/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkListSample.h" #include "itkKdTreeGenerator.h" #include int itkKdTreeTestSamplePoints(int, char *[]) { using MeasurementVectorType = itk::Array; using SampleType = itk::Statistics::ListSample; constexpr SampleType::MeasurementVectorSizeType measurementVectorSize = 2; auto sample = SampleType::New(); sample->SetMeasurementVectorSize(measurementVectorSize); constexpr unsigned int numberOfDataPoints = 5; MeasurementVectorType mv(measurementVectorSize); mv[0] = 0.0342; mv[1] = 0.5175; sample->PushBack(mv); MeasurementVectorType mv2(measurementVectorSize); mv2[0] = 0.9650; mv2[1] = -0.9379; sample->PushBack(mv2); MeasurementVectorType mv3(measurementVectorSize); mv3[0] = -0.0471; mv3[1] = 0.8177; sample->PushBack(mv3); MeasurementVectorType mv4(measurementVectorSize); mv4[0] = 0.4737; mv4[1] = -1.0447; sample->PushBack(mv4); MeasurementVectorType mv5(measurementVectorSize); mv5[0] = -0.6307; mv5[1] = -2.7600; sample->PushBack(mv5); using TreeGeneratorType = itk::Statistics::KdTreeGenerator; auto treeGenerator = TreeGeneratorType::New(); constexpr unsigned int bucketSize = 1; treeGenerator->SetSample(sample); treeGenerator->SetBucketSize(bucketSize); treeGenerator->Update(); using TreeType = TreeGeneratorType::KdTreeType; TreeType::Pointer tree = treeGenerator->GetOutput(); MeasurementVectorType queryPoint(measurementVectorSize); unsigned int numberOfNeighbors = 1; TreeType::InstanceIdentifierVectorType neighbors; MeasurementVectorType result(measurementVectorSize); MeasurementVectorType test_point(measurementVectorSize); MeasurementVectorType min_point(measurementVectorSize); // // Check that for every point in the sample, its closest point is itself. // using DistanceMetricType = itk::Statistics::EuclideanDistanceMetric; using OriginType = DistanceMetricType::OriginType; auto distanceMetric = DistanceMetricType::New(); OriginType origin(measurementVectorSize); for (unsigned int k = 0; k < sample->Size(); ++k) { queryPoint = sample->GetMeasurementVector(k); for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i) { origin[i] = queryPoint[i]; } distanceMetric->SetOrigin(origin); tree->Search(queryPoint, numberOfNeighbors, neighbors); for (unsigned int i = 0; i < numberOfNeighbors; ++i) { const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(neighbors[i])); if (distance > itk::Math::eps) { std::cerr << "kd-tree knn search result:" << std::endl << "query point = [" << queryPoint << ']' << std::endl << "k = " << numberOfNeighbors << std::endl; std::cerr << "measurement vector : distance" << std::endl; std::cerr << '[' << tree->GetMeasurementVector(neighbors[i]) << "] : " << distance << std::endl; } } } double min_dist = itk::NumericTraits::max(); /* queryPoint[0] = 1.16651; queryPoint[1] = 0.16395; */ /* queryPoint[0] = 1.0; queryPoint[1] = 0.12; */ queryPoint[0] = 1.0; queryPoint[1] = 0.1; tree->Search(queryPoint, numberOfNeighbors, neighbors); // // The first neighbor should be the closest point. // result = tree->GetMeasurementVector(neighbors[0]); // // Compute the distance to the "presumed" nearest neighbor // double result_dist = std::sqrt((result[0] - queryPoint[0]) * (result[0] - queryPoint[0]) + (result[1] - queryPoint[1]) * (result[1] - queryPoint[1])); // // Compute the distance to all other points, to verify // whether the first neighbor was the closest one or not. // for (unsigned int i = 0; i < numberOfDataPoints; ++i) { test_point = tree->GetMeasurementVector(i); std::cout << "Compute distance with: " << test_point; const double dist = std::sqrt((test_point[0] - queryPoint[0]) * (test_point[0] - queryPoint[0]) + (test_point[1] - queryPoint[1]) * (test_point[1] - queryPoint[1])); std::cout << '\t' << dist << std::endl; if (dist < min_dist) { min_dist = dist; min_point = test_point; } } if (min_dist < result_dist) { std::cerr << "Problem found " << std::endl; std::cerr << "Query point " << queryPoint << std::endl; std::cerr << "Reported closest point " << result << " distance " << result_dist << std::endl; std::cerr << "Actual closest point " << min_point << " distance " << min_dist << std::endl; std::cerr << std::endl; std::cerr << "Test FAILED." << std::endl; } // // Plot out the tree structure to the console in the format used by Graphviz dot // std::ofstream plotFile; plotFile.open("plot.dot"); tree->PlotTree(plotFile); plotFile.close(); return EXIT_SUCCESS; }