH;7pIMtoI$H5PLPtZtHuLnIHoH$kbLq1HHP@Lq8fE1(tH"DIjpfUH0HNdH%(HD$(1Aȃ~3u2HD$(dH+%(H0HH]H=sy4H5oODEu1HT$(dH+%(H0]fH;OfnH4$HD$HGfnȉD$fbfD$ugHo(HtD$H}09D$tH11u1zDHoHEHrHPH&HBDqHHu)ofUH0HNdH%(HD$(1Aȃ~3u2HD$(dH+%(H0HH]H=Pkry4H5NDs1HT$(dH+%(H0]fHMfnH4$HD$HGfnȉD$fbfD$ugHo(HtD$H}09D$tH11s1zDHkHEHqHPHַHBDkpHHu)9nfUHpdH%(HD$hHFt9H5QMr1HT$hdH+%(Hp]fDH!MH4$HD$HGD$D$D$H(HtH0@;jfH~pHufHn2juDHLHl$ H4$HHD$ HHQ^D$HD$jHu);oHHx(H D$H09D$cH11r1lff.ATUHdH%(H$HFtAH5rq1H$dH+%(gH]A\fDH\H4$HD$HGD$D$D$Lg(MtI|$0nqI$LlI$LllHqHHcHuHLd$ HH4$HD$ LHHZD$HD$ffoL$ foT$0Lfo\$@fod$PHD$`)L$p)$H$)$)$kD$ f.D$p D$xf.D$(D$0f.$D$8f.$D$@f.$D$Hf.$D$Pf.$uD$Xf.$znulD$`f.$z[uYjHxfDiHL`(MD$9D$H11l1@jHu L1He=gff.fATL%H ,HFH5.Lg(uhlLHnhLA\ATIUHjHt HH50FLHcbtHmtH]A\HH]A\cGeUH=EHhu]ÐHH=htH]a@kAUATUHdH%(H$1HDH4$HD$HFHD$D$t?Hk1H$dH+%(Hİ]A\A]Ld$ HLH@ctL$HL$ctfo$LLfo$fo$fo$fo$)$ fo$fo$)$0fo$)$@)$P)$`)$p)$)$e$f.$ $f.$($f.$0$f.$8ke$f.$@MG$f.$H/)$f.$P $f.$X$f.$`$f.$h$f.$p$f.$xzu}$f.$ziug$f.$zSuQ$f.$z=u;$f.$z'u%PfHBHH4+fHuѹLH1abf.ATUHdH%(H$1HSH4$HD$HFHD$D$t9Hg1H$dH+%(?Hĸ]A\HHt$ H_tH$H_tL$ HL_tfo$ f(T$ fo$@f(\$ ff(L$0f(D$0)$)$ffo$0fo$`fD($ffD($f)$f(|$@fo$PfA(fE()$fo$)$fYfo$pfD($)$fA(ffD($fY)$fE(fo$fD($fAY)$fAYf($fXf(fYfY$fXfA(fXfA(fYfXf(L$@fY$ffYfAYfXfA(fXfYfAY)$ )$0fD(D$Pf(D$Pf.$)$ fXf(fE)$0fAYffDY$fXfA(fYfY$fXf(f(|$pfXf(L$`ff)$@fAXfDYfD(D$p)$@fAYfEfXf(D$`ffDY)$PfAY)$PfEXfD(fDYfXfY$fEXfE(fXfEYf($fDY$ffDYf(f($fAYffEXfD($fDYfAXfD($fAYfEfAYfED)$`fEY)$pD)$`fEX)$pfXf($fAYfAXfAXfXf($)$fAY)$fX)$)$KEff.$2,f.$ff.$f.$ff.$f.$ff.$fD.$fEfD.$z{uyf.$znulff.$z]u[f.$zPuNff.$z?u=f.$z2u0ff.$z!u`HH¦Hk`Hu׹LHq[]f.AVAUATUHdH%(H$1H;H4$HD$HFHD$D$t=Ha1H$dH+%( H]A\A]A^L$HLHZtLl$ HLZtLt$@HLYtfoL$@LLLfoT$P)L$`)T$p3UD$@f.D$`zUuSD$Hf.D$hzEuCD$Pf.D$pz5u3D$Xf.D$xz%u#^HH6HD^HuӹLHY[f.AUATUSHHdH%(HD$81HS:Ht$HD$HFHD$$D$ t;H|$W`1HT$8dH+%(HH[]A\A]fDLl$Hl$L%HLLHL\|$HtHLL\|$HtHp0H{0SHEH]HpHHbZfAUATUHdH%(H$1HN9H4$HD$HFHD$D$t?HU_1H$dH+%(Hİ]A\A]Ld$ HLHWtL$HLtWtfo$LLfo$fo$fo$fo$)$ fo$fo$)$0fo$)$@)$P)$`)$p)$)$=R$f.$ $f.$($f.$0$f.$8ke$f.$@MG$f.$H/)$f.$P $f.$X$f.$`$f.$h$f.$p$f.$xzu}$f.$ziug$f.$zSuQ$f.$z=u;$f.$z'u%ZHBHؠH4{ZHuѹLHU*Wf.AUATUSHHdH%(HD$81H5Ht$HD$HFHD$$D$ t;H|$[1HT$8dH+%(HH[]A\A]fDLl$Hl$L%GLHLaX|$HtHLLIX|$HtHp0H{0VHEHpYHpHHb"VfAUATUHdH%(H$1H4H4$HD$HFHD$D$t?HZ1H$dH+%(Hİ]A\A]Ld$ HLH0StL$HLStfo$LLfo$fo$fo$fo$)$ fo$fo$)$0fo$)$@)$P)$`)$p)$)$U$f.$ $f.$($f.$0$f.$8ke$f.$@MG$f.$H/)$f.$P $f.$X$f.$`$f.$h$f.$p$f.$xzu}$f.$ziug$f.$zSuQ$f.$z=u;$f.$z'u%@VHBHxH4VHuѹLH!QRf.AUATUHdH%(H$1H1H4$HD$HFHD$D$t?HW1H$dH+%(Hİ]A\A]Ld$ HLHOtL$ HLOtfoL$ foT$0LLfo\$@fod$Pfol$`fot$p)$fo$)$fo$)$)$)$)$)$)$ND$ f.$D$(f.$D$0f.$lfD$8f.$QKD$@f.$60D$Hf.$D$Pf.$D$Xf.$D$`f.$D$hf.$D$pf.$D$xf.$z}u{$f.$zgue$f.$zQuO$f.$z;u9$f.$z%u#SHxHNHjDRHuӹL1HMODATUHHdH%(H$81H.Ht$HD$HFHD$$D$ t8H|$tT1H$8dH+%(HH]A\Ld$0Hl$LHLtHT$H5O@HP|$tfoL$0foT$@Hp0Lfo\$Pfod$`fol$p)$fo$fo$)$fo$)$)$)$)$)$)$ KD$0f.$D$8f.$D$@f.$wqD$Hf.$\VD$Pf.$A;D$Xf.$& D$`f.$ D$hf.$D$pf.$D$xf.$$f.$$f.$~u|$f.$zhuf$f.$zRuP$f.$ zP1HHFuHHH=qNHH5=<O1HHFHwHHH=S.NfDHH5)O1Hff.@UHdH%(H$HFt;H5)dO1H$dH+%(Hİ]fH)H4$HD$HGD$D$D$u}H(HtH0NfH~AMHufHnF{DHA)Hl$ H4$HHD$HH:D$HD$oGHu/KHHx(HD$H09D$cH11N1kIff.ATUH8dH%(H$(1H7H<$HD$HGHD$D$t=H;N1H$(dH+%(H8]A\Ld$ HLHxFtfoL$ foT$0Lfo\$@fod$Pfol$`fot$p)$fo$)$fo$)$)$)$)$)$)$&GD$ f.$$f.D$(D$0f.$keD$8f.$PJD$@f.$5/D$Hf.$D$Pf.$D$Xf.$D$`f.$D$hf.$D$pf.$D$xf.$z|uz$f.$zfud$f.$zPuN$f.$z:u8$f.$z$u"IHHH@IHuԹL1HDmFff.fATUH8dH%(H$(1H%H<$HD$HGHD$D$t=H;K1H$(dH+%(H8]A\Ld$ HLHxCtfoL$ foT$0Lfo\$@fod$Pfol$`fot$p)$fo$)$fo$)$)$)$)$)$)$ID$ f.$$f.D$(D$0f.$keD$8f.$PJD$@f.$5/D$Hf.$D$Pf.$D$Xf.$D$`f.$D$hf.$D$pf.$D$xf.$z|uz$f.$zfud$f.$zPuN$f.$z:u8$f.$z$u"FHHH@FHuԹL1HAmCff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$2H1HT$8dH+%(utHH[]fHt$H|$?tHl$H=4HgDtHH=*TDuEHuHcD@HP=wBSH0fnFdH%(HD$(1Hk!H4$HD$HGfnȉD$fbfD$u=H_(HtD$9D$t:H11.G1HT$(dH+%(u@H0[fDCHHuӐDHuH{0H5 :H?AATUSHPfnFdH%(HD$H1H2H4$HD$HGfnȉD$fbfD$uJH_(HtD$+D$tDHRF1HT$HdH+%(uhHP[]A\CHHuϐHl$ HH>tLH{0HL9CHuLB@ATUSH@fnFdH%(HD$81H1H4$HD$HGfnȉD$fbfD$uJH_(HtD$+D$tDHRE1HT$8dH+%(uhH@[]A\BHHuϐHl$ HH>tLH{0HL9BHuLJA?USHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$QD1HT$8dH+%(uoHH[]AHHuАHl$Ht$H.@tHt$ H@tHcD$ HcT$HDHAHufHnb;>ff.AUATUSHHfnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ H(t!D$ +D$$t?H|$;C1HT$8dH+%(HH[]A\A]f.Ll$Hl$L%(/LHL?|$HtLLH?|$HtH0H{0B>@HyHHk@?HH,OU=DATUHfnFdH%(H$1H,H4$HD$HGfnȉD$fbfD$uMHo(HtD$+D$tOHA1H$dH+%(utHĸ]A\D>HHufLd$ HL+:tH}0L9HEH?HuHŅHy?HuHH-;ff.fATUSH@fnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$?1HT$8dH+%(H@[]A\1H$dH+%(HĘ[]A\A]+;HHuǐLd$ HLH6tLl$@HL6tfoT$@H{0LLfo\$P)T$`)\$p1D$@f.D$`zXuVD$hf.D$HzHuFD$pf.D$Pz8u6D$Xf.D$xz(u&;HHɁHk;HuйLHq68f.ATUHHfnFdH%(HD$81H.Ht$HD$HGfnЉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$<1HT$8dH+%(HH]A\f9HHuѐLd$HL8tHt$L8tHt$L3tHcD$Hc$D$HLLf.z*u(3:HjHkH\f.HDHDHE6ATH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11};E1HD$(dH+%(H0LA\@C8HHufHHRxH;;IMtoI$H5='LPtZ9HuL2IHoH/bL51HHP@LW68fE18H"DIjY5fUH0dH%(HD$(HFt1tlH5 91HT$(dH+%(H0]fHH4$HD$HGD$D$D$u]Ho(Hu$1HD$(dH+%(upH0H]CH}0w3HEH7HuH}HT6HtHh(HtD$9D$tH11w91$;4ff.UH0dH%(HD$(HFt1tlH5a81HT$(dH+%(H0]fH5H4$HD$HGD$D$D$u]Ho(Hu$1HD$(dH+%(upH0H]#H}07HEH6HuH|HTk5HtHh(HtD$9D$tH11W81$3ff.ATIHUSH@dH%(HD$8HFt?ǃHD$8dH+%($H@LH=[]A\5fDHH4$HD$HGD$D$D$H_(Hu81HT$8dH+%(H@[]A\fH5K71Hl$ HH+1tLH{0HLA+,5HuL33HjHX(H]D$+D$tH691ff.UH0HNdH%(HD$(1Aȃ~3u2HD$(dH+%(H0HH]H=@{4y4H5/D61HT$(dH+%(H0]fHfnH4$HD$HGfnȉD$fbfD$ugHo(HtD$H}09D$tH1151zDH0HEH3HPHyHBD{2HHu)I0fUH0HNdH%(HD$(1Aȃ~3u2HD$(dH+%(H0HH]H=+3y4H5D41HT$(dH+%(H0]fHfnH4$HD$HGfnȉD$fbfD$ugHo(HtD$H}09D$tH1141zDHP(HEH^2HPHxHBD+1HHu).fAVAUATUSHdH%(H$1HHt$0HD$8HFHD$DD$@tCH|$031H$dH+%("H[]A\A]A^fDLt$/Ld$0L-LLL!0|$/HtLLL 0|$/HtLLL/|$/wfc0fDE0fk0fD]PffA(fs@fMpff(fS@fDfAYffE`fDu@fYffDfDfAYfE(fYfXf(fYfAYfXfA(fYfAYfXf(fk`fXfc`ff)|$PfXfsPffXfSPfDYfAYffD()\$`fEYfYfEXfD(fDYfXfspfAYffEXfD(fEYfXffAYffEXfDfXfcpfEfD) $D)L$pfD()T$fEY)$fYf(fAYfAYfAXfE(fDYfXfEYfDXfA(fYfAXfDfAYfEfEYfEYfDXfXfD)$f)$fDYf(ffYf(fffYfAYfEXfAXfDYfAYfAXfXfAXfX)$)$fo$x0fo|$X@@Px`DHp.HHtHO+ff.@ATL%H H~H5>L,8ux0LH~,LA\ATIUH#Ht HH5'LHs&tHmtH]A\HH]A\'70UH=H,,u]ÐHH=,tH]$%@+AWAVAUATUSHdH%(H$1H(2Hl$0Ht$0HD$8HFH1HD$DD$@w%H|$p4AHc$,H$L|$pEt IcIH$H:%4H$AHc+HD$H$Et IcHHD$H$4H|$PAHc$HD$HL$PHL$Et IcHHD$D$@+D$DH;.E1H|$PHD$XH9t Ht)H$H$H9t Ht)H|$pHD$xH9t Htw)H$dH+%(mHL[]A\A]A^A_DLH*&gDHH&QHt$DH&9E~]IGH9$AD$D1HfA H $ HH9uDAt AE~ZHCH9D$NAEAD1HfDfHL$HH9uDAt EHD$HPHD$H)HAFD1HfDHL$oHL$H)\$ H9uDAt;H|$IȉH4A4HA9~LALA9~ DADHT$HL8!D$ Ic1EHHH9t7H $Af.zt)HuDL1H$f.Ic1ED@HH9t7HL$f.zto)HuDHھHw$Ic1ED@HH9t7HL$H\$ 9 t )HuHT$DH&)fD(HHc|$ (ID1HT$H|$HH9uf.D1HL$HH9uD1AH $HH9uQ.%H,HZ,Hg,f.AWAVAUATUSHdH%(H$1H,Hl$@Ht$@HD$HHFH1HD$TD$P7 H$4AHc&H$L$Et IcIH$H4H$AHc&HD$H$Et IcHHD$H4H|$`AHclHD$HL$`HL$Et IcHHD$D$P+D$TH(E1H|$`HtHD$hH9ti$H$H$H9t HtJ$H$H$H9t Ht+$H$dH+%(HL[]A\A]A^A_DLH ]DHH GHt$DH\!/Ht$8HgE~XIGH9$iAD$[D1HfA H $ HH9uDAt AE~ZHCH9D$AED1HfDfHL$HH9uDAt EHD$HPHD$H)HAFD1HfDHL$oHL$H)\$ H9uDAt;H|$IȉH4A4HA9~LALA9~ DADD$8HT$HL&D$ Ic1E ,fHH9t!H $Af.zt_$H.Ic1E4f.HH9t!HL$f.zt$HIc1E3f.HH9t HL$H\$ 9 t#H#HHc|$ "ID1fHL$HH9u@D1fDAH $HH9uD1fDHT$H|$HH9uHT$DHM#QDL1H8DHھH H'HK'HX'fAWAVAUATUSHdH%(H$1H'Hl$@Ht$@HD$HHFH1HD$TD$PH$4AHc!H$L$Et IcIH$H4H$AHc>!HD$H$Et IcHHD$HO4H|$`AHc HD$HL$`HL$Et IcHHD$D$P+D$TH#E1H|$`HtHD$hH9t H$H$H9t HtH$H$H9t HtH$dH+%(HL[]A\A]A^A_DLHz]DHHdGHt$DH/Ht$8HE~XIGH9$iAD$[D1HfA H $ HH9uDAt AE~ZHCH9D$AED1HfDfHL$HH9uDAt EHD$HPHD$H)HAFD1HfDHL$oHL$H)\$ H9uDAt;H|$IȉH4A4HA9~LALA9~ DADD$8HT$HLD$ Ic1E ,fHH9t!H $Af.ztH.Ic1E4f.HH9t!HL$f.ztHIc1E3f.HH9t HL$H\$ 9 tHrHHc|$ ID1fHL$HH9u@D1fDAH $HH9uD1fDHT$H|$HH9uHT$DHQDL1HDHھHfH"HJ"HW"fAWAVAUATUS1HdH%(H$1HW"Hl$ Ht$ HD$(HFH1HD$4D$0uH|$@4AHc"Lt$@EtIcIƾHD4H$AHcH$L$Et IcIH$D$0+D$4}HE1H$HtH$H9tH|$@HD$HH9t HtH$dH+%(wHL[]A\A]A^A_@DLHHt$HjDLHgTHD$HHHD$7E~WIFH9AD$D1HfA  HH9uDAt AE~WIGH9$AE D1HfAH $HH9uDAt AHL$t$LLD$Ic1E,fDHH9tAf.ztHIc1E0fDHH9t!H $Af.ztHyHt$oHHc|$I@D$HD1fDAH $HH9u D1fDAHH9uDLHYDL1HHHDAWAVAUATUS1HdH%(H$1HHl$ Ht$ HD$(HFH1HD$4D$0H|$@4AHcRLt$@EtIcIƾHt4H$AHcH$L$Et IcIH$D$0+D$4}HE1H$H$H9t Ht)H|$@HD$HH9t HtH$dH+%(\HL[]A\A]A^A_@DLHHt$HMjDLHTHt$H"?Ht$H=*E~ZIFH9xAD$jD1Hf.fA  HH9uDAt AE~WIGH9$AED1HfAH $HH9uDAt AD$L$LLt$D$ Ic1E 'HH9tAf.ztHIc1E,fDHH9tH $Af.ztHtkHHc|$ ID1DAH $HH9u1D1fDAHH9uDLHDDL1H23HgHzUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5l|$HtHt+HH5 HPtBHuH1)Huff.fHHdH%(HD$81H&Ht$HD$HFHD$$D$ t1H|$1HT$8dH+%(u@HHfDHt$H|$ tD$ }HuHZH6fDSH0dH%(HD$(1HH4$HD$HFHD$D$t*H111HT$(dH+%(u1H0[fDfH~I1MufHne ff.AWAVAUATUSHdH%(H$HFHdHl$PHt$PHD$XHjBHD$hHD$` H$4AHcWH$L$EHq 4H$AHcHD$H$EaH4 4H|$pAHc HD$HL$pHL$ED$`+D$d!HE1H|$pHD$xH9t HtH$H$H9t HtH$H$H9tHt H$dH+%(2HL[]A\A]A^A_@H$dH+%(HHH[H=4]A\A]A^A_fDH5E1Ozf.IcHHD$D$`+D$dHt$8H Ht$@H Ht$HH DLH DHH Ht$DH( nE~YIGH9$AD$D1H@fAH $HH9uDAt AE~ZHCH9D$&AED1HfDf$HL$$HH9uDAt EHD$HPHD$H)HAFD1HfDHL$o,HL$,H)l$ H9uDAt;H|$IH 4A4PA9~TAT A9~ DAD HT$T$HHLL$@D$8 D$ Ic1E0fDHH9t!H $Af.zt/HTIc1E4f.HH9t!HL$f.ztH,Ic1E3f.HH9t HL$H\$ 9 tHHHc|$ IIcHHD$IcIH$:D1HL$HH9uD1AH $HH9uD1HT$H|$HH9uiHT$DH 0 DLHDHھHHyH5HBff.AWAVAUATUSHhdH%(H$X1HHl$`H|$`HD$hHGHHD$tD$pxH$4AHc" H$H$Et IcHH$H54H$AHc H$HD$HL$ Et IcHHD$H4H$ AHc H$ HD$HT$(Et IcHHD$H4H$AHc[H$HD$HL$0Et IcHHD$D$p+D$tH E1H$H$H9t HtO H$ H$(H9t Ht0 H$HtH$H9t H$H$H9t HtH$XdH+%(HhL[]A\A]A^A_fDHt$@Hs:Ht$HH^%Ht$PHIHt$XH4DHHNHt$ DH6Ht$(DHHt$0DHE~]H $HCH9AD$zD1Hf$$HH9uDAtH$E~iHL$ Ht$HAH9AED1Hf,,HH9uDAtHT$ HT$E~kHL$(Ht$HAH9dAFWD1Hf.f44HH9uDAtHT$(HT$EHL$0Ht$HQHH)HAGD1HfDo<<HH9uDAt=H|$0LD$H4A4HA9~LALA9~ DADHL$0HT$(HHt$ \$XT$PL$HD$@ D$HHfHHmHHtH HAWAVAUATUSH8dH%(H$(HFtQOH5dE1H$(dH+%( H8L[]A\A]A^A_fH'Hl$PHt$P1HD$XH#HD$hHD$`H|$p4AHcL|$pHD$EH4H$AHcOHD$H$E]Hh4H$AHcH$HD$HT$ Et IcHHD$D$`+D$dzHhHHl$PHt$P1HD$XH"HD$hHD$`H|$p4AHcyL|$pHD$EH4H$AHc?HD$H$EHX4H$AHcH$HD$HL$ Et IcHHD$D$`+D$dHE1H$H$H9t HtH$HkH$H9UUHHl$PHt$P1HD$XHI!HD$hHD$`tH|$p4AHc!L|$pHD$EbH=4H$AHcHD$H$EH4H$AHcH$HD$HL$ Et IcHHD$D$`+D$dD$?H;E1H$H$H9t HtH$H$H9t HtH|$pHD$xH9 Hi@IcHHD$IcHHD$IcIHD$=IcIHD$IcHHD$ZIcIHD$DLHHt$@H=DHHHt$ DHoHt$HH*Ht$DHE~_HL$IGH9AD$D1HDfA$$HH9uDAtAHT$E~aHL$HCH9AED1Hf.f,,HH9uDAtHT$E~hHL$ Ht$HAH9UAFHD1Hf44HH9uDAtHT$ HT$DD$DHL$ HLD$Ht$@GD$,HL$Ic1E (fHH9tAf.zt3HHL$Ic1E.fHH9tf.ztHjIc1E~6HL$ Ht$DHH9tf.ztHHbHc|$,ISDLH7Ht$@H"DHH Ht$ DHHt$HHrHt$DH-Ht$?HE~ZHL$IGH95AD$'D1HfA<<HH9uDAtAHT$E~WHL$HCH9AED1Hf<<HH9uDAtHT$E~aHL$ Ht$HAH9,AFD1Hf$$HH9uDAtHT$ HL$DL$?t$@HLDD$DD$HHL$ jD$,HL$Ic1E+DHH9tAf.ztsHHL$Ic1E.fHH9tf.zt4HIc1E~6HL$ Ht$DHH9tf.ztHHHc|$,;fDDLH:Ht$DHDHHHt$ DHHt$HHE~dHL$IGH9aAD$SD1Hf.fA  HH9uDAtAHT$E~YHL$HCH9AED1HffHH9uDAtHT$E~hAFVHL$ Ht$HAH9?D1HfHH9uDAtHT$ HT$D$Ht$DHLHL$ \D$,HL$Ic1E-HH9tAf.ztHHL$Ic1E.fHH9tf.ztHIc1E~6HL$ Ht$DHH9tf.ztTHFHHc|$,cIHL$ Ht$D1HH9uHL$D1HH9uOHL$D1AHH9uHL$D1AHH9uCHT$ DH7HL$ Ht$D1HH9uHL$D1HH9uFDL1HDUHT$ DH*ZDHھHbHL$ Ht$D1HH9uHL$D1HH9uoHL$D1AHH9uDHھH~DL1Hy*DL1HdDHھHLHT$ DH2"HHHHeHH.HHHHUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(utHH[]fHt$H|$tHl$H=HwtHH=:duHuHc@H`ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;*u\H=m0tLH=u)HeHcZfDLL@HЉ"fATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;)IMtoI$H5,LPtZeHuLIHoHbL1HHP@L8fE1H"DIjfUHPdH%(HD$H1HHt$ HD$(HFHD$4D$0t0H|$ 1HT$HdH+%(HP]Hl$ Ht$HtHt$HtHt$HtT$L$D$HHuHtHH5HiH4'HYff.AWAVAUATUSHdH%(H$HFtIH5#:1H$dH+%(ZHĨ[]A\A]A^A_HHl$ Ht$ HD$(Ht$HH[D$8HD$0qtHt$H`tL$D$HH`H=HH5ϻHz=DHMHl$ Ht$ 1HD$(HHD$8HD$0H|$`4AHcLt$`EH4H|$@AHcvH$L|$@EutD$0+D$4H1H|$@HT$HH9tHt H$H$H|$`HT$hH9SHJH$YH$8IcIH$D$0+D$4Ht$H~Ht$HiDLHSDLH=E~SIFH9AD$D1HfAHH9uDAt AEH$IWH)HDAE7D1HAoH $HH9uDAt6HωA4H4HA9~ALLA9~ ADDL$D$LLxD$ Ic1E.HH9tAf.ztHIc1E*fDHH9tH $ A9 tHHHc|$ IcI>H"H D1AH<$HH9uD1f.AHH9uQDLHT[DLH< HHf.ATL%EH \HH5>GL8FuLH~F9LA\ATIUH]Ht HH56LHtHmtH]A\HH]A\qUH=Hu]ÐHH=gtH]@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5l|$HtHt+HH5 HPtBHuH1)Huff.fHGI~H)ǃuHH=KLHH5 x1HÐHGI~H)ǃuHH=KLHH5(1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$tHl$H=HGtHH= 4uHuHc@H0WATH0fnFdH%(HD$(1HɀH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@HHufHHRxH;zWIMtoI$H5LPtZHuL(IHoH4bL$1HHP@L8fE18H"DIjfH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8kHHuҐ fHuHHff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uH(HtD$9D$t;H111HT$(dH+%(ucH8HHuҐHHH; u-G0t G0dHuHHf1DH8fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(ufH8HHuҐHHH; u-0t G0uHuHH"fATUHXfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0~HD$Ho(Ht}D$0+D$4twH|$ 1H|$HtH/t!HT$HdH+%(HX]A\DHD$HD$cHHq1Ld$ Ht$LtH5*-HT$LFHHgD$HHKHOH=fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(H@]fD;HHuϐHt$ H|$QtD$$t$ tIO1H9u0tHEu0HH{H.HmDHEHH;u$O1҅H9u0tu0HHd@ATUSH@fnFdH%(HD$81HtHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$qtD$$Ld$uXHELH@H;Fu\H=tLH=su)tHeHcZfDLL@HЉfAUATUHĀfnFdH%(HD$x1HgHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$xdH+%(H]A\A]fDsHHufLd$Ht$LtLl$0LLtfoT$0fo\$@LHD$)T$P)\$`zD$0f.D$PzTuRD$Xf.D$8zDuBD$`f.D$@z4u2D$Hf.D$hz$u"HH H@HuԹLLbfAUATUHĀfnFdH%(HD$x1HHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$xdH+%(H]A\A]fDHHufLd$Ht$LtLl$0LL%tfoT$0fo\$@LHD$)T$P)\$` D$0f.D$PzTuRD$Xf.D$8zDuBD$`f.D$@z4u2D$Hf.D$hz$u"5HHm H@HuԹLLfAUH H ATL%3H5<5UL54t L]A\A]Ð1L-z4Hk4HHtHH5LHmtUHHtHH5LѽHmtLL]A\A]fHHfDH8fDATIUH轼Ht HH5LHctHmtH]A\HH]A\O1H9w0tHw0f.f.D1ffDG0UH=dHu]ÐHH=gntH]餻@׽UH@dH%(HD$81HkHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5lk|$HtHt+HH5 HPtBHuHռ1)Huff.fUSHHdH%(HD$81HUkHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$/tHl$H= HtHH=uKHuHcn@HH=ltH轹@ATUSH@fnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\KHHuːHt$H|$tD$$Ld$uXHELH@H;nulH=a 萿tLH=}u)HeHcZfDLLH=kAtLU븐HЉrfATH0fnFdH%(HD$(1HhH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11-E1HD$(dH+%(H0LA\@HHufHHRxH;z跹IMtoI$H5 LPtZ赿HuLHIHoHTbLD1HHP@L8fE1XH"DIj fATL%1H HaH53LƼ2u舻LH^2yLA\ATIUH-Ht HH5 LH3tHmtH]A\HH]A\鱸U1HAWAVAUATSHHxfnFdH%(HEHG~H%fn)fbă @H ،HHfօHH[(L1L?H4AHcHHDžHEtIcHHL4HPAHc蜼HPHDžHxEtIcHHL裵4H}AHcQHDžHUHEtIcHHH?+LؾHEE1HHHEH9tHt HAHPHtHXH9t#HHH9HfD H HHfօH+H[(L1L~H4AHc)HHDžHEtIcHHL04HPAHcۺHPHDžHxEtIcHHL4H}AHc萺HDžHUHEtIcHHH+ ) LHEE1HHHEH9IH@Hx3H5E1聼HEdH+%(HeL[A\A]A^A_]@H `HHfօH4H[(L1LDzHP4AHcrLPHDžEtIcIHL耲4H}AHc.HDžHMHEtIcHHH + L赻H hHHfօHH[(L1LϱHP4AHczLPHDžEtIcIHL舱4H}AHc6HDžHMHEtIcHHH+  L轺HEE1HHHEH9t HtH&HPHHXH9@HPHHH0HHHHH HHHHDLVHxDL<HDL"HL۰HLHHp躰HL裰sHLHHh肰RE~xHHHAH98AD$*DH1HfHH9uDHAtHHE~wHxHHAH9AEuDH1Hf,,HH9uDHAtHxHE~sHHHFH9 AF D1HHf44H)H9uDHAtH‹H% LL;bQLhf(LpHHHxHpAZA[E~LHHIc1H HH9 f.ztHH E~LHxHIc1H HH9 f.ztH袴H E~AHHIc1 HH9t#f.ztH\H NH @H 2HQHcpMIHEHH@HDLnHxDLTHDL:HLHLHHhҬcHLHHp豬BHL蚬+HL胬HLlHLHH`KE~wHHFH95AD$'DL1HHHHf,,9wDLAtHE~vHxHFH9R AEE DL1HHHHf449wDLAtHxE~rHHBH9 AF D1HHHHHf<)<9wDHAt ƃ VHH`LpLhHHxHpXZE~LHHIc1 HH9 Hf.ztHҰHy E~LHxHIc1 HH9F Hf.ztH聰H E~AHIc1 HH9t*Hf.ztH;H -Hk HC H HHcpIHEHHDLLBHDL(HLHLHHpHL詨HLHHh舨sE~lHIFH9AAD$3DH1HfA,,HH9uDHAtAHE~sAEHHHFH9D1HHf44H)H9uDHAtHDHELL; AQLhf(Lp1LHH_AXE~LHHIc1fDHH9$Af.ztH舭H/E~FHHIc1DHH9t#f.ztH=H/H!HHMHc.IHEHH<DLLR HDL8HLHLHHhХHLHHp该HL蘥HL聥lHLjUHLHH`I4E~iIFH9AD$DH1HfAHHH9uDHAt AE~pHHAH9GAE:D1HHfHH)H9uDHAt HEL`LHLpHhHE~FHHIc1 HH9)Af.ztHnHE~AHHIc1 HH9t#f.ztH(HbH  HHH*Hc fDHE1HE1HE1HLhf(HLRhf(Lϩ"L赩H{HHHD1HH9uHHHD1AHH9uHnLML%Lhf(LHHpHAщmHD1HHH9uHRHxHD1HHH9uHHHD1HHH9uHLhAQ1L`LpHH_AXHHDL]HD1LD5H1HHA9HH1AHHA9H=HxDLɡ HDL譡5LhLpf(HHHxHA҉pDL1L`L趦,L蜦L肦 LhLNL4{QLpH`LhHHxH荝FHHHD1L\nH1HHA9HHxH1HHA9HDL1LXHDLƟHH1HHA9HHxDLtHDLXH]HvH(H鱭H­H]HϭHڭH^H齬f.H f(dH%(HD$1APHIf(H1LL$ZYHT$dH+%(uH(H Af(dH%(HD$1AQHf(LL$ZYHT$dH+%(uHϟf.DǜUH= HLu]ÐHH=>q1tHH=LtH]17UH@dH%(HD$81HPJHt$HD$HFHD$$D$ t0H|$,1HT$8dH+%(uhH@]@HT$H|$H5I誠|$HtHt+HH5gHPtҡHuHe1蹡Hu}ff.fUSHHdH%(HD$81HIHt$HD$HFHD$$D$ HD$t6H|$B1HT$8dH+%(HH[]DHt$H|$迚tHl$H=HwtHH=qodu۠HuHc@HH=K9tHMt@ATUSH@fnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\۞HHuːHt$H|$聙tD$$Ld$uXHELH@H;ulH=+ tLH=n u)脟HeHc裞ZfDLLH=IѝtL븐HЉfATH0fnFdH%(HD$(1HyGH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11轠E1HD$(dH+%(H0LA\@胝HHufHHRxH;ZIMtoI$H5LPtZEHuLؗIHoHbLԚ1HHP@L藛8fE1H"DIj虚fATL%H H+H5LVuLHN LA\ATIUHMHt HH5LHÕtHmtH]A\HH]A\AU1HAWAVAUATSHHxfnFdH%(HEHG~H%fn)fbă @H hkHHfօHH[(L1LϔH4AHczHHDžHEtIcHHL联4HPAHc,HPHDžHxEtIcHHL34H}AHcHDžHUHEtIcHHH?+LhHEE1HHHEH9tHt HјHPHtHXH9t賘HHH9HfD H iHHfօH+H[(L1LH4AHc蹙HHDžHEtIcHHL4HPAHckHPHDžHxEtIcHHLr4H}AHc HDžHUHEtIcHHH+ ) L觛HEE1HHHEH9IH@H3H5(hE1HEdH+%(HeL[A\A]A^A_]@H gHHfօH4H[(L1LWHP4AHcLPHDžEtIcIHL4H}AHc辗HDžHMHEtIcHHH + LEH fHHfօHH[(L1L_HP4AHc LPHDžEtIcIHL4H}AHcƖHDžHMHEtIcHHH+  LMHEE1HHHEH9t HtH趔HPHHXH9葔@HHHHHHH蠕HH H耕HHHDLHxDL̐HDL貐HLkHLHHpJHL3sHLHHhRE~xHHHAH98AD$*DH1HfHH9uDHAtHHE~wHxHHAH9AEuDH1Hf,,HH9uDHAtHxHE~sHHHFH9 AF D1HHf44H)H9uDHAtH‹H% LL;QLhf(LpHHHxHpAZA[E~LHHIc1H HH9 f.ztH胓H E~LHxHIc1H HH9 f.ztH2H E~AHHIc1 HH9t#f.ztHH ޒH ВH ’HQHcpݑIHEHH@HDLHxDLHDLʌHL胋HLHHhbcHLHHpABHL*+HLHLHLHH`ۊE~wHHFH95AD$'DL1HHHHf,,9wDLAtHE~vHxHFH9R AEE DL1HHHHf449wDLAtHxE~rHHBH9 AF D1HHHHHf<)<9wDHAt ƃ VHH`LpLhHHxHpXZE~LHHIc1 HH9 Hf.ztHbHy E~LHxHIc1 HH9F Hf.ztHH E~AHIc1 HH9t*Hf.ztHˎH 轎Hk 诎HC 衎H 蓎HHcp讍IHEHHDLL҈HDL踈HLqHLHHpPHL9HLHHhsE~lHIFH9AAD$3DH1HfA,,HH9uDHAtAHE~sAEHHHFH9D1HHf44H)H9uDHAtHDHELL; &AQLhf(Lp1LHH_AXE~LHHIc1fDHH9$Af.ztHH/E~FHHIc1DHH9t#f.ztH͋H迋H豋H裋HMHc辊IHEHH<DLL HDLȅHL聄HLHHh`HLHHp?HL(HLlHLUHLHH`ك4E~iIFH9AD$DH1HfAHHH9uDHAt AE~pHHAH9GAE:D1HHfHH)H9uDHAt HEL`LHLpHhHE~FHHIc1 HH9)Af.ztHHE~AHHIc1 HH9t#f.ztH踈Hb誈H 蜈H莈H耈H*Hc蛇fDHE1HE1HE1HLhf(HLRhf(L_"LEH{HHHD1HH9uHHHD1AHH9uHL詇ML菇%Lhf(LHHpHAщmHD1HHH9uHRHxHD1HHH9uHHHD1HHH9uHLhAQ1L`LpHH_AXHHDLHD1LԀ5H1HHA9HH1AHHA9H=HxDLY HDL=5LhLpf(HHHxHA҉pDL1LLF,L,L LLބLĄ{QLpH`LhHHxHMFHHHD1L~nH1HHA9HHxH1HHA9HDL1Lr~XHDLV~HH1HHA9HHxDL~HDL}HH0HHkH|HH鉍H锍HHwf.H f(dH%(HD$1APHIf(H1LL$ZYHT$dH+%(uH~H Af(dH%(HD$1AQHf(LL$ZYHT$dH+%(uH_~f.D'UH=Hu]ÐHH=OtHH=+tH]xxUH@dH%(HD$81H(Ht$HD$HFHD$$D$ t0H|$輂1HT$8dH+%(uhH@]@HT$H|$H5(:|$HtHt+HH5hHPtbHuHy1IHu }ff.fUSHHdH%(HD$81Hu(Ht$HD$HFHD$$D$ HD$t6H|$ҁ1HT$8dH+%(HH[]DHt$H|$OytHl$H=H~tHH=N}ukHuHc~@HH=)}tHv|@ATUSH@fnFdH%(HD$81H9)Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$覀1HT$8dH+%(H@[]A\k}HHuːHt$H|$xtD$$Ld$uXHELH@H;ulH=,|tLH=L|u)~HeHc3}ZfDLLH=7(a|tLuu븐HЉzfATH0fnFdH%(HD$(1H &H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@|HHufHHRxH;rwtIMtoI$H5LPtZ|HuLhvIHoHtsbLdy1HHP@L'z8fE1x|H"DIj)yfATL%sH H,H5LyuxLH>zLA\ATIUH]yHt HH5LHSttHmtH]A\HH]A\uU1HAWAVAUATSHHxfnFdH%(HEHG~H%fn)fbă @H IHHfօHH[(L1L_sH4AHc zHHDžHEtIcHHLs4HPAHcyHPHDžHxEtIcHHLr4H}AHcqyHDžHUHEtIcHHH?