ELF>@@8 @ AAII  T@U  PP $$Std Ptd``` QtdRtd  88GNUGNU-$uI`! eqhC C5ʔ a0 @LA0`X` (!eD iw    !"'()*+-.(.!)hRgzaMc}-sludɀ} .pQ*ojdsv,zC2JM;5m:(]!y ~p)eqQ4(:Ptά}24sz )B$}_D5QL0$~<}cߖ*eQ4}UP6^*9b FyqIwzu5ʧ\9t%[ĭ >Ya:8m/tQ+*>iІq{ I{aYqKJyx^DaWv9@L'T`"KgR (%(G+>'( XuAS,#N(}%k) ("" '- S.) F"n!-))d.$w+ )  x !V/---H 2 @LkAP  'L(I(}mFUa$.l'v J%!F$c &&+~$#Tj+| 9"2d3$ 0 &$%#w(9!F   e  " jz?$`?w. B._ pc#: "x  F#i    X $ ,$#U , #U>'u! ."@ ]," H5pM7" ! 9,"!*"p 0"p%:O"" < \M"u "P R'"pwu*" w5A{ pBM9)rMO "`b&CMW" i-MrOe""< 4"`uOS" bQ)sO0bO@Mt" BO,"u "pjOO)")2&"C U"  " XO H+"p T*"0 , "0j .`7"z l"zO%:M&`CO@Of&"CO"0=<'*")" = @rH"b"P ] "@j%"0 *"@!&p5H('"`w @OO ," " j"b-С!M"P%"@ )" "@ 67""0<<"b)+@O`MV "@Db +"OM" P67 aM! "0D 6,"Х __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZNK20vtkAbstractTransform19NewInstanceInternalEv_ZN9vtkObject3NewEv_Znwm_Py_Dealloc_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_objectPyVTKSpecialObject_NewPyObject_FreePyExc_TypeErrorPyErr_SetStringPyObject_HashNotImplemented_ZdlPv_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN13vtkPythonArgs8GetValueERd_ZN25vtkTransformConcatenation6RotateEdddd_Py_NoneStruct_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN13vtkPythonArgs13ArgCountErrorEiPKcPyDict_Size_ZN20vtkAbstractTransform3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN25vtkTransformConcatenation7InverseEv_ZN25vtkTransformConcatenation8IdentityEv_ZN25vtkTransformConcatenation11GetMaxMTimeEvPyLong_FromUnsignedLong_ZN13vtkPythonArgs8GetValueERi_ZN13vtkPythonArgs8GetArrayEPdi_ZN25vtkTransformConcatenation11ConcatenateEPKd_ZN25vtkTransformConcatenation12GetTransformEi_ZN25vtkTransformConcatenation11ConcatenateEP20vtkAbstractTransform_ZN25vtkTransformConcatenation5ScaleEddd_ZN25vtkTransformConcatenation9TranslateEddd_ZN20vtkAbstractTransform6UpdateEv_ZN20vtkAbstractTransform10GetInverseEv_ZN13vtkPythonArgs16PureVirtualErrorEv_ZN20vtkAbstractTransform10SetInverseEPS__ZN20vtkAbstractTransform8DeepCopyEPS__ZN20vtkAbstractTransform22TransformVectorAtPointEPKdS1_Pd_ZN13vtkPythonArgs10BuildTupleEPKdi_ZN13vtkPythonArgs8GetArrayEPfi_ZN20vtkAbstractTransform22TransformVectorAtPointEPKfS1_Pf_ZN13vtkPythonArgs10BuildTupleEPKfi_ZN20vtkAbstractTransform22TransformNormalAtPointEPKdS1_Pd_ZN20vtkAbstractTransform22TransformNormalAtPointEPKfS1_PfPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN13vtkPythonArgs9GetNArrayEPdiPKimemcpy_ZN13vtkPythonArgs9SetNArrayEiPKdiPKi_ZN13vtkPythonArgs8GetValueERfPyvtkAbstractTransform_ClassNewPyVTKClass_AddPyvtkObject_ClassNewPyType_ReadyPyvtkTransformPair_TypeNewPyVTKSpecialType_AddPyvtkTransformConcatenation_TypeNewPyvtkTransformConcatenationStack_TypeNewPyVTKAddFile_vtkAbstractTransformPyDict_SetItemString_ZN20vtkAbstractTransform8GetMTimeEv_ZN20vtkAbstractTransform12CircuitCheckEPS__ZN20vtkAbstractTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3__ZN20vtkAbstractTransform15TransformPointsEP9vtkPointsS1_PyType_TypePyVTKSpecialObject_ReprPyObject_GenericGetAttrPyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del_ZN23vtkCylindricalTransform3NewEv_ZNK23vtkCylindricalTransform19NewInstanceInternalEv_ZN23vtkCylindricalTransform3IsAEPKcPyvtkCylindricalTransform_ClassNewPyvtkWarpTransform_ClassNewPyVTKAddFile_vtkCylindricalTransform_ZN23vtkCylindricalTransform13MakeTransformEv_ZN19vtkGeneralTransform3NewEv_ZNK19vtkGeneralTransform19NewInstanceInternalEv_ZN19vtkGeneralTransform7InverseEv_ZN19vtkGeneralTransform3IsAEPKc_ZN19vtkGeneralTransform11ConcatenateEP20vtkAbstractTransform_ZN19vtkGeneralTransform8SetInputEP20vtkAbstractTransform_ZN30vtkTransformConcatenationStack3PopEPP25vtkTransformConcatenation_ZN30vtkTransformConcatenationStack4PushEPP25vtkTransformConcatenation_ZN30vtkTransformConcatenationStackC1Ev__gxx_personality_v0_Unwind_ResumePyvtkGeneralTransform_ClassNewPyVTKAddFile_vtkGeneralTransform_ZN19vtkGeneralTransform8GetMTimeEv_ZN19vtkGeneralTransform13MakeTransformEv_ZN19vtkGeneralTransform12CircuitCheckEP20vtkAbstractTransform_ZN19vtkGeneralTransform27InternalTransformDerivativeEPKdPdPA3_d_ZN19vtkGeneralTransform22InternalTransformPointEPKdPd_ZNK23vtkHomogeneousTransform19NewInstanceInternalEv_ZN23vtkHomogeneousTransform3IsAEPKc_ZN23vtkHomogeneousTransform9GetMatrixEP12vtkMatrix4x4PyvtkHomogeneousTransform_ClassNewPyVTKAddFile_vtkHomogeneousTransform_ZN23vtkHomogeneousTransform27InternalTransformDerivativeEPKdPdPA3_d_ZN23vtkHomogeneousTransform22InternalTransformPointEPKdPd_ZN23vtkHomogeneousTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3__ZN23vtkHomogeneousTransform15TransformPointsEP9vtkPointsS1__ZN20vtkIdentityTransform7InverseEv_ZN20vtkIdentityTransform3NewEv_ZNK20vtkIdentityTransform19NewInstanceInternalEv_ZN20vtkIdentityTransform3IsAEPKcPyvtkIdentityTransform_ClassNewPyvtkLinearTransform_ClassNewPyVTKAddFile_vtkIdentityTransform_ZN20vtkIdentityTransform13MakeTransformEv_ZN20vtkIdentityTransform27InternalTransformDerivativeEPKdPdPA3_d_ZN20vtkIdentityTransform23InternalTransformVectorEPKdPd_ZN20vtkIdentityTransform23InternalTransformNormalEPKdPd_ZN20vtkIdentityTransform22InternalTransformPointEPKdPd_ZN20vtkIdentityTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3__ZN20vtkIdentityTransform16TransformVectorsEP12vtkDataArrayS1__ZN20vtkIdentityTransform16TransformNormalsEP12vtkDataArrayS1__ZN20vtkIdentityTransform15TransformPointsEP9vtkPointsS1__ZNK18vtkLinearTransform19NewInstanceInternalEv_ZN18vtkLinearTransform3IsAEPKcPyVTKAddFile_vtkLinearTransform_ZN18vtkLinearTransform27InternalTransformDerivativeEPKdPdPA3_d_ZN18vtkLinearTransform23InternalTransformVectorEPKdPd_ZN18vtkLinearTransform23InternalTransformNormalEPKdPd_ZN18vtkLinearTransform22InternalTransformPointEPKdPd_ZN18vtkLinearTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3__ZN18vtkLinearTransform16TransformVectorsEP12vtkDataArrayS1__ZN18vtkLinearTransform16TransformNormalsEP12vtkDataArrayS1__ZN18vtkLinearTransform15TransformPointsEP9vtkPointsS1__ZN31vtkMatrixToHomogeneousTransform8GetInputEv_ZN31vtkMatrixToHomogeneousTransform3NewEv_ZNK31vtkMatrixToHomogeneousTransform19NewInstanceInternalEv_ZN31vtkMatrixToHomogeneousTransform3IsAEPKcPyvtkMatrixToHomogeneousTransform_ClassNewPyVTKAddFile_vtkMatrixToHomogeneousTransform_ZN31vtkMatrixToHomogeneousTransform13MakeTransformEv_ZN31vtkMatrixToHomogeneousTransform8GetMTimeEv_ZN31vtkMatrixToHomogeneousTransform7InverseEv_ZN31vtkMatrixToHomogeneousTransform8SetInputEP12vtkMatrix4x4_ZN26vtkMatrixToLinearTransform8GetInputEv_ZN26vtkMatrixToLinearTransform3NewEv_ZNK26vtkMatrixToLinearTransform19NewInstanceInternalEv_ZN26vtkMatrixToLinearTransform3IsAEPKcPyvtkMatrixToLinearTransform_ClassNewPyVTKAddFile_vtkMatrixToLinearTransform_ZN26vtkMatrixToLinearTransform13MakeTransformEv_ZN26vtkMatrixToLinearTransform8GetMTimeEv_ZN26vtkMatrixToLinearTransform7InverseEv_ZN26vtkMatrixToLinearTransform8SetInputEP12vtkMatrix4x4_ZN23vtkPerspectiveTransform3NewEv_ZNK23vtkPerspectiveTransform19NewInstanceInternalEv_ZN23vtkPerspectiveTransform7InverseEv_ZN23vtkPerspectiveTransform3IsAEPKc_ZN23vtkPerspectiveTransform8SetInputEP23vtkHomogeneousTransform_ZN23vtkPerspectiveTransform11ConcatenateEP23vtkHomogeneousTransform_ZN23vtkPerspectiveTransform6StereoEdd_ZN23vtkPerspectiveTransform5ShearEddd_ZN23vtkPerspectiveTransform11PerspectiveEdddd_ZN23vtkPerspectiveTransform13AdjustZBufferEdddd_ZN23vtkPerspectiveTransform5OrthoEdddddd_ZN23vtkPerspectiveTransform7FrustumEdddddd_ZN23vtkPerspectiveTransform14AdjustViewportEdddddddd_ZN23vtkPerspectiveTransform11SetupCameraEPKdS1_S1__ZN23vtkPerspectiveTransform11SetupCameraEdddddddddPyvtkPerspectiveTransform_ClassNewPyVTKAddFile_vtkPerspectiveTransform_ZN23vtkPerspectiveTransform8GetMTimeEv_ZN23vtkPerspectiveTransform12CircuitCheckEP20vtkAbstractTransform_ZN23vtkPerspectiveTransform13MakeTransformEv_ZN21vtkSphericalTransform3NewEv_ZNK21vtkSphericalTransform19NewInstanceInternalEv_ZN21vtkSphericalTransform3IsAEPKcPyvtkSphericalTransform_ClassNewPyVTKAddFile_vtkSphericalTransform_ZN21vtkSphericalTransform13MakeTransformEv_ZN27vtkThinPlateSplineTransform8GetSigmaEv_ZN27vtkThinPlateSplineTransform8SetSigmaEd_ZN27vtkThinPlateSplineTransform8GetBasisEv_ZN27vtkThinPlateSplineTransform18GetSourceLandmarksEv_ZN27vtkThinPlateSplineTransform18GetTargetLandmarksEv_ZN27vtkThinPlateSplineTransform3NewEv_ZNK27vtkThinPlateSplineTransform19NewInstanceInternalEv_ZN27vtkThinPlateSplineTransform3IsAEPKc_ZN27vtkThinPlateSplineTransform8SetBasisEiPyFloat_FromDouble_ZN27vtkThinPlateSplineTransform18SetTargetLandmarksEP9vtkPoints_ZN27vtkThinPlateSplineTransform18SetSourceLandmarksEP9vtkPoints_ZN27vtkThinPlateSplineTransform16GetBasisAsStringEvstrlenPyUnicode_FromStringAndSizePyErr_ClearPyBytes_FromStringAndSizePyvtkThinPlateSplineTransform_ClassNewPyVTKAddFile_vtkThinPlateSplineTransform_ZN27vtkThinPlateSplineTransform13MakeTransformEv_ZN27vtkThinPlateSplineTransform8GetMTimeEv_ZN14vtkTransform2D9GetMatrixEv_ZN14vtkTransform2D3NewEv_ZNK14vtkTransform2D19NewInstanceInternalEv_ZN14vtkTransform2D3IsAEPKc_ZN14vtkTransform2D7InverseEv_ZN14vtkTransform2D8IdentityEv_ZN14vtkTransform2D9SetMatrixEPKd_ZN14vtkTransform2D6RotateEd_ZN14vtkTransform2D10GetInverseEP12vtkMatrix3x3_ZN14vtkTransform2D12GetTransposeEP12vtkMatrix3x3_ZN14vtkTransform2D11GetPositionEPd_ZN14vtkTransform2D8GetScaleEPd_ZN12vtkMatrix3x313MultiplyPointEPKdS1_Pd_ZN14vtkTransform2D9GetMatrixEP12vtkMatrix3x3_ZN14vtkTransform2D5ScaleEdd_ZN14vtkTransform2D9TranslateEdd_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN14vtkTransform2D15TransformPointsEPKdPdi_ZN14vtkTransform2D15TransformPointsEP11vtkPoints2DS1__ZN14vtkTransform2D22InverseTransformPointsEPKdPdi_ZN14vtkTransform2D22InverseTransformPointsEP11vtkPoints2DS1_PyvtkTransform2D_ClassNewPyVTKAddFile_vtkTransform2D_ZN14vtkTransform2D8GetMTimeEv_ZN22vtkTransformCollection3NewEv_ZNK22vtkTransformCollection19NewInstanceInternalEv_ZN22vtkTransformCollection3IsAEPKc_ZN13vtkCollection7AddItemEP9vtkObjectPyvtkTransformCollection_ClassNewPyvtkCollection_ClassNewPyVTKAddFile_vtkTransformCollection_ZN12vtkTransform3NewEv_ZNK12vtkTransform19NewInstanceInternalEv_ZN12vtkTransform3IsAEPKc_ZN12vtkTransform8IdentityEv_ZN12vtkTransform11ConcatenateEP18vtkLinearTransform_ZN12vtkTransform12GetTransposeEP12vtkMatrix4x4_ZN12vtkTransform8SetInputEP18vtkLinearTransform_ZN12vtkMatrix4x413MultiplyPointEPKdS1_Pd_ZN12vtkTransform10GetInverseEP12vtkMatrix4x4_ZN12vtkTransform11GetPositionEPd_ZN12vtkTransform8GetScaleEPd_ZN12vtkTransform18GetOrientationWXYZEPd_ZN12vtkTransform14GetOrientationEPd_ZN12vtkTransform14GetOrientationEPdP12vtkMatrix4x4PyvtkTransform_ClassNewPyVTKAddFile_vtkTransform_ZN12vtkTransform8GetMTimeEv_ZN12vtkTransform13MakeTransformEv_ZN12vtkTransform12CircuitCheckEP20vtkAbstractTransform_ZN12vtkTransform7InverseEv_ZN16vtkWarpTransform14GetInverseFlagEv_ZN16vtkWarpTransform19SetInverseToleranceEd_ZN16vtkWarpTransform19GetInverseToleranceEv_ZN16vtkWarpTransform20SetInverseIterationsEi_ZN16vtkWarpTransform20GetInverseIterationsEv_ZNK16vtkWarpTransform19NewInstanceInternalEv_ZN16vtkWarpTransform3IsAEPKcPyVTKAddFile_vtkWarpTransform_ZN16vtkWarpTransform27InternalTransformDerivativeEPKdPdPA3_d_ZN16vtkWarpTransform22InternalTransformPointEPKdPd_ZN16vtkWarpTransform7InverseEv_ZN20vtkLandmarkTransform18GetSourceLandmarksEv_ZN20vtkLandmarkTransform18GetTargetLandmarksEv_ZN20vtkLandmarkTransform7SetModeEi_ZN20vtkLandmarkTransform7GetModeEv_ZN20vtkLandmarkTransform3NewEv_ZNK20vtkLandmarkTransform19NewInstanceInternalEv_ZN20vtkLandmarkTransform3IsAEPKc_ZN20vtkLandmarkTransform18SetSourceLandmarksEP9vtkPoints_ZN20vtkLandmarkTransform18SetTargetLandmarksEP9vtkPointsPyvtkLandmarkTransform_ClassNewPyVTKAddFile_vtkLandmarkTransform_ZN20vtkLandmarkTransform13MakeTransformEv_ZN20vtkLandmarkTransform8GetMTimeEv_ZN20vtkLandmarkTransform7InverseEvreal_initvtkCommonTransformsPythonPyModule_Create2PyModule_GetDict_Py_FatalErrorFunc_ZNSt8ios_base4InitC1Ev_ZNSt8ios_base4InitD1Ev__cxa_atexitlibvtkCommonTransforms-8.1.so.1libvtkCommonCorePython310D-8.1.so.1libvtkWrappingPython310Core-8.1.so.1libvtkCommonMath-8.1.so.1libvtkCommonCore-8.1.so.1libstdc++.so.6libgcc_s.so.1libc.so.6libvtkCommonTransformsPython310D-8.1.so.1GCC_3.0CXXABI_1.3GLIBCXX_3.4GLIBC_2.4GLIBC_2.14GLIBC_2.2.5/mnt/storage/workspace/med-ubuntu-free/build/ExtProjs/VTK/lib:`/ P&y /Q/0ӯk/t)/n/ii //ui /     @ `       ( @0 `8 @ H P X ` Jp J K }  @@x 0x8 X"Xʰ  7(8@HXx`h@x[ J`@p Y  o(8H@H@ X8`ݰhx 8( 8 ` h  x ȼ .  0  p 8   0!!!! !z(!`18!@!H! (X!`!ݱh!%x!h!!.!!S!!!p!!!!*!""" "7("8"@"\H";X"`"dh"9x""""8"""""""""### #(#8#X@#H##X#h`#h#@x#h#W#8##N#7##%.%`>%0%%p?%8%%=%%%A%`&&C&x&(.(E(0 (((V8(8@(H(DX((`(h(Xx(((pM(((Q(((Z(((P_())R)` )()S8)X@)H) TX)P`)[h)]x)H)")E))t)@O)P)) P)))H)**pY* *g(*`J8*@*^H*FX*p`*Jh*Gx*@**0U**p*PN***`h*p**e*+W+d+ +(+pc8+@+NH+bX++pL++`K++`I+8,-.-k-0--pm-8..j.  .(.n8.@.\H.`yX.`.dh.