/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkSampleClassifierFilter.h" #include "itkSampleToHistogramFilter.h" #include "itkNeighborhoodSampler.h" #include "itkScalarImageToCooccurrenceListSampleFilter.h" #include "itkScalarImageToTextureFeaturesFilter.h" #include "itkWeightedCovarianceSampleFilter.h" #include "itkImageToListSampleAdaptor.h" #include "itkPointSetToListSampleAdaptor.h" #include "itkJointDomainImageToListSampleAdaptor.h" #include "itkMaximumDecisionRule.h" #include "itkMinimumDecisionRule.h" #include "itkEuclideanSquareDistanceMetric.h" #include "itkMahalanobisDistanceMetric.h" #include "itkManhattanDistanceMetric.h" #include "itkImageClassifierFilter.h" #include "itkKdTreeBasedKmeansEstimator.h" #include "itkExpectationMaximizationMixtureModelEstimator.h" #include "itkWeightedCentroidKdTreeGenerator.h" int itkStatisticsPrintTest(int, char *[]) { using TMeasurementType = float; using TMeasurementVectorType = itk::FixedArray; using ImageType = itk::Image; using ScalarImageType = itk::Image; using PointSetType = itk::PointSet; using OutputImageType = itk::Image; using SampleType = itk::Statistics::ListSample; using SubSampleType = itk::Statistics::Subsample; using HistogramType = itk::Statistics::Histogram; using SampleToHistogramFilterType = itk::Statistics::SampleToHistogramFilter; using SampleClassifierFilterType = itk::Statistics::SampleClassifierFilter; using ImageClassifierFilterType = itk::Statistics::ImageClassifierFilter; using ImageToListSampleFilterType = itk::Statistics::ImageToListSampleFilter; using ImageToListSampleAdaptorType = itk::Statistics::ImageToListSampleAdaptor; using JointDomainImageToListSampleAdaptorType = itk::Statistics::JointDomainImageToListSampleAdaptor; using ScalarImageToCooccurrenceMatrixFilterType = itk::Statistics::ScalarImageToCooccurrenceMatrixFilter; using ScalarImageToCooccurrenceListSampleFilterType = itk::Statistics::ScalarImageToCooccurrenceListSampleFilter; using ScalarImageToTextureFeaturesFilterType = itk::Statistics::ScalarImageToTextureFeaturesFilter; using MembershipSampleType = itk::Statistics::MembershipSample; using DistanceToCentroidMembershipFunctionType = itk::Statistics::DistanceToCentroidMembershipFunction; using EuclideanDistanceMetricType = itk::Statistics::EuclideanDistanceMetric; using EuclideanSquareDistanceMetricType = itk::Statistics::EuclideanSquareDistanceMetric; using MahalanobisDistanceMetricType = itk::Statistics::MahalanobisDistanceMetric; using ManhattanDistanceMetricType = itk::Statistics::ManhattanDistanceMetric; using MaximumDecisionRuleType = itk::Statistics::MaximumDecisionRule; using MinimumDecisionRuleType = itk::Statistics::MinimumDecisionRule; using HistogramToTextureFeaturesFilterType = itk::Statistics::HistogramToTextureFeaturesFilter; using MeanSampleFilterType = itk::Statistics::MeanSampleFilter; using WeightedMeanSampleFilterType = itk::Statistics::WeightedMeanSampleFilter; using CovarianceSampleFilterType = itk::Statistics::CovarianceSampleFilter; using WeightedCovarianceSampleFilterType = itk::Statistics::WeightedCovarianceSampleFilter; using NeighborhoodSamplerType = itk::Statistics::NeighborhoodSampler; using PointSetToListSampleAdaptorType = itk::Statistics::PointSetToListSampleAdaptor; using DenseFrequencyContainer2Type = itk::Statistics::DenseFrequencyContainer2; using SparseFrequencyContainer2Type = itk::Statistics::SparseFrequencyContainer2; using EMEstimatorType = itk::Statistics::ExpectationMaximizationMixtureModelEstimator; using TreeGeneratorType = itk::Statistics::WeightedCentroidKdTreeGenerator; using KdTreeBasedKMeansEstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator; auto sampleObj = SampleType::New(); std::cout << "----------ListSample " << sampleObj; auto subsampleObj = SubSampleType::New(); std::cout << "----------Subsample " << subsampleObj; auto HistogramObj = HistogramType::New(); std::cout << "----------Histogram " << HistogramObj; auto SampleToHistogramFilterObj = SampleToHistogramFilterType::New(); std::cout << "----------SampleToHistogramFilter "; std::cout << SampleToHistogramFilterObj; auto xSampleClassifierFilterObj = SampleClassifierFilterType::New(); std::cout << "----------SampleClassifierFilter "; std::cout << xSampleClassifierFilterObj; auto ImageToListSampleFilterObj = ImageToListSampleFilterType::New(); std::cout << "----------ImageToListSampleFilter "; std::cout << ImageToListSampleFilterObj; auto ImageToListSampleAdaptorObj = ImageToListSampleAdaptorType::New(); std::cout << "----------ImageToListSampleAdaptor "; std::cout << ImageToListSampleAdaptorObj; JointDomainImageToListSampleAdaptorType::Pointer JointDomainImageToListSampleAdaptorObj = JointDomainImageToListSampleAdaptorType::New(); std::cout << "----------JointDomainImageToListSampleAdaptor "; std::cout << JointDomainImageToListSampleAdaptorObj; auto PointSetToListSampleAdaptorObj = PointSetToListSampleAdaptorType::New(); std::cout << "----------PointSetToListSampleAdaptor "; std::cout << PointSetToListSampleAdaptorObj; ScalarImageToCooccurrenceMatrixFilterType::Pointer ScalarImageToCooccurrenceMatrixFilterObj = ScalarImageToCooccurrenceMatrixFilterType::New(); std::cout << "----------ScalarImageToCooccurrenceMatrixFilter "; std::cout << ScalarImageToCooccurrenceMatrixFilterObj; ScalarImageToCooccurrenceListSampleFilterType::Pointer ScalarImageToCooccurrenceListSampleFilterObj = ScalarImageToCooccurrenceListSampleFilterType::New(); std::cout << "----------ScalarImageToCooccurrenceListSampleFilter "; std::cout << ScalarImageToCooccurrenceListSampleFilterObj; ScalarImageToTextureFeaturesFilterType::Pointer ScalarImageToTextureFeaturesFilterObj = ScalarImageToTextureFeaturesFilterType::New(); std::cout << "----------ScalarImageToTextureFeaturesFilter "; std::cout << ScalarImageToTextureFeaturesFilterObj; HistogramToTextureFeaturesFilterType::Pointer HistogramToTextureFeaturesFilterObj = HistogramToTextureFeaturesFilterType::New(); std::cout << "----------HistogramToTextureFeaturesFilter " << HistogramToTextureFeaturesFilterObj; auto MembershipSampleObj = MembershipSampleType::New(); std::cout << "----------MembershipSample " << MembershipSampleObj; DistanceToCentroidMembershipFunctionType::Pointer DistanceToCentroidMembershipFunctionObj = DistanceToCentroidMembershipFunctionType::New(); std::cout << "----------DistanceToCentroidMembershipFunction " << DistanceToCentroidMembershipFunctionObj; auto meanFilterObj = MeanSampleFilterType::New(); std::cout << "----------Mean filter " << meanFilterObj; auto weighedMeanSampleFilterObj = WeightedMeanSampleFilterType::New(); std::cout << "----------WeightedMean filter " << weighedMeanSampleFilterObj; auto covarianceFilterObj = CovarianceSampleFilterType::New(); std::cout << "----------Covariance filter " << covarianceFilterObj; WeightedCovarianceSampleFilterType::Pointer weighedCovarianceSampleFilterObj = WeightedCovarianceSampleFilterType::New(); std::cout << "----------WeightedCovariance filter " << weighedCovarianceSampleFilterObj; auto neighborhoodSamplerObj = NeighborhoodSamplerType::New(); std::cout << "----------NeighborhoodSamplerType filter " << neighborhoodSamplerObj; auto DenseFrequencyContainer2Obj = DenseFrequencyContainer2Type::New(); std::cout << "----------DenseFrequencyContainer " << DenseFrequencyContainer2Obj; auto SparseFrequencyContainer2Obj = SparseFrequencyContainer2Type::New(); std::cout << "----------SparseFrequencyContainer2 " << SparseFrequencyContainer2Obj; auto euclideanDistance = EuclideanDistanceMetricType::New(); std::cout << "----------EuclideanDistanceMetricType " << euclideanDistance; auto euclideanSquareDistance = EuclideanSquareDistanceMetricType::New(); std::cout << "----------EuclideanSquareDistanceMetricType " << euclideanSquareDistance; auto mahalanobisDistance = MahalanobisDistanceMetricType::New(); std::cout << "----------MahalanobisDistanceMetricType " << mahalanobisDistance; auto manhattanDistance = ManhattanDistanceMetricType::New(); std::cout << "----------ManhattanDistanceMetricType " << manhattanDistance; auto maximumDecsion = MaximumDecisionRuleType::New(); std::cout << "----------MaximumDecisionRuleType " << maximumDecsion; auto minimumDecsion = MinimumDecisionRuleType::New(); std::cout << "----------MinimumDecisionRuleType " << minimumDecsion; auto classifierFilter = ImageClassifierFilterType::New(); std::cout << "----------ImageClassifierFilterType " << classifierFilter; auto emEstimator = EMEstimatorType::New(); std::cout << "----------EMEstimatorType " << emEstimator; auto kdTreeBasedEstimator = KdTreeBasedKMeansEstimatorType::New(); std::cout << "----------KdTreeBasedKMeansEstimatorType " << kdTreeBasedEstimator; return EXIT_SUCCESS; }