+L{HEE1HHHEH9tHt HawHPHtHXH9tCwHHH9HfD H 7HHHfօH+H[(L1LqH4AHcIxHHDžHEtIcHHLPq4HPAHcwHPHDžHxEtIcHHLq4H}AHcwHDžHUHEtIcHHH+ ) L7zHEE1HHHEH9IH@Hu3H5FE1yHEdH+%(HeL[A\A]A^A_]@H FHHfօH4H[(L1LoHP4AHcvLPHDžEtIcIHLo4H}AHcNvHDžHMHEtIcHHH + LxH EHHfօHH[(L1LnHP4AHcuLPHDžEtIcIHLn4H}AHcVuHDžHMHEtIcHHH+  LwHEE1HHHEH9t HtHFsHPHHXH9!s@HptHHHPtHHH0tHH HtHHHDLvoHxDL\oHDLBoHLmHLHHpmHLmsHLHHhmRE~xHHHAH98AD$*DH1HfHH9uDHAtHHE~wHxHHAH9AEuDH1Hf,,HH9uDHAtHxHE~sHHHFH9 AF D1HHf44H)H9uDHAtH‹H% LL;QLhf(LpHHHxHpAZA[E~LHHIc1H HH9 f.ztHrH E~LHxHIc1H HH9 f.ztHqH E~AHHIc1 HH9t#f.ztH|qH nqH `qH RqHQHcpmpIHEHH@HDLkHxDLtkHDLZkHLjHLHHhicHLHHpiBHLi+HLiHLiHLHH`kiE~wHHFH95AD$'DL1HHHHf,,9wDLAtHE~vHxHFH9R AEE DL1HHHHf449wDLAtHxE~rHHBH9 AF D1HHHHHf<)<9wDHAt ƃ VHH`LpLhHHxHpXZE~LHHIc1 HH9 Hf.ztHmHy E~LHxHIc1 HH9F Hf.ztHmH E~AHIc1 HH9t*Hf.ztH[mH MmHk ?mHC 1mH #mHHcp>lIHEHHDLLbgHDLHgHLfHLHHpeHLeHLHHhesE~lHIFH9AAD$3DH1HfA,,HH9uDHAtAHE~sAEHHHFH9D1HHf44H)H9uDHAtHDHELL; VAQLhf(Lp1LHH_AXE~LHHIc1fDHH9$Af.ztHjH/E~FHHIc1DHH9t#f.ztH]jHOjHAjH3jHMHcNiIHEHH<DLLrd HDLXdHLcHLHHhbHLHHpbHLbHLblHLbUHLHH`ib4E~iIFH9AD$DH1HfAHHH9uDHAt AE~pHHAH9GAE:D1HHfHH)H9uDHAt HEL`LHLpHhHE~FHHIc1 HH9)Af.ztHgHE~AHHIc1 HH9t#f.ztHHgHb:gH ,gHgHgH*Hc+ffDHE1HE1HE1HLhf(HLRhf(Lf"LfH{HHHD1HH9uHHHD1AHH9uHbL9fMLf%Lhf(LHHpHAщmHD1HHH9uHRHxHD1HHH9uHHHD1HHH9uHLhAQ1L`LpHH_AXHHDL}_HD1Ld_5H1HHA9HH1AHHA9H=HxDL^ HDL^5LhLpf(HHHxHA҉pDL1L^Lc,LcLc LcLncLTc{QLpH`LhHHxHMdFHHHD1L|]nH1HHA9HHxH1HHA9HDL1L]XHDL\HH1HHA9HHxDL\HDLx\HlHlHlH%mH6mHlHCmHNmHlH1lf.H f(dH%(HD$1APHIf(H1LL$ZYHT$dH+%(uHH]H Af(dH%(HD$1AQHf(LL$ZYHT$dH+%(uH\f.DWUH=Hl^u]ÐHH=^.Q^tHH= >^tH]QWHt'SH Y[ooKH[1ff.fHtSH[o[1ff.fHtSHZo[1ff.fHt'SH ZooKH[1ff.fATUHHdH%(HD$81HUHt$HD$HFHD$$D$ HD$tUH|$E1n`H|$HtH/tHD$8dH+%(upHHL]A\[XfH-THT$H|$H'_IHt YAo$HHAoL$HWIpZfATUHHdH%(HD$81HUHt$HD$HFHD$$D$ HD$tUH|$E1n_H|$HtH/tHD$8dH+%(ueHHL]A\[WfH-?HT$H|$H'^IHtXAo$HHVI{Y@ATUH-ֽHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1~^H|$HtH/tHD$8dH+%(u[HHL]A\kVfHT$H|$H>]IHtWAo$HH(UIXff.ATUH-ɼHHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1]H|$HtH/tHD$8dH+%(uiHHL]A\{UfHT$H|$HN\IHt VAo$HHAoL$H-TIwWHXdH%(HD$H1HH4$HD$HFHD$D$t2H\1HT$HdH+%(uRHXfHt$ HTtʿ 0VfoD$ foL$0H=HHnSWUH-HPdH%(HD$H1HFH4$Hl$D$HD$t1H[1HT$HdH+%(uMHP]Ht$ H>Tt˿ pUfoD$ foL$0HHHR[Vff.HHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$-[1HT$8dH+%(uJHHfDHt$H|$QRtп TD$H=Hf@QUff.UH-H@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$lZ1HT$8dH+%(uEH@]@Ht$H|$Qtѿ SD$HHf@7QTUHHHt:SH]!VUHHHtSH]VUHHHtRH]UUHHHtRH]UWHHdH%(HD$81HH4$HD$HFHD$D$t2H0Y1HT$8dH+%(uHHHfHt$ HRtʿRfoD$ H=HOSUH-ȷH@dH%(HD$81HFH4$Hl$D$HD$t1HX1HT$8dH+%(uCH@]Ht$ H.Rt˿RfoD$ HHLORDHHdH%(HD$81HHt$HD$HFHD$$D$ t1H|$W1HT$8dH+%(uFHHfDHt$ H|$KtпSQD$ H=HN@RUH-hH@dH%(HD$81HFHt$Hl$D$ HD$$t0H|$W1HT$8dH+%(uAH@]@Ht$ H|$KtѿPD$ HHMQ@HHdH%(HD$81HlH4$HD$HFHD$D$t#H11wV1HT$8dH+%(u4HH)D$ NTI1MuHt$ H=NTPff.HXdH%(HD$H1H̳H4$HD$HFHD$D$t#H11U1HT$HdH+%(u=HX~h)D$ f)D$0SI1MuHt$ H=SSPATIHPdH%(HD$H1HtH6THmID$ǃ-txt,H5ԲT1HT$HdH+%(OHPA\ NfH@HD$HdH+%(HPH=A\Kf.H`Ld$ Ld$ HHD$(HLD$8HD$0K[Ht$LKFHt$LK1Ht$LK Mf(D$f( $H=SH@9K@HD$HdH+%(u=HPLH=B1A\QfHH5H8N1Nff.RQQATIH@dH%(HD$81HtH6RHmID$ǃ5tpt,H5԰R1HT$8dH+%(OH@A\LfHHD$8dH+%(H@H=A\IfDHhLd$Ld$HHD$HLD$(HD$ FcHt$LFNHt$LF9Ht$ LtF$LD$ L$H=ET$H$0IHD$8dH+%(u5H@LH=1A\OHH5H8L1Lff.ATIUHXdH%(HD$H1HtHePHlID$ǃ,twt3H5CQ1HT$HdH+%(NHX]A\f JfH@HD$HdH+%(HXH=]A\HLd$ H}Ld$ HH-LD$8Hl$(HD$0 H\Ht$LGGHt$LG2Ht$LG *Jf(D$f( $HH@mGHD$HdH+%(u=HXLH=R1]A\(NHH5BH8 K1Jff.ATIUHHdH%(HD$81HtHNH|ID$ǃ<twt3H57O1HT$8dH+%(^HH]A\fIfHHD$8dH+%(%HHH=1]A\EFDLd$H$|Ld$HH- LD$(Hl$HD$ C\Ht$LBGHt$LB2Ht$ LBZHD$ L$HT$H$EHD$8dH+%(u=HHLH=21]A\HLH9H5bH8*I1Hff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11M1HT$(dH+%(u1H0[fD[JHHuӐ[KHuDHfDSH0fnFdH%(HD$(1HժH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11L1HT$(dH+%(u2H0[fDIHHuӐJHuCDUGDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11L1HT$(dH+%(u2H0[fDHHHuӐIHuC\CFDSH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11NK1HT$(dH+%(u2H0[fDHHHuӐIHuCBEDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11J1HT$(dH+%(u6H0[fD[GHHuӐ[HHufZC AESH0fnFdH%(HD$(1HЧH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11I1HT$(dH+%(u5H0[fDFHHuӐGHufZARDfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11I1HT$(dH+%(u6H0[fDEHHuӐFHufZCX@CSH0fnFdH%(HD$(1HUH4$HD$HGfnȉD$fbfD$u=H_HtD$9D$t:H11NH1HT$(dH+%(u6H0[fDEHHuӐFHufZC?BH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H11G1HT$(dH+%(uGH8[DHHuҐ~f@HEHuHHBH8fnFdH%(HD$(1HդH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H11F1HT$(dH+%(u?H8CHHuҐ(DHuHH9AfSH0fnFdH%(HD$(1HH4$HD$HGfn؉D$fbfD$u=HGHtL$9L$t:H11E1HT$(dH+%(uhH0[fDBHHuӐfYX(UX(XXf~CHufnfZ=?@ff.@SH0fnFdH%(HD$(1HH4$HD$HGfn؉D$fbfD$u=HGHtL$9L$t:H11D1HT$(dH+%(udH0[fDAHHuӐfffYXfXf@fYXfXfH~BHufHn HGHtL$9L$t;H11C1HT$(dH+%(ufH8@HHuҐ~@ZfWfZ@fZ@ fWwZ@ AHuHՇHR>fH8fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H11C1HT$(dH+%(uWH8?HHuҐf@fW@@fW@@HuHHq=SH@fnFdH%(HD$81HeHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$"B1HT$8dH+%(uUH@[f.>HHuϐHt$H|$19tD$C?HuH HHuHH;fDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$B@1HT$8dH+%(uUH@[f. =HHuϐHt$H|$Q7tD$C=HuH)H:fDSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$R?1HT$8dH+%(uUH@[f.1HT$8dH+%(uTH@[f.+;HHuϐHt$ H|$A2tD$ HtD$9D$t=H1181HT$hdH+%(uWHxf.[5HHuАfo)D$ f)D$0E6I1MuHt$ H=62HXfnFdH%(HD$H1HH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H1171HT$HdH+%(uwHX{4HHuҐo)T$ oX)\$0fD$(fWD$(D$8fWD$8A5HuHt$ H=[5y1HxfnFdH%(HD$h1HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H1161HT$hdH+%(Hx@{3HHuҐoo@f)L$@fY)D$PfYf(fXXXfXf.z?u=fol$@fot$P)l$ )t$0"4HjHt$ H=x4VfL$HfW fL$HL$XfW L$Xf(L$@f^)L$@f(L$Pf^)L$Pu}0ff.fHfnFdH%(H$1HHt$0HD$8HGfnD$HfbfD$@uGHGHtL$D9L$@tDH|$011&51H$dH+%(+HĨD1HHuːo(f)l$pohT$x)$f($$Yf(YXf(YXf.QH|$(Ht$ d$L$T$$Z+$fl$ \$(T$f.L$d$zMuKYf(YYf)|$Pf)L$`2HHt$PH=j2D^^^.d$L$$,d$L$$!HfnFdH%(H$1HHt$ HD$(HGfnD$8fbfD$0uGHGHtL$49L$0tDH|$ 11631H$dH+%(HĘD/HHuːffoho8f()l$pf(T$pfY)|$`f(fXXf(fYXfXf.wzQf.zSuQYD$`fol$p)l$PD$`fo|$`)|$@r0H3Ht$@H=D0ff^f^)\$`)T$p-)T$)$u*f(T$f($fhHHfnFdH%(HD$81HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H1111HT$8dH+%(HH@k.HHuҐ~8fffZ@ZP ZHfWfWfWZZZ()L$ /HsHt$ H=q/_+HxfnFdH%(HD$h1HʎH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H1101HT$hdH+%(Hx@K-HHuҐooX)T$@)\$PfD$HfWD$HD$XfWfod$@D$Xfol$P)d$ )l$0-HsHt$ H=͎Q._*HHfnFdH%(HD$81HwH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11a/1HT$8dH+%(uNHHf.+,HHuА)D$ -I1MuHt$ H= s-)ff.HhfnFdH%(HD$X1HUHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11|.1HT$XdH+%(HhÐK+HHuՐPHfh ((YYX(YX.QH|$Ht$l$L$T$ D$#D$f\$d$T$ .L$l$zGuEY(YY)D$@+HHt$@H=+@^^^5(l$L$ T$,l$L$ T$$HXfnFdH%(HD$H1HHt$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$11,1HT$HdH+%()HXÐ)HHuՐo(f),$($Y((XUX(XX.z4u2(4$)t$0D*HuHt$0H=7*ofHD$H$fH H fnHD$ZfW H H H$ZfHnZfWfZfH~fH~H H H HH$HT$H!H f~H H HT$(<$^)<$+H&HhfnFdH%(HD$X1H]Ht$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11*1HT$XdH+%(HhÐ'HHuՐo0f)4$($$(Y((XUX(XX.Q.zdubH$fn$YH HHD$fnfnH fn)D$@B(H=Ht$@H=1()^)$$$)d$D)(d$fmfDHHfnFdH%(HD$81HʇH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H11)1HT$8dH+%(HH@K&HHuҐ~fffZ@ZP ZHfWfWfWZZZ()L$ &HsHt$ H=Q'_#ATUSHpfnFdH%(HD$h1HֆH4$HD$HGfnȉD$fbfD$uJH_HtD$+D$tDHR(1HT$hdH+%(Hp[]A\%HHuϐLd$ HLH tfoT$ fo\$0HC)T$@)\$PI9f#fk)d$ )l$0D$ f.D$@zPuND$(f.D$Hz@u>D$0f.D$Pz0u.D$8f.D$Xz u%H.HkH k%HuعL1Ht fffs)D$ )t$0j"ATUSH@fnFdH%(HD$81H6H4$HD$HGfnȉD$fbfD$uJH_HtD$+D$tDH&1HT$8dH+%(H@[]A\{#HHuϐLd$ HLHH tHsLHD$ HT$(H)H#)d$ fn.T$ zSuQH fn.D$$zBu@fn.\$(z5u3H fn.D$,z$u"#HBH5jH4@#HuԹL1Hf+)l$ u~ ff.AVATUSHfnFdH%(HD$x1HHt$@HD$HHGfnD$XfbfD$PuTH_Ht!D$P+D$TtNH|$@%1HT$xdH+%(HĈ[]A\A^fD!HHuǐLd$`Hl$@LHFtfS|$`[L$hfI~f(f(YfL$ L$pf(YL$( Xf(YXff.Qf.f(f ff(fT$)T$`)$\$p\$0f($fInD$8f.zYuWl$f.l$ zIuG\$0f.\$(z9u7!HD$8XJDf^^t!HuL1HM\$0L$)$\$0L$ff($ff.AUATUSHhfnFdH%(HD$X1HHHt$ HD$(HGfnD$8fbfD$0uOH_Ht!D$0+D$4tQH|$ "1HT$XdH+%(}Hh[]A\A]@HHufLd$HLl$ LLFtS[c |$L((l$H Y|$ |$PY|$X(YXf.Q. (((T$HT$\$L\$d$Pd$T$fnD$.z_u]\$.\$ zPuNd$.d$zAu?HD$XZ^^^jCHuL1L\d$\$T$L$H d$f\$T$L$AUATUSHfnFdH%(H$1H~H4$HD$HGfnD$fbfD$uRH_HtD$+D$tLHZ 1H$dH+%()H[]A\A]HHuǐLd$ HH LH1tD-D-E~IcH|$pLHecKfCf(f(YfD(f(YDYYfD(DXfD(EXEXfD.z&fD(f(fD(DYA\YYDYYYA^fE(fE(D\AXDXA\YXYDYYDYYXYXfAfD(XD\fYDYAYffEX)t$ Ic1H|$p)d$0)\$@D)L$PD$`E(fDHH9tAf.ztsHt;iHHbHfEffA(fA(fA(qLԕL1HAUATUSHfnFdH%(HD$x1H-|H4$HD$HGfnD$fbfD$uUH_HtD$+D$tOH1HT$xdH+%(HĈ[]A\A]fKHHuĐLd$ HH ԔLHtAՅHL$PHcLHHKDKDS H(A(YA((AYAYYD(DXD(DXEXD.-KzhufD$@f)D$ )D$0DD1 HH9tA.ztdHvVHH`H(D((˸D(A\HL$PA^EYEYYAYAYEYE(E(D\AXDXA\YXYDYYYDYYDA(\AXXXYYAYA)d$ X)\$0D$@E DDKKDS A((AYA((YAYYD(DXD(DXEXD.-fD$@)D$ )D$0LvL1HlfH8fnFdH%(HD$(1HnH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H11O1HT$(dH+%(H8@HHuҐfffYf(fXXf@fYXfXf.zuHuH^HfHfW fHHfW ~Hff^fHf^HHt3Mff.fH8fnFdH%(HD$(1HH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$(dH+%(H8@HHuҐfY((XUX(XX.zuHuH\H@~HZfW ,fZHfZH fW #ZH ^<Ht3ff.fHXfnFdH%(HD$H1HvH4$HD$HGfnD$fbfD$u>HGHtL$9L$t;H111HT$HdH+%(HX@{HHuҐo(f)l$ f(L$ o@fY)D$0fYf(fXXXfXf.z)u'2HzHt$ H=HvffL$(fW ³fL$(L$8fW L$8f(L$ f^)L$ f(L$0f^)L$0H fHXfnFdH%(HD$H1HtHt$HD$HGfnD$(fbfD$ u=HGHtL$$9L$ t:H|$11<1HT$HdH+%()HXÐ HHuՐo(f),$($Y((XUX(XX.z4u2(4$)t$0HuHt$0H=tofHD$H$fH H fnHD$ZfW BH H H$ZfHnZfWfZfH~fH~H H H HH$HT$H!H f~H H HT$(<$^)<$+SH@fnFdH%(HD$81H!sHt$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$11{1HT$8dH+%(H@[CHHuff(Y((XUX(XX.wNQ.z1u/$$HlZn `f(^)$($ffSHPfnFdH%(HD$H1HqHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 11+1HT$HdH+%(HP[HHuffffSf(fYf(fXXf(fYXfXf.wOQf.z'u%$$Hb Zf(ff^f^S2 )T$)$ f(T$f($fSH@fnFdH%(HD$81H{pHt$HD$HGfnD$(fbfD$ uDH_HtD$$9D$ tIH|$111HT$8dH+%(H@[HHuff(Y((XUX(XX.wKQ.z1u/Y:HfHrUHX^ )$F($fff.SHPfnFdH%(HD$H1H+oHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 11{1HT$HdH+%(HP[C HHuffffSf(fYf(fXXf(fYXfXf.w[Qf.z7u5-Y H\HTHNff^f^Sv )T$)$f(T$f($fHxfnFdH%(HD$h1HmHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11 1HT$hdH+%(HxÐ HHuՐo8f)|$@f(\$@ohf()l$Pf(T$PfYf(fXXf(fYXfXf.w^Qf.z)u'z HeHt$@H=m Qff^f^)\$@)T$P= H()T$)$of(T$f($fff.HxfnFdH%(HD$h1HkHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11 1HT$hdH+%(HxÐ[ HHuՐo8f)|$@f(\$@ohf()l$Pf(T$PfYf(fXXf(fYXfXf.whQf.zAu?7YD$@D$@ HQHt$@H=k< =ff^f^)\$@)T$Ps)T$)$f(T$f($fzSH`fnFdH%(HD$X1HjHt$0HD$8HGfnD$HfbfD$@uDH_HtD$D9D$@tIH|$011 1HT$XdH+%( H`[HHufSKfcf(f(YYXf(YXf.QH|$(Ht$ d$L$T$$Y$fl$ \$(T$f.L$d$zDuBYf(YYffK HHNOHD^^^d$L$$d$L$$*fSHPfnFdH%(HD$H1HiHt$ HD$(HGfnD$8fbfD$0uDH_HtD$49D$0tIH|$ 11; 1HT$HdH+%(HP[HHufSKfk ((YYX(YX.QH|$Ht$l$L$T$ D$|D$f\$d$T$ .L$l$z?u=Y(YYMH HMH@^^^l$L$ T$Fl$L$ T$,ff.@HhfnFdH%(HD$X1H8gHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11l1HT$XdH+%(HhÐ;HHuՐof((Y((XUX(XX.wZQ.z-u+)T$@HuHt$@H=fKlfD^()T$@HG|)T$)$foT$(,$fff.HfnFdH%(H$1HeHt$ HD$(HGfnD$8fbfD$0uGHGHtL$49L$0tDH|$ 111H$dH+%(HĘDHHuːffoho8f()l$pf(T$pfY)|$`f(fXXf(fYXfXf.wjQf.zCuAfo|$`fol$p)|$@)l$PVHGHt$@H=(e3ff^f^)\$`)T$p)T$)$Uf(T$f($fxHhfnFdH%(HD$X1HcHt$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11|1HT$XdH+%(HhÐKHHuՐo0f)4$($$(Y((XUX(XX.Q.zdubH$fn$YAH HHD$fnfnH fn)D$@H=Ht$@H=c)^)$$^)d$(d$fmfDHfnFdH%(HD$x1HbHt$0HD$8HGfnD$HfbfD$@uBHGHtL$D9L$@tGH|$0111HT$xdH+%()HĈHHufo8)|$PohT$Xf)l$`L$`f(d$hYf(YXf(YXf.QH|$(Ht$ d$L$T$$3$fl$ \$(T$f.L$d$zNuLYf(YYf)D$Pf)L$`HHt$PH=bCfD^^^d$L$$d$L$$ fHhfnFdH%(HD$X1H`Ht$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11 1HT$XdH+%(HhÐHHuՐPHfh ((YYX(YX.QH|$Ht$l$L$T$ D$\D$f\$d$T$ .L$l$zGuEY(YY)D$@+HHt$@H=,`@^^^l$L$ T$l$L$ T$$HhfnFdH%(HD$X1H_Ht$ HD$(HGfnD$8fbfD$0u=HGHtL$49L$0t:H|$ 11L1HT$XdH+%(HhÐHHuՐof((Y((XUX(XX.wZQ.z-u+)T$@HuHt$@H=^+lfD^()T$@HG\)T$)$foT$(,$fff.ATUSHdH%(H$HFtHHt$ HD$(HGD$0D$4D$8nH_Hf1H$dH+%(HĐ[]A\HHt$ HD$(HGD$0D$4D$8H_HtLd$@Hl$ LHufoT$@fo\$PHD$H)T$`)\$pH9f(d$@#f(l$PD$@kf.D$`D$hf.D$H|vD$Pf.D$pd^D$Xf.D$xLFHHAHH5B1sHHXHD$0+D$4t H|$ L1gDHl$ HHHHt$Hk3Ht$HVHt$HA f(D$f( $C H@HHXHD$0+D$4H|$ sHL1HxD$@D$HD$PD$XD$`ATUSH`dH%(HD$XHFt}HHt$ HD$(HGD$0D$4D$8lH_H1HT$XdH+%(H`[]A\fHcHt$ HD$(HGD$0D$4D$8H_HtLd$@Hl$ LHufo\$@HT$DHH))$H($$#$fn.D$@H$H fn.D$DD$fn.D$HHD$H fn.D$LicHH>HDH5K 1;HHXHD$0+D$4t H|$ 1gDHl$ Ht$HFHt$H1Ht$HHt$HD$L$T$D$H[HHXHD$0+D$4H|$ 0#HL1H8xD$@D$DCD$HCD$LC ff.ATUSHpdH%(HD$hHFt=H5W61HT$hdH+%(Hp[]A\HVHt$0HD$8HGD$@D$DD$HH_Hs1HVHt$0HD$8HGD$@D$DD$HH_HtHl$0Ht$ HtHt$$HtHt$(HxHt$,Hc\$$T$(d$,((YYX(YX. zޓfH|$Ht$L$ ZD$ Yνd$T$$L$ $fT$d$Zl$f^ZD$^Y^YY1@Hl$0Ht$,HsLd$XHLYV\$\L$Xd$`((YYX(YX.ߒzђfH|$Ht$d$ ZD$,Y\$L$$L$\$fEd$ $DZD$f((ZD$^(^AY^AYAY...vHRH9HDCH/HXH"D$@+D$D]H|$01HHXHD$@+D$DHHtD$9D$t;H111HT$(dH+%(u9H8{HHuҐ vHuH)H/ff.@HxfnFdH%(HD$h1HCH4$HD$HGfnȉD$fbfD$u>HGHtL$9L$t;H111HT$hdH+%(umHxHHuҐooXH|$@)T$@)\$P#fod$@fol$P)d$ )l$0xHuHt$ H=NC+ff.AVAUATUHhfnFdH%(HD$X1HBHt$HD$HGfnȉD$(fbfD$  LgH$HD$MD$ +D$$tgH|$E1H<$Ht H/H|$Ht H/HD$XdH+%(HhL]A\A]A^fDHl$L5BHLHVIHtHT$LH>HHoHl$0LLE1HHNHLcI;HHE1F5fDyfAVAUATUHfnFdH%(HD$x1H2AHt$HD$HGfnȉD$(fbfD$ LgH$HD$MD$ +D$$tdH|$E1H<$Ht H/H|$Ht H/HD$xdH+%(HĈL]A\A]A^Lt$H-@HHLIHtHT$HLHHrLH|$PLE1/foT$Pfo\$`)T$0)\$@DH>Ht$0HI)fD HHE11 fD ATUHxfnFdH%(HD$h1H?H4$HD$HGfnȉD$fbfD$uKHoHtD$+D$tEHc1HT$hdH+%(ucHx]A\f+HHuΐLd$ HH WLDtLHHuH<$HfUH@fnFdH%(HD$81Hs>H4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11n1HT$8dH+%(uMH@]fD;HHuӐoHl$ H)T$ z%HuHH=,>f.H8fnFdH%(HD$(1H=H4$HD$HGfnȉD$fbfD$u>HHtD$9D$t;H111HT$(dH+%(u9H8[HHuҐVHuH"Hff.@UH@fnFdH%(HD$81H<H4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$8dH+%(uMH@]fDHHuӐoHl$ H)T$ uHuHH=j<*f.AVAUATUHXfnFdH%(HD$H1H;Ht$HD$HGfnЉD$(fbfD$ LgH$HD$MD$ +D$$tgH|$E1H<$Ht H/H|$Ht H/HD$HdH+%(HXL]A\A]A^fDLt$L-j;HLLVHHtHT$LL>HHoLHE1fD$0fL$8HJHt$0L]I5DHHE1>-fD qAVAUATUHhfnFdH%(HD$X1H5:Ht$ HD$(HGfnЉD$8fbfD$0HD$LgHD$M D$0+D$4tfH|$ E1H|$Ht H/H|$Ht H/HD$XdH+%(HhL]A\A]A^@Lt$ L-9HT$LLHHtHT$LLHHnLHE1)$fL$($)\$@JHBHt$@LI-@HHE18#'fDfATUHXfnFdH%(HD$H1H8H4$HD$HGfnȉD$fbfD$uKHoHtD$+D$tEHc1HT$HdH+%(ucHX]A\f+HHuΐLd$ HH PLtLHuHuH<HfD(DGDO'AYA(EA(YA(D(YYDYDYXA(Y\A(YDY\(YYXA(YDYAXA\AXA\(\X)L$HD$~D$fHnfS(HH0WYo&YVXWYVXW YV Xf/vWtW%t\t(TtZ\tf/vD$t(\(YYX)$HD$~$H0[fHnD)d$  $I $f(sZL$\f\$ZY\$$(\$$\$(ZL$^l$Y(Z$Pl$fod$ ($^ATf(ISHHxVdH%(HD$h1YRo*Yor)l$ )t$0XVYRXVYRXff/v*f(rf(\$ fWrfWfWT$0)\$ )T$0rf(fT%rf(\%sf/vh\f(\$ f#fffCfYfYfYL$0fYfXfXA$AD$HD$hdH+%(HxL[A\f $Hq $f(fHnL$\\$f(Y\$$f(\$$L$\$D$^Yf($]d$$f(^SHH _Wof(f(YYXf(YXff.Qf.zquo qf(f(d$T$$$T$HXYۚd$YYY[SCH [@^^f(^l$T$\$ $l$T$f\$ $;f.ATISHHfo:dH%(H$1f()|$`ozfY)|$pff(fXXfJf(fYXfXf.fDQfD(f9H$fDff6fA(fE(f(fAYfEfA(fD(fYfDfD(fAYfEYf(f\fXfA(fYfE(f(f\fXf(fffYfD(fDYffD(fDYfnfDYfDYfYffYfE\fEXfYfYfDYfDYEfE(fD\fAXfE(AfDXfA\AfXfA(f\fAX)D$f\f(fAXfA\)$fA\)$f(f\fXfDXD)$,f($f(D$H$)$)$f(nf($fX$f($fX$fYfYff(f(f(Yff(Yf(fYfXXf. Qf(H|$XHt$P)T$0f)d$ L$$)|$@$f\$Xl$PL$f.fD(f(d$ f(T$0fEfAYfD(fD[YfAYf(f(ffDf(f3f(fD(fD(ffDffAYfD(fDfEYfD(fE\fDXfA(fAfYfA(EfE(fEfAYfE(ffD\fAXAf\f(YAYA $f(AYY\f(AYXYXf(AYY\XXAL$AD$H$dH+%(HL[A\fD$hfWlfD$hD$xfWkD$xf(D$`f(L$pf^f^@f(|$@^f^f^j)T$ )d$ $-f(T$ f(d$ $fSHHpN8f(v HL$@HfD(n@VH|$ D\Xf(DV0X^D^fD(E\AXҾdH%(H$h1f(AXHD$`XA\fA)d$`fA(fDD)$ff)d$pf(\)$\fDf(f(\ffWjD)$)$\\Xf)$ffHnH$fHnH$)$fl)D$ fHnH$fHnH$fl)D$0fHnH$fHnH$ fl)D$@fHnH$@fHnfl)D$P9$ $f$@f$ CH$hdH+%(u Hp[f.SHH_Wo ((YYX(YXf.Q.znul h((d$T$$H$T$XYoid$YYY[SC H[@^^(^l$ T$\$ $l$ T$f\$ $@AUfIHATUSHHXo6dH%(HD$H1)4$($Y((XUX(XX.H$Hl$0fDnH fDnHD$A(A(fnH fn؉$$LfH~fH~A(A(HHL$0fI~fI~HT$8(D$0HLl$0Ld$8)$($XD$0fYg((U(((YYX(YX.pQH|$,Ht$(L$$\$ T$$ $fd$(l$,T$.\$ L$$Y(HYYK[ S)D$0HT$HdH+%(HX[]A\A]HD$H$fH H fnHD$ZfW BfH H H$ZfHnZfWffZfH~fH~H H H HH$HT$H!H f~H H HT$(<$^)<$D^^^L$ \$$L$ \$$hfDSHHV DF~HL$0H(Nv H|$D^A\DX(DVXDN(dH%(H$1A(HD$PA\A\XAXEXD(ADAE(A)T$P(E\\(\WdA)l$`\\XfHnHD$`)d$pfHnHD$pfl)$)D$fHnH$fHnH$fl)D$ fHnH$fHnH$fl)D$0fHnH$fHnfl)D$@胻$$$$H$dH+%(u H[ffDfDfDHt'SH IooKH[1ff.fHtSH o[1ff.fHtSHٿf[Ð1ff.fHt'SH詿fSP[f.1ff.fHtSHi[1ff.fHtSH9HH[Ð1ff.fHtSH HHSP[1DHtSHپo[1ff.fHtSH詾HH[Ð1ff.fHtSH yHHSP[1DHtSHIo[1ff.fHt'SHoHSHP[1ff.fATUHHdH%(HD$81HaHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(upHHL]A\軻fH-bHT$H|$HIHt %Ao$HHAoL$HfIp fATUHHdH%(HD$81H`Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(ueHHL]A\軺fH-aHT$H|$HIHt%Ao$HHqI{@ATUHHdH%(HD$81H_Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(udHHL]A\˹fH-_HT$H|$HIHt5HHA$f肸I|%DATUHHdH%(HD$81H^Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(umHHL]A\۸fH-^HT$H|$H觿IHtEHHA$fAD$F艷Is,ff.ATUHHdH%(HD$81H]Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(u_HHL]A\۷fH-]HT$H|$H觾IHtEHHA$蔶I:f.ATUHHdH%(HD$81H\Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(u`HHL]A\fH-\HT$H|$H跽IHtUHHI$H裵IIfATUHHdH%(HD$81H[Ht$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(ukHHL]A\fH-[HT$H|$HǼIHt eHHI$HAD$F諴IuNff.ATUHHdH%(HD$81HZHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(ueHHL]A\fH-ZHT$H|$HǻIHteAo$HH豳I{T@ATUHHdH%(HD$81HYHt$HD$HFHD$$D$ HD$tUH|$E1H|$HtH/tHD$8dH+%(u`HHL]A\ fH-YHT$H|$H׺IHtuHHI$HòIifATUHHdH%(HD$81HXHt$HD$HFHD$$D$ HD$tUH|$E1.H|$HtH/tHD$8dH+%(ukHHL]A\fH-XHT$H|$HIHt 腴HHI$HAD$F˱Iunff.ATUHHdH%(HD$81HWHt$HD$HFHD$$D$ HD$tUH|$E1.H|$HtH/tHD$8dH+%(ueHHL]A\fH-WHT$H|$HIHt腳Ao$HHѰI{t@ATUHHdH%(HD$81H WHt$HD$HFHD$$D$ HD$tUH|$E1>H|$HtH/tHD$8dH+%(unHHL]A\+fH-VHT$H|$HIHt蕲Ao$HHID$HFدIr{ff.HXdH%(HD$H1HVH4$HD$HFHD$D$t2HP1HT$HdH+%(uRHXfHt$ H螰tʿ бfoD$ foL$0H=VHH跲HHdH%(HD$81HPUH4$HD$HFHD$D$t2H萷1HT$8dH+%(uHHHfHt$ Hޯtʿf(D$ H=THXHHdH%(HD$81HTH4$HD$HFHD$D$t2H1HT$8dH+%(uSHHfHt$ H.tʿ`f(L$ D$0H=(TH@蝭FfDHHdH%(HD$81HSHt$HD$HFHD$$D$ t1H|$1HT$8dH+%(uJHHfDHt$H|$Atп 裯D$H=cTHf@茰ff.HHdH%(HD$81H SHt$HD$HFHD$$D$ t1H|$]1HT$8dH+%(uFHHfDHt$H|$聬tпD$H=RHf'ЯHHdH%(HD$81HpRHt$HD$HFHD$$D$ t1H|$譴1HT$8dH+%(uOHHfDHt$H|$ѫtп3D$H=RHf(@fnATUSHPfnFdH%(HD$H1HpQHt$ HD$(HGfn؉D$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ 貳1H|$HtH/t HT$HdH+%(HP[]A\HD$薫HD$SHHr1Ld$ HT$H5PLGHHyHt$Lnd\E~PL$fTf/sMC\EfTf/s9C\E1fTf/@İH HSfD1off.@UHHHt誫H]鑮UHHHt芫H]qUHHHtjH]QUHHHtJH]1UHHHt*H]UHHHt H]UHHHtH]ѭUHHHtʪH]鱭UHHHt說H]鑭UHHHt芪H]qUHHHtjH]QUHHHtJH]1HHdH%(HD$81HpNH4$HD$HFHD$D$t2H谰1HT$8dH+%(uHHHfHt$ H^tʿ0foD$ H=NHx!H8dH%(HD$(1HMH4$HD$HFHD$D$t2H1HT$(dH+%(uGH8fHt$ H让tʿ耩H=MHHD$ HɦrfHHdH%(HD$81HMH4$HD$HFHD$D$t2HP1HT$8dH+%(uRHHfHt$(Htʿ ШD$0H=LHHD$(FH跩HHdH%(HD$81HPLHt$HD$HFHD$$D$ t1H|$荮1HT$8dH+%(uFHHfDHt$ H|$聢tпD$ H=LHWHHdH%(HD$81HKHt$HD$HFHD$$D$ t1H|$ݭ1HT$8dH+%(uFHHfDHt$ H|$ѡtпcD$ H=mKH觤PHHdH%(HD$81HJHt$HD$HFHD$$D$ t1H|$-1HT$8dH+%(uNHHfDHt$ H|$!tп 賦D$ H=JH(@蘧H8dH%(HD$(1H0JH4$HD$HFHD$D$t2Hp1HT$(dH+%(uGH8fHt$&HtʿH=JHD$&f9fH8dH%(HD$(1HIH4$HD$HFHD$D$t2H1HT$(dH+%(uOH8fHt$%Hntʿ@H=IHD$%fD$'F聢*f.H8dH%(HD$(1HHH4$HD$HFHD$D$t2H1HT$(dH+%(uEH8fHt$$H讨tʿ耤H=HHƋD$$ˡt@HHdH%(HD$81HHHt$HD$HFHD$$D$ t1H|$M1HT$8dH+%(uCHHfDHt$H|$tпӣH=qHHD$FäHHdH%(HD$81H`GHt$HD$HFHD$$D$ t1H|$蝩1HT$8dH+%(uFHHfDHt$H|$atп#H=GHD$FFgHHdH%(HD$81HFHt$HD$HFHD$$D$ t1H|$1HT$8dH+%(uIHHfDHt$H|$豦tпsH=FHD$FFF负]ff.fH8dH%(HD$(1HEH4$HD$HFHD$D$t2H01HT$(dH+%(uGH8fHt$ H.tʿ谡H=FHHD$ H袢fHHdH%(HD$81H@EH4$HD$HFHD$D$t2H耧1HT$8dH+%(uNHHfHt$(H~tʿ H=CEHHD$(HD$0FBff.HHdH%(HD$81HDH4$HD$HFHD$D$t2H1HT$8dH+%(uHHHfHt$ H辟tʿ@foD$ H=iDH舝1HHdH%(HD$81HCHt$HD$HFHD$$D$ t1H|$ 1HT$8dH+%(uHHHfDHt$ H|$tп蓟fnL$ H=CHfpf՜~ff.HHdH%(HD$81HCHt$HD$HFHD$$D$ t1H|$M1HT$8dH+%(uMHHfDHt$ H|$Atп ӞH=CHƋD$ fnȉFfpf蹟fHHdH%(HD$81HPBHt$HD$HFHD$$D$ t1H|$荤1HT$8dH+%(uGHHfDHt$ H|$聠tпfnL$ H=H8rff.ATIHt H HueID$Džt2tH5>蹠1A\@L1H=MA\D螚fH=L?HA\fDHH5H8躛fDfDfDfDfDfDfDfDfDgWG7'םǝUSHHodH%(HD$1wEHHH菘tS$HcDHHT$dH+%(u2H[]@HH5J<H8蜙ff.USHHodH%(HD$1wEHHHt$ݞtQD$HcۈDxHHT$dH+%(u2H[]@HAH5;H8Rff.USHHodH%(HD$1wMHHHt$]tYD$HcD՛HHT$dH+%(u7H[]fHH5;H8誘T@USHHodH%(HD$1wEHHHt$tQD$HcۉD9HHT$dH+%(u3H[]DHH5j:H8輗ff.USHHodH%(HD$1wMHHHt$tYD$HcD蕚HHT$dH+%(u7H[]fHYH59H8j@USHHodH%(HD$1wEHHHt$]tQD$HcۈDHHT$dH+%(u2H[]@HH5*9H8Җ|ff.USHHodH%(HD$1wEHHHϔtS$HcDXHHT$dH+%(u2H[]@H!H58H82ܕff.USHHodH%(HD$1wEHHHt$mtQD$HcۉD蹘HHT$dH+%(u3H[]DHH57H8蒕H=:/HH@A\HaH5H8RATIHt H HueID$Džt2tH5.