`wx..n.Pp.P.X.l.H..u.p..r.X/0.0 |001118 1(1@{81@1H10~X1``1\h1x11U111D1 11d1 111P}1h22P2p 2,(282@2H2X2 `2h2x2222 2 4.44044@484440 44Д4 5455  5 (5З85@5 H5PX5X`5h5Сx55 5P55 5М505\555U5 56D66 6d(686@6 H6X6h`6h6x6p6,6666@6 6667@8.8p8088`88888999 9g(989@9^H9X9`9h9x9 9N9 9 999!9#;.;;0;;;8;;;#;;0;`$<g<0<$ <^(<8<h%@<H<PX< `<Nh<`x< <<@<!<`,`>.h>px>0>>>8>>>,>>0> ->>>??? ?d&(?@8?-@?H&H?X?/`?V&h?x?1?\&?@? 3?<&??4?6&? ?86?/&??8@s&@ @; @(@8@@@H@X@`@h@x@`@@@X@@@P@[@@@H@%&@ @@=A"AA> At(A8AP@AHAXA`AhAxAAAAx@AgAA0BA^AADAJA@A@BBPB Bp(B8B@BHB XBE`BWhBxBBNBBBBBBCC&HCXChCxCC0I@E.HEXE0`EhExE8EEE`IEEEIEEEF@OG.G G0GG0 G8GG@GxOHH`HP HJ(H8HpP@HJHHXHP`HJhHxH`QHJH@HRHQJH HSH]JH HUHJHH`VIJIIW IJ(I 8IX@IJHIXIY`InJhI` xIZINIIx[IIII0_K.KK0KK`'K8KKK`_KK(K_LLL` L(L8Lx`@LHL0XL``LhL!xLaL[L.L(bL%&LLcLnL,LdL[L$LdM[M%Me M(M"8Mf@M[HM#XM0g`MNhM ;xMM\M2MHhM\M@6MiM[M0*MkN N&\(N8NxNmP.P0?P0 P(P0@8P8@PHP<XP n`PhPAxPnPlP0>PnPlP`=PXoPvR.RER0RR\R8RR DR8vRRPZRvSS`HSv S(Sv8S@SHS hXS`ShSlxSSSRS`SSUSXSS VSPS[SpjSHT%&TPETw T"(TE8T8y@TtHT OXTP`ThTPxTTT0ITTT[T{TpTPoT|ToTeT@~U[U`Ux U[(Uc8U@UHU^XU0`U[hUKxUUgULU0U^UFUUJUGU@UU0WUVpVPV VW(V`u8V@VHV@tXV!`VNhVPsxVV[VXVЇV NVVMVWJWpHWTXWhWQxWW`Y.hYxxY0YYPY8YYwYYYYXYYYZJZyZȌ ZI(Z|8Z@Z HZzXZ@`Z]hZ~xZ؎Z4Z{Z8ZZ@ZpZZZZrZ0Z0[[[X[x\.\В\0]]]8 ](]8]@]H]X](`]Jh]@x]]J]@]]J]]]nJ]]]u]0]@^5^@^آ ^!(^@8^p@^HH^@X^`^h^`x^^e^@^^^^X^N^^x[^^^H_C`__  (0 8@HPX`h'p)x1 )",# (08@H PX`.hpx& h777H7#7h&7(,7H/7277797<7C7F7I7hN7P7W7H[7X0p$&,/p37p:P=0DFpJNpQPX[@p$&P,p/307:<C0FJNQWp[8$&x,/83X78:=CXF8JN8QX[bh$b&b,b/bh3b7bh:bH=b(DbFbhJbNbhQbHXb[bx$&,/x37x:X=8DFxJNxQXX[B$B'B,B/B3B7B:B`=B@DBFBJBOBQB`XB[B$',/37:x=XDFJOQxX[8K$KX'K-K80K3K7K:K=KDKFKJKXOKQKXK8\Kx(%('(X-(x0(4(88(;(=(D(8G(K(O(R(X(x\( %'`-0 4@8 ;>D@G KO RY\, (08@HPX`hp x     (08@H P!X"`#h$p%x&'*+,-./0234-5689:; <(=0>8?@!H@PAXC`*hDpExFGHIJLMNOPQRST+UVWX Y(Z0[8\@]H^P_X``ahcpdxefghijklmnopqrstuvwx y(z0{8|@}H~PX`hpx$ (08@HPX`hpx%  (08@HPX`hpx (0(8HH/HtH5/%/hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhh%D%}!D%u!D%m!D%e!D%]!D%U!D%M!D%E!D%=!D%5!D%-!D%%!D%!D%!D% !D%!D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D%} D%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D% D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]DL8H0L(H LHLHH$H$H9t HtQH|$@HD$HH9t Ht8HH$H$H9t HtH|$@HD$HH9t HtHLxHpLhH`H}HHHpHHHHHUH~&f.HH(f.H-H~.f.HH~1f.He H4f.HH8f.H"H;f.H'H~>f.HGH>Ef.HKH~Gf.H\H>Kf.HmHOf.HpHQf.HHXf.HH\f.UH-`H1HT$(dH+%(u3H0[fDHHuӐXHuHc@SH0fnFdH%(HD$(1HŨH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H11~1HT$(dH+%(u2H0[fDHHuӐHuHcEDSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(u3H0[fDHHuӐX(HuHc+@SH0fnFdH%(HD$(1HjH4$HD$HGfnȉD$fbfD$u=HGHtL$9L$t:H111HT$(dH+%(u3H0[fD[HHuӐX,HHuHck@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HHtD$9D$t;H11?1HT$(dH+%(u9H8HHuҐkHuH"Hff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>HHtD$9D$t;H11o1HT$(dH+%(u9H8HHuҐKHuHRH/ff.@USH8fnFdH%(HD$(1H+H4$HD$HGfnȉD$fbfD$uHGHtL$9L$t;H111HT$(dH+%(u@H8+HHuҐofHuHHUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HHtD$9D$t:H111HT$(dH+%(uKH0]fD[HHuӐHCHuHHxaff.SH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLH_Ht!D$ +D$$tFH|$1HT$8dH+%(uQH@[f.kHHuϐHt$ H|$tD$ CAHuHHf.ATUHfnFdH%(H$1HEH4$HD$HGfnȉD$fbfD$uMHoHtD$+D$tOH1H$dH+%(ucHĸ]A\DsHHufLd$ HLktLHl7HuHHUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$"1HT$8dH+%(uVH@]f.{HHuϐHt$ H|$tt$ HHIHuHDUH@fnFdH%(HD$81H]Ht$HD$HGfnȉD$(fbfD$ uLHoHt!D$ +D$$tFH|$21HT$8dH+%(u_H@]f.HHuϐH5FHT$H|$Z|$HtHxSHuHHff.ATUHXfnFdH%(HD$H1H(JHt$ HD$(HGfn؉D$8fbfD$0uJHoHt!D$0+D$4tDH|$ 01HT$HdH+%(HX]A\fHHuѐLd$ Ht$LtHt$L}tHt$LltT$L$HD$)HpHHbff.ATUHXfnFdH%(HD$H1HHt$ HD$(HGfn؉D$8fbfD$0uJHoHt!D$0+D$4tDH|$ 1HT$HdH+%(HX]A\f[HHuѐLd$ Ht$L^tHt$LMtHt$LHpHHbkff.H8fnFdH%(HD$(1HМH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8;HHuҐ{&HuHHff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDkHHuӐ+HSHuHff.@H8VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u4H(HttOH11C1HT$(dH+%(uQH8@HtHx(HtҋD$t2HU1HrHuHHT$DUH@fnFdH%(HD$81HaHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.HHuϐH5fHT$H|$z|$HtHsHuHHff.UH@fnFdH%(HD$81HlHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.HHuϐH5fHT$H|$z|$HtHHsHuHHff.AVAUATUHhfnFdH%(HD$X1HoH4$HD$HGfnȉD$fbfD$uOHo(HtD$+D$tQHO1HT$XdH+%(Hh]A\A]A^DHHufLl$ ILLtLt$@LLtLe@LLHL6AHiL;YAVAUATUHHfnFdH%(HD$81H\H4$HD$HGfnȉD$fbfD$uOHo(HtD$+D$tQH1HT$8dH+%(HH]A\A]A^DsHHufLl$ ILLtLt$,LLtLe0LLHLHiLYAVAUATUHhfnFdH%(HD$X1HHH4$HD$HGfnȉD$fbfD$uOHo(HtD$+D$tQH1HT$XdH+%(Hh]A\A]A^DCHHufLl$ ILL8tLt$@LLtLe@LLHLHiLYQAVAUATUHHfnFdH%(HD$81H5H4$HD$HGfnȉD$fbfD$uOHo(HtD$+D$tQH1HT$8dH+%(HH]A\A]A^DHHufLl$ ILLtLt$,LLtLe0LLHL&HiLKY!ATH0VdH%(HD$(1H(H4$HD$HGfnfnȉD$fbfD$u:H(Htt]H11E1HD$(dH+%(H0LA\HtHx(Ht̋D$tvHE1HIHuL"IHtHtL1HHP@LVT$5fDATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;u\H=2 tLH= u)DHeHccZfDLLx@HЉfAVAUATUHVdH%(HD$x1HHt$ HD$(HGfnfnȉD$8fbfD$0uQHo(HttsH|$ 1HT$xdH+%(!HĈ]A\A]A^f.KHtHh(HtD$4H|$ 1Ll$@Ld$ LL&tLt$`LL ff(D$`HELL\$pHfD$)$\$f($f.D$`z@u>T$f.T$hz0u.\$f.\$pz uHHHdHuعLLjT$0f.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11=E1HD$(dH+%(H0LA\@HHufHHRxH;'IMtoI$H5!LPtZEHuLIHoH4bL1HHP@L'8fE1H"DIjYfAWAVAUATUSHVdH%(H$1HHt$HD$HGfnfnȉD$(fbfD$ uSLw(MttuH|$1H$dH+%(H[]A\A]A^A_fDHtLp(MtD$$H|$1Ld$0Hl$LHtLl$PHLdL|$pH HL@T$X\$Pd$`$fH~d$~HH$LHlILLLLfHnf.l$P4$f.t$Xzsuq|$f.|$`zcua S P1H$Hcх #HH9tAf.ztHtBHWH1HI{HuLH{LHL T$ AT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH Ht$ HL$(T$8fD$0HHo(Ht1HT$(dH+%(ucH0]fDHHuӐu,HH{HuHHx{HfDԽ@UH@fnFdH%(HD$81HyHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u|H@]f.蛿HHuϐH5VyHT$H|$j|$HtD$$u(HEHTHuHcwDH迼ff.@AWAVAUATUSHhfnFdH%(HD$X1HxHt$0HD$8HGfnȉD$HfbfD$@_Ho(Ht!D$@+D$Dt9H|$01HT$XdH+%(VHh[]A\A]A^A_L|$/Lt$0L-xLLLA|$/ItLLL)|$/ItHwLLH |$/zLHLHD$|$/\LHLHD$ν|$/>LHLHD$谽|$/H|$DHL$LD$LL$u[HEHLHRLY^|HHH[HHf.HLLHPͺXZ贺@AWAVAUATUH@fnFdH%(HD$81H9 Ht$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5vLLLA|$ItLLL)|$HtD$$uWHMLHHsHHefHHDf.LHENf.@gUH=auHLu]ÐHH=Ν1tH]ij@WUH@dH%(HD$81H`rHt$HD$HFHD$$D$ t0H|$|1HT$8dH+%(uhH@]@HT$H|$H5 r躺|$HtHt+HH5HPt袻HuH1艻Hu ff.fUSHHdH%(HD$81HqHt$HD$HFHD$$D$ HD$t6H|$蒽1HT$8dH+%(HH[]DHt$H|$_tHl$H=1H臹tHH=3tu諺HuHcι@HH=[sItHH=ӛ6tHʱATUSH@fnFdH%(HD$81HrHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\諸HHuːHt$H|$tD$$Ld$u`HELH@H;^H=ÚtLH=Ț u-@HaHc_Vf.LLH=qɷtLH=S趷tLJfDHЉbfATH0fnFdH%(HD$(1HpH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ݺE1HD$(dH+%(H0LA\@3HHufHHRxH;2IMtoI$H5VLPtZHuLHIHoHԭbL$1HHP@Lǵ8fE1舷H"DIjfATL%cH HH5L膵uLH.LA\ATIUH Ht HH5PLH#tHmtH]A\HH]A\顰ATH0fnFdH%(HD$(1HVnH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11͸E1HD$(dH+%(H0LA\@#HHufu\HIHuL^IHtHtLB1HHP@LfI1闸UH=H@HH=V蹱tHMt@UH0fnFdH%(HD$(1HIH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u7H0]fDKHHuӐH4HuH藫谮SH0fnFdH%(HD$(1HuhH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11.1HT$(dH+%(u9H0[fD苰HHuӐHrHuHc蕰ff.USH8fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$uHff.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=Ho(HtD$9D$t:H11莭1HT$(dH+%(uXH0]fDHHuӐHHtHȫHEH趪HuHRH/ff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11蟬1HT$(dH+%(uRH8HHuҐHJuHBͩHuHiHFfDH8fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11迫1HT$(dH+%(uRH8HHuҐHJtHBHuHHffDUH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$u=Ho(HtD$9D$t:H11ު1HT$(dH+%(usH0]fD;HHuӐuHEHH;u8HHEHHuHHHd@SH@fnFdH%(HD$81HhHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$ҩ1HT$8dH+%(ulH@[f.+HHuϐHt$H|$1tfH zD$f({HuHH_ff.@SH@fnFdH%(HD$81H`Ht$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$¨1HT$8dH+%(ulH@[f.HHuϐHt$H|$!tfHjD$f(k֥HuHrHOff.@SH@fnFdH%(HD$81HXHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$貧1HT$8dH+%(ulH@[f. HHuϐHt$H|$tfHZD$f([ƤHuHbH?ff.@ATUH8fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$uCHo(HtD$9D$tHH11謦1HT$(dH+%(H8]A\fDHHufLt=Mt`HL聣HEH迣HuH[HDMuÿHI辚LDHI蛚HhHlff.ATUSH@fnFdH%(HD$81HZHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$61HT$8dH+%(H@[]A\苡HHuːHt$H|$tD$$Ld$uXHELH@H;ζulH=tLH=Zu)$HeHcCZfDLLH=N豠tLE븐HЉbfATH0fnFdH%(HD$(1HYH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ݣE1HD$(dH+%(H0LA\@3HHufHHRxH;עIMtoI$H5nLPtZHuLHIHoHԖbL$1HHP@LǞ8fE1舠H"DIjfUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$a1HT$8dH+%(HH[]@軞HHuАHt$ H|$1tHt$ HHt99w,4|/u9fkHuHΘzf踗HHH辛ff.U1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HUHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ 1DH5UD1HT$XdH+%(qHh[]@HSUHt$ H\$(L$0T$4T$8H*H_(HtD$0+D$4H|$ l1ۜHH(if.Hl$ Ht$HΖEHt$H蹖0Ht$H褖HT$L$D$螘YHHHHt$@H|$ LHT$PL$HD$@FHtHHyeDU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ 詞1DH58Dq1HT$XdH+%(qHh[]@HHt$ H\$(L$0T$4T$8H*H_(HtD$0+D$4H|$ 1苚HH(if.Hl$ Ht$H~EHt$Hi0Ht$HTHT$L$D$莑 HHHHt$@H|$ HT$PL$HD$@6豚Ht蛙HHyDU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ Y1DH5D!1HT$XdH+%(Hh[]@HHt$ H\$(L$0T$4T$8HjH_(HtD$0+D$4H|$ ̛1;HH(if.Hl$ HH0GHt$H2Ht$HHt$HH\$T$L$$6衘HtrHl$ Ht$H螑Ht$@H脒H\$PT$HL$@D$ȑ3HiHˬH[f. HH9腔DATL%sH HO}H5LuLH>艖LA\ATIUH Ht HH5|LH賏tHmtH]A\HH]A\1UH0fnFdH%(HD$(1HOH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^1HT$(dH+%(ucH0]fD軕HHuӐu,HH蛖HuHHx蹕軏HfD@ATH0fnFdH%(HD$(1HMH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11mE1HD$(dH+%(H0LA\@ÔHHufu\HI蛕HuLIHtH莋tL1HHP@L腓fۍIёUH@fnFdH%(HD$81HMHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u|H@]f.蛓HHuϐH5VMHT$H|$j|$HtD$$u(HEHTHuHcwDH运ff.@AWAVAUATUSHfnFdH%(H$1HKHt$HD$HGfnȉD$(fbfD$ u]Lw(Mt!D$ +D$$tWH|$1H$dH+%(H[]A\A]A^A_[HHu뾐Ld$0Hl$LHVtLl$PHL=tL|$pH }HL-b_\T$X\$Pd$`$fH~d$~HH$LHD$$ILLLLfHnf.l$P4$f.t$X|$f.|$`}u{  1H$Hcх'DHH9tAf.ztHt\H]HHOLLLLߌCőHwLHnj]LHLf ff.AWAVAUATUSHxfnFdH%(HD$h1HIHt$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$i1HT$hdH+%($Hx[]A\A]A^A_@軏HHuȐLl$0Ld$LL越tLt$PLL蝊tD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u> HHH LLHD$f.ˏHuLLъ:f.gUHH\HEH]Hf.UH=tH u]ÐHH=HtHH={pލtH]qUH@dH%(HD$81H EHt$HD$HFHD$$D$ t0H|$<1HT$8dH+%(uhH@]@HT$H|$H5Dz|$HtHt+HH5$HPtbHuHŇ1IHu͊ff.fUSHHdH%(HD$81HmDHt$HD$HFHD$$D$ HD$t6H|$R1HT$8dH+%(HH[]DHt$H|$tHl$H=BHGtHH=FF4ukHuHc莌@HH=n tH蝄ĉ@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>1HT$(dH+%(u8H0]fD蛋HHuӐ[H背HuHff.@ATUSH@fnFdH%(HD$81HDHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$V1HT$8dH+%(H@[]A\諊HHuːHt$H|$tD$$Ld$uXHELH@H;.ulH= tLH=D u)DHeHccZfDLLH=nlщtLe븐HЉ肇fATH0fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@SHHufHHRxH;ZIMtoI$H5ǶLPtZHuLhIHoHbLD1HHP@L8fE1訉H"DIjfUSHHHNdH%(HD$81HGfnAH%HfnfbA)Au[HŒHt$H\$D$(fD$ HHo(Ht=D$ +D$$H|$Y1DH5gD!1HT$8dH+%(HH[]@H7Ht$H\$L$ D$$D$(HH_(HtD$$9D$ H|$11Պ1뒐KHH8yf.H5+nHT$H|$ |$HKHH5HH'fDH(~ḢHH+fD諆HH%%DATL%ӹ1H-H5cL軅]u}LH.LA\ATIUH͇Ht HH5ѳLHStHmtH]A\HH]A\рAWAVAUATUSHfnFdH%(H$1H>Ht$HD$HGfnȉD$(fbfD$ u]Lw(Mt!D$ +D$$tWH|$1H$dH+%(H[]A\A]A^A_+HHu뾐Ld$0Hl$LH&tLl$PHL tL|$pH HLbT$X\$Pd$`$fH~d$~HH$LHD$$ILLLLfHnf.l$P4$f.t$X|$f.|$`}u{ G D1H$Hcх'DHH9tAf.ztӄHt\ɄH]HaHOLLLLC蕄HwLH]LHL6܀ff.AWAVAUATUSHxfnFdH%(HD$h1H;Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$91HT$hdH+%($Hx[]A\A]A^A_@苂HHuȐLl$0Ld$LL}tLt$PLLm}tD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>قHHqH LLHr}D$f.蛂HuLL} f.AWAVAUATUSHhfnFdH%(HD$X1H:Ht$0HD$8HGfnȉD$HfbfD$@_Ho(Ht!D$@+D$Dt9H|$0e1HT$XdH+%(VHh[]A\A]A^A_L|$/Lt$0L-a:LLL葀|$/ItLLLy|$/ItH4:LLHZ|$/zLHLHD$<|$/\LHLHD$|$/>LHLHD$|$/H|$DHL$LD$LL$u[HEHLHRLY^̀HHdHHHf.HLLHPXZ}@AWAVAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$f1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5a8LLL~|$ItLLLy~|$HtD$$uWHMLHbHsHHef;~HHDf.LHu{f.@{UH=H}u]ÐHH=7}tHH= `n}tH]vzUH@dH%(HD$81H4Ht$HD$HFHD$$D$ t0H|$輀1HT$8dH+%(uhH@]@HT$H|$H5L4||$HtHt+HH5 HPt}HuHEw1}HuMzff.fUSHHdH%(HD$81H3Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$vtHl$H=>H{tHH=B{u|HuHc|@HH={tHH=5v{tHH=^c{tHsyff.H8fnFdH%(HD$(1HB3H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11~1HT$(dH+%(uQH8zHHuҐuHHH;#u{HuH`Hf7xATH0fnFdH%(HD$(1H_3H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@zHHufHHRxH;j7wIMtoI$H5LPtZzHuLtIHoHpbLv1HHP@Lx8fE1XzH"DIjvfATUSH@fnFdH%(HD$81H1Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$&|1HT$8dH+%(H@[]A\{xHHuːHt$H|$rtD$$Ld$u`HELH@H;VH=`wtLH=gwu-yHaHc/xVf.LLH=wtLH=1wtLH=ZswtLpHЉ"ufATL%H HH5~LvxuoLH)wLA\ATIUHuHt HH5MLHSptHmtH]A\HH]A\qATH0fnFdH%(HD$(1H/H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11yE1HD$(dH+%(H0LA\@SvHHufu\HI+wHuLpIHtHmtLrs1HHP@LuflIasAWAVAUATUSHfnFdH%(H$1H.Ht$HD$HGfnȉD$(fbfD$ u]Lw(Mt!D$ +D$$tWH|$x1H$dH+%(H[]A\A]A^A_ uHHu뾐Ld$0Hl$LHptLl$PHLotL|$pH HLrbT$X\$Pd$`$fH~d$~HH$LHoD$$ILLLLfHnf.l$P4$f.t$X|$f.|$`}u{ ? <1H$Hcх'DHH9tAf.zttHt\tH]HAHOLLLLjCutHwLHwo]LHLppff.AWAVAUATUSHxfnFdH%(HD$h1H6~Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$v1HT$hdH+%($Hx[]A\A]A^A_@krHHuȐLl$0Ld$LLfmtLt$PLLMmtD$$T$XD$P\$`fH~fI~D$u_HELLH D$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>rHHQH LLHBmD$f.