/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkKalmanLinearEstimator.h" #include /** * This program test one instantiation of the itk::KalmanLinearEstimator class * * The test is done by providing a Linear Equation in 6D for which the * coefficients are known. A population of samples is generated and * passed to the KalmanLinearEstimator. * */ int itkKalmanLinearEstimatorTest(int, char *[]) { using KalmanFilterType = itk::KalmanLinearEstimator; using VectorType = KalmanFilterType::VectorType; using ValueType = KalmanFilterType::ValueType; KalmanFilterType filter; filter.ClearEstimation(); filter.SetVariance(1.0); ValueType measure; VectorType predictor; VectorType planeEquation; planeEquation(0) = 9.0; planeEquation(1) = 6.0; planeEquation(2) = 7.0; planeEquation(3) = 9.0; planeEquation(4) = 4.0; planeEquation(5) = 6.0; constexpr unsigned int N = 10; predictor(5) = 1.0; for (unsigned int ax = 0; ax < N; ++ax) { predictor(0) = ax; for (unsigned int bx = 0; bx < N; ++bx) { predictor(1) = bx; for (unsigned int cx = 0; cx < N; ++cx) { predictor(2) = cx; for (unsigned int dx = 0; dx < N; ++dx) { predictor(3) = dx; for (unsigned int ex = 0; ex < N; ++ex) { predictor(4) = ex; measure = dot_product(predictor, planeEquation); filter.UpdateWithNewMeasure(measure, predictor); } } } } } VectorType estimation = filter.GetEstimator(); std::cout << std::endl << "The Right answer should be : " << std::endl; std::cout << planeEquation; std::cout << std::endl << "The Estimation is : " << std::endl; std::cout << estimation; VectorType error = estimation - planeEquation; ValueType errorMagnitude = dot_product(error, error); std::cout << std::endl << "Errors : " << std::endl; std::cout << error; std::cout << std::endl << "Error Magnitude : " << std::endl; std::cout << errorMagnitude; std::cout << std::endl << "Variance : " << std::endl; std::cout << filter.GetVariance(); std::cout << std::endl << std::endl; bool pass = true; const float tolerance = 1e-4; if (errorMagnitude > tolerance) { pass = false; } if (!pass) { std::cout << "Test failed." << std::endl; return EXIT_FAILURE; } std::cout << "Test passed." << std::endl; return EXIT_SUCCESS; }