/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkLBFGSOptimizerv4.h" #include "itkMath.h" #include "vnl/algo/vnl_lbfgs.h" #include "itkTestingMacros.h" #include /** * \class itkLBFGSOptimizerv4TestMetric * * The objectif function is the quadratic form: * * 1/2 x^T A x - b^T x * * Where A is represented as an itkMatrix and * b is represented as an itkVector * * The system in this example is: * * | 3 2 ||x| | 2| |0| * | 2 6 ||y| + |-8| = |0| * * * the solution is the vector | 2 -2 | * */ class itkLBFGSOptimizerv4TestMetric : public itk::ObjectToObjectMetricBase { public: using Self = itkLBFGSOptimizerv4TestMetric; using Superclass = itk::ObjectToObjectMetricBase; using Pointer = itk::SmartPointer; using ConstPointer = itk::SmartPointer; itkNewMacro(Self); itkOverrideGetNameOfClassMacro(itkLBFGSOptimizerv4TestMetric); enum { SpaceDimension = 2 }; using ParametersType = Superclass::ParametersType; using DerivativeType = Superclass::DerivativeType; using MeasureType = Superclass::MeasureType; itkLBFGSOptimizerv4TestMetric() { m_HasLocalSupport = false; } MeasureType GetValue() const override { double x = this->m_Parameters[0]; double y = this->m_Parameters[1]; std::cout << "GetValue ( " << x << " , " << y << ") = "; double val = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y; std::cout << val << std::endl; return val; } void GetDerivative(DerivativeType & derivative) const override { double x = this->m_Parameters[0]; double y = this->m_Parameters[1]; std::cout << "GetDerivative ( " << x << " , " << y << ") = "; derivative = DerivativeType(SpaceDimension); derivative[0] = -(3 * x + 2 * y - 2); derivative[1] = -(2 * x + 6 * y + 8); std::cout << '(' << derivative[0] << " , " << derivative[1] << ')' << std::endl; } void GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override { value = GetValue(); GetDerivative(derivative); } void Initialize() override { m_Parameters.SetSize(SpaceDimension); } Superclass::NumberOfParametersType GetNumberOfLocalParameters() const override { return SpaceDimension; } Superclass::NumberOfParametersType GetNumberOfParameters() const override { return SpaceDimension; } void SetParameters(ParametersType & params) override { this->m_Parameters = params; } const ParametersType & GetParameters() const override { return this->m_Parameters; } bool HasLocalSupport() const override { return m_HasLocalSupport; } void SetHasLocalSupport(bool hls) { m_HasLocalSupport = hls; } void UpdateTransformParameters(const DerivativeType &, ParametersValueType) override {} private: ParametersType m_Parameters; bool m_HasLocalSupport; }; int itkLBFGSOptimizerv4Test(int, char *[]) { std::cout << "LBFGS Optimizerv4 Test \n \n"; using OptimizerType = itk::LBFGSOptimizerv4; using vnlOptimizerType = vnl_lbfgs; // Declaration of an itkOptimizer auto itkOptimizer = OptimizerType::New(); ITK_EXERCISE_BASIC_OBJECT_METHODS(itkOptimizer, LBFGSOptimizerv4, LBFGSOptimizerBasev4); // Declaration of the metric auto metric = itkLBFGSOptimizerv4TestMetric::New(); // Set some optimizer parameters bool trace = false; itkOptimizer->SetTrace(trace); ITK_TEST_SET_GET_VALUE(trace, itkOptimizer->GetTrace()); unsigned int maximumNumberOfFunctionEvaluations = 1000; itkOptimizer->SetMaximumNumberOfFunctionEvaluations(maximumNumberOfFunctionEvaluations); ITK_TEST_SET_GET_VALUE(maximumNumberOfFunctionEvaluations, itkOptimizer->GetMaximumNumberOfFunctionEvaluations()); double gradientConvergenceTolerance = 1e-3; itkOptimizer->SetGradientConvergenceTolerance(gradientConvergenceTolerance); ITK_TEST_SET_GET_VALUE(gradientConvergenceTolerance, itkOptimizer->GetGradientConvergenceTolerance()); double lineSearchAccuracy = 0.1; itkOptimizer->SetLineSearchAccuracy(lineSearchAccuracy); ITK_TEST_SET_GET_VALUE(lineSearchAccuracy, itkOptimizer->GetLineSearchAccuracy()); double defaultStepLength = 5.0; itkOptimizer->SetDefaultStepLength(defaultStepLength); ITK_TEST_SET_GET_VALUE(defaultStepLength, itkOptimizer->GetDefaultStepLength()); OptimizerType::DerivativeType cachedDerivative{}; ITK_TEST_EXPECT_EQUAL(cachedDerivative, itkOptimizer->GetCachedDerivative()); OptimizerType::ParametersType cachedCurrentPos{}; ITK_TEST_EXPECT_EQUAL(cachedCurrentPos, itkOptimizer->GetCachedCurrentPosition()); std::cout << "GetValue() before optimizer starts: " << itkOptimizer->GetValue() << std::endl; std::cout << "SetMetric." << std::endl; itkOptimizer->SetMetric(metric); std::cout << "Get vnl optimizer." << std::endl; vnlOptimizerType * vnlOptimizer = itkOptimizer->GetOptimizer(); vnlOptimizer->set_check_derivatives(0); constexpr unsigned int SpaceDimension = 2; OptimizerType::ParametersType initialValue(SpaceDimension); // We start not so far from | 2 -2 | initialValue[0] = 100; initialValue[1] = -100; // Set the initial position by setting the metric // parameters. std::cout << "Set