{rHuLLmnf.AWAVAUATUSHxfnFdH%(HD$h1H~|Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$It1HT$hdH+%($Hx[]A\A]A^A_@pHHuȐLl$0Ld$LLktLt$PLL}ktD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>pHHH LLHrD$f.pHuLLkmf.AWAVAUATUSHxfnFdH%(HD$h1H (Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$yr1HT$hdH+%($Hx[]A\A]A^A_@nHHuȐLl$0Ld$LLitLt$PLLitD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>oHHH LLHgD$f.nHuLLiJkf.AWAVAUATUSHhfnFdH%(HD$X1H'Ht$0HD$8HGfnȉD$HfbfD$@_Ho(Ht!D$@+D$Dt9H|$0p1HT$XdH+%(VHh[]A\A]A^A_L|$/Lt$0L-&LLLl|$/ItLLLl|$/ItHt&LLHl|$/zLHLHD$|l|$/\LHLHD$^l|$/>LHLHD$@l|$/H|$DHL$LD$LL$u[HEHLHRLY^ mHHHkHHf.HLLHPkXZDi@AWAVAUATUH@fnFdH%(HD$81HvHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$n1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5$LLLj|$ItLLLj|$HtD$$uWHMLHkHsH:Hef{jHHDf.LH`gff.AWAVAUATUH@fnFdH%(HD$81HuHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$6m1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5;#LLLai|$ItLLLIi|$HtD$$uWHMLH2jHsH~Hef iHHDf.LHenfff.AWAVAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$k1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5!LLLg|$ItLLLg|$HtD$$uWHMLHhHsHZ}HefgHHDf.LHkdf.@f.dUH=crHfu]ÐHH=_ftHH=ftHH= ftHH=5IftH]+_f.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$i1HT$8dH+%(uhH@]@HT$H|$H5|*f|$HtHt+HH5jHPtgHuHu`1fHu}cff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$i1HT$8dH+%(HH[]DHt$H|$_tHl$H=HdtHH=ܒdufHuHc>e@HH=dtHH=CGdtH:]abUH0fnFdH%(HD$(1H^wH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11g1HT$(dH+%(u8H0]fD;dHHuӐaH#eHuH^aff.@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 gE1HD$(dH+%(H0LA\@ccHHufHHRxH;"z`IMtoI$H5mLPtZdHuLx]IHoHZbLT`1HHP@La8fE1cH"DIj)`fATUSH@fnFdH%(HD$81H2Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$e1HT$8dH+%(H@[]A\aHHuːHt$H|$A\tD$$Ld$u`HELH@H;wH=LatLH=19au-pbHaHcaVf.LLH= `tLH=C`tLzYfDHЉ^fAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAAuZH gsHt$HL$T$(fD$ HHo(HtVEHt$L)V0Ht$ LVL$D$Le0D$$T$ (؅M0E4U87Ht$8H|$[HD$8D$@Le0HE0E8H4VHELLH_HLf^r^HHYf.]0]\fAT1UHhHNdH%(HD$X1HGAfnH%fnA)fbAAuZH pHt$ HL$(T$8fD$0HHo(HtHhH%THuعLL+O]@Pff.AW1AVAUATUSHHNdH%(H$1HGAfnH%fnA)fbAtWA AH5]DU1H$dH+%(kHĘ[]A\A]A^A_fL ]Ht$0LL$8L$@T$DT$HHHo(HD$@+D$DH|$0hU1oL=]Ht$0LT$8L$@T$DT$HHHo(Ht%D$@+D$D@H|$0 U1DH \Ht$0HL$8T$HfD$@HuPHo(HtˋD$@+D$DtjH|$0T1#QHH1 QHHu1@PHH-1nLd$0Ht$LJ:Ht$ LJ%Ht$(LJL$D$ Le@D$DT$(f(f؅yM@EHUP9Ht$pH|$0lK$f(L$pLe@M@EPHpGHELLHQHsLP{DLl$PLd$0LLJ:Lt$pLLJD$pl$xH$D$fH~fI~FHELLHD$f.D$pzAu?fHnf.|$xz2u0fInf.$z u3PHHdHPHuعLLK]@{Lff.ATL%1HH5sL NmuMPLH~NLA\ATIUHFHt HH5LHGtHmtH]A\HH]A\!IAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Lw(Mt!D$ +D$$tWH|$3Q1H$dH+%(H[]A\A]A^A_{MHHu뾐Ld$0Hl$LHvHtLl$PHL]HtL|$pH HLMKbT$X\$Pd$`$fH~d$~HH$LHHD$$ILLLLfHnf.l$P4$f.t$X|$f.|$`}u{ O L1H$Hcх'DHH9tAf.zt#MHt\MH]HaHOLLLLJCLHwLHG]LHLH,Iff.AWAVAUATUSHxfnFdH%(HD$h1HVHt$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$N1HT$hdH+%($Hx[]A\A]A^A_@JHHuȐLl$0Ld$LLEtLt$PLLEtD$$T$XD$P\$`fH~fI~D$u_HELLH D$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>)KHH_H LLH"HD$f.JHuLLEZGf.AWAVAUATUSHxfnFdH%(HD$h1HTHt$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$L1HT$hdH+%($Hx[]A\A]A^A_@ IHHuȐLl$0Ld$LLDtLt$PLLCtD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>YIHH]H LLH>D$f.IHuLL!DEf.AWAVAUATUSHxfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$J1HT$hdH+%($Hx[]A\A]A^A_@;GHHuȐLl$0Ld$LL6BtLt$PLLBtD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>GHH!\H LLH=D$f.KGHuLLQBCf.AWAVAUATUSHhfnFdH%(HD$X1HHt$0HD$8HGfnȉD$HfbfD$@_Ho(Ht!D$@+D$Dt9H|$0I1HT$XdH+%(VHh[]A\A]A^A_L|$/Lt$0L-LLLAE|$/ItLLL)E|$/ItHLLH E|$/zLHLHD$D|$/\LHLHD$D|$/>LHLHD$D|$/H|$DHL$LD$LL$u[HEHLHRLY^|EHHZH[DHHf.HLLHP-GXZA@AWAVAUATUH@fnFdH%(HD$81HgOHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$G1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5LLLAC|$ItLLL)C|$HtD$$uWHMLHDHsHXHefBHHDf.LH@N@ff.AWAVAUATUH@fnFdH%(HD$81HNHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$E1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5LLLA|$ItLLLA|$HtD$$uWHMLHBHsH:WHef{AHHDf.LH<>ff.AWAVAUATUH@fnFdH%(HD$81HYHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$6D1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L51LLLa@|$ItLLLI@|$HtD$$uWHMLH2AHsHUHef @HHDf.LHE6n=f.@=UH=Hl?u]ÐHH=ImQ?tHH=P>?tHH=!+?tH]7f.@G5UH@dH%(HD$81HPHt$HD$HFHD$$D$ t0H|$lB1HT$8dH+%(uhH@]@HT$H|$H5>|$HtHt+HH5bHPt?HuH81y?Hu;ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$A1HT$8dH+%(HH[]DHt$H|$O8tHl$H=aHw=tHH=\kd=u>HuHc=@HH=K9=tHH=&=tH5:UH0fnFdH%(HD$(1H#H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^@1HT$(dH+%(uVH0]fDH(HtD$9D$t;H1191HT$(dH+%(uLH8+6HHuҐu$H7HuHKH@9|3ff.UH@fnFdH%(HD$81HRHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$81HT$8dH+%(uzH@]f.;5HHuϐH5+HT$H|$ 5|$HtD$$u(HEH5HuHJH@Hh0a2H@*UH=XH\4u]ÐHH=9bA4tHH=@.4tHH=4tH],f.@/UH@dH%(HD$81H@Ht$HD$HFHD$$D$ t0H|$\71HT$8dH+%(uhH@]@HT$H|$H53|$HtHt+HH5a\HPt4HuH-1i4Hu0ff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$r61HT$8dH+%(HH[]DHt$H|$?-tHl$H=[Hg2tHH=T2u3HuHc2@HH=!`)2tHH=(2tHH=2tH*/ff.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.51HT$(dH+%(uVH0]fD1HHuӐtHp2HuH+뵐HH0H;FtH.ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$641HT$8dH+%(H@[]A\0HHuːHt$H|$*tD$$Ld$u`HELH@H;6GH=Y/tLH=w/u- 1HaHc?0Vf.LLH=]/tLH=/tLH= /tL(HЉ2-fATH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH112E1HD$(dH+%(H0LA\@/HHufHHRxH;D7*IMtoI$H5WLPtZ/HuL)IHoH%bL+1HHP@L-8fE1X/H"DIj+fATL%3oH HVH5pLV-oux&LHo-LA\ATIUH=)Ht HH5VLH&tHmtH]A\HH]A\q(ATH0fnFdH%(HD$(1H&H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH110E1HD$(dH+%(H0LA\@,HHufu\HI-HuL.'IHtH#tL*1HHP@L+f%I*UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~/1HT$(dH+%(ucH0]fD+HHuӐu,HH,HuHHx+[,HfD;.)@H8fnFdH%(HD$(1HBH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11.1HT$(dH+%(uLH8*HHuҐu$H+HuHj@H@$<(ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$-1HT$8dH+%(uzH@]f.)HHuϐH5HT$H|$)|$HtD$$u(HEH(*HuHR?H@H'!'H@$UH=4RH)u]ÐHH=)tHH=V(tHH=(tHH=e (tH][!f.*UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ ,1HT$8dH+%(uhH@]@HT$H|$H5J(|$HtHt+HH5~UHPt2)HuH"1)Hu%ff.fHGI~H)ǃuHH=qL(HH5+1HÐHGI~H)ǃuHH=qL(HH5T*1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$*1HT$8dH+%(HH[]DHt$H|$O!tHl$H=SHw&tHH=\Td&u'HuHc&@HH=K9&tHH=&&tH#UH0fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11^)1HT$(dH+%(u7H0]fD%HHuӐH&HuH #SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H11(1HT$(dH+%(u9H0[fD$HHuӐH%HuHc%^"ff.USH8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$uH(HtD$9D$t;H11!1HT$(dH+%(uRH8[HHuҐHJtHB-HuH3HfDH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11!1HT$(dH+%(uRH8{HHuҐHJuHBMHuH2HfDUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=Ho(HtD$9D$t:H11> 1HT$(dH+%(uXH0]fDHHuӐHHtHxHEHfHuH2Hff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=Ho(HtD$9D$t:H11N1HT$(dH+%(usH0]fDHHuӐuHEHH; 2u8H\HEHjHuH1HH@SH@fnFdH%(HD$81HHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$B1HT$8dH+%(ulH@[f.HHuϐHt$H|$tfH D$f(VHuH/Hff.@SH@fnFdH%(HD$81HHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$21HT$8dH+%(ulH@[f.HHuϐHt$H|$tfHD$f(FHuH.Hff.@SH@fnFdH%(HD$81HHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$"1HT$8dH+%(ulH@[f.{HHuϐHt$H|$tfHD$f(6HuH-Hff.@ATUHHfnFdH%(HD$81HHEHt$HD$HGfnЉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(umHH]A\fDkHHuѐLd$HLptHt$L_tL$$H#HuH,Hff.USHfnFdH%(H$1H)DH4$HD$HGfnȉD$fbfD$uNH_(HtD$+D$tPH1H$dH+%(Hĸ[]SHHufHl$ HHKtHHHHH0HtH+Hfmff.fUSHHfnFdH%(HD$81HBHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$1HT$8dH+%(HH[]@+HHuАHT$H|$H5|$tHHh0HHHHHyHk*HkEDATUHXfnFdH%(HD$H1HAHt$ HD$(HGfn؉D$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 1HT$HdH+%(HX]A\f HHuѐLd$ Ht$LtHt$L tHt$L tT$L$HD$HpHA)Hbff.ATUH8fnFdH%(HD$(1H.H4$HD$HGfnȉD$fbfD$uCHo(HtD$9D$tHH111HT$(dH+%(H8]A\fDHHufLt=Mt`HLaHEHHuH;(HDMuÿHI LDHI{ HhHlff.ATUHXfnFdH%(HD$H1He?Ht$ HD$(HGfnD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$  1HT$HdH+%(HX]A\f{HHuѐLd$ HL tHt$Lo tHt$L^ tHt$LM t\$T$HL$$ H\H&HNwATUHXfnFdH%(HD$H1H1>Ht$ HD$(HGfnD$8fbfD$0uJHo(Ht!D$0+D$4tDH|$ 1HT$HdH+%(HX]A\f;HHuѐLd$ HL@ tHt$L/ tHt$L tHt$L t\$T$HL$$H\H]%HN7 ATH0fnFdH%(HD$(1H_H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;%IMtoI$H5<LPtZHuL IHoHbL 1HHP@L 8fE1XH"DIj fUSHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$11HT$8dH+%(HH[]@ HHuАHt$ H|$ tHt$ HHt)9w,$|u)DHuHDHH H ff.ATUHhfnFdH%(HD$X1H_:Ht$0HD$8HGfnD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$01HT$XdH+%(Hh]A\f[ HHuѐLd$0HL`tHt$LOtHt$L>tHt$L-tHt$ LtHt$(L_l$(d$ H\$T$L$$d H&HG!H! ATUHhfnFdH%(HD$X1H8Ht$0HD$8HGfnD$HfbfD$@uJHo(Ht!D$@+D$DtDH|$01HT$XdH+%(Hh]A\f HHuѐLd$0HLtHt$LtHt$LtHt$LtHt$ LtHt$(L_l$(d$ H\$T$L$$? H&HHATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$ 1HT$8dH+%(H@[]A\k HHuːHt$H|$tD$$Ld$u`HELH@H;H=^6tLH=6u- HaHc Vf.LLH=tLH=vtL fDHЉ"fATUHxfnFdH%(HD$h1H5Ht$@HD$HHGfnȉD$XfbfD$PuJHo(Ht!D$P+D$TtDH|$@ 1HT$hdH+%( Hx]A\fHHuѐLd$@HLtHt$LtHt$LtHt$LtHt$ LtHt$(L_Ht$0LJHt$8Lm5|$8t$0Hl$(d$ \$T$L$$ HHH{ff.U1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$  1DH5CD 1HT$XdH+%(qHh[]@HHt$ H\$(L$0T$4T$8H*H_(HtD$0+D$4H|$ , 1HH(if.Hl$ Ht$HEHt$Hy0Ht$HdHT$L$D$^HHHHt$@H|$  HT$PL$HD$@HtHHy%DU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HSgHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ i1DH5fD11HT$XdH+%(qHh[]@HfHt$ H\$(L$0T$4T$8H*H_(HtD$0+D$4H|$ 1KHH(if.Hl$ Ht$H>EHt$H)0Ht$HHT$L$D$NHHaHHt$@H|$ HT$PL$HD$@qHt[HHyDU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ 1DH5|D1HT$XdH+%(Hh[]@HLHt$ H\$(L$0T$4T$8HjH_(HtD$0+D$4H|$ 1HH(if.Hl$ HHGHt$H2Ht$HHt$HH\$T$L$$aHtrHl$ Ht$H^Ht$@HDH\$PT$HL$@D$HiHH[f.HH9EDAW1AVAUATUHHNdH%(H$1HGAfnH%fnA)fbAtHA H5,D1H$dH+%(H]A\A]A^A_DL ,Ht$PLL$XL$`T$dT$hHjHo(HtD$`+D$dH|$P<1xDH L,Ht$PHL$XT$hfD$`HHo(H@D$`+D$d H|$P 1Ll$pLd$PLLVL$LL6L$LLLLLH=Hf.Ld$PHt$LgHt$LRHt$L=Ht$ L(Ht$(LzHt$0LeHt$8LPHt$@L;Ht$HL&PHt$P|$Pt$Hl$@d$8\$0T$(L$ D$ZYHrHQHcHHKf.{HH+DATL%C@H \H)H5AL@uLHALA\ATIUH}Ht HH5+)LH#tHmtH]A\HH]A\UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fD+HHuӐu,HH HuHHx);HfDd@UH@fnFdH%(HD$81H2Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u|H@]f.+HHuϐH5HT$H|$|$HtD$$u(HEHHuHcDHOff.@ATH0fnFdH%(HD$(1HFH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufu\HIHuLNIHtHtL21HHP@LfI!gUHHLHEH]Hf.UH=%Hu]ÐHH=%tHH=tHH=XtH]Nf.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5:|$HtHt+HH5EHPt"HuH1 Huff.fUSHHdH%(HD$81H-Ht$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=;DHtHH=u+HuHcN@HH=ۯtHH=StHJqATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\+HHuːHt$H|$tD$$Ld$u`HELH@H; H=BtLH=Hu-HaHcVf.LLH=[ItLH=6tLfDHЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@HHufHHRxH;B wIMtoI$H5`ALPtZeHuLIHoHTbL1HHP@LG8fE1H"DIjyfATL%=H H@H5.?L(>uLHn>yLA\ATIUHmHt HH5Z@LHtHmtH]A\HH]A\!ATH0fnFdH%(HD$(1H֪H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11ME1HD$(dH+%(H0LA\@HHufu\HI{HuLIHtHntL1HHP@LefIUH=>Hu]ÐHH=`tHH=tHH={tH]f.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5L|$HtHt+HH5VAHPtHuHE1HuMff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=t@HtHH=suHuHc@HH=tHH=vtH 1ATUSH@fnFdH%(HD$81HBHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$QtD$$Ld$u`HELH@H;H=?\tLH=Iu-HaHcVf.LLH= tLH=tLfDHЉfH8fnFdH%(HD$(1Hm>H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u>H8{HHuҐaHuHHf.H8fnFdH%(HD$(1H=H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11O1HT$(dH+%(u>H8HHuҐHuH-H f.UH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~1HT$(dH+%(uVH0]fDHHuӐtHHuH#뵐HHH;tH!SH0fnFdH%(HD$(1H<H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDHHuӐtHuHcfHHpH;'tЉBfUH0fnFdH%(HD$(1HE;H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHHuHc뵐HHxH;tHaSH0fnFdH%(HD$(1Hx:H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u}H0[fD;HHuӐt,fH~HufHnkfHH`H;GufH~fDfH~Zf.UH@fnFdH%(HD$81Hq9Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uVH@]f.HHuϐHt$ H|$tt$ HQHuHHeDUH@fnFdH%(HD$81H8Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.+HHuϐH5˟HT$H|$|$HtHxHuHHlff.UH@fnFdH%(HD$81H7Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.+HHuϐH5˞HT$H|$|$HtHHuHHlff.ATUH8fnFdH%(HD$(1H6H4$HD$HGfnȉD$fbfD$u;H(HtD$9D$t8H111HT$(dH+%(uoH8]A\f;HHuՐkH#HuHt1HHHIHuiLHn@HHffDUH@fnFdH%(HD$81H5Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(H@]fD+HHuϐHt$H|$1tD$$D$t?f.ztHEHHuHuHt@HEHhH;Fu$f.ztHDH ff.ATH0fnFdH%(HD$(1H/H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11}E1HD$(dH+%(H0LA\@HHufHHRxH;:IMtoI$H52LPtZHuLIHoHtbL1HHP@Lg8fE1(H"DIjfATL%#.H LHJ2H5/L&.uLH.LA\AUATIUSHHtHH51LHu\HLk0Hc{HHtH3HLHmtHL9uH[]A\A]HfDHmuHff.@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11 E1HD$(dH+%(H0LA\@cHHufu\HI;HuLIHtH.tL1HHP@L%fIqUH0fnFdH%(HD$(1H9H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(ucH0]fDKHHuӐu,HH+HuHHxIHfD@f.z uHDH@H@UH=.Hu]ÐHH=tHH=tHH=xtH]nf.@UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5Z|$HtHt+HH5E?HPtBHuH1)Huff.fHGI~H)ǃuHH=1LHH5" (1HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$tHl$H=>HtHH=auHuHc@H@gH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8;HHuҐ{&HuHHff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8kHHuҐVHuHHff.@ATUHxfnFdH%(HD$h1H^H4$HD$HGfnȉD$fbfD$uKHo(HtD$+D$tEH31HT$hdH+%(u\Hx]A\fHHuΐLd$ H LtLHWHuHHUH@fnFdH%(HD$81HpHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(u`H@]f.HHuϐHT$H|$H5:j|$tHp0HbHuHHff.UH@fnFdH%(HD$81HfHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$B1HT$8dH+%(uXH@]f.HHuϐHt$H|$tD$H?jHuHHUH@fnFdH%(HD$81HVHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.HHuϐH58HT$H|$z|$HtHhsHuHHff.UH@fnFdH%(HD$81H.8Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$R1HT$8dH+%(u_H@]f.HHuϐH57HT$H|$z|$HtHsHuHHff.AUATUSHXfnFdH%(HD$H1H67Ht$HD$HGfnȉD$(fbfD$ uOHo(Ht!D$ +D$$tQH|$M1HT$HdH+%(HX[]A\A]@HHufLd$0Ll$LLtD$0T$8LHD$fH~D$f.D$0z2u0fHnf.