蹐1A\@L1H=:A\D螊H=/HA\HH5H8躋ATIHt HjHueID$Džt2tH5-1A\@L1H=D>A\]D fH=.H@A\BfH)H5RH8ATIHt HʎHueID$Džt2tH5]-y1A\@L1H=6A\齍D^fH=-HA\馆fDHH5H8zH8fnFdH%(HD$(1H,H4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H111HT$(dH+%(u5H8f.軋HHuА軌Huſ܋uDH8fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H1111HT$(dH+%(u5H8f.HHuАHuſ赈DH8fnFdH%(HD$(1H/+H4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11q1HT$(dH+%(u5H8f.;HHuА;Huſ\DUH0fnFdH%(HD$(1HfH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11讌1HT$(dH+%(u?H0]fD{HHuӐ{HuHH5dfH(ATUSHPfnFdH%(HD$H1H)Ht$ HD$(HGfnȉD$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ ‹1H|$HtH/t HT$HdH+%(HP[]A\HD$覃HD$cHHr1Ld$ HT$H5Y)LWHHyHt$LNd+E‹L$I9~BC+EI9~1C+EI19@HHv1藅ATUSHPfnFdH%(HD$H1H'Ht$ HD$(HGfnȉD$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ 21H|$HtH/t HT$HdH+%(HP[]A\HD$HD$ӆHHr1Ld$ HT$H5'LLjHHyHt$L辅d+ET$I9~RC+EI9~AC+EI9~0C +E I19@FH HՉ1ATUSHPfnFdH%(HD$H1HP&Ht$ HD$(HGfnȉD$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ 蒈1H|$HtH/t HT$HdH+%(HP[]A\HD$vHD$3HHr1Ld$ HT$H5\&L'HHyHt$LdMT$)ȉI9~eMC)ȉI9~PMC)ȉI9~;MC)ȉI19@蕅HH$1?ff.@ATUSHPfnFdH%(HD$H1H$Ht$ HD$(HGfn؉D$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ ҆1H|$HtH/t HT$HdH+%(HP[]A\HD$~HD$sHHr1Ld$ HT$H5$LgHHyHt$L}d\E~5#L$fTf/s0C\EfTf/H 芆1謀ff.ATUSHPfnFdH%(HD$H1H#Ht$ HD$(HGfnȉD$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ B1H|$HtH/t HT$HdH+%(HP[]A\HD$&}HD$HHr1Ld$ HT$H5"L׃HHyHt$L΀d+E‹L$I9}-C+EI9{H0 %1,ff.ATUSHPfnFdH%(HD$H1H!Ht$ HD$(HGfn؉D$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ ƒ1H|$HtH/t HT$HdH+%(HP[]A\HD${HD$cHHr1Ld$ HT$H5!LWHHyHt$LNwd\E L$T/sWC\ET/sEC\ET/s3C \E 1T/@ȀHHWf1w}ATUSHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ 1H|$HtH/t HT$HdH+%(HP[]A\HD$yHD$~HHr1Ld$ HT$H5L觀HHyHt$LndUL$)ЉI9~MUC)ЉI9~8UC)ЉI19@*HH蹁@1{ATUSHPfnFdH%(HD$H1H0Ht$ HD$(HGfnȉD$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ r1H|$HtH/t HT$HdH+%(HP[]A\HD$VxHD$}HHr1Ld$ HT$H5dLHHyHt$L}dUL$)ЉI9}1CU)ЉI9}H'11SzATUSHPfnFdH%(HD$H1HHt$ HD$(HGfn؉D$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ ~1H|$HtH/t HT$HdH+%(HP[]A\HD$vHD${HHr1Ld$ HT$H5BL}HHyHt$L~rd\EEL$T/sGC\ET/s5C\E1T/@ |HH~@1xATUSHPfnFdH%(HD$H1HHt$ HD$(HGfn؉D$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ R}1H|$HtH/t HT$HdH+%(HP[]A\HD$6uHD$yHHr1Ld$ HT$H5L{HHyHt$Lpd\EL$T/s.C\ET/zH$}10wATUSHPfnFdH%(HD$H1HHt$ HD$(HGfn؉D$8fbfD$0}HD$H_Ht|D$0+D$4tvH|$ {1H|$HtH/t HT$HdH+%(HP[]A\HD$sHD$sxHHr1Ld$ HT$H5LgzHHyHt$Lrd\E~5L$fTf/seC\EfTf/sQC\EfTf/s=C\E1fTf/@xHH_{f.1wuH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H111z1HT$(dH+%(u5H8f.vHHuАwHuſwtDH8fnFdH%(HD$(1H/H4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11qy1HT$(dH+%(u5H8f.;vHHuА;wHuſ\vsDH8fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11x1HT$(dH+%(u5H8f.{uHHuА{vHuſu5sDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11w1HT$(dH+%(u5H8f.tHHuАuHuſturDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H111w1HT$(dH+%(u5H8f.sHHuАtHuſtqDH8fnFdH%(HD$(1H/H4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11qv1HT$(dH+%(u5H8f.;sHHuА;tHuſ\spDH8fnFdH%(HD$(1HoH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11u1HT$(dH+%(u5H8f.{rHHuА{sHuſr5pDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H11t1HT$(dH+%(u5H8f.qHHuАrHuſquoDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HtD$9D$t=H111t1HT$(dH+%(u5H8f.pHHuАqHuſqnDUH0fnFdH%(HD$(1HMH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11ns1HT$(dH+%(u?H0]fD;pHHuӐ;qHuHH5$MfHkmUH0fnFdH%(HD$(1HLH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11r1HT$(dH+%(u?H0]fDkoHHuӐkpHuHH5TLfHjmUH0fnFdH%(HD$(1H LH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11q1HT$(dH+%(u?H0]fDnHHuӐoHuHH5K7eH/jHlUH0fnFdH%(HD$(1H;KH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11p1HT$(dH+%(u?H0]fDmHHuӐnHuHH5JgdH_ixkUH0fnFdH%(HD$(1HkJH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11.p1HT$(dH+%(u?H0]fDlHHuӐmHuHH5IcHhjUH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11^o1HT$(dH+%(u?H0]fD+lHHuӐ+mHuHH5IbHgiUH0fnFdH%(HD$(1HHH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11n1HT$(dH+%(u?H0]fD[kHHuӐ[lHuHH5DHaHfiUH0fnFdH%(HD$(1HGH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11m1HT$(dH+%(u?H0]fDjHHuӐkHuHH5tG'aHf8hUH0fnFdH%(HD$(1H+GH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11l1HT$(dH+%(u?H0]fDiHHuӐjHuHH5FW`HOehgUH0fnFdH%(HD$(1H[FH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11l1HT$(dH+%(u?H0]fDhHHuӐiHuHH5E_HdfUH0fnFdH%(HD$(1HEH4$HD$HGfnȉD$fbfD$u=HoHtD$9D$t:H11Nk1HT$(dH+%(u?H0]fDhHHuӐiHuHH5E^HceATL% H LfX uLEgLA\ff.@ATL% H ,HuH5Le uLfLA\ff.@ATL%3H H%H5LfeuLfLA\ff.@ATL%H HH5NLehuLUfLA\ff.@ATL%H ܣHH5LduLfLA\ff.@ATL%CH H5H5LvduLeLA\ff.@ATL%H HH5^L&dxuLeeLA\ff.@ATL%H |HH5Lc(uLeLA\ff.@ATL%SH \HEH5LcuLdLA\ff.@ATL%H int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkAmoebaMinimizer C++: static vtkAmoebaMinimizer *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAmoebaMinimizer C++: vtkAmoebaMinimizer *NewInstance() V.SetFunction(function) C++: void SetFunction(void (*f)(void *), void *arg) Specify the function to be minimized. When this function is called, it must get the parameter values by calling GetParameterValue() for each parameter, and then must call SetFunctionValue() to tell the minimizer what the result of the function evaluation was. The number of function evaluations used for the minimization can be retrieved using GetFunctionEvaluations(). V.SetParameterValue(string, float) C++: void SetParameterValue(const char *name, double value) V.SetParameterValue(int, float) C++: void SetParameterValue(int i, double value) Set the initial value for the specified parameter. Calling this function for any parameter will reset the Iterations and the FunctionEvaluations counts to zero. You must also use SetParameterScale() to specify the step size by which the parameter will be modified during the minimization. It is preferable to specify parameters by name, rather than by number. V.SetParameterScale(string, float) C++: void SetParameterScale(const char *name, double scale) V.SetParameterScale(int, float) C++: void SetParameterScale(int i, double scale) Set the scale to use when modifying a parameter, i.e. the initial amount by which the parameter will be modified during the search for the minimum. It is preferable to identify scalars by name rather than by number. V.GetParameterScale(string) -> float C++: double GetParameterScale(const char *name) V.GetParameterScale(int) -> float C++: double GetParameterScale(int i) Set the scale to use when modifying a parameter, i.e. the initial amount by which the parameter will be modified during the search for the minimum. It is preferable to identify scalars by name rather than by number. V.GetParameterValue(string) -> float C++: double GetParameterValue(const char *name) V.GetParameterValue(int) -> float C++: double GetParameterValue(int i) Get the value of a parameter at the current stage of the minimization. Call this method within the function that you are minimizing in order to get the current parameter values. It is preferable to specify parameters by name rather than by index. V.GetParameterName(int) -> string C++: const char *GetParameterName(int i) For completeness, an unchecked method to get the name for particular parameter (the result will be nullptr if no name was set). V.GetNumberOfParameters() -> int C++: int GetNumberOfParameters() Get the number of parameters that have been set. V.Initialize() C++: void Initialize() Initialize the minimizer. This will reset the number of parameters to zero so that the minimizer can be reused. V.Minimize() C++: virtual void Minimize() Iterate until the minimum is found to within the specified tolerance, or until the MaxIterations has been reached. V.Iterate() -> int C++: virtual int Iterate() Perform one iteration of minimization. Returns zero if the tolerance stopping criterion has been met. V.SetFunctionValue(float) C++: virtual void SetFunctionValue(double _arg) Get the function value resulting from the minimization. V.GetFunctionValue() -> float C++: double GetFunctionValue() Get the function value resulting from the minimization. V.SetContractionRatio(float) C++: virtual void SetContractionRatio(double _arg) Set the amoeba contraction ratio. The default value of 0.5 gives fast convergence, but larger values such as 0.6 or 0.7 provide greater stability. V.GetContractionRatioMinValue() -> float C++: virtual double GetContractionRatioMinValue() Set the amoeba contraction ratio. The default value of 0.5 gives fast convergence, but larger values such as 0.6 or 0.7 provide greater stability. V.GetContractionRatioMaxValue() -> float C++: virtual double GetContractionRatioMaxValue() Set the amoeba contraction ratio. The default value of 0.5 gives fast convergence, but larger values such as 0.6 or 0.7 provide greater stability. V.GetContractionRatio() -> float C++: virtual double GetContractionRatio() Set the amoeba contraction ratio. The default value of 0.5 gives fast convergence, but larger values such as 0.6 or 0.7 provide greater stability. V.SetExpansionRatio(float) C++: virtual void SetExpansionRatio(double _arg) Set the amoeba expansion ratio. The default value is 2.0, which provides rapid expansion. Values between 1.1 and 2.0 are valid. V.GetExpansionRatioMinValue() -> float C++: virtual double GetExpansionRatioMinValue() Set the amoeba expansion ratio. The default value is 2.0, which provides rapid expansion. Values between 1.1 and 2.0 are valid. V.GetExpansionRatioMaxValue() -> float C++: virtual double GetExpansionRatioMaxValue() Set the amoeba expansion ratio. The default value is 2.0, which provides rapid expansion. Values between 1.1 and 2.0 are valid. V.GetExpansionRatio() -> float C++: virtual double GetExpansionRatio() Set the amoeba expansion ratio. The default value is 2.0, which provides rapid expansion. Values between 1.1 and 2.0 are valid. V.SetTolerance(float) C++: virtual void SetTolerance(double _arg) Specify the value tolerance to aim for during the minimization. V.GetTolerance() -> float C++: virtual double GetTolerance() Specify the value tolerance to aim for during the minimization. V.SetParameterTolerance(float) C++: virtual void SetParameterTolerance(double _arg) Specify the parameter tolerance to aim for during the minimization. V.GetParameterTolerance() -> float C++: virtual double GetParameterTolerance() Specify the parameter tolerance to aim for during the minimization. V.SetMaxIterations(int) C++: virtual void SetMaxIterations(int _arg) Specify the maximum number of iterations to try before giving up. V.GetMaxIterations() -> int C++: virtual int GetMaxIterations() Specify the maximum number of iterations to try before giving up. V.GetIterations() -> int C++: virtual int GetIterations() Return the number of interations that have been performed. This is not necessarily the same as the number of function evaluations. V.GetFunctionEvaluations() -> int C++: virtual int GetFunctionEvaluations() Return the number of times that the function has been evaluated. V.EvaluateFunction() C++: void EvaluateFunction() Evaluate the function. This is usually called internally by the minimization code, but it is provided here as a public method. ??@FunctionValuesvtkFunctionSetGetNumberOfFunctionsGetNumberOfIndependentVariablesvtkFunctionSet - Abstract interface for sets of functions Superclass: vtkObject vtkFunctionSet specifies an abstract interface for set of functions of the form F_i = F_i(x_j) where F (with i=1..m) are the functions and x (with j=1..n) are the independent variables. The only supported operation is the function evaluation at x_j. @sa vtkImplicitDataSet vtkInterpolatedVelocityField vtkInitialValueProblemSolver vtkCommonMathPython.vtkFunctionSetV.SafeDownCast(vtkObjectBase) -> vtkFunctionSet C++: static vtkFunctionSet *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkFunctionSet C++: vtkFunctionSet *NewInstance() V.FunctionValues([float, ...], [float, ...]) -> int C++: virtual int FunctionValues(double *x, double *f) Evaluate functions at x_j. x and f have to point to valid double arrays of appropriate sizes obtained with GetNumberOfFunctions() and GetNumberOfIndependentVariables. V.GetNumberOfFunctions() -> int C++: virtual int GetNumberOfFunctions() Return the number of functions. Note that this is constant for a given type of set of functions and can not be changed at run time. V.GetNumberOfIndependentVariables() -> int C++: virtual int GetNumberOfIndependentVariables() Return the number of independent variables. Note that this is constant for a given type of set of functions and can not be changed at run time. vtkInitialValueProblemSolverIsAdaptiveGetFunctionSetComputeNextStep(i)ErrorCodesSetFunctionSetOUT_OF_DOMAINNOT_INITIALIZEDUNEXPECTED_VALUEvtkInitialValueProblemSolver - Integrate a set of ordinary differential equations (initial value problem) in time. Superclass: vtkObject Given a vtkFunctionSet which returns dF_i(x_j, t)/dt given x_j and t, vtkInitialValueProblemSolver computes the value of F_i at t+deltat. @warning vtkInitialValueProblemSolver and it's subclasses are not thread-safe. You should create a new integrator for each thread. @sa vtkRungeKutta2 vtkRungeKutta4 vtkCommonMathPython.vtkInitialValueProblemSolverV.SafeDownCast(vtkObjectBase) -> vtkInitialValueProblemSolver C++: static vtkInitialValueProblemSolver *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkInitialValueProblemSolver C++: vtkInitialValueProblemSolver *NewInstance() V.ComputeNextStep([float, ...], [float, ...], float, float, float, float) -> int C++: virtual int ComputeNextStep(double *xprev, double *xnext, double t, double &delT, double maxError, double &error) V.ComputeNextStep([float, ...], [float, ...], [float, ...], float, float, float, float) -> int C++: virtual int ComputeNextStep(double *xprev, double *dxprev, double *xnext, double t, double &delT, double maxError, double &error) V.ComputeNextStep([float, ...], [float, ...], float, float, float, float, float, float, float) -> int C++: virtual int ComputeNextStep(double *xprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) V.ComputeNextStep([float, ...], [float, ...], [float, ...], float, float, float, float, float, float, float) -> int C++: virtual int ComputeNextStep(double *xprev, double *dxprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3 V.SetFunctionSet(vtkFunctionSet) C++: virtual void SetFunctionSet(vtkFunctionSet *functionset) Set / get the dataset used for the implicit function evaluation. V.GetFunctionSet() -> vtkFunctionSet C++: virtual vtkFunctionSet *GetFunctionSet() Set / get the dataset used for the implicit function evaluation. V.IsAdaptive() -> int C++: virtual int IsAdaptive() Returns 1 if the solver uses adaptive stepsize control, 0 otherwise vtkCommonMathPython.vtkInitialValueProblemSolver.ErrorCodesAdjointMultiply3x3TransposeInvertDeepCopyMultiplyPointGetDatap_voidGetElementIsIdentitySetElementDeterminantZeroPPP *d *d *d@V *vtkMatrix3x3PV *d *vtkMatrix3x3vtkMatrix3x3 - represent and manipulate 3x3 transformation matrices Superclass: vtkObject vtkMatrix3x3 is a class to represent and manipulate 3x3 matrices. Specifically, it is designed to work on 3x3 transformation matrices found in 2D rendering using homogeneous coordinates [x y w]. @sa vtkTransform2D vtkCommonMathPython.vtkMatrix3x3V.SafeDownCast(vtkObjectBase) -> vtkMatrix3x3 C++: static vtkMatrix3x3 *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkMatrix3x3 C++: vtkMatrix3x3 *NewInstance() V.DeepCopy(vtkMatrix3x3) C++: void DeepCopy(vtkMatrix3x3 *source) V.DeepCopy([float, float, float, float, float, float, float, float, float], vtkMatrix3x3) C++: static void DeepCopy(double elements[9], vtkMatrix3x3 *source) V.DeepCopy([float, float, float, float, float, float, float, float, float], (float, float, float, float, float, float, float, float, float)) C++: static void DeepCopy(double elements[9], const double newElements[9]) V.DeepCopy((float, float, float, float, float, float, float, float, float)) C++: void DeepCopy(const double elements[9]) Set the elements of the matrix to the same values as the elements of the source Matrix. V.Zero() C++: void Zero() V.Zero([float, float, float, float, float, float, float, float, float]) C++: static void Zero(double elements[9]) Set all of the elements to zero. V.Identity() C++: void Identity() V.Identity([float, float, float, float, float, float, float, float, float]) C++: static void Identity(double elements[9]) Set equal to Identity matrix V.Invert(vtkMatrix3x3, vtkMatrix3x3) C++: static void Invert(vtkMatrix3x3 *in, vtkMatrix3x3 *out) V.Invert() C++: void Invert() V.Invert((float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float]) C++: static void Invert(const double inElements[9], double outElements[9]) Matrix Inversion (adapted from Richard Carling in "Graphics Gems," Academic Press, 1990). V.Transpose(vtkMatrix3x3, vtkMatrix3x3) C++: static void Transpose(vtkMatrix3x3 *in, vtkMatrix3x3 *out) V.Transpose() C++: void Transpose() V.Transpose((float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float]) C++: static void Transpose(const double inElements[9], double outElements[9]) Transpose the matrix and put it into out. V.MultiplyPoint((float, float, float), [float, float, float]) C++: void MultiplyPoint(const double in[3], double out[3]) V.MultiplyPoint((float, float, float, float, float, float, float, float, float), (float, float, float), [float, float, float]) C++: static void MultiplyPoint(const double elements[9], const double in[3], double out[3]) V.Multiply3x3(vtkMatrix3x3, vtkMatrix3x3, vtkMatrix3x3) C++: static void Multiply3x3(vtkMatrix3x3 *a, vtkMatrix3x3 *b, vtkMatrix3x3 *c) V.Multiply3x3((float, float, float, float, float, float, float, float, float), (float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float]) C++: static void Multiply3x3(const double a[9], const double b[9], double c[9]) Multiplies matrices a and b and stores the result in c (c=a*b). V.Adjoint(vtkMatrix3x3, vtkMatrix3x3) C++: void Adjoint(vtkMatrix3x3 *in, vtkMatrix3x3 *out) V.Adjoint((float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float]) C++: static void Adjoint(const double inElements[9], double outElements[9]) Compute adjoint of the matrix and put it into out. V.Determinant() -> float C++: double Determinant() V.Determinant((float, float, float, float, float, float, float, float, float)) -> float C++: static double Determinant(const double elements[9]) Compute the determinant of the matrix and return it. V.SetElement(int, int, float) C++: void SetElement(int i, int j, double value) Sets the element i,j in the matrix. V.GetElement(int, int) -> float C++: double GetElement(int i, int j) Returns the element i,j from the matrix. V.IsIdentity() -> bool C++: bool IsIdentity() V.GetData() -> (float, ...) C++: double *GetData() Return a pointer to the first element of the matrix (double[9]). @VV *vtkMatrix3x3 *vtkMatrix3x3VVV *vtkMatrix3x3 *vtkMatrix3x3 *vtkMatrix3x3VV *vtkMatrix3x3 *vtkMatrix3x3Multiply4x4MultiplyDoublePointMultiplyFloatPoint@PP *d *d@V *vtkMatrix4x4PV *d *vtkMatrix4x4vtkMatrix4x4 - represent and manipulate 4x4 transformation matrices Superclass: vtkObject vtkMatrix4x4 is a class to represent and manipulate 4x4 matrices. Specifically, it is designed to work on 4x4 transformation matrices found in 3D rendering using homogeneous coordinates [x y z w]. Many of the methods take an array of 16 doubles in row-major format. Note that OpenGL stores matrices in column-major format, so the matrix contents must be transposed when they are moved between OpenGL and VTK. @sa vtkTransform vtkCommonMathPython.vtkMatrix4x4V.SafeDownCast(vtkObjectBase) -> vtkMatrix4x4 C++: static vtkMatrix4x4 *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkMatrix4x4 C++: vtkMatrix4x4 *NewInstance() V.DeepCopy(vtkMatrix4x4) C++: void DeepCopy(const vtkMatrix4x4 *source) V.DeepCopy([float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float], vtkMatrix4x4) C++: static void DeepCopy(double destination[16], const vtkMatrix4x4 *source) V.DeepCopy([float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float], (float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: static void DeepCopy(double destination[16], const double source[16]) V.DeepCopy((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void DeepCopy(const double elements[16]) Set the elements of the matrix to the same values as the elements of the given source matrix. V.Zero() C++: void Zero() V.Zero([float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void Zero(double elements[16]) Set all of the elements to zero. V.Identity() C++: void Identity() V.Identity([float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void Identity(double elements[16]) Set equal to Identity matrix V.Invert(vtkMatrix4x4, vtkMatrix4x4) C++: static void Invert(const vtkMatrix4x4 *in, vtkMatrix4x4 *out) V.Invert() C++: void Invert() V.Invert((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void Invert(const double inElements[16], double outElements[16]) Matrix Inversion (adapted from Richard Carling in "Graphics Gems," Academic Press, 1990). V.Transpose(vtkMatrix4x4, vtkMatrix4x4) C++: static void Transpose(const vtkMatrix4x4 *in, vtkMatrix4x4 *out) V.Transpose() C++: void Transpose() V.Transpose((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) , [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void Transpose(const double inElements[16], double outElements[16]) Transpose the matrix and put it into out. V.MultiplyPoint((float, float, float, float), [float, float, float, float]) C++: void MultiplyPoint(const double in[4], double out[4]) V.MultiplyPoint((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) , (float, float, float, float), [float, float, float, float]) C++: static void MultiplyPoint(const double elements[16], const double in[4], double out[4]) V.MultiplyPoint((float, float, float, float)) -> (float, float, float, float) C++: float *MultiplyPoint(const float in[4]) V.MultiplyFloatPoint((float, float, float, float)) -> (float, float, float, float) C++: float *MultiplyFloatPoint(const float in[4]) V.MultiplyDoublePoint((float, float, float, float)) -> (float, float, float, float) C++: double *MultiplyDoublePoint(const double in[4]) V.Multiply4x4(vtkMatrix4x4, vtkMatrix4x4, vtkMatrix4x4) C++: static void Multiply4x4(const vtkMatrix4x4 *a, const vtkMatrix4x4 *b, vtkMatrix4x4 *c) V.Multiply4x4((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) , (float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void Multiply4x4(const double a[16], const double b[16], double c[16]) Multiplies matrices a and b and stores the result in c. V.Adjoint(vtkMatrix4x4, vtkMatrix4x4) C++: void Adjoint(const vtkMatrix4x4 *in, vtkMatrix4x4 *out) V.Adjoint((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float), [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void Adjoint(const double inElements[16], double outElements[16]) Compute adjoint of the matrix and put it into out. V.Determinant() -> float C++: double Determinant() V.Determinant((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) -> float C++: static double Determinant(const double elements[16]) Compute the determinant of the matrix and return it. V.GetData() -> (float, ...) C++: double *GetData() Returns the raw double array holding the matrix. @VV *vtkMatrix4x4 *vtkMatrix4x4VVV *vtkMatrix4x4 *vtkMatrix4x4 *vtkMatrix4x4VV *vtkMatrix4x4 *vtkMatrix4x4SolveQuadraticTartagliaCardanSolveFerrariSolveLinBairstowSolveFilterRootsSetDivisionToleranceGetDivisionToleranceSolveCubicSturmBisectionSolveHabichtBisectionSolveSolveLineardddPPP *d *d *ivtkPolynomialSolversUnivariatevtkPolynomialSolversUnivariate - polynomial solvers Superclass: vtkObject vtkPolynomialSolversUnivariate provides solvers for univariate polynomial equations with real coefficients. The Tartaglia-Cardan and Ferrari solvers work on polynomials of fixed degree 3 and 4, respectively. The Lin-Bairstow and Sturm solvers work on polynomials of arbitrary degree. The Sturm solver is the most robust solver but only reports roots within an interval and does not report multiplicities. The Lin-Bairstow solver reports multiplicities. For difficult polynomials, you may wish to use FilterRoots to eliminate some of the roots reported by the Sturm solver. FilterRoots evaluates the derivatives near each root to eliminate cases where a local minimum or maximum is close to zero. @par Thanks: Thanks to Philippe Pebay, Korben Rusek, David Thompson, and Maurice Rojas for implementing these solvers. vtkCommonMathPython.vtkPolynomialSolversUnivariateV.SafeDownCast(vtkObjectBase) -> vtkPolynomialSolversUnivariate C++: static vtkPolynomialSolversUnivariate *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkPolynomialSolversUnivariate C++: vtkPolynomialSolversUnivariate *NewInstance() V.HabichtBisectionSolve([float, ...], int, [float, ...], [float, ...], float) -> int C++: static int HabichtBisectionSolve(double *P, int d, double *a, double *upperBnds, double tol) V.HabichtBisectionSolve([float, ...], int, [float, ...], [float, ...], float, int) -> int C++: static int HabichtBisectionSolve(double *P, int d, double *a, double *upperBnds, double tol, int intervalType) V.HabichtBisectionSolve([float, ...], int, [float, ...], [float, ...], float, int, bool) -> int C++: static int HabichtBisectionSolve(double *P, int d, double *a, double *upperBnds, double tol, int intervalType, bool divideGCD) Finds all REAL roots (within tolerance tol) of the d -th degree polynomial\[ P[0] X^d + ... + P[d-1] X + P[d]\] in ] a[0] ; a[1]] using the Habicht sequence (polynomial coefficients are REAL) and returns the count nr. All roots are bracketed in the r first ] upperBnds[i] - tol ; upperBnds[i]] intervals. Returns -1 if anything went wrong (such as: polynomial does not have degree d, the interval provided by the other is absurd, etc.). * intervalType specifies the search interval as follows: * 0 = 00 = ]a,b[ * 1 = 10 = [a,b[ * 2 = 01 = ]a,b] * 3 = 11 = [a,b] * This defaults to 0. * The last non-zero item in the Habicht sequence is the gcd of P and P'. The * parameter divideGCD specifies whether the program should attempt to divide * by the gcd and run again. It works better with polynomials known to have * high multiplicities. When divideGCD != 0 then it attempts to divide by the * GCD, if applicable. This defaults to 0. * Compared to the Sturm solver the Habicht solver is slower, * although both are O(d^2). The Habicht solver has the added benefit * that it has a built in mechanism to keep the leading coefficients of the * result from polynomial division bounded above and below in absolute value. * This will tend to keep the coefficients of the polynomials in the sequence * from zeroi ... [Truncated] V.SturmBisectionSolve([float, ...], int, [float, ...], [float, ...], float) -> int C++: static int SturmBisectionSolve(double *P, int d, double *a, double *upperBnds, double tol) V.SturmBisectionSolve([float, ...], int, [float, ...], [float, ...], float, int) -> int C++: static int SturmBisectionSolve(double *P, int d, double *a, double *upperBnds, double tol, int intervalType) V.SturmBisectionSolve([float, ...], int, [float, ...], [float, ...], float, int, bool) -> int C++: static int SturmBisectionSolve(double *P, int d, double *a, double *upperBnds, double tol, int intervalType, bool divideGCD) Finds all REAL roots (within tolerance tol) of the d -th degree polynomial P[0] X^d + ... + P[d-1] X + P[d] in ] a[0] ; a[1]] using Sturm's theorem ( polynomial coefficients are REAL ) and returns the count nr. All roots are bracketed in the r first ] upperBnds[i] - tol ; upperBnds[i]] intervals. Returns -1 if anything went wrong (such as: polynomial does not have degree d, the interval provided by the other is absurd, etc.). * intervalType specifies the search interval as follows: * 0 = 00 = ]a,b[ * 1 = 10 = [a,b[ * 2 = 01 = ]a,b] * 3 = 11 = [a,b] * This defaults to 0. * The last non-zero item in the Sturm sequence is the gcd of P and P'. The * parameter divideGCD specifies whether the program should attempt to divide * by the gcd and run again. It works better with polynomials known to have * high multiplicities. When divideGCD != 0 then it attempts to divide by the * GCD, if applicable. This defaults to 0. * Constructing the Sturm sequence is O(d^2) in both time and space. * Warning: it is the user's responsibility to make sure the upperBnds * array is large enough to contain the maximal number of expected roots. * Note that nr is smaller or equal to the actual number of roots in * ] a[0] ; a[1]] since roots within \tol are lumped in the same bracket. * array is large enough to contain the ma ... [Truncated] V.FilterRoots([float, ...], int, [float, ...], int, float) -> int C++: static int FilterRoots(double *P, int d, double *upperBnds, int rootcount, double diameter) This uses the derivative sequence to filter possible roots of a polynomial. First it sorts the roots and removes any duplicates. If the number of sign changes of the derivative sequence at a root at upperBnds[i] == that at upperBnds[i] - diameter then the i^th value is removed from upperBnds. It returns the new number of roots. V.LinBairstowSolve([float, ...], int, [float, ...], float) -> int C++: static int LinBairstowSolve(double *c, int d, double *r, double &tolerance) Seeks all REAL roots of the d -th degree polynomial c[0] X^d + ... + c[d-1] X + c[d] = 0 equation Lin-Bairstow's method ( polynomial coefficients are REAL ) and stores the nr roots found ( multiple roots are multiply stored ) in r.tolerance is the user-defined solver tolerance; this variable may be relaxed by the iterative solver if needed. Returns nr. Warning: it is the user's responsibility to make sure the r array is large enough to contain the maximal number of expected roots. V.FerrariSolve([float, ...], [float, ...], [int, ...], float) -> int C++: static int FerrariSolve(double *c, double *r, int *m, double tol) Algebraically extracts REAL roots of the quartic polynomial with REAL coefficients X^4 + c[0] X^3 + c[1] X^2 + c[2] X + c[3] and stores them (when they exist) and their respective multiplicities in the r and m arrays, based on Ferrari's method. Some numerical noise can be filtered by the use of a tolerance tol instead of equality with 0 (one can use, e.g., VTK_DBL_EPSILON). Returns the number of roots. Warning: it is the user's responsibility to pass a non-negative tol. V.TartagliaCardanSolve([float, ...], [float, ...], [int, ...], float) -> int C++: static int TartagliaCardanSolve(double *c, double *r, int *m, double tol) Algebraically extracts REAL roots of the cubic polynomial with REAL coefficients X^3 + c[0] X^2 + c[1] X + c[2] and stores them (when they exist) and their respective multiplicities in the r and m arrays. Some numerical noise can be filtered by the use of a tolerance tol instead of equality with 0 (one can use, e.g., VTK_DBL_EPSILON). The main differences with SolveCubic are that (1) the polynomial must have unit leading coefficient, (2) complex roots are discarded upfront, (3) non-simple roots are stored only once, along with their respective multiplicities, and (4) some numerical noise is filtered by the use of relative tolerance instead of equality with 0. Returns the number of roots. In memoriam Niccolo Tartaglia (1500 - 1559), unfairly forgotten. V.SolveCubic(float, float, float, float) -> (float, ...) C++: static double *SolveCubic(double c0, double c1, double c2, double c3) V.SolveCubic(float, float, float, float, [float, ...], [float, ...], [float, ...], [int, ...]) -> int C++: static int SolveCubic(double c0, double c1, double c2, double c3, double *r1, double *r2, double *r3, int *num_roots) Solves a cubic equation c0*t^3 + c1*t^2 + c2*t + c3 = 0 when c0, c1, c2, and c3 are REAL. Solution is motivated by Numerical Recipes In C 2nd Ed. Return array contains number of (real) roots (counting multiple roots as one) followed by roots themselves. The value in roots[4] is a integer giving further information about the roots (see return codes for int SolveCubic() ). V.SolveQuadratic(float, float, float) -> (float, ...) C++: static double *SolveQuadratic(double c0, double c1, double c2) V.SolveQuadratic(float, float, float, [float, ...], [float, ...], [int, ...]) -> int C++: static int SolveQuadratic(double c0, double c1, double c2, double *r1, double *r2, int *num_roots) V.SolveQuadratic([float, ...], [float, ...], [int, ...]) -> int C++: static int SolveQuadratic(double *c, double *r, int *m) Solves a quadratic equation c0*t^2 + c1*t + c2 = 0 when c0, c1, and c2 are REAL. Solution is motivated by Numerical Recipes In C 2nd Ed. Return array contains number of (real) roots (counting multiple roots as one) followed by roots themselves. Note that roots[3] contains a return code further describing solution - see documentation for SolveCubic() for meaning of return codes. V.SolveLinear(float, float) -> (float, ...) C++: static double *SolveLinear(double c0, double c1) V.SolveLinear(float, float, [float, ...], [int, ...]) -> int C++: static int SolveLinear(double c0, double c1, double *r1, int *num_roots) Solves a linear equation c0*t + c1 = 0 when c0 and c1 are REAL. Solution is motivated by Numerical Recipes In C 2nd Ed. Return array contains number of roots followed by roots themselves. V.SetDivisionTolerance(float) C++: static void SetDivisionTolerance(double tol) Set/get the tolerance used when performing polynomial Euclidean division to find polynomial roots. This tolerance is used to decide whether the coefficient(s) of a polynomial remainder are close enough to zero to be neglected. V.GetDivisionTolerance() -> float C++: static double GetDivisionTolerance() Set/get the tolerance used when performing polynomial Euclidean division to find polynomial roots. This tolerance is used to decide whether the coefficient(s) of a polynomial remainder are close enough to zero to be neglected. vtkQuaternionInterpolatorInterpolateQuaternionAddQuaternionGetMinimumTGetMaximumTGetNumberOfQuaternionsGetInterpolationTypeMinValueGetInterpolationTypeMaxValueGetInterpolationTypeRemoveQuaternionSetInterpolationTypeToLinearSetInterpolationTypeToSplineSetInterpolationTypeINTERPOLATION_TYPE_LINEARINTERPOLATION_TYPE_SPLINE@dW &vtkQuaterniond@dP *d@dW vtkQuaterniondvtkQuaternionInterpolator - interpolate a quaternion Superclass: vtkObject This class is used to interpolate a series of quaternions representing the rotations of a 3D object. The interpolation may be linear in form (using spherical linear interpolation SLERP), or via spline interpolation (using SQUAD). In either case the interpolation is specialized to quaternions since the interpolation occurs on the surface of the unit quaternion sphere. To use this class, specify at least two pairs of (t,q[4]) with the AddQuaternion() method. Next interpolate the tuples with the InterpolateQuaternion(t,q[4]) method, where "t" must be in the range of (t_min,t_max) parameter values specified by the AddQuaternion() method (t is clamped otherwise), and q[4] is filled in by the method. There are several important background references. Ken Shoemake described the practical application of quaternions for the interpolation of rotation (K. Shoemake, "Animating rotation with quaternion curves", Computer Graphics (Siggraph '85) 19(3):245--254, 1985). Another fine reference (available on-line) is E. B. Dam, M. Koch, and M. Lillholm, Technical Report DIKU-TR-98/5, Dept. of Computer Science, University of Copenhagen, Denmark. @warning Note that for two or less quaternions, Slerp (linear) interpolation is performed even if spline interpolation is requested. Also, the tangents to the first and last segments of spline interpolation are (arbitrarily) defined by repeating the first and last quaternions. @warning There are several methods particular to quaternions (norms, products, etc.) implemented interior to this class. These may be moved to a separate quaternion class at some point. @sa vtkQuaternion vtkCommonMathPython.vtkQuaternionInterpolatorV.SafeDownCast(vtkObjectBase) -> vtkQuaternionInterpolator C++: static vtkQuaternionInterpolator *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkQuaternionInterpolator C++: vtkQuaternionInterpolator *NewInstance() V.GetNumberOfQuaternions() -> int C++: int GetNumberOfQuaternions() Return the number of quaternions in the list of quaternions to be interpolated. V.GetMinimumT() -> float C++: double GetMinimumT() Obtain some information about the interpolation range. The numbers returned (corresponding to parameter t, usually thought of as time) are undefined if the list of transforms is empty. This is a convenience method for interpolation. V.GetMaximumT() -> float C++: double GetMaximumT() Obtain some information about the interpolation range. The numbers returned (corresponding to parameter t, usually thought of as time) are undefined if the list of transforms is empty. This is a convenience method for interpolation. V.Initialize() C++: void Initialize() Reset the class so that it contains no data; i.e., the array of (t,q[4]) information is discarded. V.AddQuaternion(float, vtkQuaterniond) C++: void AddQuaternion(double t, const vtkQuaterniond &q) V.AddQuaternion(float, [float, float, float, float]) C++: void AddQuaternion(double t, double q[4]) Add another quaternion to the list of quaternions to be interpolated. Note that using the same time t value more than once replaces the previous quaternion at t. At least one quaternions must be added to define an interpolation functios. V.RemoveQuaternion(float) C++: void RemoveQuaternion(double t) Delete the quaternion at a particular parameter t. If there is no quaternion tuple defined at t, then the method does nothing. V.InterpolateQuaternion(float, vtkQuaterniond) C++: void InterpolateQuaternion(double t, vtkQuaterniond &q) V.InterpolateQuaternion(float, [float, float, float, float]) C++: void InterpolateQuaternion(double t, double q[4]) Interpolate the list of quaternions and determine a new quaternion (i.e., fill in the quaternion provided). If t is outside the range of (min,max) values, then t is clamped to lie within the range. V.SetInterpolationType(int) C++: virtual void SetInterpolationType(int _arg) Specify which type of function to use for interpolation. By default (SetInterpolationFunctionToSpline()), cubic spline interpolation using a modified Kochanek basis is employed. Otherwise, if SetInterpolationFunctionToLinear() is invoked, linear spherical interpolation is used between each pair of quaternions. V.GetInterpolationTypeMinValue() -> int C++: virtual int GetInterpolationTypeMinValue() Specify which type of function to use for interpolation. By default (SetInterpolationFunctionToSpline()), cubic spline interpolation using a modified Kochanek basis is employed. Otherwise, if SetInterpolationFunctionToLinear() is invoked, linear spherical interpolation is used between each pair of quaternions. V.GetInterpolationTypeMaxValue() -> int C++: virtual int GetInterpolationTypeMaxValue() Specify which type of function to use for interpolation. By default (SetInterpolationFunctionToSpline()), cubic spline interpolation using a modified Kochanek basis is employed. Otherwise, if SetInterpolationFunctionToLinear() is invoked, linear spherical interpolation is used between each pair of quaternions. V.GetInterpolationType() -> int C++: virtual int GetInterpolationType() Specify which type of function to use for interpolation. By default (SetInterpolationFunctionToSpline()), cubic spline interpolation using a modified Kochanek basis is employed. Otherwise, if SetInterpolationFunctionToLinear() is invoked, linear spherical interpolation is used between each pair of quaternions. V.SetInterpolationTypeToLinear() C++: void SetInterpolationTypeToLinear() Specify which type of function to use for interpolation. By default (SetInterpolationFunctionToSpline()), cubic spline interpolation using a modified Kochanek basis is employed. Otherwise, if SetInterpolationFunctionToLinear() is invoked, linear spherical interpolation is used between each pair of quaternions. V.SetInterpolationTypeToSpline() C++: void SetInterpolationTypeToSpline() Specify which type of function to use for interpolation. By default (SetInterpolationFunctionToSpline()), cubic spline interpolation using a modified Kochanek basis is employed. Otherwise, if SetInterpolationFunctionToLinear() is invoked, linear spherical interpolation is used between each pair of quaternions. vtkRungeKutta2vtkRungeKutta2 - Integrate an initial value problem using 2nd order Runge-Kutta method. Superclass: vtkInitialValueProblemSolver This is a concrete sub-class of vtkInitialValueProblemSolver. It uses a 2nd order Runge-Kutta method to obtain the values of a set of functions at the next time step. @sa vtkInitialValueProblemSolver vtkRungeKutta4 vtkRungeKutta45 vtkFunctionSet vtkCommonMathPython.vtkRungeKutta2V.SafeDownCast(vtkObjectBase) -> vtkRungeKutta2 C++: static vtkRungeKutta2 *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkRungeKutta2 C++: vtkRungeKutta2 *NewInstance() V.ComputeNextStep([float, ...], [float, ...], float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *xnext, double t, double &delT, double maxError, double &error) override; V.ComputeNextStep([float, ...], [float, ...], [float, ...], float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *dxprev, double *xnext, double t, double &delT, double maxError, double &error) override; V.ComputeNextStep([float, ...], [float, ...], float, float, float, float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) override; V.ComputeNextStep([float, ...], [float, ...], [float, ...], float, float, float, float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *dxprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) override; Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delT (xnext). delTActual is always equal to delT. Since this class can not provide an estimate for the error error is set to 0. maxStep, minStep and maxError are unused. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3 vtkRungeKutta4vtkRungeKutta4 - Integrate an initial value problem using 4th order Runge-Kutta method. Superclass: vtkInitialValueProblemSolver This is a concrete sub-class of vtkInitialValueProblemSolver. It uses a 4th order Runge-Kutta method to obtain the values of a set of functions at the next time step. @sa vtkInitialValueProblemSolver vtkRungeKutta45 vtkRungeKutta2 vtkFunctionSet vtkCommonMathPython.vtkRungeKutta4V.SafeDownCast(vtkObjectBase) -> vtkRungeKutta4 C++: static vtkRungeKutta4 *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkRungeKutta4 C++: vtkRungeKutta4 *NewInstance() vtkRungeKutta45vtkRungeKutta45 - Integrate an initial value problem using 5th order Runge-Kutta method with adaptive stepsize control. Superclass: vtkInitialValueProblemSolver This is a concrete sub-class of vtkInitialValueProblemSolver. It uses a 5th order Runge-Kutta method with stepsize control to obtain the values of a set of functions at the next time step. The stepsize is adjusted by calculating an estimated error using an embedded 4th order Runge-Kutta formula: Press, W. H. et al., 1992, Numerical Recipes in Fortran, Second Edition, Cambridge University Press Cash, J.R. and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol 16, pp 201-222 @sa vtkInitialValueProblemSolver vtkRungeKutta4 vtkRungeKutta2 vtkFunctionSet vtkCommonMathPython.vtkRungeKutta45V.SafeDownCast(vtkObjectBase) -> vtkRungeKutta45 C++: static vtkRungeKutta45 *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkRungeKutta45 C++: vtkRungeKutta45 *NewInstance() V.ComputeNextStep([float, ...], [float, ...], float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *xnext, double t, double &delT, double maxError, double &error) override; V.ComputeNextStep([float, ...], [float, ...], [float, ...], float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *dxprev, double *xnext, double t, double &delT, double maxError, double &error) override; V.ComputeNextStep([float, ...], [float, ...], float, float, float, float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) override; V.ComputeNextStep([float, ...], [float, ...], [float, ...], float, float, float, float, float, float, float) -> int C++: int ComputeNextStep(double *xprev, double *dxprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) override; Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). Possibly delTActual != delT. This may occur because this solver supports adaptive stepsize control. It tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep (note that maxStep and minStep should both be positive, whereas delT can be negative). Also note that delT is an in/out argument. vtkRungeKutta45 will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. This is the norm of the error vector if there are more than one function to be integrated. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, Une ... [Truncated] vtkQuaternionGetWGetYGetZGetXToIdentitySquaredNormConjugateSetYSetZSetXSetWConjugatedInverseNormalizedWithAngleInDegreesGetGetRotationAngleAndAxisToMatrix3x3NormalizeNormalizeWithAngleInDegreesNormalizedToUnitExpSetRotationAngleAndAxisvaluesSlerpToUnitLogInnerPointFromMatrix3x3-@d-@P *d@W vtkQuaterniond-@f-@P *f@W vtkQuaternionf@W vtkQuaternion_IfE@W vtkQuaternion_IdEthis function takes no keyword argumentsvtkQuaterniond - Double quaternion type. Superclass: vtkTuple[T,4] This class is uses vtkQuaternion with double type data. For further description, seethe templated class vtkQuaternion. @sa vtkQuaternionf vtkQuaternion Provided Types: vtkQuaternion[float64] => vtkQuaternion vtkQuaternion[float32] => vtkQuaternion vtkCommonMathPython.vtkQuaternionvtkQuaternion- templated base type for storage of quaternions. Superclass: vtkTuple[float64,4] This class is a templated data type for storing and manipulating quaternions. The quaternions have the form [w, x, y, z]. Given a rotation of angle theta and axis v, the corresponding quaternion is [w, x, y, z] = [cos(theta/2), v*sin(theta/2)] This class implements the Spherical Linear interpolation (SLERP) and the Spherical Spline Quaternion interpolation (SQUAD). It is advised to use the vtkQuaternionInterpolator when dealing with multiple quaternions and or interpolations. @sa vtkQuaternionInterpolator vtkQuaternion() explicit vtkQuaternion(const double &scalar) explicit vtkQuaternion(const double *init) vtkQuaternion(const double &w, const double &x, const double &y, const double &z) vtkQuaternion(const &vtkQuaternion) vtkQuaternion- templated base type for storage of quaternions. Superclass: vtkTuple[float32,4] This class is a templated data type for storing and manipulating quaternions. The quaternions have the form [w, x, y, z]. Given a rotation of angle theta and axis v, the corresponding quaternion is [w, x, y, z] = [cos(theta/2), v*sin(theta/2)] This class implements the Spherical Linear interpolation (SLERP) and the Spherical Spline Quaternion interpolation (SQUAD). It is advised to use the vtkQuaternionInterpolator when dealing with multiple quaternions and or interpolations. @sa vtkQuaternionInterpolator vtkQuaternion() explicit vtkQuaternion(const float &scalar) explicit vtkQuaternion(const float *init) vtkQuaternion(const float &w, const float &x, const float &y, const float &z) vtkQuaternion(const &vtkQuaternion) vtkQuaternionf - no description provided. Superclass: vtkQuaternion[float32] vtkQuaternionf() explicit vtkQuaternionf(float w, float x, float y, float z) explicit vtkQuaternionf(float scalar) explicit vtkQuaternionf(const float *init) vtkQuaternionf(const &vtkQuaternionf) vtkQuaterniond - no description provided. Superclass: vtkQuaternion[float64] vtkQuaterniond() explicit vtkQuaterniond(double w, double x, double y, double z) explicit vtkQuaterniond(double scalar) explicit vtkQuaterniond(const double *init) vtkQuaterniond(const &vtkQuaterniond) vtkCommonMathPython.vtkQuaterniondV.Identity() -> vtkQuaterniond C++: vtkQuaterniond Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalized() -> vtkQuaterniond C++: vtkQuaterniond Normalized() Return the normalized form of this quaternion. V.Conjugated() -> vtkQuaterniond C++: vtkQuaterniond Conjugated() Return the conjugate form of this quaternion. V.Inverse() -> vtkQuaterniond C++: vtkQuaterniond Inverse() Return the inverted form of this quaternion. V.UnitLog() -> vtkQuaterniond C++: vtkQuaterniond UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitExp() -> vtkQuaterniond C++: vtkQuaterniond UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizedWithAngleInDegrees() -> vtkQuaterniond C++: vtkQuaterniond NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Slerp(float, vtkQuaterniond) -> vtkQuaterniond C++: vtkQuaterniond Slerp(double t, const vtkQuaterniond &q) V.InnerPoint(vtkQuaterniond, vtkQuaterniond) -> vtkQuaterniond C++: vtkQuaterniond InnerPoint(const vtkQuaterniond &q1, const vtkQuaterniond &q2) vtkCommonMathPython.vtkQuaternionfV.Identity() -> vtkQuaternionf C++: vtkQuaternionf Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalized() -> vtkQuaternionf C++: vtkQuaternionf Normalized() Return the normalized form of this quaternion. V.Conjugated() -> vtkQuaternionf C++: vtkQuaternionf Conjugated() Return the conjugate form of this quaternion. V.Inverse() -> vtkQuaternionf C++: vtkQuaternionf Inverse() Return the inverted form of this quaternion. V.UnitLog() -> vtkQuaternionf C++: vtkQuaternionf UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitExp() -> vtkQuaternionf C++: vtkQuaternionf UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizedWithAngleInDegrees() -> vtkQuaternionf C++: vtkQuaternionf NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Slerp(float, vtkQuaternionf) -> vtkQuaternionf C++: vtkQuaternionf Slerp(float t, const vtkQuaternionf &q) V.InnerPoint(vtkQuaternionf, vtkQuaternionf) -> vtkQuaternionf C++: vtkQuaternionf InnerPoint(const vtkQuaternionf &q1, const vtkQuaternionf &q2) vtkCommonMathPython.vtkQuaternion_IfEV.SquaredNorm() -> float C++: float SquaredNorm() Get the squared norm of the quaternion. V.Norm() -> float C++: float Norm() Get the norm of the quaternion, i.e. its length. V.ToIdentity() C++: void ToIdentity() Set the quaternion to identity in place. V.Identity() -> vtkQuaternion_IfE C++: static vtkQuaternion Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalize() -> float C++: float Normalize() Normalize the quaternion in place. Return the norm of the quaternion. V.Normalized() -> vtkQuaternion_IfE C++: vtkQuaternion Normalized() Return the normalized form of this quaternion. V.Conjugate() C++: void Conjugate() Conjugate the quaternion in place. V.Conjugated() -> vtkQuaternion_IfE C++: vtkQuaternion Conjugated() Return the conjugate form of this quaternion. V.Invert() C++: void Invert() Invert the quaternion in place. This is equivalent to conjugate the quaternion and then divide it by its squared norm. V.Inverse() -> vtkQuaternion_IfE C++: vtkQuaternion Inverse() Return the inverted form of this quaternion. V.ToUnitLog() C++: void ToUnitLog() Convert this quaternion to a unit log quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitLog() -> vtkQuaternion_IfE C++: vtkQuaternion UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.ToUnitExp() C++: void ToUnitExp() Convert this quaternion to a unit exponential quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.UnitExp() -> vtkQuaternion_IfE C++: vtkQuaternion UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizeWithAngleInDegrees() C++: void NormalizeWithAngleInDegrees() Normalize a quaternion in place and transform it to so its angle is in degrees and its axis normalized. V.NormalizedWithAngleInDegrees() -> vtkQuaternion_IfE C++: vtkQuaternion NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Set(float, float, float, float) C++: void Set(const float &w, const float &x, const float &y, const float &z) V.Set([float, float, float, float]) C++: void Set(float quat[4]) Set/Get the w, x, y and z components of the quaternion. V.Get([float, float, float, float]) C++: void Get(float quat[4]) Set/Get the w, x, y and z components of the quaternion. V.SetW(float) C++: void SetW(const float &w) Set/Get the w component of the quaternion, i.e. element 0. V.GetW() -> float C++: const float &GetW() Set/Get the w component of the quaternion, i.e. element 0. V.SetX(float) C++: void SetX(const float &x) Set/Get the x component of the quaternion, i.e. element 1. V.GetX() -> float C++: const float &GetX() Set/Get the x component of the quaternion, i.e. element 1. V.SetY(float) C++: void SetY(const float &y) Set/Get the y component of the quaternion, i.e. element 2. V.GetY() -> float C++: const float &GetY() Set/Get the y component of the quaternion, i.e. element 2. V.SetZ(float) C++: void SetZ(const float &z) Set/Get the y component of the quaternion, i.e. element 3. V.GetZ() -> float C++: const float &GetZ() Set/Get the y component of the quaternion, i.e. element 3. V.GetRotationAngleAndAxis([float, float, float]) -> float C++: float GetRotationAngleAndAxis(float axis[3]) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.SetRotationAngleAndAxis(float, [float, float, float]) C++: void SetRotationAngleAndAxis(float angle, float axis[3]) V.SetRotationAngleAndAxis(float, float, float, float) C++: void SetRotationAngleAndAxis(const float &angle, const float &x, const float &y, const float &z) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.ToMatrix3x3([[float, float, float], [float, float, float], [float, float, float]]) C++: void ToMatrix3x3(float A[3][3]) Convert a quaternion to a 3x3 rotation matrix. The quaternion does not have to be normalized beforehand. @sa FromMatrix3x3() V.FromMatrix3x3(((float, float, float), (float, float, float), ( float, float, float))) C++: void FromMatrix3x3(const float A[3][3]) Convert a 3x3 matrix into a quaternion. This will provide the best possible answer even if the matrix is not a pure rotation matrix. The method used is that of B.K.P. Horn. @sa ToMatrix3x3() V.Slerp(float, vtkQuaternion_IfE) -> vtkQuaternion_IfE C++: vtkQuaternion Slerp(float t, const vtkQuaternion &q) Interpolate quaternions using spherical linear interpolation between this quaternion and q1 to produce the output. The