/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkRegistrationParameterScalesFromJacobian.h" #include "itkImageToImageMetricv4.h" #include "itkAffineTransform.h" #include "itkDisplacementFieldTransform.h" #include "itkMath.h" /** * \class RegistrationParameterScalesFromJacobianTestMetric for test. * Create a simple metric to use for testing here. */ template class RegistrationParameterScalesFromJacobianTestMetric : public itk::ImageToImageMetricv4 { public: /** Standard class type aliases. */ using Self = RegistrationParameterScalesFromJacobianTestMetric; using Superclass = itk::ImageToImageMetricv4; using Pointer = itk::SmartPointer; using ConstPointer = itk::SmartPointer; using typename Superclass::MeasureType; using typename Superclass::DerivativeType; using typename Superclass::ParametersType; using typename Superclass::ParametersValueType; itkOverrideGetNameOfClassMacro(RegistrationParameterScalesFromJacobianTestMetric); itkNewMacro(Self); // Pure virtual functions that all Metrics must provide unsigned int GetNumberOfParameters() const override { return 5; } MeasureType GetValue() const override { return 1.0; } void GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override { value = 1.0; derivative.Fill(0.0); } unsigned int GetNumberOfLocalParameters() const override { return 0; } void UpdateTransformParameters(const DerivativeType &, ParametersValueType) override {} const ParametersType & GetParameters() const override { return m_Parameters; } void Initialize() override {} ParametersType m_Parameters; // Image related types using FixedImageType = TFixedImage; using MovingImageType = TMovingImage; using VirtualImageType = TVirtualImage; using FixedImageConstPointer = typename FixedImageType::ConstPointer; using MovingImageConstPointer = typename MovingImageType::ConstPointer; using VirtualImagePointer = typename VirtualImageType::Pointer; using VirtualRegionType = typename VirtualImageType::RegionType; /* Image dimension accessors */ static constexpr itk::SizeValueType FixedImageDimension = FixedImageType::ImageDimension; static constexpr itk::SizeValueType MovingImageDimension = MovingImageType::ImageDimension; static constexpr itk::SizeValueType VirtualImageDimension = VirtualImageType::ImageDimension; private: RegistrationParameterScalesFromJacobianTestMetric() = default; ~RegistrationParameterScalesFromJacobianTestMetric() override = default; }; /** */ int itkRegistrationParameterScalesFromJacobianTest(int, char *[]) { // Image begins constexpr itk::SizeValueType ImageDimension = 2; using PixelType = double; using FloatType = double; // Image Types using FixedImageType = itk::Image; using MovingImageType = itk::Image; using VirtualImageType = itk::Image; auto fixedImage = FixedImageType::New(); auto movingImage = MovingImageType::New(); VirtualImageType::Pointer virtualImage = fixedImage; MovingImageType::SizeType size; size.Fill(100); movingImage->SetRegions(size); fixedImage->SetRegions(size); // Image done // Transform begins using MovingTransformType = itk::AffineTransform; auto movingTransform = MovingTransformType::New(); movingTransform->SetIdentity(); using FixedTransformType = itk::TranslationTransform; auto fixedTransform = FixedTransformType::New(); fixedTransform->SetIdentity(); // Transform done // Metric begins using MetricType = RegistrationParameterScalesFromJacobianTestMetric; auto metric = MetricType::New(); metric->SetVirtualDomainFromImage(virtualImage); metric->SetFixedImage(fixedImage); metric->SetMovingImage(movingImage); metric->SetFixedTransform(fixedTransform); metric->SetMovingTransform(movingTransform); // Metric done // Scales for the affine transform from transform jacobians using RegistrationParameterScalesFromJacobianType = itk::RegistrationParameterScalesFromJacobian; RegistrationParameterScalesFromJacobianType::Pointer jacobianScaleEstimator = RegistrationParameterScalesFromJacobianType::New(); jacobianScaleEstimator->SetMetric(metric); jacobianScaleEstimator->SetTransformForward(true); // by default jacobianScaleEstimator->Print(std::cout); std::cout << std::endl; RegistrationParameterScalesFromJacobianType::ScalesType jacobianScales(movingTransform->GetNumberOfParameters()); jacobianScaleEstimator->EstimateScales(jacobianScales); std::cout << "Jacobian scales for the affine transform = " << jacobianScales << std::endl; // Check the correctness RegistrationParameterScalesFromJacobianType::ScalesType theoreticalJacobianScales( movingTransform->GetNumberOfParameters()); VirtualImageType::PointType upperPoint; virtualImage->TransformIndexToPhysicalPoint(virtualImage->GetLargestPossibleRegion().GetUpperIndex(), upperPoint); itk::SizeValueType param = 0; for (itk::SizeValueType row = 0; row < ImageDimension; ++row) { for (itk::SizeValueType col = 0; col < ImageDimension; ++col) { // uses the corners for affine transform // = (0 + 0 + n*n + n*n)/4 = n*n/2 theoreticalJacobianScales[param++] = upperPoint[col] * upperPoint[col] / 2.0; } } for (itk::SizeValueType row = 0; row < ImageDimension; ++row) { theoreticalJacobianScales[param++] = 1; } bool jacobianPass = true; for (itk::SizeValueType p = 0; p < jacobianScales.GetSize(); ++p) { if (itk::Math::abs((jacobianScales[p] - theoreticalJacobianScales[p]) / theoreticalJacobianScales[p]) > 0.01) { jacobianPass = false; break; } } if (!jacobianPass) { std::cout << "Failed: the jacobian scales for the affine transform are not correct." << std::endl; } else { std::cout << "Passed: the jacobian scales for the affine transform are correct." << std::endl; } bool nonUniformForJacobian = false; for (itk::SizeValueType p = 1; p < jacobianScales.GetSize(); ++p) { if (itk::Math::NotExactlyEquals(jacobianScales[p], jacobianScales[0])) { nonUniformForJacobian = true; break; } } if (!nonUniformForJacobian) { std::cout << "Error: the jacobian scales for an affine transform are equal for all parameters." << std::endl; } // Testing the step scale for the affine transform MovingTransformType::ParametersType movingStep(movingTransform->GetNumberOfParameters()); movingStep = movingTransform->GetParameters(); FloatType stepScale = jacobianScaleEstimator->EstimateStepScale(movingStep); std::cout << "The step scale of Jacobian for the affine transform = " << stepScale << std::endl; FloatType learningRate = 1.0 / stepScale; std::cout << "The learning rate of Jacobian for the affine transform = " << learningRate << std::endl; FloatType theoreticalStepScale = 0.0; FloatType count = 0.0; VirtualImageType::PointType lowerPoint; virtualImage->TransformIndexToPhysicalPoint(virtualImage->GetLargestPossibleRegion().GetIndex(), lowerPoint); for (FloatType x = lowerPoint[0]; x <= upperPoint[0]; x += upperPoint[0] - lowerPoint[0]) { for (FloatType y = lowerPoint[1]; y <= upperPoint[1]; y += upperPoint[1] - lowerPoint[1]) { theoreticalStepScale += std::sqrt(x * x + y * y); count++; } } theoreticalStepScale /= count; bool stepScalePass = false; if (itk::Math::abs((stepScale - theoreticalStepScale) / theoreticalStepScale) < 0.01) { stepScalePass = true; } if (!stepScalePass) { std::cout << "Failed: the step scale for the affine transform is not correct." << std::endl; } else { std::cout << "Passed: the step scale for the affine transform is correct." << std::endl; } // Testing local scales for a transform with local support, ex. DisplacementFieldTransform using DisplacementTransformType = itk::DisplacementFieldTransform; using FieldType = DisplacementTransformType::DisplacementFieldType; using VectorType = itk::Vector; VectorType zero; zero.Fill(0.0); auto field = FieldType::New(); field->SetRegions(virtualImage->GetLargestPossibleRegion()); field->SetSpacing(virtualImage->GetSpacing()); field->SetOrigin(virtualImage->GetOrigin()); field->SetDirection(virtualImage->GetDirection()); field->Allocate(); field->FillBuffer(zero); auto displacementTransform = DisplacementTransformType::New(); displacementTransform->SetDisplacementField(field); metric->SetMovingTransform(displacementTransform); jacobianScaleEstimator->SetTransformForward(true); RegistrationParameterScalesFromJacobianType::ScalesType localScales; jacobianScaleEstimator->EstimateScales(localScales); std::cout << "Shift scales for the displacement field transform = " << localScales << std::endl; // Check the correctness RegistrationParameterScalesFromJacobianType::ScalesType theoreticalLocalScales( displacementTransform->GetNumberOfLocalParameters()); theoreticalLocalScales.Fill(1.0); bool displacementPass = true; for (itk::SizeValueType p = 0; p < theoreticalLocalScales.GetSize(); ++p) { if (itk::Math::abs((localScales[p] - theoreticalLocalScales[p]) / theoreticalLocalScales[p]) > 0.01) { displacementPass = false; break; } } if (!displacementPass) { std::cout << "Failed: the shift scales for the displacement field transform are not correct." << std::endl; } else { std::cout << "Passed: the shift scales for the displacement field transform are correct." << std::endl; } // Testing scales with local support done // Testing the step scale for the displacement field transform DisplacementTransformType::ParametersType displacementStep(displacementTransform->GetNumberOfParameters()); displacementStep.Fill(1.0); FloatType localStepScale = jacobianScaleEstimator->EstimateStepScale(displacementStep); std::cout << "The step scale of Jacobian for the displacement field transform = " << localStepScale << std::endl; FloatType localLearningRate = 1.0 / localStepScale; std::cout << "The learning rate of Jacobian for the displacement field transform = " << localLearningRate << std::endl; bool localStepScalePass = false; FloatType theoreticalLocalStepScale = std::sqrt(2.0); if (itk::Math::abs((localStepScale - theoreticalLocalStepScale) / theoreticalLocalStepScale) < 0.01) { localStepScalePass = true; } if (!localStepScalePass) { std::cout << "Failed: the step scale for the displacement field transform is not correct." << std::endl; } else { std::cout << "Passed: the step scale for the displacement field transform is correct." << std::endl; } // Testing the step scale with local support done // Check the correctness of all cases above std::cout << std::endl; if (jacobianPass && nonUniformForJacobian && stepScalePass && displacementPass && localStepScalePass) { std::cout << "Test passed" << std::endl; return EXIT_SUCCESS; } else { std::cout << "Test failed" << std::endl; return EXIT_FAILURE; } }