/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include #include "itkRegularStepGradientDescentOptimizer.h" #include "itkMath.h" #include "itkTestingMacros.h" /** * The objectif function is the quadratic form: * * 1/2 x^T A x - b^T x * * Where A is a matrix and b is a vector * The system in this example is: * * | 3 2 ||x| | 2| |0| * | 2 6 ||y| + |-8| = |0| * * * the solution is the vector | 2 -2 | * * \class RSGCostFunction */ class RSGCostFunction : public itk::SingleValuedCostFunction { public: using Self = RSGCostFunction; using Superclass = itk::SingleValuedCostFunction; using Pointer = itk::SmartPointer; using ConstPointer = itk::SmartPointer; itkNewMacro(Self); enum { SpaceDimension = 2 }; using ParametersType = Superclass::ParametersType; using DerivativeType = Superclass::DerivativeType; using MeasureType = Superclass::MeasureType; RSGCostFunction() = default; MeasureType GetValue(const ParametersType & parameters) const override { double x = parameters[0]; double y = parameters[1]; std::cout << "GetValue( "; std::cout << x << ' '; std::cout << y << ") = "; MeasureType measure = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y; std::cout << measure << std::endl; return measure; } void GetDerivative(const ParametersType & parameters, DerivativeType & derivative) const override { double x = parameters[0]; double y = parameters[1]; std::cout << "GetDerivative( "; std::cout << x << ' '; std::cout << y << ") = "; derivative = DerivativeType(SpaceDimension); derivative[0] = 3 * x + 2 * y - 2; derivative[1] = 2 * x + 6 * y + 8; } unsigned int GetNumberOfParameters() const override { return SpaceDimension; } private: }; int itkRegularStepGradientDescentOptimizerTest(int, char *[]) { using OptimizerType = itk::RegularStepGradientDescentOptimizer; using ScalesType = OptimizerType::ScalesType; // Declaration of an itkOptimizer auto itkOptimizer = OptimizerType::New(); ITK_EXERCISE_BASIC_OBJECT_METHODS( itkOptimizer, RegularStepGradientDescentOptimizer, RegularStepGradientDescentBaseOptimizer); // Declaration of the CostFunction auto costFunction = RSGCostFunction::New(); itkOptimizer->SetCostFunction(costFunction); using ParametersType = RSGCostFunction::ParametersType; const unsigned int spaceDimension = costFunction->GetNumberOfParameters(); // We start not so far from | 2 -2 | ParametersType initialPosition(spaceDimension); initialPosition[0] = 100; initialPosition[1] = -100; ScalesType parametersScale(spaceDimension); parametersScale[0] = 1.0; parametersScale[1] = 1.0; auto minimize = true; ITK_TEST_SET_GET_BOOLEAN(itkOptimizer, Minimize, minimize); ITK_TEST_SET_GET_BOOLEAN(itkOptimizer, Maximize, !minimize); itkOptimizer->SetScales(parametersScale); ITK_TEST_SET_GET_VALUE(parametersScale, itkOptimizer->GetScales()); auto gradientMagnitudeTolerance = 1e-6; itkOptimizer->SetGradientMagnitudeTolerance(gradientMagnitudeTolerance); ITK_TEST_SET_GET_VALUE(gradientMagnitudeTolerance, itkOptimizer->GetGradientMagnitudeTolerance()); auto maximumStepLength = 30.0; itkOptimizer->SetMaximumStepLength(maximumStepLength); ITK_TEST_SET_GET_VALUE(maximumStepLength, itkOptimizer->GetMaximumStepLength()); auto minimumStepLength = 1e-6; itkOptimizer->SetMinimumStepLength(minimumStepLength); ITK_TEST_SET_GET_VALUE(minimumStepLength, itkOptimizer->GetMinimumStepLength()); itk::SizeValueType numberOfIterations = static_cast(900); itkOptimizer->SetNumberOfIterations(numberOfIterations); ITK_TEST_SET_GET_VALUE(numberOfIterations, itkOptimizer->GetNumberOfIterations()); itkOptimizer->SetInitialPosition(initialPosition); ITK_TEST_SET_GET_VALUE(initialPosition, itkOptimizer->GetInitialPosition()); ITK_TRY_EXPECT_NO_EXCEPTION(itkOptimizer->StartOptimization()); ParametersType finalPosition = itkOptimizer->GetCurrentPosition(); std::cout << "Solution = ("; std::cout << finalPosition[0] << ','; std::cout << finalPosition[1] << ')' << std::endl; // Check results to see if it is within range bool pass = true; double trueParameters[2] = { 2, -2 }; for (unsigned int j = 0; j < 2; ++j) { if (itk::Math::abs(finalPosition[j] - trueParameters[j]) > 0.01) { pass = false; } } if (!pass) { std::cout << "Test failed." << std::endl; return EXIT_FAILURE; } // Run now with a different relaxation factor { itkOptimizer->SetInitialPosition(initialPosition); auto relaxationFactor = 0.8; itkOptimizer->SetRelaxationFactor(relaxationFactor); ITK_TEST_SET_GET_VALUE(relaxationFactor, itkOptimizer->GetRelaxationFactor()); ITK_TRY_EXPECT_NO_EXCEPTION(itkOptimizer->StartOptimization()); finalPosition = itkOptimizer->GetCurrentPosition(); std::cout << "Solution = ("; std::cout << finalPosition[0] << ','; std::cout << finalPosition[1] << ')' << std::endl; // Check results to see if it is within range pass = true; for (unsigned int j = 0; j < 2; ++j) { if (itk::Math::abs(finalPosition[j] - trueParameters[j]) > 0.01) { pass = false; } } if (!pass) { std::cout << "Test failed." << std::endl; return EXIT_FAILURE; } } // Verify that the optimizer doesn't run if the // number of iterations is set to zero. { itkOptimizer->SetNumberOfIterations(0); itkOptimizer->SetInitialPosition(initialPosition); ITK_TRY_EXPECT_NO_EXCEPTION(itkOptimizer->StartOptimization()); if (itkOptimizer->GetCurrentIteration() > 0) { std::cerr << "The optimizer is running iterations despite of "; std::cerr << "having a maximum number of iterations set to zero" << std::endl; return EXIT_FAILURE; } } // // Test the Exception if the GradientMagnitudeTolerance is set to a negative value // itkOptimizer->SetGradientMagnitudeTolerance(-1.0); ITK_TRY_EXPECT_EXCEPTION(itkOptimizer->StartOptimization()); // Test streaming enumeration for // RegularStepGradientDescentBaseOptimizerEnums::StopCondition elements const std::set allStopCondition{ itk::RegularStepGradientDescentBaseOptimizerEnums::StopCondition::GradientMagnitudeTolerance, itk::RegularStepGradientDescentBaseOptimizerEnums::StopCondition::StepTooSmall, itk::RegularStepGradientDescentBaseOptimizerEnums::StopCondition::ImageNotAvailable, itk::RegularStepGradientDescentBaseOptimizerEnums::StopCondition::CostFunctionError, itk::RegularStepGradientDescentBaseOptimizerEnums::StopCondition::MaximumNumberOfIterations, itk::RegularStepGradientDescentBaseOptimizerEnums::StopCondition::Unknown }; for (const auto & ee : allStopCondition) { std::cout << "STREAMED ENUM VALUE " "RegularStepGradientDescentBaseOptimizerEnums::StopCondition: " << ee << std::endl; } std::cout << "Test finished." << std::endl; return EXIT_SUCCESS; }