parametric coordinate t belongs to [0,1] and lies between (this,q1). @sa vtkQuaternionInterpolator V.InnerPoint(vtkQuaternion_IfE, vtkQuaternion_IfE) -> vtkQuaternion_IfE C++: vtkQuaternion InnerPoint( const vtkQuaternion &q1, const vtkQuaternion &q2) Interpolates between quaternions, using spherical quadrangle interpolation. @sa vtkQuaternionInterpolator vtkCommonMathPython.vtkQuaternion_IdEV.SquaredNorm() -> float C++: double SquaredNorm() Get the squared norm of the quaternion. V.Norm() -> float C++: double Norm() Get the norm of the quaternion, i.e. its length. V.Identity() -> vtkQuaternion_IdE C++: static vtkQuaternion Identity() Return the identity quaternion. Note that the default constructor also creates an identity quaternion. V.Normalize() -> float C++: double Normalize() Normalize the quaternion in place. Return the norm of the quaternion. V.Normalized() -> vtkQuaternion_IdE C++: vtkQuaternion Normalized() Return the normalized form of this quaternion. V.Conjugated() -> vtkQuaternion_IdE C++: vtkQuaternion Conjugated() Return the conjugate form of this quaternion. V.Inverse() -> vtkQuaternion_IdE C++: vtkQuaternion Inverse() Return the inverted form of this quaternion. V.UnitLog() -> vtkQuaternion_IdE C++: vtkQuaternion UnitLog() Return the unit log version of this quaternion. The unit log quaternion is defined by: [w, x, y, z] = [0.0, v*theta]. V.UnitExp() -> vtkQuaternion_IdE C++: vtkQuaternion UnitExp() Return the unit exponential version of this quaternion. The unit exponential quaternion is defined by: [w, x, y, z] = [cos(theta), v*sin(theta)]. V.NormalizedWithAngleInDegrees() -> vtkQuaternion_IdE C++: vtkQuaternion NormalizedWithAngleInDegrees() Returns a quaternion normalized and transformed so its angle is in degrees and its axis normalized. V.Set(float, float, float, float) C++: void Set(const double &w, const double &x, const double &y, const double &z) V.Set([float, float, float, float]) C++: void Set(double quat[4]) Set/Get the w, x, y and z components of the quaternion. V.Get([float, float, float, float]) C++: void Get(double quat[4]) Set/Get the w, x, y and z components of the quaternion. V.SetW(float) C++: void SetW(const double &w) Set/Get the w component of the quaternion, i.e. element 0. V.GetW() -> float C++: const double &GetW() Set/Get the w component of the quaternion, i.e. element 0. V.SetX(float) C++: void SetX(const double &x) Set/Get the x component of the quaternion, i.e. element 1. V.GetX() -> float C++: const double &GetX() Set/Get the x component of the quaternion, i.e. element 1. V.SetY(float) C++: void SetY(const double &y) Set/Get the y component of the quaternion, i.e. element 2. V.GetY() -> float C++: const double &GetY() Set/Get the y component of the quaternion, i.e. element 2. V.SetZ(float) C++: void SetZ(const double &z) Set/Get the y component of the quaternion, i.e. element 3. V.GetZ() -> float C++: const double &GetZ() Set/Get the y component of the quaternion, i.e. element 3. V.GetRotationAngleAndAxis([float, float, float]) -> float C++: double GetRotationAngleAndAxis(double axis[3]) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.SetRotationAngleAndAxis(float, [float, float, float]) C++: void SetRotationAngleAndAxis(double angle, double axis[3]) V.SetRotationAngleAndAxis(float, float, float, float) C++: void SetRotationAngleAndAxis(const double &angle, const double &x, const double &y, const double &z) Set/Get the angle (in radians) and the axis corresponding to the axis-angle rotation of this quaternion. V.ToMatrix3x3([[float, float, float], [float, float, float], [float, float, float]]) C++: void ToMatrix3x3(double A[3][3]) Convert a quaternion to a 3x3 rotation matrix. The quaternion does not have to be normalized beforehand. @sa FromMatrix3x3() V.FromMatrix3x3(((float, float, float), (float, float, float), ( float, float, float))) C++: void FromMatrix3x3(const double A[3][3]) Convert a 3x3 matrix into a quaternion. This will provide the best possible answer even if the matrix is not a pure rotation matrix. The method used is that of B.K.P. Horn. @sa ToMatrix3x3() V.Slerp(float, vtkQuaternion_IdE) -> vtkQuaternion_IdE C++: vtkQuaternion Slerp(double t, const vtkQuaternion &q) Interpolate quaternions using spherical linear interpolation between this quaternion and q1 to produce the output. The parametric coordinate t belongs to [0,1] and lies between (this,q1). @sa vtkQuaternionInterpolator V.InnerPoint(vtkQuaternion_IdE, vtkQuaternion_IdE) -> vtkQuaternion_IdE C++: vtkQuaternion InnerPoint( const vtkQuaternion &q1, const vtkQuaternion &q2) Interpolates between quaternions, using spherical quadrangle interpolation. @sa vtkQuaternionInterpolator ??ппcܥL@ư>.eB?Compareindex out of rangeGetSizevtkCommonMathPython.vtkTuple@W vtkTuple_IdLi3EE@W vtkTuple_IdLi2EE@W vtkTuple_IfLi3EE@W vtkTuple_IfLi2EE-@i-@P *i@W vtkTuple_IiLi4EE@W vtkTuple_IiLi3EE@W vtkTuple_IiLi2EE-@B-@P *B@W vtkTuple_IhLi4EE@W vtkTuple_IhLi3EE@W vtkTuple_IhLi2EE@W vtkTuple_IfLi4EE@W vtkTuple_IdLi4EEvtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. Provided Types: vtkTuple[float64,4] => vtkTuple vtkTuple[float32,4] => vtkTuple vtkTuple[uint8,2] => vtkTuple vtkTuple[uint8,3] => vtkTuple vtkTuple[uint8,4] => vtkTuple vtkTuple[int32,2] => vtkTuple vtkTuple[int32,3] => vtkTuple vtkTuple[int32,4] => vtkTuple vtkTuple[float32,2] => vtkTuple vtkTuple[float32,3] => vtkTuple vtkTuple[float64,2] => vtkTuple vtkTuple[float64,3] => vtkTuple vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const double &scalar) explicit vtkTuple(const double *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const float &scalar) explicit vtkTuple(const float *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const unsigned char &scalar) explicit vtkTuple(const unsigned char *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const unsigned char &scalar) explicit vtkTuple(const unsigned char *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const unsigned char &scalar) explicit vtkTuple(const unsigned char *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const int &scalar) explicit vtkTuple(const int *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const int &scalar) explicit vtkTuple(const int *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const int &scalar) explicit vtkTuple(const int *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const float &scalar) explicit vtkTuple(const float *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const float &scalar) explicit vtkTuple(const float *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const double &scalar) explicit vtkTuple(const double *init) vtkTuple(const &vtkTuple) vtkTuple - templated base type for containers of constant size. This class is a templated data type for storing and manipulating tuples. vtkTuple() explicit vtkTuple(const double &scalar) explicit vtkTuple(const double *init) vtkTuple(const &vtkTuple) vtkCommonMathPython.vtkTuple_IdLi3EEV.GetSize() -> int C++: int GetSize() Get the size of the tuple. V.GetData() -> (float, ...) C++: double *GetData() Get a pointer to the underlying data of the tuple. V.Compare(vtkTuple_IdLi3EE, float) -> bool C++: bool Compare(const vtkTuple &other, const double &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IdLi2EEV.Compare(vtkTuple_IdLi2EE, float) -> bool C++: bool Compare(const vtkTuple &other, const double &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IfLi3EEV.GetData() -> (float, ...) C++: float *GetData() Get a pointer to the underlying data of the tuple. V.Compare(vtkTuple_IfLi3EE, float) -> bool C++: bool Compare(const vtkTuple &other, const float &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IfLi2EEV.Compare(vtkTuple_IfLi2EE, float) -> bool C++: bool Compare(const vtkTuple &other, const float &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IiLi4EEV.GetData() -> (int, ...) C++: int *GetData() Get a pointer to the underlying data of the tuple. V.Compare(vtkTuple_IiLi4EE, int) -> bool C++: bool Compare(const vtkTuple &other, const int &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IiLi3EEV.Compare(vtkTuple_IiLi3EE, int) -> bool C++: bool Compare(const vtkTuple &other, const int &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IiLi2EEV.Compare(vtkTuple_IiLi2EE, int) -> bool C++: bool Compare(const vtkTuple &other, const int &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IhLi4EEV.GetData() -> (int, ...) C++: unsigned char *GetData() Get a pointer to the underlying data of the tuple. V.Compare(vtkTuple_IhLi4EE, int) -> bool C++: bool Compare(const vtkTuple &other, const unsigned char &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IhLi3EEV.Compare(vtkTuple_IhLi3EE, int) -> bool C++: bool Compare(const vtkTuple &other, const unsigned char &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IhLi2EEV.Compare(vtkTuple_IhLi2EE, int) -> bool C++: bool Compare(const vtkTuple &other, const unsigned char &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IfLi4EEV.Compare(vtkTuple_IfLi4EE, float) -> bool C++: bool Compare(const vtkTuple &other, const float &tol) Equality operator with a tolerance to allow fuzzy comparisons. vtkCommonMathPython.vtkTuple_IdLi4EEV.Compare(vtkTuple_IdLi4EE, float) -> bool C++: bool Compare(const vtkTuple &other, const double &tol) Equality operator with a tolerance to allow fuzzy comparisons. can't get dictionary for module vtkCommonMathPythonreal_initvtkCommonMathPython;8Ft*T7|7ENExF,FX-0G-GH.G.H/nH,0H0JD1,K2fK49LT;Mt=N$O$O|DOl%dOP,O2O 7O8P:$P=DPOPfQgRR(tSLSdT|dTTUWW@XdtYDZD[D\D]D^,D_PD`t$a4bcce(eLfpghijl<$mhTnoqdrs,duPwtTxyzTz84{\|4|||||}$}8$}L4}`d}tt}}}}}~~$~d~dPD4T<Ĉ`|d|t<tԉ4dĎ44XDHtԬ  XlDT T $ $ t!t8>d>t>d>$>>?T`I?|IAICIEIDHJK8JOlJTJdTJTJTUKU KU i d>EDPa AE  ?O|R,X?O|RD?O|R\?O|Rtpi<EY B W(?EAD`j AAJ @gFD@ EE AED@ AG BED@ AG ,8CH@ I HCH@ I dDED@ AG |EED@ AG XFED@ AG 4GED@ AG HED@ AG HED@ AG <IED@ AG `JED@ AG pKED@ AG ,LED@ AG LED@ AG MEDP AK NEDP AK 8lOEDP AB \8PEDP AB (QFAD` ABG (QFAD` ABG (RFAD` ABG (SFAD` ABG 00T%FAA D`  AABA dUTEDP AG VTEDP AG (XDEDP AG TYLEDP AG ZEDP AG  \EDP AG (<];EAD` AAD 0h^^FAA D`  AABH _MFF0 `OFDD n ABA DDB4 `ED@ AG $`H@ I DnXnzPLRx} P$ccLFBB B(A0D8G\ 8D0A(B BBBG x):/L @n  gEDPa AE < n<EY B W(\ gEAD`j AAJ lhED@ AG (iED@ AG 0 i^FAA D`  AABH  kgFD@ EE ( \lHFA0D lOFDD n ABA DDBx L2 HXH(Z0[(A T A QH([0S(A T A    lEDPa AE  4 <EY B W(T mEAD`j AAJ mED@ AG nED@ AG 0 \o^FAA D`  AABH pgFD@ EE PqHEE I E u.S..R...._. &*^I $ l`EO l AG VAL FRB H(D0O (D BBBA  (D BBBG 0 dOFDD n ABA DDBD / X lEDP AK |  Ը 0 pFFBA Gk  ABBH @ FBB A(A0Dpe 0A(A BBBC 8XfFBB A(Gk (A BBBD 8XFBA A(Dpe (A ABBG 0PFFBA Gk  ABBH 8lFBA A(Dpe (A ABBG 00FFBA Gk  ABBH 08LFBA Gk  ABBH (l8FAGn ABA ,EDPa AE 9dT9dT8AlT8pFBB A(GQ (A BBBF @4<EY B W(`4EAD`j AAJ ED@ AG ( EAD` AAI 8;FBA A(Dp (A ABBK (FAD ABJ D`EDP AK hL2ED@ AC 0h^FAA D`  AABH (SFAD` ABC ȨgFD@ EE (GED@y GO m AJ (<8GED@y GO m AJ h\UEDG AG (FAGP ABG (<FAGP ABG MFF0OFDD n ABA DDB4)Lh ` 0tPVFBA Gk  ABBH (|FAGk ABD 8FBB A(Gk (A BBBD 8dFBA A(Dpe (A ABBG 0L(VFBA Gk  ABBH 8TFBA A(Dpe (A ABBG 0VFBA Gk  ABBH 0DFBA Gk  ABBH ($0#FAGn ABA P4EDPa AE t9dT9dT@AlT xUEGP AC (BAGk ABH ( BAGk ABH 8,<EY B W(X<EAD`j AAJ ED@ AG 0FAA Dp  AABH 0xFAA D`  AABH (DEAD` AAI 8<(;FBA A(Dp (A ABBK (x,FAG ABF  EDP AK 0 ^FAA D`  AABH 88FBA A(G (A ABBD (8OFAD` ABC dgFD@ EE ,ED@C AC T DH , ED@C AC T DH @tFGA D`}  KABK Z  AABJ (,8GED@y GO m AJ (X\GED@y GO m AJ @FBB A(A0Gn 0A(A BBBG MFF0 OFDD n ABA DDB #,x @: P`6;FBB B(A0A8G 8D0A(B BBBD @YN;Pd(^2;FBB B(A0A8G 8D0A(B BBBH q_:P^:FBB B(A0A8G 8D0A(B BBBH 0X_:PT:FBB B(A0A8I' 8D0A(B BBBE ?@I:PP-:FBB B(A0A8I' 8D0A(B BBBE @9 EDPa AE DHPa G ED@W AG hTBn9FBB B(A0A8G 8D0A(B BBBE ^ 8G0H(B BBBK S_(9P8L 9BGB B(A0A8G 8D0A(B BBBG :8, RED`H AF  DE L 8FBB B(A0A8G[ 8D0A(B BBBC 08LT88FBB B(A0A8G[ 8D0A(B BBBC 805<EY B W(P4+EAD`j AAJ 0|+^FAA D`  AABH $-gFD@ EE p.ED`e AA L\/7FBB B(A0A8GQ 8A0A(B BBBH :7l 3MFF0 3OFDD n ABA DDB  J1 J J !J$!4 8!J L!3EDPa AE p!4O|R!4O|R!DJ<EY B W(!4EAD`j AAJ !5gFD@ EE "7H@ I ,"7ED@ AG P"d8ED@ AG t"9ED@ AG "9ED@ AG "h:ED@ AG "4;ED@ AG #;EDP AK ((#< FAD` ABG T#=H@ I p#t>H@ I (#H?WFADp ABF #|@\EDP AG 0#A^FAA D`  AABH 0$BFBA D  ABBG 0D$PDFBA D  ABBG 8x$EFPO U BBB r BBJ 0$`FOFDD n ABA DDB$|:Em %pgXH(Z0[(A T A (%gQH([0S(A T A L%F `%g t%FEDPa AE %gOEY B j(%\GEAD`n AAF 0%0HnFAA D`  AABH &lIgFD@ EE <&JMFF0X&JOFDD n ABA DDB&X8JO1EE I E ].S..Q..R..r..q.$**1  $'XH(Z0[(A T A H'QH([0S(A T A l'(f '$ 'fEDPa AE 'OEY B j('fEAD`n AAF 0(gnFAA D`  AABH 8(hgFD@ EE \(jMFF0x(*. d+3J^H+4#JUA+H#JUA+\3J^H(+FAD`{ DBD (,TFAD`{ DBD (,,FAK`t DBD (X,ܧFAK`t DBD ,H`^ J ,DEK`W AH ,HPa G ,EKPZ AE -EU -EU<-EUX-EUt- -HP^ J -EKPW AH -<HPa G -ЬEKPZ AE .\HPW A $.H`W A 4@.dFG`e BD p IO  NN x.*. . . 4.ܯFGPe BD l IK  NF @/tFDDpe ABJ p HBF  MBM @D/FDD`e ABJ l HBJ  MBM /ED@ AG /8ED@ AG /ԵED@ AG /pED@ AG 0 ED@ AG <0ED@ AG `0DED@ AG 0ED@ AG 0|H@ I 00H@ I 0ED@ AG 1ED@ AG (1H@ I D1`H@ I `1$EDP AK 1EDP AK 1EDP AK 1EDP AK 1TEDP AK 2 EDP AK 82EDP AK \2EDP AK 2 ED@ AG 2p ED@ AG 2\H} K 2 H` I 3sH E 3hK F 83<K F T3HP E p3H E 3HP} K 3Hp B 30H` B 3zHp B 38HP E 04<FAA D  AABD 0L4FAA D`  AABD 84RFBA A(G (A ABBG 84(YFBA A(D (A ABBE 84LFBA A(G (A ABBD 845NFBA A(G (A ABBJ p5CH@ E 5(CH@ E 5\nH` E 5H` B 5TGEDP AH 6]ED` AH (6DEDP AH L6iED` AH p64rH B 6H B 6EDp AH 6ED` AH 6TRHp B  7K F (7 zHp B D7pK D `7DHp B |7RHp B 07,8FAA G  AABD 078UFAA D  AABJ 08d$FAA DH  AABH 048`?FAA GQ  AABD h8l MFF8 MFF(8 FOD K DBF 8H MFF8| MFF`9 FBB B(A0D8D@ 8A0A(B BBBE L8D0A(B BBB h9 }EJ@ AK 09 mFBA D  ABBB 09 lFBA D  ABBF ,9!FHG  DBJ 0$:gFBA D  ABBB 0X:<FBA G  ABBB :"EG0 AE :tED` AG :0H@ I :H I , ;x#FDJ5 DBA 8<;FBB A(D (D BBBG 8x; FBB A(G (D BBBA $;'EJ AA (;hFAD ABJ <l) EG  AE ,<EDP AG P<H@ I l<EDP AG <<)FLA A(G (A ABBA 8<FBB A(D (D BBBG 8 =xFBB A(D (D BBBE $H=,,EJ AA (p=FADp ABJ =hdEm=- =- =- =-3J^H>-#JUA0>-#JTBL>-3J[Kh>-#JRD>.#JTB>$.+JZD>8.#JUA>L.#JTB>`.+JZD?t.#JUA,?.3J]I(H?.FAD`{ DBD (t?/FAD`{ DBD (?D0FAD`{ DBD (?1FAD`{ DBD (?1FAD`{ DBD ($@2FAD`{ DBD (P@d3FAD`{ DBD (|@84FAD`{ DBD (@4FAD`{ DBD (@5FAD`{ DBD (A6FAD`{ DBD (,AX7FAD`{ DBD XA,8H`^ J tA8HP^ J Ad9HP^ J A:HPa G A:HPa G A@;HPa G 0B;FAA Dp  AABD 4B`= HB\=EUdB`=EUBd=EUBh=EUBl=EUBp=EUBt=EU Cx=EU(C|=EUDC=EU`C=EU|C=EUC=HP^ J C >H@^ J C>HP^ J CX?HPa G D?HPa G $D@HPa G @D$AH@^ J \DAH@^ J xD\BH@^ J DBHPa G DCHPa G DDHPa G DDH@^ J EPEHP^ J  EEHP^ J @ضPP5<dhR@p. 2(PpM@E@8H!;Hΰ0 (L$ `9 "!:#`5h)ʱ4pn&6'8`%( -V*,V+1Y/]0Yp.]HDvHشAKHMxDJIHD v`PشASO(pTU p0RpPQHDvشAH<8g`p`Єpp0%@@`pPxs!,Pu!`v!Ax!y!, |! }!,N!_p!,hhHDvشAp йH<gP@8@XP 0  %@`p P !,! !A +Ч!A`! `!,! !,5@!F !,hhHDvp"شA`# $8 z Ph9 p0"( ($ @&  )o , P/ @'2E 4Z 50&! ! p?HDv.شA= -?/(@7p3@~71 A72@B1`Cp7P.C76EZ7.hFG8 <H704I750K76L 88PN*89O78@8:8>8RHDvEشAF DSpGSIS([HDvpfشApgeP[h[jS^HDvشA _P_`_s(```hy(@0( p`(PhЭh hgshth uhuh$vhpv!h`wh!`xhp'xi@ i0ig@yhP 8zh zh({h+{h P|!h(}h}hp.h~i i@#ig(gggP8fh h0hgh8h`Ph+ȃh0*hh`(hphȆ!h  X>hH h0ȉgп8h@ggxgPgPgBh(hPZhh00h0ؑh,8hh@8igggg@fhphpghPhph#ȃh#h(hph Ȇ!h `>h@X h ؛gHhPgP(gpgмg`xgBhpXh8Zh0h0)h h%xи(Xjv`(XPjs@(X@j0x(Xpjuh(pX`jz(PXjPv(0XjuX(Xjx(W0jw(W jpt(Wjhx(WWpyUhRhpPpP@hU`Th0RhO@h\ipZ iNЧphhл[iY iM0@hh00ecL0hPpd@bKh}оcaJ+pЗh@`?^CIJph `?^CH^zhpp_?P]CGr0|h0[iY iF0hhShpQhEp{|@hGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0D2 :hHHIJ;K^aMg@^_O-`PfPQ0RS^pTgPU *b @d 5a^`K0pX   <6$ Y^} _\@^ _"; @jp{ @ *qPBu`6  _| L  RV P  / | p" `#^ $g+ 0&o @' : q sI 0 D  D E Fn"pGgPzk |I*1e ;ejpfpgnhg|~"Jj|<* 1nXPg@`f*1V0 {@ O\`pOR ]`O]`O*]`^`Pg2Pc  !^"#$%D&'()'*b+,-p.N/012%64Tr`5T6D8L`9K;<;>^VX@"N@|@"r sFPu $`vfSxyF | }Fp-Y9@i`Є9i`&AOjt`p@  P;I u  2 ^ @S!gG!Gn!`j`!`G!j`!U "6"["`et"g@")" "V#/#Ч`#`#`V##V$ :$@#f$p$P9$`o`$9 %o`3%йA\%@q% U%%&B&pj&@&@&@&P;''S''^' 'O' g+(T(y(t( p`(PG(p`)GE)p`k))`k)m`)-0)- !* -[*.O*y`*P.O+ z`O+.+/g+1+1/,2h,p3,04,5@-6-6-7 .8P.9.:W. <\/=^K/>/@/u/w@0P:Q0'G`0`30#0Ш#030@1@N101 11Э 2V2P22 2@3`(3 O33@33#4PQ444`401 5` /5p V5 z555`6@A60u666м6 7PJ7t7п77P7"8R88889p<9`f9P9@909 :8:b: : ::;s;;pe;`;; <@,< V<<z< <@=>=pR{=Y=0=">NS>>PC>C>n?`>? Gm?p]?D? i@rN@@@`@0RAKA zAAAP RB 8=B UfBP$B?BB C=C@ ^C`yC@CC@C0mCl#D gND!vD#D#D$D%,Ep'YE0)EE0*E+#F+MF,}Fp.F00FGdQ0`?GpC3`GC#GC#GD3GPD#GD#HD+&HD#GHE#hH@E+HpE#HE3HEHF+IG[IHIIIJIKJLKJM{JNJOJpP KpQ;K0RkKRKSK`TKU+LUWLW }LWLWLWLWMXEM0XmMPXMpXMXMX NX5NX]NYNYNpZN0[O[MO\}OP]O^O^ Pp_=P `mP`PaP@bPc-Qc]QpdQ0eQhQRj BRj hR j R0j R@j RPj S`j &Spj LSj rSj Sj SsSTptST|TuTTuU:UPvpUUvUUw.VWV0xVVxVWpyKWtWzWWzWp{+X0|WX|X}XPXY3Y@t_YYpY}YZ0;ZgZpZ0ZZ[pC[0o[[[p[0\K\Зw\\p\@\']S]]]P]]^1^Q^n^^^^^_%_E_b______`9`V`v````Q0`P`PaP>aPaaPaPaPaPaPbP3bPVbPbybhb@+Q0b bbpb c#c/cXKVc bcJbc,ccVc`cc cKchcPdOd@dSdddps]d e0h?eMWe"0O eeee fJfif"rfsXfMf"C<gpn4gPAOgn`ggAg"ANgh"P5"h3hHhPk|hhhki"qXUigiirYii i9jj j"`dXj"r<j"3kO5kMkokkkp,OklIldl"C l"Cll mm BAm0IO]mqmm"mm"Omn=n"r wnnnn(oIoqo"Qoo"0eOoopO4pypi ppppqX"qdqpi q"@B q"0B qrA-rPC Zr"P;rrr@Ar"@ s-s" ZsNOvss"OsspAstt"`BFHttti tu" ONuauuuuuu vCvTvAov" e vvAvvv"B *w~T~o~~~"dQ~~%"PC Vl" .`AI",<uM"`C!