metric parameters." << std::endl; metric->SetParameters(initialValue); // Set some optimizer parameters maximumNumberOfFunctionEvaluations = 100; itkOptimizer->SetMaximumNumberOfFunctionEvaluations(maximumNumberOfFunctionEvaluations); ITK_TEST_SET_GET_VALUE(maximumNumberOfFunctionEvaluations, itkOptimizer->GetMaximumNumberOfFunctionEvaluations()); gradientConvergenceTolerance = 1e-4; itkOptimizer->SetGradientConvergenceTolerance(gradientConvergenceTolerance); ITK_TEST_SET_GET_VALUE(gradientConvergenceTolerance, itkOptimizer->GetGradientConvergenceTolerance()); lineSearchAccuracy = 0.9; itkOptimizer->SetLineSearchAccuracy(lineSearchAccuracy); ITK_TEST_SET_GET_VALUE(lineSearchAccuracy, itkOptimizer->GetLineSearchAccuracy()); defaultStepLength = 1.0; itkOptimizer->SetDefaultStepLength(defaultStepLength); ITK_TEST_SET_GET_VALUE(defaultStepLength, itkOptimizer->GetDefaultStepLength()); std::cout << "Start optimization." << std::endl; try { itkOptimizer->StartOptimization(); } catch (const itk::ExceptionObject & e) { std::cerr << "Exception thrown ! " << std::endl; std::cerr << "An error occurred during Optimization" << std::endl; std::cerr << "Location = " << e.GetLocation() << std::endl; std::cerr << "Description = " << e.GetDescription() << std::endl; return EXIT_FAILURE; } std::cout << "Stop description = " << itkOptimizer->GetStopConditionDescription() << std::endl; std::cout << "End condition = " << vnlOptimizer->get_failure_code() << std::endl; std::cout << "Number of iters = " << vnlOptimizer->get_num_iterations() << std::endl; std::cout << "Number of evals = " << vnlOptimizer->get_num_evaluations() << std::endl; std::cout << std::endl; OptimizerType::ParametersType finalPosition; finalPosition = itkOptimizer->GetCurrentPosition(); std::cout << "Solution = (" << finalPosition[0] << ',' << finalPosition[1] << ')' << std::endl; std::cout << "End condition = " << itkOptimizer->GetStopConditionDescription() << std::endl; std::cout << "NumberOfIterations = " << itkOptimizer->GetCurrentIteration() << std::endl; // // check results to see if it is within range // bool pass = true; double trueParameters[2] = { 2, -2 }; for (unsigned int j = 0; j < 2; ++j) { if (itk::Math::FloatAlmostEqual(finalPosition[j], trueParameters[j])) { pass = false; } } if (!pass) { std::cout << "Test failed." << std::endl; return EXIT_FAILURE; } // Get the final value of the optimizer std::cout << "Testing GetValue() : "; OptimizerType::MeasureType finalValue = itkOptimizer->GetValue(); if (itk::Math::abs(finalValue + 10.0) > 0.01) { std::cout << "[FAILURE]" << std::endl; return EXIT_FAILURE; } else { std::cout << "[SUCCESS]" << std::endl; } // // Test stopping when number of iterations reached // itkOptimizer->SetNumberOfIterations(5); metric->SetParameters(initialValue); try { itkOptimizer->StartOptimization(); } catch (const itk::ExceptionObject & e) { std::cerr << "Exception thrown ! " << std::endl; std::cerr << "An error occurred during Optimization" << std::endl; std::cerr << e << std::endl; return EXIT_FAILURE; } std::cout << "Solution = (" << finalPosition[0] << ',' << finalPosition[1] << ')' << std::endl; std::cout << "NumberOfIterations = " << itkOptimizer->GetCurrentIteration() << std::endl; if (itkOptimizer->GetCurrentIteration() != 5) { std::cout << "Not expected number of iterations!" << std::endl; std::cout << "[FAILURE]" << std::endl; return EXIT_FAILURE; } // Test with non-identity scales // std::cout << std::endl << "Test with non-identiy scales." << std::endl; OptimizerType::ScalesType scales(2); scales[0] = 1.5; scales[1] = 0.75; itkOptimizer->SetScales(scales); std::cout << "Set metric parameters." << std::endl; metric->SetParameters(initialValue); try { itkOptimizer->StartOptimization(); } catch (const itk::ExceptionObject & e) { std::cerr << "Exception thrown ! " << std::endl; std::cerr << "An error occurred during Optimization" << std::endl; std::cerr << "Location = " << e.GetLocation() << std::endl; std::cerr << "Description = " << e.GetDescription() << std::endl; return EXIT_FAILURE; } std::cout << "Scales after optimization: " << itkOptimizer->GetScales() << std::endl; finalPosition = itkOptimizer->GetCurrentPosition(); std::cout << "Solution = (" << finalPosition[0] << ',' << finalPosition[1] << ')' << std::endl; // check results to see if it is within range pass = true; for (unsigned int j = 0; j < 2; ++j) { if (itk::Math::FloatAlmostEqual(finalPosition[j], trueParameters[j])) { pass = false; } } if (!pass) { std::cerr << "Test failed. finalPosition is not correct." << std::endl; return EXIT_FAILURE; } // Test with local-support transform. Should FAIL. // Such transforms are not yet supported. metric->SetHasLocalSupport(true); ITK_TRY_EXPECT_EXCEPTION(itkOptimizer->StartOptimization()); std::cout << "Test passed." << std::endl; return EXIT_SUCCESS; }