\$8z#u!,HVHHH HuչL1L}ff.fAUATUSHXfnFdH%(HD$H1H5Ht$HD$HGfnȉD$(fbfD$ uOHo(Ht!D$ +D$$tQH|$1HT$HdH+%(HX[]A\A]@3HHufLd$0Ll$LL&tD$0T$8LHD$fH~D$f.D$0z2u0fHnf.\$8z#u!HVHTHHHuչL1L ff.fATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$f1HT$8dH+%(H@[]A\HHuːHt$H|$!tD$$Ld$uXHELH@H;nu\H=i30tLH=u)THeHcsZfDLL@HЉfATH0fnFdH%(HD$(1HψH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@sHHufHHRxH;:gIMtoI$H5(2LPtZ%HuLIHoHbLd1HHP@L8fE1H"DIj9fAWAVAUATUSHxfnFdH%(HD$h1H1Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$1HT$hdH+%((Hx[]A\A]A^A_@HHuȐLt$0Ld$LLtLl$PLLtHET$X\$Pd$`HH;fI~fH~d$H}0H0LLfHnf.l$Pz?u=fInf.t$Xz0u.|$f.|$`z u)HHH HuعLLHHpffDUH@HNdH%(HD$81HGfnAH%HfnfbA)t6A|H5D1HT$8dH+%(}H@]ÐL Ht$LL$L$ D$$D$(H:H(HtD$$9D$ twH|$111DH Ht$HL$D$(fD$ HHo(HbD$ +D$$tBH|$.1<ulHHH;tYHVfH5.HT$H|$Z|$HH4OHHHfDHo0'HH HH#f.HHmeDAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAAuZH -Ht$HL$T$(fD$ HHo(HtH(HtD$9D$t;H111HT$(dH+%(u9H8ۯHHuҐ˫ưHuHbH?ff.@USH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uH(HtD$9D$t;H11迬1HT$(dH+%(uRH8HHuҐHJuHBHuHHffDH8fnFdH%(HD$(1H\H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11߫1HT$(dH+%(uRH8;HHuҐHJtHB HuHH膥fDUH0fnFdH%(HD$(1HkH4$HD$HGfnȉD$fbfD$u=Ho(HtD$9D$t:H111HT$(dH+%(uXH0]fD[HHuӐHHtH8HEH&HuH¼H蟤ff.@USHfnFdH%(H$1H)H4$HD$HGfnȉD$fbfD$uNH_(HtD$+D$tPH1H$dH+%(uwHĸ[]SHHufHl$ HHKtH諧HH<HuHHv}ff.fSH@fnFdH%(HD$81HxHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$1HT$8dH+%(ulH@[f.;HHuϐHt$H|$AtfH D$f(苟HuHHoff.@USHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$ѧ1HT$8dH+%(uuHH[]+HHuАHT$H|$H5|$HtH脥HHu0ߤHuH{H{UDSH@fnFdH%(HD$81H`Ht$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$¦1HT$8dH+%(ulH@[f.HHuϐHt$H|$!tfHjD$f(k֣HuHrHOff.@SH@fnFdH%(HD$81HXHt$HD$HGfnD$(fbfD$ uLH_(Ht!D$ +D$$tFH|$貥1HT$8dH+%(ulH@[f. HHuϐHt$H|$tfHZD$f([ƢHuHbH?ff.@ATUH8fnFdH%(HD$(1HNH4$HD$HGfnȉD$fbfD$uCHo(HtD$9D$tHH11謤1HT$(dH+%(H8]A\fDHHufLt=Mt`HL聡HEH迡HuH[HDMuÿHI辘LDHI蛘H(H,ff.AUATUSHfnFdH%(H$1H5H4$HD$HGfnȉD$fbfD$uRH_(HtD$+D$tLH:1H$dH+%(HĘ[]A\A]苟HHuǐLd$ HLH舚tLl$@HLotfoT$@fo\$PH)T$`)\$p}HLLH0臕D$@f.D$`zYuWD$hf.D$HzIuGD$pf.D$Pz9u7D$Xf.D$xz)u'ҟHHjHf諟HuϹLH豚f.ATH0fnFdH%(HD$(1H?WH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11荡E1HD$(dH+%(H0LA\@HHufHHRxH;*IMtoI$H5LPtZ蕞HuLIHoH脔bLԚ1HHP@Lw8fE18H"DIj詚fUSHHfnFdH%(HD$81HăHt$HD$HGfnȉD$(fbfD$ uKH_(Ht!D$ +D$$tEH|$1HT$8dH+%(HH[]@kHHuАHt$ H|$tHt$ HHt)9w,$|u)$HuH臖DxHHșH~ff.ATUSH@fnFdH%(HD$81HTHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$֞1HT$8dH+%(H@[]A\+HHuːHt$H|$葕tD$$Ld$u`HELH@H;H=蜚tLH=艚u-HaHcߚVf.LLH=AItLH=HT6tLH=|#tL跒HЉҗfUH@HNdH%(HD$81HGfnAH%HfnfbA)Au\H RHt$HL$D$(fD$ HHo(Ht>D$ +D$$H|$1fDH5QD1HT$8dH+%( H@]DL QHt$LL$L$ D$$D$(HH(HtD$$9D$ H|$11蕜1뒐 HH7yf.H5HT$H|$ʘ|$HKH这H5HWH'fDkH蓙H HDsHH-ff.fAVAUATUSHPHNdH%(HD$H1HGfnAH%HfnfbA)tgAH Ht$HL$D$(fD$ HHo(Ht{D$ +D$$H|$#1TL Ht$LL$L$ D$$D$(HbH(HtD$$9D$ H|$11͚1HT$HdH+%(lHP[]A\A]A^f.H5)Dq1DHH&DLd$0Ll$LLtD$0T$8LH\$@D$fH~fI~赕D$f.D$0fHnf.d$8fInf.l$@zyuwbH HHfHHA,HH& HHf.H{L1LdVfDAVAUATUSHPHNdH%(HD$H1HGfnAH%HfnfbA)tgAH zHt$HL$D$(fD$ HHo(Ht{D$ +D$$H|$蓘1TL Ht$LL$L$ D$$D$(HbH(HtD$$9D$ H|$11=1HT$HdH+%(lHP[]A\A]A^f.H5D1DsHH&DLd$0Ll$LLftD$0T$8LH\$@D$fH~fI~D$f.D$0fHnf.d$8fInf.l$@zyuwҔH HjHfHH聉蜔HH薓{HHf.[H{L1L`dƐfDAUATUHpHNdH%(HD$h1HGfnAH%HfnfbA)tbAH H4$HL$D$fD$HHo(HttD$+D$H 1ODL H4$LL$L$D$D$H[H(HtD$9D$H11踕1HT$hdH+%(gHp]A\A]H5, Da1DHH2DLd$ ILLtfoT$ fo\$0LH)T$@)\$PsD$ f.D$@D$Hf.D$(D$Pf.D$0uD$8f.D$XzquoJH HHHHHHHHf.ۑHL1LlFfDU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HnHHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ 艓1DH5HDQ1HT$XdH+%(qHh[]@HGHt$ H\$(L$0T$4T$8H*H_(HtD$0+D$4H|$ 1kHH(if.Hl$ Ht$H^EHt$HI0Ht$H4HT$L$D$.HHHHt$@H|$ ܉HT$PL$HD$@֊葏Ht{HHyDU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[H#Ht$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ 91DH5D1HT$XdH+%(qHh[]@HHt$ H\$(L$0T$4T$8H*H_(HtD$0+D$4H|$ 謐1HH(if.Hl$ Ht$HEHt$H0Ht$HHT$L$D$虍HH1HHt$@H|$ 茇HT$PL$HD$@ƃAHt+HHy襉DU1SHhHNdH%(HD$X1HGAfnH%fnA)fbAAu[HrHt$ H\$(T$8fD$0HH_(Ht=D$0+D$4H|$ 1DH5LrD豎1HT$XdH+%(Hh[]@HrHt$ H\$(L$0T$4T$8HjH_(HtD$0+D$4H|$ \1ˊHH(if.Hl$ HHGHt$H諄2Ht$H薄Ht$H聄H\$T$L$$Ƅ1HtrHl$ Ht$H.Ht$@HH\$PT$HL$@D$XÊHiH[H[f.蛉HH9DAVAUATUSHpdH%(HD$hHFtI0H5w蚌1HT$hdH+%(Hp[]A\A]A^H?Ht$0HD$8HGD$@D$DD$HhLo(MtLd$PHl$0LHՃsD$PL$XLLT$`$fH~fI~聀$f.D$PfHnf.\$XysfInf.d$`b\7HHϝHfDHGHt$0HD$8HGD$@D$DD$H(H(HHH迈H|H蹇l@Ld$PHl$0Ht$0HLHD$HHD$8HHD$@聂H5TnHT$/H5|$/Hf(D$PLLl$`fD$)$f($f.D$Pz-u+l$f.l$XzufInf.t$`f.ۇHL1H賆HpHx(HcD$D9D$@H|$0111Bf.kH(Lh(MD$@+D$DuH|$0谉1贃@ATL%#H LHH5LFuh~LH蹅LA\ATIUHHt HH5LH~tHmtH]A\HH]A\aUH0fnFdH%(HD$(1H>H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11莈1HT$(dH+%(ucH0]fDHHuӐu,HH˅HuHHx|HfDK$@ATH0fnFdH%(HD$(1H&=H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11蝇E1HD$(dH+%(H0LA\@HHufu\HI˄HuL.~IHtHztL1HHP@L赂f[|IUH@fnFdH%(HD$81H<Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$r1HT$8dH+%(u|H@]f.˂HHuϐH5<HT$H|$蚂|$HtD$$u(HEH脃HuHc观DHzff.@H8fnFdH%(HD$(1H:H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(uLH8軁HHuҐu$H螂HuH:H@z f.fyUH=kH u]ÐHH=tHH=֮ހtHH=:ˀtHH=Uc踀tH]Kyf.UH@dH%(HD$81H7Ht$HD$HFHD$$D$ t0H|$ 1HT$8dH+%(uhH@]@HT$H|$H57J|$HtHt+HH5bHPt2HuHz1Hu}ff.fUSHHdH%(HD$81H=7Ht$HD$HFHD$$D$ HD$t6H|$"1HT$8dH+%(HH[]DHt$H|$ytHl$H=aHtHH=9u;HuHc^@HH=va~tHmw|@SH0fnFdH%(HD$(1HU6H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fDk~HHuӐtQHuHct~fHHH;tЉ{fSH0fnFdH%(HD$(1HKH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11.1HT$(dH+%(u}H0[fD}HHuӐt,fH~j~HufHnwfHHH;ufH~fDfH~zf.SH0fnFdH%(HD$(1HO H4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uUH0[fD{|HHuӐta}HuHc|fHHH;tЉyfUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$21HT$8dH+%(H@]fD{HHuϐHt$H|$utD$$D$t?f.ztHEH9|HuHՐHt@HEHH;&u$f.ztHDHlxff.UH@fnFdH%(HD$81H8 Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$}1HT$8dH+%(H@]fD+zHHuϐHt$ H|$ytD$$t$ t99tHEHzHuH}H|@HEHH;&u;tƉHHwff.ATUSH@fnFdH%(HD$81H"2Ht$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$v|1HT$8dH+%(H@[]A\xHHuːHt$H|$1stD$$Ld$uXHELH@H;&ulH=Z@xtLH=?2-xu)dyHeHcxZfDLLH=ZwtLp븐HЉufATH0fnFdH%(HD$(1H0H4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11{E1HD$(dH+%(H0LA\@swHHufHHRxH;uIMtoI$H5YLPtZ%xHuLqIHoHnbLdt1HHP@Lv8fE1wH"DIj9tfAW1AVAUATUSH(HNdH%(H$1HGAfnH%fnA)fbAtGAH5Dy1H$dH+%(H([]A\A]A^A_HHt$ H\$(L$0T$4T$8H*Lg(MD$0+D$4|H|$ (y1uH;Ht$ H\$(T$8fD$0HLw(Mt%D$0+D$4H|$ x1L$Hl$ LHCptH$HH'ptI$HLLL$L$$H(D$D$f.$!fInf.$fInf.$zuH#HH5Ld$@Hl$ LHfoLl$`HLIoL$H HL2rd$hl$`t$pd$l$t$~H$HLHHnILLLLH8|$f.|$`d$f.d$hl$f.l$p  1H$HcхDHH9Af.ztsHwLHLoVDrHHC1rHH1lsH HھHnksHLHmnoAW1AVAUATUSH(HNdH%(H$1HGAfnH%fnA)fbAtGAH5D.u1H$dH+%(H([]A\A]A^A_HRHt$ H\$(L$0T$4T$8H*Lg(MD$0+D$4|H|$ t1uHHt$ H\$(T$8fD$0HLw(Mt%D$0+D$4H|$ nt1L$Hl$ LHktH$HHktI$HLLL$L$$HHD$D$f.$!fInf.$fInf.$qH#HH5Ld$@Hl$ LHkLl$`HLjL$H HLmdad$hl$`t$pd$l$t$~H$HLHHjILLLLHX|$f.|$`d$f.d$hl$f.l$p  1H$HcхDHH9Af.ztoHwLHLOZkVDknHHC1KnHH1l3oH HھH5j oHLH jskATL%1HDPH5SL mMudLH~mLA\ATIUH]pHt HH5OLHftHmtH]A\HH]A\!hAWAVAUATUSHfnFdH%(H$1H%Ht$HD$HGfnȉD$(fbfD$ u]Lw(Mt!D$ +D$$tWH|$3p1H$dH+%(H[]A\A]A^A_{lHHu뾐Ld$0Hl$LHvgtLl$PHL]gtL|$pH HLMjbT$X\$Pd$`$fH~d$~HH$LHgD$$ILLLLfHnf.l$P4$f.t$X|$f.|$`}u{ ? <1H$Hcх'DHH9tAf.zt#lHt\lH]HHOLLLLaCkHwLHf]LHLg,hff.AWAVAUATUSHxfnFdH%(HD$h1H0#Ht$HD$HGfnȉD$(fbfD$ uSHo(Ht!D$ +D$$tMH|$m1HT$hdH+%($Hx[]A\A]A^A_@iHHuȐLl$0Ld$LLdtLt$PLLdtD$$T$XD$P\$`fH~fI~D$u_HELLHD$f.D$Pz^u\fHnf.d$XzOuMfInf.l$`z@u>)jHH~H LLHfD$f.iHuLLdZff.H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11k1HT$(dH+%(uLH8+hHHuҐu$HiHuH}H@#e|ef.fDf.z uH9tHDf.DDeUH=IHfu]ÐHH= ftHH=[IftH]Q_W^UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$ j1HT$8dH+%(uhH@]@HT$H|$H5Jf|$HtHt+HH5uHPt2gHuH`1gHucff.fUSHHdH%(HD$81H=Ht$HD$HFHD$$D$ HD$t6H|$"i1HT$8dH+%(HH[]DHt$H|$_tHl$H=HetHH=eu;fHuHc^e@HH=ђdtHH=dtHH=PGdtHG]nbff.ATUSH@fnFdH%(HD$81HrHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$g1HT$8dH+%(H@[]A\dHHuːHt$H|$^tD$$Ld$u`HELH@H;zH=ctLH=ycu-dHaHccVf.LLH=19ctLH=8&ctLH=EctL[HЉ`fUH0fnFdH%(HD$(1HŴH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>f1HT$(dH+%(uVH0]fDbHHuӐtHcHuH\뵐HH(H;_ytH_UH0fnFdH%(HD$(1HɳH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11^e1HT$(dH+%(uVH0]fDaHHuӐtHbHuH\뵐HH0H;'xtH_SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11~d1HT$(dH+%(uUH0[fD`HHuӐtaHuHc`fHH@H;vtЉ"^fUH@fnFdH%(HD$81H]Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$c1HT$8dH+%(u_H@]f._HHuϐH5HT$H|$_|$HtHb`HuHOuH,]ff.UH@fnFdH%(HD$81HJHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$b1HT$8dH+%(u_H@]f.^HHuϐH5HT$H|$^|$HtHxX_HuHOtH,\ff.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11a1HT$(dH+%(unH8]HHuҐHH8H; su5tLJ^HuH[sHD*[f.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11`1HT$(dH+%(unH8\HHuҐHH8H; ru5tLJ]HuH[rHD*Zf.H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11_1HT$(dH+%(unH8[HHuҐHH8H; qu5 tLJ \HuH[qHD *Yf.ATUH8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uCHW(HtD$9D$tHH11^1HT$(dH+%(H8]A\fDZHHuftf H-Et^[HuHVSILHx^HuVLHS`f.tC t.H-uU[H0A H-DH-t@H-{dWATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]E1HD$(dH+%(H0LA\@sYHHufHHRxH;oPIMtoI$H5hLPtZ%ZHuLSIHoHPbLdV1HHP@LX8fE1YH"DIj9VfUH@fnFdH%(HD$81H Ht$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$[1HT$8dH+%(H@]fDWHHuϐHt$ H|$qWtD$$t$ t99tHEHXHuHMmH|@HEH8H;Nmu;tƉHHTff.ATL%H LHiH5>LvV8uOLH~VLA\AUATIUSHjMHtHH5LHPu\HiLk0Hc{VHHtH3HLOHmtHL9uH[]A\A]HXQfDHmuHAQff.@ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11]YE1HD$(dH+%(H0LA\@UHHufu\HIVHuLOIHtH~LtLR1HHP@LuTfOIRUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H11>X1HT$(dH+%(ucH0]fDTHHuӐu,HH{UHuHHxTLHfDVQ@H8fnFdH%(HD$(1H H4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H11OW1HT$(dH+%(uLH8SHHuҐu$HTHuH*iH@3LPf.fH@H@9tHDf.DDgJUH=HRu]ÐHH=RtHH=fnRtHH=m [RtHH=4HRtH]Jf.ATH=UHRHIJHHHKHKHGH-UHIHSHEPH-SHTH}HHIHSHGH=UHPHGHL]A\H5H=JHHSafeDownCastvtkObjectBaseRotateConcatenateIsTypeOfGetPreMultiplyFlagGetInverseFlagGetNumberOfTransformsGetNumberOfPreTransformsIdentityGetNumberOfPostTransformsSwapForwardInverseGetMaxMTimeSetPreMultiplyFlagGetTransformTranslateUpdateGetInverseSetInverseDeepCopyTransformDoubleVectorAtPointTransformFloatVectorAtPointTransformDoubleNormalAtPointTransformFloatNormalAtPointMakeTransformIsAInternalTransformPointNewInstanceInternalTransformDerivativeTransformDoublePointTransformFloatPointTransformVectorAtPointTransformNormalAtPointvtkTransformConcatenationGetMTimeCircuitCheckTransformPointsNormalsVectorsvtkPointsvtkDataArray@V *vtkAbstractTransform@P *d@W vtkTransformPairthis class cannot be instantiatedthis function takes no keyword argumentsvtkTransformConcatenationStackvtkTransformConcatenationStack - Store a stack of concatenations. Superclass: vtkObject A helper class (not derived from vtkObject) to store a stack of concatenations. vtkTransformPair - no description provided. vtkTransformPair() vtkTransformPair(const &vtkTransformPair) vtkTransformConcatenation - no description provided. vtkTransformConcatenationStack - no description provided. vtkCommonTransformsPython.vtkTransformConcatenationStackvtkCommonTransformsPython.vtkTransformConcatenationV.Concatenate(vtkAbstractTransform) C++: void Concatenate(vtkAbstractTransform *transform) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) add a transform to the list according to Pre/PostMultiply semantics V.SetPreMultiplyFlag(int) C++: void SetPreMultiplyFlag(int flag) set/get the PreMultiply flag V.GetPreMultiplyFlag() -> int C++: int GetPreMultiplyFlag() set/get the PreMultiply flag V.Translate(float, float, float) C++: void Translate(double x, double y, double z) the three basic linear transformations V.Rotate(float, float, float, float) C++: void Rotate(double angle, double x, double y, double z) the three basic linear transformations V.Scale(float, float, float) C++: void Scale(double x, double y, double z) the three basic linear transformations V.Inverse() C++: void Inverse() invert the concatenation V.GetInverseFlag() -> int C++: int GetInverseFlag() get the inverse flag V.Identity() C++: void Identity() identity simply clears the transform list V.GetNumberOfTransforms() -> int C++: int GetNumberOfTransforms() the number of stored transforms V.GetNumberOfPreTransforms() -> int C++: int GetNumberOfPreTransforms() the number of transforms that were pre-concatenated (note that whenever Iverse() is called, the pre-concatenated and post-concatenated transforms are switched) V.GetNumberOfPostTransforms() -> int C++: int GetNumberOfPostTransforms() the number of transforms that were post-concatenated. V.GetTransform(int) -> vtkAbstractTransform C++: vtkAbstractTransform *GetTransform(int i) get one of the transforms V.GetMaxMTime() -> int C++: vtkMTimeType GetMaxMTime() get maximum MTime of all transforms vtkCommonTransformsPython.vtkTransformPairV.SwapForwardInverse() C++: void SwapForwardInverse() vtkCommonTransformsPython.vtkAbstractTransformV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkAbstractTransform C++: static vtkAbstractTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkAbstractTransform C++: vtkAbstractTransform *NewInstance() V.TransformPoint((float, float, float), [float, float, float]) C++: void TransformPoint(const double in[3], double out[3]) V.TransformPoint(float, float, float) -> (float, float, float) C++: double *TransformPoint(double x, double y, double z) V.TransformPoint((float, float, float)) -> (float, float, float) C++: double *TransformPoint(const double point[3]) Apply the transformation to a double-precision coordinate. You can use the same array to store both the input and output point. V.TransformFloatPoint(float, float, float) -> (float, float, float) C++: float *TransformFloatPoint(float x, float y, float z) V.TransformFloatPoint((float, float, float)) -> (float, float, float) C++: float *TransformFloatPoint(const float point[3]) Apply the transformation to an (x,y,z) coordinate. Use this if you are programming in Python, tcl or Java. V.TransformDoublePoint(float, float, float) -> (float, float, float) C++: double *TransformDoublePoint(double x, double y, double z) V.TransformDoublePoint((float, float, float)) -> (float, float, float) C++: double *TransformDoublePoint(const double point[3]) Apply the transformation to a double-precision (x,y,z) coordinate. Use this if you are programming in Python, tcl or Java. V.TransformNormalAtPoint((float, float, float), (float, float, float), [float, float, float]) C++: void TransformNormalAtPoint(const double point[3], const double in[3], double out[3]) V.TransformNormalAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformNormalAtPoint(const double point[3], const double normal[3]) Apply the transformation to a normal at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformNormal() instead. V.TransformDoubleNormalAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformDoubleNormalAtPoint(const double point[3], const double normal[3]) Apply the transformation to a double-precision normal at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformDoubleNormal() instead. V.TransformFloatNormalAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: float *TransformFloatNormalAtPoint(const float point[3], const float normal[3]) Apply the transformation to a single-precision normal at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformFloatNormal() instead. V.TransformVectorAtPoint((float, float, float), (float, float, float), [float, float, float]) C++: void TransformVectorAtPoint(const double point[3], const double in[3], double out[3]) V.TransformVectorAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformVectorAtPoint(const double point[3], const double vector[3]) Apply the transformation to a vector at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformVector() instead. V.TransformDoubleVectorAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformDoubleVectorAtPoint(const double point[3], const double vector[3]) Apply the transformation to a double-precision vector at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformDoubleVector() instead. V.TransformFloatVectorAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: float *TransformFloatVectorAtPoint(const float point[3], const float vector[3]) Apply the transformation to a single-precision vector at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformFloatVector() instead. V.TransformPoints(vtkPoints, vtkPoints) C++: virtual void TransformPoints(vtkPoints *inPts, vtkPoints *outPts) Apply the transformation to a series of points, and append the results to outPts. V.TransformPointsNormalsVectors(vtkPoints, vtkPoints, vtkDataArray, vtkDataArray, vtkDataArray, vtkDataArray) C++: virtual void TransformPointsNormalsVectors(vtkPoints *inPts, vtkPoints *outPts, vtkDataArray *inNms, vtkDataArray *outNms, vtkDataArray *inVrs, vtkDataArray *outVrs) Apply the transformation to a combination of points, normals and vectors. V.GetInverse() -> vtkAbstractTransform C++: vtkAbstractTransform *GetInverse() Get the inverse of this transform. If you modify this transform, the returned inverse transform will automatically update. If you want the inverse of a vtkTransform, you might want to use GetLinearInverse() instead which will type cast the result from vtkAbstractTransform to vtkLinearTransform. V.SetInverse(vtkAbstractTransform) C++: void SetInverse(vtkAbstractTransform *transform) Set a transformation that this transform will be the inverse of. This transform will automatically update to agree with the inverse transform that you set. V.Inverse() C++: virtual void Inverse() Invert the transformation. V.DeepCopy(vtkAbstractTransform) C++: void DeepCopy(vtkAbstractTransform *) Copy this transform from another of the same type. V.Update() C++: void Update() Update the transform to account for any changes which have been made. You do not have to call this method yourself, it is called automatically whenever the transform needs an update. V.InternalTransformPoint((float, float, float), [float, float, float]) C++: virtual void InternalTransformPoint(const double in[3], double out[3]) This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.InternalTransformDerivative((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: virtual void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]) This will transform a point and, at the same time, calculate a 3x3 Jacobian matrix that provides the partial derivatives of the transformation at that point. This method does not call Update. Meant for use only within other VTK classes. V.MakeTransform() -> vtkAbstractTransform C++: virtual vtkAbstractTransform *MakeTransform() Make another transform of the same type. V.CircuitCheck(vtkAbstractTransform) -> int C++: virtual int CircuitCheck(vtkAbstractTransform *transform) Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Override GetMTime necessary because of inverse transforms. vtkObjectvtkCylindricalTransformvtkWarpTransformvtkCylindricalTransform - cylindrical to rectangular coords and back Superclass: vtkWarpTransform vtkCylindricalTransform will convert (r,theta,z) coordinates to (x,y,z) coordinates and back again. The angles are given in radians. By default, it converts cylindrical coordinates to rectangular, but GetInverse() returns a transform that will do the opposite. The equation that is used is x = r*cos(theta), y = r*sin(theta), z = z. @warning This transform is not well behaved along the line x=y=0 (i.e. along the z-axis) @sa vtkSphericalTransform vtkGeneralTransform vtkCommonTransformsPython.vtkCylindricalTransformV.SafeDownCast(vtkObjectBase) -> vtkCylindricalTransform C++: static vtkCylindricalTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkCylindricalTransform C++: vtkCylindricalTransform *NewInstance() V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make another transform of the same type. vtkGeneralTransformGetInputSetInputPopPreMultiplyPostMultiplyRotateXRotateYRotateZPushGetConcatenatedTransformRotateWXYZ@V *vtkMatrix4x4GetNumberOfConcatenatedTransformsvtkGeneralTransform - allows operations on any transforms Superclass: vtkAbstractTransform vtkGeneralTransform is like vtkTransform and vtkPerspectiveTransform, but it will work with any vtkAbstractTransform as input. It is not as efficient as the other two, however, because arbitrary transformations cannot be concatenated by matrix multiplication. Transform concatenation is simulated by passing each input point through each transform in turn. @sa vtkTransform vtkPerspectiveTransform vtkCommonTransformsPython.vtkGeneralTransformV.SafeDownCast(vtkObjectBase) -> vtkGeneralTransform C++: static vtkGeneralTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGeneralTransform C++: vtkGeneralTransform *NewInstance() V.Identity() C++: void Identity() Set this transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input. V.Inverse() C++: void Inverse() override; Invert the transformation. This will also set a flag so that the transformation will use the inverse of its Input, if an Input has been set. V.Translate(float, float, float) C++: void Translate(double x, double y, double z) V.Translate((float, float, float)) C++: void Translate(const double x[3]) Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. V.RotateWXYZ(float, float, float, float) C++: void RotateWXYZ(double angle, double x, double y, double z) V.RotateWXYZ(float, (float, float, float)) C++: void RotateWXYZ(double angle, const double axis[3]) Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around. V.RotateX(float) C++: void RotateX(double angle) Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees. V.RotateY(float) C++: void RotateY(double angle) Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees. V.RotateZ(float) C++: void RotateZ(double angle) Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees. V.Scale(float, float, float) C++: void Scale(double x, double y, double z) V.Scale((float, float, float)) C++: void Scale(const double s[3]) Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. V.Concatenate(vtkMatrix4x4) C++: void Concatenate(vtkMatrix4x4 *matrix) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) V.Concatenate(vtkAbstractTransform) C++: void Concatenate(vtkAbstractTransform *transform) Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics. V.PreMultiply() C++: void PreMultiply() Sets the internal state of the transform to PreMultiply. All subsequent operations will occur before those already represented in the current transformation. In homogeneous matrix notation, M = M*A where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply. V.PostMultiply() C++: void PostMultiply() Sets the internal state of the transform to PostMultiply. All subsequent operations will occur after those already represented in the current transformation. In homogeneous matrix notation, M = A*M where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply. V.GetNumberOfConcatenatedTransforms() -> int C++: int GetNumberOfConcatenatedTransforms() Get the total number of transformations that are linked into this one via Concatenate() operations or via SetInput(). V.GetConcatenatedTransform(int) -> vtkAbstractTransform C++: vtkAbstractTransform *GetConcatenatedTransform(int i) Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file. V.SetInput(vtkAbstractTransform) C++: void SetInput(vtkAbstractTransform *input) Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInput() -> vtkAbstractTransform C++: vtkAbstractTransform *GetInput() Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInverseFlag() -> int C++: int GetInverseFlag() Get the inverse flag of the transformation. This controls whether it is the Input or the inverse of the Input that is used as the base transformation. The InverseFlag is flipped every time Inverse() is called. The InverseFlag is off when a transform is first created. V.Push() C++: void Push() Pushes the current transformation onto the transformation stack. V.Pop() C++: void Pop() Deletes the transformation on the top of the stack and sets the top to the next transformation on the stack. V.InternalTransformPoint((float, float, float), [float, float, float]) C++: void InternalTransformPoint(const double in[3], double out[3]) override; This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.InternalTransformDerivative((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]) override; This will calculate the transformation as well as its derivative without calling Update. Meant for use only within other VTK classes. V.CircuitCheck(vtkAbstractTransform) -> int C++: int CircuitCheck(vtkAbstractTransform *transform) override; Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Override GetMTime to account for input and concatenation. ?GetHomogeneousInverseGetMatrixvtkHomogeneousTransform - superclass for homogeneous transformations Superclass: vtkAbstractTransform vtkHomogeneousTransform provides a generic interface for homogeneous transformations, i.e. transformations which can be represented by multiplying a 4x4 matrix with a homogeneous coordinate. @sa vtkPerspectiveTransform vtkLinearTransform vtkIdentityTransform vtkCommonTransformsPython.vtkHomogeneousTransformV.SafeDownCast(vtkObjectBase) -> vtkHomogeneousTransform C++: static vtkHomogeneousTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *NewInstance() V.TransformPoints(vtkPoints, vtkPoints) C++: void TransformPoints(vtkPoints *inPts, vtkPoints *outPts) override; Apply the transformation to a series of points, and append the results to outPts. V.TransformPointsNormalsVectors(vtkPoints, vtkPoints, vtkDataArray, vtkDataArray, vtkDataArray, vtkDataArray) C++: void TransformPointsNormalsVectors(vtkPoints *inPts, vtkPoints *outPts, vtkDataArray *inNms, vtkDataArray *outNms, vtkDataArray *inVrs, vtkDataArray *outVrs) override; Apply the transformation to a combination of points, normals and vectors. V.GetMatrix(vtkMatrix4x4) C++: void GetMatrix(vtkMatrix4x4 *m) V.GetMatrix() -> vtkMatrix4x4 C++: vtkMatrix4x4 *GetMatrix() Get a copy of the internal transformation matrix. The transform is Updated first, to guarantee that the matrix is valid. V.GetHomogeneousInverse() -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *GetHomogeneousInverse() Just like GetInverse(), but includes typecast to vtkHomogeneousTransform. vtkIdentityTransformInternalTransformVectorInternalTransformNormalTransformVectorsTransformNormalsvtkIdentityTransform - a transform that doesn't do anything Superclass: vtkLinearTransform vtkIdentityTransform is a transformation which will simply pass coordinate data unchanged. All other transform types can also do this, however, the vtkIdentityTransform does so with much greater efficiency. @sa vtkLinearTransform vtkCommonTransformsPython.vtkIdentityTransformV.SafeDownCast(vtkObjectBase) -> vtkIdentityTransform C++: static vtkIdentityTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkIdentityTransform C++: vtkIdentityTransform *NewInstance() V.TransformNormals(vtkDataArray, vtkDataArray) C++: void TransformNormals(vtkDataArray *inNms, vtkDataArray *outNms) override; Apply the transformation to a series of normals, and append the results to outNms. V.TransformVectors(vtkDataArray, vtkDataArray) C++: void TransformVectors(vtkDataArray *inVrs, vtkDataArray *outVrs) override; Apply the transformation to a series of vectors, and append the results to outVrs. V.Inverse() C++: void Inverse() override; Invert the transformation. V.InternalTransformNormal((float, float, float), [float, float, float]) C++: void InternalTransformNormal(const double in[3], double out[3]) override; This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.InternalTransformVector((float, float, float), [float, float, float]) C++: void InternalTransformVector(const double in[3], double out[3]) override; This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make a transform of the same type. This will actually return the same transform. GetLinearInverseTransformFloatNormalTransformDoubleNormalTransformDoubleVectorTransformFloatVectorvtkLinearTransform - abstract superclass for linear transformations Superclass: vtkHomogeneousTransform vtkLinearTransform provides a generic interface for linear (affine or 12 degree-of-freedom) geometric transformations. @sa vtkTransform vtkIdentityTransform vtkCommonTransformsPython.vtkLinearTransformV.SafeDownCast(vtkObjectBase) -> vtkLinearTransform C++: static vtkLinearTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLinearTransform C++: vtkLinearTransform *NewInstance() V.TransformNormal((float, float, float), [float, float, float]) C++: void TransformNormal(const double in[3], double out[3]) V.TransformNormal(float, float, float) -> (float, float, float) C++: double *TransformNormal(double x, double y, double z) V.TransformNormal((float, float, float)) -> (float, float, float) C++: double *TransformNormal(const double normal[3]) Apply the transformation to a double-precision normal. You can use the same array to store both the input and output. V.TransformFloatNormal(float, float, float) -> (float, float, float) C++: float *TransformFloatNormal(float x, float y, float z) V.TransformFloatNormal((float, float, float)) -> (float, float, float) C++: float *TransformFloatNormal(const float normal[3]) Apply the transformation to an (x,y,z) normal. Use this if you are programming in python, tcl or Java. V.TransformDoubleNormal(float, float, float) -> (float, float, float) C++: double *TransformDoubleNormal(double x, double y, double z) V.TransformDoubleNormal((float, float, float)) -> (float, float, float) C++: double *TransformDoubleNormal(const double normal[3]) Apply the transformation to a double-precision (x,y,z) normal. Use this if you are programming in python, tcl or Java. V.TransformVector(float, float, float) -> (float, float, float) C++: double *TransformVector(double x, double y, double z) V.TransformVector((float, float, float)) -> (float, float, float) C++: double *TransformVector(const double normal[3]) V.TransformVector((float, float, float), [float, float, float]) C++: void TransformVector(const double in[3], double out[3]) Synonymous with TransformDoubleVector(x,y,z). Use this if you are programming in python, tcl or Java. V.TransformFloatVector(float, float, float) -> (float, float, float) C++: float *TransformFloatVector(float x, float y, float z) V.TransformFloatVector((float, float, float)) -> (float, float, float) C++: float *TransformFloatVector(const float vec[3]) Apply the transformation to an (x,y,z) vector. Use this if you are programming in python, tcl or Java. V.TransformDoubleVector(float, float, float) -> (float, float, float) C++: double *TransformDoubleVector(double x, double y, double z) V.TransformDoubleVector((float, float, float)) -> (float, float, float) C++: double *TransformDoubleVector(const double vec[3]) Apply the transformation to a double-precision (x,y,z) vector. Use this if you are programming in python, tcl or Java. V.TransformNormals(vtkDataArray, vtkDataArray) C++: virtual void TransformNormals(vtkDataArray *inNms, vtkDataArray *outNms) Apply the transformation to a series of normals, and append the results to outNms. V.TransformVectors(vtkDataArray, vtkDataArray) C++: virtual void TransformVectors(vtkDataArray *inVrs, vtkDataArray *outVrs) Apply the transformation to a series of vectors, and append the results to outVrs. V.GetLinearInverse() -> vtkLinearTransform C++: vtkLinearTransform *GetLinearInverse() Just like GetInverse, but it includes a typecast to vtkLinearTransform. V.InternalTransformNormal((float, float, float), [float, float, float]) C++: virtual void InternalTransformNormal(const double in[3], double out[3]) This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.InternalTransformVector((float, float, float), [float, float, float]) C++: virtual void InternalTransformVector(const double in[3], double out[3]) This will calculate the transformation without calling Update. Meant for use only within other VTK classes. vtkMatrixToHomogeneousTransformvtkMatrixToHomogeneousTransform - convert a matrix to a transform Superclass: vtkHomogeneousTransform This is a very simple class which allows a vtkMatrix4x4 to be used in place of a vtkHomogeneousTransform or vtkAbstractTransform. For example, if you use it as a proxy between a matrix and vtkTransformPolyDataFilter then any modifications to the matrix will automatically be reflected in the output of the filter. @sa vtkPerspectiveTransform vtkMatrix4x4 vtkMatrixToLinearTransform vtkCommonTransformsPython.vtkMatrixToHomogeneousTransformV.SafeDownCast(vtkObjectBase) -> vtkMatrixToHomogeneousTransform C++: static vtkMatrixToHomogeneousTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkMatrixToHomogeneousTransform C++: vtkMatrixToHomogeneousTransform *NewInstance() V.SetInput(vtkMatrix4x4) C++: virtual void SetInput(vtkMatrix4x4 *) V.GetInput() -> vtkMatrix4x4 C++: virtual vtkMatrix4x4 *GetInput() V.Inverse() C++: void Inverse() override; The input matrix is left as-is, but the transformation matrix is inverted. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Get the MTime: this is the bit of magic that makes everything work. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make a new transform of the same type. vtkMatrixToLinearTransformvtkMatrixToLinearTransform - convert a matrix to a transform Superclass: vtkLinearTransform This is a very simple class which allows a vtkMatrix4x4 to be used in place of a vtkLinearTransform or vtkAbstractTransform. For example, if you use it as a proxy between a matrix and vtkTransformPolyDataFilter then any modifications to the matrix will automatically be reflected in the output of the filter. @sa vtkTransform vtkMatrix4x4 vtkMatrixToHomogeneousTransform vtkCommonTransformsPython.vtkMatrixToLinearTransformV.SafeDownCast(vtkObjectBase) -> vtkMatrixToLinearTransform C++: static vtkMatrixToLinearTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkMatrixToLinearTransform C++: vtkMatrixToLinearTransform *NewInstance() V.SetInput(vtkMatrix4x4) C++: virtual void SetInput(vtkMatrix4x4 *) Set the input matrix. Any modifications to the matrix will be reflected in the transformation. V.GetInput() -> vtkMatrix4x4 C++: virtual vtkMatrix4x4 *GetInput() Set the input matrix. Any modifications to the matrix will be reflected in the transformation. vtkPerspectiveTransformSetMatrixStereoShearPerspectiveAdjustZBufferOrthoFrustumAdjustViewportSetupCamera@V *vtkHomogeneousTransformvtkPerspectiveTransform - describes a 4x4 matrix transformation Superclass: vtkHomogeneousTransform A vtkPerspectiveTransform can be used to describe the full range of homogeneous transformations. It was designed in particular to describe a camera-view of a scene. The order in which you set up the display coordinates (via AdjustZBuffer() and AdjustViewport()), the projection (via Perspective(), Frustum(), or Ortho()) and the camera view (via SetupCamera()) are important. If the transform is in PreMultiply mode, which is the default, set the Viewport and ZBuffer first, then the projection, and finally the camera view. Once the view is set up, the Translate and Rotate methods can be used to move the camera around in world coordinates. If the Oblique() or Stereo() methods are used, they should be called just before SetupCamera(). In PostMultiply mode, you must perform all transformations in the opposite order. This is necessary, for example, if you already have a perspective transformation set up but must adjust the viewport. Another example is if you have a view transformation, and wish to perform translations and rotations in the camera's coordinate system rather than in world coordinates. The SetInput and Concatenate methods can be used to create a transformation pipeline with vtkPerspectiveTransform. See vtkTransform for more information on the transformation pipeline. @sa vtkGeneralTransform vtkTransform vtkMatrix4x4 vtkCamera vtkCommonTransformsPython.vtkPerspectiveTransformV.SafeDownCast(vtkObjectBase) -> vtkPerspectiveTransform C++: static vtkPerspectiveTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkPerspectiveTransform C++: vtkPerspectiveTransform *NewInstance() V.AdjustViewport(float, float, float, float, float, float, float, float) C++: void AdjustViewport(double oldXMin, double oldXMax, double oldYMin, double oldYMax, double newXMin, double newXMax, double newYMin, double newYMax) Perform an adjustment to the viewport coordinates. By default Ortho, Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]). In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after. Note that if you must apply both AdjustZBuffer and AdjustViewport, it makes no difference which order you apply them in. V.AdjustZBuffer(float, float, float, float) C++: void AdjustZBuffer(double oldNearZ, double oldFarZ, double newNearZ, double newFarZ) Perform an adjustment to the Z-Buffer range that the near and far clipping planes map to. By default Ortho, Frustum, and Perspective map the near clipping plane to -1 and the far clipping plane to +1. In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after. V.Ortho(float, float, float, float, float, float) C++: void Ortho(double xmin, double xmax, double ymin, double ymax, double znear, double zfar) Create an orthogonal projection matrix and concatenate it by the current transformation. The matrix maps [xmin,xmax], [ymin,ymax], [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1]. V.Frustum(float, float, float, float, float, float) C++: void Frustum(double xmin, double xmax, double ymin, double ymax, double znear, double zfar) Create an perspective projection matrix and concatenate it by the current transformation. The matrix maps a frustum with a back plane at -zfar and a front plane at -znear with extent [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1]. V.Perspective(float, float, float, float) C++: void Perspective(double angle, double aspect, double znear, double zfar) Create a perspective projection matrix by specifying the view angle (this angle is in the y direction), the aspect ratio, and the near and far clipping range. The projection matrix is concatenated with the current transformation. This method works via Frustum. V.Shear(float, float, float) C++: void Shear(double dxdz, double dydz, double zplane) Create a shear transformation about a plane at distance z from the camera. The values dxdz (i.e. dx/dz) and dydz specify the amount of shear in the x and y directions. The 'zplane' specifies the distance from the camera to the plane at which the shear causes zero displacement. Generally you want this plane to be the focal plane. This transformation can be used in combination with Ortho to create an oblique projection. It can also be used in combination with Perspective to provide correct stereo views when the eye is at arbitrary but