܀`?M!PrXO^ȁ `."B cv"PB Ă҂pNH'HMAex҃oX,[M" rQeY"@XI~i p]7Wgf"PC1҆i 7ij̇݇"<V ,MΈ $FRr"P g"@O< A&`|ڊM^"p6"C 0q]0m <"r po"O ", GÍՍZ}"C jO"A4mh`C "p>#Dt"ЅXPM !"B N h"C "C<ߑ"C4Iq"B)ӒM,"C \_ZL31PyvtkFunctionSet_FunctionValuesP7_objectS0__ZL31PyvtkFunctionSet_FunctionValuesP7_objectS0_.cold_ZL29PyvtkFunctionSet_SafeDownCastP7_objectS0__ZL25PyvtkFunctionSet_IsTypeOfP7_objectS0__ZL48PyvtkFunctionSet_GetNumberOfIndependentVariablesP7_objectS0__ZL37PyvtkFunctionSet_GetNumberOfFunctionsP7_objectS0__ZL20PyvtkFunctionSet_IsAP7_objectS0__ZL28PyvtkFunctionSet_NewInstanceP7_objectS0__ZL21PyvtkFunctionSet_Type_ZL24PyvtkFunctionSet_Methods_GLOBAL__sub_I_vtkFunctionSetPython.cxx_ZL43PyvtkInitialValueProblemSolver_SafeDownCastP7_objectS0__ZL39PyvtkInitialValueProblemSolver_IsTypeOfP7_objectS0__ZL41PyvtkInitialValueProblemSolver_IsAdaptiveP7_objectS0__ZL45PyvtkInitialValueProblemSolver_GetFunctionSetP7_objectS0__ZL34PyvtkInitialValueProblemSolver_IsAP7_objectS0__ZL42PyvtkInitialValueProblemSolver_NewInstanceP7_objectS0__ZL46PyvtkInitialValueProblemSolver_ComputeNextStepP7_objectS0__ZL46PyvtkInitialValueProblemSolver_ComputeNextStepP7_objectS0_.cold_ZL46PyvtkInitialValueProblemSolver_ErrorCodes_Type_ZL38PyvtkInitialValueProblemSolver_Methods_ZL35PyvtkInitialValueProblemSolver_Type_ZZ39PyvtkInitialValueProblemSolver_ClassNewE9constants_GLOBAL__sub_I_vtkInitialValueProblemSolverPython.cxx_ZL45PyvtkInitialValueProblemSolver_SetFunctionSetP7_objectS0__ZL42PyvtkPolynomialSolversUnivariate_StaticNewv_ZL50PyvtkPolynomialSolversUnivariate_SolveQuadratic_s3P7_objectS0__ZL50PyvtkPolynomialSolversUnivariate_SolveQuadratic_s3P7_objectS0_.cold_ZL53PyvtkPolynomialSolversUnivariate_TartagliaCardanSolveP7_objectS0__ZL53PyvtkPolynomialSolversUnivariate_TartagliaCardanSolveP7_objectS0_.cold_ZL45PyvtkPolynomialSolversUnivariate_FerrariSolveP7_objectS0__ZL45PyvtkPolynomialSolversUnivariate_FerrariSolveP7_objectS0_.cold_ZL49PyvtkPolynomialSolversUnivariate_LinBairstowSolveP7_objectS0__ZL49PyvtkPolynomialSolversUnivariate_LinBairstowSolveP7_objectS0_.cold_ZL44PyvtkPolynomialSolversUnivariate_FilterRootsP7_objectS0__ZL44PyvtkPolynomialSolversUnivariate_FilterRootsP7_objectS0_.cold_ZL45PyvtkPolynomialSolversUnivariate_SafeDownCastP7_objectS0__ZL53PyvtkPolynomialSolversUnivariate_SetDivisionToleranceP7_objectS0__ZL53PyvtkPolynomialSolversUnivariate_GetDivisionToleranceP7_objectS0__ZL47PyvtkPolynomialSolversUnivariate_SolveQuadraticP7_objectS0__ZL55PyvtkPolynomialSolversUnivariate_SolveQuadratic_Methods_ZL47PyvtkPolynomialSolversUnivariate_SolveQuadraticP7_objectS0_.cold_ZL46PyvtkPolynomialSolversUnivariate_SolveCubic_s2P7_objectS0_.constprop.0_ZL46PyvtkPolynomialSolversUnivariate_SolveCubic_s2P7_objectS0_.constprop.0.cold_ZL43PyvtkPolynomialSolversUnivariate_SolveCubicP7_objectS0__ZL52PyvtkPolynomialSolversUnivariate_SturmBisectionSolveP7_objectS0__ZL52PyvtkPolynomialSolversUnivariate_SturmBisectionSolveP7_objectS0_.cold_ZL54PyvtkPolynomialSolversUnivariate_HabichtBisectionSolveP7_objectS0__ZL54PyvtkPolynomialSolversUnivariate_HabichtBisectionSolveP7_objectS0_.cold_ZL41PyvtkPolynomialSolversUnivariate_IsTypeOfP7_objectS0__ZL36PyvtkPolynomialSolversUnivariate_IsAP7_objectS0__ZL44PyvtkPolynomialSolversUnivariate_NewInstanceP7_objectS0__ZL50PyvtkPolynomialSolversUnivariate_SolveQuadratic_s1P7_objectS0__ZL44PyvtkPolynomialSolversUnivariate_SolveLinearP7_objectS0__ZL44PyvtkPolynomialSolversUnivariate_SolveLinearP7_objectS0_.cold_ZL37PyvtkPolynomialSolversUnivariate_Type_ZL40PyvtkPolynomialSolversUnivariate_Methods_GLOBAL__sub_I_vtkPolynomialSolversUnivariatePython.cxx_ZL26PyvtkRungeKutta2_StaticNewv_ZL29PyvtkRungeKutta2_SafeDownCastP7_objectS0__ZL25PyvtkRungeKutta2_IsTypeOfP7_objectS0__ZL20PyvtkRungeKutta2_IsAP7_objectS0__ZL28PyvtkRungeKutta2_NewInstanceP7_objectS0__ZL21PyvtkRungeKutta2_Type_ZL24PyvtkRungeKutta2_Methods_GLOBAL__sub_I_vtkRungeKutta2Python.cxx_ZL32PyvtkRungeKutta2_ComputeNextStepP7_objectS0__ZL32PyvtkRungeKutta2_ComputeNextStepP7_objectS0_.cold_ZL26PyvtkRungeKutta4_StaticNewv_ZL29PyvtkRungeKutta4_SafeDownCastP7_objectS0__ZL25PyvtkRungeKutta4_IsTypeOfP7_objectS0__ZL20PyvtkRungeKutta4_IsAP7_objectS0__ZL28PyvtkRungeKutta4_NewInstanceP7_objectS0__ZL21PyvtkRungeKutta4_Type_ZL24PyvtkRungeKutta4_Methods_GLOBAL__sub_I_vtkRungeKutta4Python.cxx_ZL32PyvtkRungeKutta4_ComputeNextStepP7_objectS0__ZL32PyvtkRungeKutta4_ComputeNextStepP7_objectS0_.cold_ZL27PyvtkRungeKutta45_StaticNewv_ZL30PyvtkRungeKutta45_SafeDownCastP7_objectS0__ZL26PyvtkRungeKutta45_IsTypeOfP7_objectS0__ZL21PyvtkRungeKutta45_IsAP7_objectS0__ZL29PyvtkRungeKutta45_NewInstanceP7_objectS0__ZL22PyvtkRungeKutta45_Type_ZL25PyvtkRungeKutta45_Methods_GLOBAL__sub_I_vtkRungeKutta45Python.cxx_ZL33PyvtkRungeKutta45_ComputeNextStepP7_objectS0__ZL33PyvtkRungeKutta45_ComputeNextStepP7_objectS0_.cold_ZL30PyvtkAmoebaMinimizer_StaticNewv_ZL33PyvtkAmoebaMinimizer_SafeDownCastP7_objectS0__ZL38PyvtkAmoebaMinimizer_GetParameterValueP7_objectS0__ZL46PyvtkAmoebaMinimizer_GetParameterValue_Methods_ZL38PyvtkAmoebaMinimizer_GetParameterScaleP7_objectS0__ZL46PyvtkAmoebaMinimizer_GetParameterScale_Methods_ZL38PyvtkAmoebaMinimizer_SetParameterScaleP7_objectS0__ZL46PyvtkAmoebaMinimizer_SetParameterScale_Methods_ZL38PyvtkAmoebaMinimizer_SetParameterValueP7_objectS0__ZL46PyvtkAmoebaMinimizer_SetParameterValue_Methods_ZL29PyvtkAmoebaMinimizer_IsTypeOfP7_objectS0__ZL32PyvtkAmoebaMinimizer_NewInstanceP7_objectS0__ZL42PyvtkAmoebaMinimizer_GetNumberOfParametersP7_objectS0__ZL37PyvtkAmoebaMinimizer_GetFunctionValueP7_objectS0__ZL31PyvtkAmoebaMinimizer_InitializeP7_objectS0__ZL37PyvtkAmoebaMinimizer_EvaluateFunctionP7_objectS0__ZL48PyvtkAmoebaMinimizer_GetContractionRatioMinValueP7_objectS0__ZL48PyvtkAmoebaMinimizer_GetContractionRatioMaxValueP7_objectS0__ZL46PyvtkAmoebaMinimizer_GetExpansionRatioMaxValueP7_objectS0__ZL46PyvtkAmoebaMinimizer_GetExpansionRatioMinValueP7_objectS0__ZL38PyvtkAmoebaMinimizer_GetExpansionRatioP7_objectS0__ZL40PyvtkAmoebaMinimizer_GetContractionRatioP7_objectS0__ZL34PyvtkAmoebaMinimizer_GetIterationsP7_objectS0__ZL42PyvtkAmoebaMinimizer_GetParameterToleranceP7_objectS0__ZL37PyvtkAmoebaMinimizer_GetMaxIterationsP7_objectS0__ZL43PyvtkAmoebaMinimizer_GetFunctionEvaluationsP7_objectS0__ZL33PyvtkAmoebaMinimizer_GetToleranceP7_objectS0__ZL41PyvtkAmoebaMinimizer_GetParameterValue_s2P7_objectS0__ZL41PyvtkAmoebaMinimizer_GetParameterScale_s2P7_objectS0__ZL41PyvtkAmoebaMinimizer_GetParameterScale_s1P7_objectS0__ZL41PyvtkAmoebaMinimizer_GetParameterValue_s1P7_objectS0__ZL41PyvtkAmoebaMinimizer_SetParameterValue_s2P7_objectS0__ZL41PyvtkAmoebaMinimizer_SetParameterScale_s2P7_objectS0__ZL41PyvtkAmoebaMinimizer_SetParameterValue_s1P7_objectS0__ZL41PyvtkAmoebaMinimizer_SetParameterScale_s1P7_objectS0__ZL37PyvtkAmoebaMinimizer_GetParameterNameP7_objectS0__ZL42PyvtkAmoebaMinimizer_SetParameterToleranceP7_objectS0__ZL33PyvtkAmoebaMinimizer_SetToleranceP7_objectS0__ZL37PyvtkAmoebaMinimizer_SetMaxIterationsP7_objectS0__ZL37PyvtkAmoebaMinimizer_SetFunctionValueP7_objectS0__ZL38PyvtkAmoebaMinimizer_SetExpansionRatioP7_objectS0__ZL40PyvtkAmoebaMinimizer_SetContractionRatioP7_objectS0__ZL32PyvtkAmoebaMinimizer_SetFunctionP7_objectS0__ZL24PyvtkAmoebaMinimizer_IsAP7_objectS0__ZL25PyvtkAmoebaMinimizer_Type_ZL28PyvtkAmoebaMinimizer_Methods_GLOBAL__sub_I_vtkAmoebaMinimizerPython.cxx_ZL28PyvtkAmoebaMinimizer_IterateP7_objectS0__ZL29PyvtkAmoebaMinimizer_MinimizeP7_objectS0__ZL24PyvtkMatrix3x3_StaticNewv_ZL25PyvtkMatrix3x3_Adjoint_s2P7_objectS0__ZL29PyvtkMatrix3x3_Multiply3x3_s1P7_objectS0__ZL29PyvtkMatrix3x3_Multiply3x3_s2P7_objectS0__ZL27PyvtkMatrix3x3_Transpose_s1P7_objectS0__ZL27PyvtkMatrix3x3_Transpose_s3P7_objectS0__ZL24PyvtkMatrix3x3_Invert_s1P7_objectS0__ZL24PyvtkMatrix3x3_Invert_s3P7_objectS0__ZL26PyvtkMatrix3x3_DeepCopy_s3P7_objectS0__ZL26PyvtkMatrix3x3_DeepCopy_s2P7_objectS0__ZL27PyvtkMatrix3x3_SafeDownCastP7_objectS0__ZL22PyvtkMatrix3x3_AdjointP7_objectS0__ZL30PyvtkMatrix3x3_Adjoint_Methods_ZL26PyvtkMatrix3x3_Multiply3x3P7_objectS0__ZL34PyvtkMatrix3x3_Multiply3x3_Methods_ZL23PyvtkMatrix3x3_DeepCopyP7_objectS0__ZL31PyvtkMatrix3x3_DeepCopy_Methods_ZL28PyvtkMatrix3x3_MultiplyPointP7_objectS0__ZL23PyvtkMatrix3x3_IsTypeOfP7_objectS0__ZL22PyvtkMatrix3x3_GetDataP7_objectS0__ZL25PyvtkMatrix3x3_GetElementP7_objectS0__ZL25PyvtkMatrix3x3_Adjoint_s1P7_objectS0__ZL26PyvtkMatrix3x3_DeepCopy_s4P7_objectS0__ZL26PyvtkMatrix3x3_DeepCopy_s1P7_objectS0__ZL25PyvtkMatrix3x3_IsIdentityP7_objectS0__ZL18PyvtkMatrix3x3_IsAP7_objectS0__ZL25PyvtkMatrix3x3_SetElementP7_objectS0__ZL26PyvtkMatrix3x3_NewInstanceP7_objectS0__ZL21PyvtkMatrix3x3_InvertP7_objectS0__ZL29PyvtkMatrix3x3_Invert_Methods_ZL24PyvtkMatrix3x3_TransposeP7_objectS0__ZL32PyvtkMatrix3x3_Transpose_Methods_ZL26PyvtkMatrix3x3_DeterminantP7_objectS0__ZL23PyvtkMatrix3x3_IdentityP7_objectS0__ZL19PyvtkMatrix3x3_ZeroP7_objectS0__ZL19PyvtkMatrix3x3_Type_ZL22PyvtkMatrix3x3_Methods_GLOBAL__sub_I_vtkMatrix3x3Python.cxx_ZL24PyvtkMatrix4x4_StaticNewv_ZL25PyvtkMatrix4x4_Adjoint_s2P7_objectS0__ZL29PyvtkMatrix4x4_Multiply4x4_s2P7_objectS0__ZL31PyvtkMatrix4x4_MultiplyPoint_s2P7_objectS0__ZL27PyvtkMatrix4x4_Transpose_s1P7_objectS0__ZL27PyvtkMatrix4x4_Transpose_s3P7_objectS0__ZL24PyvtkMatrix4x4_Invert_s1P7_objectS0__ZL24PyvtkMatrix4x4_Invert_s3P7_objectS0__ZL26PyvtkMatrix4x4_DeepCopy_s3P7_objectS0__ZL26PyvtkMatrix4x4_DeepCopy_s2P7_objectS0__ZL27PyvtkMatrix4x4_SafeDownCastP7_objectS0__ZL22PyvtkMatrix4x4_AdjointP7_objectS0__ZL30PyvtkMatrix4x4_Adjoint_Methods_ZL26PyvtkMatrix4x4_Multiply4x4P7_objectS0__ZL34PyvtkMatrix4x4_Multiply4x4_Methods_ZL23PyvtkMatrix4x4_DeepCopyP7_objectS0__ZL31PyvtkMatrix4x4_DeepCopy_Methods_ZL26PyvtkMatrix4x4_DeterminantP7_objectS0__ZL26PyvtkMatrix4x4_Identity_s2P7_objectS0_.constprop.0_ZL22PyvtkMatrix4x4_Zero_s2P7_objectS0_.constprop.0_ZL23PyvtkMatrix4x4_IsTypeOfP7_objectS0__ZL22PyvtkMatrix4x4_GetDataP7_objectS0__ZL34PyvtkMatrix4x4_MultiplyDoublePointP7_objectS0__ZL33PyvtkMatrix4x4_MultiplyFloatPointP7_objectS0__ZL25PyvtkMatrix4x4_GetElementP7_objectS0__ZL25PyvtkMatrix4x4_Adjoint_s1P7_objectS0__ZL26PyvtkMatrix4x4_DeepCopy_s4P7_objectS0__ZL26PyvtkMatrix4x4_DeepCopy_s1P7_objectS0__ZL18PyvtkMatrix4x4_IsAP7_objectS0__ZL31PyvtkMatrix4x4_MultiplyPoint_s1P7_objectS0__ZL25PyvtkMatrix4x4_SetElementP7_objectS0__ZL26PyvtkMatrix4x4_NewInstanceP7_objectS0__ZL23PyvtkMatrix4x4_IdentityP7_objectS0__ZL19PyvtkMatrix4x4_ZeroP7_objectS0__ZL28PyvtkMatrix4x4_MultiplyPointP7_objectS0__ZL36PyvtkMatrix4x4_MultiplyPoint_Methods_ZL21PyvtkMatrix4x4_InvertP7_objectS0__ZL29PyvtkMatrix4x4_Invert_Methods_ZL24PyvtkMatrix4x4_TransposeP7_objectS0__ZL32PyvtkMatrix4x4_Transpose_Methods_ZL29PyvtkMatrix4x4_Multiply4x4_s1P7_objectS0__ZL19PyvtkMatrix4x4_Type_ZL22PyvtkMatrix4x4_Methods_GLOBAL__sub_I_vtkMatrix4x4Python.cxx_ZL37PyvtkQuaternionInterpolator_StaticNewv_ZL40PyvtkQuaternionInterpolator_SafeDownCastP7_objectS0__ZL49PyvtkQuaternionInterpolator_InterpolateQuaternionP7_objectS0__ZL57PyvtkQuaternionInterpolator_InterpolateQuaternion_Methods_ZL41PyvtkQuaternionInterpolator_AddQuaternionP7_objectS0__ZL49PyvtkQuaternionInterpolator_AddQuaternion_Methods_ZL36PyvtkQuaternionInterpolator_IsTypeOfP7_objectS0__ZL39PyvtkQuaternionInterpolator_NewInstanceP7_objectS0__ZL38PyvtkQuaternionInterpolator_InitializeP7_objectS0__ZL39PyvtkQuaternionInterpolator_GetMinimumTP7_objectS0__ZL39PyvtkQuaternionInterpolator_GetMaximumTP7_objectS0__ZL50PyvtkQuaternionInterpolator_GetNumberOfQuaternionsP7_objectS0__ZL56PyvtkQuaternionInterpolator_GetInterpolationTypeMinValueP7_objectS0__ZL56PyvtkQuaternionInterpolator_GetInterpolationTypeMaxValueP7_objectS0__ZL48PyvtkQuaternionInterpolator_GetInterpolationTypeP7_objectS0__ZL44PyvtkQuaternionInterpolator_RemoveQuaternionP7_objectS0__ZL52PyvtkQuaternionInterpolator_InterpolateQuaternion_s1P7_objectS0__ZL56PyvtkQuaternionInterpolator_SetInterpolationTypeToLinearP7_objectS0__ZL56PyvtkQuaternionInterpolator_SetInterpolationTypeToSplineP7_objectS0__ZL44PyvtkQuaternionInterpolator_AddQuaternion_s1P7_objectS0__ZL48PyvtkQuaternionInterpolator_SetInterpolationTypeP7_objectS0__ZL31PyvtkQuaternionInterpolator_IsAP7_objectS0__ZL44PyvtkQuaternionInterpolator_AddQuaternion_s2P7_objectS0__ZL52PyvtkQuaternionInterpolator_InterpolateQuaternion_s2P7_objectS0__ZL32PyvtkQuaternionInterpolator_Type_ZL35PyvtkQuaternionInterpolator_Methods_GLOBAL__sub_I_vtkQuaternionInterpolatorPython.cxx_ZStL8__ioinit_ZL25PyvtkQuaternion_IdE_CCopyPKv_ZL25PyvtkQuaternion_IfE_CCopyPKv_ZL22PyvtkQuaternionf_CCopyPKv_ZL22PyvtkQuaterniond_CCopyPKv_ZL36PyvtkQuaternion_IdE_vtkQuaternion_s5P7_objectS0__ZL36PyvtkQuaternion_IfE_vtkQuaternion_s5P7_objectS0__ZL34PyvtkQuaternionf_vtkQuaternionf_s5P7_objectS0__ZL34PyvtkQuaterniond_vtkQuaterniond_s5P7_objectS0__ZL36PyvtkQuaternion_IdE_vtkQuaternion_s3P7_objectS0__ZL34PyvtkQuaterniond_vtkQuaterniond_s4P7_objectS0__ZL36PyvtkQuaternion_IdE_vtkQuaternion_s2P7_objectS0__ZL34PyvtkQuaterniond_vtkQuaterniond_s3P7_objectS0__ZL26PyvtkQuaternion_IdE_DeleteP7_object_ZL26PyvtkQuaternion_IfE_DeleteP7_object_ZL23PyvtkQuaternionf_DeleteP7_object_ZL23PyvtkQuaterniond_DeleteP7_object_ZL24PyvtkQuaternion_IdE_HashP7_object_ZL36PyvtkQuaternion_IfE_vtkQuaternion_s3P7_objectS0__ZL34PyvtkQuaternionf_vtkQuaternionf_s4P7_objectS0__ZL36PyvtkQuaternion_IfE_vtkQuaternion_s2P7_objectS0__ZL34PyvtkQuaternionf_vtkQuaternionf_s3P7_objectS0__ZL28PyvtkQuaternion_IfE_IdentityP7_objectS0__ZL28PyvtkQuaternion_IdE_IdentityP7_objectS0__ZL23PyvtkQuaternion_IdE_NewP11_typeobjectP7_objectS2__ZL41PyvtkQuaternion_IdE_vtkQuaternion_Methods_ZNK13vtkQuaternionIfEmlERKS0_.isra.0_ZL21PyvtkQuaterniond_HashP7_object_ZL24PyvtkQuaternion_IfE_HashP7_object_ZL21PyvtkQuaternionf_HashP7_object_ZL23PyvtkQuaternion_IfE_NewP11_typeobjectP7_objectS2__ZL41PyvtkQuaternion_IfE_vtkQuaternion_Methods_ZL20PyvtkQuaterniond_NewP11_typeobjectP7_objectS2__ZL39PyvtkQuaterniond_vtkQuaterniond_Methods_ZL20PyvtkQuaternionf_NewP11_typeobjectP7_objectS2__ZL39PyvtkQuaternionf_vtkQuaternionf_Methods_ZL24PyvtkQuaternion_IdE_GetWP7_objectS0__ZL24PyvtkQuaternion_IdE_GetYP7_objectS0__ZL24PyvtkQuaternion_IdE_GetZP7_objectS0__ZL24PyvtkQuaternion_IdE_GetXP7_objectS0__ZL24PyvtkQuaternion_IfE_GetZP7_objectS0__ZL24PyvtkQuaternion_IfE_GetWP7_objectS0__ZL24PyvtkQuaternion_IfE_GetXP7_objectS0__ZL24PyvtkQuaternion_IfE_GetYP7_objectS0__ZL30PyvtkQuaternion_IdE_ToIdentityP7_objectS0__ZL30PyvtkQuaternion_IfE_ToIdentityP7_objectS0__ZL31PyvtkQuaternion_IfE_SquaredNormP7_objectS0__ZL31PyvtkQuaternion_IdE_SquaredNormP7_objectS0__ZL29PyvtkQuaternion_IfE_ConjugateP7_objectS0__ZL29PyvtkQuaternion_IdE_ConjugateP7_objectS0__ZL24PyvtkQuaternion_IdE_SetYP7_objectS0__ZL24PyvtkQuaternion_IdE_SetZP7_objectS0__ZL24PyvtkQuaternion_IdE_SetXP7_objectS0__ZL24PyvtkQuaternion_IfE_SetXP7_objectS0__ZL24PyvtkQuaternion_IfE_SetWP7_objectS0__ZL24PyvtkQuaternion_IdE_SetWP7_objectS0__ZL24PyvtkQuaternion_IfE_SetZP7_objectS0__ZL24PyvtkQuaternion_IfE_SetYP7_objectS0__ZL24PyvtkQuaternion_IfE_NormP7_objectS0__ZL24PyvtkQuaternion_IdE_NormP7_objectS0__ZL25PyvtkQuaterniond_IdentityP7_objectS0__ZL30PyvtkQuaternion_IdE_ConjugatedP7_objectS0__ZL24PyvtkQuaterniond_InverseP7_objectS0__ZL24PyvtkQuaterniond_UnitExpP7_objectS0__ZL45PyvtkQuaterniond_NormalizedWithAngleInDegreesP7_objectS0__ZL30PyvtkQuaternion_IfE_ConjugatedP7_objectS0__ZL27PyvtkQuaterniond_ConjugatedP7_objectS0__ZL25PyvtkQuaternionf_IdentityP7_objectS0__ZL24PyvtkQuaternionf_UnitExpP7_objectS0__ZL24PyvtkQuaternionf_InverseP7_objectS0__ZL45PyvtkQuaternionf_NormalizedWithAngleInDegreesP7_objectS0__ZL27PyvtkQuaternionf_ConjugatedP7_objectS0__ZL23PyvtkQuaternion_IdE_GetP7_objectS0__ZL23PyvtkQuaternion_IfE_GetP7_objectS0__ZL43PyvtkQuaternion_IdE_GetRotationAngleAndAxisP7_objectS0__ZL43PyvtkQuaternion_IfE_GetRotationAngleAndAxisP7_objectS0__ZL31PyvtkQuaternion_IdE_ToMatrix3x3P7_objectS0__ZZL31PyvtkQuaternion_IdE_ToMatrix3x3P7_objectS0_E5size0_ZL31PyvtkQuaternion_IfE_ToMatrix3x3P7_objectS0__ZZL31PyvtkQuaternion_IfE_ToMatrix3x3P7_objectS0_E5size0_ZL26PyvtkQuaternion_IdE_InvertP7_objectS0__ZL26PyvtkQuaternion_IfE_InvertP7_objectS0__ZL27PyvtkQuaternion_IdE_InverseP7_objectS0__ZL27PyvtkQuaternion_IfE_InverseP7_objectS0__ZL29PyvtkQuaternion_IfE_NormalizeP7_objectS0__ZL29PyvtkQuaternion_IdE_NormalizeP7_objectS0__ZL47PyvtkQuaternion_IfE_NormalizeWithAngleInDegreesP7_objectS0__ZL47PyvtkQuaternion_IdE_NormalizeWithAngleInDegreesP7_objectS0__ZL30PyvtkQuaternion_IdE_NormalizedP7_objectS0__ZL48PyvtkQuaternion_IdE_NormalizedWithAngleInDegreesP7_objectS0__ZL29PyvtkQuaternion_IdE_ToUnitExpP7_objectS0__ZL29PyvtkQuaternion_IfE_ToUnitExpP7_objectS0__ZL30PyvtkQuaternion_IfE_NormalizedP7_objectS0__ZL27PyvtkQuaterniond_NormalizedP7_objectS0__ZL48PyvtkQuaternion_IfE_NormalizedWithAngleInDegreesP7_objectS0__ZL27PyvtkQuaternion_IdE_UnitExpP7_objectS0__ZL27PyvtkQuaternion_IfE_UnitExpP7_objectS0__ZL27PyvtkQuaternionf_NormalizedP7_objectS0__ZL23PyvtkQuaternion_IdE_SetP7_objectS0__ZL23PyvtkQuaternion_IfE_SetP7_objectS0__ZL43PyvtkQuaternion_IfE_SetRotationAngleAndAxisP7_objectS0__ZL43PyvtkQuaternion_IdE_SetRotationAngleAndAxisP7_objectS0__ZL24PyvtkQuaternion_IdE_Type_ZL27PyvtkQuaternion_IdE_Methods_ZL24PyvtkQuaternion_IfE_Type_ZL27PyvtkQuaternion_IfE_Methods_ZL21PyvtkQuaternionf_Type_ZL24PyvtkQuaternionf_Methods_ZL21PyvtkQuaterniond_Type_ZL24PyvtkQuaterniond_Methods_ZL25PyvtkQuaternion_IfE_SlerpP7_objectS0__ZL22PyvtkQuaternionf_SlerpP7_objectS0__ZL25PyvtkQuaternion_IdE_SlerpP7_objectS0__ZL22PyvtkQuaterniond_SlerpP7_objectS0__ZL27PyvtkQuaternion_IdE_UnitLogP7_objectS0__ZL29PyvtkQuaternion_IdE_ToUnitLogP7_objectS0__ZL24PyvtkQuaterniond_UnitLogP7_objectS0__ZL30PyvtkQuaternion_IdE_InnerPointP7_objectS0__ZL27PyvtkQuaterniond_InnerPointP7_objectS0__ZL33PyvtkQuaternion_IdE_FromMatrix3x3P7_objectS0__ZZL33PyvtkQuaternion_IdE_FromMatrix3x3P7_objectS0_E5size0_ZL27PyvtkQuaternion_IfE_UnitLogP7_objectS0__ZL29PyvtkQuaternion_IfE_ToUnitLogP7_objectS0__ZL24PyvtkQuaternionf_UnitLogP7_objectS0__ZL30PyvtkQuaternion_IfE_InnerPointP7_objectS0__ZL27PyvtkQuaternionf_InnerPointP7_objectS0__ZL33PyvtkQuaternion_IfE_FromMatrix3x3P7_objectS0__ZZL33PyvtkQuaternion_IfE_FromMatrix3x3P7_objectS0_E5size0_GLOBAL__sub_I_vtkQuaternionPython.cxx_ZL24PyvtkTuple_IdLi4EE_CCopyPKv_ZL24PyvtkTuple_IfLi4EE_CCopyPKv_ZL24PyvtkTuple_IhLi2EE_CCopyPKv_ZL24PyvtkTuple_IhLi3EE_CCopyPKv_ZL24PyvtkTuple_IhLi4EE_CCopyPKv_ZL24PyvtkTuple_IiLi2EE_CCopyPKv_ZL24PyvtkTuple_IiLi3EE_CCopyPKv_ZL24PyvtkTuple_IiLi4EE_CCopyPKv_ZL24PyvtkTuple_IfLi2EE_CCopyPKv_ZL24PyvtkTuple_IfLi3EE_CCopyPKv_ZL24PyvtkTuple_IdLi2EE_CCopyPKv_ZL24PyvtkTuple_IdLi3EE_CCopyPKv_ZL30PyvtkTuple_IdLi4EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IfLi4EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IhLi2EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IhLi3EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IhLi4EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IiLi2EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IiLi3EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IiLi4EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IfLi2EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IfLi3EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IdLi2EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IdLi3EE_vtkTuple_s4P7_objectS0__ZL30PyvtkTuple_IdLi4EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IdLi2EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IdLi3EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IdLi4EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IdLi2EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IdLi3EE_vtkTuple_s2P7_objectS0__ZL26PyvtkTuple_IdLi3EE_CompareP7_objectS0__ZL23PyvtkTuple_IdLi4EE_HashP7_object_ZL25PyvtkTuple_IdLi4EE_DeleteP7_object_ZL25PyvtkTuple_IfLi4EE_DeleteP7_object_ZL25PyvtkTuple_IhLi2EE_DeleteP7_