/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkMath.h" #include "itkMersenneTwisterRandomVariateGenerator.h" #include "itkListSample.h" #include "itkKdTreeGenerator.h" #include "itkTestingMacros.h" #include int itkKdTreeTest1(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing parameters." << std::endl; std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv); std::cerr << " numberOfDataPoints numberOfTestPoints bucketSize [graphvizDotOutputFile]" << std::endl; return EXIT_FAILURE; } // Random number generator using NumberGeneratorType = itk::Statistics::MersenneTwisterRandomVariateGenerator; NumberGeneratorType::Pointer randomNumberGenerator = NumberGeneratorType::GetInstance(); randomNumberGenerator->Initialize(); using MeasurementVectorType = itk::Array; using SampleType = itk::Statistics::ListSample; constexpr SampleType::MeasurementVectorSizeType measurementVectorSize = 2; auto sample = SampleType::New(); sample->SetMeasurementVectorSize(measurementVectorSize); // // Generate a sample of random points // const unsigned int numberOfDataPoints = std::stoi(argv[1]); MeasurementVectorType mv(measurementVectorSize); for (unsigned int i = 0; i < numberOfDataPoints; ++i) { mv[0] = randomNumberGenerator->GetNormalVariate(0.0, 1.0); mv[1] = randomNumberGenerator->GetNormalVariate(0.0, 1.0); sample->PushBack(mv); std::cout << "Add measurement vector: " << mv << std::endl; } using TreeGeneratorType = itk::Statistics::KdTreeGenerator; auto treeGenerator = TreeGeneratorType::New(); const unsigned int bucketSize = std::stoi(argv[3]); treeGenerator->SetSample(sample); treeGenerator->SetBucketSize(bucketSize); treeGenerator->Update(); using TreeType = TreeGeneratorType::KdTreeType; TreeType::Pointer tree = treeGenerator->GetOutput(); MeasurementVectorType queryPoint(measurementVectorSize); unsigned int numberOfNeighbors = 1; TreeType::InstanceIdentifierVectorType neighbors; MeasurementVectorType result(measurementVectorSize); MeasurementVectorType test_point(measurementVectorSize); MeasurementVectorType min_point(measurementVectorSize); unsigned int numberOfFailedPoints1 = 0; const unsigned int numberOfTestPoints = std::stoi(argv[2]); // // Check that for every point in the sample, its closest point is itself. // using DistanceMetricType = itk::Statistics::EuclideanDistanceMetric; using OriginType = DistanceMetricType::OriginType; auto distanceMetric = DistanceMetricType::New(); OriginType origin(measurementVectorSize); for (unsigned int k = 0; k < sample->Size(); ++k) { queryPoint = sample->GetMeasurementVector(k); for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i) { origin[i] = queryPoint[i]; } distanceMetric->SetOrigin(origin); // First, get distance from the search API std::vector searchDistance; tree->Search(queryPoint, numberOfNeighbors, neighbors, searchDistance); // We can also get distance from the distance metric tree->Search(queryPoint, numberOfNeighbors, neighbors); for (unsigned int i = 0; i < numberOfNeighbors; ++i) { const double distanceFromMetric = distanceMetric->Evaluate(tree->GetMeasurementVector(neighbors[i])); if (distanceFromMetric > itk::Math::eps || searchDistance[i] > itk::Math::eps || itk::Math::NotAlmostEquals(distanceFromMetric, searchDistance[i])) { std::cerr << "kd-tree knn search result:" << std::endl << "query point = [" << queryPoint << ']' << std::endl << "k = " << numberOfNeighbors << std::endl; std::cerr << "measurement vector : distance_by_distMetric : distance_by_tree" << std::endl; std::cerr << '[' << tree->GetMeasurementVector(neighbors[i]) << "] : " << distanceFromMetric << " : " << searchDistance[i] << std::endl; numberOfFailedPoints1++; } } } unsigned int numberOfFailedPoints2 = 0; // // Generate a second sample of random points // and use them to query the tree // for (unsigned int j = 0; j < numberOfTestPoints; ++j) { double min_dist = itk::NumericTraits::max(); queryPoint[0] = randomNumberGenerator->GetNormalVariate(0.0, 1.0); queryPoint[1] = randomNumberGenerator->GetNormalVariate(0.0, 1.0); tree->Search(queryPoint, numberOfNeighbors, neighbors); // // The first neighbor should be the closest point. // result = tree->GetMeasurementVector(neighbors[0]); // // Compute the distance to the "presumed" nearest neighbor // double result_dist = std::sqrt((result[0] - queryPoint[0]) * (result[0] - queryPoint[0]) + (result[1] - queryPoint[1]) * (result[1] - queryPoint[1])); // // Compute the distance to all other points, to verify // whether the first neighbor was the closest one or not. // for (unsigned int i = 0; i < numberOfDataPoints; ++i) { test_point = tree->GetMeasurementVector(i); const double dist = std::sqrt((test_point[0] - queryPoint[0]) * (test_point[0] - queryPoint[0]) + (test_point[1] - queryPoint[1]) * (test_point[1] - queryPoint[1])); if (dist < min_dist) { min_dist = dist; min_point = test_point; } } if (itk::Math::abs(min_dist - result_dist) > 10.0 * itk::NumericTraits::epsilon() * min_dist) { std::cerr << "Problem found " << std::endl; std::cerr << "Query point " << queryPoint << std::endl; std::cerr << "Reported closest point " << result << " distance " << result_dist << std::endl; std::cerr << "Actual closest point " << min_point << " distance " << min_dist << std::endl; std::cerr << std::endl; std::cerr << "Test FAILED." << std::endl; numberOfFailedPoints2++; } } if (argc > 4) { // // Plot out the tree structure to the console in the format used by Graphviz dot // std::ofstream plotFile; plotFile.open(argv[4]); tree->PlotTree(plotFile); plotFile.close(); } if (numberOfFailedPoints1) { std::cerr << numberOfFailedPoints1 << " out of " << sample->Size(); std::cerr << " points failed to find themselves as closest-point" << std::endl; } if (numberOfFailedPoints2) { std::cerr << numberOfFailedPoints2 << " out of " << numberOfTestPoints; std::cerr << " points failed to find the correct closest point." << std::endl; } if (numberOfFailedPoints1 || numberOfFailedPoints2) { return EXIT_FAILURE; } std::cout << "Test PASSED." << std::endl; return EXIT_SUCCESS; }