known positions relative to the center of a flat viewing screen. V.Stereo(float, float) C++: void Stereo(double angle, double focaldistance) Create a stereo shear matrix and concatenate it with the current transformation. This can be applied in conjunction with either a perspective transformation (via Frustum or Projection) or an orthographic projection. You must specify the distance from the camera plane to the focal plane, and the angle between the distance vector and the eye. The angle should be negative for the left eye, and positive for the right. This method works via Oblique. V.SetupCamera((float, float, float), (float, float, float), ( float, float, float)) C++: void SetupCamera(const double position[3], const double focalpoint[3], const double viewup[3]) V.SetupCamera(float, float, float, float, float, float, float, float, float) C++: void SetupCamera(double p0, double p1, double p2, double fp0, double fp1, double fp2, double vup0, double vup1, double vup2) Set a view transformation matrix for the camera (this matrix does not contain any perspective) and concatenate it with the current transformation. V.SetMatrix(vtkMatrix4x4) C++: void SetMatrix(vtkMatrix4x4 *matrix) V.SetMatrix((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void SetMatrix(const double elements[16]) Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix). V.Concatenate(vtkMatrix4x4) C++: void Concatenate(vtkMatrix4x4 *matrix) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) V.Concatenate(vtkHomogeneousTransform) C++: void Concatenate(vtkHomogeneousTransform *transform) Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics. V.GetConcatenatedTransform(int) -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *GetConcatenatedTransform(int i) Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file. V.SetInput(vtkHomogeneousTransform) C++: void SetInput(vtkHomogeneousTransform *input) Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInput() -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *GetInput() Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make a new transform of the same type -- you are responsible for deleting the transform when you are done with it. vtkSphericalTransformvtkSphericalTransform - spherical to rectangular coords and back Superclass: vtkWarpTransform vtkSphericalTransform will convert (r,phi,theta) coordinates to (x,y,z) coordinates and back again. The angles are given in radians. By default, it converts spherical coordinates to rectangular, but GetInverse() returns a transform that will do the opposite. The equation that is used is x = r*sin(phi)*cos(theta), y = r*sin(phi)*sin(theta), z = r*cos(phi). @warning This transform is not well behaved along the line x=y=0 (i.e. along the z-axis) @sa vtkCylindricalTransform vtkGeneralTransform vtkCommonTransformsPython.vtkSphericalTransformV.SafeDownCast(vtkObjectBase) -> vtkSphericalTransform C++: static vtkSphericalTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSphericalTransform C++: vtkSphericalTransform *NewInstance() vtkThinPlateSplineTransformSetBasisToRSetBasisToR2LogRGetTargetLandmarksGetBasisGetSourceLandmarksGetSigmaSetBasisSetTargetLandmarksSetSourceLandmarksGetBasisAsStringSetSigmaVTK_RBF_CUSTOMVTK_RBF_RVTK_RBF_R2LOGRvtkThinPlateSplineTransform - a nonlinear warp transformation Superclass: vtkWarpTransform vtkThinPlateSplineTransform describes a nonlinear warp transform defined by a set of source and target landmarks. Any point on the mesh close to a source landmark will be moved to a place close to the corresponding target landmark. The points in between are interpolated smoothly using Bookstein's Thin Plate Spline algorithm. To obtain a correct TPS warp, use the R2LogR kernel if your data is 2D, and the R kernel if your data is 3D. Or you can specify your own RBF. (Hence this class is more general than a pure TPS transform.) @warning 1) The inverse transform is calculated using an iterative method, and is several times more expensive than the forward transform. 2) Whenever you add, subtract, or set points you must call Modified() on the vtkPoints object, or the transformation might not update. 3) Collinear point configurations (except those that lie in the XY plane) result in an unstable transformation. @sa vtkGridTransform vtkGeneralTransform vtkCommonTransformsPython.vtkThinPlateSplineTransformV.SafeDownCast(vtkObjectBase) -> vtkThinPlateSplineTransform C++: static vtkThinPlateSplineTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkThinPlateSplineTransform C++: vtkThinPlateSplineTransform *NewInstance() V.GetSigma() -> float C++: virtual double GetSigma() Specify the 'stiffness' of the spline. The default is 1.0. V.SetSigma(float) C++: virtual void SetSigma(double _arg) Specify the 'stiffness' of the spline. The default is 1.0. V.SetBasis(int) C++: void SetBasis(int basis) Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. V.GetBasis() -> int C++: virtual int GetBasis() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. V.SetBasisToR() C++: void SetBasisToR() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. V.SetBasisToR2LogR() C++: void SetBasisToR2LogR() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. V.GetBasisAsString() -> string C++: const char *GetBasisAsString() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. V.SetSourceLandmarks(vtkPoints) C++: void SetSourceLandmarks(vtkPoints *source) Set the source landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. V.GetSourceLandmarks() -> vtkPoints C++: virtual vtkPoints *GetSourceLandmarks() Set the source landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. V.SetTargetLandmarks(vtkPoints) C++: void SetTargetLandmarks(vtkPoints *target) Set the target landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. V.GetTargetLandmarks() -> vtkPoints C++: virtual vtkPoints *GetTargetLandmarks() Set the target landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Get the MTime. vtkTransform2DGetTransposeGetPositionGetScaleMultiplyPointvtkPoints2DInverseTransformPoints@V *vtkMatrix3x3vtkTransform2D - describes linear transformations via a 3x3 matrix Superclass: vtkObject A vtkTransform2D can be used to describe the full range of linear (also known as affine) coordinate transformations in two dimensions, which are internally represented as a 3x3 homogeneous transformation matrix. When you create a new vtkTransform2D, it is always initialized to the identity transformation. All multiplicitive operations (Translate, Rotate, Scale, etc) are post-multiplied in this class (i.e. add them in the reverse of the order that they should be applied). This class performs all of its operations in a right handed coordinate system with right handed rotations. Some other graphics libraries use left handed coordinate systems and rotations. vtkCommonTransformsPython.vtkTransform2DV.SafeDownCast(vtkObjectBase) -> vtkTransform2D C++: static vtkTransform2D *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTransform2D C++: vtkTransform2D *NewInstance() V.Identity() C++: void Identity() Set the transformation to the identity transformation. V.Inverse() C++: void Inverse() Invert the transformation. V.Translate(float, float) C++: void Translate(double x, double y) V.Translate((float, float)) C++: void Translate(const double x[2]) Create a translation matrix and concatenate it with the current transformation. V.Rotate(float) C++: void Rotate(double angle) Create a rotation matrix and concatenate it with the current transformation. The angle is in degrees. V.Scale(float, float) C++: void Scale(double x, double y) V.Scale((float, float)) C++: void Scale(const double s[2]) Create a scale matrix (i.e. set the diagonal elements to x, y) and concatenate it with the current transformation. V.SetMatrix(vtkMatrix3x3) C++: void SetMatrix(vtkMatrix3x3 *matrix) V.SetMatrix((float, float, float, float, float, float, float, float, float)) C++: void SetMatrix(const double elements[9]) Set the current matrix directly. V.GetMatrix() -> vtkMatrix3x3 C++: virtual vtkMatrix3x3 *GetMatrix() V.GetMatrix(vtkMatrix3x3) C++: void GetMatrix(vtkMatrix3x3 *matrix) Get the underlying 3x3 matrix. V.GetPosition([float, float]) C++: void GetPosition(double pos[2]) Return the position from the current transformation matrix as an array of two floating point numbers. This is simply returning the translation component of the 3x3 matrix. V.GetScale([float, float]) C++: void GetScale(double pos[2]) Return the x and y scale from the current transformation matrix as an array of two floating point numbers. This is simply returning the scale component of the 3x3 matrix. V.GetInverse(vtkMatrix3x3) C++: void GetInverse(vtkMatrix3x3 *inverse) Return a matrix which is the inverse of the current transformation matrix. V.GetTranspose(vtkMatrix3x3) C++: void GetTranspose(vtkMatrix3x3 *transpose) Return a matrix which is the transpose of the current transformation matrix. This is equivalent to the inverse if and only if the transformation is a pure rotation with no translation or scale. V.TransformPoints((float, ...), [float, ...], int) C++: void TransformPoints(const double *inPts, double *outPts, int n) V.TransformPoints(vtkPoints2D, vtkPoints2D) C++: void TransformPoints(vtkPoints2D *inPts, vtkPoints2D *outPts) Apply the transformation to a series of points, and append the results to outPts. Where n is the number of points, and the float pointers are of length 2*n. V.InverseTransformPoints((float, ...), [float, ...], int) C++: void InverseTransformPoints(const double *inPts, double *outPts, int n) V.InverseTransformPoints(vtkPoints2D, vtkPoints2D) C++: void InverseTransformPoints(vtkPoints2D *inPts, vtkPoints2D *outPts) Apply the transformation to a series of points, and append the results to outPts. Where n is the number of points, and the float pointers are of length 2*n. V.MultiplyPoint((float, float, float), [float, float, float]) C++: void MultiplyPoint(const double in[3], double out[3]) Use this method only if you wish to compute the transformation in homogeneous (x,y,w) coordinates, otherwise use TransformPoint(). This method calls this->GetMatrix()->MultiplyPoint(). vtkTransformCollectionGetNextItemAddItemvtkTransformvtkCollectionvtkTransformCollection - maintain a list of transforms Superclass: vtkCollection vtkTransformCollection is an object that creates and manipulates lists of objects of type vtkTransform. @sa vtkCollection vtkTransform vtkCommonTransformsPython.vtkTransformCollectionV.SafeDownCast(vtkObjectBase) -> vtkTransformCollection C++: static vtkTransformCollection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTransformCollection C++: vtkTransformCollection *NewInstance() V.AddItem(vtkTransform) C++: void AddItem(vtkTransform *) Add a Transform to the list. V.GetNextItem() -> vtkTransform C++: vtkTransform *GetNextItem() Get the next Transform in the list. Return nullptr when the end of the list is reached. GetOrientationWXYZGetOrientation@V *vtkLinearTransformvtkTransform - describes linear transformations via a 4x4 matrix Superclass: vtkLinearTransform A vtkTransform can be used to describe the full range of linear (also known as affine) coordinate transformations in three dimensions, which are internally represented as a 4x4 homogeneous transformation matrix. When you create a new vtkTransform, it is always initialized to the identity transformation. The SetInput() method allows you to set another transform, instead of the identity transform, to be the base transformation. There is a pipeline mechanism to ensure that when the input is modified, the current transformation will be updated accordingly. This pipeline mechanism is also supported by the Concatenate() method. Most of the methods for manipulating this transformation, e.g. Translate, Rotate, and Concatenate, can operate in either PreMultiply (the default) or PostMultiply mode. In PreMultiply mode, the translation, concatenation, etc. will occur before any transformations which are represented by the current matrix. In PostMultiply mode, the additional transformation will occur after any transformations represented by the current matrix. This class performs all of its operations in a right handed coordinate system with right handed rotations. Some other graphics libraries use left handed coordinate systems and rotations. @sa vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4 vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter vtkImageReslice vtkCommonTransformsPython.vtkTransformV.SafeDownCast(vtkObjectBase) -> vtkTransform C++: static vtkTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTransform C++: vtkTransform *NewInstance() V.Identity() C++: void Identity() Set the transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input. V.SetMatrix(vtkMatrix4x4) C++: void SetMatrix(vtkMatrix4x4 *matrix) V.SetMatrix((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void SetMatrix(const double elements[16]) Set the current matrix directly. Note: First, the current matrix is set to the identity, then the input matrix is concatenated. V.Concatenate(vtkMatrix4x4) C++: void Concatenate(vtkMatrix4x4 *matrix) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) V.Concatenate(vtkLinearTransform) C++: void Concatenate(vtkLinearTransform *transform) Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics. V.GetConcatenatedTransform(int) -> vtkLinearTransform C++: vtkLinearTransform *GetConcatenatedTransform(int i) Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file. V.GetOrientation([float, float, float]) C++: void GetOrientation(double orient[3]) V.GetOrientation() -> (float, float, float) C++: double *GetOrientation() V.GetOrientation([float, float, float], vtkMatrix4x4) C++: static void GetOrientation(double orient[3], vtkMatrix4x4 *matrix) Get the x, y, z orientation angles from the transformation matrix as an array of three floating point values. V.GetOrientationWXYZ([float, float, float, float]) C++: void GetOrientationWXYZ(double wxyz[4]) V.GetOrientationWXYZ() -> (float, float, float, float) C++: double *GetOrientationWXYZ() Return the wxyz angle+axis representing the current orientation. The angle is in degrees and the axis is a unit vector. V.GetPosition([float, float, float]) C++: void GetPosition(double pos[3]) V.GetPosition() -> (float, float, float) C++: double *GetPosition() Return the position from the current transformation matrix as an array of three floating point numbers. This is simply returning the translation component of the 4x4 matrix. V.GetScale([float, float, float]) C++: void GetScale(double scale[3]) V.GetScale() -> (float, float, float) C++: double *GetScale() Return the scale factors of the current transformation matrix as an array of three float numbers. These scale factors are not necessarily about the x, y, and z axes unless unless the scale transformation was applied before any rotations. V.GetInverse(vtkMatrix4x4) C++: void GetInverse(vtkMatrix4x4 *inverse) V.GetInverse() -> vtkAbstractTransform C++: vtkAbstractTransform *GetInverse() Return a matrix which is the inverse of the current transformation matrix. V.GetTranspose(vtkMatrix4x4) C++: void GetTranspose(vtkMatrix4x4 *transpose) Return a matrix which is the transpose of the current transformation matrix. This is equivalent to the inverse if and only if the transformation is a pure rotation with no translation or scale. V.SetInput(vtkLinearTransform) C++: void SetInput(vtkLinearTransform *input) Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInput() -> vtkLinearTransform C++: vtkLinearTransform *GetInput() Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.MultiplyPoint((float, float, float, float), [float, float, float, float]) C++: void MultiplyPoint(const double in[4], double out[4]) Use this method only if you wish to compute the transformation in homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint(). This method calls this->GetMatrix()->MultiplyPoint(). GetInverseToleranceGetInverseIterationsSetInverseToleranceSetInverseIterationsTemplateTransformPointTemplateTransformInversevtkWarpTransform - superclass for nonlinear geometric transformations Superclass: vtkAbstractTransform vtkWarpTransform provides a generic interface for nonlinear warp transformations. @sa vtkThinPlateSplineTransform vtkGridTransform vtkGeneralTransform vtkCommonTransformsPython.vtkWarpTransformV.SafeDownCast(vtkObjectBase) -> vtkWarpTransform C++: static vtkWarpTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkWarpTransform C++: vtkWarpTransform *NewInstance() V.Inverse() C++: void Inverse() override; Invert the transformation. Warp transformations are usually inverted using an iterative technique such as Newton's method. The inverse transform is usually around five or six times as computationally expensive as the forward transform. V.GetInverseFlag() -> int C++: virtual int GetInverseFlag() Get the inverse flag of the transformation. This flag is set to zero when the transformation is first created, and is flipped each time Inverse() is called. V.SetInverseTolerance(float) C++: virtual void SetInverseTolerance(double _arg) Set the tolerance for inverse transformation. The default is 0.001. V.GetInverseTolerance() -> float C++: virtual double GetInverseTolerance() Set the tolerance for inverse transformation. The default is 0.001. V.SetInverseIterations(int) C++: virtual void SetInverseIterations(int _arg) Set the maximum number of iterations for the inverse transformation. The default is 500, but usually only 2 to 5 iterations are used. The inversion method is fairly robust, and it should converge for nearly all smooth transformations that do not fold back on themselves. V.GetInverseIterations() -> int C++: virtual int GetInverseIterations() Set the maximum number of iterations for the inverse transformation. The default is 500, but usually only 2 to 5 iterations are used. The inversion method is fairly robust, and it should converge for nearly all smooth transformations that do not fold back on themselves. V.InternalTransformDerivative((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]) override; This will calculate the transformation, as well as its derivative without calling Update. Meant for use only within other VTK classes. V.TemplateTransformPoint((float, float, float), [float, float, float]) C++: void TemplateTransformPoint(const double in[3], double out[3]) V.TemplateTransformPoint((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void TemplateTransformPoint(const double in[3], double out[3], double derivative[3][3]) Do not use these methods. They exists only as a work-around for internal templated functions (I really didn't want to make the Forward/Inverse methods public, is there a decent work around for this sort of thing?) V.TemplateTransformInverse((float, float, float), [float, float, float]) C++: void TemplateTransformInverse(const double in[3], double out[3]) V.TemplateTransformInverse((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void TemplateTransformInverse(const double in[3], double out[3], double derivative[3][3]) Do not use these methods. They exists only as a work-around for internal templated functions (I really didn't want to make the Forward/Inverse methods public, is there a decent work around for this sort of thing?) vtkLandmarkTransformGetModeSetModeToSimilaritySetModeToRigidBodySetModeToAffineUnrecognizedGetModeAsStringSetModeVTK_LANDMARK_RIGIDBODYVTK_LANDMARK_SIMILARITYVTK_LANDMARK_AFFINEvtkLandmarkTransform - a linear transform specified by two corresponding point sets Superclass: vtkLinearTransform A vtkLandmarkTransform is defined by two sets of landmarks, the transform computed gives the best fit mapping one onto the other, in a least squares sense. The indices are taken to correspond, so point 1 in the first set will get mapped close to point 1 in the second set, etc. Call SetSourceLandmarks and SetTargetLandmarks to specify the two sets of landmarks, ensure they have the same number of points. @warning Whenever you add, subtract, or set points you must call Modified() on the vtkPoints object, or the transformation might not update. @sa vtkLinearTransform vtkCommonTransformsPython.vtkLandmarkTransformV.SafeDownCast(vtkObjectBase) -> vtkLandmarkTransform C++: static vtkLandmarkTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLandmarkTransform C++: vtkLandmarkTransform *NewInstance() V.SetSourceLandmarks(vtkPoints) C++: void SetSourceLandmarks(vtkPoints *points) Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.SetTargetLandmarks(vtkPoints) C++: void SetTargetLandmarks(vtkPoints *points) Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.GetSourceLandmarks() -> vtkPoints C++: virtual vtkPoints *GetSourceLandmarks() Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.GetTargetLandmarks() -> vtkPoints C++: virtual vtkPoints *GetTargetLandmarks() Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.SetMode(int) C++: virtual void SetMode(int _arg) Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. V.SetModeToRigidBody() C++: void SetModeToRigidBody() Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. V.SetModeToSimilarity() C++: void SetModeToSimilarity() Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. V.SetModeToAffine() C++: void SetModeToAffine() Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. V.GetMode() -> int C++: virtual int GetMode() Get the current transformation mode. V.GetModeAsString() -> string C++: const char *GetModeAsString() Get the current transformation mode. V.Inverse() C++: void Inverse() override; Invert the transformation. This is done by switching the source and target landmarks. can't get dictionary for module vtkCommonTransformsPythonreal_initvtkCommonTransformsPythonvtkCommonTransformsPython; 6 E 0E SHS2S>TD?@TD`TTTTT U(# Uh(@U`,`Ux.U5U`7U:U?VxA VG@VLK`VOVOpW PX0XLpYxYYYY [`[[0 \X0\l@\P\@]^^(_L@`paabc`dPe8Pfd@g@hpijpk @lD m` n oPpq r\supv@x,yP@|~@D`40P@0PPTГ 0d`КP`8@xP $Pt 0LhЫ0dP@lи 0P<$\`@0@\ 0 h 0 !p!p!!8"d""@""0"<#`#P# #D$$%0D%%! !0"%(&T&px&&p&&p('T'p''(4(0|(()`)P )P * `*0*%& *0$+h+ +++,P,,t,,,,*+H+0-@<- -P-0-.@!(.!D.!.#.#.$.%-%(-&`-&/&@/p'/'/(/ )/) 0*D0+p0,0-0.0/10,1`1H1@2d1031041@51P61`72p8D29p2:2;2P=3>@3?l3@A3pB3C3PE4FH4Ht4J40M4O4SP5`Sl5S5T5U5V,/Vd/ W/W 6WH6X6Y6 [6\7\,70]t7P^46`^l6^7^$8_h8`8`b80c8d9d$9eH9fl9g9h9i9j9k(:mL:pnp:n:po:p;q7q7q7q7q7q8rH8pr<;rd;`s;s;t;pu<@v$<0wP<0xt< y< z< {<|=~X=`=Ѐ== >L>x>> h?p??(;P;В;? @\@Д@Е@Ж@@A(ADAP@`<@AAAA@,BpXB0|BBПBB C0CTCCCCCpD,DPD|DDЭD0ELE`pEE0E EcFBA A(D (A ABBE 8/l?cFBA A(D (A ABBE 0/@^FAA D`  AABH 0AgFD@ EE H,0CFBB B(A0A8D 8A0A(B BBBE x0DEDPt AB (0xFFCDp ABD (0LHFCDp ABD P" J?FDB B(A0D8G 8A0A(B BBBD "@_P"M?CFDB B(A0D8G 8A0A(B BBBD P#@1QMFF02QOFDD n ABA DDB42  H2QED@ AG l2S 2DZ 2SEDPa AE 2ZOEY B j 2SED@ AG 2HTEDP AK ( 3$UEAD`n AAF 0L3UnFAA D`  AABH 34WgFD@ EE 3XMFF03XOFDD n ABA DDB3 4Y  4T 44YEDPa AE X4YO|Rp4YO|R4uEY B P(4 Z"EAD`n AAF 4[ED@ AG 4[ED@ AG 5X\H@ I (85 ]EADP AAE d5]EDP AK 5^EDP AK 5x_EDP AK (5T`EAG AAH 58aEDP AK  6bH@ I <6bH@ I X6cED@ AG (|6hdEAG AAH 6\eEDP AK (6Hf EAD` AAI 6,gEDP AK 7hEDP AK ,(iT FADP ABG )D  P87jFBA A(G (A ABBD 7kgFD@ EE (7l"EAD` AAE 08mFAA D`  AABH L8XoEDP AF Dp8$qFBB A(A0D  0A(A BBBK D8lsFBB A(A0D  0A(A BBBK 49uzFBA D  ABBI (89wKECD AAE (d9 zKECD AAE (9D|ECD AAE @9~\FBB A(A0DP 0A(A BBBH :āMFF0:OFDD n ABA DDBP:D d:ED@ AG :̂FD@ EE :ȃEDP AK :ĄH@ I : ;);0 (;,!<;H P;D d;EDPa AE ;OEY B j(;<EAD`n AAF ;ED@ AG ;̇ED@ AG <ED@ AG @<tTEDP AG d<DEDP AG 0<܋nFAA D`  AABH <gFD@ EE H<d]FDB B(A0A8G{ 8A0A(B BBBD H,=x]FDB B(A0A8G{ 8A0A(B BBBD x=HFA0=OFDD n ABA DDB= H=ȖFBB B(A0A8G 8A0A(B BBBI H(>,FBB B(A0A8D 8A0A(B BBBE t>H@ I > > >!> > > ?EDPa AE 0?įuEY B P(P?"EAD`n AAF 0|?FAA D`  AABH ?ED@ AG ?ED@ AG ?|ED@ AG @8EDP AK @@EDP AK d@H@ I @ԣH@ I @H@ I (@yFADP ABG @gFD@ EE A0p?8=A`CHD.E0V8D(XpMQZP_R`SX TP[]H"Et@OP PHpYg`J^FpJG@0UpPN`hpeWdpcNbpL`K`IHD.k0pm8j n\`yd`wnPpPXlHuprHD. |08@{0~`\UD d P}hPp,   HD.0@80 Д 4  З PXС P М0\U Dd hp,@ @HD.p0`8g^ N  !#HD.08#0`$g0$^h%P N` @!`,HD.p08,0 -d&@-H&/V&1\&@ 3<&46& 86/&8s& ;`XP[@H%& @=">tPx@g0B^DJ@@Pp EWN&0IHD.08`II@OHD. 00 8@xO`PJpPJPJ`QJ@RQJ S]J UJ`VJWJ XJYnJ` ZNx[0_HD.0`'8`_(_`x`0`!a[.(b%&cn,d[$d[%e"f[#0gN ;\2Hh\@6i[0*k &\mHD.0?00@8< nAnl0>nl`=XovHD.E0\8 D8vPZv`Hvv hlR`UX VP[pjH%&PEw"E8yt OPP0I[{pPo|oe@~[`x[c^0[KgL0^FJG@0WpPW`u@t!NPs[XЇ NMJpTQHD.x0P8wXJyȌI| z@]~؎4{8@pr00xHD.В08(J@J@JnJu0@5@آ!@pH@`e@XNx[C_GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0D 'D[EO+EFGSH`I`J`K8pLnpMPN@O P0Q_RS T0UT IVntXgpY2ZK]KEP_w`&( bpcLde@&`h L vOB OM@C`~p@ m    O    ! T     #W   % PT  % 9\ 9 0g "oA@ot@K@KCy K<`>`,` ] !OMN`u$ S!|"#$c%c1`'^W(g0*,. 052?g @@6?`@I0KN@v ;VD  DEOVAPEOk@W`E"FG`H;0I}JKLM1 N` OPPQ R2T _U V0WT X,PZgX["\^` c5ezh hKpjKlPo\P+R@GmPs@t`uv)N#o % = e@99`%K    K  `   !P! !p !@ " 9" r" ""(#d#%#%##0$`$$$/ %/M%/%/%@* &p^8&w&!g&#&H;'%~x' (~'*R'.R2(`1i(@( @(( @(` @)B)k)`)_ )=)7#*8X*9*;b,,*p= +=8+`>l+p?+Ag+#+%,N,C).,j,k,l4-pmnc-ng-Pp- ,--`.@K.r.,.u#/`wl/`yb1/0{ /@{0 |"40P}d00~g00@/00 1`71m11 /1=2}2P2 3 b;3bt3bK6334E4Дgw4@4З~4P~5М~T5P~5С55264<6h6626@27p777b(8 b_8b_:8 89pC99`9g97!:8@P::: ;A;=}; ;;"<S<<0g<9<;@=D=@=`=P=0l?$> L>>>>g?C8?@E]??D?0 ?@-@ e@0 @ @ A` UA@A AB?BBBCT;C`gvCFCG@C` 0D 7DtDcFDp< D< E`=BE0>tE0?E0@nEAg F`N.FPTF`IFwFxFyGzMG{G|TG~DGPnHgOH0]HWH] IWUIWrI`YIIIWDJ@JQNJ JKВ"8KdKKK` L@EL@L@L@L@/M@ygMgM0DM@[M\@N 0BNpNNN>OO _h/O+dO`sO_ OOO@OO_OX PP O0P(>P`QP@^P,zP4P P P_PP0bOPP Q*QСLQwQ`COQQMR"@ 1RpR"pRR" = R5S"`w _SS"@!SMS@OS8TWTTCMTT"@j%U>UiU~UUU`U Vp5H2VUV"pjOvVVVW WOBWWWW+X"P dXXX" XXY8Y`YxYY"OYYYH ZBZsZZ"ZZZ [,[?[`[[[[[["b"\6D\\\\\]BO&]e]]"pwu]] ^"^L^67p^^^^^"zO_P67F_Y___"!_`.`X```"CO``" a(a"P `aaapBMa" < b'bUbgb"0<<bbbMbaMcTcccd"d;d"0 rddde7evee"0j eee-f9f" vffff"bg!gWggggh5A hBhbh"uhhhh"0D i4ihii"z ijDjXjjjjj*kak"bkkOk"uk-lBlpl" l"@ lmFm"C zmm@Mmmmn