object_ZL25PyvtkTuple_IhLi3EE_DeleteP7_object_ZL25PyvtkTuple_IhLi4EE_DeleteP7_object_ZL25PyvtkTuple_IiLi2EE_DeleteP7_object_ZL25PyvtkTuple_IiLi3EE_DeleteP7_object_ZL25PyvtkTuple_IiLi4EE_DeleteP7_object_ZL25PyvtkTuple_IfLi2EE_DeleteP7_object_ZL25PyvtkTuple_IfLi3EE_DeleteP7_object_ZL25PyvtkTuple_IdLi2EE_DeleteP7_object_ZL25PyvtkTuple_IdLi3EE_DeleteP7_object_ZL30PyvtkTuple_IfLi4EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IfLi2EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IfLi3EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IfLi4EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IfLi2EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IfLi3EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IhLi2EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IhLi3EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IhLi4EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IhLi2EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IhLi3EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IhLi4EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IiLi2EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IiLi3EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IiLi4EE_vtkTuple_s3P7_objectS0__ZL30PyvtkTuple_IiLi2EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IiLi3EE_vtkTuple_s2P7_objectS0__ZL30PyvtkTuple_IiLi4EE_vtkTuple_s2P7_objectS0__ZL22PyvtkTuple_IfLi4EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IfLi4EE_vtkTuple_Methods_ZL23PyvtkTuple_IdLi3EE_HashP7_object_ZL23PyvtkTuple_IfLi4EE_HashP7_object_ZL23PyvtkTuple_IhLi2EE_HashP7_object_ZL23PyvtkTuple_IhLi3EE_HashP7_object_ZL23PyvtkTuple_IfLi3EE_HashP7_object_ZL23PyvtkTuple_IdLi2EE_HashP7_object_ZL23PyvtkTuple_IiLi4EE_HashP7_object_ZL23PyvtkTuple_IfLi2EE_HashP7_object_ZL23PyvtkTuple_IiLi3EE_HashP7_object_ZL23PyvtkTuple_IiLi2EE_HashP7_object_ZL23PyvtkTuple_IhLi4EE_HashP7_object_ZL22PyvtkTuple_IdLi2EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IdLi2EE_vtkTuple_Methods_ZL22PyvtkTuple_IhLi2EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IhLi2EE_vtkTuple_Methods_ZL22PyvtkTuple_IiLi2EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IiLi2EE_vtkTuple_Methods_ZL22PyvtkTuple_IfLi2EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IfLi2EE_vtkTuple_Methods_ZL22PyvtkTuple_IiLi3EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IiLi3EE_vtkTuple_Methods_ZL22PyvtkTuple_IdLi3EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IdLi3EE_vtkTuple_Methods_ZL22PyvtkTuple_IhLi3EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IhLi3EE_vtkTuple_Methods_ZL22PyvtkTuple_IfLi3EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IfLi3EE_vtkTuple_Methods_ZL22PyvtkTuple_IhLi4EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IhLi4EE_vtkTuple_Methods_ZL22PyvtkTuple_IdLi4EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IdLi4EE_vtkTuple_Methods_ZL22PyvtkTuple_IiLi4EE_NewP11_typeobjectP7_objectS2__ZL35PyvtkTuple_IiLi4EE_vtkTuple_Methods_ZL26PyvtkTuple_IhLi3EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IdLi4EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IhLi2EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IdLi4EE_GetDataP7_objectS0__ZL26PyvtkTuple_IiLi3EE_CompareP7_objectS0__ZL26PyvtkTuple_IiLi4EE_CompareP7_objectS0__ZL26PyvtkTuple_IhLi4EE_CompareP7_objectS0__ZL26PyvtkTuple_IdLi2EE_CompareP7_objectS0__ZL26PyvtkTuple_IiLi2EE_CompareP7_objectS0__ZL26PyvtkTuple_IfLi4EE_CompareP7_objectS0__ZL26PyvtkTuple_IhLi3EE_CompareP7_objectS0__ZL26PyvtkTuple_IhLi2EE_CompareP7_objectS0__ZL26PyvtkTuple_IfLi3EE_CompareP7_objectS0__ZL26PyvtkTuple_IfLi2EE_CompareP7_objectS0__ZL26PyvtkTuple_IdLi4EE_CompareP7_objectS0__ZL26PyvtkTuple_IdLi3EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IfLi4EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IdLi2EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IiLi4EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IfLi3EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IfLi2EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IhLi4EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IiLi3EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IiLi2EE_GetSizeP7_objectS0__ZL26PyvtkTuple_IiLi4EE_GetDataP7_objectS0__ZL26PyvtkTuple_IhLi3EE_GetDataP7_objectS0__ZL26PyvtkTuple_IiLi2EE_GetDataP7_objectS0__ZL26PyvtkTuple_IfLi4EE_GetDataP7_objectS0__ZL26PyvtkTuple_IhLi4EE_GetDataP7_objectS0__ZL26PyvtkTuple_IfLi2EE_GetDataP7_objectS0__ZL26PyvtkTuple_IiLi3EE_GetDataP7_objectS0__ZL26PyvtkTuple_IhLi2EE_GetDataP7_objectS0__ZL26PyvtkTuple_IdLi2EE_GetDataP7_objectS0__ZL26PyvtkTuple_IfLi3EE_GetDataP7_objectS0__ZL26PyvtkTuple_IdLi3EE_GetDataP7_objectS0__ZL23PyvtkTuple_IdLi4EE_Type_ZL26PyvtkTuple_IdLi4EE_Methods_ZL23PyvtkTuple_IfLi4EE_Type_ZL26PyvtkTuple_IfLi4EE_Methods_ZL23PyvtkTuple_IhLi2EE_Type_ZL26PyvtkTuple_IhLi2EE_Methods_ZL23PyvtkTuple_IhLi3EE_Type_ZL26PyvtkTuple_IhLi3EE_Methods_ZL23PyvtkTuple_IhLi4EE_Type_ZL26PyvtkTuple_IhLi4EE_Methods_ZL23PyvtkTuple_IiLi2EE_Type_ZL26PyvtkTuple_IiLi2EE_Methods_ZL23PyvtkTuple_IiLi3EE_Type_ZL26PyvtkTuple_IiLi3EE_Methods_ZL23PyvtkTuple_IiLi4EE_Type_ZL26PyvtkTuple_IiLi4EE_Methods_ZL23PyvtkTuple_IfLi2EE_Type_ZL26PyvtkTuple_IfLi2EE_Methods_ZL23PyvtkTuple_IfLi3EE_Type_ZL26PyvtkTuple_IfLi3EE_Methods_ZL23PyvtkTuple_IdLi2EE_Type_ZL26PyvtkTuple_IdLi2EE_Methods_ZL23PyvtkTuple_IdLi3EE_Type_ZL26PyvtkTuple_IdLi3EE_Methods_GLOBAL__sub_I_vtkTuplePython.cxx_ZL29PyvtkTuple_IdLi3EE_AsSequence_ZL29PyvtkTuple_IdLi2EE_AsSequence_ZL29PyvtkTuple_IfLi3EE_AsSequence_ZL29PyvtkTuple_IfLi2EE_AsSequence_ZL29PyvtkTuple_IiLi4EE_AsSequence_ZL29PyvtkTuple_IiLi3EE_AsSequence_ZL29PyvtkTuple_IiLi2EE_AsSequence_ZL29PyvtkTuple_IhLi4EE_AsSequence_ZL29PyvtkTuple_IhLi3EE_AsSequence_ZL29PyvtkTuple_IhLi2EE_AsSequence_ZL29PyvtkTuple_IfLi4EE_AsSequence_ZL29PyvtkTuple_IdLi4EE_AsSequence_ZL28PyvtkCommonMathPython_Module_GLOBAL__sub_I_vtkCommonMathPythonInitImpl.cxx_ZL29PyvtkCommonMathPython_Methodscrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____GNU_EH_FRAME_HDR__dso_handleDW.ref.__gxx_personality_v0_fini_init_DYNAMIC__TMC_END___GLOBAL_OFFSET_TABLE_PyVTKAddFile_vtkMatrix4x4_ZN13vtkPythonArgs9GetNArrayEPfiPKiPyVTKObject_Delete_ZN25vtkQuaternionInterpolator21InterpolateQuaternionEdPd_ZN13vtkPythonArgs16PureVirtualErrorEv_Z31PyvtkTuple_IfLi4EE_SequenceItemP7_objectl_ZN13vtkPythonUtil13ManglePointerEPKvPKc_Z34PyvtkTuple_IiLi4EE_SequenceSetItemP7_objectlS0_PyvtkMatrix4x4_ClassNew_ZNK14vtkFunctionSet19NewInstanceInternalEvatan2@GLIBC_2.2.5_ZN12vtkMatrix4x49TransposeEPKdPd_ZN12vtkMatrix4x413MultiplyPointEPKdS1_Pd_ZN30vtkPolynomialSolversUnivariate16LinBairstowSolveEPdiS0_Rd_ZN12vtkMatrix4x413MultiplyPointEPKdPKfPf_ZN13vtkPythonArgs8GetValueERf_ZN28vtkInitialValueProblemSolver10IsAdaptiveEv_Z31PyvtkTuple_IiLi4EE_SequenceItemP7_objectlPyvtkQuaternionf_TypeNew_ZN18vtkAmoebaMinimizer3IsAEPKc_Z34PyvtkTuple_IdLi4EE_SequenceSetItemP7_objectlS0_PyvtkTuple_IiLi4EE_TypeNew_Z50PyvtkInitialValueProblemSolver_ErrorCodes_FromEnumi_ZN7vtkMath7JacobiNEPPfiS0_S1_PyvtkTuple_IhLi2EE_TypeNew_ZN18vtkAmoebaMinimizer19SetContractionRatioEdsin@GLIBC_2.2.5_ZN13vtkQuaternionIdE9ToUnitLogEvPyExc_IndexErrorPyVTKObject_Traverse_Z34PyvtkTuple_IhLi2EE_SequenceSetItemP7_objectlS0__ZN25vtkQuaternionInterpolator10InitializeEv_ZN30vtkPolynomialSolversUnivariate14SolveQuadraticEddd_Z34PyvtkTuple_IfLi2EE_SequenceSetItemP7_objectlS0__ZN28vtkInitialValueProblemSolver15ComputeNextStepEPdS0_dRddS1_PyVTKObject_Check_ZN18vtkAmoebaMinimizer17SetParameterValueEPKcd_Z31PyvtkTuple_IdLi3EE_SequenceItemP7_objectl_Z31PyvtkTuple_IhLi4EE_SequenceSizeP7_object_ZN30vtkPolynomialSolversUnivariate21HabichtBisectionSolveEPdiS0_S0_di_ZN30vtkPolynomialSolversUnivariate19SturmBisectionSolveEPdiS0_S0_dib_Z22PyvtkTuple_TemplateNewv_ZN14vtkRungeKutta215ComputeNextStepEPdS0_dRddS1__ZN28vtkInitialValueProblemSolver3IsAEPKc_ZNK13vtkQuaternionIdE5SlerpEdRKS0_PyVTKAddFile_vtkMatrix3x3_Z17vtkPythonVoidFuncPv_ZN13vtkPythonArgs8SetArrayEiPKfi_ZN30vtkPolynomialSolversUnivariate14SolveQuadraticEPdS0_PiPyObject_GenericSetAttrPyVTKAddFile_vtkPolynomialSolversUnivariate_ZN13vtkPythonArgs11GetFunctionERP7_object_ZN18vtkAmoebaMinimizer17GetParameterValueEPKc_ZN15vtkRungeKutta453NewEv_ZN25vtkQuaternionInterpolator28GetInterpolationTypeMaxValueEv_ZN25vtkQuaternionInterpolator20GetInterpolationTypeEvPyType_IsSubtype_ZN13vtkObjectBase8IsTypeOfEPKcPyModule_GetDictPyvtkQuaternionInterpolator_ClassNewPyVTKAddFile_vtkRungeKutta2sincosf@GLIBC_2.2.5PyVTKObject_New__cxa_finalize@GLIBC_2.2.5strlen@GLIBC_2.2.5_ZN14vtkFunctionSet20GetNumberOfFunctionsEv_ZN13vtkPythonArgs9SetNArrayEiPKfiPKi_ZN30vtkPolynomialSolversUnivariate20SetDivisionToleranceEd_ZNK28vtkInitialValueProblemSolver19NewInstanceInternalEv_ZN14vtkRungeKutta215ComputeNextStepEPdS0_S0_dRdS1_dddS1__ZN13vtkPythonArgs5ArrayIiEC1El_Py_FatalErrorFunc_ZN28vtkInitialValueProblemSolver14SetFunctionSetEP14vtkFunctionSet_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs8GetValueEP7_objectRf_ZN15vtkRungeKutta4515ComputeNextStepEPdS0_S0_dRddS1__Py_NoneStruct_ZN14vtkRungeKutta23IsAEPKcPyDict_SetItemString_ZN18vtkAmoebaMinimizer17SetParameterScaleEPKcdPyVTKAddFile_vtkRungeKutta45_ZN30vtkPolynomialSolversUnivariate19SturmBisectionSolveEPdiS0_S0_di_Z31PyvtkTuple_IiLi4EE_SequenceSizeP7_object_ZN12vtkMatrix3x311Multiply3x3EPKdS1_PdPyType_TypePyBytes_FromStringAndSize_Z31PyvtkTuple_IhLi4EE_SequenceItemP7_objectl_ZN25vtkQuaternionInterpolator13AddQuaternionEdRK14vtkQuaterniond_Z31PyvtkTuple_IdLi3EE_SequenceSizeP7_object_ZN18vtkAmoebaMinimizer27GetContractionRatioMaxValueEv_ZN18vtkAmoebaMinimizer27GetContractionRatioMinValueEvsincos@GLIBC_2.2.5PyvtkTuple_IiLi2EE_TypeNew_Z31PyvtkTuple_IhLi2EE_SequenceSizeP7_object_ZN13vtkQuaternionIdE13FromMatrix3x3EPA3_KdPyVTKSpecialObject_New_ZN18vtkAmoebaMinimizer16EvaluateFunctionEvPyvtkTuple_IdLi2EE_TypeNew_ZNK12vtkMatrix4x419NewInstanceInternalEv_ZN13vtkPythonArgs8GetValueERd_ZNK15vtkRungeKutta4519NewInstanceInternalEvPyVTKAddFile_vtkFunctionSetPyVTKObject_AsBuffer_ZN15vtkRungeKutta453IsAEPKcPyVTKSpecialObject_SequenceStringPyvtkTuple_IfLi4EE_TypeNew_ZN12vtkMatrix3x311DeterminantEPKdPyFloat_FromDouble_ZN18vtkAmoebaMinimizer17SetExpansionRatioEd_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN13vtkPythonArgs8GetValueERPc_Z31PyvtkTuple_IfLi2EE_SequenceSizeP7_object_ZN30vtkPolynomialSolversUnivariate21HabichtBisectionSolveEPdiS0_S0_dib_ZN14vtkFunctionSet31GetNumberOfIndependentVariablesEvPyVTKObject_GetSet_ZN18vtkAmoebaMinimizer10InitializeEv_ZN14vtkRungeKutta23NewEv_ZN12vtkMatrix3x39TransposeEPKdPdPyVTKAddFile_vtkQuaternion_ZN12vtkMatrix4x48DeepCopyEPdPKd_Py_Dealloc_ZN30vtkPolynomialSolversUnivariate11SolveLinearEddPdPiPyCFunction_TypePyvtkTuple_IfLi2EE_TypeNew_ZNK14vtkRungeKutta219NewInstanceInternalEvsqrt@GLIBC_2.2.5PyvtkTuple_IhLi3EE_TypeNewPy_BuildValue_ZN13vtkPythonArgs8GetArrayEPdi_ZN18vtkAmoebaMinimizer25GetExpansionRatioMaxValueEvmemcpy@GLIBC_2.14sinf@GLIBC_2.2.5PyUnicode_FromString_Z31PyvtkTuple_IdLi2EE_SequenceSizeP7_objectPyvtkTuple_IdLi4EE_TypeNew__cxa_atexit@GLIBC_2.2.5PyvtkTuple_IiLi3EE_TypeNew_Z31PyvtkTuple_IiLi3EE_SequenceSizeP7_objectPyVTKAddFile_vtkInitialValueProblemSolver_ZN12vtkMatrix3x33IsAEPKcPyvtkTuple_IfLi3EE_TypeNew_ZN12vtkMatrix4x43IsAEPKcPyVTKAddFile_vtkTuple_ZNK25vtkQuaternionInterpolator19NewInstanceInternalEv_Z34PyvtkTuple_IdLi3EE_SequenceSetItemP7_objectlS0__ZN13vtkPythonArgs8SetArrayEiPKdi_Z31PyvtkTuple_IhLi2EE_SequenceItemP7_objectl_ZN13vtkPythonArgs8GetArrayEPii_ZdlPv@GLIBCXX_3.4PyVTKObject_Stringacos@GLIBC_2.2.5_ZN14vtkRungeKutta415ComputeNextStepEPdS0_S0_dRddS1__ZN13vtkPythonArgs8GetValueEP7_objectRd_Z31PyvtkTuple_IiLi2EE_SequenceSizeP7_object_ZN18vtkAmoebaMinimizer17SetParameterValueEid_ZN18vtkAmoebaMinimizer8MinimizeEv_ZN12vtkMatrix3x33NewEvPyErr_Clear_ZN12vtkMatrix4x48IdentityEPd_Z31PyvtkTuple_IdLi2EE_SequenceItemP7_objectl_ZN18vtkAmoebaMinimizer21SetParameterToleranceEd_Znwm@GLIBCXX_3.4_ZN30vtkPolynomialSolversUnivariate12FerrariSolveEPdS0_Pid_ZN18vtkAmoebaMinimizer13GetIterationsEv_ZN13vtkPythonArgs8GetArrayEPfireal_initvtkCommonMathPythonPyvtkRungeKutta4_ClassNew_ZN13vtkPythonArgs9SetNArrayEiPKdiPKiacosf@GLIBC_2.2.5_Z31PyvtkTuple_IdLi4EE_SequenceSizeP7_object_ZNK13vtkQuaternionIfE5SlerpEfRKS0__ZN18vtkAmoebaMinimizer20SetFunctionArgDeleteEPFvPvE_ZN25vtkQuaternionInterpolator22GetNumberOfQuaternionsEv_ZN13vtkQuaternionIfE9ToUnitLogEvPyVTKAddFile_vtkAmoebaMinimizer_ZN13vtkQuaternionIfE13FromMatrix3x3EPA3_Kf_ZN25vtkQuaternionInterpolator21InterpolateQuaternionEdR14vtkQuaterniondPyvtkInitialValueProblemSolver_ClassNew_ZN18vtkAmoebaMinimizer3NewEvPyVTKAddFile_vtkQuaternionInterpolator_Z31PyvtkTuple_IiLi3EE_SequenceItemP7_objectlPyVTKObject_GetObject__stack_chk_fail@GLIBC_2.4_ZN12vtkMatrix3x36InvertEPKdPd_ZN9vtkObject3NewEv_ZN14vtkRungeKutta215ComputeNextStepEPdS0_S0_dRddS1__ZN13vtkPythonArgs8GetValueERbPyErr_SetString_ZN12vtkMatrix4x46InvertEPKdPd_ZN18vtkAmoebaMinimizer21GetParameterToleranceEv_Z34PyvtkTuple_IiLi2EE_SequenceSetItemP7_objectlS0__ZN13vtkPythonArgs9GetNArrayEPdiPKiPyVTKSpecialType_Add_ZN30vtkPolynomialSolversUnivariate14SolveQuadraticEdddPdS0_Pi_ZNK14vtkRungeKutta419NewInstanceInternalEvPyvtkTuple_IhLi4EE_TypeNew_ZN30vtkPolynomialSolversUnivariate3IsAEPKcPyvtkRungeKutta45_ClassNew_ZN12vtkMatrix4x47AdjointEPKdPd_ZN18vtkAmoebaMinimizer16SetMaxIterationsEi_ZdaPv@GLIBCXX_3.4PyVTKObject_SetFlagPyvtkAmoebaMinimizer_ClassNew_Z31PyvtkTuple_IhLi3EE_SequenceItemP7_objectlPyVTKClass_Add_ZN25vtkQuaternionInterpolator11GetMaximumTEv_ZN30vtkPolynomialSolversUnivariate20GetDivisionToleranceEv_ZN30vtkPolynomialSolversUnivariate10SolveCubicEddddPyObject_GC_Del_Z27PyvtkQuaternion_TemplateNewv_ZN18vtkAmoebaMinimizer25GetExpansionRatioMinValueEvatan2f@GLIBC_2.2.5_ZN18vtkAmoebaMinimizer19GetContractionRatioEv_ZN13vtkPythonArgs8GetValueERiPyObject_FreePyVTKObject_ReprPyvtkFunctionSet_ClassNew_ZN30vtkPolynomialSolversUnivariate3NewEvPyvtkRungeKutta2_ClassNew_ZN13vtkPythonArgs10BuildTupleEPKfistrcmp@GLIBC_2.2.5PyExc_TypeErrorPyVTKSpecialObject_ReprPyType_Ready_ZN25vtkQuaternionInterpolator3NewEv_Z31PyvtkTuple_IiLi2EE_SequenceItemP7_objectl_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN18vtkAmoebaMinimizer11SetFunctionEPFvPvES0__ZN18vtkAmoebaMinimizer17SetParameterScaleEidPyvtkQuaternion_IdE_TypeNew_ZN28vtkInitialValueProblemSolver15ComputeNextStepEPdS0_S0_dRddS1__Z31PyvtkTuple_IdLi4EE_SequenceItemP7_objectl_ZN15vtkRungeKutta4515ComputeNextStepEPdS0_dRddS1__ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__Z31PyvtkTuple_IfLi4EE_SequenceSizeP7_object_ZN30vtkPolynomialSolversUnivariate11FilterRootsEPdiS0_id_Z31PyvtkTuple_IfLi2EE_SequenceItemP7_objectl_ZN13vtkPythonArgs10BuildTupleEPKdi_ZN13vtkPythonArgs5ArrayIdEC1ElPyLong_FromLong_Z34PyvtkTuple_IfLi3EE_SequenceSetItemP7_objectlS0__ZN25vtkQuaternionInterpolator20SetInterpolationTypeEi_Z31PyvtkTuple_IfLi3EE_SequenceSizeP7_objectPyObject_CallMethod_ZNSt8ios_base4InitC1Ev@GLIBCXX_3.4_ZN25vtkQuaternionInterpolator13AddQuaternionEdPd_Z34PyvtkTuple_IdLi2EE_SequenceSetItemP7_objectlS0__ZN18vtkAmoebaMinimizer17GetParameterScaleEPKcPyModule_Create2PyVTKTemplate_New_ZN25vtkQuaternionInterpolator16RemoveQuaternionEd_ZN14vtkRungeKutta43NewEv_ZN12vtkMatrix3x34ZeroEPdPyvtkPolynomialSolversUnivariate_ClassNew_ZN13vtkPythonArgs8GetArrayEPhi_ZN13vtkPythonArgs8GetValueERhPyErr_Occurred_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3_PyObject_GenericGetAttr_ZN13vtkPythonArgs8SetArrayEiPKiiPyLong_Type__gxx_personality_v0@CXXABI_1.3_ZN7vtkMath7JacobiNEPPdiS0_S1__ZNK12vtkMatrix3x319NewInstanceInternalEv_Z34PyvtkTuple_IhLi4EE_SequenceSetItemP7_objectlS0__ZN14vtkFunctionSet3IsAEPKcPyvtkTuple_IdLi3EE_TypeNew_ZN14vtkRungeKutta415ComputeNextStepEPdS0_S0_dRdS1_dddS1_PyObject_HashNotImplementedPyVTKSpecialObject_CopyNew_ZN12vtkMatrix3x37AdjointEPKdPd_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs8GetValueEP7_objectRiPyvtkMatrix3x3_ClassNew_ZN30vtkPolynomialSolversUnivariate19SturmBisectionSolveEPdiS0_S0_d_ZNK13vtkQuaternionIdE10InnerPointERKS0_S2__ZN18vtkAmoebaMinimizer12GetToleranceEv_Z31PyvtkTuple_IfLi3EE_SequenceItemP7_objectlPyDict_Size_Z34PyvtkTuple_IfLi4EE_SequenceSetItemP7_objectlS0__ITM_deregisterTMCloneTable_ZN28vtkInitialValueProblemSolver14GetFunctionSetEv_ZN30vtkPolynomialSolversUnivariate11SolveLinearEdd_Unwind_Resume@GCC_3.0_Z34PyvtkTuple_IiLi3EE_SequenceSetItemP7_objectlS0__ZN14vtkRungeKutta43IsAEPKc_ZNK30vtkPolynomialSolversUnivariate19NewInstanceInternalEv_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_object_ZN12vtkMatrix3x313MultiplyPointEPKdS1_Pd_ZN12vtkMatrix4x44ZeroEPdsqrtf@GLIBC_2.2.5_ZN30vtkPolynomialSolversUnivariate21HabichtBisectionSolveEPdiS0_S0_d_ZN30vtkPolynomialSolversUnivariate10SolveCubicEddddPdS0_S0_Pi_ZN12vtkMatrix4x411DeterminantEPKd_ZN30vtkPolynomialSolversUnivariate20TartagliaCardanSolveEPdS0_Pid_ZN18vtkAmoebaMinimizer16GetMaxIterationsEvPyVTKAddFile_vtkRungeKutta4_ZN18vtkAmoebaMinimizer16SetFunctionValueEd_Z34PyvtkTuple_IhLi3EE_SequenceSetItemP7_objectlS0__Z31PyvtkTuple_IhLi3EE_SequenceSizeP7_object_ZNK13vtkQuaternionIfE10InnerPointERKS0_S2__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN15vtkRungeKutta4515ComputeNextStepEPdS0_S0_dRdS1_dddS1__ZN12vtkMatrix3x38DeepCopyEPdPKd_ZN13vtkPythonUtil12AddEnumToMapEP11_typeobject_ZN14vtkRungeKutta415ComputeNextStepEPdS0_dRddS1_PyvtkQuaterniond_TypeNew_ZN13vtkPythonArgs13ArgCountErrorEii__gmon_start___ZN25vtkQuaternionInterpolator11GetMinimumTEv_ZN18vtkAmoebaMinimizer17GetExpansionRatioEv_ITM_registerTMCloneTable_ZN18vtkAmoebaMinimizer22GetFunctionEvaluationsEv_ZN25vtkQuaternionInterpolator3IsAEPKc_ZN12vtkMatrix3x38IdentityEPdPyVTKTemplate_AddItem_ZN25vtkQuaternionInterpolator28GetInterpolationTypeMinValueEvPyvtkObject_ClassNew_ZN13vtkPythonArgs8GetValueEP7_objectRh_ZN18vtkAmoebaMinimizer7IterateEv_ZN18vtkAmoebaMinimizer12SetToleranceEd_ZN12vtkMatrix4x43NewEv_Z26vtkPythonVoidFuncArgDeletePvPyUnicode_FromStringAndSizePyvtkQuaternion_IfE_TypeNew_ZNK18vtkAmoebaMinimizer19NewInstanceInternalEv_ZNSt8ios_base4InitD1Ev@GLIBCXX_3.4PyBool_FromLong.symtab.strtab.shstrtab.note.gnu.property.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.gcc_except_table.init_array.fini_array.data.rel.ro.dynamic.got.plt.data.bss.comment .$AoK S&&/[odVdVhoXXwYY{BPP P pp@    <T,,LJ:pXKX;`K`;0 K;PM=P@VFb hH #0h+hUG ,