/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ /** * Test program for itkMattesMutualInformationImageToImageMetricv4RegistrationTest and * GradientDescentOptimizerv4 classes. * * Perform a registration using user-supplied images. * No numerical verification is performed. Test passes as long * as no exception occurs. */ #include "itkMattesMutualInformationImageToImageMetricv4.h" #include "itkGradientDescentOptimizerv4.h" #include "itkRegistrationParameterScalesFromPhysicalShift.h" #include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h" #include "itkCastImageFilter.h" #include "itkCommand.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include #include "itkTestingMacros.h" int itkMattesMutualInformationImageToImageMetricv4RegistrationTest(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv); std::cerr << " fixedImageFile movingImageFile "; std::cerr << " outputImageFile "; std::cerr << " [numberOfIterations = 10] [numberOfDisplacementIterations = 10] "; std::cerr << " [doSampling = false] "; std::cerr << std::endl; return EXIT_FAILURE; } std::cout << argc << std::endl; unsigned int numberOfIterations = 10; unsigned int numberOfDisplacementIterations = 10; bool doSampling = false; if (argc >= 5) { numberOfIterations = std::stoi(argv[4]); } if (argc >= 6) { numberOfDisplacementIterations = std::stoi(argv[5]); } if (argc >= 7) { doSampling = std::stoi(argv[6]); } std::cout << " iterations " << numberOfIterations << " displacementIterations " << numberOfDisplacementIterations << std::endl; constexpr unsigned int Dimension = 2; using PixelType = double; // I assume png is unsigned short using FixedImageType = itk::Image; using MovingImageType = itk::Image; using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; auto fixedImageReader = FixedImageReaderType::New(); auto movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); // get the images fixedImageReader->Update(); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); movingImageReader->Update(); MovingImageType::Pointer movingImage = movingImageReader->GetOutput(); /** define a resample filter that will ultimately be used to deform the image */ using ResampleFilterType = itk::ResampleImageFilter; auto resample = ResampleFilterType::New(); /** create a composite transform holder for other transforms */ using CompositeType = itk::CompositeTransform; auto compositeTransform = CompositeType::New(); // create an affine transform using AffineTransformType = itk::AffineTransform; auto affineTransform = AffineTransformType::New(); affineTransform->SetIdentity(); std::cout << " affineTransform params prior to optimization " << affineTransform->GetParameters() << std::endl; using DisplacementTransformType = itk::GaussianSmoothingOnUpdateDisplacementFieldTransform; auto displacementTransform = DisplacementTransformType::New(); using DisplacementFieldType = DisplacementTransformType::DisplacementFieldType; auto field = DisplacementFieldType::New(); // set the field to be the same as the fixed image region, which will // act by default as the virtual domain in this example. field->SetRegions(fixedImage->GetLargestPossibleRegion()); // make sure the field has the same spatial information as the image field->CopyInformation(fixedImage); std::cout << "fixedImage->GetLargestPossibleRegion(): " << fixedImage->GetLargestPossibleRegion() << std::endl; field->Allocate(); // Fill it with 0's DisplacementTransformType::OutputVectorType zeroVector; zeroVector.Fill(0); field->FillBuffer(zeroVector); // Assign to transform displacementTransform->SetDisplacementField(field); displacementTransform->SetGaussianSmoothingVarianceForTheUpdateField(5); displacementTransform->SetGaussianSmoothingVarianceForTheTotalField(6); // identity transform for fixed image using IdentityTransformType = itk::IdentityTransform; auto identityTransform = IdentityTransformType::New(); identityTransform->SetIdentity(); // The metric using MetricType = itk::MattesMutualInformationImageToImageMetricv4; using PointSetType = MetricType::FixedSampledPointSetType; auto metric = MetricType::New(); metric->SetNumberOfHistogramBins(20); if (!doSampling) { std::cout << "Dense sampling." << std::endl; metric->SetUseSampledPointSet(false); } else { using PointType = PointSetType::PointType; PointSetType::Pointer pset(PointSetType::New()); unsigned long ind = 0, ct = 0; itk::ImageRegionIteratorWithIndex It(fixedImage, fixedImage->GetLargestPossibleRegion()); for (It.GoToBegin(); !It.IsAtEnd(); ++It) { // take every N^th point if (ct % 20 == 0) { PointType pt; fixedImage->TransformIndexToPhysicalPoint(It.GetIndex(), pt); pset->SetPoint(ind, pt); ind++; } ct++; } std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl; metric->SetFixedSampledPointSet(pset); metric->SetUseSampledPointSet(true); std::cout << "Testing metric with point set..." << std::endl; } // Assign images and transforms. // By not setting a virtual domain image or virtual domain settings, // the metric will use the fixed image for the virtual domain. // metric->SetVirtualDomainFromImage( fixedImage ); metric->SetFixedImage(fixedImage); metric->SetMovingImage(movingImage); metric->SetFixedTransform(identityTransform); metric->SetMovingTransform(affineTransform); const bool gaussian = false; metric->SetUseMovingImageGradientFilter(gaussian); metric->SetUseFixedImageGradientFilter(gaussian); metric->Initialize(); using RegistrationParameterScalesFromShiftType = itk::RegistrationParameterScalesFromPhysicalShift; RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New(); shiftScaleEstimator->SetMetric(metric); std::cout << "First do an affine registration " << std::endl; using OptimizerType = itk::GradientDescentOptimizerv4; auto optimizer = OptimizerType::New(); optimizer->SetMetric(metric); optimizer->SetNumberOfIterations(numberOfIterations); optimizer->SetScalesEstimator(shiftScaleEstimator); optimizer->StartOptimization(); std::cout << "Affine registration complete. GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl; std::cout << "GetNumberOfWorkUnitsUsed: " << metric->GetNumberOfWorkUnitsUsed() << std::endl; // now add the displacement field to the composite transform compositeTransform->AddTransform(affineTransform); compositeTransform->AddTransform(displacementTransform); compositeTransform->SetAllTransformsToOptimizeOn(); // Set back to optimize all. compositeTransform->SetOnlyMostRecentTransformToOptimizeOn(); // set to optimize the displacement field if (numberOfDisplacementIterations == 0) { std::cout << "Skipping deformable registration." << std::endl; } else { std::cout << "Follow affine with deformable registration " << std::endl; metric->SetMovingTransform(compositeTransform); metric->SetUseSampledPointSet(doSampling); metric->Initialize(); // Optimizer RegistrationParameterScalesFromShiftType::ScalesType displacementScales( displacementTransform->GetNumberOfLocalParameters()); displacementScales.Fill(1); optimizer->SetMetric(metric); optimizer->SetNumberOfIterations(numberOfDisplacementIterations); optimizer->SetScalesEstimator(shiftScaleEstimator); try { optimizer->StartOptimization(); } catch (const itk::ExceptionObject & e) { std::cout << "Exception thrown ! " << std::endl; std::cout << "An error occurred during deformation Optimization:" << std::endl; std::cout << e.GetLocation() << std::endl; std::cout << e.GetDescription() << std::endl; std::cout << e.what() << std::endl; std::cout << "Test FAILED." << std::endl; return EXIT_FAILURE; } std::cout << "...finished. " << std::endl; std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl; // std::cout << "\n\n*gradient: " << optimizer->GetGradient() << std::endl; std::cout << "Scales: " << optimizer->GetScales() << std::endl; std::cout << "Final learning rate: " << optimizer->GetLearningRate() << std::endl; } // warp the image with the displacement field resample->SetTransform(compositeTransform); resample->SetInput(movingImageReader->GetOutput()); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(0); resample->Update(); // write out the displacement field using DisplacementWriterType = itk::ImageFileWriter; auto displacementwriter = DisplacementWriterType::New(); std::string outfilename(argv[3]); std::string ext = itksys::SystemTools::GetFilenameExtension(outfilename); std::string name = itksys::SystemTools::GetFilenameWithoutExtension(outfilename); std::string path = itksys::SystemTools::GetFilenamePath(outfilename); std::string defout = path + std::string("/") + name + std::string("_def") + ext; displacementwriter->SetFileName(defout.c_str()); displacementwriter->SetInput(displacementTransform->GetDisplacementField()); displacementwriter->Update(); // write the warped image into a file using OutputPixelType = double; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; auto writer = WriterType::New(); auto caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); std::cout << "After optimization affine params are: " << affineTransform->GetParameters() << std::endl; std::cout << "Test PASSED." << std::endl; return EXIT_SUCCESS; }